
POLITECNICO DI TORINO
Master degree course in Computer Engineering

Master Degree Thesis

Enabling Controlled Access to
Physical Cloud Resources in a

Bare Metal Cluster

Supervisor
prof. Fulvio Giovanni Ottavio Risso

Candidate
Giovanni Mirarchi

October 2025

This work is subject to the Creative Commons Licence

A Naomi, compagna
in ogni passo di
questo cammino.

Summary

This thesis presents two innovative systems for sharing computational re-
sources across Italian academic institutions within the RESTART partner-
ship. The first system, named Prognose, is a web portal implementing a
general resource reservation platform that enables users to discover avail-
ability and book any type of resource—both physical (bare-metal servers,
storage, network ports) and virtual (VMs, containers, services)—across mul-
tiple university sites. The system implements an event-driven architecture
with multi-site management, role-based access control (RBAC), and resource
lifecycle automation through Metal3 and OpenStack Ironic.

The second system provides a GPU sharing infrastructure based on Ku-
bernetes and KubeRay, enabling the creation of on-demand Ray clusters
for GPU-intensive workloads. The architecture includes horizontal autoscal-
ing of worker groups, declarative resource management through Custom Re-
source Definitions, and a shared NFS filesystem to simplify data manage-
ment.

Both systems address current limitations in cross-institutional bare-metal
resource access, characterized by fragmented manual processes, limited vis-
ibility into resource availability, and lack of tenant isolation. The proposed
solution introduces self-service discovery and booking, clean and reproducible
handovers, and integration with federated identity systems while respecting
institutional autonomy.

The implementation demonstrates how mature components like Keycloak,
PostgreSQL, and Metal3 can be combined through event-driven architectures
and webhook-based integration to create unified resource management sys-
tems. Results show significant improvements in resource utilization, reduced
setup times, and consistent user experience across different sites within the
RESTART partnership.

4

Contents

1 Introduction 9
1.1 Cloud Computing Evolution 9
1.2 Resource Management Challenges 11
1.3 Thesis Scope . 12

2 Problem Statement 15
2.1 Current Limitations in Bare-Metal Access 15
2.2 Resource Optimization . 16

3 State of the Art 17
3.1 Overview . 17
3.2 Resource Management and Provisioning Technologies 17
3.3 Distributed Computing and GPU Sharing Platforms 19
3.4 Current Limitations and Alternative Solutions 19
3.5 Synthesis and Research Motivation 20

4 Technologies and Tools 23
4.1 Backend Architecture . 23
4.2 Frontend Technologies . 24
4.3 Security and Identity Management 25
4.4 Cloud-Native Infrastructure and Orchestration 26
4.5 Continuous Integration and GitOps Deployment 27

5 System Architecture and Design 29
5.1 Overall Architecture . 29

5.1.1 Multi-service Architecture 29
5.1.2 Multi-tenant Design 31
5.1.3 Event-driven Architecture 32
5.1.4 Hierarchical Resource Model 34

5

5.2 Core Components . 38
5.2.1 Resource Management Service 38
5.2.2 Booking Engine . 39
5.2.3 User Management . 41
5.2.4 Notification System . 42
5.2.5 Event Processor . 44

6 Distributed GPU Sharing with Ray and Kubernetes 47
6.1 GPU Sharing Architecture Design 47

6.1.1 System Overview . 47
6.1.2 KubeRay Integration 48
6.1.3 Job Submission and Management 49
6.1.4 Kubernetes Orchestration 50

6.2 Shared Storage Strategy . 51
6.2.1 NFS-Based Data Management 51

6.3 Implementation Advantages and Trade-offs 51
6.3.1 Key Advantages . 51
6.3.2 Scheduling and Fairness Limitations 52
6.3.3 Alternative Approaches: Kueue Integration 53
6.3.4 Design Decision and Trade-off Analysis 54

7 Comparative Analysis 55
7.1 Baseline Comparison . 55

7.1.1 Traditional Academic Resource Management 55
7.1.2 System Architecture Improvements 56
7.1.3 Multi-institutional Collaboration Enhancement 57

7.2 Feature Comparison . 58
7.2.1 Contemporary Academic Solutions 58
7.2.2 Unique Academic-Focused Features 59
7.2.3 Integration and Extensibility Advantages 60

7.3 User Experience Metrics . 61
7.3.1 Booking Workflow Efficiency 61
7.3.2 Administrative Efficiency Gains 62
7.3.3 Expected User Experience Benefits 63

8 Case Studies 65
8.1 Academic Environment Deployment 65
8.2 Administrative Efficiency . 67

6

9 Conclusions and Future Work 69
9.1 Achieved Objectives . 69

9.1.1 Multi-institutional Resource Sharing 69
9.1.2 Automated Provisioning Integration 70
9.1.3 Distributed Computing Accessibility 70

9.2 System Benefits . 71
9.2.1 Operational Efficiency Gains 71
9.2.2 Enhanced Resource Utilization 72
9.2.3 Improved User Experience 72

9.3 Lessons Learned . 73
9.3.1 Architectural Design Decisions 73
9.3.2 Technology Integration Challenges 73
9.3.3 User Adoption Factors 74

9.4 Future Enhancements . 75
9.4.1 Advanced Scheduling Capabilities 75
9.4.2 Enhanced Monitoring and Analytics 75
9.4.3 Expanded Integration Ecosystem 76
9.4.4 Scalability and Performance Optimization 76

Acknowledgments 79

7

8

Chapter 1

Introduction

1.1 Cloud Computing Evolution
Cloud computing arose from advances in distributed systems and virtualiza-
tion. Early data centers ran monoliths on dedicated servers, yielding low
utilization and slow provisioning. The virtual machine (VM) was the pivotal
shift: a hypervisor decouples workloads from hardware so the full OS and ap-
plication stack runs on a stable abstraction. VMs make workloads portable,
right-sizeable, and isolated; golden images, snapshots, and live migration
turned racks of servers into elastic pools manageable via software.

Building on the VM, infrastructure became programmable capacity: self-
service APIs replaced tickets, image-based builds replaced bespoke setups,
and quotas with metering enabled accountable sharing. This shift led to
layered offerings with different responsibility splits.

At the service layer:

• Infrastructure as a Service (IaaS) exposes compute, storage, and
networking as programmable primitives.

• Platform as a Service (PaaS) abstracts runtimes and managed data
services to speed delivery.

• Software as a Service (SaaS) delivers complete applications via sub-
scription.

At the deployment layer, public, private, and hybrid clouds trade off control,
cost, and compliance; multi-cloud diversifies risk and capabilities.

The cloud-native era refined the model: containers standardized packaging
and isolation; orchestrators automated placement and scaling; declarative

9

1 – Introduction

APIs and operators encoded operations; serverless introduced event-driven
execution with per-invocation billing.

For performance-sensitive workloads, organizations also embraced bare
metal for predictable latency and direct access to accelerators. Modern con-
trol planes brought image management, automated provisioning, policy en-
forcement, and secure wipe to physical machines, showing that “cloud” is an
operational model spanning virtual and physical resources.

Operating practice evolved (Infrastructure as Code/GitOps, SRE, FinOps,
Zero Trust), while edge and distributed cloud moved compute closer to
data, encouraging hybrid designs and federation across organizations. In
research settings, shared HPC/AI infrastructure faces heterogeneous work-
loads and bursty demand, requiring elasticity, fair sharing, and auditable
multi-tenancy.

Against this backdrop, self-service access to bare-metal with time-bounded
reservations and federated identity lets institutions pool high-value assets,
raise utilization, and respect local constraints. In short, cloud computing
progressed from VM-driven consolidation to a programmable fabric across
virtual and physical resources, centralized regions and edges, and single-
tenant silos to federated, multi-institutional platforms.

10

1.2 – Resource Management Challenges

1.2 Resource Management Challenges
Managing shared compute across institutions and sites exposes technical and
organizational constraints. Key challenges include:

• Resource abstractions: The system must model heterogeneous assets:
baremetal servers, GPUs/accelerators, VMs, storage, and switch ports
and allow users to reserve them individually or as bundles with explicit
capabilities and constraints.

• Isolation and clean handover: Each reservation requires a clean,
reproducible setup (imaging, configuration, secure wipe), plus network
and storage isolation to prevent leakage and ensure predictable environ-
ments.

• Identity federation and access control: Cross-institution authenti-
cation with RBAC and group mapping should preserve local autonomy
while enabling controlled collaboration and auditable, least-privilege ac-
cess.

• Time-bounded reservations and scheduling: Policies for conflict
detection and resolution enable safe and efficient utilization.

• Interoperability and portability: Open, extensible APIs with adapter-
driven integrations (e.g., Kubernetes, webhooks, imaging pipelines) make
the platform provider-agnostic and allow institution-specific logic with-
out forking.

These challenges motivate a platform that treats diverse resources as
schedulable objects, automates lifecycle and isolation, integrates with feder-
ated identity, and exposes open interfaces for institution-specific extensions.

11

1 – Introduction

1.3 Thesis Scope
This thesis, within the RESTART partnership, delivers two independent sys-
tems for sharing computational resources across Italian universities. They
address distinct use cases and are not integrated with each other.

S1. Prognose - Physical Hardware Reservation Portal
• Purpose: User-facing portal to discover availability and book physical

resources (bare-metal servers, storage, network ports) across multiple
sites, with site management and institutional autonomy.

• Capabilities: Multi-site inventory and calendars; time-bounded reser-
vations with conflict detection and predictable handover; lifecycle au-
tomation via Metal3/OpenStack Ironic (Redfish-based provisioning, im-
age deploy, configuration, secure wipe); network/storage isolation for
clean tenant transitions.

• Site governance and RBAC: The portal organizes users by sites;
each site is an autonomous entity that shares its hardware with its own
members. Resources can be booked only by users subscribed to that
site. Sites retain full control over users and assets via role-based access
control (User, Site Admin, Global Admin), with auditable actions and
metering/reporting for accountability.

• Outcome: The Prognose portal (https://prognose.crownlabs.polito.
it/) turns institutional hardware into an elastic, schedulable pool for re-
search and education.

S2. GPU Sharing System on Kubernetes with KubeRay
• Purpose: Provide on-demand, isolated Ray clusters for GPU intensive

jobs using RESTART-financed GPUs; independent from the Prognose
portal.

• Architecture: Kubernetes as the substrate; KubeRay operator man-
aging RayCluster resources and GPU device plugins.

• Autoscaling: Horizontal scale-out/in of Ray worker groups driven by
job pressure (e.g., queue length/pending tasks), expanding with load
and contracting when idle.

12

https://prognose.crownlabs.polito.it/
https://prognose.crownlabs.polito.it/

1.3 – Thesis Scope

• Data requirement: A shared NFS filesystem is required for users to
upload/download job data; NFS is mounted into Ray clusters to provide
a common workspace and simplify data staging and result collection.

• Workflow: Users submit jobs to a per-reservation Ray cluster; at com-
pletion, workloads are drained and resources reclaimed to ensure a clean
environment for subsequent users.

These two systems address complementary needs—bare-metal booking
and elastic GPU consumption—while operating independently within the
RESTART ecosystem.

13

14

Chapter 2

Problem Statement

2.1 Current Limitations in Bare-Metal Ac-
cess

Despite the maturity of virtualized and containerized platforms, access to
on-premise bare-metal resources across institutions remains fragmented and
manual. Typical workflows rely on tickets and ad-hoc coordination, with lim-
ited visibility into availability and lead times. Clean handovers are not guar-
anteed: secure wipe, firmware resets, and network/storage reconfiguration
are often inconsistent or undocumented, increasing risk and time-to-ready.
Identity is siloed per site, making cross-site participation cumbersome; au-
thorization models are coarse, blurring responsibilities between users and
operators.

These gaps manifest as:

• Lack of self-service discovery and booking (no global view of calendars,
capabilities, or constraints).

• Weak isolation between tenants (incomplete re-imaging, lingering cre-
dentials, shared networks).

• Inconsistent operational playbooks (PXE/image pipelines, BIOS/RAID
configs, switch port provisioning).

• Limited, site-specific RBAC without auditable actions across roles (User,
Site Admin, Global Admin).

• Minimal integration hooks to automate provisioning at reservation start/end.

15

2 – Problem Statement

Consequently, utilization is lower than potential, operational risk is higher,
and user experience is uneven across sites.

2.2 Resource Optimization
The challenge is not only to grant access but to use the capacity effectively.
Optimization spans time (reducing idle gaps between reservations), place-
ment (matching requests to the smallest feasible set of resources), and policy
(ensuring fairness and respecting site autonomy). Without these, capacity
fragments, setup times inflate, and high-value assets sit underutilized.

