
Politecnico di Torino

Master of Science in Computer Engineering

A.Y. 2024/2025

Graduation Session October 2025

Framework for
Network Services Orchestration
with a Cloud Native Approach

Supervisors:
Prof. Fulvio Risso
Dott. Davide Miola

Company Tutors:
Dott. Paolo Fasano
Dott.ssa Anna Andreotti
Dott. Antonio Giannone

Candidate:
Giacomo Olivero

Abstract

The management of modern telecommunications networks is complex, driving the
adoption of Software Defined Networking (SDN). A typical SDN approach may rely on
a monolithic architecture, with very strict resource requirements and a centralized
database, that could lead to scalability issues in large-scale environments. This thesis
faces these challenges by designing, implementing, and validating a new framework
for network services orchestration based on cloud-native principles.

Theproposedarchitecture usesGitasa single sourceof truth and leveragesGitOps
workflow principles to translate high-level network service definitions into low-level
device configurations, which are then applied to the targets using the gNMI protocol.

Implementation required the development of a completely new module and the
contribution to an open-source project, Kubenet SDCIO, that is in charge of the con-
figurations provisioning to the network devices. The framework functionality was vali-
dated both on virtual and physical network devices. The successful deployment and
positive performance results confirm the scalability of the proposed solution, also for
large-scale networks. This work concludes that the adoption of cloud-native princi-
ples provides a robust and scalable solution for modern network automation.

Acknowledgements

Writing a Master’s thesis is a challenging task that requires a lot of effort and dedi-
cation. It is also a journey of personal growth and learning, that allows you to put
into practice the knowledge and skills you have acquired during your studies, and I
am thankful to all those who have supported me along the way. This work would not
have been possible without the contribution of all these individuals, and I am deeply
grateful to each of them.

Thanks to TIM for the opportunity to work on this project, with a special mention
to my company tutors, Anna and Antonio, for their constant support and guidance
throughout the development of this thesis, and to Dott. Paolo Fasano, for his availabil-
ity and coordination.

Thanks to my supervisor, Prof. Fulvio Risso, who acted as a guide and a point of
reference rather than a simple evaluator, and to my academic tutor, Davide, for his
precious support and experienced suggestions.

Thanks to my family, for their unconditional support and encouragement, that al-
lowedme to face this challengewith confidence and determination, always providing
me with the tools I needed.

Thanks tomy friends, inside and outside the university, for their companionship and
for helping me maintain a balanced perspective during the challenging moments of
this journey.

Thanks to everyone who has proposedme new challenges and opportunities over
the years, allowing me to develop a broader vision and a more complete set of skills,
building a portfolio far richer than what a Master’s degree alone could provide.

Thanks to all who will read this thesis, for their interest and curiosity.

“I am always doing what I cannot do yet, in order to learn how to do it.”
— Vincent van Gogh

i

Table of Contents

List of Figures vi

1 Introduction 1
1.1 Context . 1
1.2 Problem . 2
1.3 Goal . 3
1.4 Structure of the Thesis . 3

2 Background 5
2.1 Kubernetes . 5

2.1.1 Declarative Model . 6
2.1.2 Running Applications . 8
2.1.3 Virtual Clusters with KinD . 10

2.2 ArgoCD . 10
2.2.1 ArgoCD Applications . 11
2.2.2 ArgoCD with multiple clusters . 12

2.3 Network Operating System . 12
2.3.1 Language of Devices: YANG . 13
2.3.2 Interacting with Devices: NETCONF and gNMI 14
2.3.3 Examples of Existing SDN Controllers . 14

2.4 Kubenet Framework . 15
2.4.1 SDCIO . 16
2.4.2 KUID . 20
2.4.3 Choreo . 20
2.4.4 Pkgserver . 22

3 Services in Telcos 23
3.1 Network Topology . 23

3.1.1 Topology Simplification for Experiments . 24
3.1.2 Topology Emulation: Containerlab . 25

iii

3.2 Customers Services Delivery System . 26
3.3 Examples of Services . 27

3.3.1 L2 MPLS Tunnel . 27
3.3.2 L2 Tunnel with Bandwidth Control and Monitoring 30

4 Framework Architecture 31
4.1 Overview . 31
4.2 Involved GIT Repositories . 33

4.2.1 Services Repository . 34
4.2.2 Device Configs Repository . 35

4.3 Config Translator . 37
4.3.1 Translators . 38
4.3.2 Example of Translator: Devices . 39
4.3.3 Obtain Devices Specific Information . 41

4.4 Architecture Scalability . 42
4.4.1 Config Translator Scalability . 43
4.4.2 SDCIO Scalability . 44

5 Implementation 46
5.1 Changes in SDCIO . 46

5.1.1 Config Server . 47
5.1.2 Data Server . 48
5.1.3 Debugging Structure and Test Deployment 49

5.2 Config Translator . 50
5.2.1 Calculate Only Changed Files . 51
5.2.2 GIT Repositories Management . 52
5.2.3 How To Trigger Translators . 54
5.2.4 Packages Architecture . 56
5.2.5 Obtaining Infrastructure Information . 57
5.2.6 Module Runtime Configuration . 58

6 Validation 60
6.1 Basic Laboratory Deployment . 61
6.2 Framework Validation with Different Services . 62

6.2.1 L2 MPLS Tunnel Service . 63
6.2.2 L2 Tunnel with Bandwidth Control and Monitoring Service 65

6.3 Config Translator Scalability . 68
6.3.1 Performance on Clean Repository . 68
6.3.2 Performance on Loaded Repository . 69
6.3.3 Performance with Incremental Repository Load 71

iv

6.4 Scalability of SDCIO over Multiple Zones . 73
6.4.1 Modified Laboratory Deployment . 73
6.4.2 Repository Structure and ArgoCD Applications 74
6.4.3 L2 MPLS Tunnel Service over Multiple Zones 74

7 Conclusion 76

8 FutureWork 78
8.1 Closing the Loop with Service Monitoring . 78
8.2 Awareness of Available Resources on Nodes . 79
8.3 Adaptive Services . 80
8.4 Performance Improvements . 80
8.5 Topology Visualization . 81

Acronyms 82

Bibliography 85

v

List of Figures

1.1 Software Driven Network at TIM . 2

2.1 Interaction Model of API Server . 6
2.2 Interaction Model of API Service . 8
2.3 ArgoCD Workflow . 11
2.4 ArgoCD with Multiple Clusters . 12
2.5 SDCIO Architecture . 16
2.6 SDCIO Target Discovery and Connection . 17

3.1 Example of Telco Network Topology . 24
3.2 Simplified Telco Network Topology . 25
3.3 Minimal Telco Network Topology . 25
3.4 Service Delivery System Interaction Model . 27
3.5 L2 MPLS Tunnel Service . 28
3.6 L2 MPLS Tunnel Service with Multiple Endpoints . 29
3.7 L2 MPLS Tunnel Service with Same Edge Node . 29
3.8 L2 Tunnel with Bandwidth Control and Monitoring Service 30

4.1 Framework Architecture Overview . 32
4.2 Config Translator Scalability . 43
4.3 SDCIO Scalability . 45

5.1 Translation Logic Flowchart . 51
5.2 GIT Repositories Management Flowchart . 53
5.3 Singular Invocation Triggering . 55
5.4 HTTP Server Triggering . 55
5.5 Polling Triggering . 56
5.6 Config Translator Packages Architecture . 57

6.1 Physical Laboratory Infrastructure . 61
6.2 Config Translator Performance on Clean Repository 69

vi

6.3 Config Translator Performance on Loaded Repository 70
6.4 Config Translator Performance on Loaded Repository (Create/Update

Only) . 70
6.5 Comparison of Config Translator Performance on Clean and Loaded

Repositories . 71
6.6 Config Translator Performance with Increasing Repository Size 72
6.7 Physical Laboratory Infrastructure for Multiple Zones 73

8.1 Closing the Loop with Service Monitoring . 79

vii

Chapter 1

Introduction

Everyday, billions of people are connected to the Internet, someone with a wired con-
nection in their home or office, others with a mobile connection on their smartphone.
All of that is a fundamental part of our life, and is gettingmore andmore important. Be-
hind the scenes, Telco (TELecommunications COmpany) infrastructures are the back-
bone of this connectivity. They are complex systems, with thousands of devices, com-
ponents, and technologies involved. Monitoring all of that and assuring each person
in the world can access the Internet every time they want is a challenging task, that
requires a lot of effort and resources.

Such a big system is supervised by a specific framework that helps the manage-
ment teamboth to operate on the networkmaintaining the control, and tomonitor the
status continuously. Several tools have been deployed thus far, some open-source,
others proprietary. However, when applied to a real-world scenario, each of them
shows its limitations: each Telco operator has specific needs, and general-purpose
tools are not always able to satisfy them.

1.1 Context
This thesis has been carried out at TIM S.p.A., the largest Italian telecommunications
company. The company vision of Software Driven Network (SDN) is structured as an
organism with three main pillars that work together:

• Read: collect data from the network, using different protocols and technologies;

• Write: act on the network, changing its state and configuration;

• Brain: the core of the system, that processes data and decides what to do.
1

Introduction

Thanks to this approach, when something new should be applied to the network,
the Brain can decide what to do, and then the Write pillar can act on the network,
and finally the Read module can check if everything is working as expected. On the
other hand, using the Read pillar, the Brain can monitor the network status and take
intelligent decisions based on the data collected, that are then applied to the network
using the Write module.

Figure 1.1: Software Driven Network at TIM [1]

Each pillar relies on several smaller components, some of them developed in-
house, others are open-source or proprietary tools. This thesis focuses on the Write
pillar, and in particular on the module responsible for applying changes to network
devices. The current solution is based on Cisco NSO (Network Services Orchestrator),
a proprietary tool developed by Cisco Systems, that have been in use from years in
TIM.

1.2 Problem
Cisco NSO has been chosen among the others because it is flexible and able to man-
age devices from different vendors and with different technologies, using many com-
munication protocols. However, using it at scale some issues are now arising in the
module:

• Cisco NSO is structured as a centralized point of control, that is very convenient
from a logical point of view, but it becomes a bottleneck when the number of
devices to manage is very high, principally caused by blocking operations on
the internal database.

2

Introduction

• the techniciansmust be able to operate directly on the network devices, and this
can sometimes conflict with the NSO operations: the current system is reading
back from the device the configuration before applying a change, but this cause
a great overhead and it is not always reliable;

1.3 Goal
The problem of having a centralized module that is not able to adapt to the traffic
it might have is not new in the IT world. In the last years, the Cloud Native approach
has been adopted by many companies to solve similar problems in other fields than
networking. The idea is to design and implement systems that can scale horizontally,
respecting three principal criteria:

• Statelessness: each component should not store any state information, that
should be stored in an external database;

• Microservices: each component should be as small as possible, and should
do only one thing, interact with other components using well-defined APIs, and
should be replaceable;

• Scalable: the system should be able to scale horizontally, working with more
instances of the same component in an organized way.

The main goal is then to study the feasibility and produce a prototype of a Cloud
Nativemodule that can replace the current Cisco NSO based one, exploring the tech-
nologies and tools already present in the world and eventually developing new ones
if needed.

The long term goal, of which this thesis is the starting point, is to have a fully func-
tional Cloud Native module that can replace the actual one, solving the issues de-
scribed before and being more flexible and reliable.

1.4 Structure of the Thesis
The thesis is structured as follows:

• Chapter 1 - Introduction (this chapter) introduces the context of the work, the
problem to solve, and the goals to achieve;

• Chapter 2 - Background provides the necessary background about the tech-
nologies and tools used in the work;

3

Introduction

• Chapter 3 - Services in Telcos describes what services are and how they are
provided to customers in a Telco context;

• Chapter 4 - Framework Architecture illustrates the proposed Framework archi-
tecture, the components used, and how they interact together;

• Chapter 5 - Implementation describes the implementation details of the pro-
posed Framework, the challenges faced, and how they have been solved;

• Chapter 6 - Validation reports the tests performed to validate the proposed
Framework and the results obtained;

• Chapter 8 - Future Work discusses the possible future developments and im-
provements that can be made to the proposed Framework;

• Chapter 7 - Conclusion summarizes the work done and the results achieved.

4

Chapter 2

Background

The automation and orchestration of modern network infrastructures require a set
of technologies and paradigms that allow efficient management of both distributed
workloads and network device configurations. This chapter presents the fundamental
technologies onwhich our framework is built, illustrating howeachof themcontributes
to the proposed solution.

The following sections explore Kubernetes, ArgoCD, Network Operating Systems,
and the Kubenet framework, highlighting their key features and their relevance to our
work.

2.1 Kubernetes
Kubernetes, often abbreviated to k8s, is a large open-source system for automating
deployment, scaling, and management of containerized applications [2]. Particularly
interesting for our purpose is the general concepts of declarative idempotency and
the use of custom resources (CRs) to extend the Kubernetes API, providing extensibility
and flexibility in managing resources.

Kubernetes represents the de facto standard for container orchestration, being the
state of the art of Cloud Native evolution. Traditionally, applications were deployed on
bare metal servers, that over time have evolved into virtual machines, which are now
being replaced by containers, lightweight isolated systems that are fully independent
of one another, but rely on the host OS, reducing the overhead. The first tool to pop-
ularize containers was Docker, while Kubernetes permits to manage them at scale,
orchestrating containerized applications across clusters of machines. Particularly in-
teresting in that sense is the vision Kubernetes has of servers, which pass from being
treated as ‘pets’ to be cared for, to ‘cattle’ to be managed, where the focus is on the
applications and their deployment rather than on the underlying infrastructure.

5

Background

2.1.1 DeclarativeModel
Every resource in Kubernetes, such as pods1, services2, or nodes3 themselves, is de-
fined in a declarative manner, meaning that the desired state of the resource is spec-
ified and Kubernetes takes care of ensuring that the actual statematches the desired
state. This approach, known as declarative idempotency, allows for easier manage-
ment of resources, as the system automatically reconciles the current state with the
desired state, ensuring that the systemconverges towards the specified configuration.
Moreover, the systemadministrator can focus ondefiningwhat the systemshould look
like, rather than how to achieve that state, which is handled by Kubernetes itself.

Each of that resources is managed through a YAML or JSON manifest file, that has
some fields that are common to all resources, such as apiVersion, kind, and metadata,
that are used to identify and centrally manage the resource, and some fields that
are specific to the resource type, that are enclosed in the spec and status sections.
The spec section defines the desired state of the resource, while the status section
contains the current state of the resource, which is automatically updated by Kuber-
netes.

Resources are stored in a distributed key-value store called ‘etcd’, that stands for
‘distributed etc’4, which is in charge of persisting the state of the cluster and ensuring
that all nodes in the cluster have a consistent view of the resources. The interaction
with external tools and users is permitted by a RESTful API, that allows to create, read,
update, and delete resources in the cluster. The API server is a special pod that acts
as the central point of communication for all resources in the cluster, exposing this
API.

Figure 2.1: Interaction Model of API Server

1A pod is the smallest deployable unit in Kubernetes, representing a single instance of a running
process in a cluster, and can contain one or more containers.

2A service is an abstraction that defines a logical endpoint and a policy for accessing resources,
often used to expose applications running on a set of pods.

3A node is aworkermachine in Kubernetes, whichmay be a physical or virtualmachine, and is where
the pods are run.

4etc is a Unix directory that contains configuration files.

6

Background

1 apiVersion: v1
2 kind: Pod
3 metadata:
4 name: nginx
5 spec:
6 containers:
7 - name: nginx
8 image: nginx:1.14.2
9 ports:
10 - containerPort: 80

Example of a Kubernetes resource manifest

CustomResource Definitions

There is a set of built-in resources that Kubernetes provides, that are the bricks of the
system, such as pods, services, deployments, and nodes. However, Kubernetes also
allows users to define their own custom resources, which can be used to extend the
Kubernetes API and provide additional functionality.

These are called Custom Resources (CRs) and are defined using Custom Re-
source Definitions (CRDs), which are themselves Kubernetes elements that define its
schema and behavior. Each CR must register a kind and an apiVersion, which are
used to identify the resource and its version, and it can customize the spec and status
sections to define the desired and current state of the resource.

