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Abstract

The manipulation of deformable objects, particularly garments, remains a significant challenge in
robotics due to their infinite-dimensional state space and unpredictable dynamics. This thesis
addresses the critical need for robust perception systems by designing, implementing, and
evaluating an end-to-end vision pipeline for autonomous robotic handling of clothing. The research
is contextualized within the VolPix project from EUROBIN, which targets the automation of
laundry tasks involving ten distinct garment categories in both wet and dry states.

The proposed system employs a multi-stage approach to transform a single RGB image into
actionable data for a robotic manipulator. The pipeline begins with instance segmentation to isolate
individual garments from cluttered scenes, followed by object recognition to determine each item's
category. Subsequently, a specialized keypoint detection module localizes semantic landmarks
crucial for grasping and folding, and a final stage reconstructs the garment's 3D mesh using a
monocular depth estimation technique. To train and validate these components, a custom dataset
was collected and annotated, supplementing pretraining on the large-scale DeepFashion2 dataset.

This work establishes a comprehensive perception framework that integrates segmentation,
recognition, keypoint detection, and 3D reconstruction, providing a strong foundation for
advancing autonomous robotic manipulation of deformable objects.
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Introduction

Chapter 1

I Introduction

1.1 Motivation

The field of modern robotics is rapidly expanding from structured industrial settings into the
unstructured environments of everyday human life, where robots must handle a far greater
diversity of objects. In particular, the manipulation of deformable objects (such as cloth,
garments, and other soft materials) presents unique challenges not encountered with rigid bodies.
Unlike rigid objects, which can be described by a small number of pose parameters, textiles and
garments have an effectively infinite-dimensional state space with complex, non-linear
dynamics[1]. Even small forces can cause large and unpredictable shape changes, and garments
readily fold, bend, or wrinkle in ways that occlude parts of the object. These characteristics (high
sensitivity to external forces, frequent self-occlusion, and dramatic topology changes) make
deformable objects fundamentally difficult to perceive, model, and handle reliably[2]. In computer
vision terms, for example, segmenting or tracking a garment in an image is far harder than
segmenting a rigid object, because clothing continuously deforms and lacks a stable geometry.

Despite these challenges, the ability to manipulate soft materials is crucial for many high-impact
applications. In industrial settings, advanced cloth handling could transform garment
manufacturing, automated packing, and logistics (for example, automating sorting, folding, or
seam-sealing processes). In the service and domestic domains, robots that can sort laundry, fold
garments, or assist with household chores would dramatically reduce human effort and expand the
utility of personal assistant robots. In the healthcare and assistive sectors, robots capable of
handling soft materials are essential for tasks like assistive dressing, moving bedding or linens,
and providing aid to the elderly or disabled. In fact, enabling robots to manage soft fabrics could
improve quality of life and generate significant economic benefits across industry and daily
living[1].

Recent years have seen remarkable breakthroughs in deep learning for computer vision, with
neural networks achieving near-human accuracy on many recognition tasks. However, the
effective handling of garments by robots remains a largely unsolved research problem. Much of
the existing computer vision progress in clothing comes from the fashion industry or e-commerce
(e.g. clothing classification, virtual try-on, and retrieval), where images typically show a well-
posed garment on a model under controlled conditions. Large fashion datasets (e.g., DeepFashion
and its variants) contain hundreds of thousands of images of apparel, but these images are
structured and clean: garments are worn by people or displayed in ideal orientations[3]. By
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Introduction

contrast, in real-world robotic scenarios clothing items are often found crumpled in a pile, upside-
down, partially occluded, or even wet or soiled. Such “non-ideal” configurations are rarely present
in fashion datasets[2]. Moreover, the fashion datasets focus on tasks like category labeling or
landmark detection on flat clothing, without providing the detailed spatial or topological
information needed for physical interaction. In practice, robotic manipulation requires fine-grained
understanding of garment geometry and state, for example, the precise location of sleeves, cuffs,
collars, and corners, far beyond what is encoded in typical fashion images.

This gap between fashion-centric vision tasks and the physical needs of robotics motivates the
development of specialized perception pipelines and tailored datasets. In particular, a vision
system for garment manipulation must be able to handle the difficult, realistic states in which
clothing is often encountered by robots (e.g. garments in a cluttered bin or lying on a folding table).
Addressing this gap is essential to enable truly intelligent robotic clothing manipulation. The
present thesis therefore aims to bridge the gap between computer vision and robotic manipulation
of deformable objects, by designing a multi-stage vision pipeline and creating suitable data
resources that together enable reliable perception of garments in challenging real-world
conditions[2].

1.2 Problem Statement

The central research problem of this thesis is to design, implement, and evaluate a robust vision-
based perception system for autonomous robotic manipulation of garments in realistic settings.
The system must accurately interpret garments under diverse, real-world configurations (e.g.
crumpled in a pile, partially folded, or lying on a surface) and do so quickly enough for use in a
manipulation pipeline. This problem directly confronts the core challenges of deformable object
perception: high variability and unpredictability in shape, infinite-dimensional state of cloth, and
frequent self-occlusion and deformation under any robot-induced force[2]. In particular, garments
can take on countless shapes and poses, and visual appearance can change dramatically with
lighting or pose; any perception system must be robust to this diversity.

This thesis is carried out within the VolPix project, which is one of the research activities
conducted under the euROBIN network. The euROBIN network aims to advance Al tools,
software, architectures, and hardware components through a reproducible approach. Within this
framework, VolPix focuses on automating the handling of laundry by robots. It targets 10 distinct
clothing categories (such as T-shirts, trousers, socks, etc.) and requires operation in both wet and
dry states. To support the autonomous manipulation tasks proposed by VolPix, the perception
system must carry out a complete sequence of vision tasks, each of which presents its own
challenges. These tasks include:

o Instance Segmentation: The first step is to isolate each garment instance from a
cluttered scene (e.g. a pile of wet or dry clothes). This requires distinguishing one garment
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from another and from the background at the pixel level. The difficulty is that garments
often overlap and lack clear boundaries, and may share similar colors or textures. Effective
segmentation in such cases is an open problem. Reliable methods must work without prior
knowledge of the scene or a predefined background[1]. In practice, we employ state-of-
the-art instance segmentation networks (e.g. Mask R-CNN or YOLO-based models)
trained on garment images, but their accuracy can suffer under occlusion and background
clutter. As noted in the literature, a major obstacle for data-driven garment segmentation is
the scarcity of annotated images showing garments in realistic, occluded configurations[3].
To address this, our approach will investigate data augmentation to improve segmentation
robustness on the intended domain.

Object Recognition (Category Classification and Detection): Once each garment is
segmented, the system must identify its category (e.g. “t-shirt” vs. “trousers” vs. “sock™).
This task is inherently challenging due to intra-class variation (many different styles of t-
shirts, trousers, or skirts) and inter-class similarity (e.g. briefs and boxers, or certain shirts
and towels that share similar textures and shapes). Traditional deep convolutional neural
networks such as ResNet or EfficientNet can be employed for multi-class image
classification, but their success depends heavily on the availability of representative
training data. In robotic manipulation contexts, labeled datasets are often small and task-
specific, forcing careful adaptation through fine-tuning and transfer learning. For example,
rotation-invariant or attention-based architectures can help account for arbitrary garment
orientations, while augmentation strategies such as random rotations, scaling, and
brightness variation improve robustness to appearance changes. In this work, transfer
learning from large fashion datasets like DeepFashion2 is used as a foundation, with fine-
tuning on our custom dataset to adapt to the specific challenges of EUROBIN.

In addition to classification, this thesis also investigates object detection as an alternative
recognition strategy. Rather than treating each garment image as a whole, object detection
methods predict both the bounding box and the class label of each item. This approach
leverages the spatial localization capabilities of modern detectors and makes better use of
large-scale datasets that provide bounding-box annotations. In this project, a lightweight
YOLOV11-N model was pretrained on DeepFashion2 and then fine-tuned on a smaller,
custom-collected dataset. The detection-based approach proved particularly effective: by
jointly learning localization and classification, the YOLO-based model demonstrated
improved robustness to cluttered scenes and positional variations, outperforming purely
classification-based methods in several scenarios. As a result, object detection with
YOLOvI1 was adopted as the primary recognition method within the pipeline, while
classification served as a complementary baseline for comparative analysis.

Keypoint Detection: To facilitate grasping and manipulation, the system must detect
semantic keypoints or landmarks on the garment, such as sleeve ends on a shirt, collars,
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cuffs, or waist ends. These keypoints serve as grasp points or as references for planning
actions (e.g. folding along a detected edge). Unlike rigid objects with fixed features,
garments have no fixed skeleton or topology, so keypoints must be localized from
appearance alone. The problem is further complicated when garments are crumpled:
important landmarks may be occluded, folded, or obscured by other cloth. Contemporary
keypoint detection techniques typically treat this as a heatmap regression problem with
convolutional networks. Prior work on robotic cloth has successfully used such models
[2]to find corner points and edges. As Lips et al. demonstrate, detecting non-occluded
keypoints on flattened clothes enables downstream tasks like folding via scripted
motions[2]. In our system we adopt Detectron2’s Keypoint R-CNN, which predicts 2D
heatmaps for each semantic keypoint within a region of interest, providing accurate
localization of garment landmarks. We must carefully design the set of keypoints for each
garment type (e.g., sleeve endpoints and collar for a shirt) and train the model on labeled
examples. The core difficulty is robustness: the detector must handle arbitrary
deformations and partial occlusions, and yet still reliably identify points. We will explore
grouping strategies treating similar clothes as a group.

e 3D Shape Inference (Mesh Prediction): Finally, the system must reconstruct the 3D
shape (mesh) of a garment from a single RGB image. A full 3D model is crucial for
advanced reasoning about manipulation tasks such as estimating drape, tension, or planning
folding actions. Since specialized RGB-D cameras were not available in this project, we
adopted a monocular approach that relies on learning-based priors. Our method follows a
multi-stage pipeline: a state-of-the-art monocular depth estimator (Depth Anything V2)
provides dense depth information from the RGB input; garment segmentation masks from
YOLOV11 (optionally refined with SAM) are applied to isolate the target garment; and the
segmented depth map is then used to reconstruct a textured 3D mesh. This approach allows
mesh reconstruction without additional hardware, though it inherits the limitations of
monocular inference, particularly in handling thin structures such as edges and open
garment boundaries. Due to the lack of ground-truth 3D garment datasets for evaluation,
we performed a qualitative assessment, focusing on the plausibility of reconstructed
topology, folds, and textures. While this method demonstrates the feasibility of RGB-only
mesh prediction, it also highlights open challenges in achieving high-fidelity garment
reconstruction for robotic manipulation.

In summary, the research problem is to build a vision perception pipeline that integrates these
four core tasks (instance segmentation, category classification, keypoint detection, and 3D mesh
reconstruction) into a unified system for robotic garment manipulation. Each subtask brings its
own open challenges, compounded by the highly deformable and variable nature of cloth [1],
[2].The success criterion is a system that can take an input image of a real garment (or pile of
garments) and output all needed information reliably enough to be used by a downstream motion
planner or control algorithm.
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1.3 Thesis Structure

This thesis is organized into six chapters, progressing from background concepts to final
conclusions:

Chapter 2 (Literature Review): This chapter surveys related work in vision-based
deformable object manipulation. It begins with an overview of robotic manipulation of
deformable objects, highlighting classical modeling and modern data-driven approaches.
It then reviews the specific vision tasks in our pipeline: instance segmentation (e.g. Mask
R-CNN, U-Net methods for cloth segmentation), garment classification (deep networks
trained on fashion datasets), semantic keypoint or landmark detection (especially in cloth
manipulation contexts), and 3D shape estimation techniques (including mesh prediction
from images). For each task, we compare the existing algorithms, emphasizing those
focused on clothing or similar soft objects.

Chapter 3 (Dataset): This chapter describes the data used for training and evaluation. We
make use of the public DeepFashion2 dataset, which contains hundreds of thousands of
annotated images of garments (with segmentation masks and landmarks). However,
DeepFashion2 primarily consists of well-dressed models and studio images, so we detail
how we adapt it to our robotic context. Crucially, we introduce our custom garment
dataset collected for the EUROBIN project. This dataset includes images of the ten target
garment categories in both dry and wet conditions, captured on a flat surface by a single
camera. We describe the data collection protocol (variations in pose, lighting, wetness) and
annotation process, which includes instance masks, category labels, and keypoint locations.
We also compare statistics of the datasets (image count, keypoints per item, etc.) to show
their coverage and relevance to the task.

