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Abstract

Cloud solutions offer numerous advantages in terms of scalability, reliability, and
rapid resource provisioning. However, the underlying servers waste a significant
amount of energy just to remain powered on. Therefore, shutting down underutilized
servers can significantly reduce operational costs. This thesis proposes DREEM,
a Kubernetes-based cluster scaling mechanism to predict future workloads and
make intelligent decisions about powering servers on or off. DREEM optimizes the
overall energy consumption while ensuring optimal performance and low latency.
In this thesis, DREEM’s architecture and implementation is discussed. In addition,
its effectiveness is showcased by monitoring a small cluster and dynamically scaling
it based on the measured and forecasted load. Then, it is compared againts Cluster
Autoscaler, an already existing solution for scaling Kubernetes clusters. The
demonstration highlights how this new approach effectively reduces the average
number of active nodes, thereby lowering energy consumption without compromising
performance or responsiveness.
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Chapter 1

Introduction

In recent years, Cloud Computing emerged as a dominant paradigm for delivering
on-demand resources and services to users in a more flexible, faster and cost-
efficient manner. The Cloud Computing model offers significant advantages [1],
such as eliminating the need for organizations to maintain physical servers, reducing
operational overhead, and providing access to managed and ready-to-use services
that can be easily scaled to match workload fluctuations. This model allows
businesses to focus only on their core activities while relying on service providers
for infrastructure.

Despite these benefits, on-premises infrastructures remain widely adopted across
numerous sectors. On-premises solutions are still often preferred for several reasons:

• Data privacy: Industries may operate under strict regulations, such as
healthcare and finance, require sensitive data to remain within controlled
environments.

• Full control over resources: Enterprises may demand granular control
over hardware and software configurations to guarantee performance or meet
specific requirements.

• Cost considerations: Although cloud services offer flexibility, recurring
operational expenses associated with cloud subscriptions can be significant
over time, especially for workloads that require constant high performance.

In this scenario, the ability to dynamically adapt the size of an on-premises
cluster based on workload demand becomes a critical objective. The goal is to
achieve an infrastructure that can scale elastically:

• Scaling up, by adding new nodes when application demand increases to ensure
service reliability and meet Quality of Service (QoS) requirements.
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Introduction

• Scaling down, by shutting down nodes during periods of low demand, in order to
avoid resource overprovisioning, reduce operational costs, and minimize energy
consumption, which is a major concern in modern datacenter management.

Unlike hyperscalers (e.g., AWS, Azure, GCP), which provide proprietary auto-
scaling mechanisms as part of their cloud offerings, on-premises environments lack
sophisticated tools to achieve the same level of automation. Developing a similar
system for on-premises infrastructures is far from trivial.

1.1 Goals of the thesis
This thesis introduces DREEM (Dynamic node REallocation for Energy-
optiMized Kubernetes clusters), a predictive node auto-scaling system specifi-
cally designed for Kubernetes, with a strong focus on energy efficiency. DREEM
predicts future CPU demand leveraging historical resource usage data, and proac-
tively provisions or deprovisions nodes accordingly. The predictive nature of this
approach mitigates the inherent delays associated with node scaling operations, en-
suring more efficient resource utilization while maintaining application performance
and service reliability.

The primary objective of this thesis is to design and implement a standardized
system capable of minimizing the number of active servers in an on-premises
Kubernetes cluster, with the ultimate goal of reducing overall energy consumption
and promoting sustainable datacenter operations. Achieving this goal requires
an automated and adaptive scaling mechanisms that do not compromise service
reliability or Quality of Service (QoS). However, this goal introduces a series of
non-trivial challenges, which are discussed below:

• Performance preservation and transparency: Reducing the number of
active servers through consolidation inherently increases the average utilization
of the remaining machines. This creates a risk of performance degradation if
the system is not carefully managed. The scaling process must be completely
transparent to end users, ensuring that service-level agreements (SLAs) are
not violated.

• Reaching optimal configuration: The system must identify and maintain
a cluster configuration that minimizes power consumption without sacrificing
performance. This involves forecasting future workload demand and determin-
ing the exact number of nodes required to sustain it. An over-conservative
approach leads to energy waste, whereas an aggressive approach risks applica-
tion downtime or degraded performance.

• Safe and efficient node removal: When a node needs to be powered
down, the system must gracefully drain and migrate all running workloads to
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Introduction

other available nodes without introducing disruptions. This operation requires
further checks to ensure that the cluster can accommodate the displaced
workloads without resource contention or violation of placement policies (i.e.
resource availability, Node Affinity, Pod Affinity/Anti-Affinity).

Addressing these challenges requires the integration of predictive models, energy-
aware decision-making algorithms, and native Kubernetes orchestration mechanisms,
resulting in a fully automated system that can proactively adapt to workload
fluctuations.

1.2 Outline
The thesis is organized as follows:

• Chapter 2 - Background: introduces the general problem and reviews
existing solutions. It also presents the core technologies involved in the
project.

• Chapter 3 - DREEM Project: describes the architecture of the proposed
solution and how it addresses the identified problem.

• Chapter 4 - DREEM Implementation: details the implementation of
DREEM and explains the role and purpose of each component.

• Chapter 5 - Experimental Evaluation and Comparison: presents
the experimental results to demonstrate the effectiveness of the proposed
solution compared to a vanilla cluster (without any scaling mechanism) and
the Kubernetes Cluster Autoscaler.

• Chapter 6 - Conclusions and Future Work: summarizes the main
objectives and contributions of the thesis, highlights the achieved results, and
outlines possible future improvements.

3



Chapter 2

Background

This chapter illustrates the state-of-the-art related to the topics discussed in this
thesis, as well as the technological background required to fully understand the
proposed project.

2.1 Related Works

2.1.1 Workload Forecasting
Forecasting CPU load has always been a complex task. In cloud environments, an
additional challenge arises: the dynamic and non-stationary nature of workloads.
These characteristics lead to shorter and more volatile workloads, making accurate
prediction significantly more difficult. More fluctuations and instabilities are
inherently less predictable compared to traditional High-Performance Computing
(HPC) or Grid Computing environments as mentioned in [2, 3, 4]. Furthermore,
stationarity is often one mandatory requirement, especially for statistical and linear
models. As described in [5], incorrect predictions may lead to two main issues:

• Resource over-provisioning: More resources than necessary are allocated,
resulting in energy waste, higher operational costs (e.g., server management,
networking, cooling), and inefficient resource utilization. These costs represent
a significant portion of total consumption [6, 7] of a server.

• Resource under-provisioning: Fewer resources than needed are allocated,
potentially causing Service Level Agreement (SLA) violations, degraded Qual-
ity of Service (QoS), such as increased latency or service disruption. This, in
turn, may drive customers to switch to more reliable providers, as mentioned
in [7, 6].
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Background

To address these issues, the system should be elastic, i.e., capable of dynamically
adapting to workload changes in the most efficient manner.

Latency is another critical problem. Most current systems are primarily reactive,
meaning they require a non-negligible amount of time to evaluate decisions and
initiate scaling operations. Furthermore, adding new nodes to a cluster also
introduces delays, which vary depending on the nature of the resources (e.g., virtual
machines or physical servers). As [8] has described, reactive solutions may not
be the best one in highly-dynamic scenarios, hence other solutions have to be
investigated.

The new tendency is toward proactive models (or prediction-based) which
do not suffer from the aforementioned problem. These are mechanisms that can
predict the future workload, hence they can perform scaling actions before the
cluster results over-used or under-used like described in [8, 9], with the ultimate
goal of improving total resource usage.

The literature propose many different solutions to this problem, which has been
faced from different points of view in term of scaling objectives. The proposal are
mainly two: use Kubernetes-integrates system such as Horizontal Pod Autoscaler
(HPA) or Vertical Pod Autoscaler (VPA) to scale the services to meet the on-
demand requirements; or scale the cluster by provisioning and decommissioning
nodes. In this thesis the latter topic will be discussed.

Regression-based models

Regression-based models are widely used for workload prediction due to their
intrinsic simplicity and their ability to model a variety of scenarios effectively.
Several works, such as [10, 11, 12, 3], focus on linear regression, one of the
oldest and most widely adopted forecasting techniques. Its popularity stems from
its mathematical simplicity: the model is defined by an equation where only the
coefficients need to be determined to obtain a final model [10]. A typical linear
model can be expressed as: Yi = β + αXi.

However, due to their inherent simplicity, linear models suffer from notable
limitations: they struggle to capture long-term dependencies [13], and they often
fail to accurately identify workload "turning points"—critical moments when the
system behavior shifts dramatically [14].

To address some of these limitations, works such as [10, 15] adopt a sliding-
window approach, under the assumption that the workload behavior can be ap-
proximated as linear over short time intervals. This technique allows the model to
adapt to local trends and improve forecasting accuracy, making it a flexible and
widely applicable solution.

Polynomial Regression and Polynomial fitting are the natural evolution of
linear models. [14] uses the past tendency of data to create a tendency model based

5



Background

on polynomial fitting. Experiments showed how a second/third grade model can
predict with a good accuracy the ascending/descending tendency of the workload.

These models form the foundation for more complex and performant forecasting
methods, such as the AutoRegressive Integrated Moving Average (ARIMA)
models. ARIMA models are widely adopted in time-series forecasting due to their
ability to capture different temporal patterns and provide good performance across
a variety of scenarios.

ARIMA models rely on a set of mathematical equations that use past observa-
tions of a variable to predict its future values. To accurately model the underlying
data, ARIMA must be properly tuned through three key parameters:

• p – the number of lag observations included in the model (autoregressive
part),

• d – the number of times the raw observations are differenced (integrated part),

• q – the size of the moving average window (moving average part).

An ARIMA model is usually denoted as ARIMA(p, d, q). Depending on the
values of these parameters, the model can take on specific forms:

• AR (AutoRegressive): when d = 0 and q = 0,

• I (Integrated): when p = 0 and q = 0,

• MA (Moving Average): when p = 0 and d = 0,

• ARMA: when d = 0, combining autoregressive and moving average compo-
nents.

An extended version of the ARIMA model is the Seasonal ARIMA (SARIMA),
which introduces an additional seasonal component. In this model, the parameter
s represents the length of the seasonal cycle in the data, allowing the model to
capture repeating patterns over fixed intervals.

The main advantage of these models is that, under specific assumptions, they
can fit the data very well and produce accurate forecasts. As shown in [11], simpler
models such as AR can outperform more complex alternatives when combined with
higher-degree polynomials. For instance, the paper found that an AR(16) model
can provide good performance for the described scenario.

However, Moving Average (MA) models alone generally perform poorly in this
context, especially for longer prediction horizons [5]. ARMA models, which combine
both AR and MA components, are able to capture more complex temporal patterns,
but, as noted in [10], they may still underperform compared to other enhanced
models.
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The most general form, ARIMA, includes an integration component that enables
the model to handle non-stationary data. This is particularly important when the
dataset exhibits a clear trend over time, and differencing is required to achieve
stationarity before applying autoregressive or moving average operations.

In general, all these models can achieve very good performance. As highlighted
in [12], the key difference lies in the type of data and the specific application
scenario. In fact, there is no universally best solution — the optimal choice strongly
depends on the context. In some cases, simpler models may outperform more
complex ones, especially when the underlying data patterns are not particularly
intricate.

Neural networks-based models

Neural networks started to be widely adopted in this domain due to their ability
to model non-linear patterns and capture long-term dependencies. In the field of
machine learning, a neural network is a computational model composed of multiple
neurons interconnected with each other. A neuron represents the fundamental
building block of a neural network. Each neuron typically consists of three main
components:

• Input: this part performs a linear combination of the inputs, involving
operations such as multiplication with weights and summation — essentially
implementing a linear regression.

• Activation function: a non-linear transformation is applied to the result
of the linear combination. Common activation functions include the sigmoid,
ReLU, or tanh, and they allow the network to learn complex and non-linear
mappings. Figure 2.1 shows the most used activation functions in Neural
Networks.

• Output: the resulting value is then passed to the next layer or returned as
the final output, depending on the architecture.

A neural network is composed of multiple neurons arranged in layers: an input
layer, one or more hidden layers, and an output layer. The depth (number of
layers) and width (number of neurons per layer) determine the complexity of the
network. As the network becomes deeper and wider, its capacity to learn complex
data patterns increases, although this comes with higher computational costs and
the risk of overfitting.

Backpropagation is the fundamental algorithm used by neural networks
to train the model by updating the weights in order to minimize a given loss
function. Typically, due to the non-convex nature of deep learning loss functions,
the algorithm converges to a local minimum rather than the global one.

7



Background

Figure 2.1: Activation Functions

At the beginning of training, the neural network initializes its weights randomly.
Then, it performs a forward pass: input data are propagated layer by layer until
the output is compute and is compared with the ground truth using a loss function,
which quantifies the prediction error.

In the backward pass, the algorithm computes the gradient of the loss function
with respect to each weight in the network using the chain rule of calculus. This
gradient indicates how much a small change in each weight would affect the loss.
Weights that contribute more to the error will have larger gradients and will be
updated more significantly.

This process requires computing the partial derivatives of the loss with respect to
each parameter. While it is possible to approximate these gradients numerically (by
finite differences), such approach is computationally expensive and not scalable for
large networks. Instead, modern frameworks use the analytic solution provided
by the backpropagation algorithm, which is far more efficient and allows leveraging
hardware acceleration (e.g., GPUs) for parallel computation.

This gradient information is then used by an optimization algorithm (such as
Stochastic Gradient Descent or Adam) to update the weights, and the process
repeats iteratively until the network converges.
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In the field of time-sequence data, Recurrent Neural Network (RNN) demostrated
great results in term of prediction accuracy.

RNNs are widely adopted in such scenarios due to their ability to retain temporal
information more effectively. The main difference compared to Feedforward Neural
Networks lies in the presence of an additional input to each neuron (Figure 2.2).
While traditional networks connect neurons sequentially, layer by layer, RNNs
introduce recurrent connections, allowing neurons to form loops. This structure
enables the network to maintain a form of memory by passing hidden states from one
time step to the next, making it well-suited for modeling dynamic, time-dependent
sequences of data.

Several RNN architectures are available today. The most common ones include:

• Standard RNN: This is the simplest form, where the output at each time step
depends on both the current input and the previous hidden state. However,
standard RNNs suffer from limitations such as vanishing/exploding gradients
and difficulty in retaining information over long time sequences.

• Long Short-Term Memory (LSTM): One of the most widely used archi-
tectures, LSTM was designed specifically to address the long-term dependency
problem. It introduces memory cells equipped with three gates: the input
gate, the output gate, and the forget gate. These gates regulate the flow of
information, allowing the network to retain or discard data as needed over
time.