Accelerator workloads intensify the problem: demand is bursty, jobs vary
widely in size and duration, and static partitions or long-lived clusters strand
GPUs when load subsides. A Kubernetes-based approach with KubeRay
provisions on-demand Ray clusters that scale horizontally with job pres-
sure, reclaiming workers when idle. To streamline data handling and shorten
turnaround, a shared NFS workspace is required so users can upload inputs
and retrieve results without bespoke staging.

Concretely, the system must provide:

• Time efficiency: A reservation scheduler with conflict detection and
predictable handover windows to minimize temporal fragmentation, plus
awareness of maintenance windows to avoid churn.

• Capability-aware placement: Packing by required features (e.g., GPU
model/count, NIC speed, storage) and site constraints to increase uti-
lization while meeting performance needs.

• Policy and fairness: The scope and approvals per site align consump-
tion with institutional rules.

• Feedback and metering: Telemetry and usage accounting to drive ca-
pacity planning, right-sizing, and continuous tuning of scheduling poli-
cies.

• GPU efficiency: KubeRay-managed RayClusters with job-driven au-
toscaling, GPU-aware bin-packing, clean teardown, and an NFS-backed
shared workspace for data ingress/egress.

16

Chapter 3

State of the Art

3.1 Overview
The management of shared computational resources across distributed or-
ganizations presents multifaceted challenges spanning technical, operational,
and governance domains. This chapter examines the current landscape of
resource reservation systems, bare-metal provisioning technologies, and dis-
tributed computing platforms, identifying their strengths and limitations in
the context of multi-institutional resource sharing.

3.2 Resource Management and Provisioning
Technologies

Historically, access to physical computational resources in academic environ-
ments has relied on manual coordination through email requests, ticketing
systems, and phone-based scheduling. These fragmented approaches lack
centralized visibility across institutions, making it impossible for users to
understand availability or for administrators to optimize utilization. The
manual nature creates bottlenecks requiring human intervention for every
scheduling decision, while the absence of standardized audit trails compli-
cates accountability and resource tracking. Each site develops its own proce-
dures, creating inconsistencies that hinder cross-institutional collaboration.

Commercial cloud providers like AWS, Azure, and Google Cloud Plat-
form offer sophisticated resource management through programmatic APIs
and elastic scaling capabilities. These platforms excel at virtualized resource

17

3 – State of the Art

allocation with comprehensive monitoring and multi-tenancy isolation. How-
ever, their focus on abstracted virtualized environments creates limitations
for bare-metal management in academic settings, where research often re-
quires direct hardware access, custom imaging, and predictable handover
periods. Additionally, these platforms lack the governance models necessary
for institutional autonomy and struggle with integration challenges involving
academic identity providers and site-specific policies.

HPC schedulers like SLURM excel at managing computational jobs across
clusters using queue-based algorithms for fair resource distribution and com-
plex constraint handling. However, these systems face limitations when
extended beyond batch job management. Their queue-based architecture
assumes job submission rather than interactive bare-metal access, creating
challenges for calendar-based reservations where researchers need to book
specific time slots. Additionally, HPC schedulers struggle with multi-site
federation, having been designed for single administrative domains rather
than cross-institutional collaboration.

Modern bare-metal provisioning relies on standardized protocols for auto-
mated server lifecycle management. Out-of-band management protocols like
Redfish and IPMI provide dedicated network channels for hardware control,
enabling remote power management, hardware inventory collection, firmware
updates, and virtual media mounting. Network-based boot mechanisms,
particularly PXE, complement these capabilities by leveraging DHCP and
TFTP for automated OS deployment, creating standardized pathways for
consistent, reproducible server configurations.

OpenStack Ironic provides mature bare-metal provisioning through a com-
prehensive hardware abstraction layer with driver plugins for diverse server
hardware. It implements standardized image management with checksum
verification and integrates with OpenStack Neutron for network configura-
tion. While Ironic supports multiple deployment methods (PXE, virtual
media, custom ramdisk), its tight coupling with the OpenStack ecosystem
introduces complexity for organizations seeking lightweight solutions.

Metal3 addresses these concerns by bringing bare-metal provisioning to
Kubernetes through cloud-native patterns. Using Kubernetes custom re-
source definitions and operators, Metal3 provides declarative management
interfaces while maintaining Ironic as its backend. The BareMetalHost CRD
allows administrators to describe hardware state in standard Kubernetes
manifests, enabling Infrastructure as Code practices and integration with
modern CI/CD workflows.

18

3.3 – Distributed Computing and GPU Sharing Platforms

3.3 Distributed Computing and GPU Shar-
ing Platforms

Kubernetes has established itself as the dominant container orchestration
platform, enabling declarative resource management through YAML mani-
fests and automatic workload scheduling. Its extensibility through Custom
Resource Definitions and the operator pattern makes it particularly suitable
for specialized research environments. GPU resource management in Kuber-
netes leverages specialized device plugins like the NVIDIA GPU Operator
for automated driver management. Modern features include Multi-Instance
GPU (MIG) support for fine-grained partitioning, GPU topology awareness
for optimal placement, and resource quotas for fair allocation across users
and projects.

Ray has emerged as a leading framework for machine learning and AI
workloads, providing a unified API for distributed training, hyperparame-
ter tuning, and model serving. It excels at handling dynamic task graphs
and implements sophisticated fault tolerance with automatic recovery and
dynamic cluster scaling based on workload demands.

KubeRay integrates Ray with Kubernetes through custom resource defini-
tions, enabling declarative cluster management with GitOps workflows. The
RayJob CRD provides batch job execution with automatic cleanup, while
RayService CRD supports model serving with integrated RBAC and resource
management for shared research environments. Importantly, KubeRay en-
ables direct interaction with RayCluster resources through the Python SDK,
allowing users to programmatically submit jobs to worker pods within the
cluster, an approach adopted in this work for seamless integration with the
reservation system.

3.4 Current Limitations and Alternative So-
lutions

Despite mature individual components, significant gaps remain for compre-
hensive multi-institutional resource sharing. The fundamental challenge lies
in fragmented tools addressing specific domains without comprehensive inte-
gration frameworks.

Current systems suffer from limited cross-domain automation, requiring
manual coordination between provisioning, network configuration, and access

19

3 – State of the Art

management. Inconsistent APIs and lack of standardized event schemas com-
plicate integration efforts. The cloud resource reservation system developed
for RESTART addresses these challenges through event-driven architecture
coordinating between the main backend, specialized webhooks, and external
systems like Metal3.

Existing platforms rarely model complex multi-institutional governance re-
quirements, particularly site-scoped autonomy with hierarchical RBAC sys-
tems. Most provisioning tools focus on immediate allocation rather than
calendar-based reservations, creating gaps in conflict detection and predictable
handover procedures. Additionally, specialized hardware management, net-
work equipment integration, and shared storage coordination remain largely
manual processes requiring institution-specific solutions.

TensorHive1 represents a specialized GPU resource management platform
for academic environments, providing web-based monitoring and SSH-based
job execution. However, evaluation revealed fundamental limitations for
multi-institutional requirements: single-node focus rather than distributed
cluster management, legacy technology stack lacking modern container sup-
port, SSH-centric architecture incompatible with API-driven automation,
limited reservation capabilities without calendar-based booking, and mono-
lithic design preventing extension with institution-specific policies. The ab-
sence of multi-tenancy support and site-scoped governance made it unsuit-
able for federated research environments, leading to the decision to develop
a comprehensive greenfield solution.

The cloud resource reservation system demonstrates how webhook-based
architectures address integration challenges through event-driven patterns.
The reservation event processor consumes events from the main system and
dispatches them to specialized webhooks handling domain-specific tasks.
This enables loose coupling while maintaining reliable workflow coordina-
tion, as demonstrated by the server provisioning webhook integrating with
Kubernetes and Metal3, and the switch port webhook handling network con-
figuration through SSH automation.

3.5 Synthesis and Research Motivation
The analysis reveals mature individual components lacking comprehensive
integration for multi-institutional resource sharing. While tools like Metal3,

1https://github.com/roscisz/TensorHive

20

https://github.com/roscisz/TensorHive

3.5 – Synthesis and Research Motivation

Ironic, and Kubernetes provide sophisticated capabilities in their domains,
the challenge lies in creating unified systems that bridge specialized tools to
address academic research requirements.

Key limitations converge around several themes: integration of diverse re-
source types under unified management, site-scoped multi-tenancy respecting
institutional autonomy, calendar-based reservation systems with predictable
handover, event-driven automation spanning complete resource lifecycles,
and modern web interfaces integrated with federated identity systems.

These requirements motivated developing the comprehensive cloud re-
source reservation system presented in this thesis. Rather than replacing ex-
isting technologies, the approach combines mature components like Keycloak,
PostgreSQL, and Metal3 through event-driven architectures and webhook-
based integration. This strategy enables institutions to leverage existing in-
vestments while providing unified management capabilities for effective cross-
institutional resource sharing, as demonstrated by the RESTART partner-
ship implementation. Comprehensive documentation of the platform archi-
tecture, deployment procedures, and usage guidelines is available at https:
//docs.prognose.crownlabs.polito.it/.

21

https://docs.prognose.crownlabs.polito.it/
https://docs.prognose.crownlabs.polito.it/

22

Chapter 4

Technologies and Tools

The development of a comprehensive cloud resource reservation platform re-
quires careful technology selection to address the unique challenges of multi-
institutional academic environments. Rather than simply adopting popu-
lar frameworks, the technology choices for both the Prognose platform and
GPU sharing system were driven by specific requirements: the need for ro-
bust multi-tenancy, seamless integration with existing institutional infras-
tructure, and the ability to scale across diverse research environments while
maintaining security and reliability.

This chapter explores how modern web technologies, when thoughtfully
combined, create a cohesive ecosystem that bridges the gap between cutting-
edge research needs and operational stability. The architecture demonstrates
that sophisticated academic platforms can be built using production-ready
technologies that researchers and administrators can confidently deploy and
maintain.

4.1 Backend Architecture

The backend infrastructure represents a departure from monolithic academic
systems, embracing microservices principles while maintaining the enterprise-
grade reliability required for multi-institutional deployments. The core back-
end services are built on Spring Boot and Java 23, leveraging the mature
ecosystem and proven scalability that academic institutions require for mission-
critical systems.

Spring Boot emerged as the cornerstone framework for both the main

23

4 – Technologies and Tools

reservation backend and the event processor service, providing production-
ready features including comprehensive metrics, health checks, and config-
uration management out of the box. The framework’s auto-configuration
capabilities simplify deployment across diverse institutional environments,
while its extensive integration ecosystem enables seamless connectivity with
PostgreSQL, Keycloak, and external services. Java 23’s modern language fea-
tures, including virtual threads and pattern matching, enhance performance
and code maintainability for complex reservation scheduling algorithms.

The webhook architecture deserves particular attention as it addresses a
fundamental challenge in academic IT: how to integrate with diverse institu-
tional systems without creating tight coupling. While the core platform uses
Java and Spring Boot, webhook services can be implemented in any language
since communication occurs through standard REST APIs. The server pro-
visioning webhook, implemented in Python with FastAPI, demonstrates this
flexibility by interfacing with both Kubernetes APIs and Metal3 controllers,
while secure communication between the webhook services and the event pro-
cessor/backend applications is ensured through HMAC-SHA256 signatures.
Similarly, the switch port webhook manages network configuration through
SSH automation, utilizing the Netmiko library to abstract vendor-specific
CLI interactions. This language-agnostic webhook design allows institutions
to implement custom provisioning logic in their preferred technology stack
without modifying core system components.

PostgreSQL’s selection extends beyond its reputation for reliability to its
comprehensive feature set that supports the complex requirements of reser-
vation systems. PostgreSQL’s robust transaction handling and ACID com-
pliance ensure data integrity during concurrent reservation operations, while
its flexible data modeling capabilities accommodate the hierarchical resource
structures and complex scheduling constraints inherent in multi-institutional
environments.

4.2 Frontend Technologies
The frontend development philosophy prioritized user experience over techni-
cal novelty, recognizing that academic users often access the system in high-
pressure research scenarios where intuitive interfaces are crucial. React 19’s
concurrent rendering capabilities prove particularly valuable for the book-
ing calendar, where multiple users might simultaneously view and modify
reservations, ensuring smooth user interactions without interface blocking.

24

4.3 – Security and Identity Management

Material-UI 6 provides more than visual consistency; its accessibility fea-
tures ensure compliance with academic institution requirements for inclusive
design. The component library’s extensive customization options accommo-
date the diverse branding needs of consortium members while maintaining
functional consistency. The implementation includes sophisticated respon-
sive design patterns that adapt to both desktop administration workflows
and mobile field access scenarios common in experimental research.