Chapter 4 (Methodology): Here we detail the proposed multi-stage perception pipeline.
We first describe the instance segmentation model (e.g. a fine-tuned Mask R-CNN or a
YOLO-based segmentation network), including network architecture, loss functions, and
training setup. Next, we present the object recognition stage, which is investigated using
two complementary approaches: (1) traditional multi-class classification models (e.g.
ResNet, EfficientNet, VGG16), trained with transfer learning and extensive augmentation
to cope with limited data, and (2) a YOLO-based object detection framework, which
simultaneously localizes and classifies garments, leveraging bounding-box annotations and
demonstrating improved robustness to clutter and positional variation. Then we detail the
keypoint detection approach: the network architecture, the choice of semantic keypoints
for each garment type, and the training procedure. Finally, we discuss the 3D mesh
prediction model. We describe the model that takes an RGB image and outputs vertex
positions of a garment mesh. Throughout, we discuss our design choices, network
inputs/outputs, and implementation details. Any novel architectural contributions or multi-
task learning strategies are also explained in this chapter.
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e Chapter 5 (Experiments & Results): This chapter presents the evaluation of each
component and the overall system. We report quantitative results using standard metrics:
mean Average Precision (mAP) for segmentation and object detection, Object Keypoint
Similarity (OKS) for keypoint detection, and classification accuracy. For segmentation, we
compare models trained with different architectures and training epochs. For object
recognition, we analyze both classification and object detection methods: evaluating the
effect of transfer learning for classification and comparing its performance against
YOLOvl11-based detection models fine-tuned on the custom dataset. For keypoints, we
evaluate the performance of the group-based models and show qualitative examples of
predicted keypoints on real images. For 3D shape, we visualize predicted meshes overlaid
on images and provide qualitative assessments of mesh coherence. We discuss the results
thoroughly, highlighting which approaches worked best and analyzing failure cases. An
end-to-end system evaluation, showing the pipeline in operation on robot-like tasks, is also
included.

e Chapter 6 (Conclusion and Future Work): In the last chapter we will discuss about the
key findings and results of this work and possible future work. We restate the importance
of robust cloth perception for robotic automation and note how our multi-stage pipeline
addresses the challenges. We summarize the performance gains and novel findings shown
in the experiments. We also discuss the limitations of the current system and how these
might be overcome. Finally, we propose directions for future research: this may include
collecting more diverse training data or extending the pipeline to handle dynamic
manipulation. We highlight how the learnings from this work can serve as a foundation for
advancing deformable object manipulation in robotics.

Each chapter builds upon the previous, moving from foundational concepts through
implementation details to evaluation and broader implications. Together, they constitute a
comprehensive study of 3D perception of garments in robotic applications, grounded in the
goals of the EUROBIN project.
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Chapter 2

2 Literature Review

2.1 Vision-Based Robotic Manipulation

Manipulating deformable objects presents a significant set of unresolved challenges in robotics,
encompassing modelling, perception, and control [4]. The complexity of this problem arises from
two primary factors that characterize deformable objects like cloth: their state is high-dimensional
and difficult to represent canonically, and their interaction dynamics are non-linear and influenced
by physical properties that are typically not known in advance. While properties such as elasticity,
stiffness, and friction are evidently significant in cloth manipulation, accurately categorizing them
remains a difficult task [5].

To generalize manipulation skills, robots must be able to adapt to variations in an object's pose,
shape, and physical properties. Feedback-loop manipulation is a powerful class of methods for
adapting to these variations; however, its application to deformable objects is under-explored due
to the core challenges of state estimation and dynamics modelling [6]. A robust computer vision
pipeline is therefore a foundational component for enabling these advanced manipulation
strategies.

A recent comprehensive survey of the field [7], organizes the current state-of-the-art around
several key research thrusts that highlight the primary issues and dominant approaches. This
review follows a similar structure, examining the literature through the lenses of state
representation, the use of simulation and the resulting reality gap, and the trend towards end-to-
end learning policies.

One of the most fundamental issues tackled in the literature is state representation. Accurately
describing the configuration of a piece of cloth is non-trivial and is a prerequisite for any successful
manipulation. Approaches range from using explicit geometric descriptors, such as a sparse set of
semantic keypoints or a dense 3D mesh[8], to more recent methods that learn implicit, latent
representations directly from sensor data. These learned representations aim to capture the
essential features of the cloth's state without being constrained to a predefined structure, which is
a key focus of current data-driven methodologies[9]. The choice of representation directly impacts
the feasibility and success of downstream manipulation tasks.

A dominant approach to overcoming data scarcity in robotics is the use of simulation for policy
learning. Researchers leverage physics simulators to generate millions of interaction samples,
which would be infeasible to collect in the real world[1]. However, this approach introduces the
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significant issue of the "simulation-to-reality" gap. Policies trained exclusively in simulation often
fail on physical systems due to subtle differences in dynamics, friction, and visual appearance.
Consequently, a major cluster of recent research focuses explicitly on bridging this gap, with
studies dedicated to benchmarking the performance drop from sim-to-real and developing
techniques like domain randomization to create more robust policies [10].

Paralleling these efforts is the trend towards learning end-to-end manipulation policies that map
perception directly to motor commands. Instead of relying on a modular pipeline of state
estimation followed by planning, these methods use large neural network models, often based on
Transformer or diffusion architectures, to learn the entire control sequence from raw visual input
[11]. While powerful, these methods are data-hungry and often opaque, making their success
heavily dependent on the quality of training data and the effectiveness of the sim-to-real transfer.
This highlights a foundational requirement across all modern approaches: the need for a robust
and comprehensive perception system, as developed in this thesis, to provide the high-quality state
information that these advanced policies depend on.

2.2 Instance Segmentation for Garment Isolation

2.2.1 Instance Segmentation

In the field of computer vision, there has been a clear progression from coarse to fine-grained
image inference. This evolution begins with image classification, the task of assigning a single
categorical label to an entire image. An incremental step forward is object detection, which not
only classifies objects but also localizes them within the image, typically by drawing a bounding
box around each one. A further refinement is semantic segmentation, which aims to classify every
pixel in an image according to the object class it belongs to. However, semantic segmentation does
not differentiate between separate instances of the same class; for example, it would label all pixels
belonging to multiple t-shirts as one single "t-shirt" region [12].

Instance segmentation represents a more advanced and challenging stage in this evolution, as it
combines the goals of the previous tasks. The objective is to correctly detect all objects in an image
while also precisely segmenting each individual instance [13]. This means it provides a different
label or mask for separate objects, even if they belong to the same class. In essence, instance
segmentation can be understood as a task that simultaneously solves the problem of object
detection and semantic segmentation [12], [13]. The rapid progress in this area has been
significantly driven by the introduction of large-scale benchmark datasets, such as Microsoft
COCO, which provide the rich, per-instance mask annotations necessary for training and
evaluating models [14].

A useful way to frame these different tasks is by dividing a scene's components into "stuff" and
"things" [15]. "Stuff" refers to amorphous, uncountable regions like the sky or a road, while
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"things" are countable, distinct objects like cars or people. With this framework, semantic
segmentation can be seen as a method that excels at understanding "stuff" but merges all "things"
of the same class. In contrast, instance segmentation focuses specifically on "things," aiming to
delineate each one precisely. A third paradigm, panoptic segmentation, unifies the two by
providing a comprehensive map of both "stuff" and "things" [15]. The conceptual differences
between these tasks are clearly illustrated in Figure 1.

(c) instance segmentation (d) panoptic segmentation

Figure 1: A visual comparison of segmentation tasks. (a) The original image. (b) Semantic segmentation classifies all pixels. (c)
Instance segmentation isolates each distinct object ("thing"). (d) Panoptic segmentation provides a complete scene map of both
"stuff” and "things”.[16]

For this project, instance segmentation was selected as the most appropriate method. While
semantic segmentation would fail at the primary goal of separating one t-shirt from another in a
pile, panoptic segmentation introduces unnecessary complexity and computational overhead for
the task at hand. The robotic manipulation of a garment does not require a complete semantic map
of the entire scene; rather, it requires a direct answer to the question: "Where is the specific,
individual garment that I need to pick up?"[15]. Instance segmentation provides the perfect balance
by focusing exclusively on delineating the countable "things", the garments, that are the target of
manipulation.

Therefore, applying instance segmentation in this context moves the challenge beyond standard
benchmarks into a complex, real-world scenario where the "things" are deformable, heavily
occluded, and lack a fixed shape. A highly accurate and robust instance segmentation model is the
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critical foundation for the entire perception pipeline, making it an essential area of investigation
for this thesis.

2.2.2 State-of-the-Art Approaches

Modern approaches to instance segmentation are predominantly categorized into two main
families, representing a fundamental trade-off between performance and computational efficiency.
The first are two-stage methods, which prioritize accuracy by first proposing regions of interest
and then generating masks for each region in a sequential process, a paradigm famously established
by Mask R-CNN [13]. In contrast, single-stage methods are designed for speed and real-time
applications, performing object detection and mask prediction simultaneously in a single pass, an
approach popularized by the YOLO (You Only Look Once) family of models [17]. The selection
between these two paradigms is a critical design choice, often dictated by the specific requirements
of the application, such as the need for high-precision masks versus the demand for low-latency
inference in robotic systems.

2.2.2.1 Two-Stage Methods: Mask R-CNN

Two-stage methods are renowned for their high accuracy. The archetypal model for this category
is Mask R-CNN, which extends a powerful object detector (Faster R-CNN) with the capability to
produce high-quality segmentation masks for each detected instance. Its architecture can be
understood as a multi-step process that refines information progressively[13].

Figure 2. The Mask R-CNN framework for instance segmentation.[13]
The main components of the Mask R-CNN architecture are[13]:

1. Backbone Network: The process begins with a standard Convolutional Neural Network
(CNN), which acts as a feature extractor. This "backbone," such as a ResNet or the
ResNeXt-101 model used in this thesis, processes the input image and generates a rich set
of feature maps that capture details at various scales.

2. Region Proposal Network (RPN): The feature maps are then fed into an RPN. This
network efficiently scans the features and proposes a set of rectangular Regions of Interest
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(Rols) areas that are likely to contain an object. This completes the first stage of the
process.

3. RolAlign: This is a key innovation of Mask R-CNN. For each proposed Rol, RolAlign
extracts a small, fixed-size feature map. It does so with precise alignment, preserving the
exact spatial locations of features, which is crucial for generating accurate pixel-level
masks.

4. Prediction Heads: In the second stage, the fixed-size feature map for each Rol is passed
to three parallel "heads" to perform the final tasks:

o A classification head predicts the object's class (e.g., "t-shirt," "trousers").

o A bounding box regression head refines the coordinates of the box to tightly
enclose the object.

o A mask head, which is a small Fully Convolutional Network (FCN), generates a
pixel-level binary mask that outlines the object's exact shape within the bounding
box.

By decoupling the tasks of finding objects (stage one) and classifying/masking them (stage two),
Mask R-CNN often achieves superior precision, making it a benchmark for tasks where mask
quality is paramount.

2.2.2.2 Single-Stage Methods: YOLO

In contrast to the multi-step process of two-stage models, single-stage methods are engineered for
speed and efficiency, making them highly suitable for real-time applications like robotics. The
pioneering and most prominent family of models in this category is YOLO (You Only Look
Once), which reframes instance segmentation as a problem that can be solved in a single pass
through a neural network.

The foundational architecture of YOLO is built on a unified detection pipeline that treats object
detection as a single regression problem [17]. The model divides an input image into an SxS grid,
and a single Convolutional Neural Network (CNN) simultaneously predicts bounding boxes,
confidence scores, and class probabilities for each grid cell. A key concept is the confidence score,
which combines the probability that a box contains an object with the Intersection over Union
(IoU) of the predicted and ground-truth boxes. After this single network pass, a post-processing
step called Non-Max Suppression (NMS) is used to prune duplicate detections and yield the final
set of bounding boxes. This unified design is the source of YOLO's renowned speed.

To extend this high-speed detector to instance segmentation, modern YOLO-based models add a
parallel mask prediction branch that also operates in a single stage. This is a key difference from
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Mask R-CNN, which first finds the object and then generates a mask in a second step. A common
approach, popularized by models like YOLACT, involves two parallel tasks [18]:

1. A "protonet" branch generates a set of general-purpose "prototype" masks over the entire
image.

2. The main detection head, in addition to predicting classes and boxes, also predicts a set of
"mask coefficients" for each detected instance.

The final mask for an instance is then generated by linearly combining the prototype masks using
the predicted coefficients for that instance. Because this entire process, detection and mask
creation, is done in a single forward pass without any feature re-pooling, the model maintains its
real-time performance, making it a powerful choice for robotic applications where both speed and
segmentation are required. The YOLOV11 model used in this thesis is an evolution of this single-
stage philosophy.

2.3 Garment Recognition: Classification and Detection

In garment-manipulation applications, vision systems must both recognize what clothing is present
(classification) and where it is (detection). Clothing manipulation is inherently challenging due to
the deformable, highly variable nature of fabrics. For example, Nocentini et al. note that “clothing
manipulation is a daily activity and represents a challenging area for a robot,” and emphasize that
detection and classification are key points for the manipulation of clothes[19]. Recent robotic
systems therefore often combine deep networks for garment categorization with detectors for
salient features. Gustavsson et al. (2022) propose a pipeline that first classifies the garment
category from an image and detects landmarks on the cloth, then uses this information to plan a
stretching strategy[20]. In practice, classification typically determines the garment class (e.g.
“shirt” vs “pants”) to select an appropriate manipulation, while object detection and gives a
bounding box with the class label[21]. Below we review the key architectures used in this context,
focusing on VGG16, ResNet, EfficientNet (classification) and YOLOv11 Nano (detection),
including their building blocks, depth, parameter/FLOP counts, and trade-offs between accuracy
and efficiency.