• Gated Recurrent Unit (GRU): Similar to LSTM, the GRU also addresses
long-term dependencies but with a simplified structure. It contains only
two gates: the update gate and the reset gate. This design makes GRUs
computationally lighter while still achieving comparable performance in many
tasks.

[16] uses RNN to accurately predict the workload state in the cluster, over-
coming ARIMA-based solutions. However, the paper mentions how long-term
dependencies are not easily recognized. Hence, the usage of other models like
LSTM is suggested. However, in [17], the authors evaluate a simple Multi-Layer
Perceptron (MLP) neural network and compare its performance with more complex
models. The results show that the more sophisticated architectures did not provide
significant improvements, highlighting the effectiveness of simpler approaches in
certain scenarios.

[13, 18] show how it is true that ARIMA models represent a good solution to
the problem, and confirm the Auto-Regressive nature of the Workload prediction
problem, it also confirm the aforementioned limitations: highly volatile CPU
workload cannot be forecasted, making those models prune to overfitting. On
the oher hand, LSTM have always showed better results for any of the tested
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Figure 2.2: Recurrent Neural Network Architecture
Source: https://www.ibm.com/it-it/think/topics/recurrent-neural-networks

hyperparameter configurations and typically behave better with highly variable
dataset and "pathological data". Predicting peaks is another dimension of the
problem. Some approaches leverage Bayesian models. For instance, [4] proposes
a Bayesian model that integrates a Bayesian layer into an LSTM architecture
to predict the mean load over multiple exponentially distributed time segments.
Additionally, [19] presents an architecture that estimates a probability distribution
of future demand by capturing the variability in historical data.

Other approaches

Papers [3, 8] mention several alternative approaches to workload prediction and
resource scaling:

10
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• Control-theory approaches: These rely on controllers such as PID (Propor-
tional - Integral - Derivative) controllers, which have been proposed in various
configurations depending on the volatility of the workload. The controller
monitors an input variable (e.g., number of nodes) and adjusts it to maintain
an output variable (e.g., CPU load) within a desired range.

• Queuing-theory approaches: These are based on modeling the system as a
queue, tracking metrics such as request arrival rate and service time. They are
typically used in combination with other techniques—such as QoS constraints
or adaptive mechanisms—to handle more complex scenarios.

• Hybrid approaches: These combine multiple techniques to improve accuracy
and robustness. A common strategy involves applying signal processing
methods to smooth the input data, followed by time-series analysis for actual
forecasting.

2.1.2 Workload Consolidation
Energy optimization and energy saving are two critical aspects of modern datacenter
management. As highlighted in the survey by [20], the cloud computing sector is
worth billions across its various services, and datacenters alone account for more
than 1% of global energy consumption. Therefore, implementing mechanisms to
consolidate workloads onto a smaller number of machines has become an important
research area.

However, several challenges must be addressed:

• Quality of Service (QoS): Ensuring that service-level agreements (SLAs)
are respected even during consolidation.

• Server reliability: Avoiding hardware wear-out or failures caused by frequent
power cycles or overutilization.

• Highly dynamic workloads: Managing workloads that fluctuate rapidly
over time, requiring adaptive and predictive mechanisms.

• Costs of Datacenter equipment: Not only the energy consumption of
servers must be considered, but also the energy required for cooling systems,
networking infrastructure, and storage devices. As highlighted in the survey
and in [21], these components represent a significant portion of the total energy
usage.

The highly dynamic workload problem is addressed in [22] using a probabilistic
approach, where the cluster is scaled to ensure that a custom QoS metric remains

11



Background

below a defined threshold. A custom scheduling algorithm is also introduced to
migrate jobs and free up servers, enabling them to be shut down.

Another critical challenge is service migration. In order to shut down a
server, all its running services (VMs or containers) must be migrated to other
nodes. This process introduces additional complexity and overhead. [23] proposes
a ring-based method called MAGNET to optimize VM placement and improve
migration efficiency. The idea is to group and relocate lightweight services close
to other lightweight services, while avoiding placing heavy VMs on nodes that are
already highly loaded. This strategy reduces migration time and minimizes the
risk of overloading the destination nodes.

Papers [24, 25] present scaling techniques based on Machine Learning and Neural
Networks. The main objective is to find the optimal mapping between VMs and
physical machines, using these techniques as heuristics to approach the optimal
solution when possible. Although these approaches achieve promising results,
they lack application and service-level awareness, which could lead to suboptimal
scheduling decisions from the application’s perspective.

In addition to the aforementioned issues, hardware reliability must also be taken
into account when dealing with physical machines. Frequently powering servers on
and off can negatively impact their lifespan due to factors such as CPU temperature
fluctuations and disk start/stop cycles. [26] addresses this concern by incorporating
server reliability into the decision-making process. The authors propose a model
based on integer programming to evaluate whether a VM should be migrated for
workload consolidation, taking into account the trade-off between energy savings
and the potential impact on hardware longevity.

The virtualization technology influences different aspects, like the amount of
used resources (CPU, memory) for the orchestration rather then the actual process
execution. VMs requires more resources due to the presence of the hypervisor, but
still proving more isolation. On the other hand, containers require less resources,
which translates in better response time. In [27] a Kubernetes auto-scaling system is
presented in the scenario of ubiquitous cloud computing workloads for applications
like smart homes and concerts. Thus, this is still a reactive approach, which suffers
from higher latency in taking scaling actions (as described in Section 2.1.1).

Since shutting down nodes can introduce several issues — such as long boot-up
times — less disruptive approaches have been explored. One such technique is
Dynamic Voltage and Frequency Scaling (DVFS), as described in [21]. This
method allows servers to enter low-power idle modes instead of being completely
powered off, thus reducing energy consumption while maintaining responsiveness
and avoiding the overhead associated with full shutdowns.
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2.2 Technological Background
The system presented in Chapter 1 can be implemented by leveraging a set of key
technologies. This section provides an overview of the relevant concepts, tools, and
frameworks essential for understanding and implementing DREEM.

2.2.1 Virtualization with Virtual Machine
A Virtual Machine (VM) is a software representation of a physical machine that
runs its own Operating System (the Guest Operating System) and applications
based on the same Instruction Set Architecture (ISA, the low-level instructions the
CPU is able to understand) as the physical machine. If the ISA differs between the
physical hardware and the emulated environment, the process is no longer called
virtualization, but rather emulation, as the system must translate and adapt
instructions at runtime, and it is typically slower.

The physical machine which hosts the VM runs the Host Operative System,
which is in charge of virtualizing the hardware and includes the hypervisor. The
Hypervisor, or Virtual Machine Monitor is the software that handles the
virtualization process: it abstracts and virtualizes the hardware resources, allowing
several virtual machines to run on the same physical host in a completed isolated
and controlled way. Infact, the Guest OS is not aware of running in a virtualized
environment (so-called Full Virtualization). Today most of cloud services runs in a
virtualized environment.

CPU virtualization

Applications in the VMs cannot control the hardware because they interact with
the Guest OS, which acts like an application for the hypervisor itself (that can
actually control the physical hardware).

Not every instruction can be always executed. A Privileged Instruction is
an instruction which requires a privileged context and can generate an exception
if called in the wrong one. X86 architecture handles these contexts through 4
levels, called rings, with different privileges (Figure 2.3). Ring 0 is designed for
the most privileged part of code (the OS kernel) and ring 1-3 are designed to
run applications and services with different levels of trustworthiness. In modern
OSes, only ring 0 (the most privileged) for running the applications and ring 3
(the least privileged) for running the OS are being used.

In the virtualization field, privileged instructions were initially handled using the
Trap & Emulate paradigm. In a traditional (non-virtualized) environment, an
application running in ring 3 invokes an OS system call to request a privileged
operation. This triggers an automatic transition to ring 0, where the OS is placed
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Figure 2.3: Protection Rings Architecture
Source: https://en.wikipedia.org/wiki/Protection_ring

and the system call can be executed by the OS kernel. After that, the control
returns to the application in ring 3.

In virtualized environments, the situation is more complex. The Guest OS
itself does not run at the highest privilege level, since this level is reserved for
the Hypervisor. It typically runs at ring 1. When an application invokes an OS
system call, it jumps by default at ring 0, but this time it finds the Hypervisor.
Since the instruction is not related to the Hypervisor, it has to intercept this
instruction and give back control to the kernel of the guest (typically ring 1).
Finally, the system call is executed and the control is returned to the original
application.

This multi-step process introduces significant overhead. System calls, in partic-
ular, represent one of the worst cases: the time required to execute a system call
inside a VM using Trap & Emulate can be up to 10 times longer than executing
the same call directly on the Host OS. For this reasons, better techniques arrived.

Today, there are three main techniques for CPU virtualizations in the x86 world:

1. Dynamic Binary Translation: The Guest OS runs unmodified in the VM,
even if it was not designed for virtualization. Therefore, it does not know
that it is running in a virtualized environment. The Hypervisor is in charge of
intercepting and emulating sensitive instructions at runtime.

2. Paravirtualization: The Guest OS needs to be modified to interact directly
with the hypervisor. This process reduces the overhead of the traditional full
emulation, but it requires modification of the source code (which is not always
possible) and the approach is not fully transparent because the Guest OS is
aware of running in a VM.
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3. Hardware-Assisted Virtualization: Modern CPUs introduced new virtu-
alization primitives (such as Intel VT-x and AMD-V) to improve performance
of virtualization mechanisms without requiring OS modifications or Binary
Translation.
The CPU provides two distinct execution modes: root and non-root modes,
which can be used to control whether virtualization is active.

• In root mode, the Hypervisor executes at ring 0 with full privileges.
• In non-root mode, the Guest OS operates as if it were running on

physical hardware: its kernel runs in ring 0 of the non-root mode, while
user applications typically run in ring 3.

New instructions have been implemented to switch between the two sets:
VMentry and VMexit. With this setup, when an application inside a VM
invokes a system call, it runs in non-root mode, the CPU transitions to ring
0 by default where the Guest OS is located. The Hypervisor does not need
to be involved unless the Guest OS tries to execute operations that explicitly
require Hypervisor intervention (such as certain privileged instructions that
trigger VM exits primitives).
As a result, fewer transitions to the Hypervisor are needed, significantly
reducing the overhead compared to traditional Trap & Emulate or Binary
Translation approaches.

Advantages and disadvantages of Virtual Machines

Virtual Machines are still widely used in production environments because they
offer several advantages, such as:

• Compatibility with existing applications — The lift and shift approach
allows moving legacy applications to a virtualized infrastructure without major
refactoring or modifications.

• Support for multiple Operating Systems — Different Guest Operating
Systems can run concurrently on the same physical hardware, enabling great
flexibility in workload management.

• Excellent isolation — VMs provide strong isolation between workloads,
enforced by hardware mechanisms such as CPU virtualization extensions and
memory virtualization, making them suitable for security-critical environments.

However, there are also some drawbacks, which have driven the development of
new, more cloud-native solutions, such as:
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Figure 2.4: Protection Rings for HW Assisted Virtualization

• Higher overhead — Each VMs runs its own kernel, leading to higher resource
consumption (CPU, memory) compared to lightweight alternatives.

• More complex management — Managing VMs requires dedicated hy-
pervisor software, image management, and orchestration, which increases
operational complexity.

• Longer boot times — VMs typically have long startup times, making them
less suitable for highly dynamic and elastic cloud environments.

As cloud computing evolved, the need for faster, lighter, and more scalable
solutions led to the widespread adoption of container-based virtualization, which
offers a different trade-off between performance, flexibility, and isolation.

Hypervisor architecture

There are several ways the Hypervisor can interact with the physical HW (see
Figure 2.5). This brings to the following architectures:
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• Type-1 VMM: The hypervisor runs directly on the physical machine and
acts as a minimized OS tailored for virtualization, with a special management
VM used for administrative tasks. It introduces less overhead but requires
compatible HW, therefore the installation may not be as easy as the other
approaches.

• Type-2 VMM: The hypervisor runs as a regular application on top of a host
OS. This allows for simpler installation, but performance is typically worse
compared to Type-1.

• Hybrid VMM: The host OS integrates a hypervisor component into the ker-
nel, allowing both to run in parallel. This provides good performance, although
it offers fewer choices — KVM on Linux being the primary implementation.

Figure 2.5: Hypervisor Architectures

2.2.2 Containers and Docker
Docker [28] is one of the most used platforms to create and manage containers.
Containers represent a different form of virtualization compared to VMs. They
provide a lightweight virtualization which allows resouce and process isolation
without the overhead of standard virtualization, since the kernel is shared across
all the containers and there is no need to emulate an entire Hardware Stack, as
depicted in Figure 2.6.

With this type of virtualization, containers provide some advantages compared
to VMs:
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Figure 2.6: Docker Containers
Source: https://www.docker.com/resources/what-container/

• They are faster to boot (assuming the image is already available locally on
the machine), dispose and orchestrate.

• They are lighter than VMs, therefore more containers can be scheduled on
the same machine.

However, VMs are still widely used today for several important reasons:

• Lift and Shift approach: Virtual machines allow legacy applications -
which are not designed for containers - to be moved to the cloud or to new
environments without requiring major code changes.

• Better security: VMs offer a stronger level of isolation, as each virtual
machine includes its own operating system and kernel.

• Higher customization: in a VM it is possible to configure several parameters
such as the Hardware configuration and the OS; while with containers there
are fewer choices.

In a container, everything needed to run an application is packaged together —
including the code, runtime, libraries, and dependencies — ensuring that it behaves
the same way regardless of the environment where it is deployed. In this way,
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Docker simplify the application deployment and allows developers to focus on their
applications.

2.2.3 Kubernetes
To be able to manage hundreads or thousands of containers, an orchestrator is
required. One of the most used is Kubernetes [29] (K8s). Its popularity comes
from three main key features:

• The APIs are decoupled from their implementation. Kubernetes is
defined primarily as a set of APIs. It is possible to create new APIs, and
the objects they represent can be implemented differently depending on the
context (e.g. different cloud providers), as long as they stay compliant with
the same API specifications.
For example, the StorageClass API in K8s defines the way the storage
is provisioned. Different cloud providers (e.g. AWS, Google Cloud, Azure)
implement this API in their custom own way, according to the respective
storage system. Another more popular example is the NetworkPolicy API
which allows users to define network rules for pods. Different Container
Network Plugins CNI (such as Calico, Cilium) can be installed. Despite the
different software implementations, users interacts with the same APIs in a
consistent way.