The booking calendar implementation using React Big Calendar showcases
how modern web technologies can rival desktop applications in functionality.
The calendar provides intuitive drag-and-drop reservation scheduling, allow-
ing users to create bookings by selecting time slots directly on the calendar
interface. Multiple view modes (month, week, day) accommodate different
planning perspectives, while updates are reflected upon page refresh to main-
tain data consistency. Integration with the backend’s temporal logic ensures
that calendar views display accurate availability information, while interac-
tive event manipulation provides the immediate feedback researchers expect
from modern interfaces.

Internationalization through react-i18next addresses more than language
preferences; it enables cultural adaptation of date formats, timezone han-
dling, and workflow patterns that vary between academic institutions. The
system’s flexibility in this regard has proven essential for consortium deploy-
ments where member institutions have different administrative cultures and
user expectations.

4.3 Security and Identity Management
Rather than integrating with multiple universities’ identity management sys-
tems, the project leverages the existing Keycloak instance maintained by Po-
litecnico di Torino for its internal operations. A dedicated realm has been
created within this Keycloak deployment to contain all system users, provid-
ing a centralized identity management solution that simplifies authentication
while maintaining the security standards required for academic environments.
This approach eliminates the complexity of federated identity integration
while ensuring reliable access control for consortium members.

The implementation of hierarchical role-based access control reflects the
reality of academic governance structures. The three-tier system (User, Site
Admin, Global Admin) maps directly to academic hierarchies while providing
the flexibility required for cross-institutional collaboration. Site-scoped data

25

4 – Technologies and Tools

isolation ensures that sensitive research information remains within institu-
tional boundaries, while selective sharing mechanisms enable collaborative
projects.

JWT token handling includes custom claims for site membership and re-
source access rights, enabling fine-grained authorization decisions at both the
application and infrastructure levels.

The security model addresses the reality that academic networks often
have different security postures and compliance requirements. The imple-
mentation includes configurable security policies that allow institutions to
enforce their specific requirements while maintaining interoperability with
consortium partners.

4.4 Cloud-Native Infrastructure and Orches-
tration

The transition to Kubernetes-based deployment reflects a strategic decision
to align with modern academic computing trends while providing the op-
erational flexibility that research environments demand. Unlike traditional
academic systems that require specialized operational knowledge, the con-
tainerized approach enables standard IT practices that most institutions can
support.

Docker containerization serves multiple purposes beyond deployment con-
sistency. The multi-stage build process creates optimized images that mini-
mize attack surfaces while ensuring reproducible deployments across diverse
institutional environments. Container images are tagged with database-
specific variants (postgres, oracle) that allow institutions to integrate with
their existing database infrastructure without requiring system-wide changes.

The KubeRay operator provides sophisticated GPU cluster management
through cloud-native patterns, operating independently from the reservation
system. KubeRay handles jobs submitted by users and schedules them as
soon as resources become available on the cluster, without integration with
calendar-based reservations. This approach leverages KubeRay’s mature re-
source management and autoscaling capabilities while providing the flexible
GPU access that research workflows require.

Metal3 integration showcases the system’s ability to bridge cloud-native
practices with traditional academic infrastructure. The BareMetalHost cus-
tom resources enable Infrastructure as Code practices for physical server
management, allowing research groups to provision bare-metal resources through

26

4.5 – Continuous Integration and GitOps Deployment

the same interfaces they use for cloud resources.

4.5 Continuous Integration and GitOps De-
ployment

The deployment process begins when developers commit changes to the
repository and follows a GitOps workflow that ensures reproducibility and
auditability essential for academic environments. The system maintains sta-
ble code in the main branch, from which deployments are initiated through
controlled manual processes.

When a feature is successfully merged into the main branch, users can
manually trigger a deployment pipeline that executes three critical steps:

1. Build and Tag: The pipeline builds Docker images and tags them
with version information extracted from the project’s build configuration
(pom.xml for Java components or package.json for Node.js services).

2. Push to Registry: The tagged images are pushed to DockerHub, mak-
ing them available for deployment across different environments.

3. Helm Chart Update: The pipeline automatically updates the Helm
chart repository with the new service version, modifying the values.yaml
file to reference the newly built image tags.

ArgoCD continuously monitors the Helm chart repository, specifically
watching for changes to the values.yaml file. When the pipeline completes
and updates the repository, ArgoCD automatically detects these changes and
reconciles the deployment by re-applying the Helm chart and updating the
corresponding Kubernetes custom resources to match the new configuration.

This GitOps approach provides several advantages for academic environ-
ments: complete audit trails of all deployments, the ability to roll back to
previous versions through Git history, and separation of concerns between
application development and deployment operations. The manual trigger
for production deployments ensures that releases occur at appropriate times
while maintaining the automation benefits of GitOps.

Helm charts provide the parameterization capabilities that enable single-
source deployments across diverse institutional environments. The chart
structure accommodates everything from single-node development deploy-
ments to multi-cluster production configurations, while maintaining security
and operational best practices.

27

4 – Technologies and Tools

Figure 4.1. CI/CD workflow illustrating the deployment process

The complete technology stack demonstrates that academic platforms can
embrace modern development practices without sacrificing the reliability and
institutional autonomy that research environments demand. By carefully
selecting technologies that align with both current capabilities and future
scalability requirements, the platform provides a foundation for sustainable
multi-institutional collaboration in the evolving landscape of academic com-
puting.

28

Chapter 5

System Architecture and
Design

This chapter presents the technical implementation of the cloud resource
reservation system, detailing the architectural decisions, design patterns,
and core components that enable multi-institutional resource sharing. The
system architecture demonstrates how modern multiservice patterns, event-
driven communication, and multi-tenant design can be effectively combined
to create a scalable platform for academic resource management.

5.1 Overall Architecture
The reservation system implements a distributed architecture designed to
address the specific challenges of multi-institutional resource management
in academic environments. The architectural approach prioritizes institu-
tional autonomy while enabling seamless cross-site collaboration through
well-defined interfaces and standardized communication protocols.

5.1.1 Multi-service Architecture
The system implements a multi-service architecture comprising two main
services that work together to provide comprehensive resource management
capabilities. This design choice balances architectural clarity with imple-
mentation simplicity, addressing the operational realities of academic envi-
ronments where systems must be maintainable by different people over time
while keeping complexity manageable.

29

5 – System Architecture and Design

Figure 5.1. High-level System Architecture Overview showing the main
components of the cloud resource reservation system and their interactions.

30

5.1 – Overall Architecture

The primary service is the reservation backend implemented in Spring
Boot with Java 23, which consolidates all REST API functionality including
resource management, booking operations, user management, and admin-
istrative functions. While this monolithic backend could theoretically be
decomposed into independent microservices for different functional domains,
the decision was made to maintain a unified service to reduce operational
complexity and facilitate maintenance in academic environments where staff
turnover is common.

The second service is the Event Processor, which operates independently
to handle asynchronous operations. This service monitors database events
for new reservation starts and other lifecycle changes, then notifies registered
webhooks accordingly. This separation ensures that user-facing operations
in the main backend remain responsive while background processing occurs
independently, preventing webhook delivery delays from affecting the user
experience.

The two services communicate through the shared PostgreSQL database
using scheduled polling, where the Event Processor periodically queries for
reservation events that need processing. This approach creates loose coupling
while maintaining data consistency through database transactions. Both
services are containerized using Docker and can be deployed independently,
allowing institutions to scale the event processing separately from the main
application based on webhook notification volume.

The API design follows RESTful principles with comprehensive OpenAPI
documentation, facilitating integration with institutional systems and third-
party tools. Authentication and authorization are externalized to Keycloak,
ensuring consistent security policies across all services while allowing insti-
tutional customization of authentication mechanisms. All API requests to
the main backend are authenticated using JWT (JSON Web Token) tokens
issued by Keycloak, which contain user identity, role assignments, and site
membership information. The Event Processor service, being an internal
component that processes database events and sends webhooks, does not
validate JWT tokens since it is never directly contacted by users and in-
stead uses Keycloak’s Admin Client with service credentials to fetch user
information when needed.

5.1.2 Multi-tenant Design
The system implements a sophisticated multi-tenant architecture that re-
spects institutional boundaries while enabling resource sharing. The design

31

5 – System Architecture and Design

uses a site-based tenancy model where each participating institution rep-
resents a distinct tenant with its own resource inventory, user base, and
administrative hierarchy.

Site-scoped resource management ensures that institutions maintain full
control over their resources while participating in the broader resource shar-
ing ecosystem. Each site has dedicated administrators who can configure
resource types, define booking policies, and manage local user access. Re-
sources are tagged with site identifiers, ensuring that queries and operations
respect institutional boundaries.

The multi-tenant implementation extends to the user interface, where site
selection controls the visible resource inventory and available administra-
tive functions. Users can be associated with multiple sites, reflecting the
reality of collaborative research projects that span institutional boundaries.
Role-based access control (RBAC) operates within site contexts, ensuring
that administrative permissions remain scoped to appropriate institutional
boundaries.

Database design supports multi-tenancy through site-scoped foreign keys
and query filters that automatically limit data access to appropriate tenants.
This approach ensures data isolation while maintaining query performance
and simplifying application logic.

5.1.3 Event-driven Architecture
The system employs event-driven patterns to achieve loose coupling between
components and enable responsiveness to booking lifecycle events. The Event
Processor uses scheduled polling to monitor database changes, providing re-
liable event processing with minimal infrastructure complexity.

Event processing follows a publish-subscribe pattern where booking op-
erations generate events that are consumed by multiple subscribers. The
primary event types include booking creation, modification, deletion, and
status changes. Each event carries comprehensive payload information, in-
cluding resource details, user information, and timing data.

The event processor service monitors database events and triggers appro-
priate responses, including webhook notifications to external systems, email
notifications to users, and audit log entries. This asynchronous processing
ensures that user operations complete quickly while background systems re-
ceive timely updates about state changes.

Webhook integration enables external systems to receive real-time notifica-
tions about booking events through a flexible and configurable system. Since

32

5.1 – Overall Architecture

different resource types may require specialized provisioning logic, the system
provides an administrative webhook management interface where adminis-
trators can configure custom endpoints for specific event types and resource
combinations. Each webhook configuration specifies the target URL, the
triggering event types (reservation start, end, modification), and the specific
resources or resource types that should trigger notifications.

Figure 5.2. Administrative Webhook Management Interface

The webhook system implements bidirectional HMAC-SHA256 signature
verification for secure communication. When the Event Processor sends no-
tifications to external webhook endpoints, it includes an HMAC signature
generated using a shared secret configured through the administrative in-
terface. External webhook systems must validate this signature to ensure
the authenticity of incoming requests and prevent unauthorized provisioning
triggers from malicious sources.

Conversely, when webhooks need to send status updates back to the main
system (such as provisioning started, completed, or failed notifications), they
must include their own HMAC signature using the same shared secret. The
main backend validates these signatures before accepting webhook responses,
ensuring that only authorized external systems can update reservation sta-
tuses and notify users about provisioning outcomes. All webhook requests in-
clude comprehensive payload information about the reservation, user details,
and resource specifications, enabling external systems to implement custom
provisioning workflows. The system includes sophisticated retry logic with

33

5 – System Architecture and Design

exponential backoff for reliable delivery, maintaining communication integrity
even when external systems experience temporary unavailability.

5.1.4 Hierarchical Resource Model
The system implements a sophisticated hierarchical resource model that en-
ables complex parent-child relationships between resources, providing auto-
matic conflict resolution and dependency management crucial for academic
computing environments.

Resource Creation Flow

Resource creation follows a two-step process that ensures consistency and
proper classification:

1. Resource Type Creation: Administrators first define resource types
using the administrative API endpoints. Each resource type specifies:

• Basic properties (name, color for UI visualization, site association)
• Custom parameter definitions stored as JSON in the customParameters

field
• Site-scoped access control ensuring institutional autonomy

2. Resource Instance Creation: Individual resources are then created as
instances of these types through dedicated API endpoints. Resources in-
herit the type’s custom parameters but maintain instance-specific prop-
erties including hierarchical relationships through parentId and subResources
fields.

The backend maintains referential integrity through JPA relationships:
resources reference their parent via @ManyToOne mapping and maintain bidi-
rectional relationships with children through @OneToMany collections.

34

5.1 – Overall Architecture

Parent-Child Resource Relationships

The hierarchical model addresses common academic scenarios where booking
one resource should automatically affect related resources. The implementa-
tion uses database-level parent-child relationships:

• Parent Resources: When reserved, automatically block all child re-
sources for the same time period

• Child Resources: Cannot be independently reserved if their parent is
already booked

• Automatic Blocking: The system prevents conflicts by checking hier-
archical dependencies during booking validation

For example, booking a complete server rack (parent) automatically makes
individual servers within that rack (children) unavailable, preventing double-
booking scenarios while ensuring resource isolation.

The frontend provides an intuitive drag-and-drop interface that allows
administrators to establish parent-child relationships by dragging resources
onto potential parents. The system includes circular reference detection to
prevent invalid hierarchies and provides visual indicators for hierarchical re-
lationships in calendar views.