2.3.1 Image Classification Models

Deep convolutional neural networks (CNNs) are the standard for visual classification. After the
breakthrough of AlexNet (2012), deeper architectures like VGG16 and ResNet were
introduced[22].

VGG16: A deep CNN with 16 weight layers (13 convolutional + 3 fully-connected). VGG16 uses
only small 3%3 convolutions (stride 1) and 2x2 max-pooling, stacked uniformly through the
network. This simple, repetitive structure yields rich feature representations. The final layers are
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three FC layers (two with 4096 units) and a 1000-way softmax. It has roughly 138 million
parameters and requires about 15.3 billion FLOPs per 224x224 input [23].

e Advantages: strong classification accuracy (92.7% top-5 on ImageNet) and wide transfer-
learning support.

e Drawbacks: very large model size and slow inference, making it cumbersome on
embedded robotic hardware.

ResNet: A family of deep convolutional neural networks that introduced the concept of "residual
learning" to solve the degradation problem that plagued very deep models. This issue manifested
as a paradoxical decrease in accuracy as network depth increased, even on the training data,
indicating a fundamental optimization challenge rather than just overfitting. The core innovation
is the reformulation of what layers learn; instead of learning a direct mapping, the network learns
a residual mapping relative to the input[24].

This is implemented architecturally through the use of skip or shortcut connections, which
bypass one or more layers and add the input to the output of the stacked layers[24]. This simple
addition allows gradients to flow more directly to earlier layers during backpropagation, mitigating
the vanishing gradient problem and making it possible to effectively train networks with hundreds
or even thousands of layers[24], [25], [26]. The architecture is built from repeating blocks, such
as the ""basic block (two 3x3 convolutional layers) used in shallower models like ResNet-34, or
the more computationally efficient "bottleneck block". The bottleneck block, used in deeper
models like ResNet-50, employs a sequence of 1x1, 3x3, and 1x1 convolutions to reduce and then
restore the number of channels, making the 3x3 layer a computational bottleneck and significantly
improving efficiency[25], [26].

e Advantages: Its revolutionary skip connections enabled the training of extremely deep
networks, a fundamental breakthrough in deep learning. The architecture's simplicity and
strong performance have made it a robust and versatile baseline for a wide range of
computer vision tasks. Its reliance on standard convolutions makes it highly optimized for
hardware like GPUs and TPUs.[27]

It has much lower parameter count and computational cost than VGG16 for comparable
accuracy; easier training of very deep models due to identity shortcuts. For garment tasks,
a ResNet-50 backbone is often used as a feature extractor: e.g., GarmNet employs a
pretrained 50-layer ResNet to produce a 7x7 feature map for garment classification and
landmark detection[28].

e Disadvantages: It is less parameter-efficient than more modern architectures, requiring a
higher computational cost (FLOPs) and more parameters to achieve the same accuracy as
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models like EfficientNet. The conventional method of scaling ResNets by simply adding
more layers is less optimal than more principled scaling approaches. [29]

EfficientNet: A family of convolutional neural networks designed to optimize both accuracy and
computational efficiency through a principled approach to model scaling. It introduced a novel
compound scaling method that uniformly scales network depth, width, and input resolution with a
single coefficient, ensuring a balanced allocation of resources. The architecture's baseline
(EfficientNet-B0) was discovered through a neural architecture search and is built upon mobile
inverted bottleneck blocks (MBConv) that incorporate efficient depthwise separable convolutions
and Squeeze-and-Excitation modules for channel-wise feature recalibration.[29], [30], [31]

e Advantages: Achieves state-of-the-art accuracy with significantly fewer parameters and
FLOPs compared to previous models like ResNet, making it highly efficient. Its
lightweight and efficient design makes it ideal for deployment in resource-constrained
environments, such as mobile and edge devices. [29]

e Disadvantages: slightly lower raw accuracy than very large models, and the complex
block structure can be more intricate to implement. The use of depthwise separable
convolutions can be less efficient on certain hardware accelerators where memory access
is a bottleneck, potentially leading to higher inference latency than the low FLOP count
might suggest.

Tan & Le (2019) show that EfficientNet models achieve state-of-the-art accuracy with far fewer
parameters; for instance, EfficientNet-B7 attains 84.4% top-1 accuracy on ImageNet while being
~8.4x smaller and 6.1 faster than the previous best models[29].

In garment tasks, these pretrained CNNs (VGG, ResNet, EfficientNet, etc.) are often fine-tuned
on clothing datasets (e.g. DeepFashion, Fashion-MNIST) to classify apparel. The resulting model
can robustly recognize garment categories under varying poses or lighting, providing the robot
with the item’s identity and thereby informing downstream actions.

2.3.2 Object Detection Frameworks

Object detectors extend classification by also localizing items in the image. Early methods (R-
CNN family) use region proposals, but these are slow for real-time use. In contrast, the YOLO
(You Only Look Once) family of one-stage detectors predicts bounding boxes and class scores in
a single forward pass[22]. In YOLO, the image is divided into a grid and each cell directly outputs
the coordinates of any object it contains along with confidence scores. This design dramatically
speeds up detection: the model needs only one evaluation per image, making YOLO ideal for real-
time applications. For example, YOLO-based systems have been successfully deployed on high-
speed textile production lines for automated defect inspection[32]. The single-stage approach
trades a small drop in accuracy for large gains in efficiency and throughput. Subsequent YOLO
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versions (v2, v3, v4, etc.) incorporate multi-scale feature maps, anchor boxes, and attention
mechanisms to boost accuracy while preserving speed[32]. Compact variants like Tiny YOLO or
YOLO Nano are designed for embedded devices. Wong et al. introduce YOLO Nano, a highly
compact model (~4 MB) optimized via human-machine design; it requires only ~4.6 billion
operations and achieves ~69.1% mAP on Pascal VOC, outperforming Tiny YOLOvV2/v3 in
accuracy despite its smaller size[33].

In the fashion and textile context, YOLO-based detectors have been adapted to find clothing items
and features. Lee & Lin (2021) propose a two-phase YOLOvV4 detector for fashion apparel: their
model detects garments (jackets, tops, pants, skirts, bags) in images and benefits from transfer
learning on fashion datasets[34]. Li et al. (2024) develop a real-time fabric wrinkle and corner
detector using YOLOVS: they train on a custom dataset of cloth deformations and achieve over
90% detection accuracy[21]. The detected wrinkle lines and corner points are then used by the
robot to perform a quadrilateral flattening maneuver, successfully smoothing the fabric. Such
examples illustrate how object detection integrates into robotic cloth workflows: the vision system
not only identifies the garment, but also pinpoints key regions for grasping or spreading, thus
closing the loop between perception and action.

Building upon the advances in YOLO-based garment detection, our work employs the latest
YOLOvV11 Nano, which combines the efficiency of prior Nano variants with modern architectural
enhancements tailored for robotic applications.

YOLOV11 Nano: A lightweight one-stage detector in the YOLO family, tailored for edge devices.
YOLO models split an image into a grid and simultaneously regress bounding box coordinates and
class probabilities[28]. The YOLOvVI11 architecture (2024) employs an optimized backbone and
neck for enhanced feature extraction, and its Nano variant is pruned for speed. YOLO11-Nano
contains only 2.6 million parameters, and about 6.5 billion FLOPs at 640x640 resolution. Despite
its small size, YOLO11-Nano achieves competitive accuracy by leveraging modern improvements
(e.g. efficient CSP-like modules, feature pyramid networks).

e Advantages: extremely fast real-time detection (designed for sub-40ms inference on a
modern GPU) with a tiny model size, suitable for onboard processing.

e Disadvantages: lower accuracy than larger YOLO models, and still higher FLOPs than
lightweight classifiers because detection requires multi-scale heads. In garment tasks,
YOLO-style detectors can directly locate garments or landmarks: their single-shot output
(object bounding boxes) speeds up recognition of deformed cloth pieces under clutter[28].

In summary, modern garment-manipulation pipelines leverage powerful CNN classifiers (e.g.
VGG16, ResNet, EfficientNet) to recognize clothing types, and efficient detectors (e.g. YOLO
variants) to localize garments and cloth features. Together, these methods provide the semantic
and spatial understanding needed for robotic arms to autonomously handle and manipulate
garments[19], [21].
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2.4 Keypoint Detection for Robotic Grasping

2.4.1 Introduction

Keypoint detection aims to localize semantically meaningful points on objects or scenes (e.g.
human joints, object corners) from images. For deformable objects like garments, reliable
keypoints (e.g. sleeve ends, collar corners) provide a compact representation of object
configuration that is useful for recognition and manipulation. In robotics, knowing the positions
of a few salient keypoints on a piece of cloth or clothing can reduce the high-dimensional
perception problem to a tractable state (e.g. four corners of a towel)[35]. Indeed, early cloth
manipulation systems exploit cloth corners or landmarks to plan folding[35], [36].

Modern methods for keypoint detection range from traditional feature-based approaches to deep
learning techniques. This review focuses on approaches applied to garments and robotic cloth
manipulation. We will consider more recent CNN- and transformer-based models, such as
Detectron2’s Keypoint R-CNN, highlighting their advantages and limitations when applied to
deformable objects. While classical approaches were functional in controlled environments, they
were fundamentally brittle, struggling with complex textures, requiring precise prior segmentation,
and failing to generalize to varied garment shapes or cluttered scenes. These limitations highlighted
the lack of robustness of feature-based methods and motivated the shift toward modern, data-
driven techniques[37]. Finally, we discuss the evaluation metrics most commonly reported in the
literature, including the COCO benchmark’s OKS-based average precision.

2.4.2 Deep Learning Approaches
2.4.2.1 Heatmap-Based CNN Methods

Modern keypoint detectors are dominated by deep neural networks, which learn to output
confidence “heatmaps” for each keypoint. A common strategy is to use a convolutional backbone
(e.g. ResNet, Hourglass) and append deconvolutional layers that produce a spatial heatmap for
each of K keypoint types. Each heatmap pixel represents the probability of a keypoint at that
location. For training, a 2D Gaussian (or peaked label) is placed at each ground-truth keypoint,
and the network is trained (e.g. with pixel-wise cross-entropy or MSE) to match this target. This
was used in seminal works like Convolutional Pose Machines[35] and the Stacked Hourglass
model, and continues in state-of-the-art pipelines.

For example, Lips et al. use a fully convolutional “U-Net” style network to detect cloth keypoints
as heatmaps[35]. Their network has encoder-decoder skip connections, ReLU activations, and a
final sigmoid output for probability (trained with pixel-wise BCE loss)[35]. Similarly, the Mask
R-CNN architecture adds a small “keypoint head” on top of ROI features: it applies four 3x3 conv
layers followed by a 2x up-sampling (deconvolution) to output K heatmaps (one per keypoint) at
e.g. 56x56 resolution[13].

The Detectron2 Keypoint R-CNN (built on Mask R-CNN) follows this design: it uses a
ResNet+FPN backbone to extract features and ROI Align to crop proposals, then a keypoint head
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that outputs per-keypoint heatmaps. Each heatmap uses a sigmoid and is trained to match a
Gaussian-labeled ground truth at the true keypoint location[35]. Because heatmaps preserve spatial
detail, these architectures achieve high precision in keypoint localization. In practice, modern pose
estimation models (e.g. OpenPose, HRNet, SimpleBaseline) all adopt heatmap regression. The
output keypoint predictions are then extracted by taking the argmax (or using a small neighborhood
max-filter) of each heatmap[35].

Heatmap methods are very effective when plenty of annotated data is available. They elegantly
handle a varying number of instances (in bottom-up approaches) or per-instance output (in top-
down pipelines). However, they require careful calibration: output resolution vs. input down-
sampling trade-offs. They also produce dense outputs even when many pixels contain no
keypoints, and may struggle with highly deformable or symmetric patterns (leading to multiple
high responses). In clothing scenarios, heatmap methods have been applied to landmark detection
on garments and to human-cloth interactions.

This heatmap regression approach has proven far more effective than earlier methods that
attempted to directly regress keypoint coordinates.

2.4.2.2 End-to-End Detection Frameworks (Keypoint R-CNN)

A powerful modern approach is to integrate keypoint detection into an object detection pipeline.
For example, Mask R-CNN extends Faster R-CNN to output segmentation masks[13]; a similar
extension is Keypoint R-CNN, which outputs keypoint heatmaps per detected instance.
Detectron2’s implementation is a state-of-the-art example. In this top-down pipeline, the network
first generates object proposals and classifies them (e.g. to find each person or garment). Then, for
each proposal, ROI features are pooled (via ROI Align) and fed to multiple prediction heads: one
head for bounding box regression, one for class, one for mask (if used), and one for keypoints. The
keypoint head consists of several convolutional layers and upsampling to produce K heatmaps as
described above. During training, it only computes loss on visible keypoints. Inference yields for
each detected object both its bounding box and a set of keypoint coordinates (the argmax of each
heatmap). In practice, training Keypoint R-CNN requires labeled bounding boxes and keypoint
annotations, as in COCO. Its advantage is instance awareness: it explicitly ties keypoints to
detected objects. This is very useful when multiple cloth items overlap or multiple humans appear.
However, it is a multi-stage and relatively heavy approach (RPN + ROI heads) and may not
leverage image-wide context for keypoint grouping.