• The entire infrastructure is defined in a declarative way through
YAML manifests. There are two key concepts: the desired state, where users
specify the final configuration of their infrastructure, and the actual state,
which is the current snapshot of the real infrastructure. Users only define the
desired state, and K8s continuously works to align the actual state with it.
Suppose a user wants to run three containers of a web server. They define a
Deployment manifest specifying replicas: 3 as the desired state. Initially, if no
pods are running (actual state = 0 pods), Kubernetes will start the process
of creating three pods. The actual state will change from 0 to 3 running
pods as Kubernetes reconciles the cluster state to match the desired state. If
one pod crashes and stops running, the actual state becomes 2 running pods.
Kubernetes notices this difference and automatically creates a new pod to
restore the actual state back to 3, fulfilling the desired state.

• A control loop continuously monitors the actual state of the cluster
and makes changes to bring it closer to the desired state. This approach sim-
plifies the user experience, as they only need to write the manifests specifying
their desired configuration. On the other hand, the orchestration process
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is more complex because it must continuously ensure that the actual state
matches the desired state.

Architecture and functionalities

Servers in a typical K8s cluster can be either physical machines or virtual machines
— Kubernetes does not differentiate between them. There are two types of nodes:
Control-Plane nodes and Worker nodes. Both components can be deployed with
multiple replicas, depending on availability needs.

The Control-Plane is responsible for making global decisions about the cluster
and managing the overall cluster state.

Some of the main components the control plane handles are:

• kube-apiserver: The API server is the central entity that exposes the
Kubernetes API. It serves as the front-end for the control plane, handling
REST requests and acting as the gateway for all communication between
users, components, and the cluster.

• kube-scheduler: The scheduler is responsible for assigning newly created
pods to nodes based on some parameters such as resource requirements, affinity
policies, data locality. It watches for unscheduled pods and selects the most
appropriate node for each pod. If there are not appropriate nodes, the pod is
put in a pending state.

• kube-controller-manager: This component runs various controller processes
that regulate the state of the cluster. Controllers monitor the shared state of
the cluster through the API server and take action to ensure that the actual
state matches the desired state (e.g., replicating pods, handling node failures).

• etcd: etcd is a distributed key-value store that serves as the backing store for
all cluster data. It stores the entire state of the Kubernetes cluster, providing
consistency and durability.

• cloud-controller-manager: It runs controllers that have to inteact with the
underlying cloud provider logic. It separates out the components that interact
with the cloud platform from the components that only interact with your
cluster.

The Worker nodes run the actual user applications together with some compo-
nents to ensure the services are correctly working:

• kubelet: Kubelet runs on each node of the cluster. It registers the node with
the apiserver and makes sure that containers are correctly running in a Pod.
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Figure 2.7: Overview of Kubernetes Architecture
Source: https://kubernetes.io/docs/concepts/architecture/

• container-runtime: The container runtime is a the component responsible
for running containers and handling their lifecycle.

Kubernetes resources are deployed through YAML manifests, so configurations
which describe the type of resource to create, the desired state which is specified in
the spec field and the actual state which is enforced by K8s in the status subresource.
The Listing 2.1 shows the YAML manifest for the resource Deployment which will
create three instances of the Nginx [30] web server.

The main K8s standard resources are:

• Pod: The smallest execution unit in Kubernetes. A Pod consists of one or
more containers that share the same network and storage namespaces.

• ReplicaSet: Ensures that a specified number of replicas of a given Pod are
running at all times. It is mostly managed automatically by Deployments.

• Deployment: The main resource users interact with to manage applications.
A Deployment defines the desired state of an application, handles the lifecycle
of Pods and ReplicaSets, and allows for controlled updates and rollbacks.

• DaemonSet: Ensures that a specific Pod runs on all (or selected) nodes in
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the cluster. It is typically used for background tasks such as log collection,
monitoring agents, or node-specific services.

• Service: Exposes a set of Pods as a single network service. It provides a
stable endpoint and can perform load balancing between Pods, even as they
change over time. Different kinds of Services are available, such as ClusterIP,
NodePort, Load Balancer and ExternalName.

• ConfigMap and Secret: Used to decouple configuration and sensitive data
from application logic. ‘ConfigMap’ stores configuration in plain text, while
‘Secret’ is intended for confidential data such as passwords or API keys.

1 apiVersion : apps/v1
2 kind: Deployment
3 metadata :
4 name: nginx - deployment
5 spec:
6 replicas : 3
7 selector :
8 matchLabels :
9 app: nginx

10 template :
11 metadata :
12 labels :
13 app: nginx
14 spec:
15 containers :
16 - name: nginx - container
17 image: nginx: latest
18 ports:
19 - containerPort : 80

Listing 2.1: Nginx deployment example

Custom Resources and Operator Pattern

One of the most powerful features of Kubernetes is its ability to extend the core
functionality by defining custom objects, allowing K8s to adapt to a wide variety of
use cases. A Custom Resource Definition (CRD) is the mechanism used to define
these custom resources and their schemas — effectively creating new APIs within
the Kubernetes ecosystem.

Once a CRD is registered and the corresponding resources are created, it
becomes possible to observe and respond to changes to these resources. This
behavior is typically implemented using the Operator Pattern. An Operator is
a specialized application that continuously monitors a specific Custom Resource
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(see Figure 2.8) and performs actions in response to its state changes, automating
complex operational tasks.

Figure 2.8: Kubernetes Operator Pattern

DREEM is an example of a system built on custom resources and operators (see
Chapter 3 for more details). It defines three custom resources — ClusterConfigu-
ration, NodeSelecting, and NodeHandling — that work together to monitor the
cluster and determine whether a new node is needed in the current infrastructure.

The difference between one Operator and another lies in the type of object
they watch and the actions they perform in response to specific events. In fact,
most of the boilerplate code for an Operator can be automatically generated using
dedicated SDKs such as Kubebuilder [31] (the one used for the implementation of
DREEM).

With Kubebuilder, creating a new controller becomes a straightforward process.
The typical workflow involves:

1. Creating a new Custom Resource and its associated API using the command-
line tools provided by Kubebuilder.

2. Defining the spec and status fields in the resource’s Go type, which represent
the desired state and the observed state, respectively.

3. Implementing the reconciliation logic inside the controller. This is the core
business logic that defines how the controller reacts when a resource is created,
updated, or deleted, ensuring that the actual cluster state converges to the
desired one.

Prometheus and Grafana

Monitoring is a critical activity to ensure continuous awareness of the servers’ state.
In the Kubernetes ecosystem, Prometheus has become the de facto standard for
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collecting and storing metrics in a time-series database. These metrics can be
leveraged for various use cases, such as monitoring, alerting, and visualization
through dashboards (e.g., using Grafana).

By default, Prometheus exposes a wide range of metrics to monitor different
aspects of a server, including physical resources (CPU, memory, network, disk),
running processes, and the state of deployed services, among others.

Metrics are made available via an HTTP endpoint—typically located at /metrics
— and follow a specific text-based exposition format. Prometheus operates as a
pull-based system: it periodically scrapes these endpoints and updates the stored
metrics accordingly.

Thanks to this architecture, Prometheus is highly extensible. Custom metrics
can be added by exposing new endpoints, which can then be included in the list of
targets that Prometheus scrapes.

Data are retrieved using PromQL, a dedicated query language designed to
extract and manipulate metric data in Prometheus. Prometheus supports four
main types of metrics:

• Counter: A cumulative metric that increases monotonically and resets to
zero only upon restart. It is typically used to count events.
Example: prometheus_http_requests_total{code="200"} – the total num-
ber of HTTP requests received by Prometheus with status code 200.

• Gauge: A metric that represents a single numerical value that can arbitrarily
go up and down.
Example: node_memory_MemAvailable_bytes{instance="worker-1"} – the
current amount of available memory on the "worker-1" node (see Figure 2.9).

• Histogram: Captures the distribution of values (e.g., request durations or
sizes) into configurable buckets. It provides a count of observations falling
into each bucket, the total count, and the sum of all observed values.
Example: http_request_duration_seconds_bucket{le="0.5"} – counts
the number of HTTP requests with a duration less than or equal to 0.5
seconds.

• Summary: Similar to a Histogram, but instead computes configurable quan-
tiles (e.g., 0.5, 0.9, 0.99) over a sliding time window.
Example: go_gc_duration_seconds{quantile="0.75"} – provides the 75th
percentile of the duration of Go’s garbage collection cycles.

An interesting feature of Prometheus is the alerting system. Prometheus
integrates with a component called Alertmanager, which is responsible for han-
dling alerts generated based on metric data. Alertmanager evaluates alerting rules
configured in Prometheus and, when a condition is met, it triggers notifications
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through various channels such as email, Slack, or custom webhooks. This mech-
anism allows system administrators to be promptly informed about anomalies,
failures, or threshold violations in the cluster.

An interesting feature of Prometheus is the Federation mechanism, which allows
a Prometheus server to scrape selected metrics from other Prometheus instances.
Prometheus natively exposes the /federate endpoint for this purpose. To enable
this functionality, it is sufficient to configure the "master" Prometheus server
by adding the remote Prometheus instance as a scrape target, specifying the
metrics of interest. Listing 2.2 shows an example configuration where the metrics
node_cpu_seconds_total and node_memory_MemAvailable_bytes are federated
from a Prometheus instance exposed at 192.168.11.116:30000.

1 - job_name : ’federate - scrape ’
2 metrics_path : / federate
3 params :
4 match []:
5 - node_cpu_seconds_total
6 - node_memory_MemAvailable_bytes
7 static_configs :
8 - targets :
9 - 192.168.11.116:30000

Listing 2.2: Example Prometheus federation

Time-series data can be easily visualized through the Prometheus web interface
(see Figure 2.9) or through Grafana, an open-source platform widely used for
creating custom dashboards. Grafana allows visualizing metric values collected by
Prometheus (or other monitoring systems) in an organized and user-friendly way.
It supports the same PromQL language used by Prometheus for querying data.

Within Grafana, it is possible to create dedicated dashboards (see Figure 2.10)
tailored for specific scenarios, such as hardware resource monitoring, web server
performance analysis, or application-level observability. These dashboards can be
shared, exported, and customized to meet the requirements of different teams and
use-cases.

Horizontal Pod Autoscaler

Pods have access to a predefined quota of resources, typically specified in the
deployment manifest through requests and limits. Once these resources are
saturated, the Pod is no longer able to handle additional traffic effectively, leading
to degraded performance or failures.

To address this limitation and ensure that applications can sustain increasing
load, Kubernetes provides the Horizontal Pod Autoscaler (HPA). The HPA
automatically adjusts the number of Pod replicas in a deployment (or other scalable
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Figure 2.9: Prometheus Gauge metric query with visualization

Figure 2.10: Crownlabs Overview Dashboard Grafana
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resource) based on observed metrics, such as average CPU utilization or custom
application-level metrics. This allows the system to dynamically respond to varying
workloads. The Listing 2.3 presents a skeleton example of an HPA resource, which
is configured to scale between 1 and 10 replicas the Deployment application-backend
whenever the average CPU utilization is above the 60%.

1 apiVersion : autoscaling /v2
2 kind: HorizontalPodAutoscaler
3 metadata :
4 name: hpa - config
5 namespace : default
6 spec:
7 scaleTargetRef :
8 apiVersion : apps/v1
9 kind: Deployment

10 name: application - backend
11 minReplicas : 1
12 maxReplicas : 10
13 behavior :
14 scaleUp :
15 ...
16 scaleDown :
17 ...
18 metrics :
19 - type: Resource
20 resource :
21 name: cpu
22 target :
23 type: Utilization
24 averageUtilization : 60

Listing 2.3: Example YAML HPA configuration

Metrics Server

The Kubernetes Metrics Server is a cluster-wide aggregator of resource usage data,
such as CPU and memory. It collects these metrics from the kubelet (see Section
2.2.3) on each node and exposes them via the Metrics API.

This data is essential for features like Horizontal Pod Autoscaler (HPA) and
Vertical Pod Autoscaler (VPA), which rely on real-time resource usage to scale
workloads dynamically. Additionally, these metrics can be accessed through the
command-line interface (e.g., kubectl top, Figure 2.11) to assist in debugging
and performance monitoring.
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Figure 2.11: Metrics Server CLI

2.2.4 ClusterAPI
ClusterAPI is a popular Kubernetes project that provides declarative APIs to
provision and manage multiple K8ss clusters. It leverages Kubernetes-native
concepts such as Custom Resource Definitions (CRDs) and controllers, ensuring
consistency with the Kubernetes ecosystem. In addition, it is cloud-provider
agnostic, meaning it abstracts away infrastructure differences while maintaining
a common set of APIs and behaviors across various providers (e.g., AWS, Azure,
Docker, Proxmox).

The main concepts of ClusterAPI are:

• Management Cluster: The cluster that handles and manages the ClusterAPI
Resources.

• Workload Cluster: A vanilla Kubernetes cluster created and handled by
the Management Cluster.

• Infrastructure provider: Responsible for provisioning and managing the
underlying infrastructure resources specific to a cloud or on-premise envi-
ronment. It handles the creation of virtual machines, networks, and load
balancers required to run a Kubernetes cluster. Each provider requires a spe-
cific initialization phase — for instance, setting up access credentials or context
configuration for platforms like AWS, Azure, or Proxmox infrastructure.

• Control-plane provider: Manages the lifecycle of the control plane compo-
nents (e.g., API server, controller manager) of a Kubernetes cluster.

• Bootstrap provider: Configures the worker nodes to work with the control-
plane provider.

• Machine: Represents a declarative specification for single node (either control
plane or worker) in the cluster. When this object is created, a provider-specific
controller provisions and installs a new host (e.g., a VM on Proxmox, a new
container on Docker, a new physical server with Metal3) in the cluster with
the configuration defined in the Machine object.

• MachineSet: Manages a set of homogeneous Machine resources, similar in
concept to a Kubernetes ReplicaSet.

28



Background

• MachineDeployment: Provides declarative updates for MachineSets, in the
same way that a Deployment manages ReplicaSets in Kubernetes.

2.2.5 Proxmox Virtual Environment
Proxmox VE is an open-source server management platform for virtualization. It
is primarily used for managing VMs through the KVM hypervisor and containers
via Linux Containers LXC.

It provides some valuable features in enterprise environments, such as:

• Live Migration: This feature enables the movement of running virtual
machines from one physical host to another without downtime.

• REST APIs: Proxmox provides a full-featured REST API that allows
automation of tasks such as VM creation, backup scheduling, and resource
monitoring.

• Integrated Backup and Snapshot Tools: Proxmox includes built-in tools
to create full or incremental backups and snapshots of VMs and containers,
helping ensure data safety and facilitating disaster recovery.

• Web-based Management Interface: It offers a web GUI (Figure 2.12) that
simplifies the management of clusters, nodes and all the available resources.