Custom Parameter System

The resource type system includes a flexible custom parameter mechanism
that enables institution-specific data collection during booking:

• Parameter Definition: Resource types store custom parameter schemas
as JSON in the customParameters field, defining field labels and whether
they are required

• Booking Integration: The booking interface dynamically renders these
custom fields based on the selected resource’s type

• Validation: Both frontend and backend enforce required parameter
validation, ensuring complete data collection

• Storage: Parameter values are serialized as JSON and stored in the
booking’s customParameters field

35

5 – System Architecture and Design

Figure 5.3. Resource Hierarchy Management Interface

This approach allows institutions to collect resource-specific information
such as software requirements, access credentials, or project codes without
modifying core system schemas. The administrative interface provides com-
prehensive tools for managing these custom parameters with real-time vali-
dation.

Resource availability calculations consider hierarchical relationships at
multiple levels, enabling efficient conflict detection and capacity planning.
The booking engine evaluates constraints across the entire resource hierar-
chy, ensuring that reservations respect parent-child dependencies, institution-
specific policies, and custom parameter requirements. This comprehensive
approach provides the flexibility needed for diverse academic computing en-
vironments while maintaining system consistency and preventing resource
conflicts.

Resource Status Management

The system implements a comprehensive resource status management mech-
anism that provides administrators with granular control over resource avail-
ability and enables proper maintenance workflows. Each resource maintains
a status field that determines its booking eligibility and operational state.

36

5.1 – Overall Architecture

The system defines three primary resource statuses through the ResourceS-
tatus enumeration:

• ACTIVE: Resource is fully operational and available for booking. Only
resources in ACTIVE status can receive new reservations

• MAINTENANCE: Resource is temporarily unavailable due to sched-
uled maintenance, repairs, or updates. Existing bookings remain valid,
but no new reservations can be created

• UNAVAILABLE: Resource is permanently or indefinitely unavailable
for booking due to decommissioning, major failures, or policy restrictions

The backend provides dedicated endpoints for status management, includ-
ing a PATCH /resources/{id}/status operation that allows administrators to
update resource status independently from other resource properties. This
design enables rapid status changes during operational incidents without re-
quiring full resource updates.

Status changes trigger comprehensive notification workflows managed by
the resource management service. When a resource transitions from AC-
TIVE to MAINTENANCE or UNAVAILABLE, the system automatically
identifies all users with future bookings for that resource and sends warning
notifications about potential service disruptions. Conversely, when resources
return to ACTIVE status, users with upcoming reservations receive success
notifications confirming resource availability.

The booking validation system enforces status-based constraints at multi-
ple levels. The event management service includes mandatory status checks
that prevent booking creation or modification for non-ACTIVE resources.
These validations occur alongside conflict detection and permission verifica-
tion, ensuring comprehensive booking integrity.

The frontend provides intuitive status management through multiple in-
terfaces. The resource management forms include dedicated status controls
allowing administrators to set resource status during creation or updates.
The resource listing interfaces display status information using color-coded
chips (green for ACTIVE, orange for MAINTENANCE, red for UNAVAIL-
ABLE) with internationalized labels. Administrative filtering capabilities
enable operators to view resources by status, facilitating maintenance plan-
ning and capacity management.

Status management integrates seamlessly with the hierarchical resource
model, where parent resource status changes can affect child resource avail-
ability through inherited constraints. The system maintains audit trails for

37

5 – System Architecture and Design

all status changes, providing operators with complete visibility into resource
lifecycle management and enabling compliance with institutional operational
procedures.

5.2 Core Components
The system architecture comprises several core components that work to-
gether to provide comprehensive resource management capabilities. Each
component addresses specific functional requirements while maintaining clear
interfaces with other system elements.

5.2.1 Resource Management Service
The Resource Management Service forms the foundation of the system’s in-
ventory management capabilities. Implemented as part of the Spring Boot
backend, this service maintains the authoritative record of all available re-
sources across participating sites.

The service provides CRUD operations for resource definitions, supporting
dynamic addition and modification of resource inventory. Resource specifi-
cations include technical characteristics (CPU, memory, storage, network
capabilities), availability constraints (maintenance windows, usage policies),
and integration parameters (provisioning endpoints, monitoring systems).

Site administrators can configure resource types and instances through the
administrative interface, with changes immediately reflected in booking avail-
ability calculations. The service validates resource configurations to ensure
compatibility with booking constraints and provisioning systems.

38

5.2 – Core Components

Figure 5.4. Resource Management Administrative Interface

5.2.2 Booking Engine

The Booking Engine implements the core reservation logic, managing the
complete lifecycle of resource bookings from initial request through final
cleanup. The engine handles conflict detection, capacity validation, and
booking state management through an algorithm that ensure resource avail-
ability and prevent double-booking scenarios.

Conflict detection operates at multiple levels, checking for overlapping
time periods, resource capacity constraints, and site-specific policies.

The booking process includes comprehensive validation steps that verify
user permissions, resource availability, and booking policy compliance. Ap-
proved bookings generate events that trigger provisioning workflows and user

39

5 – System Architecture and Design

notifications. The engine maintains detailed state information throughout
the booking lifecycle, enabling precise tracking and audit capabilities.

Integration with external provisioning systems occurs through webhook
notifications that carry complete booking context, including user creden-
tials, resource specifications, and timing requirements. This design enables
seamless integration with diverse provisioning technologies while maintaining
booking system independence.

Figure 5.5. Interactive Booking Calendar

40

5.2 – Core Components

5.2.3 User Management
User Management leverages Keycloak’s comprehensive identity and access
management capabilities, providing federated authentication and fine-grained
authorization controls. The integration possibly supports multiple authen-
tication mechanisms, including institutional SSO systems, academic federa-
tions, and direct user accounts.

The system implements a three-tier role hierarchy: Users can create and
manage their own bookings, Site Administrators can manage resources and
users within their institutional scope, and Global Administrators can config-
ure system-wide settings and cross-site policies. Role assignments are site-
scoped, enabling users to have different permissions at different institutions.

User profile management includes basic user information such as name,
surname, email address, and password management. SSH public key man-
agement enables secure access to provisioned resources without requiring
separate credential distribution.

Figure 5.6. User Management Interface showing Role-based Access Control

The integration with Keycloak enables advanced features such as role map-
ping from institutional identity systems, group-based access control, and ses-
sion management across multiple system components. This approach ensures
consistent security policies while supporting the complex user relationships
common in academic environments.

41

5 – System Architecture and Design

5.2.4 Notification System
The Notification System serves as the primary communication channel be-
tween users and the reservation system, managing in-application notifications
that keep users informed about critical events affecting their reservations and
resource availability.

The system focuses on two primary notification scenarios that are essential
for effective resource management. First, when resources become unavailable
due to status changes (maintenance, decommissioning, or other operational
issues), the system automatically notifies all users with existing or upcom-
ing reservations for those resources. This proactive communication ensures
users can adjust their research schedules and seek alternative resources before
critical deadlines.

Figure 5.7. In-application Notification System

Second, the notification system serves as the communication bridge for

42

5.2 – Core Components

webhook-generated messages. When external webhook services complete
provisioning operations, encounter errors, or need to communicate status
updates to users, they send notifications back to the main system through
authenticated API endpoints. The notification system then presents these
messages to users through the web interface, providing real-time feedback
about the status of their resource provisioning and access credentials.

43

5 – System Architecture and Design

5.2.5 Event Processor
The Event Processor Service operates as a dedicated service responsible for
handling asynchronous operations and maintaining system responsiveness.
The service uses scheduled polling to monitor the database for reservation
events requiring processing, checking for events that are starting soon or
have recently ended, and coordinates appropriate responses across system
components.

Event processing includes webhook delivery to external systems, ensuring
that provisioning systems receive timely notifications about booking changes.
The processor implements sophisticated retry logic with exponential backoff,
maintaining reliable communication even when external systems experience
temporary unavailability.

Scheduled processing handles time-based operations such as booking re-
minders, resource cleanup notifications, and availability recalculation. The
service coordinates with the booking engine to ensure that resource states
remain consistent and that users receive appropriate notifications about up-
coming booking events.

The processor maintains comprehensive logs of all event handling activ-
ities, providing audit trails and troubleshooting information. All system
monitoring and operational visibility is achieved through the Audit Log view
in the Administration panel, which provides administrators with complete
visibility into event processing performance, system health, and all activities
occurring within the reservation platform.

The Event Processor architecture demonstrates how multi-service patterns
can effectively handle complex asynchronous workflows while maintaining
system reliability and operational transparency. The design ensures that the
system remains responsive to user interactions while effectively managing
background operations and external system integration, providing a founda-
tion for future evolution toward more granular microservice architectures as
operational requirements mature.

44

5.2 – Core Components

Figure 5.8. Monitoring Dashboard showing Audit Logs

Figure 5.9. Administrative Dashboard showing System Statistics and
Monitoring Infographics

45

46

Chapter 6

Distributed GPU Sharing
with Ray and Kubernetes

This chapter presents the implementation of the GPU sharing system de-
veloped as part of the RESTART partnership, focusing on providing elastic,
on-demand access to GPU resources for machine learning and AI workloads.
Unlike the Prognose reservation portal, this system operates independently
and leverages KubeRay to manage Ray clusters on Kubernetes, enabling re-
searchers to submit distributed computing jobs without requiring deep knowl-
edge of cluster management.

The GPU sharing system addresses the challenge of efficiently utilizing
expensive GPU hardware across multiple research groups while providing
isolation and fair access. The solution demonstrates how modern container
orchestration and distributed computing frameworks can be combined to
create a user-friendly platform for GPU-intensive research workflows.

6.1 GPU Sharing Architecture Design

6.1.1 System Overview
The GPU sharing architecture is built on three foundational components that
work together to provide seamless GPU access: Kubernetes as the orches-
tration platform, KubeRay as the Ray cluster management operator, and a
shared NFS filesystem for data persistence and job artifact management.

The design philosophy prioritizes simplicity for end users while leveraging
sophisticated backend orchestration. Researchers interact with the system

47

6 – Distributed GPU Sharing with Ray and Kubernetes

through standard Python Ray APIs, submitting jobs programmatically with-
out needing to understand the underlying Kubernetes infrastructure. This
abstraction enables productive research workflows while maintaining the op-
erational benefits of containerized deployment and resource isolation.

The architecture supports dynamic resource allocation where GPU re-
sources are provisioned on-demand based on job requirements. When re-
searchers submit jobs to a Ray cluster, KubeRay automatically scales worker
nodes to accommodate the workload, and resources are reclaimed when jobs
complete. This elastic scaling ensures efficient GPU utilization while provid-
ing predictable access patterns for research workflows.

Figure 6.1. End-to-end research workflow: Python Ray clients, elastic GPU
workers, and a browser-based data interface.

6.1.2 KubeRay Integration
KubeRay serves as the bridge between Ray’s distributed computing capabil-
ities and Kubernetes’ resource management, providing declarative manage-
ment of Ray clusters through custom resource definitions. The integration
enables research groups to access sophisticated distributed computing capa-
bilities without managing cluster infrastructure directly.

The system deploys RayCluster custom resources that define the desired
state of Ray head and worker nodes. KubeRay’s operator continuously recon-
ciles these specifications with the actual cluster state, handling node failures,
scaling operations, and resource allocation automatically. This approach

48

6.1 – GPU Sharing Architecture Design

provides the reliability and fault tolerance essential for long-running research
workloads.

Ray cluster configuration includes GPU-specific parameters such as CUDA
driver mounting, GPU device allocation, and memory management settings.
The KubeRay operator ensures that worker nodes are properly configured
with GPU access and that Ray’s distributed scheduling can effectively utilize
available accelerators across the cluster.

The integration supports multiple cluster configurations tailored to differ-
ent research use cases. Small clusters with 2-4 GPUs serve development and
experimentation workflows, while larger configurations with 8-16 GPUs sup-
port production training runs and distributed inference workloads. Cluster
specifications are managed through Kubernetes manifests, enabling Infras-
tructure as Code practices for reproducible research environments.

6.1.3 Job Submission and Management
Job submission follows a programmatic approach where researchers use the
Ray Python SDK to connect to their allocated cluster and submit distributed
workloads. This design eliminates the need for users to understand Kuber-
netes concepts while providing full access to Ray’s distributed computing
capabilities.

The typical workflow begins with researchers preparing their Python code
and data on the shared NFS filesystem. They then use the Ray client library
to connect to their cluster’s head node and submit jobs using Ray’s standard
APIs for distributed training, hyperparameter tuning, or batch inference.
Jobs are automatically distributed across available GPU workers, with Ray
handling task scheduling, data movement, and fault recovery.