Usually, CRs are then supervisedbyacontroller, which is a special pod thatwatches
for changes to the CR and takes action to ensure that the actual state matches the
desired state, eventually adding, modifying, or deleting other resources in the cluster
or performing some other actions on external systems.

However, CRs can also be used to extend the Kubernetes API without the need for
a controller, by simply defining the resource and its schema, using it as a simple data
structure to store information with the advantage of an already implemented API and
a consistent way to manage the resources.

API Service Resources

Kubernetes also provides a way to extend the API server itself, allowing users to de-
fine their own API services that can be used to expose CRs or to provide additional
functionality, without relying on the default Kubernetes ‘etcd’.

This is done through API Service resources. With this configuration, the API server
acts as aproxy able to forward requests to the customAPI service, which canbe imple-
mented in any language or framework, and deployed inside the cluster or externally.

7

Background

If the underlying service exposes a RESTful API with the same structure of the Ku-
bernetes API, the API server can automatically handle the requests and responses,
allowing users to interact with the custom API service as if it was a native Kubernetes
resource.

This allows for a seamless integration of custom services into the Kubernetes
ecosystem, without relying on the default ‘etcd’ store, but still preserving the ad-
vantages of the Kubernetes API. Persisting the data in a persistent store, such as a
database, if needed, is the responsibility of the business logic.

Figure 2.2: Interaction Model of API Service

2.1.2 Running Applications
Applications in Kubernetes are called Workloads, and they are the actual computing
elements that run on the cluster. Basically, workloads are defined as pods, eventually
running more than one container. If multiple containers are defined in the same pod,
they are usually tightly coupled and share the same network namespace, allowing
them to communicate with each other using ‘localhost’, without exposing any port to
the outside world.

Usually, we do not want to run a single pod, but rather a set of pods, able to scale
up and down based on the load, and to provide high availability and fault tolerance.
To achieve this, Kubernetes provides a set of higher-level abstractions, each one with
its own specific use case.

• Deployments are the most common way to run applications in Kubernetes, al-
lowing users to define a desired state for a set of pods, and Kubernetes will en-
sure that the actual state matches the desired state, automatically scaling the
number of pods, and providing rolling updates and rollbacks to ensure that the
application is always available and up-to-date.

• StatefulSets are used to run stateful applications, such as databases, that re-
quire a stable network identity and persistent storage. The main difference with
deployments is that Pods in a StatefulSet are assigned a unique, stable identity
that can be used to directly interact with a specific replica, rather than as one
casual instance of a set of pods.

8

Background

• DaemonSets are used to run a single instance of a pod on each node in the
cluster, ensuring that the pod is always running on all nodes, and providing away
to run system-level services, such as logging or monitoring agents, that need to
run on all nodes in the cluster.

• Jobs and CronJobs are used to run batch jobs, that are short-lived tasks that
need to be run respectively once or periodically.

Each set can schedule one or more pods, which are then managed by the Kuber-
netes scheduler, that is responsible for placing the pods on themost suitable nodes in
the cluster, based on the available resources and the defined constraints. So, in each
workload type except DaemonSets, the pods are not tied to a specific node, and can
be scheduled on any node in the cluster, meaning that they can be moved all on a
single node, or spread across multiple nodes. It is also possible to force a pod to run
on a specific node, using node selectors or affinity rules, that allow users to define the
placement of the pods based on labels or other criteria. This can be useful to ensure
that the pods are running on nodes with specific hardware or software requirements,
or to guarantee that pods of the same application are running on different nodes to
provide high availability and fault tolerance.

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: nginx-deployment
5 labels:
6 app: nginx
7 spec:
8 replicas: 3
9 selector:
10 matchLabels:
11 app: nginx
12 template:
13 metadata:
14 labels:
15 app: nginx
16 spec:
17 containers:
18 - name: nginx
19 image: nginx:1.14.2
20 ports:
21 - containerPort: 80

Example of a Kubernetes Deployment

9

Background

2.1.3 Virtual Clusters with KinD
As described in the starting of this chapter, Kubernetes is a system that is designed to
run on several nodes, that can be physical or virtual machines, and run workloads on
them orchestrated by the Kubernetes scheduler. However, if themain interest is to run
a simple cluster for developing and testing purposes, it is possible to run a single-node
cluster, that is able to run all the components of a Kubernetes cluster, including the API
server, the scheduler, and the controller manager, without the need of a full-fledged
cluster of machines.

This can be achieved using KinD (Kubernetes in Docker) [3], which is a tool that
allows users to run Kubernetes clusters in Docker containers. KinD then exposes the API
server so that it can be accessed from the hostmachine with a dedicated kubeconfig
file5, with no difference from a real cluster.

2.2 ArgoCD
Given that Kubernetes is a declarative and idempotent system, it is possible to deploy
resources in a way that ensures that they are always on the same state provided by
the manifest files. Kubernetes provides a way to deploy resources using the kubectl
command-line tool, which allows users to apply, delete, or update resources in the
cluster, and that provide the option ‘-f’ that is able to read the manifest files from the
local filesystem or from a remote URL and apply them to the cluster.

However, this approach is not suitable for managing complex applications be-
cause it does not provide a way to manage the state of the resources over time, and
it does not allow for easy rollback or versioning of the resources. There are no built-
in mechanisms to ensure that behavior is maintained. To address this issue, we can
version the manifest files, that are the source of truth for the resources, and that can
be stored in a standard version control system, such as GIT.

At that point, we would need a tool that is in charge of ensuring that the resources
in the cluster are always in sync with what is defined in the GIT repository. This is the
role of ArgoCD [4], that is a declarative, GitOps continuous delivery tool for Kubernetes.
ArgoCD allows users to define applications as Kubernetes resources, and to manage
them using GIT as the source of truth. It provides a web-based user interface and
a command-line interface to manage the applications, and each application is de-
fined as a set of Kubernetes resources that are stored in a specific folder in the GIT
repository. ArgoCD then monitors the GIT repository for changes in polling mode, and

5A kubeconfig is a YAML file that contains the information needed to connect to a Kubernetes cluster,
such as the API server endpoint and the authentication credentials.

10

Background

automatically applies the changes to the cluster just when the resources are updated.

Figure 2.3: ArgoCD Workflow

2.2.1 ArgoCDApplications
The resources that should be deployed on the cluster are defined as ArgoCD Applica-
tions, which are themselves Kubernetes resources that tell ArgoCD how to gain infor-
mation about the application and how to deploy it. There are several ways to define
an application, and below we will see the most common ones.

1 apiVersion: argoproj.io/v1alpha1
2 kind: Application
3 metadata:
4 name: guestbook
5 spec:
6 source:
7 repoURL: https://github.com/argoproj/argocd-example-apps.git
8 targetRevision: HEAD # Git branch or tag to use
9 path: guestbook # Path to the resources in the repository
10 directory:
11 recurse: true
12 include: ”*.yaml”
13 exclude: ”config.yaml”
14 # Destination cluster and namespace to deploy the application
15 destination:
16 name: in-cluster
17 namespace: guestbook

Example of an ArgoCD Application

• Helm Charts are a popular way to package and deploy applications on Kuber-
netes, that rely on an Helm repository, normally managed by the Application de-
velopers, and a file of values that is used to customize the deployment.

• Kustomize is another popular way tomanage Kubernetes resources, that allows
users to define a base set of resources and then customize them for different
environments using overlays.

11

Background

• Directory is the most straightforward way to define an application, where the
resources are stored in a specific folder in the GIT repository, and basically all
the resources in that folder are considered part of the application6.

2.2.2 ArgoCDwithmultiple clusters
ArgoCD is deployed as a set of pods in Kubernetes, and as default it is configured to
manage the resources in the so-called ‘in-cluster’, that refers to the local installation.
However, it is also possible to configure ArgoCD tomanage resources in multiple clus-
ters, allowing users to deploy applications across different Kubernetes clusters, even
with a single ArgoCD installation.

To do that, it is necessary to configure the ArgoCD server to connect to the other
clusters, basically providing the foreign API server endpoint and the authentication
credentials to access the cluster. This can be done using the ‘argocd cluster add’
command from ArgoCD CLI, which will add a secret in the ArgoCD namespace that
contains the information needed to access the cluster.

Figure 2.4: ArgoCD with Multiple Clusters

2.3 Network Operating System
Each device in the network has its own operating system, composed of the data plane,
the control plane, and the management plane. Maintainers are able to interact with
the device either through a command line interface (CLI) or, in some cases, through
a graphical user interface (GUI). However, in a big infrastructure that relies on SDN,
configuring each device manually is not affordable, so a more automated approach
is needed.

6It is possible to exclude some files or create some include rules to better select wanted resources.

12

Background

This is the role of theNetworkOperatingSystem (NOS), and in particular of the SDN
controller. There are several ways to create a SDN controller: in some cases, both the
control and themanagement plane are centralized, but this can lead to errors in case
of failures. A more conservative approach is to keep the control plane distributed on
each device, and to centralize only the management plane. This is the approach
taken by most of the SDN controllers, including the one used in TIM and object of this
thesis. It has a centralized view of all devices in the network and is able to configure
them in a consistent way, applying the appropriate configuration on each device to
obtain the desired status. It is also able tomonitor the devices and collect information
about their status, such as the traffic statistics, the CPU and memory usage, and so
on.

This centralized systemmust be able to interact with the devices in a standardized
way, so that it can be used with different vendors and different devices. Historically,
each vendor had its own way to interact with the devices, and its own operating sys-
tem, that is different based on the functionality and the hardware capabilities of the
device itself. Even the same vendor could have different operating systems for differ-
ent devices: this is the case of Cisco7.

The majority of the devices exposes an SSH server, that allows to connect to the
device and execute commands on it. This approach is not suitable for automation,
because it requires to know the exact commands to execute, differentiated by each
device type. For this reason, a more standardized approach is needed, that is based
on the use of protocols and data models.

2.3.1 Language of Devices: YANG
YANG is a data modeling language used to model configuration data, state data, Re-
mote Procedure Calls, and notifications for networkmanagement protocols. Although
it is defined in RFC 7950 [5] and adopted by the major vendors, there are still some
differences in the implementation of the language itself, so it is not immediate that a
model written by a vendor can be used with any tool using YANG.

As an example, GoYang [6] is a Go package that provides a YANG parser and val-
idator, allowing to work with YANG models in Go. It is able to parse YANG models and
generate Go code that can be used to interact with the devices, but does not fully
support the way some of the Cisco models are written, with particular regard to the
so-called unified models and the way each of them is customized by specific de-
vices. The limitation is that, if using this library, all the configurations and queries must

7Cisco is a leadingprovider of networking equipment and software, offeringawide rangeof products
and solutions for service providers.

13

Background

be written using a subset of the original YANG models.

2.3.2 Interactingwith Devices: NETCONF and gNMI
While YANG is the language spoken by the devices, there are two main protocols that
allow to interact with them: NETCONF and gNMI.

NETCONF (Network Configuration Protocol), defined in RFC 6241 [7], providesmech-
anisms to configure network devices using a client-servermodel. It uses XML encoded
messages over SSH or TLS, with transactions that support validation and rollback. The
protocol defines base operations like <get>, <get-config>, and <edit-config>.

gNMI (gRPC Network Management Interface), specified by the OpenConfig8

project [8], is a newer alternative using gRPC as transport and Protocol Buffers for data
serialization. It supports both streaming telemetry and request-response interactions,
with core operations including Get, Set, and Subscribe.

The key differences between these protocols are:

• Efficiency: gNMI is generally more efficient due to its compact Protocol Buffers
encoding.

• Telemetry: gNMI has native support for streaming telemetry, while NETCONF re-
quires additional mechanisms.

• Transactions: NETCONF offers a more sophisticated transaction model with ex-
plicit commit and rollback.

• Adoption: NETCONF has broader vendor support, while gNMI is more commonly
used in modern cloud-native environments.

2.3.3 Examples of Existing SDNControllers
In the Telco industry, several SDN controllers have emerged to address the complexity
of network management, with both proprietary and open-source options available.
Cisco Network Services Orchestrator (NSO) [9] stands as a leading proprietary so-
lution, originating from Tail-f Systems before Cisco’s acquisition. NSO utilizes a model-
driven approach with NETCONF/YANG, enabling multi-vendor management through
network element drivers (NEDs) that translate vendor-specific configurations to stan-
dardized models. Its key strength lies in the transaction-based configuration system

8OpenConfig is an informal working group of network operators that develops vendor-neutral data
models for network configuration and management. It was formed in 2015 by major service providers
including Google, Microsoft, and Facebook to address the lack of standardization in network device
configuration.

14

Background

that ensures atomic changes across the network, with robust validation and rollback
capabilities.

Among open-source alternatives, OpenDaylight (ODL) [10] and ONOS (Open Net-
work Operating System) [11] are widely adopted. OpenDaylight provides a modular
platform supporting multiple southbound protocols including OpenFlow9, NETCONF,
and REST, while offering northbound APIs for applications. ONOS, developed with a fo-
cus on service provider networks, emphasizes high availability and scalability, making
it suitable for mission-critical networks. Both platforms offer rich plugin ecosystems
that enable users to customize and extend their core capabilities.

Each controller offers distinct advantages depending on specific use cases: Cisco
NSO excels in service orchestration across multi-vendor environments with its com-
mercial support and mature transaction system; OpenDaylight provides flexibility
through its modular architecture and protocol support; while ONOS delivers perfor-
mance optimized for carrier-grade networks.

2.4 Kubenet Framework

The Kubenet framework is a collection of tools designed to manage network devices
using Kubernetes as an automation and orchestration engine [12]. It is completely
open-source on GitHub and is developed by the Kubenet community, mostly without
relying on already developed tools. The framework is designed to be modular, allow-
ing users to select only the components they need.

The project is pretty new, with the first commits dating back to 2023, and themajor-
ity of the modules are still in development, or just in the planning phase. For the same
reason, the documentation is not yet complete, and in some cases, not aligned to the
actual implementation.

Since most of the developers involved in the project are Nokia engineers, it is fully
operational with devices from this vendor, and all the examples and tests done by the
team are based on their devices. However, the community shows the framework as a
vendor-neutral solution, and it is designed to be compatible with any network device
implementing the gNMI or the NETCONF protocol.

In the following sections, we will analyze the main components of the framework,
focusing on the ones that are already available and stable.

9OpenFlow is a communications protocol that gives access to the forwarding plane of a network
switch or router over the network, maintaining the control plane separate from the data plane.

15

Background

2.4.1 SDCIO
Themost stable component of the Kubenet framework is the SDCIOmodule [13], which
is in charge of managing the connection to the network devices. It is designed to be
a generic solution, allowing users to connect to any device that supports the YANG
language and one protocol among NETCONF and gNMI. The actual implementation
allows only gNMI connections, while NETCONF support is still in planning.

The module gains the running configuration of the devices and saves them in a lo-
cal database, exposing themas Kubernetes resources using the API Serviceparadigm
(section 2.1.1). Using the Configurations provided by the users, that will be discussed in
section 2.4.1, it then calculates the wanted final state of the devices and applies the
changes using the gNMI protocol. The module also provides a way to discover the
devices in the network, allowing users to connect to them with minimal configuration.

Architecture

SDCIO is designed to be deployed as a Kubernetes Deployment, and is composed by
a caching mechanism and three main components written in Go:

Figure 2.5: SDCIO Architecture

• Schemaserver: it has the responsibility of reading the YANGschemasandexpos-
ing them as internal resources, that are then consumed by other components
of the module.

16

Background

• Config server: it is the northbound interface of the module, exposing the de-
vice configurations as Kubernetes resources. It also allows interactions through
a RESTful API. It is designed to be a Kubernetes controller, managing all the cus-
tom resources defined by SDC module.

• Data server: it is the southbound interface of the module, managing the con-
nection to the devices and applying the changes to them. It is responsible for
the actual communication with the devices, using the gNMI protocol.

The modules communicate with each other using the gRPC protocol, allowing
them to be decoupled and independently scalable.

SDCIO also has a cache mechanism to internally store the device configurations,
and intents, allowing themodule to not rely on the Kubernetes API server and providing
a faster access to the data. This cache is actually implemented using a file storage
inside the data-server component, but it is planned to be replacedwith amore robust
solution based on BadgerDB10.