Figure 2.12: Proxmox web interface
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2.2.6 Talos

Talos Linux [32] (see in Figure 2.13) is an operating system specifically designed to
run Kubernetes. Its core principles are security and immutability. Talos is built to
be minimal, reducing the attack surface and the likelihood of misconfigurations. It
consists of a small set of binaries, eliminating unnecessary components typically
present in general-purpose distributions.

A key feature of Talos is its immutable root file system, which is mounted as
read-only. This ensures that no manual changes can be made directly on the system.
Despite this immutability, Talos remains configurable via its own idempotent APIs
and CLI tool, talosctl, which interact with the system over a secure TLS connection.
In fact, it does not allow for traditional connection mechanisms like SSH, bash, or
systemd.

It is still possible to inject specific configurations into Talos machines through
declarative YAML files. These configuration files typically include all necessary
settings for cluster bootstrapping, including network setup, control plane endpoint,
kubelet configuration, and secrets for secure communication.

Talos is fully integrated with Cluster API (Section 2.2.4) via the Talos provider,
which supports declarative infrastructure provisioning and automated Kubernetes
cluster lifecycle management.

Figure 2.13: Talos Interface
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2.2.7 Locust
Locust is an open-source load testing tool. It is a client used to make requests -
HTTP and other protocols are supported - toward an endpoint to generate load
and gather metrics.

The main feature of Locust is the ability to define test scenarios using Python
programming language. This enables an high level of control and customizability.
It is possible to configure the type of load patterns - such as linear, exponential,
sinusoidal - , the rate of requests and measure the system performance.

2.2.8 Cluster Autoscaler
The Cluster Autoscaler (CA) is the current standard component for enabling
autoscaling in Kubernetes clusters.

It operates as a pod-based scheduler, making scaling decisions based on the
schedulability of pods. Specifically, if there are pods that cannot be scheduled due
to insufficient resources, node-level constraints (such as Pod Affinity/Anti-Affinity),
or any other limitation preventing scheduling on existing nodes, the CA triggers
the provisioning of a new node in the cluster.

Conversely, if a node remains underutilized (i.e., no pods are scheduled on it)
for a prolonged period of time, the CA will mark it as unnecessary and deprovision
it, thereby optimizing resource usage.

The Cluster Autoscaler can be installed on a variety of infrastructures, as it is
compatible with several infrastructure providers, such as ClusterAPI, AWS, and
many others.

Each provider is used by CA to communicate with the underlying infrastructure
and perform scaling operations. In fact, during the installation process, it is
necessary to configure specific data to allow CA to interact with the cluster —
such as API tokens or credentials — and define the scaling behavior. This includes
specifying the minimum and maximum number of nodes that the cluster can scale
to, as well as timeouts to determine when a node should be considered underutilized
and eligible for removal.

A great advatange of CA is the speed in the scaling-up operations. On the other
hand, it performs multiple simulations before triggering a scale-down in order to be
sure that pod can still be scheduled in the new configurations and it still imposes
a mandatory delay period before any node can be removed. These factors often
result in prolonged resource underutilization and reduced overall efficiency.
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Chapter 3

DREEM Project

This chapter provides an overview of the core components that constitute the
DREEM framework and explains its field of application. DREEM is designed
to dynamically scaling out on-premises infrastructures with the goal of
minimizing the power consumption by reducing the number of idle or underutilized
servers, while ensuring that service performance remain unaffected.

To achieve this, DREEM integrate predictive workload analysis, policy-driven
decision-making, and Kubernetes-native orchestration mechanisms.

3.1 DREEM introduction
DREEM’s main action is to dynamically join and decommission nodes to a Ku-
bernetes cluster. It first assesses the number of active nodes in the cluster, then
uses a forecasting algorithm to predict future CPU usage. Based on the prediction
and some user-defined policies, it determines whether a scaling action is required.
Finally, a K8s operator enforces this desired state by actually scaling the cluster.

The DREEM operator mainly performs three actions:

• receive the output of the forecast algorithm;

• run a selection algorithm to choose the best node according to the defined
policies;

• enforce the scaling action.

Adding or removing a node from a Kubernetes cluster is a complex process that
involves multiple setup or teardown tasks (e.g., join/drain).

DREEM automates this procedure using ClusterAPI (see Section 2.2.4). To
develop such a system, several points must be considered:
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• Avoiding performance degradation: Running workloads and service avail-
ability should not be negatively affected or compromised during infrastructures
changes.

• Proactive scaling strategies: The system should be able to accurately
predict workload variations and preemptively adjust resources to maintain
stability without requiring manual intervention.

• Intelligent node selection policies: When adding or removing nodes, the
system must select the most suitable candidates based on metrics such as
energy efficiency, hardware capabilities, and workload characteristics.

• Kubernetes integration: Kubernetes is the de facto standard for container
orchestration in modern infrastructures. While Kubernetes supports pod-level
auto-scaling (Horizontal Pod Autoscaler and Vertical Pod Autoscaler) and
cluster-level scaling in cloud environments (Cluster Autoscaler), it lacks native
mechanisms to manage physical node elasticity in on-premises contexts with
fine-grained policies.

• On-premises adaptability: Auto-scaling solutions for cloud environments
cannot be directly applied to on-premises infrastructures since they are pro-
prietary and not open-source solutions.

Consequently, the development of such a solution for on-premises infrastructures is
an important research and engineering challenge. The solution must balance per-
formance, cost efficiency, and sustainability, while providing robust fault tolerance
and minimal disruption during scaling operations.

The main use case for DREEM is described as follow:

1. After the Custom Resources are installed in the cluster, a Forecast Algorithm
(see Section 5.1) starts and periodically makes predictions about the future
workload of the cluster. It understands if the actual configuration (the number
of active servers) will be enough to sustain the predicted load or not. In the
negative case, the algorithm understands if some servers can be turned off
(because of underutilization, hence the workload can be consolidated) or if it
would be better to add new ones (because of over-utilization in the predicted
future).

2. The algorithm keeps track of all the scaling process for the cluster. It has
knowledge about the actual number of servers and the optimal number of
servers required to sustain the new load.

3. A node selection algorithm is run to understand which node is the best
candidate to be shut down or turned on.
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4. When the algorithm has selected the candidate, the scaling action is enforced.
This is handled through ClusterAPI (Section 2.2.4) and the chosen infrastruc-
ture provider (e.g. Proxmox, AWS, Metal3). By leveraging these two tools, it
becomes possible to dynamically modify the cluster configuration and enable
actions such as adding a new node to the cluster or removing an existing one
and shutting it down in a very simple manner.

5. After a predefined interval, the forecasting algorithm produces a new prediction.
If the current cluster configuration does not satisfy the system requirements,
a new scaling process is initiated.

3.2 DREEM Technologies
DREEM’s architecture is fully based on Kubernetes (see Figure 3.1). DREEM is a
set of Kubernetes controllers and applications that works seamlessly to retrieve
the present state of the cluster, understand if it is in a good configuration and
eventually adapt it to the desired state. Kubernetes represent the main component:
DREEM includes three CRDs and controllers, therefore it is based on the pattern
operator. This helps the actual state to always converge to the desired one.

The DREEM operator consists of three main CRDs:

1. ClusterConfiguration: This resource triggers the scaling process. It keeps
information about the present configuration of the cluster and the desired
one, which is acquired through a forecast algorithm that periodically makes
predictions about the short/mid-term CPU usage. The Listing 3.1 shows an
example of a ClusterConfiguration resource correctly handled, as proved by
the number of active nodes which is equal to the number of requested nodes.
In this example the cluster is allowed to scale between one node and five nodes,
while the required number of nodes for the predicted workload is two.

2. NodeSelecting: This resource is responsible for running the selection algo-
rithm, which will return the best candidate node to be shut down or turned
on. As first implementation the algorithm picks a random node when the
action is scaling up (assuming that all the nodes are equal), and the most
under-utilized when scaling down. More complex logics have been added
during the development. To be more precise, it is possible to label nodes
and declare their consumption profile (through an annotation in the
ClusterAPI MachineDeployment resource). This label is used by a sorting
algorithm to decide which is the best candidate to be selected. The goal is to
select the most energy efficient machine during the scale up and the lowest
energy efficient one during the scale down. Futhermore, for the scaling down
process some other checks are enforced: the controller performs a scheduling
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Figure 3.1: DREEM Architecture

simulation to understand whether the pods running on the selected node can
be rescheduled somewhere else. If all checks pass, the node is shut down;
otherwise, the selection process is repeated until a suitable candidate is found.
If no suitable node can be identified, the scaling action is aborted to prevent
pods from remaining in a Pending state. Listing 3.2 provides an example of
this resource. In this case, the scaling operation corresponds to a scale-down,
as indicated by the scalingLabel field set to "-1". Furthermore, the resource
specifies the node selected for removal.

3. NodeHandling: Upon creation, the controller responsible for this resource
contacts the target node and, in coordination with ClusterAPI, initiates the
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concrete procedures required for node provisioning or termination. This may
involve creating or deleting infrastructure-level resources (e.g., virtual machines
or physical nodes) and ensuring the new node is properly joined to or removed
from the Kubernetes control plane. The Listing 3.3 shows an example of this
resource. The fields associated to the resource are similar, the resource just
acts as a wrapper for ClusterAPI.

1 apiVersion : cluster . dreemk8s / v1alpha1
2 kind: ClusterConfiguration
3 metadata :
4 creationTimestamp : "2025 -09 -12 T18 :20:21 Z"
5 generation : 1
6 name: clusterconfiguration - s1chqizy
7 namespace : dreem
8 resourceVersion : " 118139 "
9 uid: 37 b72718 -9f63 -41cc -a6f2 - b5d53ee26120

10 spec:
11 maxNodes : 5
12 minNodes : 1
13 requiredNodes : 2
14 status :
15 activeNodes : 2
16 message : ""
17 phase: Finished
18

Listing 3.1: ClusterConfiguration resource manifest

1 apiVersion : cluster . dreemk8s / v1alpha1
2 kind: NodeSelecting
3 metadata :
4 creationTimestamp : "2025 -09 -12 T18 :20:21 Z"
5 generation : 1
6 name: node -selecting - fafcbfe26a3692e8
7 namespace : dreem
8 ownerReferences :
9 - apiVersion : cluster . dreemk8s / v1alpha1

10 blockOwnerDeletion : true
11 controller : true
12 kind: ClusterConfiguration
13 name: clusterconfiguration - s1chqizy
14 uid: 37 b72718 -9f63 -41cc -a6f2 - b5d53ee26120
15 resourceVersion : " 118024 "
16 uid: 239 a77eb -587e -42f5 -ab4d - a1e6e02eaaed
17 spec:
18 clusterConfigurationName : clusterconfiguration - s1chqizy
19 scalingLabel : -1
20 status :
21 message : ""
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22 phase: Completed
23 selectedMachineDeployment : mmiracapillodreemmd -1
24 selectedNode : mmiracapillodreemmd -1-8mw67 -2 xv4j
25

Listing 3.2: NodeSelecting resource manifest

1 apiVersion : cluster . dreemk8s / v1alpha1
2 kind: NodeHandling
3 metadata :
4 creationTimestamp : "2025 -09 -12 T18 :20:53 Z"
5 generation : 1
6 name: node -handling - c9fbd495b89a35db
7 namespace : dreem
8 ownerReferences :
9 - apiVersion : cluster . dreemk8s / v1alpha1

10 blockOwnerDeletion : true
11 controller : true
12 kind: ClusterConfiguration
13 name: clusterconfiguration - s1chqizy
14 uid: 37 b72718 -9f63 -41cc -a6f2 - b5d53ee26120
15 resourceVersion : " 118137 "
16 uid: 23 c3fa1e -8252 -4 a20 -b585 -8 d2d60a01a4d
17 spec:
18 clusterConfigurationName : clusterconfiguration - s1chqizy
19 nodeSelectingName : node -selecting - fafcbfe26a3692e8
20 scalingLabel : -1
21 selectedMachineDeployment : mmiracapillodreemmd -1
22 selectedNode : mmiracapillodreemmd -1-8mw67 -2 xv4j
23 status :
24 message : ""
25 phase: Completed
26

Listing 3.3: NodeHandling resource manifest

DREEM is able to learn the actual configuration and status of the cluster
through Prometheus (Section 2.2.3). Each node in the cluster runs its own instance
(DaemonSet, see Section 2.2.3) of NodeExporter, which exposes a variety of metrics
regarding the system’s health and performance — including CPU usage, memory
consumption, network activity, disk I/O, and more. DREEM periodically scrapes
these metrics and uses them to assess whether the current cluster configuration
is optimal. If it determines that the configuration is suboptimal, it may trigger a
scaling action.

In the version described in this thesis, DREEM supports two main scaling
strategies:
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• Naive Approach: This method computes the average CPU usage over a
predefined time window and uses that as a simple forecast for the upcoming
load. It is particularly useful in static or low-variance environments, where
system load remains relatively constant over time since this approach is reactive.
Section 5.1 describe the model architecture and presents some results to assess
its effectiveness.

• LSTM: This approach leverages a Long Short-Term Memory neural network
to analyze historical metric data and predict future workload patterns. Unlike
the naive method, LSTM can capture complex temporal dependencies and is
better suited for dynamic workloads with periodic or irregular load variations.
Based on the prediction, DREEM proactively scales the cluster up or down to
match anticipated demand.

Another core component is ClusterAPI (Section 2.2.4). By abstracting the
infrastructure layer through declarative APIs and dedicated controllers, ClusterAPI
allows DREEM to be completely agnostic to the underlying infrastructure provider.
This enables seamless deployment of DREEM across a wide range of environments
— from on-premise datacenters to public cloud platforms or hybrid configurations
— while maintaining consistent behavior and operations.
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DREEM Implementation

The following chapter describes the implementation of the DREEM operator, along
with a detailed description of all its components and the initial configuration
process.

4.1 Architecture in Depth
In order to achieve greater modularity and facilitate the extension of DREEM’s
mechanisms, the architecture is primarily based on Kubernetes controllers. This
design choice simplifies the overall logic and enables independent development and
modification of each component. As described in Chapter 3, DREEM introduces
three new Custom Resources, each managed by its corresponding controller.

4.1.1 ConfigMaps
DREEM’s behavior can be customized through two ConfigMaps, which enforce
some user-policies and infrastructure constraints.

The forecast-parameters ConfigMap (Listing 4.1) provides configuration settings
that influence the behavior and accuracy of the forecasting component. These
parameters allow fine-tuning of the decision-making process for scaling operations:

• Thresholds_min: The lower CPU utilization threshold that triggers a
scale-down operation.

• Thresholds_max: The upper CPU utilization threshold that triggers a
scale-up operation.

• Past_time_window: duration of the historical time window considered as
input. In the Naive forecast, it defines how much past data must be taken
into account for the prediction.
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• Forecast_period: The time interval between two consecutive CPU usage
forecasts.