Recently, Transformer-based architectures like Vision Transformer (ViT) and DETR have emerged
as a powerful alternative to CNNs for keypoint detection. By leveraging self-attention mechanisms
to capture global context, these models have shown results comparable or superior to established
CNN methods on standard benchmarks. However, they are often computationally demanding, and
their specific application to the challenges of deformable garment keypoint detection remains an
active area of research[38], [39].
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Figure 3. A visualization of the heatmap regression technique for keypoint detection. The model predicts a distinct heatmap for
each keypoint (vight), where the brightest area indicates the most likely location. These heatmaps are then used to determine the
final keypoint coordinates on the input image (left). [40]

2.4.2.3 Detectron2 Keypoint R-CNN Architecture
Detectron2 (a PyTorch framework from Meta) provides a modular implementation of Mask R-
CNN, including the keypoint head. Its architecture illustrates a typical state-of-art pipeline:

e Backbone and FPN: ResNet (or ResNeXt) network extracts multi-scale convolutional
features. A Feature Pyramid Network (FPN) combines these into a pyramid of feature maps
(with strides e.g. 4, 8, 16, 32)[35].

e Region Proposal Network (RPN): On top of the backbone, an RPN proposes candidate
object bounding boxes.

e ROI Align: Proposed boxes are cropped from the backbone features using ROIAlign to
yield a fixed-size feature (e.g. 7x7xC) per proposal.

e Bounding Box and Class Heads: Standard Fast R-CNN heads (fc layers) classify each
ROI and refine its box coordinates.

o Keypoint Head: For K keypoints per instance, the keypoint head takes the ROI features
(e.g. 14x14 if up-sampled) and applies four 3x3 convolutions (with ReL.U), followed by a
deconvolution (transpose conv) to up-sample to e.g. 56x56 spatial resolution[35]. This

18



Literature Review

yields K heatmap channels. Each channel is a sigmoid map indicating the probability of
that keypoint at each pixel. In training, these heatmaps are supervised with binary cross-
entropy to target heatmaps (Gaussians at ground-truth locations)[35]. The total loss
includes the sum of all keypoint map losses (often normalized by number of visible
keypoints).

Because it is integrated into Mask R-CNN, Detectron2’s Keypoint R-CNN is end-to-end trainable
(given boxes and keypoints). It benefits from strong backbones and FPN context, and shares
computation with the detection tasks. Its limitations include requiring box annotations (to train the
RPN) and being relatively heavy for real-time. Nonetheless, it remains a popular choice for both
human pose and object landmark tasks. As evidence of performance, on fashion images
DeepFashion2, a Mask R-CNN baseline yields only ~0.56 AP on the landmark task[41], indicating
keypoint R-CNN is struggling with highly variable cloth. In contrast, in domains with more data
(like human pose), Keypoint R-CNN and its variants set strong baselines.

2.4.2.4 Keypoint Detection for Garments and Robotic Manipulation

Garments pose unique challenges: they are nonrigid, highly deformable, and often self-occluding.
Clothing landmarks (e.g. garment corners, collar points, garment-specific joints) must be defined
in a way that is both semantically meaningful and physically reachable. In fashion vision, fashion
landmark detection has been studied to improve clothing recognition and retrieval. Liu ef al. and
Yan et al. introduced landmark sets for garments (e.g. neckline corners, sleeve ends, hem
corners)[37], [42]. Yan et al’s DLAN network jointly detected clothes bounding boxes and
landmarks in unconstrained images, achieving robust results without manual cropping[37]. These
approaches treat landmarks similar to human body joints but on garments.

Inrobotic cloth manipulation, papers often focus on a few keypoints relevant to tasks. For example,
in towel folding one needs the four corners; in shirt folding, elbows and shoulders may define fold
lines. Classical robot pipelines (e.g. Doumanoglou ef al.) used edge detection and corner templates
for towels, then computed folds[43]. More recent work learns to detect cloth corners with CNNs.
Lips et al. train a CNN on synthetic towels to detect all four corner points as heatmaps[35]. Even
when transferring to real towels, their detector achieved a grasp success rate of 77% and full fold
success of 53%. The key was generating a diverse synthetic dataset (random cloth textures,
distractors) and using a U-Net style heatmap predictor[35]. Similarly, Lips ef al. extend this idea
to multiple garment types (T-shirts, shorts, towels), reporting ~64% AP on real images from
synthetic-only training (improving to 74% after limited real fine-tuning)[8]. These works underline
that cloth keypoint detectors can generalize if enough variability is synthesized.

Strengths and Weaknesses: CNN-based keypoint detectors excel when adequate training data (or
realistic simulations) are available[8]. Their localization precision can be very high for visible
keypoints. However, garment detection suffers from occlusion and ambiguity: when cloth is
crumpled or overlapping, even humans may disagree on “where” a sleeve end is. Keypoint R-CNN
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mitigates some issues by reasoning per detected object, but background clutter and clothing prints
still confound models. Moreover, many garment classes have relatively few annotated examples,
so transfer learning or synthetic data (as in Lips et al. or ClothesNet[44]) is often used. In contrast,
classical methods need strong assumptions (flat cloth, known color), and unsupervised methods
may not discover semantically stable points like sleeves.

Semantic Keypoints: A novel trend is to define semantic garment keypoints (e.g. “left sleeve
cuff”, “right hem”) that match human language and commonsense. Deng and Hsu propose
semantic keypoints for clothing items, learned via vision-language models. Each keypoint has a
text label (e.g. “collar”) and a 2D location, offering interpretability[45]. Their system (CLASP)
automatically discovers such points on prototypes and transfers them to new clothes, which helps
a robot plan folds by following language-like instructions. While very promising for generalizing
across many garment types, semantic keypoint methods are in their infancy and rely on large
foundation models. They highlight that beyond purely visual features, language-grounded

knowledge can improve garment representations.

2.4.3 Summary and Outlook

Keypoint detection methods have evolved from handcrafted features and geometric fit to deep
learning models that produce dense heatmaps or end-to-end detections. For rigid or semi-
deformable objects (like humans or articulated bodies), deep CNNs (stacked hourglass, HRNet,
Mask R-CNN) achieve high accuracy given large annotated datasets. For highly deformable
objects like garments, however, challenges remain. Classical approaches require strong
assumptions (flatness, plain background) that limit real-world use[35]. CNN-based methods can
learn robustness, but must grapple with occlusion, variability, and limited data. Synthetic data and
augmentation help (as shown by Lips et al. achieving 77% grasp success on towels[35]), but a
reality gap persists[35].

Detectron2’s Keypoint R-CNN embodies the current standard pipeline: a ResNet-FPN backbone
with ROI heads for classification, bounding box regression, mask prediction and keypoint
heatmaps. It leverages multi-task training and provides strong performance when data is abundant.
Yet even Mask R-CNN yields modest performance on clothing landmarks (AP =56% on
DeepFashion2[41]). Transformer-based models (DETRPose, ViTPose) offer alternative pipelines
that remove components like ROI cropping or introduce global attention. Early results suggest
transformers can match or exceed CNNs on pose tasks[38], [39], but they demand more compute
and data.

In the context of clothing manipulation, effective keypoint detection requires both visual precision
and task relevance. For example, detecting arbitrary corner points is insufficient if they don’t
correspond to graspable features. Future work is likely to combine vision with language and
physics: the CLASP semantic keypoints approach[45] is one example where keypoints are chosen
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for their actionability. On the technical side, gaps remain in few-shot learning of landmarks,
unsupervised adaptation to new garment types, and robustness to heavy occlusion.

2.5 3D Mesh Prediction from a Single Image

Single-view 3D reconstruction has seen rapid advances in recent years, driven by the demand for
virtual modeling and robotics applications (e.g. real-to-sim). Early approaches used voxel grids or
coarse point clouds, but more recent work focuses on directly predicting mesh geometries from
RGB images. Meshes are preferred in graphics and robotics (for simulation) due to their compact
explicit surface representation[46], [47]. The challenge of reconstructing 3D meshes from a single
image has been approached through several distinct methodologies. This review will cover the
main paradigms, from early template-based and volumetric methods to more recent implicit and
depth-assisted pipelines, highlighting the advantages and disadvantages of each.

2.5.1 Template Deformation and Regression-based Methods

Template-based methods start from a fixed mesh (often a simple ellipsoid or human body model)
and learn to deform it to match the image. Pixel2Mesh is a seminal example: it uses a graph-CNN
to iteratively deform an ellipsoid so that its rendered image matches the input[48]. A coarse-to-
fine strategy ensures stability, and various mesh-specific losses (edge length, normal consistency)
help produce plausible geometry. Wang et al. report that Pixel2Mesh yields more detailed meshes
and higher shape accuracy than prior methods[48]. Follow-up work (e.g. Pixel2Mesh-++ for multi-
view) and Mesh R-CNN extend this idea. Mesh R-CNN augments Mask R-CNN detection with a
mesh branch: after detecting an object, it predicts a coarse voxel shape which is converted to a
mesh and then refined by graph convolutions[46]. These methods excel on object benchmarks
(ShapeNet, Pix3D)[46].

For garments and humans, body models provide a natural template: e.g. CAPE learns a generative
clothing model as an extension of the SMPL body mesh. CAPE trains a conditional mesh-VAEs
(with mesh-GAN discriminators) to deform the SMPL surface according to clothing type and
pose[49]. As a result, CAPE can “dress” SMPL bodies in a variety of clothing styles, preserving
global shape and local wrinkles[49]. These template methods are fast at inference (single forward
pass) and work well when the training categories match the test (e.g. known garment types), but
they can overfit to limited topologies.

DeepFashion3D highlights this: existing cloth models were limited to fixed topologies, so the
authors propose an “adaptable template” that can represent multiple clothing topologies in one
mesh[42]. In practice, this combines a base mesh (like SMPL) with learned offsets for different
garment types, yielding strong reconstruction on a new garment dataset. In summary, template-
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deformation models (graph CNNs on meshes) provide a direct mesh output and leverage image
features effectively[49], [50], but they may struggle with open boundaries or unseen topologies
unless specifically designed (as in DeepFashion3D).

2.5.2 Volumetric and Implicit Function-Based Methods

A second class of methods predicts a coarse volumetric shape (e.g. a voxel grid or occupancy grid)
from the image, which is then converted to a mesh (e.g. by marching cubes). The earliest neural
examples (e.g. 3D-R2N2) used 3D convolutional decoders to generate a low-resolution occupancy
grid from one or more images[51]. While volumetric methods can represent arbitrary topology and
are easy to train with 3D CNN:gs, their resolution is typically limited by memory. Mescheder ef al.
cast the problem in function space: instead of a fixed grid, a neural network predicts an occupancy
value for any 3D point given the image. This defines a continuous surface as the learned decision
boundary. Occupancy Networks can produce very high-resolution shapes “at infinite resolution”
without huge memory (just by querying the network many times)[52].

In experiments, Occupancy Networks achieved competitive single-view reconstruction results,
handling complex topologies and noisy input[52]. Park ef al. similarly train a neural signed-
distance function per shape class, enabling high-quality interpolation and completion[53]. These
implicit or occupancy approaches can naturally represent thin structures (like garments) and
unseen topology. They also easily fuse multiple views or depth as inputs. However, they are often
slower at inference, since evaluating the implicit network many times is needed to extract a mesh
(by marching cubes).

Related to occupancy nets are methods that directly learn implicit fields from images. A
breakthrough in 2019 was PIFu (Pixel-aligned Implicit Function)[54]. PIFu represents the human
(with clothing) by an implicit function that maps 3D points to occupancy (or distance), where the
function is conditioned on aligned image features. In practice, a CNN encodes the input image to
a feature map, and a small MLP takes a 3D point’s image-plane projection as input to predict if
it’s inside the surface. PIFu allows fine detail (hair, wrinkles, clothing layers) and arbitrary
topology, and its authors demonstrate that it produces extremely high-resolution meshes that
capture unseen parts (like the back of a person)[54].

Importantly, PIFu’s implicit surface is memory-efficient and continuous, unlike a voxel grid[54].
The multi-level extension PIFuHD (CVPR 2020) further improves fidelity by operating at
multiple scales. Other works use similar ideas: Occupancy networks applied to images, or
conditional NeRFs (e.g. PixeINeRF) for multi-view. In general, implicit methods (PIFu) excel in
detail and generality, but often need large networks and sampling loops, making them slower than
direct mesh regression[47].
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2.5.3 Depth- and Multi-View Assisted Pipelines
Depth Anything V1 Depth Anything V2

Figure 4. A qualitative comparison of monocular depth estimation models. Depth Anything V2 produces finer details and higher
accuracy compared to prior state-of-the-art method Depth Anything V1. (Image from Depth anything V2 paper)

Some recent systems leverage intermediate depth or multi-view reasoning to improve
reconstruction from a single image. For example, GarmentCrafter (2025) first predicts a depth map
from the input garment image, warps it to generate novel views, and then uses a multi-view
diffusion model to "inpaint" occluded areas before a final RGB-D to mesh pipeline yields the 3D
garment[55]. This type of hybrid approach helps enforce consistency across different viewpoints
and can recover geometry from limited image data.