Device Discovery andConnection

There are several resources that need to be created in the Kubernetes cluster to al-
low the SDCIO module to connect to the devices. The overview schema is shown in
Figure 2.6, where some resources are Kubernetes native, while others are Custom Re-
sources defined by the module.

Figure 2.6: SDCIO Target Discovery and Connection

10BadgerDB is a fast key-value store written in Go and designed for high performance and efficiency.

17

Background

• Target Connection Profile: is a CR that defines the connection parameters to
the devices, such as the protocol to use, the target port, and the encoding.

• Credentials: is a Kubernetes secret that contains the username and password
to use to connect to the devices.

• Target Sync Profile: is a CR that defines the synchronization parameters, such
as the interval to use to poll the devices for changes. It includes parameters
similar to Connection Profile, with the addition of all the YANG paths that shall be
monitored and synced.

• Schema: is a CR that defines where to find the YANG schemas to use to parse
the device configurations. It uses a GIT repository as a source, and can have two
different paths for schemas and includes. It is possible to include an entire folder
or single files. This feature can be particularly useful to include only a subset of
the schemas.

• DiscoveryRule: is a CR that defines where to discover the devices in the network.
It includes a reference to Target Connection Profile, Credentials, and Target Sync
Profile, and the targets can be discoveredwith their direct IP address, or scanning
an entire subnet, defined as a CIDR.

• DiscoveryVendorProfile: is a CR that defines some characteristics of the device
based on its vendor and model. It is used to map each device that matches
the discovery rule to a specific Schema, allowing the module to use the correct
YANG schemas to parse the device configurations. It contains the YANG paths for
version, platform, hostname, and other information that can be used to identify
the device and will be reported in the Target resource.

• Target: is a CR that represents the device in the Kubernetes cluster. It is created
by the SDCIO module after discovering the device and contains all the informa-
tion about it, such as the vendor, model, and connection parameters. It also
contains a reference to the Discovery Vendor Profile used to parse the device
configuration.

• Running Config: is an API Service resource that contains the running configu-
ration of the device, parsed using the YANG schemas defined in the Schema
resource, on paths defined in the Target Sync Profile. It is updated periodically
based on the Target Sync Profile defined for the device.

Configurations

Once the Target resource is created, the SDCIO module starts managing the device
configurations. All the resources related to configurations are defined as API Service

18

Background

resources, using the paradigm described in section 2.1.1.
One or many Configuration objects can be created, each one for a specific pur-

pose, and containing the desired state of the device. The Configuration is linked to a
specific Target through a couple of special labels, and several values referenced to
different YANG paths can be defined in the same resource. Creating multiple config-
urations that act on the same YANG paths and the same device can lead to conflicts,
that are managed by the module using a priority system. Each Configuration is as-
sociated with a specific Priority, and the final configuration applied to the device is
calculated taking the configuration with higher priority for each specific field.

The following example shows the resource needed to configure an OSPF process
on a Cisco device, with the process name, router ID, and interfaces.

1 apiVersion: config.sdcio.dev/v1alpha1
2 kind: Config
3 metadata:
4 name: conf-edge01-svc1
5 labels:
6 config.sdcio.dev/targetName: edge01
7 config.sdcio.dev/targetNamespace: default
8 spec:
9 priority: 10
10 config:
11 - path: /router/ospf/processes
12 value:
13 process:
14 - process-name: ”1”
15 router-id: 10.10.10.10
16 areas:
17 area:
18 - area-id: 0
19 interfaces:
20 interface:
21 - interface-name: Loopback0
22 - interface-name: GigabitEthernet0/0/0/1

Example of Configuration in SDCIO

Configurations Lifecycle

One of the major problems when porting configurations to a Kubernetes-like system
is the idempotency of the operations. SDC Configurations are designed to be idem-
potent, meaning that applying the same configuration multiple times will not change
the device state, and when a configuration is applied, the state of the device reflects

19

Background

what is defined in the configuration, as long as the configuration is valid, and then re-
movedwhen the original resource is deleted. The data server is in charge of detecting
any sort of changes or deletions and convert them into gNMI operations to apply to
the device.

This is the default behavior of the module, but in some cases there is the need of
applying a configuration that should remain on the device for all its lifetime, without
the risk of being removed unintentionally. For this reason, the lifecycle property can
be added to the configuration, that accepts two values:

• Delete: the default value, meaning that the configuration is applied to the device
and removed when the resource is deleted.

• Orphan: the configuration is applied to the device and remains there until ex-
plicitly removed11, even if the resource is deleted.

2.4.2 KUID
KUID is a cloud-native application that extends the Kubernetes API, dedicated toman-
age network and infrastructure resources within Kubernetes environments. It focuses
on inventory, IP addresses, VLANs, AS numbers, and similar resources required by net-
work services [14]. By leveraging the Kubernetes-native architecture andcustomizable
fields, KUID facilitates streamlined resource organization and tracking.

The module offers robust IP Address Management (IPAM) capabilities for efficient
allocation and oversight of IP resources across the infrastructure. Additionally, it pro-
vides sophisticated infrastructure management functionalities, empowering users to
organize and manage various infrastructure components within a structured hierar-
chy, aligning with the cloud-native approach of the Kubenet framework.

Similarly to the SDCIOmodule, it is designed to be a Kubernetes controller, manag-
ing all the custom resources defined by KUID module, and deployed as a Kubernetes
Deployment.

2.4.3 Choreo
Choreo is an advanced open-source orchestration framework designed to simplify
and enhance network automation and orchestration [15]. While built on the principles
of Kubernetes, it does not rely directly on Kubernetes resources, but rather leverages

11The only way to delete a configuration with Orphan lifecycle is to apply another configuration that
explicitly deletes or resets the wanted YANG fields.

20

Background

the Kubernetes Resource Model (KRM) to define its own custom resources. This ap-
proach provides a familiar declarative syntax for network engineers, without requiring
an actual Kubernetes cluster for operation.

The framework utilizes an event-driven and declarative approach to automation,
allowing users to define the desired state of their network infrastructure and letting
the system handle the details of how to achieve that state. This aligns with the overall
philosophy of the Kubenet framework, emphasizing configuration as code and declar-
ative models.

The module is still in development, many features are not yet stable, and it is dif-
ficult to have a complete overview of the project, since some features are not yet
implemented.

Project Structure

The Choreo project works with files organized in a specific structure, that enables the
module to understand the relationships between different resources.

• crd: contains the Custom Resource Definitions (CRDs) that define all the re-
sources the module interacts with.

• in: contains the input files that define the business logic, such as input data and
reconcilers.

• out: is the folder used to store the output files generated by the module, such as
the final configurations to apply to the devices.

• refs: can contain entire submodules, that are defined in the same way as the
main module, but can be used to extend the functionalities.

Architecture

By default, Choreo is not shipped containerized, but as an executable file that can
run in Dev or Prod mode: the difference is that in Dev mode the module runs when
the user requests it, while in Prodmode it runs as a long-running process, listening for
changes in the input files and reconciling them with the output files.

A first instance of the module is launched to act as a Server who reads the input
files and waits for instructions from the user. A second instance is launched to act as
a Client that tells the server to reconcile the input files and generate the output files.

Reconcilers

Reconcilers are defined in a similar way to the Kubernetes controllers, allowing each
resource to watch, own, and act on specific resources defined in the configuration

21

Background

file. The logic is to provide an interface that is simple to use, also for users that are not
familiar with controllers programming.

Basically, a reconciler is a function that takes an input file (single resource) and
generates one or more output files (one or more resources) based on the business
logic defined in the module. Choreo provides different ways to define reconcilers:

• Starlark: a Python-like language that is easy to learn and use. The file defines the
output files to generate, using a specific syntax to reference input files. Choreo
provides a set of built-in functions useful for network automation.

• Jinja2: a templating engine that allows users to define templateswith placehold-
ers that are replaced with actual values from the input files. It is widely used in
the Python ecosystem and easy to learn. The limitation of this approach is that
it cannot define complex business logic, and each reconciler can generate only
one output file.

• GoTemplate: similar to Jinja2 templates, but more powerful and allows users to
define complex business logic.

Among these, Jinja2 templates are the most used in other environments due to
their ease of use and popularity in the Python ecosystem. The Choreo application of
Jinja2 relies only on the builtin functions and filters, though Jinja2 permits extending
the functionality with custom filters and functions, allowing implementation of more
complex business logic.

2.4.4 Pkgserver
According to what its developers claim, Pkgserver would be a component of the
Kubenet framework designed for streamlined Kubernetes ResourceModel (KRM) pack-
agemanagement in conjunction with GitOps systems [16]. However, like several com-
ponents of this framework, themodule is still in an embryonic state of implementation
and with very limited documentation.

Basedon the creators’ vision, themodule should facilitate continuousdelivery prac-
tices for network infrastructure, ensuring reliable and consistent rollouts of configura-
tion changes to network devices. Whether managing infrastructure in development
or production settings, Pkgserver should provide the necessary tools to automate the
deployment process, following the declarative approach that characterizes the entire
Kubenet framework. Despite these promising features, the current implementation is
largely incomplete and difficult to use in real-world contexts. The lack of concrete
examples and technical documentation makes it complex to understand the actual
functionalities already developed and those still in the planning phase, significantly
limiting the adoption of this module.

22

Chapter 3

Services in Telcos

As a customer, we usually see the ISP as a simple ‘plug’ that, in some way, connects
us to the Internet. We also know that the ISP is able to give us several services, such
as a private connection between two sites of the same company, but we consider it
as a black box.

Each Telco has its own organization and uses a different set of vendors for their
infrastructure, but we canabstract somecommonelements. Normally, there is a clear
separation between the network infrastructure and the services delivery system. The
first one is responsible for the physical and logical connectivity between the nodes of
the network, providing a robust and reliable communication channel. The second one,
that can rely on the first one, is responsible for the delivery of services to the customers,
such as Internet access, private connections, and so on.

While the interest of this Thesis is focused on the services part, we must not forget
the importance of the underlying infrastructure, specially because we need a similar
underlying infrastructure to run our experiments.

3.1 Network Topology
A Telco network is composed of thousands of nodes, connected in a complex topol-
ogy that is designed to provide high availability and redundancy, while preserving the
costs of the infrastructure. All these nodes are usually divided from a logical point of
view into several zones, that might have a relationship with the geographic location
of the nodes, but not necessarily.

There are then two main layers in the network: the backbone and the edge. Cus-
tomer endpoints are connected only to the latter one, while the backbone is responsi-
ble for the interconnection of the edge nodes and are connected only to other nodes
of the operator. Services are usually delivered over the edge nodes, so the backbone

23

Services in Telcos

is not directly involved in the delivery of services to the customers, even if the real
traffic will traverse this layer.

Above all these nodes, a dynamic routing protocol is used to ensure that the traffic
is routed correctly, even in case of failures. Each node is recognized in the network
by a unique identifier, that is an IPv4 address assigned to a specific loopback inter-
face1. MPLS is then used to allow the creation of virtual circuits between the nodes,
that can be used to deliver services to the customers, optimizing the traffic over the
whole network.

In our study case, we will focus on a single vendor, assuming that all the nodes of
the network are Cisco devices.

An example of a Telco network topology is shown in Figure 3.1, where the backbone
links are represented with solid lines, while the edge links are represented with dotted
lines.

Figure 3.1: Example of Telco Network Topology

3.1.1 Topology Simplification for Experiments
In order to simplify the network topology for our experiments, we will create a reduced
version of the original topology. This simplified topology will retain the essential char-
acteristics of the original one, while removing unnecessary complexity.

From the services point of view, the number of nodes in the backbone is not impor-
tant as long as there is a connection between the edge nodes. For this reason, we
could consider a single backbone node, and the edge nodes which the customers
are connected to, obtaining a topology like the one shown in Figure 3.2.

If we go deeper into the abstraction, we can assume that all the services are di-
rected from one edge node to another one, that can eventually be the same one, but

1A loopback interface is a virtual interface that is always up and reachable, even if the physical
interfaces are down. For this reason, it is used to provide an address that is always reachable, even in
case of failures.

24

Services in Telcos

definitely not the backbone node. So, the backbone is not involved into the service
itself, but it simply guarantees the connectivity between the edge nodes. In our case,
we can then consider the two edge nodes as the only ones and directly connected,
as shown in Figure 3.3.

Figure 3.2: Simplified Telco Network Topology

Figure 3.3: Minimal Telco Network Topology

3.1.2 Topology Emulation: Containerlab
Containerlab [17] is a tool that allows to emulate network topologies using Docker con-
tainers, providing a lightweight and flexible environment for testing and experimenta-
tion.

All the wanted topology is described in a YAML file, as an array of nodes and an
array of links between them. Whendeployed, each node becomes aDocker container,
and virtual links are created between them.

Keeping focused on Cisco devices, we can use the Cisco IOS XRd image [18], that
is a lightweight version of the Cisco IOS XR operating system, designed for emulation
purposes. It is shipped in two versions: one with the full set of features (Cisco XRd
vRouter), and one that has only the control plane, and a very simplified data plane
(Cisco XRd Control Plane). It is possible to use the latter one to reduce the resource
consumption, considering that we are not interested in the real traffic forwarding, but
only in the configuration and management of the devices.

Finally, we can use simple Linux containers to represent the customer endpoints,
that will be connected to the edge nodes of the network. In this way, we can easily
simulate the customer traffic and test the network services.

25

Services in Telcos

1 name: topo2nodesxrd
2 mgmt:
3 mtu: 1500
4 network: kindnet
5 ipv4-subnet: 172.21.0.0/16
6 topology:
7 kinds:
8 linux:
9 image: ghcr.io/hellt/network-multitool
10 cisco_xrd:
11 image: ios-xr/xrd-control-plane:7.11.2
12 nodes:
13 edge01:
14 kind: cisco_xrd
15 type: ixrd2
16 edge02:
17 kind: cisco_xrd
18 type: ixrd2
19 client1:
20 kind: linux
21 client2:
22 kind: linux
23 links:
24 - endpoints:
25 - ”edge01:Gi0-0-0-1”
26 - ”edge02:Gi0-0-0-1”
27 - endpoints:
28 - ”client1:eth1”
29 - ”edge01:Gi0-0-0-2”
30 - endpoints:
31 - ”client2:eth1”
32 - ”edge02:Gi0-0-0-2”

Containerlab Topology for Minimal Telco Network

3.2 Customers Services Delivery System
When talking about services, the interest is not focused on the network infrastructure,
but on the willing to have an easy to use and reliable system that allows operators to
deliver services to the customers.

In this optic, the unification of themanagement of all the devices in a single system,
as seen in the previous section, is crucial, but not enough. The system should be able
to receive intents from the operators and translate them into configurations for the

26

Services in Telcos

devices before applying them across the network. This is the role of yet another com-
ponent (Service Abstraction Layer in Figure 3.4), that is in between the SDN controller
and the creation of services, that could be done directly by a human operator, or by
an automated system that is able to create services based on the customer requests.
The interaction model of this system is shown in Figure 3.4.

Figure 3.4: Service Delivery System Interaction Model

3.3 Examples of Services
It is nowpossible to define someexamples of services that can be delivered to the cus-
tomers, using the previously defined systems. For the next examples, we will consider
the simplified topology shown in Figure 3.3, where the two edge nodes are directly
connected to each other, and the customers are connected to them. Clients node in
the network are basic Linux containers, while all the others are Cisco devices.

3.3.1 L2MPLS Tunnel
A Layer 2 MPLS Tunnel is a service that allows to connect two customer endpoints
over a virtual circuit, using the same VLAN tag on both sides. This service is useful to
create a private connection between two sites of the same company, or to connect
two customers that need to communicate with each other.

For the network, this is deployed using a Cisco Xconnect service, that is a virtual
circuit that connects two endpoints over the network using MPLS. It can be deployed

27

Services in Telcos

on Cisco IOS XRd devices using the following configuration written in Cisco IOS XRd
configuration language, deployed on both edge nodes, where the keyword prefixed
with $ are variables that must be customized for each service instance.