• Prediction_model: The forecasting algorithm to be used. Possible values
are:

– LSTM: Uses a Long Short-Term Memory neural network for predictions.
– Naive: Uses a simple algorithm based on the past average CPU load.

• Mean_time_to_boot: The average time required for a node to become
ready to schedule workloads after a scaling action has been initiated.

The cluster-configuration-parameters ConfigMap (Listing 4.2) just provides the
boundaries for the scaling operations:

• minNodes: The minimum number of nodes that must be available on the
cluster.

• maxNodes: The maximum number of nodes that can be available on the
cluster

1 apiVersion : v1
2 kind: ConfigMap
3 metadata :
4 name: forecast - parameters
5 namespace : dreem
6 data:
7 Past_time_window : "5"
8 Thresholds_min : "45"
9 Thresholds_max : "65"

10 Forecast_period : "5"
11 Prediction_model : "LSTM"
12 Mean_time_to_boot : "1"

Listing 4.1: Forecast Parameters ConfigMap

1 apiVersion : v1
2 kind: ConfigMap
3 metadata :
4 name: cluster - configuration - parameters
5 namespace : dreem
6 data:
7 minNodes : "1"
8 maxNodes : "5"

Listing 4.2: Cluster Configuration Parameters ConfigMap
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4.1.2 ClusterConfiguration Controller
This controller handles the reconciliation of the ClusterConfiguration resource.
The resource is created by the forecast algorithm, which understand if a scaling
operation is required and triggers DREEM’s controllers. The resource is defined by
the following fields, representing the desired state:

• maxNodes: the maximum number of nodes that can be available in the
cluster. It may be influenced by the number of physical servers which are
available in the cluster if the system is deployed on bare metal.

• minNodes: the minimum number of nodes that can be active in the cluster.
It may be useful to enhance the reliability of the system (if a service that must
be replicated across different nodes, a minimum number of distinct nodes must
be available).

• requiredNodes: the new number of nodes requested by DREEM to achieve
the optimal configuration defined by the user through some configuration
parameters (see Section 4.1.1).

On the other hand, the actual state is represented by the Status sub-resource,
defined as follows:

• ActiveNodes: the number of active worker nodes available in the moment of
the resource creation.

• Phase: A categorical field describing the action the controller is performing
in a certain moment. It can assume the following values:

– Stable: it is the initial phase, when the resource has just been created.
– Selecting: the NodeSelecting resource has been created and the candidate

node has been selected.
– Switching: the NodeHandling resource has been created, therefore the

actual scaling is being processed.
– Completed: the scaling process has been correctly finished and the new

number of worker nodes is verified.
– Failed: some of the previous phases may have encountered some problems

(e.g. failing in the selection, failing in the scaling with ClusterAPI);
therefore, the whole scaling process has failed.

– Finished: once the process ends without any problem, no further action
is needed.

• Message: A field to provide some extra information in case of failing phases,
useful for debug.
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The controller has been organized in a switch-case structure, controlled by the
Phase field of the resource. For each phase, a custom handler function is called.
The handlers are the following one:

• handleInitialPhase: sets the initial Phase status to Stable and records the
current configuration of the cluster by counting the number of worker nodes
in the managed cluster created through ClusterAPI.

• handleStablePhase: determines whether a scaling operation is required by
comparing the current number of nodes with the desired number specified in
the ClusterConfiguration resource specs. If no scaling is needed, the process
transitions to the Completed state; otherwise, a NodeSelecting resource is
created to select the most suitable node for scaling.

• handleSelectingPhase: waits for the node selection algorithm to complete. If
an error occurs, the operation is aborted. The function is showed in Listing 4.3.

• handleSwitchingPhase: once a node has been selected, a NodeHandling
resource is created to perform the actual scaling operation. The controller
monitors the process and aborts it in case of failure. The function is showed
in Listing 4.4.

• handleFailedPhase: indicates that an error has occurred and updates the
Phase field to Failed. The Message field provides additional information to
help identify the cause.

• handleCompletedPhase: performs a final validation to ensure the number
of available nodes matches the desired count. If successful, the resource is
archived and marked as Finished.

To ensure more consistent behavior, the controller has been configured to own the
NodeSelecting and NodeHandling resources. This allows it to set appropriate
owner references and centralize deletion operations.

1 func (r * ClusterConfigurationReconciler ) handleSelectingPhase (ctx
context .Context , clusterConfiguration * clusterv1alpha1 .
ClusterConfiguration ) (bool , error) {

2 var clusterConfig = & clusterv1alpha1 . ClusterConfiguration {}
3 r.Get(ctx , client . ObjectKeyFromObject ( clusterConfiguration ),

clusterConfig )
4 log := log. FromContext (ctx). WithName ("handle -selecting -phase")
5 // Implement the logic for handling the selecting phase
6
7 // Check every pollingInterval if there is a NodeSelecting

resource associated with the ClusterConfiguration
8 nodeSelectingList := & clusterv1alpha1 . NodeSelectingList {}
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9
10 if err := r.List(ctx , nodeSelectingList , client . InNamespace (

clusterConfig . Namespace )); err != nil {
11 log.Error(err , " Failed to list NodeSelecting resources ", "

namespace ", clusterConfig . Namespace )
12 return false , err
13 }
14
15 filteredList := & v1alpha1 . NodeSelectingList {}
16 for _, item := range nodeSelectingList .Items {
17 if item.Spec. ClusterConfigurationName == clusterConfig .Name {
18 filteredList .Items = append ( filteredList .Items , item)
19 }
20 }
21
22 if len( filteredList .Items) == 1 {
23 log.Info(" NodeSelecting resource found for

ClusterConfiguration , proceeding with selection ",
24 "name", clusterConfig .Name , " nodeSelectingName ",

filteredList .Items [0]. Name)
25
26 if filteredList .Items [0]. Status .Phase == clusterv1alpha1 .

NS_PhaseCompleted {
27 log.Info(" NodeSelecting resource completed successfully ,

proceeding to Switching phase",
28 "name", clusterConfig .Name , " nodeSelectingName ",

filteredList .Items [0]. Name)
29
30 // Update the ClusterConfiguration status to Switching phase
31 clusterConfig . Status .Phase = clusterv1alpha1 .

CC_PhaseSwitching
32 if err := r. Status (). Update (ctx , clusterConfig ); err != nil

{
33 log.Error(err , " Failed to update ClusterConfiguration

status to Switching phase")
34 return false , err
35 }
36 } else {
37 if filteredList .Items [0]. Status .Phase == clusterv1alpha1 .

NS_PhaseFailed {
38 clusterConfig . Status .Phase = clusterv1alpha1 .

CC_PhaseFailed
39 clusterConfig . Status . Message = " Failed because of failed

NodeSelecting found"
40 if err := r. Status (). Update (ctx , clusterConfig ); err !=

nil {
41 log.Error(err , " Failed to update ClusterConfiguration

status to Failed phase")
42 return false , err
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43 }
44 }
45 log.Info(" NodeSelecting resource is still in progress ,

waiting for completion ",
46 "name", clusterConfig .Name , " nodeSelectingName ",

filteredList .Items [0]. Name ,
47 "phase", filteredList .Items [0]. Status .Phase)
48 return false , nil // Wait for the next polling interval
49 }
50
51 return true , nil
52 } else if len( filteredList .Items) > 1 {
53 log.Error(nil , " Multiple NodeSelecting resources found for

ClusterConfiguration , this should not happen ",
54 "name", clusterConfig .Name , " nodeSelectingCount ", len(

filteredList .Items))
55 clusterConfig . Status .Phase = clusterv1alpha1 . CC_PhaseFailed
56 clusterConfig . Status . Message = "Failed , multiple NodeSelecting

found"
57 if err := r. Status (). Update (ctx , clusterConfig ); err != nil {
58 log.Error(err , " Failed to update ClusterConfiguration status

to Failed phase")
59 return false , err
60 }
61 }
62 log.Info("No NodeSelecting resource found for

ClusterConfiguration , waiting for selection ", "name",
clusterConfig .Name)

63 return false , nil
64
65 }

Listing 4.3: HandleSelectingPhase function ClusterConfiguration

1 func (r * ClusterConfigurationReconciler ) handleSwitchingPhase (ctx
context .Context , clusterConfiguration * clusterv1alpha1 .
ClusterConfiguration ) (bool , error) {

2 var clusterConfig = & clusterv1alpha1 . ClusterConfiguration {}
3 r.Get(ctx , client . ObjectKeyFromObject ( clusterConfiguration ),

clusterConfig )
4
5 log := log. FromContext (ctx). WithName ("handle -switching -phase")
6 // Implement the logic for handling the switching phase
7
8 // check if there is a NodeHandling resource associated with the

ClusterConfiguration
9 nodeHandlingList := & clusterv1alpha1 . NodeHandlingList {}

10 if err := r.List(ctx , nodeHandlingList , client . InNamespace (
clusterConfig . Namespace )); err != nil {
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11 log.Error(err , " Failed to list NodeSelecting resources ", "
namespace ", clusterConfig . Namespace )

12 return false , err
13 }
14
15 filteredList := & v1alpha1 . NodeHandlingList {}
16 for _, item := range nodeHandlingList .Items {
17 if item.Spec. ClusterConfigurationName == clusterConfig .Name {
18 filteredList .Items = append ( filteredList .Items , item)
19 }
20 }
21 if len( filteredList .Items) == 1 {
22 log.Info(" NodeHandling resource found for ClusterConfiguration

, proceeding with handling ",
23 "name", clusterConfig .Name , " nodeHandlingName ", filteredList

.Items [0]. Name)
24 if filteredList .Items [0]. Status .Phase == clusterv1alpha1 .

NH_PhaseCompleted {
25 log.Info(" NodeHandling resource completed successfully ,

proceeding to Completed phase",
26 "name", clusterConfig .Name , " nodeHandlingName ",

filteredList .Items [0]. Name)
27 // Update the ClusterConfiguration status to Completed phase
28 clusterConfig . Status .Phase = clusterv1alpha1 .

CC_PhaseCompleted
29 if err := r. Status (). Update (ctx , clusterConfig ); err != nil

{
30 log.Error(err , " Failed to update ClusterConfiguration

status to Completed phase")
31 return false , err
32 }
33 } else {
34 if filteredList .Items [0]. Status .Phase == clusterv1alpha1 .

NH_PhaseFailed {
35 clusterConfig . Status .Phase = clusterv1alpha1 .

CC_PhaseFailed
36 clusterConfig . Status . Message = " Failed because of failed

NodeHandling found"
37 if err := r. Status (). Update (ctx , clusterConfig ); err !=

nil {
38 log.Error(err , " Failed to update ClusterConfiguration

status to Failed phase")
39 return false , err
40 }
41 }
42 return false , nil // Wait for the next polling interval
43 }
44 return true , nil
45 } else if len( nodeHandlingList .Items) > 1 {
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46 log.Error(nil , " Multiple NodeHandling resources found for
ClusterConfiguration , this should not happen ",

47 "name", clusterConfig .Name , " nodeHandlingCount ", len(
nodeHandlingList .Items))

48 clusterConfig . Status .Phase = clusterv1alpha1 . CC_PhaseFailed
49 clusterConfig . Status . Message = "Failed , multiple NodeHandling

found"
50 if err := r. Status (). Update (ctx , clusterConfig ); err != nil {
51 log.Error(err , " Failed to update ClusterConfiguration status

to Failed phase")
52 return false , err
53 }
54 }
55 log.Info("No NodeHandling resource found for

ClusterConfiguration , waiting for handling ", "name",
clusterConfig .Name)

56 // No NodeHandling resource found , wait for the next polling
interval

57 return false , nil
58 }
59
60 // Handle the failed phase
61 func (r * ClusterConfigurationReconciler ) handleFailedPhase (ctx

context .Context , clusterConfiguration * clusterv1alpha1 .
ClusterConfiguration ) error {

62 var clusterConfig = & clusterv1alpha1 . ClusterConfiguration {}
63 r.Get(ctx , client . ObjectKeyFromObject ( clusterConfiguration ),

clusterConfig )
64 log := log. FromContext (ctx). WithName ("handle -failed -phase")
65 // Implement the logic for handling the failed phase
66 log.Info(" Failed phase for ClusterConfiguration ",
67 "name", clusterConfig .Name , "phase", clusterConfig . Status .

Phase)
68
69 return nil
70 }

Listing 4.4: HandleSwitchingPhase function ClusterConfiguration

Forecast Algorithm

The entire scaling process is triggered through the creation of the ClusterConfigura-
tion resource. This is done by a Python script which periodically makes a forecast
and if a scaling is required, it instantiates a new resource, which triggers the K8s
controller.

The script starts by loading two ConfigMap: forecast-parameters and cluster-
configuration-parameters (Section 4.1.1).
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After the parameters have been loaded, the job connects to Prometheus by
using the prometheus_api_client APIs in order to retrieve the CPU load data for
each node inside the cluster. The query is based on the node_cpu_seconds_total
metric.

The retrieved data are then used to feed the forecast algorithm. As described in
the previous paragraph, two distinct algorithms are available:

• Naive algorithm: it uses the last Past_time_window minutes as input value.
The time-step array returned by Prometheus is then averaged and mean value
is returned as output. This algorithm implements the reactive logic.

• LSTM Neural Network: The Neural Network has been trained with specific
input and output windows size. The Neural Network takes an input windows
of the last N values returned by Prometheus and predicts the next M steps. In
the same way, the prediction is then averaged and returned as result. Further
details on the Neural Network are avaialble in Section 5.1. This algorithm
implements the predictive part of the system.

After the output is returned, the business logic is the same for both algorithms.
If the mean value is higher than the upper threshold for at least one of nodes in
the cluster, a scale-up action is triggered; if it falls below the lower threshold for all
nodes, a scale-down action is triggered. In either case, a new ClusterConfiguration
resource is created to trigger the reconciler of the corresponding K8s controller.

If no scaling action is required, no change is enforced. The forecasting component
then sleeps for Forecast_period minutes before performing the next prediction, and
the process repeats.

4.1.3 NodeSelecting Controller
This controller handles the reconciliation of the NodeSelecting resource. The
resource is defined by the following fields, which represent the desired state:

• ClusterConfigurationName: the name of the ClusterConfiguration resource
that created the NodeSelecting resource.

• ScalingLabel: an integer representing the number of nodes to be added (if
positive) or removed (if negative). At the time of writing, only +1 or -1 is
supported.

The Status sub-resource represents the result of the selection algorithm, described
in the following section. The main fields are:

• SelectedMachineDeployment: the MachineDeployment chosen for scaling.
It represents a specific type of machine/server configuration.
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• SelectedNode: the exact node selected for decommissioning. In case of scaling
up, there is no distinction between nodes within the same MachineDeployment,
since all machines are identical. For this reason, during scale-up this field is
set to Random.