Similarly, when multiple images or a video sequence are available, traditional methods like multi-
view stereo or structure-from-motion can be used. However, for single-image cases, these
heuristics introduce significant uncertainty, especially in occluded regions. To address this
challenge in RGB-only pipelines, a crucial approach is to rely on monocular depth estimation
(MDE) networks.

Building upon this, the Depth Anything model significantly advanced the field by designing a
data engine to leverage massive-scale unlabeled data, over 62 million images, to greatly enhance
the model’s generalization and robustness[56]. The most recent iteration, Depth Anything V2,
further refines this data-centric philosophy[57] (Figure 4). It trains a highly capable teacher model
exclusively on precise synthetic data to learn fine-grained details, and then uses this teacher to
generate high-quality pseudo-labels for large-scale real images. This strategy effectively bridges
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the synthetic-to-real domain gap while retaining detail, resulting in depth predictions that are both
robust and precise. The ability of Depth Anything V2 to generate high-quality depth maps for any
image without task-specific fine-tuning is the primary reason it was selected for the methodology
of this thesis.

2.5.4 Garment- and Deformable-specific Methods

Garments pose special challenges (thin surfaces, self-occlusion, large deformations). Dedicated
datasets and methods have emerged. DeepFashion3D provides ~2000 real 3D garment models
with varied categories (shirts, skirts, etc.) and corresponding images. Zhu et al. use it to benchmark
single-view cloth reconstructions, proposing a hybrid mesh+implicit network with an adaptable
mesh template[50]. They show that combining mesh templates (for global shape) with implicit
detail (for wrinkles) yields state-of-art garment reconstructions. Likewise, Layered-Garment Net
tackles multi-layer clothing on a human: it represents each layer by a signed-distance field (SDF)
and enforces intersection-free layering via a “garment indicator field”[58]. This implicit approach
can model, e.g., an inner shirt and outer jacket simultaneously. In summary, garment-specific
methods leverage strong priors about cloth (e.g. templates, learned style parameters) and often
combine multiple cues (segmentation, skeletal pose, normal maps) to disambiguate shape. They
highlight that open boundaries and occlusions are especially severe: simple voxel or implicit grids
struggle to model the thin open surfaces of a shirt or dress, so template meshes (with learned
offsets) or layered SDFs are favored[58].

2.5.5 Challenges and Trade-offs

Key issues in single-image mesh prediction include occlusion, generalization, and fidelity.
Occlusion of unseen surfaces is inherent: methods must “hallucinate” back-of-object geometry
from context. Nolte et al. find that occluded regions incur 40-95% higher reconstruction error
compared to visible parts[47]. Some works add a dedicated completion module (e.g. image
inpainting or learned depth fusion) to mitigate this, but at computational cost. Clothing exacerbates
this: a folded sleeve’s underside is rarely visible, requiring strong shape priors or multiple layers
of implicit fields.

Generalization is another concern. Many networks are trained on limited object classes or synthetic
datasets. They often overfit to training shapes and fail on novel categories. Implicit methods
(DeepSDF, PIFu) are somewhat more class-agnostic but still rely on training priors; generative
diffusion models aim to be “open-vocabulary” but currently exhibit artifacts on everyday objects.
In garments, generalizing to new styles or textiles remains hard: networks must learn shape and
fine-scale wrinkle priors, which is why large real-cloth datasets (DeepFashion3D, CAPE) are
crucial.

24



Literature Review

Fidelity (surface detail) involves a trade-off with speed and data. Pixel2Mesh yields reasonably
detailed shapes quickly[48], while PIFu produces extremely detailed cloth geometry at the expense
of a slow implicit inference. Nolte et al. report that most state-of-the-art reconstructions take
multiple seconds to tens of seconds per object (even on a powerful GPU)[47]. Only a few
methods (e.g. recent feed-forward mesh decoders like SF3D or optimized parametric fits) can run
in under a second[47]. For real-time robotics, such latency is usually prohibitive. Memory usage
also varies: volumetric methods are heavy in 3D tensors, while implicit fields use smaller networks
but require many evaluations to extract a mesh.

Overall, recent benchmarks (e.g. DeepFashion3D, CAPE, Pix3D) show steady progress.
Pixel2Mesh and similar achieve reasonable IoUs on chairs/cars; PIFu achieves state-of-art on
clothed humans by capturing detail[54]. However, surveys like Nolte ef al. highlight that current
single-view methods often fall short of robotics needs: meshes may have holes, collisions, or be
unstable under physics[47]. This gap suggests that future work must better address occlusions
(through scene context or learned priors), ensure collision-free outputs, and optimize speed.

In summary, the literature presents a clear trade-off. Template-based and regression models are
fast but often lack the flexibility for the diverse topologies of garments. In contrast, implicit and
volumetric methods offer this flexibility but at a higher computational cost for inference. Recent
surveys highlight that many of these methods still fall short of robotic needs, often producing
meshes with holes or physical instabilities. This suggests that a hybrid approach, which leverages
the strengths of powerful pretrained models for an initial geometric estimate, offers a practical path
toward generating robust 3D meshes for real-world manipulation.

Given the need for a practical, hardware-independent solution for robotic manipulation, a hybrid
pipeline leveraging a state-of-the-art monocular depth estimator presents the most promising
balance of performance and flexibility, which is the approach adopted in this work.
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Chapter 3

3 Dataset

Deep learning models rely heavily on the diversity and reliability of the training data for both
performance and generalization. This is especially true for complex computer vision tasks such as
the robotic manipulation of deformable objects, where models must learn to handle wide variations
in texture, shape, and lighting conditions. Therefore, this thesis adopts a dual-dataset strategy. This
approach leverages a large, publicly available dataset to build a foundational understanding of
garment features, which is then refined using a smaller, custom-collected dataset tailored to the
specific requirements of the manipulation pipeline.

The first component of this strategy utilizes the large-scale DeepFashion2 dataset [41] for
pretraining. Its extensive and richly annotated collection of clothing items provides a robust
starting point for learning generalizable features. The second component involves a custom dataset
created specifically for this project, featuring 10 categories of clothing in both wet and dry states
to address the unique challenges of the EUROBIN project's objectives. The mentioned dataset is
essential for fine-tuning the models on scenarios directly relevant to robotic interaction, which are
not present in existing public datasets.

In this chapter, the two datasets used in this study are described in detail. We describe the data
collection and annotation procedures, the strategies for splitting the data into training, validation,
and test sets, and the extensive preprocessing and augmentation techniques used to enhance model
robustness and performance across all vision tasks.

3.1 DeepFashion2 Dataset Overview

To establish a strong baseline for feature extraction, this work utilizes DeepFashion2[41], a large-
scale and diverse benchmark dataset. While other garment datasets exist, DeepFashion2 was
selected for its unique combination of scale and rich, multi-modal annotations[41]. It comprises
491,895 images containing 801,732 distinct clothing items across 13 popular categories such as
short sleeve top, long sleeve top, trousers, and skirt. A key strength of DeepFashion? is its sourcing
from both commercial stores and consumer photographs, which ensures that models are exposed
to a comprehensive range of real-world variations[41].
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Figure 5: Deepfashion2 examples. Image reproduced from [41]

Each clothing item in the dataset is accompanied by a rich set of annotations that are particularly
well-suited for pre-training manipulation-oriented models. These include:

e Bounding Boxes and Per-Pixel Segmentation Masks: For precise localization and
identification of garments.

e Dense Landmarks: A total of 294 landmarks are defined across the 13 categories,
identifying key points such as collars, hemlines, sleeve cuffs, and waistbands. These are
critical for learning a structured understanding of garment topology.

e Viewpoint and Occlusion Labels: Each item is labeled with a viewpoint such as no wear,
fronmtal, or side/back. The 'no wear' images, which depict garments on flat surfaces, are
especially valuable for providing a canonical view of clothing shape, which is a useful prior
for robotic unfolding tasks.

The dataset is formally divided into training (391,000 images), validation (34,000 images), and
test (67,000 images) sets, providing a standardized structure for model development and
evaluation.

Within the scope of this thesis, DeepFashion2 serves a critical role as the pre-training source for
the segmentation, classification, and keypoint detection models. By pre-training on such a vast and
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varied dataset, the initial models learn a robust feature representation capable of handling
challenges such as occlusions, different viewpoints, and significant variations in clothing
appearance.

However, it is crucial to acknowledge the limitations of DeepFashion2 in the context of robotic
manipulation. The dataset predominantly features clothing that is either worn by models or laid
out flat. It lacks images of garments in complex, non-ideal states such as crumpled, folded, or in a
pile, that are characteristic of real-world robotic interaction scenarios. This gap makes the use of a
specialized, custom-collected dataset for fine-tuning necessary. The foundational training on
DeepFashion2 provides a powerful starting point, which is then adapted using our custom data to
specialize the models for the specific demands of the manipulation pipeline.

3.2 Custom Dataset for Robotic Manipulation

While large-scale datasets like DeepFashion2 provide an excellent foundation for pretraining, they
often lack the specific requirements of applications like robotic manipulation. In particular, they
lack images of garments in challenging, real-world states such as crumpled piles, partial occlusion,
or wet conditions, which are common in robotic cloth handling. To bridge this gap, a custom
dataset was developed to fine-tune the models on tasks and conditions directly relevant to the
EUROBIN project's goals.

Figure 6 - sample of pile of clothes
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Figure 7 - samples of 10 categories

3.2.1 Data Collection

A total of 51 physical clothing items spanning 10 categories were purchased to ensure
coverage of a representative range of garment types commonly encountered in laundry-
handling scenarios. These garments served as the source materials for image acquisition, from
which the dataset samples were generated.

The selected categories include:

T-shirt
Sweater
Tank top
Crop top
Trousers
Long Socks
Shorts
A-line skirts
Briefs
Boxers

The distribution of the physical garments across categories is shown in Figure 8. Multiple
images were then captured for each item or items under different configurations and viewpoints

to build the final dataset used for training and evaluation.
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distribution of physical clothing samples
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Figure 8 - chart of distribution of physical clothing samples

For each garment, images were captured in both wet and dry conditions, enabling the models to
learn material appearance changes due to water absorption, reflections, and altered drape. This
approach is crucial for improving robustness in real-world robotic operations, where the same
object may present significantly different visual features depending on its state.

Although the dataset was custom-collected, the distribution of garment categories could not be
fully balanced because the clothing items were provided as part of the project resources rather than
being independently selected. As a result, some categories, such as crop tops and A-line skirts,
were underrepresented. Despite this limitation, the dataset still ensured sufficient variability for
training and evaluating the perception models, as discussed in Section 5.
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3.2.2 Data Annotation Process
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Figure 9 - key point labeling samples

Annotations were performed using Label Studio, with a single annotator to ensure consistency
and labeling quality across all samples. These annotations included:

o Segmentation masks for accurately identifying the precise boundary of each clothing
item.

o Bounding boxes to locate each garment within the image.

o Keypoints marking essential features, such as the shoulders or corners of a garment, which
are critical for robotic grasping and manipulation (Figure 9).

3.2.3 Dataset Structure and splits

Separate subsets were prepared for each vision task (segmentation, classification, object detection,
and keypoint detection) to enable task-specific optimization. An example split for the segmentation
task includes:

e 610 total images
-310 dry
- 300 wet

e Split: 90 % training, 5 % validation, 5 % testing
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For the object recognition task, a smaller dedicated dataset of 96 images was created due to the
manual overhead of bounding box verification. This was split into 80 % training, 10 % validation,
and 10 % testing.

For keypoint detection, the dataset was organized into garment-specific groups according to their
number of labeled keypoints, ensuring more effective model specialization.

3.2.4 Preprocessing and Augmentation

Subsequently, a comprehensive suite of data augmentation techniques was applied to enhance
model robustness and generalization. Geometric transformations, including horizontal flips,
rotations, and perspective distortion, were used to simulate diverse cloth orientations and layouts.
To address lighting differences, particularly between wet and dry garments, color adjustments such
as variations in hue, saturation, and brightness were applied. Finally, advanced augmentation
strategies such as Mosaic, MixUp, and Copy-Paste were employed to introduce greater structural
diversity, making the models more resilient to real-world challenges like occlusion and background
clutter.

e Instance segmentation & Object detection: All images were resized to 640 x 640 px and
normalized, following the input specifications of YOLOv11-based architectures.

e Classification: Images were prepared at two resolutions (256 x 256 px and 500 x 500 px)
to compare the effect of input resolution on accuracy across architectures like VGGI16,
ResNet, and EfficientNet.

e Keypoint detection: Images were resized according to Detectron2’s keypoint detection
pipeline defaults, preserving aspect ratio while fitting the model’s expected input scale.