1 config
2 interface $port.$serviceInstanceId l2transport
3 description $serviceInstanceDescription
4 encapsulation dot1q $VLANId
5 rewrite ingress tag pop 1 symmetric
6 exit
7 l2vpn
8 xconnect group svcGroup
9 p2p $pseudowireId
10 interface $port.$serviceInstanceId
11 neighbor $destinationLoopbackAddress pw-id $pseudowireId pw-class CW
12 exit
13 exit
14 exit
15 exit
16 exit

Cisco IOS XRd Configuration for L2 MPLS Tunnel

The simplest configuration is shown in Figure 3.5, but the versatility of the service
allows to create more complex scenarios, such as connecting one customer to multi-
ple endpoints, as shown in Figure 3.6, or connecting two endpoints that are physically
associated at the same edge node, as shown in Figure 3.7. In all the Figures, VLANs
and pseudowire IDs are examples.

Figure 3.5: L2 MPLS Tunnel Service

28

Services in Telcos

Figure 3.6: L2 MPLS Tunnel Service with Multiple Endpoints

Figure 3.7: L2 MPLS Tunnel Service with Same Edge Node

29

Services in Telcos

3.3.2 L2 Tunnel with Bandwidth Control andMonitoring
The previous service can be customized in several ways. This second example shows
a Layer 2 Tunnel service similar to the previous one, but terminated on both sides
without a VLAN tag. This means that a single service instance can be attached to the
same endpoint.

This service is also equippedwith a bandwidth control andmonitoring system, that
is crucial for the Telco operators to ensure that the traffic is correctly managed and
that the service is not overloaded by the customers.

The goal is obtained using Cisco policies and SLA profiles, that are used to define
the bandwidth limits and the monitoring parameters. Unfortunately, these configura-
tions are not supported by the Cisco XRd Control Plane image, so it is necessary to
use physical devices to test this service.

Figure 3.8: L2 Tunnel with Bandwidth Control and Monitoring Service

30

Chapter 4

Framework Architecture

Knowing the best features of all the tools explored in the previous chapters and their
limitations, we can make informed decisions about which technologies to adopt. In
this chapter, we will outline the proposed framework architecture, focusing on the key
components and their interactions.

The general approach is to use established technologies where possible, growing-
up tools when necessary, and creating new ones when needed. The final chain of
tools will be a mix of existing and new components, allowing the user or the upper
layer to provide simple services configuration snippets, and make the framework au-
tomatically push into each device the right configuration to obtain the desired state.

4.1 Overview
The proposed interactionmodel, as illustrated in Figure 4.1, consists of severalmodules,
each one with a specific function. Following a top-down approach, we will have:

• Humans or External tools can trigger the entire process by simply adding a spe-
cific file in a dedicated GIT repository, and pushing it to the remote server.

• A first GIT repository (named Services in the figure) will act as a central database,
able to version1 all the services required, providing also accountability2.

• When new files are added, they trigger the Config Translator, which is in charge

1Versioning refers to the ability to track changes andmaintain different versions of the services con-
figurations over time.

2Accountability refers to the ability to trace back changes to specific users or processes, ensuring
that all modifications are logged and can be audited.

31

Framework Architecture

Figure 4.1: Framework Architecture Overview

32

Framework Architecture

of parsing the files and translating them into a set of SDCIO resources (as de-
scribed in section 2.4.1). After storing them as YAML files, they are pushed to a
second GIT repository.

• The second GIT repository (named Device Configs in the figure) will act as an-
other database, storing all the discovery rules needed to connect to the involved
devices and all the service-specific configuration files.

• These configurations are then read by ArgoCD that creates the associated re-
sources in the right k8s cluster, as described in section 2.2.

• The applied resources finally trigger the SDCIO reconciler, that calculates the
wanted configurations in each device, translates them in YANG modules, and
pushes them to the devices using the gNMI protocol, as described in subsec-
tion 2.4.1.

From the external point of view, the framework exposes two standard interfaces,
providing an easy integration in other processes. The upper layer is a simpleGIT repos-
itory, and the interaction ismadewith a commit-and-pushmodel. In the bottom layer,
the interaction is based on YANG schemas and gNMI protocol, which is a growing-up
standard for network management, adopted by several vendors and open-source
projects.

Internally, each component interacts with others using standardized interfaces, so
that it will be simple to replace one element in the chain if needed. ArgoCD is a widely-
used tool, while SDCIO is the most stable component of the Kubenet framework, even
if still in development. The last component, the Config Translator, is completely new
and implemented in this proposed solution.

4.2 Involved GIT Repositories
The most of the storage is handled through GIT repositories. It is distinguished in two
different and independent repositories since they have different scopes and utiliza-
tions. The Services one is managed by the external tool (or the human), so the frame-
work has only to read from it. Instead, the Device Configs repository is managed inter-
nally by the framework, which is responsible for reading and writing to it.

Another possible solution is to use a single repository for both services and device
configurations, but this would require careful management of the folder structure and
access controls. Moreover, it would create a big data structure, exposing also internal
details to the upper layer, which is not interested in it. The two repositories approach
also facilitates the management of conflicts, since there are less entities involved in
the editing of a single repository.

33

Framework Architecture

4.2.1 Services Repository
The Services repository contains the data of all the devices involved in the process,
all the details of the services to be applied, and the business logic responsible of the
translation from the user-defined resources to the SDCIO resources. Each service is
translated by a dedicated Translator, whose details will be exposed in subsection 4.3.1.

There is a great degree of flexibility in the organization of the repository, allowing
users to better customize it based on their needs. However, a base structure is pro-
vided to better maintain consistency and organization, composed of three main fold-
ers:

• data: contains all the definitions of what needs to be translated in actual device
configurations, including all the related data. This folder can be further divided
into subfolders to better organize the content: in the example below, there are
the services and nodes subfolders, but it is possible to organize themas needed.

• nodes: contains all the information about the devices involved in the process. As
the devices need to be mapped to a Discovery Rule, they themselves are part of
the first category (data); this folder is consequently a subfolder of data.

• translators: contains all the translation logic for each service, implemented as
separate modules.

The following is an example of structure of the Services repository.

repository
data

nodes
edge01.yaml
edge02.yaml

services
service1-customerA.yaml
service1-customerB.yaml
service2-customerA.yaml
service2-customerC.yaml
custom-subfolder

service3-customerD.yaml
translators

device
…

service1
…

service2
…

The relative paths of each of that folders can be customized as we will see in sub-
section 5.2.6.

34

Framework Architecture

While the specific structure of the Service files may vary depending on the needs,
the devices configuration is more rigid, because some of the data present in these
files might be used by other translators, as we will see in subsection 4.3.3. An example
of device configuration file is the following:

1 apiVersion: infra.telecomitalia.it/v1alpha1
2 kind: Node
3 metadata:
4 name: edge01
5 spec:
6 connectIP: 172.21.0.6
7 loopbackIP: 10.10.10.10
8 zone: zone0
9 type: cisco-xrd

Example of Device configuration

1 apiVersion: service.telecomitalia.it/v1alpha1
2 kind: L2Link
3 metadata:
4 name: edge1-2
5 spec:
6 description: ”L2 Link between two edge nodes”
7 firstEndpoint:
8 deviceName: edge01
9 interface: eth5
10 secondEndpoint:
11 deviceName: edge02
12 interface: eth3

Example of Service configuration

4.2.2 Device Configs Repository
The Device Configs repository has a more rigid structure, as it is designed to be used
only internally by the framework, and so there is no need to deeply customize it. The
Config Translator acts as the only writer for this repository, while ArgoCD is the con-
sumer. However, there is always the ability to access directly for monitoring purposes.

The first aim of this component is to provide configuration files using a structure
that can be easily managed by ArgoCD. It means that files can be stored in different
directories, that will be thenmapped to different ArgoCD Application. For example, this
feature can be used to separate devices Discovery Rules and services configuration,
so that they will remain in a distinct structure also in the ArgoCD dashboard, assuring
better visibility and management.

35

Framework Architecture

The secondaim is acting as database forConfig Translator component, preserving
some information about the configurations already applied. In particular, it keeps
track of two main aspects:

• Last AppliedCommit: a reference to the last commit of Services repository that
has been translated. As we will see in subsection 5.2.1, this feature is particularly
important to guarantee the minimum use of computational resources, avoiding
to re-translate configurations that have not changed.

• Service log file: for each executed translation, a file is maintained with the refer-
ences to all the commits which changed the configuration and the timestamp
of the calculation, and the list of created files. This is particularly useful in con-
figuration deletion, allowing to easily identify all the resources that need to be
cleaned up.

In addition, as this repository is the one read by ArgoCD, there is a special folder
that contains all the ArgoCD Application definition. Inserting all these configuration
files in a single directory means that the only application that would be created in the
ArgoCD dashboard is the one configured to read this directory, and all the defined
ArgoCD Applications will become sub-applications and then loaded automatically.
Examples of repository structure and principal files are shown below.

repository
applications

infra.yaml
services.yaml

configurations
infra

edge01-discoveryrule.yaml
…

services
service1-customerA-edge01.yaml
service1-customerA-edge02.yaml
…

translator-db
applied-configs

nodes
edge01.yaml
…

services
service1-customerA.yaml
service1-customerB.yaml
…

last-applied-commit.txt

36

Framework Architecture

1 metadata:
2 name: /services/service1-customerA.yaml
3 status:
4 managedFiles:
5 - service/service1-customerA-edge01.yaml
6 - service/service1-customerA-edge02.yaml
7 updates:
8 - date: 2025-07-30 16:04:20.285463942 +0200 CEST
9 commit: b5eed70d57fd7173f0b0b582876039d0b985bdef

Example of Service Log file

1 apiVersion: argoproj.io/v1alpha1
2 kind: Application
3 metadata:
4 name: infra
5 namespace: argocd
6 spec:
7 destination:
8 name: in-cluster
9 namespace: configurations
10 source:
11 repoURL: https://my-git-endpoint.com/device-configs.git
12 targetRevision: HEAD
13 path: ./configurations/infra
14 project: default
15 syncPolicy:
16 automated:
17 prune: true
18 syncOptions:
19 - CreateNamespace=true

Example of ArgoCD Infrastructure Application file

4.3 Config Translator
The role of Config Translator module is similar to the one offered by Choreo in the
context of Kubenet framework, as discussed in subsection 2.4.3. Therefore, it will have
similar paradigms, including the use of templates and a GIT-based approach, while
several other features, that were not particularly useful in our context, have been re-
moved.

We decided to implement a newmodule, rather than using the existing one, mainly
because it was in an embryonal phase, and so not usable in production, and also
because we wanted to have a tool tailored to our specific needs.

37

Framework Architecture

Themodule is triggered whenever a change is detected in the upstreamGIT repos-
itory, and runs one or more3 Translator in order to translate the configurations to
the downstream repository. There are two principal ways to trigger a program when
changes are detected in a repository:

• Activemode: the program is always active and checks for changes in the repos-
itory at regular intervals. This is the approach used by ArgoCD and has the ad-
vantage of being simple to implement, but it can lead to delays in processing
changes and a waste of resources as it continuously checks for updates even
when there are no changes.

• Passive mode: the program is triggered by webhooks or other event-driven
mechanisms when changes are detected. This can be done exploiting the CI
pipelines4, and is more efficient, as it allows the program to react immediately
to changes, but generally requires permissions to be set up.

4.3.1 Translators
The Translator is the minimal module that has the logic to translate configurations
from the upstream repository to the downstream one. Its role is essentially tomap the
configuration elements from a single service file description into one or more SDCIO
configurations.

Jinja2 is used as template engine, thanks to its simplicity and flexibility. It allows
to parse information from an external source, using exports and includes to provide
modularity and reusability, and allows to execute some simple transformation func-
tions to manipulate the data thanks to its powerful filtering capabilities, that brings
extendability to the system [19].

Each translator is defined in a dedicated folder into the Services repository, and is
composed of a YAML configuration file, one or more Jinja2 ‘main’ template files, and
eventually other Jinja2 supporting files. Each of the Jinja2 ‘main’ files creates a differ-
ent resource, allowing to create multiple resources from a single service file.

The configuration file is YAML based, but it is not a k8s resource: there are no specific
k8s fields or metadata, even if it uses a similar approach.

3Each Translator is responsible for a specific translation task. If multiple translation tasks are needed,
then multiple Translator instances will be created, eventually acting on the same configuration files.

4Continuous Integration pipelines, a way to automatically run elements based on GIT events

38

Framework Architecture

1 spec:
2 for:
3 group: service.telecomitalia.it
4 version: v1alpha1
5 kind: L2Link
6 files:
7 - first-endpoint.main.jinja2
8 - second-endpoint.main.jinja2

Example of translator configuration

The generated files have no specific rules enforced by the module: they only have
to follow the rules of k8s resources and SDCIO. The only constraint whenwriting a Trans-
lator is to add a couple of labels in the metadata:

• config-translator.telecomitalia.it/targetDevice: the module uses the target-
Device field to identify the device to configure and define properly in which Ar-
goCD application it should be placed;

• config-translator.telecomitalia.it/kind: the kind of resource being created
(e.g. infra, service) is also used to determine the right ArgoCD application in
which the resource should be placed.

4.3.2 Example of Translator: Devices
Given a device description file, already seen in Listing 4.2.1, we want to generate the
associated Discovery Rule to allow the system to discover the device and then add
configurations to it. The generated Translator is composed of YAML configuration and
a single Jinja2 template file, as shown below.

1 spec:
2 for:
3 group: infra.telecomitalia.it
4 version: v1alpha1
5 kind: Node
6 files:
7 - discoveryrule.main.jinja2

Device translator configuration

39

Framework Architecture

1 apiVersion: inv.sdcio.dev/v1alpha1
2 kind: DiscoveryRule
3 metadata:
4 name: dr-{{ metadata.name }}
5 labels:
6 config-translator.telecomitalia.it/targetDevice: {{ metadata.name }}
7 config-translator.telecomitalia.it/kind: infra
8 spec:
9 period: 1m
10 concurrentScans: 2
11 addresses:
12 - address: {{ spec.connectIP }}
13 hostName: {{ metadata.name }}
14 discoveryProfile:
15 credentials: cisco-cred
16 connectionProfiles:
17 - conn-gnmi-insecure
18 targetConnectionProfiles:
19 - credentials: cisco-cred
20 connectionProfile: conn-gnmi-insecure
21 syncProfile: gnmi-cisco
22 targetTemplate:
23 labels:
24 sdcio.dev/region: {{ spec.zone }}

Jinja2 DiscoveryRule template

This is themost basic implementation of this translator. It is possible to extend it by
adding some more options, for example changing the Discovery Profile based on the
device Vendor and Model.

The output of this translator, assuming the input provided in Listing 4.2.1, is shown in
the following page.

As described in section 2.4.1, the Discovery Rule is not enough to properly setup a
device. We assumed that the depending resources are already deployed on the tar-
get cluster, but the presented solution can be extended to also create all the needed
resources.

40

Framework Architecture

1 apiVersion: inv.sdcio.dev/v1alpha1
2 kind: DiscoveryRule
3 metadata:
4 name: dr-edge01
5 namespace: default
6 labels:
7 config-translator.telecomitalia.it/targetDevice: edge01
8 config-translator.telecomitalia.it/kind: infra
9 spec:
10 period: 1m
11 concurrentScans: 2
12 addresses:
13 - address: 172.21.0.6
14 hostName: edge01
15 discoveryProfile:
16 credentials: cisco-cred
17 connectionProfiles:
18 - conn-gnmi-insecure
19 targetConnectionProfiles:
20 - credentials: cisco-cred
21 connectionProfile: conn-gnmi-insecure
22 syncProfile: gnmi-cisco
23 targetTemplate:
24 labels:
25 sdcio.dev/region: zone0

DiscoveryRule output

4.3.3 Obtain Devices Specific Information
The Service Configurations often needs specific information about one of the target
nodes to beproperly defined, but this information is normally not available nor needed
at the upper layer. As an example, to configure a L2 tunnel, the Config must include
the neighbor loopback IP, but the upper layer wants to refer to it using its name rather
than the IP address.