• Phase: a categorical field describing the action the controller is performing
at a given time. It can take the following values:

– Running: the controller checks the available nodes in the cluster and
selects the best candidate to add or remove. It then creates a NodeHandling
resource to enforce the scaling action.

– Completed: the candidate node has been selected and the NodeHandling
resource has been successfully created.

– Failed: the selection failed due to unavailability of suitable nodes or hard
constraints (e.g., node draining failure due to insufficient resources, or
affinity/anti-affinity rules).

• Message: a field providing additional information in case of failure, useful
for debugging.

The controller is organized as a switch-case structure, controlled by the Phase
field of the resource. For each phase, a dedicated handler function is invoked. The
handlers are the following:

• handleInitialPhase: it checks whether more than one NodeSelecting resource
is defined for the same parent ClusterConfiguration. If another one is already
active, the process stops to allow the previous resource to complete correctly.
Otherwise, the controller proceeds by setting the Phase field to Running.

• handleRunningPhase: it calls the corresponding API on the web server
running the selection algorithm to retrieve the name of the node to be added
or removed. For scaling-up operations, the handler simply creates a new
NodeHandling resource and sets the Phase field to Completed. For scaling-
down operations, additional checks are performed to ensure that the cluster
can still run all services in the scaled configuration. After these checks, the
NodeHandling resource is created in the same way as in the scale-up scenario.

The checks performed during scaling down include: verification of available
resources (e.g., CPU and memory), Node Affinity rules, and Pod Anti-affinity rules.
If the selected node does not satisfy these constraints, the API is queried again
until a suitable node is found. If none of the available nodes meet the requirements,
the scaling operation is aborted. The Listing 4.5 shows the handleRunningPhase
function code.

48



DREEM Implementation

1
2 func (r * NodeSelectingReconciler ) handleRunningPhase (ctx context .

Context , nodeSelecting * clusterv1alpha1 . NodeSelecting ,
retrievedNode [] string , addUnique func( string )) (error , []
string , bool) {

3 log := log. FromContext (ctx). WithName ("handle -running -phase")
4 nodeSelectServer := getNodeSelectionURL ()
5
6 response , err := getSelectedNode (ctx , nodeSelectServer ,

nodeSelecting .Spec. ScalingLabel )
7 if err != nil {
8 log.Error(err , " Failed to get response from Node Selection

Service ", " nodeSelectServer ", nodeSelectServer )
9 return err , retrievedNode , false

10 }
11 selectedNode := response . SelectedNode
12 selectedMD := response . MachineDeployment
13 fullName , err := r. resolveFullNodeName (ctx , selectedNode )
14 addUnique ( fullName )
15
16 if selectedNode == "" {
17 nodeSelecting . Status .Phase = v1alpha1 . NS_PhaseFailed
18 nodeSelecting . Status . Message = " Server failed getting a valid

node for the scaling "
19 if err := r. Status (). Update (ctx , nodeSelecting ); err != nil {
20 log.Error(err , " Failed to update NodeSelecting resource

status to Failed ", "name", nodeSelecting .Name)
21 return err , retrievedNode , false
22 }
23 return fmt. Errorf ("no node selected , null result on

NodeSelecting %s", nodeSelecting .Name), retrievedNode , false
24 }
25
26 if nodeSelecting .Spec. ScalingLabel < 0 {
27 // emulate drain operation
28 isDrainable , err := r. canDrain (ctx , fullName )
29 if err != nil {
30 log.Error(err , " Failed to check if the node can be drained ",

"node", fullName )
31 nodeSelecting . Status .Phase = v1alpha1 . NS_PhaseFailed
32 nodeSelecting . Status . Message = " Failed to check if the node

can be drained : " + err.Error ()
33 if updateErr := r. Status (). Update (ctx , nodeSelecting );

updateErr != nil {
34 log.Error(updateErr , " Failed to update NodeSelecting

resource status to Failed ", "name", nodeSelecting .Name)
35 return updateErr , retrievedNode , false
36 }
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37 return err , retrievedNode , false
38 }
39
40 if isDrainable {
41 // if the node can be drained , proceed with the drain

operation
42 err := r. drainNode (ctx , fullName )
43 if err != nil {
44 log.Error(err , " Failed to drain node", "node", fullName )
45 nodeSelecting . Status .Phase = v1alpha1 . NS_PhaseFailed
46 nodeSelecting . Status . Message = " Failed to drain node: " +

err.Error ()
47 if updateErr := r. Status (). Update (ctx , nodeSelecting );

updateErr != nil {
48 log.Error(updateErr , " Failed to update NodeSelecting

resource status to Failed ", "name", nodeSelecting .Name)
49 return updateErr , retrievedNode , false
50 }
51 return err , retrievedNode , false
52 }
53 } else {
54 // select another node for draining , if there are no nodes

available , fail the operation
55 return fmt. Errorf ("node %s cannot be drained , no available

nodes to migrate pods", fullName ), retrievedNode , false
56 }
57 }
58 // if the simulation is successful , create the NodeHandling

resource
59 errNH := r. CreateNodeHandling (ctx , nodeSelecting , selectedNode ,

selectedMD )
60 if errNH != nil {
61 log.Error(err , " Failed to create NodeHandling resource in

NodeSelecting ", "name", nodeSelecting .Name)
62 return err , retrievedNode , false
63 }
64 nodeSelecting . Status . SelectedNode = selectedNode
65 nodeSelecting . Status . SelectedMachineDeployment = selectedMD
66 nodeSelecting . Status .Phase = v1alpha1 . NS_PhaseCompleted
67 if err := r. Status (). Update (ctx , nodeSelecting ); err != nil {
68 log.Error(err , " Failed to update NodeSelecting resource status

to Completed ", "name", nodeSelecting .Name)
69 return err , retrievedNode , false
70 }
71 return nil , retrievedNode , true
72 }

Listing 4.5: HandleRunningPhase function NodeSelecting
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NodeSelecting Algorithm

The NodeSelecting algorithm is exposed through a web server, which returns a
JSON object with the following structure:

{
"machineDeployment": "machine_deployment_example",
"selectedNode": "machine_deployment_example-<machine_hash_name>"

}

The Node Selecting controller connects to this web server and retrieve the name
of the best candidate node. The web server has two main routes to handle both
scale-up and scale-down operations:

• /nodes/scaleUp: handles the scaling-up function.

• /nodes/scaleDown: handles the scaling-down function.

There are two possible behaviors for the selection algorithm: the basic one and the
enhanced one. In the basic scenario, for a scale-down action, the machine with
the lowest CPU load is chosen for decommissioning. The rationale is that a lower
load implies fewer running services, which allows the decommissioning process to
complete faster. Normally, ClusterAPI has its own criteria for selecting which node
should be removed when a MachineDeployment is scaled down. However, it is
possible to force the removal of a specific node by directly referencing it through the
cluster.x-k8s.io/delete-machine annotation. For a scale-up action, a random
MachineDeployment is selected, and the number of replicas is simply increased.
The ClusterAPI controller will automatically reconcile the updated number of
replicas.

The enhanced algorithm is based on a custom DREEM annotation added to
the MachineDeployment resource, which influences the order of commissioning and
decommissioning of nodes. The dreemk8s.io/consumption-profile annotation
is added by the cluster administrator and is used by DREEM to evaluate the
efficiency of each server.

It assumes categorical values corresponding to the average consumption of the
machines: high, medium, low.

If a node has dreemk8s.io/consumption-profile set to high, it means that
it consumes more energy than nodes labeled as medium or low under the same
execution environment; therefore, it is considered less efficient compared to the
latter two.

When nodes carry this annotation, the maximum number of available machines
per MachineDeployment must also be specified, so that the algorithm can determine
whether a given MachineDeployment can be scaled. This information is enforced
through the dreemk8s.io/maximum-replicas annotation.

51



DREEM Implementation

With these annotations in place, scaling down is performed by decommissioning
the least efficient nodes first: those with a high value, followed by medium, and
finally low. For scaling up, the logic is reversed: the algorithm provisions the most
efficient nodes first, i.e., those with a low value, followed by medium and then high.

There may be cases where some MachineDeployments have the annotation
(dreemk8s.io/consumption-profile) defined, while others do not. In this case,
unlabeled MachineDeployments are automatically assigned the default value medium.

4.1.4 NodeHandling Controller
This controller handles the reconciliation of the NodeHandling resource. The
resource is defined by the following fields, which represent the desired state:

• ClusterConfigurationName: the name of the ClusterConfiguration resource
that created the NodeSelecting resource.

• NodeSelectingName: the name of the NodeSelecting resource that created
the NodeHandling resource.

• SelectedNode: it represents the same SelectedNode field in the NodeSelect-
ing resource.

• SelectedMachineDeployment: it represents the same SelectedMachineDeployment
field in the NodeSelecting resource.

• ScalingLabel: it represents the same ScalingLabel field in the NodeSelecting
resource.

The Status sub-resource represents the result of the selection algorithm, described
in the following section. The main fields are:

• Phase: a categorical field describing the action the controller is performing
at a given time. It can take the following values:

– Running: the controller patched the ClusterAPI resources to start the
scaling process and it is waiting for its completion.

– Completed: the infrastructure has been correctly updated, therefore the
new node has been joined (for scale-up) or unjoined (for scale-down)

– Failed: the scaling process failed due to ClusterAPI problems (e.g. Ma-
chineDeployment not correctly updated, abort of the operation due to
timeout).

• Message: a field providing additional information in case of failure, useful
for debugging.
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The controller is organized as a switch-case structure, controlled by the Phase
field of the resource. For each phase, a dedicated handler function is invoked. The
handlers are the following:

• handleInitialPhase: it is very similar to the homonymous function in the
textitNodeSelecting controller. It checks whether more than one NodeHandling
resource is defined for the same parent ClusterConfiguration. If another one is
already active, the process stops to allow the previous resource to complete
correctly. Otherwise, the controller proceeds by setting the Phase field to
Running.

• handleRunningPhase: it represents a wrapper for ClusterAPI. It modifies
the MachineDeployment resource to add or remove a node and waits until
the changes are correctly enforced. The ScaleDown function is showed in
Listing 4.6.

1
2 func (r * NodeHandlingReconciler ) scaleDown (ctx context .Context ,

selectedNode string , selectedMD string , scalingLabel int32)
error {

3 log := log. FromContext (ctx). WithName ("scale -down")
4
5 // get the MachineDeployment of the selected node and update the

replicas
6 if selectedNode == "" {
7 log.Info("No selected node provided for scaling down , cannot

proceed ")
8 return nil
9 }

10 selectedNodeObj := & clusterv1 . Machine {}
11 if err := r.Get(ctx , client . ObjectKey {Name: selectedNode ,

Namespace : " default "}, selectedNodeObj ); err != nil {
12 log.Error(err , " Failed to get Machine ", "name", selectedNode )
13 return err
14 }
15
16 if selectedNodeObj . Annotations == nil {
17 selectedNodeObj . Annotations = make(map[ string ] string )
18 }
19
20 selectedNodeObj . Annotations [" cluster .x-k8s.io/delete - machine "] =

""
21
22 if err := r. Update (ctx , selectedNodeObj ); err != nil {
23 log.Error(err , " Failed to annotate Machine for deletion ")
24 return err
25 }
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26
27 machineDeploymentObj := & clusterv1 . MachineDeployment {}
28 if err := r.Get(ctx , client . ObjectKey {Name: selectedMD ,

Namespace : " default "}, machineDeploymentObj ); err != nil {
29 log.Error(err , " Failed to get MachineDeployment ", "name",

selectedMD )
30 return err
31 }
32
33 if machineDeploymentObj .Spec. Replicas != nil {
34 newReplicas := * machineDeploymentObj .Spec. Replicas +

scalingLabel
35 if newReplicas < 0 {
36 log.Info(" Scaling down to zero replicas , setting replicas to

zero", "name", machineDeploymentObj .Name)
37 newReplicas = 0
38 }
39 machineDeploymentObj .Spec. Replicas = & newReplicas
40
41 if err := r. Update (ctx , machineDeploymentObj ); err != nil {
42 log.Error(err , " Failed to update MachineDeployment replicas "

)
43 return err
44 }
45
46 log.Info(" Waiting for MachineDeployment to scale", "

desiredReplicas ", newReplicas )
47
48 waitCtx , cancel := context . WithTimeout (ctx , 10* time. Minute )
49 defer cancel ()
50
51 pollInterval := 10 * time. Second
52 err := wait. PollUntilContextCancel (waitCtx , pollInterval , true

, func(ctx context . Context ) (bool , error) {
53 md := & clusterv1 . MachineDeployment {}
54 if err := r.Get(ctx , client . ObjectKey {Name: selectedMD ,

Namespace : machineDeploymentObj . Namespace }, md); err != nil {
55 return false , err
56 }
57
58 if md. Status . ReadyReplicas == newReplicas {
59 log.Info(" MachineDeployment successfully scaled ", "

replicas ", md. Status . ReadyReplicas )
60 return true , nil
61 }
62
63 log.Info(" Waiting for MachineDeployment to reach desired

replica count",
64 "name", selectedMD ,
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65 " current ", machineDeploymentObj . Status . ReadyReplicas ,
66 " desired ", newReplicas ,
67 )
68
69 return false , nil
70 })
71
72 if err != nil {
73 log.Error(err , "Timed out waiting for MachineDeployment to

scale")
74 return err
75 }
76 } else {
77 log.Info("No replicas specified in MachineDeployment , cannot

scale down", "name", machineDeploymentObj .Name)
78 }
79
80 return nil
81 }

Listing 4.6: Scale Down function NodeHandling

4.2 How to use DREEM
Since DREEM relies entirely on K8s, its usage is very straightforward. DREEM is
deployed in the management cluster, together with ClusterAPI. The management
cluster must use ClusterAPI (Section 2.2.4) in order to be able to scale the worker
cluster. In addition to this, both the management cluster and the worker cluster
must have installed Prometheus (Section 2.2.3) to let DREEM be able to scrape
CPU usage information. The Federation feature is used to be able to retrieve
all the data from a single instance of Prometheus. The Prometheus federation is
used to scrape the node_cpu_seconds_total metric of the worker cluster from the
management cluster. Once the controllers are deployed in the cluster, the system
admin has only to customize the forecast-parameters and the cluster-configuration-
parameters according to their preferred specification.

The DREEM’s pod will start running and adapt the infrastructure according to
the load.
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Chapter 5

Experimental Evaluation
and Comparison

This chapter describes the results achieved with the neural network and reports
the final evaluation, including comparisons with similar technologies.