Given the modest dataset size, a diverse augmentation strategy was applied to simulate real-world
variations and improve generalization. Augmentations were grouped into three main categories
and applied inline (during training) for all tasks, except for the keypoint detection dataset,
where augmentations were generated offline to preserve annotation consistency.

Common augmentation:
1. Geometric Transformations

e Horizontal flips (50 %)

e Vertical flips (30 %)

e Rotation (+15°)

e Translation (20 %)

e Scaling (20 %)

e Shear (10 %)

e Perspective distortion (15 %)
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2. Color Adjustments

e Hue shift (£0.015)
e Saturation variation (=70 %)
e Brightness variation (+40 %)

3. Advanced Augmentations

e MixUp (15 %)

e Copy-Paste (30 %)

e Random Erasing (20 %)

e Mosaic (applied for object detection and segmentation tasks)

Representative examples of augmented images for the keypoint detection task are shown in Figure
10, illustrating the applied geometric and color transformations.

Figure 10 - Augmented samples for key point detection task
Task-specific application:

While the above list summarizes the full augmentation toolbox, in practice the exact combination
and intensity of augmentations were tailored to each vision task:

e Instance segmentation: Prioritized spatial diversity (flips, rotation, scaling,
perspective distortion) and moderate color changes to handle lighting variation between
wet and dry garments.

e Object detection: Used the full augmentation set, with emphasis on composition
techniques like Mosaic, MixUp, and Copy-Paste to handle occlusion, clutter, and scale
variation.

e Keypoint detection: Applied transformations carefully to preserve garment geometry,
focusing on controlled rotations, flips, and mild color jitter. For garment groups with
fewer samples, augmentation intensity and variety were increased to mitigate class
imbalance.
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Chapter 4
4 Methodology

This chapter provides an overview of the vision-based pipeline developed for deformable garment
manipulation in the EUROBIN project. The system processes RGB images of clothing to extract
information that enables robotic manipulation through a multi-stage perception approach. The
chapter details each pipeline component, including segmentation, object recognition, keypoint
localization, and 3D mesh reconstruction, with emphasis on model selection, training procedures,
and evaluation strategies.

Instance
Segmentation

Robot Picks one
clothes

Classification /
Object Detection

Mesh Prediction l

Key Point
Detection

Object
perception

Figure 11 - overall system pipeline stages
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The methodology builds upon established approaches in fashion-based computer vision but adapts
and extends them to meet the challenges of robotic interaction with real-world garments, including
both wet and dry variations. Instead of using a single-task system, this work emphasizes a complete
multi-task pipeline capable of analyzing complex visual scenes such as piles of overlapping
clothes. Particular attention was given to balancing accuracy with real-time feasibility, which is
important for robotic applications.

The proposed system for robotic cloth manipulation implements a structured vision pipeline (see
Figure 11) that begins with instance segmentation to separate a pile of clothes into individual
garments, followed by object recognition (classification and object detection) to determine each
item’s category and location. Instance segmentation was approached using lightweight real-time
models (YOLOvI11-N and YOLOvV11-S) and high-accuracy frameworks (Detectron2 with Mask
R-CNN), while classification and detection were evaluated with pretrained backbones such as
EfficientNet and ResNet and YOLOv11-N. Once the clothing type is identified, a task-specific
grouping strategy for keypoint detection locates critical points like corners and edges for grasping.
Finally, 3D mesh reconstruction is achieved by combining monocular depth estimation with
segmentation and post-processing to produce detailed meshes from RGB input, enabling precise
tracking of garment deformation and movement during manipulation.

4.1 Instance segmentation

Model RSt

reprocessing: - Processing:

Rush BE 8 L » Predictions: —»| ; H

resizing confidence
Yolo v11 N :

filtering

Figure 12 - Instance segmentation task of clothes pile process

The initial and fundamental step within the proposed vision-based pipeline for robotic
manipulation of deformable objects is instance segmentation. This technique goes beyond simply
identifying objects; it aims to detect and create a pixel-level mask for each individual garment in
an image. This is particularly critical in scenarios involving cluttered environments, such as a pile
of clothes, where garments often overlap and obscure one another. The objective is to provide a
comprehensive perception of the clothing items, distinguishing their precise boundaries and
locations.

The overall process begins with an input image containing a pile of clothes (Figure 12). This image
undergoes a preprocessing step and augmentation, typically involving resizing to a standardized
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resolution. The preprocessed image is then passed to a segmentation model, which predicts a mask
and a confidence filter is applied to retain only the most reliable detections.

To determine the grasping point for robotic manipulation, a post-processing step computes the
maximum inscribed point (MIP) within the segmentation mask. Unlike the geometric centroid,
which may lie near edges or outside the garment in irregular shapes, the MIP represents the pixel
farthest from any boundary point, ensuring that it is well within the garment’s interior. This
point is obtained by applying a Euclidean distance transform on the binary mask and selecting
the location of the maximum distance value. The resulting coordinate provides a stable and reliable
target for robotic grasping, reducing the risk of slippage or failed picks during manipulation.

To determine the grasping point, we computed the Maximum Inscribed Point (MIP) within each
segmentation mask. Given a binary mask M(x,y), the Euclidean distance transform
D(x, y)assigns each pixel its distance to the nearest background pixel:

— — 2 2
Dy)= ,  min JE&=x)+-y) (1)

The maximum inscribed point is then defined as:

(x7,y") = arg (;ET;?’E‘MD("' ) 2)

This point lies deepest inside the mask, ensuring a robust and central grasping location for the
robotic arm.

This ability to isolate and target a single, distinct garment through segmentation and MIP
extraction serves as the foundation for all subsequent tasks in the pipeline, including classification,
keypoint detection, and 3D mesh prediction.

4.1.1 Models and architecture

For the instance segmentation task, a comparative study was conducted using two distinct model
families, each selected for its specific strengths in computer vision. The goal was to identify a
model that could achieve a robust balance between segmentation accuracy and computational
efficiency, a critical requirement for a real-time robotic application.

YOLOv11:

YOLOvI11, a prominent single-stage, real-time object detection and segmentation model, was
selected primarily for its exceptional speed and efficiency. Its architecture is optimized for fast
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inference, making it an ideal candidate for integration into robotic systems where low latency is
paramount. To assess the performance, two different versions of the model were evaluated:

e YOLOVI11-N (Nano): This is the most lightweight variant, designed for minimal
computational overhead. It is well-suited for deployment on edge devices and robotics
platforms with limited processing resources, offering high throughput at the expense of a
slight reduction in accuracy compared to larger models.

e  YOLOVI11-S (Small): This version represents a larger, more powerful variant. It provides
a more balanced compromise between speed and accuracy, maintaining real-time
capabilities while delivering improved detection and segmentation performance, making it
a strong contender for the final pipeline.

Detectron2:

In parallel, the Detectron2 framework, developed by Facebook Al Research, was employed to
implement a more complex, two-stage segmentation approach. This framework is widely
recognized for delivering high accuracy across diverse computer vision tasks. The specific
architecture used was Mask R-CNN with a ResNeXt-101 (X-101-32x8d-FPN-3x) backbone. This
configuration was chosen for its robustness and proven performance on complex instance
segmentation tasks. The multi-stage refinement process of Mask R-CNN, which first proposes
regions of interest and then refines them, is particularly effective in scenarios with overlapping or
deformable objects. Given that the pipeline also includes keypoint detection for garments, a task
for which Detectron2's capabilities are well-suited, its inclusion provided a valuable benchmark
for performance and a potential unified solution.

4.1.2 Training Details

To achieve robust and generalizable performance, a two-stage training strategy was implemented.
The chosen models were first pretrained on the large-scale DeepFashion2 dataset to learn a rich
feature representation of garments. Subsequently, the models were fine-tuned on a smaller, custom
dataset specifically designed for the instance segmentation task. This dataset consisted of 610
images, including 310 images of dry clothes and 300 images of wet clothes, to ensure the model
was robust to real-world conditions. The dataset was partitioned into a 90% training set, a 5%
validation set, and a 5% testing set.

All images were preprocessed and augmented as described in Section 3.2.4, including resizing,
normalization, and a range of geometric, color-based, and compositional augmentations to enhance
model robustness during fine-tuning.
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Hyperparameter Configuration:

For YOLOv11-based models, the training was conducted using a batch size of 16, image size of
640 x 640 px, and an initial learning rate of 0.01 with cosine learning rate scheduling and SGD
optimizer (momentum = 0.937, weight decay = 0.0005). The training incorporated built-in
regularization through flip (0.5), rotation (+10°), HSV-saturation (0.7), HSV-value (0.4), and
perspective distortion (0.001) augmentations as defined in the training script.

For the Detectron2 Mask R-CNN model, training was performed with a batch size of 2 images per
iteration, a base learning rate of 0.00025, and the Adam optimizer. The maximum iterations were
varied (500, 1000, and 2000) to evaluate convergence behavior.

These hyperparameters were empirically selected based on common defaults for each framework
and fine-tuned through preliminary experiments to balance stability, speed, and segmentation
accuracy.

4.1.3 Evaluation Metrics

For evaluating the performance of the segmentation models, a standard set of metrics was used to
ensure a comprehensive assessment:

e Mean IoU (Intersection over Union): This metric quantifies how well the predicted
segmentation masks match the ground truth masks. It computes the average overlap ratio
between the predicted and true masks for all classes.[16]

e mAP@50 (mean Average Precision at IoU threshold 0.50): This metric evaluates the
performance of object detection and instance segmentation models by calculating the
average precision when the Intersection over Union (IoU) threshold is set to 0.50.[16]

e Precision: Precision measures the correctness of positive predictions. It represents the
proportion of true positives among all instances that the model predicted as positive. High
precision indicates few false positives.[59]

. . TP
e Precision= —— (3)

e Recall: Recall measures the ability of the model to detect all relevant instances. It

represents the proportion of actual positives correctly identified by the model. High recall
indicates few false negatives.[59]

TP
Recall = m (4)

e Fl1-score: The Fl-score combines precision and recall into a single metric by computing
their harmonic mean. It is particularly useful when dealing with imbalanced classes or

when both false positives and false negatives are important.[59]
Precision xRecall

Fl-score = 2 X (5)

Precision +Recall
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The models were trained under various configurations to identify the optimal setup. The YOLOv11
N model was trained for both 200 and 299 epochs. The YOLOvI11 S model was trained for 300
and 600 epochs. Detectron2 was trained for 500, 1000, and 2000 epochs to observe performance
changes over extended training periods.

4.2 Object Recognition

4.2.1 Rationale for Dual-Methodology Investigation

Classification
—> model: »  Tank Top
EfficientNet

preprocessing:
resizing

post
"l Object Detection | | Processing: Tank Top
input image > Model:  — confidence
Yolo v1IN filtering

Figure 13 - Classification and Object detection tasks process

Once a single garment is isolated by the instance segmentation module, the next critical step is to
identify its category. For the object recognition task, a study using two complementary
methodologies was conducted to identify the most effective approach for this particular
application. The core question was whether a straightforward image classification model would be
sufficient, or if a more complex object detection framework would yield superior performance.

As shown in Figure 13, The first approach, multi-class image classification, represents the more
traditional path. It treats the entire image of the single garment that has already been physically
isolated from the pile as a single entity and assigns it to a category label. This method is
computationally simpler but relies on the model learning distinguishing features from the pixel
data alone.

The second approach reframes the task as object detection for classification. Here, the model's
goal is not only to classify the garment but also to localize it with a bounding box. The primary
motivation for exploring this method was its potential to better utilize large-scale datasets like
DeepFashion2, which contain extensive bounding box annotations. By pretraining on both
localization and classification data, the model could potentially learn a more robust and spatially
aware feature representation, making it less sensitive to variations in the garment's position or scale
within the frame.
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Through empirical evaluation of both methodologies, this study seeks to determine the best trade-
off between model complexity and classification accuracy, ultimately choosing the most
dependable approach for the subsequent stages of the robotic manipulation pipeline.

4.2.2 Multi-Class Image Classification

The first methodology investigated for object recognition was a traditional multi-class image
classification approach. In this approach, an image of a single garment is processed as a whole and
passed through a deep convolutional neural network (CNN) to classify it into one of the ten
predefined categories. The primary advantage of this approach is its relative simplicity and the
wide availability of well-studied, high-performing architectures.

4.2.2.1 Model Architectures

To ensure a thorough evaluation, three distinct and influential CNN architectures were selected,
each representing a different design philosophy:

e  VGGI16: A classic architecture known for its straightforward design, which uses a deep
stack of small (3x3) convolution filters. Its uniform structure has proven effective for many
image classification tasks, serving as a solid baseline.

o ResNet (Residual Network): This model introduced the concept of "residual connections"
or "skip connections," which allow the network to learn residual functions. This innovation
effectively mitigates the vanishing gradient problem in very deep networks, enabling the
training of much deeper and more powerful models.

o EfficientNet: A more modern architecture designed through a principled approach of
compound scaling. It systematically balances network depth, width, and resolution to
achieve state-of-the-art accuracy with significantly fewer parameters and lower
computational cost compared to older models, making it highly efficient.