The association between the device name and its IP address is already known by
the Config Translator module because it is stored in the node description, as seen
in the Listing 4.2.1. It is possible to define specific Jinja2 filters that outputs the device
loopback IP address based on its name.

Where we want to insert the IP address, we can simply write:
{{ spec.deviceName | nodeLoopback }}

41

Framework Architecture

where spec.deviceName is the name of the device we want to obtain the loop-
back IP for, and it is automatically translated to its loopback IP address thanks to the
nodeLoopback filter.

4.4 Architecture Scalability
A framework that aims to manage thousands of nodes, with much more services,
must be able to scale properly. To ensure that, each element in the chainmust be de-
signed with scalability in mind. For the most common and worldwide used tools, such
as GIT and ArgoCD, scalability has been thoroughly tested and proven in large-scale
environments, and there are several scientific studies that analyze their performance
and scalability limits.

• GIT is known to handle large repositories with ease. In the ‘Git is for Data’ paper,
published in 2023 [20], its performance has been benchmarked for repositories
containing over 550M objects, observing that it could also be scaled to billions
of objects following some optimizations, as developed in GitHub [21].

• ArgoCD is designed to handle large-scale GitOps workflows and is described as
the best GitOps tool for Kubernetes referring to its performance and scalability
in an analysis completed in 2025 [22].

• Kubernetes etcd is known to not scale well with large amounts of data, as it is de-
signed to handle small to medium-sized key-value pairs. This limitation can im-
pact the performance of Kubernetes resources that rely on etcd for storage and
retrieval. However, the SDCIO Config resources does not rely on that distributed
system, as discussed in section 2.4.1, since it is implemented through a k8s API
Service. The SDCIO Discovery Rules, instead, rely on etcd for storing and retriev-
ing the discovered device information. However, since the number of discovery
rules is relatively small compared to the overall number of Kubernetes resources,
the impact on scalability is limited. This limitation can also be mitigated thanks
to the SDCIO scalability solution proposed in subsection 4.4.2.

The same performances must be addressed by the Config Translator and SDCIO
components. The first one is completely new, so it is not possible to refer to existing
studies, but it is crucial to ensure that it can handle large-scale configurations effi-
ciently. The second one is not yet in production, so its performance characteristics
are still under development, and we need to apply some strategies to prove its scal-
ability.

42

Framework Architecture

4.4.1 Config Translator Scalability
The Config Translator is alreadymodular by design: each Translator is responsible for
a specific type of configuration, and does not depend on what other translators do,
making it easier to scale and maintain. As the number of supported services grows,
new translators can be added without impacting the existing ones, ensuring that the
system can evolve and adapt to changing requirements.

As it was presented in section 4.3, all the translators are run by a single controller,
that reads information from the upstream repository andwrites its output to the down-
stream repository. It reads the content of the translator folder to understand what it
has to do, and this pattern can be used to customize the behavior to better suite a
scalable architecture. Splitting the translators in several subfolders, it is possible to run
a different controller for each subfolder, allowing to run multiple instances in parallel.
It can run without conflict, because every translator generates distinct files, given that
each translator is configured to store last commit information in a different location.

Figure 4.2: Config Translator Scalability

The following repository structure can be used to run two instances of the controller
in parallel, one with the responsibility of two services, and the other dedicated to a
specific service (for example, in case of some services with high traffic and others
with lower traffic).

repository
data

…
translators

dedicated-service
…

grouped-services
service1

…
service2

…

43

Framework Architecture

4.4.2 SDCIO Scalability
Scalability issues can arise from three main aspects of the SDCIO module:

• the interaction with physical devices can become a bottleneck, especially in
large-scale deployments, due to the high traffic it can generate;

• the calculation of the actual configuration that needs to be pushed to the de-
vices can cause a great CPU load;

• the storage of all the running configs and the intents can become very large,
causing performance issues on the caching mechanism.

As discussed in section 2.4.1, the SDCIO architecture is designed to have an internal
cachingmechanism using BadgerDB that can improve the handling of the third issue,
but is not yet implemented. The second problem might be addressed with code op-
timization, or with an horizontal scaling of the module. The interaction with physical
devices, even if limited, is in any case a potential bottleneck that needs to be moni-
tored and optimized.

Given that the Telco operator is internally split in several zones from a logical point
of view, it is possible to deploy multiple Kubernetes clusters, one for each zone, each
one with its own SDCIO instance and local database. In this way, the traffic is reduced
and the overall load on each instance is balanced, which can help to mitigate poten-
tial bottlenecks, since there are less devices to manage. This approach can also help
to reduce the load on the etcd database, as each instance will only need to interact
with its local database, rather than a centralized one.

ArgoCD supports themanagement of multiple Kubernetes clusters, as already dis-
cussed in subsection 2.2.2, but with the limitation that each application must be de-
ployed on a single target. For this reason, a little change in the Device Configs reposi-
tory is needed.

In the Service repository, each node is already associated with a zone, so the Con-
fig Translator can be slightly modified to take into account the zone information when
generating the configuration files, and outputting the configurations in different sub-
folders, based on the zone of the target device. The obtained repository structure,
considering edge01 node in zone0 and edge02 in zone1, is depicted in the following page.

At this point, ArgoCD is configured with a different application for each target zone,
with the specification to deploy them in different clusters. Note that the providermight
also choose to use virtual clusters rather than physical ones, if the underlying infras-
tructure needs to haveamore centralizedapproach. Usingdifferent clusters, however,
reduces also the risks associated to a single point of failure.

44

Framework Architecture

repository
applications

zone0-infra.yaml
zone0-services.yaml
zone1-infra.yaml
zone1-services.yaml

configurations
zone0

infra
edge01-discoveryrule.yaml
…

services
service1-customerA-edge01.yaml
…

zone1
infra

edge02-discoveryrule.yaml
…

services
service1-customerA-edge02.yaml
…

translator-db
…

Figure 4.3: SDCIO Scalability

45

Chapter 5

Implementation

Given the overall architecture of the system, the implementation of the various com-
ponents is crucial to ensure that the system operates as intended. This chapter will
detail the implementation of the main components of the new elements on the sys-
tem, Config Translator, and all the modifications needed in other open source tools,
referencing some internal modules of SDCIO.

5.1 Changes in SDCIO

As discussed in subsection 2.4.1, SDCIO is open source on GitHub and open to contri-
butions from the community. It is pretty new and still evolving, with ongoing efforts
to improve its features and capabilities. In particular, there was a great development
and testing effort on Nokia devices, and the compatibility with other vendors was as-
sumed with the consideration that all of them would implement the language and
communication protocols (YANG and gNMI) at the same way.

Themain focus area of this work is onCisco devices, which were not initially discov-
ered using the standard configuration available at that time. Entering in debugmode,
and looking what was happening, it was clear that the problem is in the different ap-
proach in which YANGmodels are defined from the two vendors. Cisco has an exten-
sive use of the namespaces, defining the same key (or path) in different namespaces,
making this element a crucial aspect to consider when working with their devices. As
an example, router path is defined both in the namespace responsible of static rout-
ing and in the namespace responsible of dynamic routing with OSPF. Nokia, on the
other hand, defines the same key (or path) in a single namespace, which simplifies
the model and reduces potential conflicts. The main point of investigation is then the
handling of these namespaces in all the elements of the chain. A first manipulation of

46

Implementation

the schemas themselves is needed to ensure that they are correctly read by the un-
derlying GoYang library [6], used by themodules to parse YANGmodels, as discussed
in subsection 2.3.1.

The SDCIO architecture, presented in section 2.4.1, is composed of threemain com-
ponents: the Schema Server, the Config Server, and the Data Server, each one main-
tained in a different GIT repository on GitHub, containerized in a separate Docker con-
tainer, and then unified only at deploy time in a single k8s pod. The Schema Server
has not been changedas it was already compatiblewith themanagement ofmultiple
namespaces, while both theConfig Server and theData Server requiredmodifications
to handle the different namespace structures used by Cisco and Nokia. The specific
changes made to each component are detailed in the following subsections.

5.1.1 Config Server

The Config Server uses YANG models and gNMI in the discovery phase to identify the
basic information about the device configuration and capabilities. This information is
then used to manage the device by the Data Server.

The paths are already correctly read from the Discovery Vendor Profile, and a com-
patible gNMI request is sent to the device, comprehensive of all the necessary pa-
rameters (namespace and path). The node replies with the requested configuration
data, including the relevant namespace information directly in the path in the form
namespace:path. This is not compatible with SDCIO, which expects to have only the path
without the namespace, and then is not parsed correctly, causing an exception and
the termination of the discovery process.

A simple but effective solution to this problem is tomodify theConfig Server to strip
the namespace information from the paths before processing them. This way, the
paths will be in the expected format, and the discovery process can continue without
issues. This is not a problem even in the case of the same path defined in multiple
namespaces, since the discovery process already knows which namespace it refers
to, and so this is presented as the solution to the community with a Pull Request1 [23].

This feature was appreciated by the community, but a more comprehensive solu-
tion was proposed by the community, which involved a deeper integration of names-
pace handling [24]. However, the management of these namespaces in the Config
Server is finally in the public codebase.

1A Pull Request is a proposed change to the codebase that is submitted for review and discussion
on the GitHub platform.

47

Implementation

5.1.2 Data Server
The Data Server is the principal module that interacts with the devices, handling the
data retrieval and manipulation tasks. It communicates with the devices using gNMI
and is responsible for applying the configuration changes required. For doing this, it
uses two principal kind of requests:

• gNMI Get Requests are used to obtain the running configuration on the devices,
and is already managing the namespaces correctly;

• gNMI Set Requests are used to apply the configuration changes on the devices,
and is not managing the namespaces correctly. Each Set Request has internally
multiple Updates and Deletes that are sent in a single request to the device.

The current implementation of thegNMI Set Requestsdid not account for resources
defined in different namespaces. This can cause configuration failures when attempt-
ing to update elements, since the paths were ambiguous.

To address this issue, a solution was developed introducing two critical modifica-
tions to the system:

• Namespace-aware request separation: Updates and deletes are now segre-
gated into different entries based on their respective namespaces, as Cisco de-
vices cannot process modifications to resources in multiple namespaces within
a single entry; entries are then packaged into a single Set Request, assuring that
only one interaction with the device occurs.

• Path prefixingwith namespaces: Each path in the request is now properly pre-
fixed with its corresponding namespace (in the form namespace:path).

The implementation uses an in-memory map to associate paths with their cor-
rect namespaces. While this solution effectively resolved the immediate issue, it was
acknowledged to have certain limitations, primarily that the in-memory map is not
persisted across component restarts, potentially causing inconsistencies in case of
crashes.

In addition to the namespace handling changes, two other significant issues were
identified and addressed:

• Booleanvalueparsing: Ciscodevices return boolean values as strings (”true”or
”false”) instead of native boolean types. This required implementing additional
parsing logic to correctly interpret these string representations as boolean val-
ues during configuration operations.

• Optional fields handling: Cisco’s implementation of the YANG model handles
optional fields differently from what was initially expected. Some keys defined as

48

Implementation

optional in Cisco YANG models were being interpreted as mandatory by SDCIO,
causing requests to be blocked before they could be forwarded to the device. A
validationmechanismwas added to properly identify and handle these optional
fields.

Despite some limitations, the implemented solution successfully enabled SDCIO to
properly interact with Cisco devices.

The solution has been proposed to the community through a Pull Request [25]. At
the time of writing, this contribution is still under discussion and review by the com-
munity and has not yet been integrated into the main codebase. Nevertheless, it rep-
resents an important step forward in enhancing SDCIO’s multi-vendor compatibility,
with the understanding that further refinements will be made in future iterations once
accepted.

5.1.3 Debugging Structure and Test Deployment
For debugging purposes, the Go codebase of SDCIO can be executed locally with
minimal configuration. This approach requires setting a few environment variables
and utilizes the local kubeconfig file to interact with the Kubernetes cluster where the
associated resources, described in section 2.4.1, are deployed.

The main challenges arise when considering amore stable deployment within the
Kind environment. Several issues need to be addressed. First, regarding network con-
nectivity, the system must be able to interact with the Cisco XRd devices running in
containerlab as detailed in subsection 3.1.2. By default, Docker (within which Kind op-
erates) does not have access to external networks. This limitation necessitates the
implementation of specific firewall rules to enable proper communication between
the containers.

The Docker network architecture creates isolated network namespaces for con-
tainers, and by default, implements security measures that prevent traffic flow be-
tween different networks. In our setup, the Kind cluster operates on one Docker net-
work, while the Cisco XRd containers run through containerlab on a separate network.
To allow communication between these isolated environments, the following firewall
rule was implemented:

1 iptables -I DOCKER-USER -o \
2 br-$(docker network inspect -f ’{{ printf ”%.12s” .ID }}’ kind)\
3 -j ACCEPT

Firewall rule to allow communications between Kind and Containerlab

This rule modifies the Linux iptables configuration by inserting a new rule into the
49

Implementation

DOCKER-USER chain, which is specifically designed for user-defined rules in Docker en-
vironments. The rule targets the bridge interface associated with the Kind network
(dynamically identified by querying Docker for the network ID) and sets the policy to
ACCEPT, effectively allowing outbound traffic from the Kind network to reach other net-
works, including the one where containerlab containers reside.

Additionally, due to the modifications made to the Config Server and Data Server
components, the standard public images could no longer be used. This required es-
tablishing a local registry server instance, following the methodology outlined in the
Kind documentation [26].

5.2 Config Translator
The Config Translator is designed to address the specific needs provided by the pro-
posed solution. As intended to be a cloud-native module, and for coherence with the
other tools used in the presented framework, the GoLang language is used for its im-
plementation. This is the most used language for cloud-native applications, and has
libraries that interact effectively within the Kubernetes ecosystem. It can read and
write YAML files natively, and is able to use the Jinja2 templating engine for configura-
tion file generation thanks to the pongo2 package [27].

The principal aim of this module is to translate the configuration files from the Ser-
vices repository format to SDCIO resources. For doing that, it has to manage different
roles:

• manage upstream and downstream repository using GIT commands;

• actively or passively react on changes in the upstream repository;

• translate configuration files from the Services repository format to SDCIO re-
sources;

• inject devices information into the configuration files;

• understand the correct output location for each configuration file;

• delete configurations no more needed from the downstream repository.

Moreover, this module is designed to work with big repositories, that contain all
the services offered by a Telco operator, and then it needs to keep performance in
mind. Knowing that it uses GIT repositories, it can exploit GIT features to optimize its
operations. For example, it can calculate creations, updates, and deletions only for
changed files, avoiding unnecessary processing on unchanged files.

50

Implementation

5.2.1 Calculate Only Changed Files
The translation logic is very simple, and detailed in the Flow Chart in Figure 5.1.

As described in subsection 4.2.2, the last applied commit SHA is stored, so that it is
simple to determine the diff2 between the last applied configuration and the current
one. If the last commit SHA is not available, the module assumes it is the first time it
runs, and then assumes all files are new.

Figure 5.1: Translation Logic Flowchart

Then, operations are different based on the type of change detected. For each
new or modified file, the module:

1. reads the input configuration file;

2The difference between two versions of a file, showing what has changed.

51

Implementation

2. identifies the correct translator to use based on the input configuration file path;

3. runs all the parsers associated with the translator, generating all the output con-
figuration files;

4. stores the output configuration files in the correct location on the downstream
repository;

5. creates or updates the log file for that input configuration, inserting the list of
output files generated, the commit SHA of the commit being processed, and the
current timestamp.

For each deleted file, the module:

1. reads the log file for the specific input configuration3;

2. deletes all the output files generated for that input configuration;

3. deletes the log file itself.

Finally, a commit message is generated based on the changes made during the
translation process, and the last applied commit SHA is updatedwith the current com-
mit SHA4.

5.2.2 GIT RepositoriesManagement
When the entire process of the Config Translator is triggered, the chain of operations
described in the Flow Chart in Figure 5.2 must be executed.

First of all, a pull operation is performed on the Services repository (upstream in the
scheme), to ensure that the latest changes are available. Then, the Config Translator
checks if there are any changes in the repository, and, if so, it pulls also theDevice Con-
figs repository (downstream in the scheme), to ensure the alignment with other active
translators. At this point, the entire process of translators described in subsection 5.2.1
can be executed.