5.1 Forecast Model

This section presents the experiments and analysis conducted to build the forecasting
model used in DREEM. The forecasting component plays a crucial role in the
system, as it is responsible for predicting the future CPU load and, based on this
prediction, determining whether a scaling action is required.

The forecaster implemented in DREEM leverages historical CPU usage data
to estimate future load. According to recent literature, Neural Networks — espe-
cially Recurrent Neural Networks (RNNs) — are widely adopted for time series
forecasting due to their ability to learn complex temporal dependencies that are
often challenging to model using traditional statistical approaches.

One of the main challenges in building an effective forecasting model is identifying
the optimal configuration of hyperparameters to maximize prediction accuracy. To
this end, several experiments have been carried out.

The evaluation focused on two main goals:

• Identifying the most suitable model architecture.

• Tuning the model with the optimal set of hyperparameters.
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5.1.1 DataSet
It is crucial to start with a high-quality dataset to build an effective forecasting
model: datasets representing real-world cloud workloads are ideal for training and
evaluation of models whose goal is to predict the CPU load in the near future.

Several cloud providers release anonymized traces from their data centers, offering
valuable insights into resource usage patterns. Among them, the Alibaba Cluster
Trace 2018 [33] stands out as a comprehensive dataset. It contains job traces
collected over a span of eight days, covering more than 4,000 machines in Alibaba’s
production environment.

The dataset includes a wide range of system metrics (see Table 5.1), such as:

• Timestamps

• Machine identifiers

• CPU load percentage

• Memory usage percentage

• Network traffic (incoming and outgoing)

• Disk usage

This richness in features makes it an excellent candidate for training models
aimed at time-series prediction of resource consumption in cloud environments.

machine_id time_stamp cpu_% mem_% mem_gps mkpi net_in net_out disk_%
m_1942 130 21 88 NaN NaN 37.72 30.97 5
m_1942 300 18 88 NaN NaN 37.72 30.97 5
m_1942 330 18 88 NaN NaN 37.72 30.97 5
m_1942 3750 29 89 NaN NaN 37.77 31.01 4
m_1942 3780 28 89 NaN NaN 37.77 31.01 4

...
...

...
...

...
...

...
...

...
m_1084 690860 24 91 2.08 0.0 45.97 34.24 3
m_1084 690910 29 92 3.24 0.0 45.97 34.24 4
m_1084 690980 22 92 3.55 0.0 45.97 34.24 2
m_1084 691110 19 92 2.01 0.0 45.98 34.25 3
m_1084 691180 21 91 2.48 0.0 45.98 34.25 2

Table 5.1: Alibaba 2018 Traces Dataset - Raw Data

Several preprocessing steps have been applied to make the dataset suitable for
training a Neural Network model.

First, all irrelevant features were removed, retaining only the CPU usage metric,
which is the sole target of prediction in this context. Since the time intervals
between consecutive records were not uniform, the data was resampled to a one-
minute granularity. This ensured a consistent temporal spacing across the
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dataset. As a result of resampling, missing values (NaNs) appeared and were filled
using interpolation techniques to preserve continuity.

To reduce high-frequency noise and improve signal quality, moving average
smoothing was applied to the CPU usage time series. Finally, a new dataset
was constructed to match the input format required by Recurrent Neural Network
(RNN) models, with the following tensor shape:

(batch size, past time window, number of features)

In this case, the number of features is one — the CPU usage.
In order to test all the configurations efficiently, a subset of the dataset was used

during the hyperparameter search phase. Specifically, from the complete dataset
consisting of data from over ten thousand machines, only one machine — selected
at random — was used for the initial training and evaluation.

Once the best model configuration was identified through these experiments, a
final training phase was conducted using a more extensive dataset comprising data
from 100 machines (due to high computational time).

5.1.2 Models
The architecture in Table 5.2 served as the baseline architecture model and went
through several changes to balances prediction accuracy with training efficiency,
ultimately improving the overall responsiveness and effectiveness of DREEM’s
scaling decisions.

Table 5.2: Baseline LSTM model architecture

Layer # Layer Type
1 LSTM
2 LSTM
3 Dropout
4 Dense

The key parameters considered during the evaluation phase included:

• Number of units in the first LSTM layer

• Number of units in the second LSTM layer

• Size of the input time window (i.e., the number of past time steps used as
input)

• Forecast horizon (i.e., the number of future steps to predict)
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• Batch size

• Number of training epochs

• Learning rate

Trainings have been performed on the Kaggle Online platform [34]. Due to the
limitation of the runtime, and for the sake of the optimization, tests have been
split in different sessions and a subset of the Alibaba Dataset has been used.

First Test: Learning Rate

The first test session had as purpose to understand the best learning rate
coefficient, which is important to fasten the training and achieve higher accuracy.
The most common values for the learning rates are: 1E-4, 1E-5. The models have
been trained with the following values:

• Batch size: 256

• Units in the first LSTM layer: 128

• Units in the second LSTM layer: 128

• Number of epochs: 100

• Activation: linear

• Learning Rates: [ 1E-4, 1E-5, 5E-4]

• Dropout: 0.2

The Table 5.3 shows as the 0.0005 value achieve the best performance. As it
is possible to notice, from the Figure 5.1, the model understood the descending
trend but it is quite conservative in the prediction, hence further tests have been
conducted by making the model bigger and more complex.

id window
size horizon units

1
units

2
batch
size

actual
epochs

learning
rate mse mae r2 rmse

real
mae
real

model0 20 15 128 128 256 100 0.0005 0.00513 0.04784 0.81738 5.15467 3.44471
model1 20 15 128 128 256 100 0.0001 0.00596 0.05438 0.78773 5.55738 3.91559
model2 20 15 128 128 256 100 1e-05 0.00855 0.06849 0.69519 6.65939 4.93135

Table 5.3: Tests Results - First Test - Learning Rate parameter
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Figure 5.1: model0 Test Window - First Test - Learning Rate parameter

Second Test: LSTM configuration

This test involved trying several different configurations for the LSTM layers. To be
more precise, the units parameter and the batch size are the main parameter to
influence the capabilites of the model. Always considering the baseline architecture
in Table 5.2, the model has been trained with the following values:

• Batch size: [256, 512]

• Units in the first LSTM layer: [64,256,512]

• Units in the second LSTM layer: [64,256,512]

• Size of the input time window: 20

• Forecast horizon: 15

• Number of epochs: 150

• Dropout: 0.2

The Table 5.4 shows as the bigger the model, better tend to be the performance.
However, performance are not significantly improving in the different configurations.
These models are able to retrieve the general pattern of the window but still fail in
predicting fast changes and/or peaks (see Figure 5.2).

60



Experimental Evaluation and Comparison

id window
size horizon units

1
units

2
batch
size

actual
epochs

learning
rate mse mae r2 rmse

real
mae
real

model0 20 15 64 64 256 116 0.0005 0.00803 0.06663 0.74112 6.09209 4.53093
model1 20 15 64 64 512 150 0.0005 0.00807 0.06679 0.73982 6.10730 4.54179
model2 20 15 64 256 256 83 0.0005 0.00802 0.06621 0.74127 6.09026 4.50241
model3 20 15 64 256 512 145 0.0005 0.00801 0.06581 0.74150 6.08755 4.47516
model4 20 15 64 512 256 104 0.0005 0.00802 0.06612 0.74128 6.09022 4.49616
model5 20 15 64 512 512 135 0.0005 0.00801 0.06614 0.74153 6.08718 4.49770
model6 20 15 256 64 256 107 0.0005 0.00805 0.06685 0.74034 6.10122 4.54578
model7 20 15 256 64 512 150 0.0005 0.00804 0.06637 0.74062 6.09799 4.51286
model8 20 15 256 256 256 106 0.0005 0.00801 0.06565 0.74173 6.08491 4.46415
model9 20 15 256 256 512 123 0.0005 0.00802 0.06577 0.74141 6.08870 4.47265
model10 20 15 256 512 256 63 0.0005 0.00804 0.06608 0.74075 6.09640 4.49365
model11 20 15 256 512 512 113 0.0005 0.00801 0.06586 0.74160 6.08641 4.47862
model12 20 15 512 64 256 87 0.0005 0.00807 0.06665 0.73964 6.10944 4.53198
model13 20 15 512 64 512 124 0.0005 0.00819 0.06708 0.73596 6.15244 4.56168
model14 20 15 512 256 256 87 0.0005 0.00802 0.06611 0.74148 6.08784 4.49527
model15 20 15 512 256 512 131 0.0005 0.00800 0.06588 0.74191 6.08279 4.47971
model16 20 15 512 512 256 94 0.0005 0.00799 0.06546 0.74208 6.08073 4.45104
model17 20 15 512 512 512 112 0.0005 0.00802 0.06608 0.74139 6.08885 4.49334

Table 5.4: Tests Results - Second Test - Units / Batch Size

Figure 5.2: Model16 Test Window - Second Test - Units / Batch Size

Third Test: new LSTM architecture

Another interesting test has been conducted to understand if the model was
underfitting due to its intrisincs semplicity. A Third LSTM model has been added,
therefore the new architecture is the one in Table 5.5.

61



Experimental Evaluation and Comparison

Table 5.5: Enhanced LSTM model architecture - Third Test

Layer # Layer Type
1 LSTM
2 LSTM
3 LSTM
4 Dropout
5 Dense

This architecture has been tested with the following hyperparameters:

• Batch size: [128, 512]

• Units in the first LSTM layer: [64,256,512]

• Units in the second LSTM layer: [64,256,512]

• Units in the third LSTM layer: [64,128,256,512]

• Number of epochs: 1000

• Learning Rates: [5E-4, 1E-4, 5E-5]

• Activation: linear

• Size of the input time window: 20

• Forecast horizon: 15

• Dropout: 0.2

Due to the computational limitations of the Kaggle runtime environment, the
hyperparameter testing was divided into two separate batches. The correspond-
ing results are presented in Table 5.6 and Table 5.7. Given the high number
of hyperparameters involved, the total number of possible combinations grows
exponentially, resulting in a combinatorial explosion. To maintain clarity and focus,
only a representative subset of the experiments is reported in the tables, as many
configurations yielded comparable results.

As anticipated, larger model architectures tend to achieve superior performance
in terms of Mean Absolute Error (MAE), benefiting from their increased
capacity to capture complex temporal dependencies in the data.

From these tests, the model12 of the second subset of tests produced the best
results (see Figure 5.3). On the other hand, model28 in the first subset of tests
produced the worst results (see Figure 5.4).
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id window
size

units
1

units
2

units
3

batch
size

actual
epochs

learning
rate mse mae r2 rmse

real
mae
real

model0 20 64 64 64 128 181 0.0005 0.00592 0.05615 0.71135 6.61463 4.82911
model1 20 64 64 64 128 525 0.0001 0.00592 0.05641 0.71097 6.61895 4.85107
model2 20 64 64 64 128 485 0.0001 0.00602 0.05687 0.70630 6.67228 4.89059
model3 20 64 64 64 512 400 0.0005 0.00592 0.05650 0.71129 6.61537 4.85894
model4 20 64 64 64 512 687 0.0001 0.00603 0.05726 0.70578 6.67810 4.92434
... ... ... ... ... ... ... ... ... ... ... ... ...
model21 20 64 64 512 512 320 0.0005 0.00595 0.05644 0.70948 6.63600 4.85357
model22 20 64 64 512 512 618 0.0001 0.00602 0.05703 0.70642 6.67087 4.90436
model23 20 64 64 512 512 829 0.0001 0.00604 0.05707 0.70528 6.68383 4.90800
model24 20 64 256 64 128 149 0.0005 0.00592 0.05612 0.71094 6.61934 4.82673
model25 20 64 256 64 128 325 0.0001 0.00594 0.05642 0.71039 6.62558 4.85201
model26 20 64 256 64 128 775 0.0001 0.00592 0.05647 0.71105 6.61803 4.85643
model27 20 64 256 64 512 362 0.0005 0.00589 0.05582 0.71266 6.59966 4.80071
model28 20 64 256 64 512 551 0.0001 0.00603 0.05727 0.70562 6.67994 4.92542
model29 20 64 256 64 512 867 0.0001 0.00603 0.05731 0.70593 6.67640 4.92856
model30 20 64 256 128 128 167 0.0005 0.00591 0.05612 0.71148 6.61316 4.82666

Table 5.6: Tests Results - Third Test Part1 - Improved Architecture

id window
size

units
1

units
2

units
3

batch
size

actual
epochs

learning
rate mse mae r2 rmse

real
mae
real

model0 20 512 64 256 512 336 0.0005 0.00815 0.06073 0.75960 6.58869 4.43349
model1 20 512 64 256 512 657 0.0001 0.00820 0.06059 0.75801 6.61046 4.42303
model2 20 512 64 256 512 1000 0.0001 0.00819 0.06117 0.75829 6.60668 4.46530
model3 20 512 64 512 512 313 0.0005 0.00812 0.06061 0.76047 6.57682 4.42438
model4 20 512 64 512 512 589 0.0001 0.00815 0.06065 0.75941 6.59124 4.42718
model5 20 512 64 512 512 941 0.0001 0.00817 0.06128 0.75878 6.59998 4.47339
model6 20 512 256 256 512 403 0.0005 0.00808 0.06079 0.76155 6.56194 4.43737
model7 20 512 256 256 512 701 0.0001 0.00817 0.06081 0.75880 6.59967 4.43891
model8 20 512 256 256 512 1000 0.0001 0.00820 0.06120 0.75791 6.61178 4.46731
model9 20 512 256 512 512 254 0.0005 0.00812 0.06080 0.76034 6.57856 4.43863
model10 20 512 256 512 512 677 0.0001 0.00818 0.06077 0.75863 6.60196 4.43633
model11 20 512 256 512 512 1000 0.0001 0.00817 0.06135 0.75892 6.59804 4.47879
model12 20 512 512 256 512 430 0.0005 0.00799 0.05924 0.76421 6.52525 4.32486
model13 20 512 512 256 512 678 0.0001 0.00816 0.06094 0.75929 6.59289 4.44853
model14 20 512 512 256 512 1000 0.0001 0.00816 0.06103 0.75925 6.59342 4.45498
model15 20 512 512 512 512 273 0.0005 0.00813 0.06043 0.75998 6.58342 4.41171
model16 20 512 512 512 512 532 0.0001 0.00819 0.06074 0.75845 6.60447 4.43427
model17 20 512 512 512 512 838 0.0001 0.00819 0.06092 0.75834 6.60599 4.44724

Table 5.7: Tests Results - Third Test Part2 - Improved Architecture

Fourth Test: GRU architecture

As shown in the previous results, LSTM models can achieve good forecasting
accuracy. However, they are computationally expensive to train and require a large
number of parameters, often in the order of hundreds of thousands.