4.2.2.2 Experimental Setup and Training

A set of experiments were designed to systematically evaluate the performance of these models
under different conditions:

o Image Resolution: To study the impact of input detail on classification accuracy, all
models were trained and evaluated on two different image resolutions: 256x256 and
500x500 pixels.

e Pretraining Strategy: The effect of transfer learning was a key point of investigation. For
each model and resolution, two training schemes were executed: (1) training from scratch
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using only the custom-collected dataset, and (2) pretraining the model on the large-scale
DeepFashion2 dataset before fine-tuning it on the custom dataset of 96 images.

e Training Parameters: All models were trained for a maximum of 100 epochs. An early
stopping mechanism was employed to avoid overfitting, halting the training process if no
improvement in validation loss was observed over a set number of epochs (patient for 15
epochs). Performance was measured using Test Loss (Categorical Cross-entropy),
Accuracy, Precision, and Recall, averaged across all 10 clothing classes.

4.2.3 Object Detection for Classification

The second methodology reframed the recognition task as an object detection problem. Instead of
treating the input as a monolithic image for classification, this approach leverages a model that
simultaneously localizes the garment with a bounding box and assigns to it a class label. This was
hypothesized to be a more robust strategy, as it could capitalize on the extensive localization data
available in large-scale pretraining datasets.

4.2.3.1 Model and Rationale

The YOLOvVI11-N model was selected for this approach. The choice was motivated by its
demonstrated efficiency and strong performance in the instance segmentation phase, making it a
natural candidate for reuse. By employing the same lightweight architecture, the potential for a
streamlined, computationally efficient end-to-end pipeline was preserved. The core rationale was
that a model pretrained on both object localization and classification would develop a more
spatially aware feature representation, leading to better generalization, especially when fine-tuning
on a small custom dataset.

4.2.3.2 Training and Fine-Tuning Strategy

A two-stage transfer learning strategy was implemented to maximize performance:

1. Pretraining: The YOLOvVII-N model was first pretrained on the DeepFashion2 dataset
for 20 epochs. This initial phase allowed the model to learn a general, robust feature
representation for a wide variety of clothing items and their bounding boxes.

2. Fine-Tuning: The pretrained model was then fine-tuned on the small, custom dataset of 96
images. To investigate the impact of training duration, fine-tuning was conducted for two
distinct lengths: 100 epochs and 300 epochs.

The same comprehensive suite of augmentations from the segmentation task was applied,
including geometric transformations (flips, rotation, scaling), color The same comprehensive suite
of augmentations from the segmentation task was applied, including geometric transformations
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(flips, rotation, scaling), color adjustments (hue, saturation, brightness), and advanced techniques
like Mosaic, MixUp, Copy-Paste. This ensured the model was exposed to a wide variety of
structural and contextual variations during training.

4.2.4 Evaluation and Comparative Framework

To facilitate a rigorous and impartial comparison between the two distinct methodologies, a unified
evaluation framework was essential. Although an object detection model's primary output includes
localization data (a bounding box), its efficacy within this specific context is determined by its
ability to correctly classify the garment. Consequently, the performance of the object detection
approach was benchmarked against the same standard classification metrics used for the dedicated
classification models. This systematic application of common evaluation criteria allows for an
empirical conclusion on the more effective methodology for the specific challenge of garment
recognition in a robotic context.

The performance of all models across both approaches was assessed using the following metrics,
calculated on the held-out test set:

o Test Loss (Categorical Cross-entropy): This metric provides a measure of model
generalization by quantifying the divergence between the predicted probability distribution
and the ground-truth distribution of the classes. A lower loss value signifies a model that is
better calibrated and generalizes more effectively to unseen data.

e Accuracy: A primary metric representing the overall correctness of the model, defined as
the ratio of correctly classified instances to the total number of instances in the test set.[59]

e Precision: This metric assesses the reliability of positive predictions for each class. It is
the ratio of true positives to the sum of true positives and false positives. The reported value
is the macro-average precision across all ten classes, providing a measure of performance
that is not biased by class imbalance.[59]

e Recall (Sensitivity): This metric evaluates the model's ability to identify all relevant
instances of each class. It is the ratio of true positives to the sum of true positives and false
negatives. As with precision, the macro-average recall is reported to give equal weight to
each class's performance.[59]

By systematically applying this common set of evaluation criteria, we can have a clear, data-driven
conclusion regarding the superior methodology for the specific challenge of garment recognition
in a robotic manipulation context.
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4.3 Key point detection
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Figure 14 - Key point detection process

Following garment recognition, the next crucial stage in the perception pipeline is keypoint
detection. The objective of this task is to localize a predefined set of semantic landmarks on a
garment, such as the corners of a collar, the ends of sleeves, or points along a waistline (Figure 9).
These keypoints provide a sparse, structured representation of the garment's geometry and pose.
For a robotic manipulator, this information is important. It transforms a complex, continuous
deformable object into a set of discrete, functionally important coordinates, which are essential for
planning robust and precise manipulation strategies, such as defining stable grasp points for
picking up a shirt or identifying corners for initiating a folding sequence.

4.3.1 Objective and Rationale for a Grouping-Based Approach

A significant challenge in garment keypoint detection arises from the vast topological diversity
across different clothing categories. A model trained to find the 14 keypoints of a t-shirt, for
instance, cannot be directly applied to a pair of socks, which may only require 6 keypoints and
possesses a fundamentally different structure. Initial experiments confirmed that a single, "one-
size-fits-all" model struggled to perform accurately across all 10 categories, exhibiting poor
performance especially for classes with unique structures or fewer training samples.

To overcome this limitation, a key methodological innovation of this work was the development
of a task-specific grouping strategy. Instead of training a unified model, the garment categories
were clustered into four distinct groups based on their structural similarity and, most importantly,
their total number of keypoints. This approach allowed for the training of separate, specialized
models for each group. The underlying rationale is that a model trained on a more homogenous set
of objects with a consistent keypoint schema will learn a more focused and accurate feature
representation, leading to superior localization performance compared to a generalist model.
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4.3.2 Model Architecture and Implementation

To perform keypoint detection, the Detectron2 framework was selected due to its robust and
integrated  support  for complex computer vision tasks.  Specifically, the
keypoint_rcnn_R S50 FPN_3x architecture was employed. This model is a variant of Mask R-
CNN that extends the architecture to simultaneously predict object bounding boxes and a set of
keypoints. Its Feature Pyramid Network (FPN) backbone is particularly effective at detecting
objects and features at multiple scales, a critical capability when dealing with garments of varying
sizes and camera distances. The model was first initialized with weights pretrained on the
DeepFashion2 dataset, which offered a solid basis for recognizing garment features prior to fine-
tuning on the custom dataset.

4.3.3 Group-Based Training Details

The practical implementation of the keypoint detection methodology was centered on the proposed
grouping strategy. The ten garment categories were partitioned into four distinct clusters, each
defined by a unique keypoint schema:

e Group 1 (14 keypoints): T-shirt, Sweater, Trouser
e Group 2 (10 keypoints): Tank Top, Crop Top

e Group 3 (8 keypoints): Boxers, Shorts, Briefs

e Group 4 (6 keypoints): Long Socks, Skirt

For each cluster, a dedicated Detectron2 model was fine-tuned, enabling the training process to be
specialized for the unique challenges of each group. A baseline training protocol was first
established for all models, involving fine-tuning for 5,000 epochs while applying a standard suite
of 10 data augmentations, such as random rotations and color jitter, to promote generalization.

However, an adaptive training strategy was employed to address the performance variance
observed between the groups. For clusters that demonstrated lower initial efficacy, specifically
Groups 3 and 4, the training protocol was intensified. The training duration for these models was
extended to 10,000 epochs, and a more aggressive set of 20 augmentations was utilized. This
enhanced protocol was designed to further diversify the training data and improve model
robustness, thereby compensating for the limited number of unique samples in these categories
and ensuring that each specialized model was trained to its optimal performance.
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4.3.4 Evaluation Framework

To quantitatively assess the performance of the specialized keypoint detection models, a
framework based on two standard, complementary metrics was adopted. These metrics provide a
comprehensive view of localization accuracy from different perspectives.

e Object Keypoint Similarity (OKS): This is the primary metric used for this task and is
analogous to the Intersection over Union (IoU) metric in object detection. OKS calculates
a score based on the normalized distance between a predicted keypoint and its ground-truth
counterpart, scaled by the object's size. This scaling ensures the metric is robust to
variations in object size and camera perspective. The score, which varies between 0 and 1,
offers a detailed measure of localization accuracy, with higher values reflecting closer
alignment.

e Percentage of Correct Keypoints (PCK): This metric offers a more intuitive, threshold-
based measure of accuracy. A predicted keypoint is assumed "correct" if the Euclidean
distance to its corresponding ground-truth annotation falls within a predefined threshold.
To ensure scale invariance, this threshold is defined as a fraction of a reference object
dimension. In this work, a threshold of 0.2 times a reference distance was used. The final
PCK value is the percentage of all keypoints across the test set that satisfy this condition,
offering a clear measure of overall model reliability.

Together, OKS and PCK form a robust evaluation framework, allowing for both a detailed analysis
of per-keypoint similarity and a high-level understanding of the model's practical accuracy.

4.4 Mesh prediction

The final piece of our system is about building a 3D model of a garment using just a single 2D
photo. This ability is vital for the robot to truly understand the clothing's shape, position, and how
it might bend or fold, which is necessary for tricky tasks beyond simply picking it up.

While special 3D cameras can measure depth directly, they are often expensive, not always
available, and can fail with reflective materials. For these reasons, our goal was to develop a
method that can figure out the 3D shape using only a standard camera. This approach makes the
system more flexible, affordable, and accessible, as it cleverly uses recent advances in software to
create 3D understanding from a simple 2D image, without needing any specialized hardware.
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4.4.1 Multi-Stage Reconstruction Pipeline

Figure 15 - 3D Mesh Prediction Pipeline from a Single RGB Image.

To achieve 3D reconstruction from a single 2D image, a multi-stage pipeline was designed, as
illustrated in Figure 15. This pipeline sequentially processes the image to extract the necessary
components for mesh generation:

1.

Monocular Depth Estimation: The input RGB image is first passed to a state-of-the-art
monocular depth estimation model to generate a dense depth map. This map provides a
per-pixel estimation of the distance from the camera, forming the initial 3D geometric
information.

Garment Segmentation: To isolate the garment from the background, the binary
segmentation mask produced by the previously trained YOLOv11-N model is utilized. This
ensures that only the pixels corresponding to the garment of interest are considered for
reconstruction.

Mask Refinement and Depth Segmentation: The binary mask is applied to the depth
map, effectively cropping out the depth information for the background. To clean up noisy
edges and improve the boundary definition, an erosion operation is applied to the mask
before this step.
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4. 3D Mesh Reconstruction: Finally, with the original RGB image (for texture), the
segmented depth map (for geometry), and the refined mask (for boundaries), a textured
mesh representation of the garment.

4.4.2 Models and Implementation Details

The implementation of the reconstruction pipeline relies on two key pretrained models:

e Depth Anything V2: This model was used for the monocular depth estimation step. It is a
state-of-the-art foundation model for depth perception that has demonstrated remarkable
performance and generalization capabilities across a wide variety of scenes without
requiring fine-tuning.

e Segment Anything Model (SAM): While the primary segmentation was performed by the
YOLOvV11-N model, for particularly challenging cases with ambiguous boundaries or
complex folds, the SAM was employed to generate more precise binary masks, improving
the quality of the final reconstruction.

4.4.3 Evaluation Approach

Due to the absence of ground-truth 3D data for the custom-collected garments, a quantitative
evaluation of the mesh prediction accuracy was not feasible. Therefore, no numerical quality
scores were computed. Instead, the performance of this component was assessed qualitatively
through visual inspection of the generated 3D meshes. The evaluation focused on the overall
coherence of the 3D shape, the correctness of the reconstructed topology (e.g., folds and wrinkles),
and the realism of the applied texture. While this assessment is inherently subjective, it provides a
practical indication of the model’s ability to produce visually consistent and plausible 3D
representations, which aligns with the exploratory objectives of this work.
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Chapter 5

5 Experiments & Results

This chapter reports the experimental findings obtained from the methodologies described in
Chapter 4. Each section is dedicated to a core component of the vision pipeline, providing a
quantitative and qualitative analysis of the models' performance. The findings are supported by
visualizations and performance metrics to offer a comprehensive evaluation of the system's
effectiveness for robotic garment manipulation.

5.1 Instance Segmentation Results

The primary objective of the instance segmentation task was to accurately detect and isolate each
individual garment from a cluttered pile, a critical first step for any subsequent manipulation task.
This section details the performance of the evaluated models both YOLOvI11 (Nano and Small
variants) and Detectron2 (Mask R-CNN) on the custom-collected dataset.

5.1.1 Quantitative Performance Analysis

To determine the most effective model, a series of experiments were conducted by training each
architecture for a varying number of epochs. The performance was measured using Mean
Intersection over Union (Mean [oU), mean Average Precision (mAP) at an [oU threshold of 0.50,
precision, recall, and the F1-score.