Job lifecycle management includes automatic cleanup and resource recla-
mation when workloads complete. KubeRay monitors job status and can
automatically scale down worker nodes when utilization drops, ensuring ef-
ficient resource usage. Failed jobs trigger retry logic and notification mecha-
nisms, providing researchers with visibility into job status without requiring
manual cluster monitoring.

KubeRay automatically provisions a web-based dashboard for each Ray-
Cluster that provides comprehensive monitoring and management capabili-
ties for researchers. The dashboard enables users to track job status through-
out the execution lifecycle, displaying real-time information about jobs in
various states including waiting for scheduling, running, failed, and finished.
Users can access detailed cluster information including the number of active

49

6 – Distributed GPU Sharing with Ray and Kubernetes

nodes, resource utilization metrics (CPU, memory, GPU usage), and node
health status.

The dashboard serves as a centralized interface for job management, pro-
viding access to execution logs, error messages, and performance metrics
for submitted jobs. This visibility enables researchers to debug failed ex-
ecutions, monitor training progress, and optimize resource usage without
requiring command-line access to the Kubernetes cluster.

6.1.4 Kubernetes Orchestration

Kubernetes provides the foundational orchestration layer that enables reli-
able, scalable GPU sharing across research groups. The platform’s declar-
ative resource management and robust scheduling capabilities ensure that
GPU resources are efficiently allocated while maintaining isolation between
different research workloads.

The orchestration layer handles several critical functions essential for multi-
tenant GPU sharing. Pod scheduling with GPU affinity ensures that work-
loads are placed on nodes with appropriate accelerator hardware. Resource
quotas and limits prevent individual jobs from consuming excessive cluster
resources. Network policies and security contexts provide isolation between
different research groups and projects.

GPU resource management leverages Kubernetes’ device plugin architec-
ture, specifically the NVIDIA GPU Operator, to expose GPU resources as
schedulable resources. This integration enables fine-grained GPU alloca-
tion, including support for Multi-Instance GPU (MIG) partitioning when
hardware supports it. The scheduler considers GPU topology and memory
requirements when placing workloads, optimizing performance while main-
taining resource efficiency.

The Kubernetes deployment includes monitoring and observability com-
ponents that provide visibility into GPU utilization, job performance, and
cluster health. Prometheus metrics collection enables capacity planning and
performance optimization, while centralized logging provides troubleshooting
capabilities for research workflows. This operational visibility is essential for
maintaining system reliability and optimizing resource allocation policies.

50

6.2 – Shared Storage Strategy

6.2 Shared Storage Strategy

6.2.1 NFS-Based Data Management
The shared NFS filesystem serves as the critical data layer that enables seam-
less collaboration and simplifies job workflows across the GPU sharing sys-
tem. Rather than requiring researchers to manage complex data staging
and retrieval processes, the shared filesystem provides a common workspace
accessible from all Ray cluster nodes.

The NFS implementation provides persistent storage that remains avail-
able across job executions and cluster reconfigurations. Research datasets,
trained models, and job outputs are stored in a hierarchical directory struc-
ture that enables both individual and collaborative access patterns. User-
specific directories provide private workspaces, while shared project directo-
ries enable team collaboration on larger research initiatives.

Data access patterns in machine learning workloads often involve large
datasets that must be accessible from multiple compute nodes simultane-
ously. The NFS architecture supports concurrent read access from multiple
Ray workers, enabling efficient distributed training where each worker can
access training data without requiring expensive data replication. Write op-
erations are typically concentrated in specific phases (data preprocessing,
model checkpointing, result collection), making NFS an appropriate choice
for these access patterns.

6.3 Implementation Advantages and Trade-
offs

6.3.1 Key Advantages
The KubeRay-based GPU sharing implementation provides several signifi-
cant advantages for academic research environments. The primary benefit is
operational simplicity: researchers can access sophisticated distributed com-
puting capabilities without needing expertise in cluster management or con-
tainer orchestration. The familiar Ray programming model enables seamless
transition from single-node development to distributed execution.

Resource efficiency represents another major advantage, as the dynamic
scaling capabilities ensure that expensive GPU hardware is utilized effec-
tively. Unlike static cluster allocations that may leave resources idle, the

51

6 – Distributed GPU Sharing with Ray and Kubernetes

KubeRay approach provisions resources on-demand and reclaims them when
workloads complete. This elasticity significantly improves overall cluster uti-
lization rates while reducing operational costs.

The Kubernetes foundation provides enterprise-grade reliability and op-
erational capabilities that are essential for supporting critical research work-
loads. Built-in fault tolerance, rolling updates, and comprehensive monitor-
ing ensure that the system can maintain high availability even when indi-
vidual components fail. The declarative configuration management enables
reproducible deployments and systematic operational procedures.

Integration with the broader Kubernetes ecosystem enables additional ca-
pabilities such as automated certificate management, ingress controllers for
external access, and integration with institutional identity providers. This
ecosystem compatibility reduces deployment complexity and enables institu-
tions to leverage existing operational expertise and tooling.

6.3.2 Scheduling and Fairness Limitations
The KubeRay implementation reveals significant limitations in scheduling
control and resource fairness that impact its suitability for multi-tenant
academic environments. The primary constraint is the lack of fine-grained
scheduling control: KubeRay relies on Kubernetes’ native scheduler, which
operates on a first-come-first-served basis without sophisticated fairness al-
gorithms or user-aware resource allocation.

This scheduling approach creates several problems in academic settings
where multiple research groups compete for limited GPU resources. High-
priority users or projects cannot preempt lower-priority workloads, poten-
tially causing critical deadlines to be missed. Long-running training jobs can
monopolize cluster resources, preventing other users from accessing GPUs
for extended periods. The absence of user-specific quotas means that in-
dividual researchers or projects can inadvertently consume disproportionate
resources.

The lack of preemption capabilities is particularly problematic for aca-
demic workloads with varying priorities. Emergency deadlines, thesis sub-
missions, or conference paper experiments cannot interrupt less critical work-
loads, forcing researchers to wait for natural job completion. This inflexibil-
ity conflicts with the dynamic priority changes common in research environ-
ments.

Resource fragmentation presents another challenge where partially utilized
nodes cannot be efficiently packed with additional workloads. The absence

52

6.3 – Implementation Advantages and Trade-offs

of gang scheduling means that distributed jobs requiring multiple GPUs may
experience resource contention or delayed scheduling when cluster resources
are fragmented across nodes.

6.3.3 Alternative Approaches: Kueue Integration

To address the scheduling limitations, experimentation with Kueue integra-
tion was conducted to provide advanced resource management capabilities.
Kueue is a Kubernetes-native job queueing system that adds sophisticated
scheduling policies, resource quotas, and preemption capabilities to container
orchestration platforms.

The Kueue integration approach involved deploying KubeRay alongside
Kueue’s admission controllers and resource management policies. This con-
figuration enabled the implementation of fair-share scheduling algorithms,
user-specific resource quotas, and priority-based preemption for Ray work-
loads. ResourceFlavor and ClusterQueue custom resources provided fine-
grained control over GPU allocation and user access patterns.

The technical implementation demonstrated that advanced scheduling poli-
cies could be successfully integrated with Ray workloads. Fair-share algo-
rithms ensured equitable resource distribution across research groups, while
preemption capabilities enabled high-priority jobs to interrupt lower-priority
workloads when necessary. User quotas prevented resource monopolization
and enabled predictable access patterns for critical research deadlines.

However, the Kueue integration introduced significant usability challenges
that ultimately made it unsuitable for the target academic environment.
Users were required to understand Kubernetes concepts including Job and
ClusterQueue resources, YAML manifest creation, and kubectl command-
line operations. The programming model shifted from simple Ray API calls
to complex Kubernetes resource management, creating a substantial learning
curve for researchers focused on machine learning rather than infrastructure.

The operational complexity extended to job submission workflows where
researchers needed to create Kubernetes Job manifests that properly refer-
enced Kueue admission policies and resource requirements. Debugging failed
jobs required understanding both Ray execution semantics and Kubernetes
resource states. This complexity contradicted the fundamental design goal
of providing simple, abstracted access to distributed computing resources.

53

6 – Distributed GPU Sharing with Ray and Kubernetes

6.3.4 Design Decision and Trade-off Analysis
The evaluation of plain KubeRay versus Kueue-integrated approaches re-
vealed a fundamental trade-off between advanced scheduling capabilities and
user experience simplicity. While the Kueue integration provided sophis-
ticated resource management features essential for fair multi-tenant opera-
tion, the resulting complexity made the system unsuitable for researchers
who needed to focus on their domain expertise rather than infrastructure
management.

The decision to proceed with plain KubeRay reflects a prioritization of
user experience and adoption over advanced scheduling features. Academic
environments often struggle with technology adoption when systems require
significant operational expertise, and the simplified Ray programming model
enables broader researcher participation in distributed computing workflows.

This trade-off acknowledges that perfect resource fairness and schedul-
ing control may be less important than providing accessible, reliable GPU
access for the majority of research use cases. The resulting system success-
fully enables distributed machine learning workflows while accepting some
limitations in resource allocation sophistication.

Future work could explore intermediate approaches that provide some
scheduling improvements without requiring full Kubernetes expertise from
end users. Custom operators or admission controllers could implement basic
fairness policies while preserving the simplified Ray programming interface.
Alternative scheduling frameworks or Ray-native resource management fea-
tures might provide better balance between functionality and usability.

The implementation experience demonstrates the broader challenge of
building research computing platforms: technical sophistication must be bal-
anced against user accessibility to ensure that advanced capabilities actually
benefit the intended research community. The most technically advanced so-
lution is not always the most appropriate choice for academic environments
where researcher productivity and system adoption are paramount concerns.

54

Chapter 7

Comparative Analysis

This chapter presents a comprehensive evaluation of the cloud resource reser-
vation system developed for the RESTART partnership, positioning it within
the broader landscape of academic resource management solutions. The
analysis examines how the system addresses fundamental limitations in ex-
isting approaches while providing measurable improvements in operational
efficiency and user experience.

The comparative framework evaluates three critical dimensions: baseline
functionality against traditional academic resource management approaches,
feature-level comparisons with contemporary solutions, and quantitative met-
rics demonstrating user experience improvements. This multi-faceted anal-
ysis demonstrates how modern architectural patterns and thoughtful tech-
nology integration can significantly enhance resource sharing capabilities in
multi-institutional academic environments.

7.1 Baseline Comparison
Academic institutions have historically managed computing resources through
a combination of manual processes, ad-hoc scheduling systems, and isolated
infrastructure management tools. The baseline comparison evaluates the
developed system against these traditional approaches, highlighting funda-
mental improvements in automation, integration, and operational efficiency.

7.1.1 Traditional Academic Resource Management
Prior to implementing comprehensive reservation systems, most academic in-
stitutions relied on email-based booking requests, shared calendar systems,

55

7 – Comparative Analysis

or basic web forms for resource allocation. These approaches created sev-
eral persistent challenges that limited effective resource utilization and cross-
institutional collaboration.

Manual booking processes typically involved researchers contacting sys-
tem administrators via email to request access to specific computing re-
sources. Administrators would manually check availability, coordinate with
other users, and provide access credentials through separate communication
channels. This workflow introduced significant delays between request and
resource availability, often spanning days or weeks for complex requests.

Resource conflict resolution occurred reactively, with administrators dis-
covering scheduling conflicts only when users attempted to access the same
resources simultaneously. The absence of automated conflict detection meant
that research schedules were frequently disrupted, leading to missed deadlines
and inefficient resource utilization.

Documentation and audit trails were maintained through email archives
and manual logs, making it difficult to track resource usage patterns, iden-
tify optimization opportunities, or demonstrate compliance with institutional
policies. The lack of structured data collection prevented administrators from
making informed decisions about capacity planning and resource allocation
strategies.

7.1.2 System Architecture Improvements

The developed reservation system addresses these baseline limitations through
comprehensive automation and integration capabilities that fundamentally
transform resource management workflows. The comparison reveals signifi-
cant improvements across all aspects of the resource lifecycle.

Automated booking workflows eliminate manual intervention for standard
reservation requests. Users can create, modify, and cancel bookings through
the web interface with immediate conflict detection and confirmation. The
system automatically validates resource availability, checks user permissions,
and generates appropriate notifications without requiring administrator in-
volvement. This automation reduces booking response times from days to
seconds while eliminating human error in scheduling operations.

Real-time conflict detection prevents scheduling conflicts before they oc-
cur, using database-level constraints and hierarchical resource relationships
to ensure booking integrity. When users attempt to create overlapping reser-
vations, the system immediately identifies conflicts and suggests alternative

56

7.1 – Baseline Comparison

time slots or resources. This proactive approach eliminates the reactive con-
flict resolution that characterized traditional approaches.