As an alternative, Gated Recurrent Units (GRU) have been considered.
GRUs offer similar capabilities to LSTMs in capturing temporal dependencies, while
being more lightweight in terms of computational cost and number of parameters.

The GRU-based models adopted the same architecture as the previously eval-
uated LSTM networks, with the only difference being the replacement of LSTM
layers by GRU layers (see Table 5.8). These models were trained using the best
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Figure 5.3: Model12 Test Window - Third Test Part2 - Improved Architecture

Figure 5.4: Model28 Test Window - Third Test Part1 - Improved Architecture

hyperparameter configuration obtained from the LSTM experiments:

• Batch size: 512

• Units in the first LSTM layer: [256,512]

• Units in the second LSTM layer: [256,512]

• Units in the third LSTM layer: [256,512]

• Number of epochs: 1000

64



Experimental Evaluation and Comparison

• Learning Rates: 1E-4

• Activation: linear

• Size of the input time window: 20

• Forecast horizon: 15

The results are reported in Table 5.9, where model2 emerges as the best
performer in terms of both R2 and MSE. However, performance can be further
improved, as it is showed in Figure 5.5. An additional advantage of GRU networks
is their reduced training time. On average, the GRU models were trained in
approximately 3–4 minutes, whereas the equivalent LSTM configurations required
around 10–15 minutes. This difference is mainly due to the smaller number of
parameters in GRU architectures, which leads to faster computation.

Table 5.8: GRU model architecture

Layer # Layer Type
1 GRU
2 GRU
3 GRU
4 Dropout(0.2)
5 Dense(activation=linear, units=15)

id window
size

units
1

units
2

units
3

batch
size

actual
epochs

learning
rate mse mae val_r2 rmse

real
mae
real

model0 20 256 256 256 512 318 0.0005 0.00569 0.04994 0.77735 5.28080 3.49593
model1 20 256 256 512 512 242 0.0005 0.00568 0.05001 0.77768 5.27689 3.50095
model2 20 256 512 256 512 311 0.0005 0.00566 0.04941 0.77842 5.26808 3.45888
model3 20 256 512 512 512 306 0.0005 0.00568 0.04987 0.77785 5.27479 3.49057
model4 20 512 256 256 512 314 0.0005 0.00569 0.05033 0.77759 5.27797 3.52283
model5 20 512 256 512 512 261 0.0005 0.00567 0.04948 0.77825 5.27011 3.46346
model6 20 512 512 256 512 238 0.0005 0.00566 0.04952 0.77837 5.26860 3.46641
model7 20 512 512 512 512 309 0.0005 0.00568 0.04969 0.77783 5.27506 3.47842

Table 5.9: Tests Results - Fourth Test - GRU Layers Network

Fifth Test: Final Training

Since results were comparable against the different tested configurations, here the
final configuration is reported. This final training has been conducted with 100
machines out of the Alibaba Traces, due to computational time limits. The final
hyperparameters are:

• Batch size: 256
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Figure 5.5: Model2 Test Window - Third Test Part1 - Improved Architecture

• Units in the first LSTM layer: 512

• Units in the second LSTM layer: 512

• Units in the third LSTM layer: 256

• Number of epochs: 1000

• Learning Rates: 1E-4

• Activation: linear

• Size of the input time window: 15

• Forecast horizon: 25

Since a larger number of machines has been considered, a higher error is expected,
as reported in Table 5.10. Nevertheless, the predictions (Figure 5.6) proved to be
accurate, as confirmed by the test results discussed in the following section.

id window
size

units
1

units
2

units
3

batch
size

actual
epochs

learning
rate mse mae val_r2 rmse

real
mae
real

model0 15 512 512 256 256 244 0.0001 0.00573 0.04994 0.79566 7.19355 4.7450

Table 5.10: Tests Results - Fifth Test - Final training

66



Experimental Evaluation and Comparison

Figure 5.6: Model0 Test Window - Fifth Test - Final training

5.2 Test Environment Setup
The main objective of the tests is to determine if DREEM is behaving correctly
and allows the cluster to scale properly without losing performance.

In order to have a more reliable and production-like environment, the cluster
has been created as a group of VM into a Proxmox Server. Proxmox has been
chosen over bare-metal servers due to the latter’s time constraints: provisioning a
bare-metal server can take up to 30 minutes. However, although not demonstrated
here, this configuration is fully supported.. Dynamic CPU load is pushed in the
cluster, so that it can be overloaded or underloaded, in order to force DREEM to
add or remove nodes.

The workload is created through a YOLO network, which is deployed on the
cluster in several replicas behind a web-server. A Locust client has been used. It
has been configured to send inferencing requests to YOLO at different rates, in
order to cover all the DREEM use-cases. When a new node is added, it is unutilized.
In order to generate load in it, HPA has been configured to schedule a new replica
of YOLO whenever a new node is added. Therefore, the flow is the following one:

• Configure HPA to dynamically scale YOLO replicas on the managed cluster.

• Deploy YOLO on the managed cluster and expose it through a Service to
make it available on the local network.

• Configure Locust (on another machine) to make requests to the YOLO service.

• Start the scaling controllers (e.g., DREEM, ClusterAutoscaler).

67



Experimental Evaluation and Comparison

5.3 Tests and comparisons
A test campaign was conducted to verify the correct functionality of the controller.
Additionally, DREEM performances were evaluated and compared against alterna-
tive solutions, such as Cluster Autoscaler, as well as against a vanilla Kubernetes
cluster without any scaling mechanisms, which served as a baseline reference.

5.3.1 Configuration
In this section, the actual cluster configuration and the parameters used for the
experiments are presented. Since we are relying on ClusterAPI (Section 2.2.4)
for the scaling process, the setup includes both a management cluster and a
managed cluster. The management cluster is responsible for orchestrating the
lifecycle of ClusterAPI resources and running the scaling controller (e.g., DREEM
or alternatives). The managed cluster, on the other hand, is a vanilla Kubernetes
cluster deployed on Proxmox. This cluster is subjected to workload in order to
evaluate the behavior and correctness of the deployed scaling controllers. The
managed cluster configuration is as follows:

• Control Plane Node: 1 node with 4 GB RAM, 2 vCPUs, and 15 GB of
storage.

• Worker Nodes: Scalable from 1 to 4 nodes, each with 4 GB RAM, 2 vCPUs,
and 15 GB of storage.

The main parameters for the tests are:

• CPU usage threshold for scale-down: 45%

• CPU usage threshold for scale-up: 65%

• Forecast period: 3 minutes (i.e., the time interval between consecutive
forecasts)

• Initial cluster configuration: 4 worker nodes, each running a single replica
of YOLO

Horizontal Pod Autoscaler

In order to schedule YOLO replicas on the new nodes and let them consume CPU,
an HPA must be configured. The metric on which the Deployment has to scale is
the CPU average utilization.

DREEM introduces the concept of an ideal configuration, a state in which
no scaling actions are required. Two thresholds are needed: Threshold_max
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and Threshold_min. When the load remains between these two values, no
scaling is required. However, the HPA allows a single threshold: if the metric
is above that value, the cluster scales up; if it falls below, it scales down. To
be precise, the threshold is not interpreted as an exact value, but rather as a
target with a tolerance. This tolerance can be configured via a parameter in
the Controller Manager, specifically –horizontal-pod-autoscaler-tolerance
argument, by default set to 0.1. This means that the HPA will only trigger scaling
actions when the observed metric deviates more than 10% from the specified target
in the HPA manifest.

NOTE: Since Talos is immutable, the horizontal-pod-autoscaler-tolerance
argument has to be passed in the TalosControlPlane manifest as a strategicPatch,
as it is showed in 5.1.

1 - op: add
2 path: / cluster / controllerManager / extraArgs
3 value:
4 horizontal -pod -autoscaler - tolerance : "0.20"

Listing 5.1: controller manager patch in Talos Manifest

To be consistent with the above-mentioned test configuration, the HPA has
been set with a threshold value of 55% and the Controller Manager with a tolerance
of 0.25. This means that HPA will:

• scale up the number of YOLO pod replicas when the CPU reaches 65%
(55 + 20 ≈ 66%):

• scale down the number of YOLO pod replicas when the CPU reaches 45%
(60 − 20 ≈ 45%)

• do nothing when the CPU is between 45% and 65%.

1 apiVersion : autoscaling /v2
2 kind: HorizontalPodAutoscaler
3 metadata :
4 name: yolo -server -hpa
5 namespace : default
6 spec:
7 scaleTargetRef :
8 apiVersion : apps/v1
9 kind: Deployment

10 name: yolo - server
11 minReplicas : 1
12 maxReplicas : 5
13 behavior :
14 scaleUp :
15 policies :

69



Experimental Evaluation and Comparison

16 - type: Pods
17 value: 1
18 periodSeconds : 240
19 stabilizationWindowSeconds : 60
20 scaleDown :
21 policies :
22 - type: Pods
23 value: 1
24 periodSeconds : 240
25 stabilizationWindowSeconds : 60
26 metrics :
27 - type: Resource
28 resource :
29 name: cpu
30 target :
31 type: Utilization
32 averageUtilization : 55

Listing 5.2: YAML HPA configuration

The Listing 5.2 presents the complete configuration. As shown, specific parame-
ters have been tuned to ensure a stable scaling behavior. The scaling actions are
only triggered if the average CPU utilization remains above (or below) the defined
threshold (55%) for at least one minute.

Locust

Locust is the tool used to generate HTTP requests against the YOLO web server,
simulating dynamic load conditions. Three primary scenarios are analyzed: scale
up, scale down, and steady state (no scale).

To ensure the system crosses both upper and lower threshold boundaries —
thus triggering the full range of scaling behaviors — a sinusoidal load pattern
is employed. The amplitude of the sine wave increases exponentially over time,
allowing the test to progressively reach higher CPU utilizations across cycles.

These are the parameters used to configure the shape:

• Base users 85

• Amplitude: 70

• Period: 60 minutes

• Spawn Rate: 2 user/s

• Grown Exponential Factor: 25 minutes

Figure 5.7 illustrates the theoretical number of concurrent users over time, as
dictated by the input load pattern.
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Figure 5.7: Number of emulated users in 2 hours

5.3.2 Results and comparisons
Three different runs were performed in order to compare three distinct scenarios: a
vanilla K8s cluster, a cluster managed by Cluster Autoscaler, and a cluster managed
by DREEM. The evaluation was carried out using the following metrics:

• Number of Active Nodes over time: to assess the efficiency of the scaling
mechanism;

• YOLO Response Latency (measured with Locust): to evaluate whether
and to what extent the scaling mechanism affects latency and performance;

• Power Consumption of the cluster: to determine whether and how much
the scaling mechanism contributes to reducing energy consumption.

After a couple of hours of tests, the results showed that:

• The baseline cluster had the best results in term of performance, as it was
expected, with an average latency of 151 ms, 217 ms for CA and 223 ms for
DREEM;

• CA and DREEM had almost identical results in term of latency, meaning
performance have not been degradeted with a strong scaling mechanism, as
depicted in Figure 5.8;

• During the test, DREEM has been able to follow in a better way the shape of
the injected load, joining and unjoining nodes consequentially, as depicted in
Figure 5.9;
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Figure 5.8: Cumulative Distribution Function

Figure 5.9: Number of Worker Nodes over time

• The energy consumed for the test presents quite a lot difference, with the
maximum consumption of 29kW for the baseline cluster, 26.7 kW for CA and
17.5 kW for DREEM. Figure 5.10 shows how the energy is distributed across
the test, while Figure 5.11 explains the reason why there is such difference.
DREEM has scaled a lot more, therefore lowering total consumptions.
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Figure 5.10: Total Cluster Consumption over time

Power Consumptions estimation

As described at the beginning of Section 5.2, the experiments were carried out
on Proxmox Virtual Machines. To estimate the total power consumption during
each test, a function was defined to correlate the CPU load with the actual power
usage. The objective was to approximate the overall consumption by relying on
plausible consumption profiles (Figure 5.12) , representative of realistic machines.
The energy consumption during the tests has been estimated using Formula 5.1:

wattmin + (wattmax − wattmin) · log(1 + a · cpuusage)
log(1 + a) (5.1)

where wattmin represents the idle power consumption when the CPU load is 0%,
wattmax represents the maximum power consumption when the CPU load reaches
100%, and a (fixed at 13 for these tests) is a tunable parameter that controls the
curvature of the function at low CPU utilizations.
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Figure 5.12: Energy Profiles

Three profiles were defined , corresponding to different types of machines:

• High-efficiency machine: 10W at idle and 30W at full load;

• Medium-efficiency machine: 10W at idle and 40W at full load;

• Low-efficiency machine: 10W at idle and 60W at full load.
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(a) Frequency Nodes - Baseline

(b) Frequency Nodes - CA

(c) Frequency Nodes - DREEM

Figure 5.11: Relative Frequency of nodes
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Chapter 6

Conclusions and Future
Work

Cloud Computing become a strategic tool to enable faster deployments and world-
wide scaling. However, such advantages comes not for free: data are no more under
the control of the company and laws compliance may limit the adoption of such a
model. Therefore, on-premises cluster will still be needed in the future. More and
more datacenters will be required to sustain the increasing demand and this will
lead to huge amount of energy wasted.

This thesis presented DREEM, a predictive scaling system for on-premises
Kubernetes clusters designed to improve resource usage efficiency and reduce
energy consumption. Idle servers waste a lot of energy, hence a better usage of
them is a must. The main goal of DREEM is to consolidate the running services
by scheduling them on a fewer number of nodes. The predictive approach limits
the latency and the delays due to higher time required for servers provisioning and
decommisioning.

In the tests, DREEM was used to dynamically scale a cluster running high
load processes. The system successfully sustained the increasing and decreasing
workload while providing comparable results in terms of performance with the
baseline cluster and achieving a noticeable reduction in term of energy consumed.

Due to its modular architecture, several future developments are planned to
enhance DREEM’s effectiveness. These include:

• Improving forecast accuracy, in order to better anticipate usage peaks
and minimize potential performance degradation;

• Enhancing the node selection algorithm, by incorporating awareness of
service dependencies, ensuring that scaling decisions do not negatively affect
critical application components;
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• Considering server lifespan and reliability, to reduce the frequency of
power cycles and find a balance between consumptions and on/off cycles;

• Taking into account service criticality, in order to assess whether the
services hosted on a candidate node can be safely migrated. If migration is
not feasible, the scaling operation is aborted to preserve the overall Quality of
Service;

• Instantly sustaining peaks, by leveraging custom technologies such as Liqo,
which allow new nodes to be joined with an almost-zero delay.
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