Finally, the changes are applied with a commit whose message was already cal-
culated during the translator running, and a push is performed to the downstream
repository to save the changes and trigger the next component in the framework.

3If the log file is not available, it means that the file was never processed, and then there is no further
action to take.

4Remember that the commit SHA refers to the upstream repository, while the current changes are
made on the downstream one: for this reason is possible to insert it, even if the commit has not yet
been performed on the downstream repository

52

Implementation

Since there could be other entities working on the same repository, a push opera-
tion might fail: in this case, the module automatically tries a rebase operation and a
new push. Other errors might arise different from the non-aligned one: in that case,
the operation must report the error, and a further action could be taken by a human
operator or another automated system.

Figure 5.2: GIT Repositories Management Flowchart

The go-git package in GoLang [28] is responsible of managing GIT repositories.
It supports the execution of all standard operations, excluding merges and rebases.
The first implementation used this package to perform all the supported operation,
but, given that the rebase ability was a strong requirement, another approach was
used for this specific task. The Config Translator uses the GIT command line interface
to perform the rebase operation, and then uses the go-git package for all the other
operations. A drawback is that the CLI should be installed separately on the system,

53

Implementation

but it should not be a problem since the entiremodule is intended to be containerized,
and so it can be included as a dependency in the container image.

Given that this module shall be able to manage big repositories, a test was con-
ducted in that sense. Themodule is asked to run translations on a single file changed,
but within a big repository (10, 000 configurations, corresponding to ∼ 30, 000 files), us-
ing the go-git module for all the supported operations in the first attempt and using
the CLI GIT interface also for the push operation in the second attempt.

Operation Attempt Completion Time (ms) Std Dev (ms)
Create 1 (go-git) 17,881 330
Create 2 (CLI) 6,207 105
Update 1 (go-git) 17,930 489
Update 2 (CLI) 6,080 130
Delete 1 (go-git) 17,041 436
Delete 2 (CLI) 6,264 362

The completion time of the entire operation is shown in the table above: it clearly
shows that the use of the CLI GIT for the push operation significantly improved the
performance, and for this reason it is the approach used in the final implementation.
Same checks were made for all the other GIT operations, but the results showed no
such difference between the two approaches, and so the go-git package is used for
all the other operations, since it is more readable and maintainable.

5.2.3 How To Trigger Translators
We already discussed in section 4.3 that the Config Translator can be triggered in ac-
tive or passive mode. By the implementation point of view, this has been achieved
in three different modalities: singular invocation, HTTP server, and polling. Each of
these modes can be chosen at runtime, allowing for greater flexibility in how the rec-
onciler is triggered, since all of them are implemented.

Singular Invocation

This is the simplest way to launch the reconciler, since it works as a command-line
tool. The user can simply invoke the tool with the desired flags, and the tool will take
care of the rest.

In a CI pipeline, this mode can be easily integrated as a step in the pipeline con-
figuration: the execution is triggered whenever a change is detected in the Services
repository, causing the creation of the configuration resources and a push to the De-
vice Configs repository.

This requires the runners to be enabled on the Git server, and the user to have the
54

Implementation

necessary permissions to create and push changes to the repository and to create
CI jobs.

Figure 5.3: Singular Invocation Triggering

HTTP Server

In thismode, the reconciler runs as an HTTP server, listening for incoming requests. This
allows formore flexibility, as other components in the systemcan trigger the reconciler
by sending HTTP requests to the server.

Figure 5.4: HTTP Server Triggering

In a CI pipeline, this mode can be integrated as a webhook that is triggered when-
ever a commit is pushed to the repository. The drawback is that the server should
always be running, and the user must ensure that the server is reachable from the CI
pipeline.

This could ensure that any change is immediately processed by the reconciler, but
requires the user the permissions to add webhooks to the repository.

Polling

In polling mode, the reconciler periodically checks for changes in the configuration
files and triggers the reconciliation process automatically.

55

Implementation

This does not require any integration with the CI pipeline, but may introduce some
latency in processing changes, depending on the polling interval. The only authoriza-
tion required is for the reconciler to read the Configurations repository and read/write
on the Device Configs repository.

Figure 5.5: Polling Triggering

Comparison

The following table summarizes the key differences between the three triggering
modes:

Mode CI Integration Latency Config Permissions
Singular Invocation Easy Low CI settings access

HTTP Server Webhook Low Webhook management
Polling None High -

5.2.4 Packages Architecture
The entire module is structured in a modular way, with each package responsible
for a specific task, as visible in Figure 5.6. This allows for better maintainability and
scalability, as each component can be developed and tested independently.

• parser: this package is responsible for executing the Jinja2 templates and gen-
erating the final configuration files.

• translator: this package is responsible for reading the single Translator configu-
ration, executing the associated Parsers, and exposing them to the upper layer.

• controller: this package contains themain logic for orchestrating the translation
process, executing all the associated Translators and managing the GIT reposi-
tories.

56

Implementation

• server: this package is used only in the HTTP Server mode and in the Polling
mode. It contains the logic for handling incoming requests and triggering the
appropriate actions in the controller package when a request is received.

• themainmodule starts the right server based on the flags provided at runtime,
or directly starts the controller if Singular Invocation mode is chosen.

Figure 5.6: Config Translator Packages Architecture

5.2.5 Obtaining Infrastructure Information
The ability to obtain information from the nodes is crucial for the translation process,
as discussed in subsection 4.3.3, and is implemented through Jinja2 filters.

pongo2 [27] enables the creation of these filters by providing a simple interface.
Each function that aims to become a filter must adhere to this specific signature:

1 func(in *Value, param *Value) (out *Value, err *Error)

Filter Signature

• in is the input value, the value written before the pipe (|) in the template, which
can be a string, a number, or any other type;

• param is an optional parameter that canbepassed to the filter, allowing to insert
in the template some other information needed to specify some behavior.

• out is the output value, the result of applying the filter to the input value;

• err is an error value that can be returned if something goes wrong during the
filtering process.

The main issue with how filters must be defined is that they need to be declared
globally, which prevents registering themdifferentiated on aper-template basis. They

57

Implementation

are then defined in the controller package, and able to scan all the configurations of
the nodes and obtain the wanted information.

The following filters are defined:

• nodeLoopback: retrieves the node loopback IPv4 address given its name;

• nodeZone: retrieves the node zone given its name;

• indent: changes the indentation level of the output.

5.2.6 Module RuntimeConfiguration
The module accepts only one argument, that is the working mode required:

• ./config-translator immediate: this is the Singular Invocation mode, where the
module runs once and then exits;

• ./config-translator server: this is the HTTP Servermode, where themodule runs
as a long-lived process, waiting for incoming requests;

• ./config-translator polling: this is the Pollingmode, where the module runs as
a long-lived process, periodically checking for new requests.

All the module configuration is instead provided through environment variables,
as shown in the following table. Please note that all the variable that have a ‘*’ in the
default value column in the table need to be explicitly defined by the user and, if not
defined, the module would not be able to start.

58

Implementation

Table 5.1: Config Translator Environment Variables

Variable Name Description Default
GIT_USERNAME the username to use for authenticat-

ing with the GIT server
*

GIT_PASSWORD the password to use for authenticat-
ing with the GIT server

*

IN_REPO_PATH the local path to the upstream GIT
repository

*

TRANSLATORS_SUBPATH the subpath within the in repository
where the configuration translators
are located

translators

SERVICES_SUBPATH the subpath within the in repository
where the services are located

services

NODES_SUBPATH the subpath within the in repository
where the nodes configurations are
located

nodes

OUT_REPO_PATH the local path to the downstreamGIT
repository

*

OUT_SUBPATH the subpath within the out reposi-
tory where the output files should be
saved

configurations

INTERNALDB_SUBPATH the subpath within the in repository
where the internal database files
are located (configurations logs and
last applied commit SHA)

translator-db

59

Chapter 6

Validation

Theaimof the entire framework is tomanage serviceswithin a networkwith thousands
of nodes and millions of configurations. Simulating such a complex environment is
a challenging task, as it would require not only a large number of nodes but also a
diverse set of configurations to accurately reflect real-world scenarios.

If we simulate these nodes using lightweight containers, we can achieve a higher
level of scalability and flexibility in our testing environment. However, this approach
also comes with its own set of limitations: each container would require its resources
(some Gigabytes of RAM for each one), and containerized instances do not have the
full set of capabilities that physical devices possess.

The validation is then focused on two major aspects:

• the entire framework should work, with all its components, in a small-scale envi-
ronment, composed of a limited number of nodes and configurations.

• each element should beable to scale independently to assure the overall system
performance and reliability.

Several components used in the framework have a large adoption in theworld, and
we can rely on existing studies and benchmarks to assess their scalability ([20] [21] for
GIT, [22] for ArgoCD). The SDCIO module, even if not yet completely developed, is de-
signedwith scalability inmind, and the community is actively working on improving its
performance and resource management. In any case, with the scalability approach
described in subsection 4.4.2 the module can be scaled on several zones, making
each instance more resilient and capable of handling increased workloads. The Con-
fig Translator module, as entirely new, must be evaluated with a greater attention, so
that its scalability can be properly assessed.

60

Validation

6.1 Basic Laboratory Deployment
All the validation activities but section 6.4 have been conducted with the environment
depicted in Figure 6.1, that contains a mix of physical and virtual devices.

The Laboratory Machine is a virtual machine deployed on vmware with Red Hat
Enterprise Linux 9.5 Operating System with 16 cores and 32 GB of RAM.

Figure 6.1: Physical Laboratory Infrastructure

• Kubernetes resources are available in a KinD cluster.

• ArgoCD is deployed on the same cluster. It is configured to run an application
that points to the applications folder of the Device Configs repository. This folder
then includes two sub-applications: one pointing to the nodes config directory
and the other pointing to the services configurations directory, both in the Device
Configs repository.

• SDCIO is deployed on the same cluster, and all the needed k8s resources but
DiscoveryRules are statically applied on the cluster.

• Containerlab is running on the same physical machine with two Cisco XRd
routers (edge01 and edge02), and two clients (client01 and client02). Each node
in Containerlab is accessible executing commands via docker exec command,
while only the routers are directly connected to the host management network

61

Validation

and available for SSH connections. The clients are linked to one of the edge
routers, and the two edge routers are linked together. OSPF and MPLS protocols
are enabled.

• Config translator is running as a system process directly on the host machine
(not containerized).

• two Cisco ASR9k physical nodes are available in the same datacenter of the lab-
oratorymachines (lab01 and lab02). These nodes are sharedwith other projects
in the company, and have OSPF and MPLS already enabled.

• a GIT server is available on the company intranet, but is not physically located
on the same site of the laboratory. Both the Services and the Device Configs
repositories are hosted on this server.

6.2 Framework Validationwith Different Services
To comprehensively validate the functionality of the entire framework, we conducted
tests with different types of services. This approach allows us to verify the complete
workflow depicted in Figure 4.1: from the moment a user or an upper-layer tool cre-
ates a service configuration, through all the intermediate processing steps, to the ac-
tual application on network devices, and finally ensuring that the service works as
expected.

We selected two different service configurations for our validation purposes:

• A simpler L2 MPLS Tunnel service, which can be deployed on virtual nodes, de-
scribed in subsection 3.3.1

• Amore complex L2 Tunnel with Bandwidth Control andMonitoring, which requires
physical nodes, described in subsection 3.3.2.

This dual approach provides us with a comprehensive validation strategy. The
simpler service, deployed on virtual nodes, allows for greater control over the testing
environment, enabling us to closelymonitor each stepof theworkflowandmanipulate
conditions as needed to verify the framework’s behavior. Virtual nodesprovidegreater
flexibility for debugging and allow us to validate that all components of the framework
interact correctly.

The more complex service, resembling a real-world telecommunications service
with bandwidth control and monitoring capabilities, requires physical nodes to prop-
erly validate its functionality. This approach helps us ensure that the framework can
handle complex service requirements in real-world scenarios.

62

Validation

6.2.1 L2MPLS Tunnel Service
The logical configuration of this service is explained in subsection 3.3.1. The virtual
nodes on Containerlab are used to deploy this service.

Abstract Configuration

The configuration shown in subsection 3.3.1 should be deployed on both the edge
nodes, and has been mapped to the following Jinja2 template, where metadata and
spec variables come directly from the Service resource, while device and other vari-
ables are mapped respectively to the device in which the configuration is applied
and the other end of the service:

1 apiVersion: config.sdcio.dev/v1alpha1
2 kind: Config
3 metadata:
4 name: service-{{ metadata.name }}-{{ device.deviceName }}
5 namespace: default
6 labels:
7 config.sdcio.dev/targetName: {{ device.deviceName }}
8 config.sdcio.dev/targetNamespace: default
9 config-translator.telecomitalia.it/targetDevice: {{ device.deviceName }}
10 config-translator.telecomitalia.it/kind: service
11 spec:
12 priority: 20
13 config:
14 - path: /interface-configurations/interface-configuration[interface-name={{

device.interface }}.{{ spec.vlan }}][active=act]
15 value:
16 description: ”{{ spec.description }}”
17 interface-mode-non-physical: l2-transport
18 ethernet-service:
19 encapsulation:
20 outer-tag-type: match-dot1q
21 outer-range1-low: ”{{ spec.vlan }}”
22 rewrite:
23 rewrite-type: pop1
24 - path: /l2vpn/database/xconnect-groups
25 value: {...}

Jinja2 Configuration Template

The following is an example of a valid Service description, which creates a link be-
tween the interfacesGigabitEthernet0/0/0/2 of both edge01and edge02, exposing the
service on VLAN 200 for the customer, internally using a pseudowire with identifier 120.

63

Validation

1 apiVersion: service.telecomitalia.it/v1alpha1
2 kind: L2Tunnel
3 metadata:
4 name: serviceA
5 namespace: default
6 spec:
7 pseudowire: ”120”
8 vlan: ”200”
9 description: ”desc1”
10 firstEndpoint:
11 deviceName: edge01
12 interface: GigabitEthernet0/0/0/2
13 secondEndpoint:
14 deviceName: edge02
15 interface: GigabitEthernet0/0/0/2

L2Tunnel service example

Testing Procedure

1. Create a new L2Tunnel Service resource as shown in the example.

2. Commit and push the resource to the Services Git repository.

3. Wait for all the elements in the chain to propagate the configuration until SDCIO
applies the configuration to the target devices. Check logs of all the involved
modules in the meantime.

4. Log into the virtual routers and verify that the tunnel is correctly configured and
running.

5. Log into each client, configure an appropriate IP address on the VLAN interface,
and test connectivity between the two clients using ping.

6. Delete the L2Tunnel Service resource from the Git repository.

7. Commit and push the changes to the Git repository.

8. Wait for the deletion to propagate and verify that the tunnel is no longer active.

All the above procedure is repeated for each configuration deployed, and also
with multiple configurations applied at the same time, paying attention to use not
overlapping VLANs and pseudowire identifiers:

1. GigEthernet2 @ edge01 - GigEthernet2 @ edge02, VLAN 200, pseudowire 120
64

Validation

2. GigEthernet2 @ edge01 - GigEthernet2 @ edge02, VLAN 201, pseudowire 121

3. GigEthernet2 @ edge01 - GigEthernet3 @ edge01, VLAN 202, pseudowire 122

Testing Results

Table 6.1: Test Cases and Results for L2 MPLS Tunnel Service

Test Case Config 1 Config 2 Config 3 Result
1 Applied - - 3
2 - Applied - 3
3 - - Applied 3
4 Applied Applied - 3
5 Applied - Applied 3
6 - Applied Applied 3
7 Applied Applied Applied 3

For all test cases, the framework demonstrated correct operation, handling both
the creation and deletion of the required configurations. Connectivity between the
clients was successfully verified in all application cases, confirming the correct func-
tioning of the L2 MPLS Tunnel service. Furthermore, the framework correctly managed
situations where multiple configurations were applied simultaneously, without gener-
ating conflicts or errors.

6.2.2 L2 Tunnel with Bandwidth Control andMonitoring Service
This service, described in subsection 3.3.2, is more complex as involves bandwidth
control andmonitoring capabilities for the L2 tunnel. Differently from the previous one,
frames are sent untagged (without VLANs) to the destination device: no more than
one service can be active on a single interface at a time.