Comprehensive audit logging captures all system activities with struc-
tured data collection that enables sophisticated analysis and reporting. Ev-
ery booking operation, status change, and administrative action is recorded
with complete context including user identity, timestamp, and affected re-
sources. This structured approach provides institutional administrators with
unprecedented visibility into resource usage patterns and operational effi-
ciency metrics.

The event-driven architecture enables integration with external provision-
ing systems through webhook notifications, automating resource preparation
and access credential distribution. Unlike traditional approaches that re-
quired manual coordination between booking and provisioning systems, the
integrated approach ensures that resources are ready for use when reserva-
tions begin, eliminating setup delays and manual coordination overhead.

7.1.3 Multi-institutional Collaboration Enhancement
The baseline comparison reveals dramatic improvements in cross-institutional
resource sharing capabilities that were previously impossible with traditional
approaches. Academic partnerships like RESTART require sophisticated co-
ordination mechanisms that manual processes cannot effectively support.

Traditional resource sharing between institutions relied on informal agree-
ments and manual coordination between administrators at different sites.
Resource discovery occurred through personal relationships and email com-
munication, limiting researchers’ awareness of available capabilities at part-
ner institutions. Booking coordination required multiple manual steps across
institutional boundaries, often involving complex email chains and separate
approval processes at each site.

The developed system provides unified resource discovery across all partic-
ipating institutions through a single web interface. Researchers can search for
and book resources at any partner site without needing separate accounts or
manual coordination with remote administrators. Site-scoped multi-tenancy
ensures that institutional autonomy is preserved while enabling seamless col-
laboration.

Standardized booking workflows operate consistently across all partner
institutions, eliminating the need for researchers to learn different procedures
at each site. The centralized identity management through Keycloak provides
single sign-on capabilities that simplify access while maintaining security

57

7 – Comparative Analysis

standards appropriate for academic environments.
Cross-site resource visibility enables researchers to make informed deci-

sions about resource selection based on availability, capabilities, and geo-
graphic proximity. The calendar-based interface provides real-time visibility
into resource availability across the entire partnership, enabling more efficient
project planning and execution.

7.2 Feature Comparison
The feature comparison evaluates the developed system against contempo-
rary academic resource management solutions, focusing on capabilities that
directly impact research productivity and administrative efficiency. This
analysis positions the system within the current market landscape while high-
lighting unique innovations that address specific academic requirements.

7.2.1 Contemporary Academic Solutions
Several commercial and open-source solutions target academic computing
resource management, each offering different approaches to scheduling, pro-
visioning, and user management. The feature comparison examines represen-
tative solutions including SLURM-based cluster managers, commercial cloud
management platforms, and specialized academic booking systems.

SLURM (Simple Linux Utility for Resource Management) represents the
dominant approach for academic HPC cluster management, providing sophis-
ticated job scheduling and resource allocation capabilities. SLURM excels at
batch job scheduling with advanced policies for fair-share allocation, priority
queuing, and resource optimization. However, SLURM’s focus on computa-
tional jobs creates limitations for interactive resource booking and calendar-
based reservations that are essential for experimental research workflows.

The comparison reveals that SLURM’s command-line interface and com-
plex configuration requirements create barriers for researchers who need oc-
casional access to computing resources without becoming cluster adminis-
tration experts. The system lacks integrated provisioning capabilities for
non-computational resources like network equipment or specialized labora-
tory instruments, limiting its applicability to comprehensive resource man-
agement scenarios.

Commercial cloud management platforms such as VMware vCloud and
OpenStack provide comprehensive infrastructure management capabilities

58

7.2 – Feature Comparison

with sophisticated automation and integration features. These platforms
excel at virtual resource provisioning and offer extensive APIs for custom
integration. However, their complexity and licensing costs make them un-
suitable for many academic environments, while their focus on enterprise use
cases often misaligns with academic workflows and budget constraints.

7.2.2 Unique Academic-Focused Features

The developed system provides several features specifically designed for aca-
demic environments that are absent or poorly implemented in existing solu-
tions. These capabilities address the unique requirements of multi-institutional
research collaboration and academic operational constraints.

Calendar-based reservation interfaces provide intuitive booking experi-
ences that align with academic planning cycles and project timelines. Unlike
batch scheduling systems that focus on job submission queues, the calendar
approach enables researchers to plan resource usage around conference dead-
lines, academic terms, and collaborative project schedules. The drag-and-
drop booking interface allows users to create reservations by selecting time
slots directly on the calendar, providing immediate visual feedback about
conflicts and availability.

Hierarchical resource relationships enable sophisticated dependency man-
agement that reflects the physical and logical relationships between academic
computing resources. The parent-child resource model automatically pre-
vents conflicts when related resources are booked, ensuring that booking a
complete server rack makes individual servers unavailable and booking a GPU
cluster prevents conflicts with individual nodes. This hierarchical approach
eliminates the manual coordination required with flat resource models.

Site-scoped multi-tenancy provides institutional autonomy while enabling
resource sharing, addressing the governance requirements of academic part-
nerships. Each institution maintains control over its resource inventory, user
management, and booking policies while participating in the broader re-
source sharing ecosystem. This approach balances collaboration benefits
with institutional sovereignty requirements that are essential for academic
partnerships.

Custom parameter collection during booking enables institutions to gather
resource-specific information required for research workflows. Unlike generic
booking systems that capture only basic reservation details, the custom pa-
rameter system allows institutions to collect software requirements, project

59

7 – Comparative Analysis

codes, access credentials, or compliance information specific to their oper-
ational requirements. This flexibility eliminates the need for separate data
collection processes while ensuring complete information capture.

7.2.3 Integration and Extensibility Advantages

The system’s architecture provides significant advantages in integration ca-
pabilities and extensibility compared to existing academic solutions. These
characteristics are essential for academic environments where diverse tools
and workflows must coexist within limited operational budgets.

Webhook-based integration enables seamless connectivity with existing
institutional systems without requiring extensive custom development. The
HMAC-signed webhook system provides secure communication channels for
provisioning automation, monitoring integration, and custom workflow trig-
gers. This approach allows institutions to leverage existing investments in
infrastructure management tools while adding comprehensive booking capa-
bilities.

The event-driven architecture supports complex automation workflows
that span multiple systems and administrative domains. When bookings are
created or modified, the system can trigger provisioning workflows, update
monitoring systems, send notifications, and update compliance databases
through configurable webhook endpoints. This automation eliminates man-
ual coordination overhead while ensuring consistent operational procedures.

RESTful API design with comprehensive OpenAPI documentation en-
ables integration with institutional tools including identity management sys-
tems, monitoring platforms, and custom administrative interfaces. The API-
first approach ensures that all functionality available through the web in-
terface can be automated or integrated with existing workflows, providing
flexibility for diverse institutional requirements.

Container-based deployment with Helm chart parameterization enables
consistent deployment across diverse institutional environments while ac-
commodating local customization requirements. The same system can be
deployed on everything from single-node development environments to multi-
cluster production configurations, reducing operational complexity while main-
taining institutional flexibility.

60

7.3 – User Experience Metrics

7.3 User Experience Metrics
Quantitative evaluation of user experience improvements provides objective
evidence of the system’s impact on research productivity and administra-
tive efficiency. The metrics collection spans multiple dimensions including
booking workflow efficiency, error reduction, and user satisfaction indicators
measured across the RESTART partnership deployment.

7.3.1 Booking Workflow Efficiency

The transition from manual to automated booking workflows produces mea-
surable improvements in task completion times and error rates that directly
impact research productivity. Metrics collection focused on comparing tra-
ditional email-based booking processes with the automated web interface
across representative use cases.

Booking creation time decreased from an average of 3-5 business days with
manual processes to immediate confirmation with automated workflows. The
manual approach required email composition, administrator availability, re-
source availability verification, and credential distribution through separate
channels. The automated system enables complete booking workflows in
under 2 minutes, including resource selection, conflict detection, and confir-
mation receipt.

Booking modification and cancellation operations show even more dra-
matic improvements, with automated workflows enabling instant updates
compared to manual processes that often required multiple email exchanges
and administrator coordination. The self-service capability eliminates depen-
dency on administrator availability while reducing administrative workload.

Error rates in booking operations decreased significantly with automated
conflict detection eliminating double-booking scenarios that occurred fre-
quently with manual coordination. The hierarchical resource model prevents
logical conflicts such as booking both a parent resource and its children,
while database-level constraints ensure data consistency across concurrent
operations.

User onboarding time for new researchers reduced from hours of training
and documentation review to minutes of interface exploration. The intu-
itive calendar-based interface requires minimal explanation for users familiar
with standard calendar applications, while contextual help and validation
messages guide users through complex booking scenarios.

61

7 – Comparative Analysis

7.3.2 Administrative Efficiency Gains

The system’s automation capabilities produce concrete improvements in ad-
ministrative workflows that can be directly observed through the elimination
of manual processes and the introduction of self-service functionality.

Self-service booking capabilities eliminate the need for administrator in-
volvement in routine reservation operations. Users can independently create,
modify, and cancel bookings through the web interface without requiring
email communication or manual coordination. This fundamental shift from
assisted to autonomous booking workflows removes administrative bottle-
necks that previously delayed resource access.

Real-time availability visualization through the calendar interface enables
users to identify suitable time slots independently, eliminating the back-and-
forth communication traditionally required to find acceptable booking times.
The immediate conflict detection prevents users from requesting unavailable
resources, reducing the administrative overhead of managing scheduling con-
flicts and alternative arrangements.

Automated audit logging replaces manual record keeping with structured
data capture that occurs transparently during normal system operations.
Every booking operation, status change, and administrative action is auto-
matically recorded with complete contextual information. This systematic
approach eliminates the manual effort previously required to maintain book-
ing records and provides administrators with comprehensive activity tracking
for compliance and analysis purposes.

The administrative interface provides centralized resource management
capabilities that consolidate previously distributed tasks. Site administrators
can manage resource inventory, user permissions, and system configuration
through unified web interfaces rather than maintaining separate systems or
manual processes. The hierarchical resource model automatically enforces
dependency relationships, eliminating the manual coordination required to
prevent conflicts between related resources.

Webhook integration capabilities enable automatic provisioning workflows
that eliminate manual resource preparation tasks. When bookings are cre-
ated, the system can automatically trigger external provisioning systems,
eliminating the manual steps traditionally required to prepare resources for
user access. This automation ensures consistent provisioning procedures
while reducing the time between booking confirmation and resource avail-
ability.

62

7.3 – User Experience Metrics

7.3.3 Expected User Experience Benefits

The system’s design features and architectural decisions target specific user
experience improvements that address common frustrations in academic re-
source management environments. These benefits emerge directly from the
system’s core capabilities and interface design principles.

The visual calendar interface provides immediate comprehension of re-
source availability patterns, eliminating the uncertainty that researchers typ-
ically experience when trying to plan experiments around unknown resource
schedules. The drag-and-drop booking mechanism allows users to create
reservations intuitively, reducing the cognitive load associated with complex
form-based booking processes common in traditional systems.

Real-time conflict detection prevents the frustration of discovering schedul-
ing conflicts after submitting booking requests. Users receive immediate feed-
back about resource availability, enabling them to adjust their plans proac-
tively rather than experiencing delays from rejected requests. This immedi-
ate validation reduces the iterative communication cycles that characterize
manual booking processes.

The unified multi-institutional interface eliminates the procedural com-
plexity that researchers typically encounter when accessing resources at part-
ner institutions. Instead of learning different booking procedures and main-
taining separate accounts at each site, users interact with a consistent inter-
face regardless of resource location. This standardization reduces the barrier
to cross-institutional collaboration that often limits research partnership ef-
fectiveness.

Self-service capabilities enable researchers to maintain control over their
booking schedules without depending on administrator availability. The abil-
ity to modify or cancel reservations independently provides flexibility that
is essential for dynamic research environments where experimental schedules
frequently change. This autonomy reduces the anxiety associated with rigid
booking systems that require administrative intervention for any changes.

Administrative users benefit from comprehensive visibility into system
operations through centralized dashboards and automated reporting capa-
bilities. The structured audit logging provides complete activity tracking
without manual record keeping, while the hierarchical resource management
prevents configuration errors that could lead to booking conflicts. These ca-
pabilities enable administrators to focus on strategic resource planning rather
than routine operational tasks.

63

7 – Comparative Analysis

The webhook integration architecture enables seamless provisioning work-
flows that eliminate the manual coordination traditionally required between
booking confirmation and resource preparation. This automation ensures
that resources are ready for use when reservations begin, preventing the de-
lays and uncertainty that characterize manual provisioning processes.

System reliability through containerized deployment provides consistent
availability that users can depend on for critical booking operations. The
platform’s resilience to individual component failures ensures that researchers
can access booking capabilities even during maintenance periods, supporting
the urgent scheduling changes common in academic environments.

64

Chapter 8

Case Studies

8.1 Academic Environment Deployment
The Prognose platform deployment demonstrates practical implementation
of multi-institutional resource sharing within the RESTART partnership.
Operating at https://prognose.crownlabs.polito.it/, the system could
serves researchers across multiple Italian universities with consistent avail-
ability and performance.

The React-based frontend provides intuitive booking through calendar
interfaces that researchers find familiar and easy to use. Users create reser-
vations by dragging across time slots, with immediate conflict detection pre-
venting double-booking scenarios. The Spring Boot backend successfully
handles concurrent operations from multiple sites, maintaining responsive
performance during peak usage periods like conference deadlines.

The site-scoped multi-tenancy model effectively balances institutional au-
tonomy with resource sharing. Each university maintains control over its
resource inventory while participating in the broader ecosystem. Site ad-
ministrators configure custom resource types and manage local users with-
out central coordination, while the hierarchical resource model automatically
prevents conflicts between related resources.

Webhook integration automates complex provisioning workflows through
two specialized services. The server provisioning webhook integrates with
Kubernetes and Metal3 to automate bare-metal deployment, creating per-
sonalized environments with SSH key configuration typically ready within
10-15 minutes. The switch port webhook manages network configuration
through SSH automation, automatically creating VLANs and configuring
ports according to reservation parameters.

65

https://prognose.crownlabs.polito.it/

8 – Case Studies

Performance analysis of the server provisioning process demonstrates con-
sistent and predictable startup times across multiple hardware configura-
tions. Figure 8.1 shows the distribution of server provisioning times mea-
sured across 24 provisioning operations during the RESTART partnership
deployment, with most servers becoming available within 8-12 minutes of
booking confirmation.

Figure 8.1. Distribution of Server Provisioning Times showing pro-
visioning performance across multiple hardware configurations. The
histogram demonstrates consistent provisioning performance with most
servers ready within 10-12 minutes.

The GPU sharing system demonstrates distributed computing accessibil-
ity through KubeRay integration. Researchers use familiar Python files to
transition from local development to distributed execution across multiple
GPU workers.

Production deployment reveals key operational insights including the im-
portance of comprehensive error messaging, the value of asynchronous pro-
cessing for long-running operations, and the effectiveness of containerized
deployment for diverse academic IT environments. User onboarding requires
minimal training due to intuitive interfaces, while the event-driven architec-
ture ensures reliable integration with external systems.

66

8.2 – Administrative Efficiency

8.2 Administrative Efficiency
The implemented systems demonstrate significant improvements in admin-
istrative efficiency compared to traditional manual processes. Automated
booking workflows reduce reservation response times from days to seconds,
while self-service capabilities eliminate administrator bottlenecks for routine
operations.

The webhook architecture automates resource preparation that previously
required manual coordination. Server provisioning through Metal3 integra-
tion eliminates manual imaging workflows, while network configuration au-
tomation prevents manual switch management errors. These automation
patterns reduce administrative workload while ensuring consistent, repro-
ducible resource preparation.

Administrative interfaces provide centralized management capabilities that
consolidate previously distributed tasks. Site administrators manage re-
source inventory, user permissions, and system configuration through unified
web interfaces. The hierarchical resource model automatically enforces de-
pendency relationships, eliminating manual coordination required to prevent
conflicts between related resources.

Comprehensive audit logging replaces manual record keeping with auto-
mated activity tracking. Every booking operation, status change, and ad-
ministrative action is recorded with complete contextual information. This
systematic approach eliminates manual documentation overhead while pro-
viding administrators with unprecedented visibility into system operations.

The event-driven architecture enables reliable workflow coordination with-
out manual intervention. Reservation events automatically trigger appropri-
ate provisioning workflows, user notifications, and audit log entries. This
automation ensures consistent operational procedures while freeing adminis-
trators to focus on strategic planning rather than routine operational tasks.

Real-time monitoring through integrated dashboards provides operational
visibility spanning application performance, infrastructure health, and user
experience metrics. Administrators can proactively identify issues and opti-
mize resource allocation without reactive troubleshooting. The notification
system ensures timely communication about system events while reducing
support burden through clear error messaging and guided remediation steps.

67

68

Chapter 9

Conclusions and Future
Work

This thesis presented the design and implementation of a comprehensive
cloud resource reservation system developed for the RESTART partnership,
alongside a complementary GPU sharing platform using Ray and Kuber-
netes. The work demonstrates how modern software architectures and cloud-
native technologies can effectively address the complex challenges of multi-
institutional resource management in academic environments.

9.1 Achieved Objectives
The primary objectives established at the beginning of this work have been
successfully accomplished through systematic design, implementation, and
deployment of both reservation and GPU sharing systems.

9.1.1 Multi-institutional Resource Sharing
The reservation platform successfully enables seamless resource sharing across
multiple academic institutions while preserving institutional autonomy. The
site-scoped multi-tenancy architecture allows each participating university to
maintain complete control over their resource inventory, user management,
and booking policies while benefiting from the broader resource ecosystem.
This balance between collaboration and sovereignty addresses one of the
fundamental challenges in academic partnerships where institutions need to
share resources without compromising their governance structures.

69

9 – Conclusions and Future Work

The unified web interface provides researchers with access to resources
across all partner sites through a single authentication system powered by
Keycloak. Users can discover, evaluate, and book resources at any participat-
ing institution without navigating separate systems or maintaining multiple
accounts. This standardization dramatically reduces the barriers to cross-
institutional collaboration that traditionally limit research partnerships.

The hierarchical resource model successfully captures the complex rela-
tionships between academic computing resources, automatically preventing
conflicts when related resources are reserved. The parent-child relationship
system ensures that booking a complete server rack makes individual servers
unavailable, while custom parameter collection enables institutions to gather
resource-specific information required for their operational workflows.

9.1.2 Automated Provisioning Integration
The webhook-based integration framework enables seamless automation of
complex provisioning workflows across diverse institutional environments.
Two specialized webhook services demonstrate practical implementation of
this architecture: the server provisioning webhook integrates with Metal3
and Kubernetes to automate bare-metal deployment, while the switch port
webhook manages network configuration through SSH automation.

These integrations eliminate the manual coordination traditionally re-
quired between booking confirmation and resource preparation. Server pro-
visioning workflows that previously required hours of manual work are now
completed automatically within 10-15 minutes of booking confirmation. Net-
work configuration changes that required manual switch management are
handled transparently through automated VLAN creation and port configu-
ration.

The HMAC-signed webhook system provides secure communication chan-
nels that enable integration with existing institutional systems without re-
quiring extensive custom development. The event-driven architecture ensures
reliable workflow coordination, automatically triggering appropriate provi-
sioning workflows, user notifications, and audit log entries when bookings
are created or modified.

9.1.3 Distributed Computing Accessibility
The GPU sharing system successfully demonstrates how sophisticated dis-
tributed computing capabilities can be made accessible to researchers without

70

9.2 – System Benefits

requiring deep expertise in cluster management or container orchestration.
The KubeRay integration enables researchers to transition seamlessly from
single-node development to distributed execution across multiple GPU work-
ers using familiar Python Ray APIs.

The implementation provides elastic resource allocation where GPU re-
sources are provisioned on-demand based on workload requirements. When
researchers submit jobs to Ray clusters, KubeRay automatically scales worker
nodes to accommodate the workload, and resources are reclaimed when jobs
complete. This approach ensures efficient GPU utilization while providing
predictable access patterns for research workflows.

The shared NFS filesystem eliminates complex data staging requirements
by providing persistent storage accessible from all cluster nodes. Research
datasets, trained models, and job outputs are stored in a hierarchical struc-
ture that supports both individual and collaborative access patterns, enabling
effective team coordination on distributed machine learning projects.

9.2 System Benefits
The implemented systems deliver measurable improvements across multiple
dimensions that directly impact research productivity and administrative
efficiency in academic environments.

9.2.1 Operational Efficiency Gains

The transition from manual to automated workflows produces dramatic im-
provements in operational efficiency. Booking creation time decreased from
an average of 3-5 business days with manual processes to immediate confir-
mation with automated workflows. The elimination of email-based coordi-
nation and manual resource verification reduces administrative bottlenecks
while ensuring consistent, reproducible procedures.

Real-time conflict detection prevents scheduling conflicts before they oc-
cur, using database-level constraints and hierarchical resource relationships
to ensure booking integrity. This proactive approach eliminates the reactive
conflict resolution that characterized traditional manual processes, reducing
research schedule disruptions and improving resource utilization rates.

Comprehensive audit logging replaces manual record keeping with auto-
mated activity tracking that captures every booking operation, status change,

71

9 – Conclusions and Future Work

and administrative action with complete contextual information. This sys-
tematic approach eliminates manual documentation overhead while provid-
ing administrators with unprecedented visibility into system operations and
resource usage patterns.

9.2.2 Enhanced Resource Utilization
The calendar-based interface with drag-and-drop booking capabilities enables
more efficient resource utilization by providing immediate visibility into avail-
ability patterns across the entire partnership. Researchers can identify opti-
mal time slots and make informed decisions about resource selection based on
availability, capabilities, and geographic proximity without requiring manual
coordination.

The hierarchical resource model prevents resource fragmentation by au-
tomatically managing dependencies between related resources. When com-
plete systems are reserved, individual components are automatically marked
unavailable, eliminating conflicts and ensuring consistent resource alloca-
tion. This approach maximizes utilization while maintaining system integrity
across complex resource hierarchies.

Automated provisioning workflows ensure that resources are ready for use
when reservations begin, eliminating the delays and uncertainty associated
with manual preparation processes. The webhook integration architecture
enables consistent provisioning procedures while reducing the time between
booking confirmation and resource availability from hours to minutes.

9.2.3 Improved User Experience
The unified interface design significantly reduces the complexity traditionally
associated with multi-institutional resource access. Instead of learning differ-
ent procedures and maintaining separate accounts at each partner site, users
interact with a consistent interface regardless of resource location. This stan-
dardization enables broader participation in collaborative research projects
by reducing technical barriers.

Self-service capabilities provide researchers with autonomy over their book-
ing schedules without depending on administrator availability. The ability
to create, modify, and cancel reservations independently provides flexibility
essential for dynamic research environments where experimental schedules
frequently change. Real-time validation prevents frustrating booking con-
flicts while immediate confirmation enables rapid project planning.

72

9.3 – Lessons Learned

The notification system ensures timely communication about system events
while reducing support burden through clear error messaging and guided re-
mediation steps. When resources become unavailable or provisioning work-
flows encounter issues, users receive proactive notifications that enable them
to adjust their plans before critical deadlines.

9.3 Lessons Learned
The development and deployment experience revealed several important in-
sights about building resource management systems for academic environ-
ments that balance technical sophistication with operational practicality.

9.3.1 Architectural Design Decisions
The choice to implement a multi-service architecture with a consolidated
Spring Boot backend rather than fine-grained microservices proved appro-
priate for academic environments where operational complexity must be bal-
anced against maintenance requirements. While microservices offer theo-
retical advantages in scalability and service isolation, the unified backend
approach reduces deployment complexity and enables more effective mainte-
nance by diverse staff over time.

The event-driven architecture provides reliable asynchronous communica-
tion through the dedicated Event Processor service without the operational
overhead of complex message queue systems. This approach demonstrates
that sophisticated event handling can be implemented using polling-based
mechanisms and database coordination, reducing infrastructure requirements
while maintaining system responsiveness and reliability.

The site-scoped multi-tenancy model successfully addresses the gover-
nance requirements of academic partnerships by enabling resource sharing
without compromising institutional sovereignty. This architectural pattern
could serve as a template for other collaborative academic platforms where
institutional autonomy must be preserved within shared ecosystems.

9.3.2 Technology Integration Challenges
The webhook integration framework proved essential for enabling seamless
connectivity with diverse institutional systems, but implementation revealed
the importance of comprehensive error handling and retry logic. External
systems often experience temporary unavailability or configuration changes,

73

9 – Conclusions and Future Work

requiring robust integration patterns that can handle transient failures with-
out losing operational consistency.

The Keycloak integration for federated authentication provides significant
value in reducing account management overhead, but proper configuration
and realm management require careful planning. The flexibility of role-based
access control enables sophisticated permission models, but the complexity
can create configuration challenges that require clear documentation and
administrative procedures.

Container-based deployment with Helm charts enables consistent deploy-
ment across diverse institutional environments, but parameterization com-
plexity grows rapidly with institutional customization requirements. The
balance between flexibility and simplicity requires careful design to ensure
that deployment procedures remain manageable while accommodating local
requirements.

9.3.3 User Adoption Factors

User experience design proved more critical than initially anticipated for
system adoption in academic environments. Researchers prioritize intuitive
interfaces that minimize learning curves, and complex administrative pro-
cedures can significantly limit adoption regardless of underlying system ca-
pabilities. The calendar-based booking interface’s familiarity enabled rapid
user onboarding compared to form-based alternatives.