The application of Cisco SLA Profiles and Y.1731 protocol [29] requires physical de-
vices: we will use lab01 and lab02 routers, as depicted in Figure 6.1, that have only one
port each available for the validation of this service.

Abstract Configuration

The basic configuration is similar to the previous service, with several other modules
enabled and configured.

In particular, the service needs a policy map configured on the router that defines
the bandwidth limits for the L2 tunnel. Since this policy should be unique on the device
and is lightweight, we chose to implement it using a dedicated configuration file with

65

Validation

orphan deletion policy1. The resulting configuration has then four configuration files
(two for each end of the tunnel).

The following is an example of a valid Service description, which creates a link be-
tween the interfaces GigabitEthernet0/0/0/1 of lab01 and the interface GigabitEther-
net0/0/0/22 of lab02, with a bandwidth limit of 100 Mbps, internally using a pseudowire
with identifier 150.

1 apiVersion: service.telecomitalia.it/v1alpha1
2 kind: L2Link
3 metadata:
4 name: lablink
5 namespace: default
6 spec:
7 pseudowire: ”150”
8 description: ”L2 Link between two machines in lab”
9 cos: ”7”
10 bandwidth: ”100” # Mbps
11 firstEndpoint:
12 deviceName: lab01
13 interface: GigabitEthernet0/0/0/1
14 secondEndpoint:
15 deviceName: lab02
16 interface: GigabitEthernet0/0/0/22

L2Link service example

Testing Procedure

1. Create a new L2Link Service resource as shown in the example.

2. Commit and push the resource to the Services Git repository.

3. Wait for all the elements in the chain to propagate the configuration until SDCIO
applies the configuration to the target devices. Check logs of all the involved
modules in the meantime.

4. Log into the routers and verify that the link is correctly configured and running.

5. Verify that themonitoring process and the bandwidth control are up and running.

6. Delete the L2Link Service resource from the Git repository.

7. Commit and push the changes to the Git repository.

8. Wait for the deletion to propagate and verify that the link is no longer active.

1see section 2.4.1

66

Validation

Testing Results

The testing procedure was successfully completed, and no issues were found. The
statistics are collected by the routers, and the monitoring process is working as ex-
pected, as verified by the following commands executed on the target router:
> show ethernet sla statistics history brief profile DMM_7 interface

GigabitEthernet0/0/0/1.0
Wed Jul 30 16:50:20.475 CEST
Source: Interface GigabitEthernet0/0/0/1.0, Domain GEAMEFPTR-PDI
Destination: Target MEP-ID 3401
==
Profile ‘DMM_7’, packet type ‘cfm-delay-measurement’
Scheduled to run every 1min first at 00:00:09 UTC for 1min