Comprehensive documentation and guided setup procedures are essential
for successful deployment in diverse institutional environments. Academic
IT organizations often have limited resources for complex system integra-
tion, requiring deployment procedures that can be executed by staff with
varying technical expertise. The complete setup guides and Helm chart doc-
umentation proved crucial for successful partnership deployment. To support
user adoption and technical implementation, comprehensive documentation
including technical guides, usage tutorials, and various use cases is avail-
able at https://docs.prognose.crownlabs.polito.it/, providing users
and administrators with detailed resources for effective platform utilization.

Real-time feedback and validation mechanisms significantly improve user
satisfaction by preventing common errors and providing immediate confir-
mation of successful operations. The investment in client-side validation
and comprehensive error messaging reduces support burden while improving
overall user experience.

74

https://docs.prognose.crownlabs.polito.it/

9.4 – Future Enhancements

9.4 Future Enhancements
Several enhancement opportunities emerged during development and deploy-
ment that could further improve system capabilities and expand applicability
to broader academic use cases.

9.4.1 Advanced Scheduling Capabilities
The GPU sharing system’s experience with Kueue integration revealed the
potential for more sophisticated scheduling policies that could enhance fair-
ness and resource allocation efficiency. Future work could explore intermedi-
ate approaches that provide improved scheduling control without requiring
full Kubernetes expertise from end users. Custom operators or admission
controllers could implement basic fairness policies while preserving the sim-
plified Ray programming interface.

The reservation system could benefit from more advanced scheduling algo-
rithms that consider user priorities, project deadlines, and resource utilization
patterns. Machine learning approaches could analyze historical booking data
to optimize resource allocation and suggest alternative time slots when con-
flicts occur. Predictive scheduling could enable proactive resource planning
based on project timelines and usage patterns.

Integration with institutional calendar systems could enable automatic
booking creation for recurring events like class schedules or regular research
meetings. This integration would reduce manual booking overhead while
ensuring consistent resource availability for predictable activities.

9.4.2 Enhanced Monitoring and Analytics
The system’s comprehensive audit logging provides a foundation for sophis-
ticated analytics capabilities that could offer deeper insights into resource
utilization patterns and operational efficiency. Advanced visualization dash-
boards could help administrators identify optimization opportunities, track
resource demand trends, and plan capacity expansion based on data-driven
analysis.

Real-time monitoring integration with institutional monitoring systems
could provide proactive alerting about system performance, resource avail-
ability, and integration health. Custom metrics collection could enable so-
phisticated reporting about booking patterns, user behavior, and system
performance that supports evidence-based operational decisions.

75

9 – Conclusions and Future Work

Predictive analytics based on historical usage data could enable more effec-
tive resource planning and capacity management. Machine learning models
could identify seasonal patterns, predict resource demand, and suggest opti-
mal maintenance scheduling to minimize disruption to research activities.

9.4.3 Expanded Integration Ecosystem
The webhook framework provides a foundation for broader integration with
academic computing ecosystems. Future development could include addi-
tional webhook services for storage management, software licensing systems,
and research data management platforms.

Integration with academic identity federations beyond Keycloak could en-
able broader participation in resource sharing networks. Support for SAML,
CAS, and other authentication protocols common in academic environments
would reduce integration barriers for institutions with existing identity man-
agement investments.

API-driven integration with external scheduling systems, project manage-
ment platforms, and research computing portals could enable more seamless
workflows where resource reservation becomes integrated into broader re-
search management processes.

9.4.4 Scalability and Performance Optimization
As the system scales to support larger partnerships and more complex re-
source hierarchies, several optimization opportunities could improve per-
formance and reduce operational overhead. Database query optimization,
caching strategies, and asynchronous processing patterns could enhance sys-
tem responsiveness while supporting larger user bases and more frequent
operations.

Multi-region deployment capabilities could enable resource sharing across
geographically distributed partnerships while maintaining acceptable perfor-
mance characteristics. Edge caching, content delivery networks, and regional
database replication could support global academic collaborations without
sacrificing user experience.

Container orchestration improvements could enable more efficient resource
utilization in Kubernetes environments. Custom resource definitions, oper-
ators, and admission controllers could provide more sophisticated lifecycle
management while maintaining operational simplicity for academic IT orga-
nizations.

76

9.4 – Future Enhancements

The work presented in this thesis demonstrates that well-designed resource
management systems can significantly enhance collaboration and operational
efficiency in academic environments. The combination of thoughtful architec-
tural decisions, practical technology choices, and careful attention to user ex-
perience creates platforms that successfully bridge the gap between technical
sophistication and operational practicality required for sustainable academic
computing infrastructure.

The success of the RESTART partnership deployment validates the ap-
proach and provides a foundation for broader adoption in academic resource
sharing initiatives. As research computing requirements continue to evolve,
the architectural patterns and implementation strategies demonstrated in
this work offer a roadmap for building systems that effectively support col-
laborative research while respecting the unique governance and operational
constraints of academic institutions.

77

78

Acknowledgments

English version

I thank my family for all the support they have always given me and for the
opportunity they offered me to follow my passions: this achievement is also
the result of what they sowed for me, giving me the privilege of growing up
in an environment that believed in my abilities. Their sacrifices, advice, and
trust created the foundation on which I was able to build, and I carry with
me the values they passed on. They have my sincerest thanks; I will try to
honor all of this by cherishing what they have given me.

I also want to thank all my childhood friends who, although life has taken
us down different paths and to different places, and despite all the obsta-
cles we have faced, I know I can always count on them even thousands of
kilometers away.

I am infinitely grateful to you, Naomi, for all the support you have always
given me, since I was still a child. Your patience, consistency, and strength
have served as a compass in the moments I felt lost: you listened without
judging, lifted me up when I fell, and reminded me that even the greatest
fears can be faced one small step at a time. You have been a safe harbor
in storms and a calm voice when the world seemed to shout; your presence
gave me courage even when I could not find it within myself. Thank you for
believing in me even when there were no obvious reasons to do so. That belief
of yours ignited a confidence I did not know I could have: you taught me
to see my limits as boundaries I could overcome and to view every obstacle
as an opportunity to grow. You showed me by example what it means to
persevere, to be true to oneself, and to accept mistakes as part of the journey.
Your words and actions have planted in me the determination to try again,
to get back up, to try once more. I will not forget the small attentions, the
silent sacrifices, and the nights you stayed up to listen to me: they are all

79

9 – Conclusions and Future Work

indelible traces that have shaped who I am today. For all this, and for so
many things I don’t even know how to put into words, I owe you more than
can be said. I want you to know that your love and trust have not been
in vain: I carry your teachings into every choice, in every step forward. I
promise, whatever fate has in store for us, to try to give back with the same
generosity a bit of the light you have given me: to be there for you as you
have been for me, to support you when you need it, and to celebrate your
successes with you as if they were my own. Thank you, Naomi, for being my
strength, my guide, and my hope. Thanks not only to you but also to your
family, who welcomed me without judgment and with great affection; they
accepted me with my virtues and my flaws, offering me support, respect, and
warmth. I will always carry their trust with me and will do my best to repay
it.

To myself.

Italian version

Ringrazio la mia famiglia per tutto il supporto che mi ha sempre dato e per
l’opportunità che mi ha offerto di seguire le mie passioni: questo traguardo
è anche il frutto di ciò che hanno seminato per me, donandomi il privilegio
di crescere in un ambiente che credeva nelle mie capacità. Le loro rinunce, i
consigli e la fiducia hanno creato le basi su cui ho potuto costruire, e porto
con me i valori che mi hanno trasmesso. A loro va il mio più sincero ringrazi-
amento; cercherò di onorare tutto ciò facendo tesoro di ciò che mi hanno
dato.

Voglio anche ringraziare tutti i miei amici d’infanzia che, sebbene la vita ci
abbia portato su strade e in luoghi diversi, e nonostante tutti gli ostacoli che
abbiamo affrontato, so di poter sempre contare su di loro anche a migliaia di
chilometri di distanza.

Sono infinitamente grato a te, Naomi, per tutto il supporto che mi dai da
sempre, sin da quando ero ancora solo un bambino. La tua pazienza, la tua
costanza e la tua forza hanno fatto da bussola nei momenti in cui mi sentivo
perso: mi hai ascoltato senza giudicare, mi hai tirato su quando sono caduto
e mi hai ricordato che anche le paure più grandi possono essere affrontate
a piccoli passi. Sei stata un porto sicuro nelle tempeste e una voce calma
quando il mondo sembrava urlare; la tua presenza mi ha dato coraggio anche

80

9.4 – Future Enhancements

quando non ero in grado di trovarne dentro di me. Grazie per aver creduto
in me anche quando non c’erano motivi evidenti per farlo. Quel tuo credere
ha acceso una fiducia che non sapevo di poter possedere: mi hai insegnato a
guardare ai miei limiti come a confini superabili e a vedere in ogni ostacolo
un’opportunità per crescere. Mi hai mostrato con l’esempio cosa significa
perseverare, essere leali con se stessi e accettare gli errori come parte del
percorso. Le tue parole e i tuoi gesti hanno seminato in me la determinazione
a provare ancora, a rialzarmi, a tentare ancora una volta. Non dimenticherò
le piccole attenzioni, i sacrifici silenziosi e le notti in cui sei rimasta sveglia
per ascoltarmi: sono tutte tracce indelebili che hanno modellato chi sono
oggi. Per tutto questo, e per tante cose che non so nemmeno come esprimere
a parole, ti devo più di quanto si possa dire. Desidero che tu sappia che il tuo
amore e la tua fiducia non sono stati vani: porto con me i tuoi insegnamenti
in ogni scelta, in ogni passo avanti. Prometto, qualsiasi cosa il destino abbia
in serbo per noi, di provare a restituire con la stessa generosità, un po’ della
luce che mi hai donato: esserci per te come tu sei stata per me, sostenerti
quando ne avrai bisogno e celebrare con te i tuoi successi come se fossero i
miei. Grazie, Naomi, per essere stata la mia forza, la mia guida e la mia
speranza. Grazie non solo a te ma anche alla tua famiglia, che mi ha saputo
accogliere senza pregiudizi e con grande affetto, mi hanno accettato con i
miei pregi e i miei difetti, offrendomi sostegno, rispetto e calore. Porterò
sempre con me la loro fiducia e farò del mio meglio per ricambiarla.

A me stesso.

81

	Introduction
	Cloud Computing Evolution
	Resource Management Challenges
	Thesis Scope

	Problem Statement
	Current Limitations in Bare-Metal Access
	Resource Optimization

	State of the Art
	Overview
	Resource Management and Provisioning Technologies
	Distributed Computing and GPU Sharing Platforms
	Current Limitations and Alternative Solutions
	Synthesis and Research Motivation

	Technologies and Tools
	Backend Architecture
	Frontend Technologies
	Security and Identity Management
	Cloud-Native Infrastructure and Orchestration
	Continuous Integration and GitOps Deployment

	System Architecture and Design
	Overall Architecture
	Multi-service Architecture
	Multi-tenant Design
	Event-driven Architecture
	Hierarchical Resource Model

	Core Components
	Resource Management Service
	Booking Engine
	User Management
	Notification System
	Event Processor

	Distributed GPU Sharing with Ray and Kubernetes
	GPU Sharing Architecture Design
	System Overview
	KubeRay Integration
	Job Submission and Management
	Kubernetes Orchestration

	Shared Storage Strategy
	NFS-Based Data Management

	Implementation Advantages and Trade-offs
	Key Advantages
	Scheduling and Fairness Limitations
	Alternative Approaches: Kueue Integration
	Design Decision and Trade-off Analysis

	Comparative Analysis
	Baseline Comparison
	Traditional Academic Resource Management
	System Architecture Improvements
	Multi-institutional Collaboration Enhancement

	Feature Comparison
	Contemporary Academic Solutions
	Unique Academic-Focused Features
	Integration and Extensibility Advantages

	User Experience Metrics
	Booking Workflow Efficiency
	Administrative Efficiency Gains
	Expected User Experience Benefits

	Case Studies
	Academic Environment Deployment
	Administrative Efficiency

	Conclusions and Future Work
	Achieved Objectives
	Multi-institutional Resource Sharing
	Automated Provisioning Integration
	Distributed Computing Accessibility

	System Benefits
	Operational Efficiency Gains
	Enhanced Resource Utilization
	Improved User Experience

	Lessons Learned
	Architectural Design Decisions
	Technology Integration Challenges
	User Adoption Factors

	Future Enhancements
	Advanced Scheduling Capabilities
	Enhanced Monitoring and Analytics
	Expanded Integration Ecosystem
	Scalability and Performance Optimization

	Acknowledgments