Round Trip Delay
~~~~~~~~~~~~~~~~
5 probes per bucket
No breached stateful thresholds.

Results (ms) Info
Bucket started ----------------------------------- --------------------
(CEST) Min Max Mean SD Suspect Result Count
----------------- -------- -------- -------- -------- ------- ------------
16:45 30 Jul 2025 0.071 0.078 0.072 0.001 300
> show ethernet sla statistics history brief profile SLM_7 interface

GigabitEthernet0/0/0/1.0
Wed Jul 30 16:48:45.824 CEST
Source: Interface GigabitEthernet0/0/0/1.0, Domain GEAMEFPTR-PDI
Destination: Target MEP-ID 3401
================================================================================
Profile ‘SLM_7’, packet type ‘cfm-synthetic-loss-measurement’
Scheduled to run every 1min first at 00:00:09 UTC for 1min
Frame Loss Ratio calculated every 1min

One-way Frame Loss (Source->Dest)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5 probes per bucket
No breached stateful thresholds.

Results (%) Info
Bucket started ----------------------- ------------------------------
(CEST) Min Max Overall Suspect Sent Lost
----------------- ------- ------- ------- ------- ----------- ----------
16:40 30 Jul 2025 0.000 0.000 0.000 300 0

Commands to verify the monitoring and bandwidth control

67

Validation

6.3 Config Translator Scalability
The Config Translator module is designed to run multiple instances in parallel, as de-
scribed in subsection 4.4.1. This section explores the performance of each instance
in different conditions, including varying the number of configuration files processed
simultaneously and the total size of the upstream and downstream repositories.

These performances dependalso on external factors, such as the available system
resources and the network conditions, and in particular the load of the used GIT server.
Several measurements for each condition have been taken, with a minimum of ten,
and the average values are reported.

The used translator requires to create two configurations for each service descrip-
tion applied, and the numbers in the following sections refer to the number of services
processed. So, the number of files written in the downstream repository is ∼ 3× num-
ber of services (two configurations and the log file).

6.3.1 Performance onClean Repository
Starting from repository in which no service is deployed, with the only exception of
the nodes configurations, the performance is measured in terms of the time taken to
process the configuration files. The time is measured on creation, update and delete
request, with several number of configurations applied at the same time.

Table 6.2: Config Translator performance with different numbers of configurations

#of Configurations Create (ms) Update (ms) Delete (ms)
1 1937 ± 179 1791 ± 144 2014 ± 183
5 2257 ± 372 2370 ± 1245 2092 ± 116
10 2418 ± 260 2141 ± 157 2006 ± 217
50 2062 ± 141 1939 ± 115 2398 ± 704
100 3148 ± 1678 2914 ± 1235 3338 ± 781
500 5658 ± 1533 5148 ± 1049 4487 ± 1087
1000 7544 ± 1569 6845 ± 1196 6982 ± 2012

The Table 6.2 shows the obtained results for each operation (create, update,
delete) with different numbers of configurations, including both the average time in
milliseconds and the standard deviation. The results are also graphically represented
in Figure 6.2.

The linear relation between the number of configurations and the time taken for
each operation is evident from the results. There are not significant differences in the
performance of the three types of operations, with all of them showing a similar trend
as the number of configurations increases. There is a constant initial delay of ∼ 2𝑠
due to the fetch and push of the remote repositories.

68

Validation

Figure 6.2: Config Translator Performance on Clean Repository

6.3.2 Performance on Loaded Repository
The module will work with huge repositories. Understanding how it works when sev-
eral configurations are already present is crucial for ensuring its scalability and per-
formance.

Table 6.3: Config Translator performance with different numbers of configurations on
a loaded repository

#of Configurations Create (ms) Update (ms) Delete (ms)
1 6208 ± 105 6080 ± 131 6264 ± 362
5 6620 ± 338 6475 ± 109 6466 ± 210
10 6984 ± 348 7013 ± 1009 6892 ± 344
50 6479 ± 174 6449 ± 186 8764 ± 360
100 6779 ± 253 6928 ± 660 11259 ± 478
500 8375 ± 531 7953 ± 590 30803 ± 359
1000 10083 ± 437 10133 ± 357 56991 ± 443

The same tests of subsection 6.3.1 are then repeated with a repository in which
10.000 services are already deployed (so, ∼30.000 configuration files are already
present in the repository). The results are shown in Table 6.3 and graphically repre-
sented in Figure 6.3. Since there is a significant difference in the performance be-
tween create/update and delete operations, the Figure 6.4 plots the performance of

69

Validation

create/update operations only.

Figure 6.3: Config Translator Performance on Loaded Repository

Figure 6.4: Config Translator Performance on Loaded Repository (Create/Update
Only)

70

Validation

Differently from the previous scenario, the performance of create and update op-
erations is significantly better than that of delete operations. This should not be a
problem in real-world scenarios, as deletions are expected to be less frequent than
create and update operations.

Figure 6.5 shows the comparison between the performances obtained in subsec-
tion 6.3.1 and in this section on the create operation only. The difference in timing
between applying a single configuration and 100 configurations is similar in both sce-
narios, while it increases more rapidly when applying 1000 configurations in the case
of clean repository, demonstrating the efficiency when applied to a loaded one.

However, the constant delay related to the fetch andpush of the repository ismuch
more significant in this scenario, being ∼ 6𝑠 instead of ∼ 2𝑠.

Figure 6.5: Comparison of Config Translator Performance on Clean and Loaded
Repositories

6.3.3 Performancewith Incremental Repository Load
Thedifference in performancebetween the two scenarios (clean vs loaded repository)
highlights the impact of existing configurations on the processing time. As the number
of configurations increases, the time taken for create, update, and delete operations
also rises significantly, especially in a loaded repository.

To better understand this scenario, we can analyze the performance metrics in
71

Validation

more detail with an incremental approach. The Table 6.4 shows how the processing
time changes as the repository size grows incrementally, measuring both the time to
apply a single configuration and the time to apply 1000 configurations.

The Figure 6.6 graphically represents these results and the time delta between ap-
plying a single configuration and 1000 configurations. This time is almost constant
across different repository sizes, confirming that the overhead introduced by addi-
tional configurations does not vary significantly with the number of existing elements.

The time needed to apply a single configuration increases linearly with the number
of existing elements. The increase is < 5𝑠/10.000𝑐𝑜𝑛𝑓𝑖𝑔𝑠, which is acceptable for the
intended use case.

Table 6.4: Config Translator performance with increasing repository size

Existing Elements 1 Config (ms) 1000 Configs (ms) Delta (ms)
0 2820 ± 328 5224 ± 329 2404 ± 657

1000 2667 ± 92 5934 ± 625 3267 ± 717
2000 3307 ± 105 5861 ± 366 2554 ± 472
3000 3665 ± 197 6817 ± 1247 3152 ± 1445
4000 4165 ± 114 7016 ± 160 2851 ± 274
5000 4695 ± 300 7895 ± 658 3200 ± 958
6000 4971 ± 202 8732 ± 2292 3761 ± 2494
7000 5558 ± 153 8631 ± 418 3073 ± 572
8000 6018 ± 232 9020 ± 308 3003 ± 540
9000 6345 ± 163 9324 ± 161 2979 ± 324
10000 7157 ± 601 9928 ± 126 2771 ± 727
11000 7368 ± 181 10581 ± 422 3213 ± 604

Figure 6.6: Config Translator Performance with Increasing Repository Size

72

Validation

6.4 Scalability of SDCIO overMultiple Zones
The last step is to validate the scalability of the SDCIO module, deploying a different
SDCIO instance for each zone. We are not interested in performance, but rather in the
ability to manage multiple instances effectively. For this reason, the entire infrastruc-
ture is virtualized.

6.4.1 Modified Laboratory Deployment
The topology depicted in Figure 6.1 is incremented with some additional components
to support the multi-zone architecture, and Figure 6.7 shows the resulting infrastruc-
ture.

Figure 6.7: Physical Laboratory Infrastructure for Multiple Zones

• Two distinct Kubernetes clusters are deployed using KinD, each representing the
controller for a different zone, and an instance of SDCIO is deployed in each one.

• Another edge Cisco XRd router (edge03) is added to the Containerlab topology,
connected to edge01 and edge02. edge01 and edge02 belong to the zone0,

73

Validation

while edge03 belongs to the zone1. The nodes are directly connected one an-
other.

• A single instance of ArgoCD, deployed on the cluster of zone0, controls both the
clusters.

• The rest of the topology remains unchanged.

6.4.2 Repository Structure and ArgoCDApplications

Each zone has two ArgoCD Applications: one for the nodes configuration, and one for
the services configuration. There are then four applications defined in the appropriate
folder into theDevice Configs repository, and the configurations are inserted byConfig
Translator in different folders based on the zone the node belongs to.

repository
applications

zone0-infra.yaml
zone0-services.yaml
zone1-infra.yaml
zone1-services.yaml

configurations
zone0

infra
edge01-discoveryrule.yaml
edge02-discoveryrule.yaml

services
service-edge01.yaml

zone1
infra

edge03-discoveryrule.yaml
services

service-edge03.yaml
translator-db

…

6.4.3 L2MPLS Tunnel Service overMultiple Zones

The same service configuration and testing procedure described in subsection 6.2.1
is applied to the multi-zone scenario. The tunnel should connect edge01, which is
located in zone0, to edge03, which is located in zone1.

74

Validation

Results

The service is correctly deployed: the service-edge01.yaml is created in the
zone0/services folder and applied by ArgoCD on the cluster of zone0, while the
service-edge03.yaml is created in the zone1/services folder and applied by ArgoCD
on the cluster of zone1.

The configurations are then applied by the two instances of SDCIO on the edge
nodes, and the tunnel is finally established, providing connectivity between client01
and client03.

75

Chapter 7

Conclusion

This thesis explored the already present and growing framework for centralized net-
work management and monitoring. By adopting a cloud native approach for prob-
lem solving, we were able to create a framework that combines the best of the tools
widely used in cloud environments with some under-development specific tools, and
completing the missing pieces with our own implementations.

The result is a modular framework that has the following characteristics:

• Stateless: each component has no state inside it and all the static information
are stored in GIT repositories. The only status is the one obtained by the devices
and stored into the SDCIO module, but it can be downloaded again at any time
from the devices.

• Modular: each component is designed as amicroservice independent from the
others, allowing an independent lifecycle and easy replacement if needed. The
interfaces betweenmodules are standard in themarket and so easily replicable
from other tools.

• Scalable: each component of the framework can be scaled horizontally in dif-
ferent ways, as demonstrated by the validation performed on the modules.

This work demonstrated the feasibility of the application of cloud native principles
to the network management and monitoring field, and that it offers concrete advan-
tages.

The new approach, based on a distributed architecture, permits to go beyond the
limitations of the single database architecture and its lock problems. The framework
will acquire a more robust stability from this point of view with the implementation of
a distributed database in the SDCIO module, already planned for future works by the
community.

76

Conclusion

Thanks to the most modern technologies and protocols, the module is able to
maintain the local device status aligned to the real one, being notified in real time of
any change happening on the devices. This does not solve completely the problem
of technicians working directly on the devices, but it can guarantee that the configu-
rations applied by the central module takes care of the current device status and not
of a stale one.

Even if not yet stable enough for a production environment, and still open to several
improvements as presented in chapter 8, the framework demonstrates that walking
towards a cloud native approach is a viable solution for the network management
and monitoring field, and that it can bring several advantages to Telco operators.

77

Chapter 8

FutureWork

The status of the presented framework is that of a prototype, and as such there are
many aspects that can be enhanced or added to improve it. In this chapter, there is
the starting point for some of these future works that arose during the ideation and
implementation of the framework.

8.1 Closing the Loopwith ServiceMonitoring
The current framework enables the deployment of services starting from an abstract
description and pushing them down to the physical devices. However, there is no
feedback that enables the user to monitor the status of the intended service, neither
if the service has been correctly deployed, nor if it is still running as intended.

In the overall architecture of SDN in TIM, this monitoring is partially covered by an-
other stack in charge of monitoring the network, but there is no correlation between
the abstract service description and the actual status.

This is particularly relevant in a production environment to provide a better experi-
ence to the final users, because it allows the Telco operator to have a clear view of the
status of the services and possibly react in case of failures in a more accurate and
faster way, either automatically or with human intervention.

The abstract service description in the Services repository has a Kubernetes-like
structure, with YAMLmanifest files, but that includes only spec fields, without any status.
The loop might be closed adding this auto populated field in the original repository,
adding there all the needed information about the deployed service.

New challenges arise in this scenario, as the Services repository is currently in-
tended to be a static repository from the framework point of view, since it is only modi-
fied by the upper layer. Adding such a dynamic behavior might require a study about
the synchronization and conflict management between the user and the automated

78

Future Work

system.

Figure 8.1: Closing the Loop with Service Monitoring

8.2 Awareness of Available Resources on Nodes
The current framework enables the user to inject in the configurations some specific
information about the nodes where to deploy the services, such as the loopback IP
address, starting from its name. The data that are not always the same in the node,
such as the pseudowire ID to use, must be provided in the abstract service description.

While some of these data depends on the willing of the final customer, others are
purely technical and there is no need to ask the upper layer to take care of them. The
framework might be improved by adding a specific module able to understand the
available resources on the wanted infrastructure, and automatically provide them
to the Config Translator that can then be able to inject more intelligence in the final
configurations.

This is exactly what KUID does in the Kubenet framework, as presented in subsec-
tion 2.4.2. There are also other tools that can be used to achieve this goal, and a further

79

Future Work

study might be done to understand which one is the most suitable to integrate in the
current framework as an external module, or if it is better to develop a custom solution
based on the specific needs of the operator.

8.3 Adaptive Services

The Services, as they are currently defined, are always deployed in the sameway, only
with different parameters. If we consider the example of the L2 MPLS Tunnel described
in subsection 3.3.1, in consideration with the corner case illustrated in Figure 3.7, we can
see that the two edge nodes are physically the same device.

In this case, the current framework will deploy the full service, with the pseudowire
and the VLAN interfaces, even if they are not needed. A more intelligent framework
might be able to understand this and adapt the service, without the creation of a
pseudowire, but simply connecting the two VLAN interfaces directly. This can help in
reducing the complexity of the final configuration, with a reduction of the unnecessary
overhead and resources consumption.

Jinja2 templating language can be exploited to achieve this goal, adding some
conditional statements in the templates, and providing the needed information to
the Config Translator to understand if a configuration should be applied or not. In the
example presented before, we can then deploy a single configuration in the node that
is both the edge nodes, with the settings of both the endings of the tunnel, instead of
two separate configuration files.

8.4 Performance Improvements

As presented in section 6.3, the performances of the Config Translator module are
influenced by the size of the two involved repositories. While the timing for deploying
a service is not critical even in a production environment, being able to reduce the
time needed to process the configurations could help in reducing the load on the
system, and to reduce the possibility of errors and inconsistencies.

GIT is used in heavy production environments, and is the subject of different re-
search works to improve its performances. Diving into these works might help in un-
derstanding if there are some improvements that canbeapplied to the current frame-
work, or if there are some alternative solutions that can be used to achieve the same
goal with better performances.

80

Future Work

8.5 Topology Visualization
Currently, the framework is able to deploy services starting from an abstract descrip-
tion, creating the needed configurations for each involved node. However, there is no
way for the user or the upper layer to visualize how the single service has been de-
ployed, and where each component is located in the network. This could be helpful in
some scenarios of troubleshooting.

The architecture of the framework is designed to be modular and extensible, mak-
ing it possible to add newmodules to enhance its functionalities. A newmodulemight
be added to provide a visualization of the network topology, combining the informa-
tion about nodes obtained from the discovery phase of SDCIO, and the information
about all the deployed services created by the Config Translator module.

81

Acronyms

API
Application Programming Interface, a set of rules and tools for building software
applications

CIDR
Classless Inter-Domain Routing, amethod for allocating IP addresses and IP rout-
ing that replaces the older system based on classes A, B, and C

CLI
Command Line Interface, a text-based interface for interacting with software
applications

CR
Custom Resource, an extension of the Kubernetes API that allows users to define
their own resource types (see section 2.1.1)

CRD
Custom Resource Definition, a way to extend Kubernetes capabilities by defin-
ing new resource types that can be managed by the Kubernetes API (see sec-
tion 2.1.1)

GIT
A distributed version control system for tracking changes in source code during
software development

gRPC
Google Remote Procedure Call, an open source remote procedure call system
initially developed by Google, using HTTP/2 for transport and Protocol Buffers as
the interface description language

82

Acronyms

IPv4
Internet Protocol version 4, the fourth version of the Internet Protocol (IP) used to
identify devices on a network through an addressing system

ISP
Internet Service Provider, a company that provides access to the Internet

JSON
JavaScript Object Notation, a lightweight data interchange format

k8s
Kubernetes

MPLS
Multiprotocol Label Switching, a method for speeding up and shaping network
traffic flows

OS
Operating System, software that manages computer hardware and software re-
sources and provides common services for computer programs

OSPF
Open Shortest Path First, a routing protocol for Internet Protocol (IP) networks that
uses a link state routing algorithm and falls into the group of interior gateway
protocols (IGP)

REST
Representational State Transfer, an architectural style for designing networked
applications

RFC
Request for Comments, a type of publication from the leading technical devel-
opment and standards-setting bodies for the internet

SDN
Software-Defined Networking, an approach to computer networking that al-
lows network administrators to manage network services through abstraction
of lower-level functionality

83

Acronyms

SHA
Secure Hash Algorithm, a family of cryptographic hash functions used to ensure
data integrity, used in GIT for uniquely identifying commits

SLA
Service Level Agreement, a commitment between a service provider and a client
that defines the level of service expected from the service provider

SSH
Secure Shell, a cryptographic network protocol for operating network services
securely over an unsecured network

TLS
Transport Layer Security, a cryptographic protocol designed to provide commu-
nications security over a computer network

VLAN
Virtual Local Area Network, a logical subnetwork that groups a collection of de-
vices from multiple networks into a single broadcast domain

XML
Extensible Markup Language, a markup language that defines a set of rules for
encoding documents in a format that is both human-readable and machine-
readable

YAML
YAML Ain’t Markup Language, or Yet Another Markup Language, a human-
readable data serialization standard

84

Bibliography

[1] Paolo Fasano. “Software Driven Network Operations.” Politecnico di Torino. 2024.
url: https://www.polito.it/ateneo/comunicazione-e-ufficio-stampa/appuntamen
ti/news?idn=22154 (cit. on p. 2).

[2] The Kubernetes Project. url: https://kubernetes.io/ (cit. on p. 5).
[3] KinD documentation. url: https://kind.sigs.k8s.io/ (cit. on p. 10).
[4] ArgoCD documentation. url: https://argo-cd.readthedocs.io/en/stable/ (cit. on

p. 10).
[5] Martin Björklund. The YANG 1.1 Data Modeling Language. RFC 7950. Aug. 2016. doi:

10.17487/RFC7950. url: https://www.rfc-editor.org/info/rfc7950 (cit. on p. 13).
[6] GoYang package description. url: https://pkg.go.dev/github.com/openconfig/

goyang (cit. on pp. 13, 47).
[7] Rob Enns, Martin Björklund, Andy Bierman, and Jürgen Schönwälder. Network

Configuration Protocol (NETCONF). RFC 6241. June 2011. doi: 10 . 17487 / RFC6241.
url: https://www.rfc-editor.org/info/rfc6241 (cit. on p. 14).

[8] Rob Shakir, Anees Shaikh, Paul Borman, Marcus Hines, Carl Lebsack, and Chris
Morrow. gRPC Network Management Interface (gNMI). Internet-Draft draft-
openconfig-rtgwg-gnmi-spec-01. Work in Progress. Internet Engineering Task
Force, Mar. 2018. 9 pp. url: https://datatracker.ietf.org/doc/draft-openconfig-
rtgwg-gnmi-spec/01/ (cit. on p. 14).

[9] Cisco Network Services Orchestrator. url: https : / / www . cisco . com / c / en / us /
products / cloud - systems - management / network - services - orchestrator / index .
html (cit. on p. 14).

[10] OpenDaylight Platform. url: https://www.opendaylight.org/ (cit. on p. 15).
[11] Open Network Operating System (ONOS). url: https://opennetworking.org/onos/

(cit. on p. 15).
[12] Kubenet Framework. url: https://learn.kubenet.dev/ (cit. on p. 15).
[13] SDCIO description. url: https://docs.sdcio.dev/ (cit. on p. 16).

85

https://www.polito.it/ateneo/comunicazione-e-ufficio-stampa/appuntamenti/news?idn=22154
https://www.polito.it/ateneo/comunicazione-e-ufficio-stampa/appuntamenti/news?idn=22154
https://kubernetes.io/
https://kind.sigs.k8s.io/
https://argo-cd.readthedocs.io/en/stable/
https://doi.org/10.17487/RFC7950
https://www.rfc-editor.org/info/rfc7950
https://pkg.go.dev/github.com/openconfig/goyang
https://pkg.go.dev/github.com/openconfig/goyang
https://doi.org/10.17487/RFC6241
https://www.rfc-editor.org/info/rfc6241
https://datatracker.ietf.org/doc/draft-openconfig-rtgwg-gnmi-spec/01/
https://datatracker.ietf.org/doc/draft-openconfig-rtgwg-gnmi-spec/01/
https://www.cisco.com/c/en/us/products/cloud-systems-management/network-services-orchestrator/index.html
https://www.cisco.com/c/en/us/products/cloud-systems-management/network-services-orchestrator/index.html
https://www.cisco.com/c/en/us/products/cloud-systems-management/network-services-orchestrator/index.html
https://www.opendaylight.org/
https://opennetworking.org/onos/
https://learn.kubenet.dev/
https://docs.sdcio.dev/

BIBLIOGRAPHY

[14] KUID description. url: https://docs.kuid.dev/ (cit. on p. 20).
[15] Choreo description. url: https://choreo-docs.kform.dev/ (cit. on p. 20).
[16] Pkgserver description. url: https://docs.pkgserver.dev/ (cit. on p. 22).
[17] Containerlab documentation. url: https://containerlab.dev/ (cit. on p. 25).
[18] Cisco XRd documentation. url: https://www.cisco.com/c/en/us/support/routers/

ios-xrd/series.html (cit. on p. 25).
[19] Jinja2 Templates documentation. url: https://jinja.palletsprojects.com/en/

stable/templates/ (cit. on p. 38).
[20] Yucheng Low, Rajat Arya, Ajit Banerjee, Ann Huang, Brian Ronan, Hoyt Koepke,

Joseph Godlewski, and Zach Nation. “Git Is For Data.” In: CIDR. 2023. url: https:
//www.cidrdb.org/cidr2023/papers/p43-low.pdf (cit. on pp. 42, 60).

[21] Taylor Blau. Scaling monorepo maintenance | The Github Blog. Apr. 2021. url: ht
tps://github.blog/2021-04-29-scaling-monorepo-maintenance/ (cit. on pp. 42,
60).

[22] Ajayi Abiola Samuel, Oriyomi Badmus, Godwin Okechukwu Iheuwa, Lucky Ehizo-
jie, and Shokenu Emmanuel Segun. “Comparative Analysis of GitOps Tools and
Frameworks.” In: (2025). url: https : / / www . researchgate . net / profile / Abiola -
Ajayi-12/publication/392363693_Comparative_Analysis_of_GitOps_Tools_and_
Frameworks/links/683f0df4df0e3f544f5cb812/Comparative-Analysis-of-GitOps-
Tools-and-Frameworks.pdf (cit. on pp. 42, 60).

[23] Proposed Pull Request for SDCIO Config Server. url: https://github.com/sdcio/
config-server/pull/348 (cit. on p. 47).

[24] Pull Request for SDCIO Config Server with the needed changes. url: https://
github.com/sdcio/config-server/pull/352 (cit. on p. 47).

[25] Proposed Pull Request for SDCIO Data Server. url: https://github.com/sdcio/
data-server/pull/303 (cit. on p. 49).

[26] Kind Local Registry documentation. url: https://kind.sigs.k8s.io/docs/user/
local-registry/ (cit. on p. 50).

[27] Pongo2 package description. url: https://pkg.go.dev/github.com/flosch/pongo2
(cit. on pp. 50, 57).

[28] go-git package description. url: https://pkg.go.dev/github.com/go- git/go-
git/v5 (cit. on p. 53).

[29] Cisco Ethernet CFM, Y.1731 Basic Concepts, Configuration, and Implementation.
url: https://www.cisco.com/c/en/us/support/docs/asynchronous-transfer-mode-
atm/operation-administration-maintenance-oam/117457-technote-cfm-00.html
(cit. on p. 65).

86

https://docs.kuid.dev/
https://choreo-docs.kform.dev/
https://docs.pkgserver.dev/
https://containerlab.dev/
https://www.cisco.com/c/en/us/support/routers/ios-xrd/series.html
https://www.cisco.com/c/en/us/support/routers/ios-xrd/series.html
https://jinja.palletsprojects.com/en/stable/templates/
https://jinja.palletsprojects.com/en/stable/templates/
https://www.cidrdb.org/cidr2023/papers/p43-low.pdf
https://www.cidrdb.org/cidr2023/papers/p43-low.pdf
https://github.blog/2021-04-29-scaling-monorepo-maintenance/
https://github.blog/2021-04-29-scaling-monorepo-maintenance/
https://www.researchgate.net/profile/Abiola-Ajayi-12/publication/392363693_Comparative_Analysis_of_GitOps_Tools_and_Frameworks/links/683f0df4df0e3f544f5cb812/Comparative-Analysis-of-GitOps-Tools-and-Frameworks.pdf
https://www.researchgate.net/profile/Abiola-Ajayi-12/publication/392363693_Comparative_Analysis_of_GitOps_Tools_and_Frameworks/links/683f0df4df0e3f544f5cb812/Comparative-Analysis-of-GitOps-Tools-and-Frameworks.pdf
https://www.researchgate.net/profile/Abiola-Ajayi-12/publication/392363693_Comparative_Analysis_of_GitOps_Tools_and_Frameworks/links/683f0df4df0e3f544f5cb812/Comparative-Analysis-of-GitOps-Tools-and-Frameworks.pdf
https://www.researchgate.net/profile/Abiola-Ajayi-12/publication/392363693_Comparative_Analysis_of_GitOps_Tools_and_Frameworks/links/683f0df4df0e3f544f5cb812/Comparative-Analysis-of-GitOps-Tools-and-Frameworks.pdf
https://github.com/sdcio/config-server/pull/348
https://github.com/sdcio/config-server/pull/348
https://github.com/sdcio/config-server/pull/352
https://github.com/sdcio/config-server/pull/352
https://github.com/sdcio/data-server/pull/303
https://github.com/sdcio/data-server/pull/303
https://kind.sigs.k8s.io/docs/user/local-registry/
https://kind.sigs.k8s.io/docs/user/local-registry/
https://pkg.go.dev/github.com/flosch/pongo2
https://pkg.go.dev/github.com/go-git/go-git/v5
https://pkg.go.dev/github.com/go-git/go-git/v5
https://www.cisco.com/c/en/us/support/docs/asynchronous-transfer-mode-atm/operation-administration-maintenance-oam/117457-technote-cfm-00.html
https://www.cisco.com/c/en/us/support/docs/asynchronous-transfer-mode-atm/operation-administration-maintenance-oam/117457-technote-cfm-00.html

	List of Figures
	Introduction
	Context
	Problem
	Goal
	Structure of the Thesis

	Background
	Kubernetes
	Declarative Model
	Running Applications
	Virtual Clusters with KinD

	ArgoCD
	ArgoCD Applications
	ArgoCD with multiple clusters

	Network Operating System
	Language of Devices: YANG
	Interacting with Devices: NETCONF and gNMI
	Examples of Existing SDN Controllers

	Kubenet Framework
	SDCIO
	KUID
	Choreo
	Pkgserver

	Services in Telcos
	Network Topology
	Topology Simplification for Experiments
	Topology Emulation: Containerlab

	Customers Services Delivery System
	Examples of Services
	L2 MPLS Tunnel
	L2 Tunnel with Bandwidth Control and Monitoring

	Framework Architecture
	Overview
	Involved GIT Repositories
	Services Repository
	Device Configs Repository

	Config Translator
	Translators
	Example of Translator: Devices
	Obtain Devices Specific Information

	Architecture Scalability
	Config Translator Scalability
	SDCIO Scalability

	Implementation
	Changes in SDCIO
	Config Server
	Data Server
	Debugging Structure and Test Deployment

	Config Translator
	Calculate Only Changed Files
	GIT Repositories Management
	How To Trigger Translators
	Packages Architecture
	Obtaining Infrastructure Information
	Module Runtime Configuration

	Validation
	Basic Laboratory Deployment
	Framework Validation with Different Services
	L2 MPLS Tunnel Service
	L2 Tunnel with Bandwidth Control and Monitoring Service

	Config Translator Scalability
	Performance on Clean Repository
	Performance on Loaded Repository
	Performance with Incremental Repository Load

	Scalability of SDCIO over Multiple Zones
	Modified Laboratory Deployment
	Repository Structure and ArgoCD Applications
	L2 MPLS Tunnel Service over Multiple Zones

	Conclusion
	Future Work
	Closing the Loop with Service Monitoring
	Awareness of Available Resources on Nodes
	Adaptive Services
	Performance Improvements
	Topology Visualization

	Acronyms
	Bibliography