Model/epochs Mean IOU | MAP (IOU 50) | precision | recall f1

YOLOVI1 N, 200 Epochs 0.8616 1.0000 1.000 0.9091 | 0.9524
YOLOVII N, 300 Epochs 0.8563 0.9855 0.9855 0.8831 |0.9315
YOLOVII S, 300 Epochs 0.8736 0.9851 0.9851 0.8571 | 0.9167
YOLOVII S, 600 Epochs 0.8754 0.9853 0.9853 0.8701 | 0.9241
Detectron2, 500 epochs 0.8927 0.7628 0.9385 0.7444 | 0.8303
Detectron2, 1000 epochs 0.9001 0.8486 0.9306 0.8701 | 0.8993
Detectron2, 2000 epochs 0.9107 0.8231 0.8148 0.8571 | 0.8354

Table 1 Performance Comparison of Instance Segmentation Models - This table presents the performance metrics for the
YOLOvI1 and Detectron2 models on the held-out test set. The best-performing model configuration is highlighted in bold.
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The results, outlined in Table 1, demonstrate that the YOLOv11 N model trained over 200 epochs
achieved the best performance for our application. It achieved a perfect mAP@50 of 1.0000 and
the highest F1-score of 0.9524 among all tested configurations. This suggests an exceptional
ability to both correctly localize and segment nearly every garment instance in the test set.

Figure 16 shows the loss curves for both training and validation of the chosen model. The curves
indicate that the model trained smoothly, with losses for both sets steadily decreasing and
converging, reflecting good generalization. For reference, the loss curves of all other model
configurations tested can be found in Appendix A.

The loss curves, depicted in Figure 16, demonstrate a characteristic and intentional drop during
the final epochs of the 200-epoch training cycle. This behavior results from the standard training
strategy adopted in YOLO-based models, where the mosaic data augmentation is disabled in the
final phase of training. This practice, implemented through the close mosaic parameter in the
Ultralytics YOLO framework, deactivates mosaic augmentation during the last few epochs
(typically the final 10) to allow the model to fine-tune on unaltered images that better resemble the
validation and deployment data[60]. During the initial ~190 epochs, the model was trained with
mosaic augmentation, which combines four training images into one to increase diversity and
robustness. While this technique enhances generalization by exposing the model to occluded and
multi-scale objects, it naturally leads to higher loss values. The transition to simpler, non-
augmented images in the final phase thus allows the model to refine its weights, leading to the
observed sharp decrease across all loss metrics.

A deeper analysis reveals several key insights:

e YOLOVI1 N vs. YOLOV11 S: While the larger YOLOv11 S model achieved a slightly
higher Mean IoU (0.8754 at 600 epochs), it did not surpass the Nano version in the crucial
mAP and F1 metrics. Given that the Nano version is significantly more lightweight and
computationally efficient, its superior performance on these key metrics makes it the more
practical choice.

o Impact of Training Epochs: For the YOLOvI11 N model, extending the training from 200
to 300 epochs led to a slight decrease in all metrics, suggesting that early stopping at 200
epochs captured the optimal model state before overfitting could occur.

It should be noted that the second training session of YOLOv11 Nano was set for a
maximum of 500 epochs, but it stopped at epoch 300 due to the activation of early stopping.
This regularization strategy helps prevent overfitting by tracking the model’s performance
on the validation set. Training is automatically terminated when a key validation metric, in
this case the mask mean Average Precision (mAP50-95), does not improve for a specified
number of epochs (patience parameter), indicating that the model has reached an optimal
state.
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e Detectron2 Performance: The Detectron2 models, leveraging the Mask R-CNN
architecture, achieved the highest Mean IoU scores overall, with the 2000-epoch model
reaching 0.9107. This indicates a superior capability in fitting the segmentation masks
precisely to the ground truth. However, its mAP@50 scores were notably lower than
YOLOvI11's, peaking at 0.8486. This mismatch implies that while Detectron2 creates high-
quality masks when it finds an object, it is less effective at correctly detecting all object
instances compared to the YOLOv11 N model in this specific task.
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Figure 16- Training and validation loss curves for the YOLOvI11-N model trained for 200 epochs. The sharp final decrease is
because of mosaic augmentation.

5.1.2 Qualitative Results

Visual inspection of the model outputs on test images supports the quantitative findings. The
figures below provide a qualitative comparison of the different models' segmentation capabilities
on a representative image of a clothing pile.
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Figure 17 - sample inference of YOLOvIIn Model with 200(left) and 299(right) epochs

Figure 18 - sample inference of YOLOvI1 S Model with 300(left) and 600(right) epochs
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(b)

(©)

Figure 19 - Detectron2 segmentation results after different training durations: (a) 500 epochs, (b) 1000 epochs, and (c) 2000
epochs. Longer training improves the model s ability to fit precise boundaries, but it occasionally misses overlapping items,
explaining its lower recall.

The visual results in Figure 17 show that the YOLOv11 N model effectively segments the
overlapping garments with high confidence. Figure 19 demonstrates that while Detectron2
produces very tightly fitted masks (aligning with its high Mean loU), it occasionally struggles with
distinguishing overlapping items or may miss certain garments entirely, which explains its lower
recall and mAP scores.
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5.1.3 Real-world Demonstration

In addition to quantitative evaluation, we validated the segmentation module in a real robotic setup.
A dual-arm robotic platform was tasked with picking garments from a table based on the
segmentation outputs. The real-world demonstration reported here used the maximum inscribed
point (MIP) as the grasp target (see section 4.1). MIP was chosen to maximize clearance from
mask boundaries and reduce boundary-only contacts during grasping. Figure 20 shows snapshots
from the demonstration, where the robot successfully isolated and grasped individual garments
from a cluttered scene. This experiment highlights the practical feasibility of the proposed
perception pipeline, demonstrating that the segmentation model can generalize from offline dataset
training to real-world robotic manipulation scenarios. While these trials were limited in scope, they
provide evidence that the system can serve as a reliable perception front-end for downstream
manipulation tasks.

Figure 20 - instance segmentation testing with robotic arms with the Yolo vil Nano model trained for 200 epochs. The robustness
of the model is shown in real world applications.

5.1.4 Discussion and Model Selection

Based on the combined quantitative and qualitative evidence, the YOLOv11 N model trained for
200 epochs was selected as the optimal choice for the instance segmentation task.

Its selection is justified by three main factors:
1. Superior Performance: It achieved the highest F1-score (0.9524) and a perfect mAP@50,

indicating the best overall balance of precision and recall.
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2. Computational Efficiency: As the "Nano" variant, it offers extremely fast inference
speeds with a low computational footprint, which is a critical requirement for integration
into a real-time robotic system.

3. Reliability: The model showed strong confidence in its predictions and seldom failed to
detect garment instances, providing a dependable basis for the following stages of the
perception pipeline.

During experimentation, the primary challenges observed were handling severe occlusion and
distinguishing between garments of very similar color and texture. While the chosen model
performed admirably, these challenges account for the minor imperfections in recall and justify
the future work direction of incorporating more diverse and complex pile configurations into the
training dataset.

5.2 Object Recognition Results

Following the successful isolation of individual garments via instance segmentation, the next
critical stage in the pipeline is object recognition. The goal of this task is to accurately determine
the category of each detected garment from the 10 predefined classes. To identify the most effective
and robust method for this purpose, a comparative study was conducted between two distinct
methodologies: a traditional multi-class image classification approach and an object detection
framework repurposed for classification.

5.2.1 Multi-Class Image Classification Performance

This approach treats the entire image of an isolated garment as a single input, leveraging various
Convolutional Neural Network (CNN) architectures to assign a category label.

5.2.1.1 Quantitative Performance Analysis

A set of experiments was carried out to assess three widely used CNN architectures: ResNet,
VGG16, and EfficientNet. The study examined the effects of important factors, such as input
image resolution (256x256 versus 500x500) and the application of pretraining on the
DeepFashion2 dataset. Model performance was evaluated based on test loss, accuracy, precision,
and recall.
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Model Image Pretraining Test Loss | Accuracy | Precision | Recall
Size
ResNet 256x256 | No 1.3161 0.625 0.7647 0.5417
VGG16 256x256 | No 1.5049 0.5833 0.6500 0.5417
EfficientNet | 256x256 | No 1.1156 0.6665 0.7619 0.6666
ResNet 500x500 | No 0.9691 0.7083 0.8000 0.6667
VGG16 500x500 | No 1.6645 0.4583 0.4615 0.2500
EfficientNet | 500x500 | No 1.1523 0.5833 0.6471 0.4583
ResNet 500x500 | Yes 0.8741 0.7083 0.7778 0.5833
VGG16 500x500 | Yes 1.0233 0.5833 0.7222 0.5417
EfficientNet | 500x500 | Yes 0.7398 0.7500 0.7143 0.6250

Table 2: Performance Comparison of Image Classification Models - This table presents the key performance metrics for the

classification models on the held-out test set. The best-performing configuration is highlighted in bold.

The curves showing training and validation losses of the classification models provide additional
insights into their performance. Figure 21 shows the curves for the best-performing configuration,
EfficientNet pretrained on DeepFashion2 with 500x500 input resolution. The model exhibits a
stable decline in both training and validation loss, with close alignment between the two, indicating
good generalization and minimal overfitting. This complements the quantitative metrics reported
in Table 2, confirming that EfficientNet benefited substantially from higher-resolution inputs and
pretraining. The loss curves for the other classification models (ResNet and VGG16) are included
in Appendix B for reference. Comparing the curves of training with and without transfer learning
highlights how pretrained models started from a significantly better initial point, achieving lower

training loss from the beginning.
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Figure 21 - training and validation loss for EfficientNet with pretrained weights on deep fashion 2 dataset

The results, summarized in Table 2, yield several important insights:

Impact of Image Resolution: Increasing the input image resolution from 256x256 to
500x500 provided a notable performance boost for both ResNet and EfficientNet,
underscoring the value of higher-detail input for distinguishing between garment types.
VGG16, however, struggled to capitalize on the increased resolution.

Effect of Pretraining: Pretraining on the large-scale DeepFashion2 dataset consistently
improved model performance. The most significant gain was observed in the EfficientNet
model, which achieved the highest accuracy of 75% and the lowest test loss of 0.7398
when pretrained on 500x500 images.

Model Architecture Comparison: Across all experiments, EfficientNet and ResNet were
strong performers, while VGG16 consistently lagged behind. The superior parameter
efficiency and architecture of EfficientNet ultimately gave it the edge, establishing it as the
best model within this methodology.

5.2.2 Object Detection for Classification Performance

This second methodology reframes the recognition task as an object detection problem, where the
model's goal is to both localize the garment with a bounding box plus a class label. The YOLOv11-
N model was selected for this task, leveraging its efficiency and the potential for a more robust,

spatially aware feature representation.
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5.2.2.1 Quantitative Performance Analysis

The YOLOv11-N model was first pretrained on DeepFashion2 and then fine-tuned on the custom

dataset for 100 and 300 epochs.

Model Epochs Test Loss Accuracy Precision Recall
YOLO (Fine-tuned) 100 5.5243 0.3636 0.2727 0.3636
YOLO (Fine-tuned) 300 2.3283 0.8182 0.7727 0.8182

Table 3: Performance of YOLOv1I-N for Classification - The results show a dramatic improvement in all metrics when extending

the fine-tuning duration.

The results in Table 3 are definitive:

o Impact of Training Duration: Extending the fine-tuning process from 100 to 300 epochs
resulted in a dramatic improvement in performance. The model's accuracy surged from a
modest 36.4% to 81.8%, while the test loss was more than halved. This indicates that the
additional training was crucial for the model to adapt its pretrained features to the

particulars of the custom dataset.

Figure 22 - training and validation loss for the selected model yolo vi1 Nano, 300 epochs

The training dynamics of the YOLOv11-N model are illustrated in Figure 22, which presents the
learning curves for the model's two fundamental tasks: bounding box localization (box_loss) and
garment classification (cls_loss). These graphs provide compelling evidence of a stable and highly
successful training process. Both training and validation losses decrease in parallel, indicating
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strong generalization and no major signs of overfitting. Like the segmentation, the drop of loss at
the final epochs are due to the Mosaic augmentation technique.

The classification loss, which is the most critical metric for this stage of the pipeline, shows an
ideal convergence pattern. The validation cls_loss curve closely tracks the decline of the training
loss, indicating that the model effectively learned to distinguish between garment categories and
successfully generalized this knowledge to unseen data. This is strongly supported by the bounding
box loss, which also decreased consistently for both training and validation. The combined success
in both minimizing loss for localization and classification explains the model's superior
performance and justifies its selection as the final, most robust method.

5.2.3 Discussion and Final Method Selection

Comparing the best-performing models from both methodologies, the YOLOvII-N object
detection model fine-tuned for 300 epochs (81.8% accuracy) significantly outperformed the best
classification model, EfficientNet (75% accuracy).

Based on this clear evidence, the YOLOvV11-N object detection approach was selected as the final
method for the object recognition task. This decision is justified by three key factors:

1. Higher Accuracy: The object detection model achieved a notably higher final accuracy
score. Training the model to perform both localization and classification at the same time
allowed it to learn more effective features for telling the garments apart.

2. Better Generalization and Reliability: Both EfficientNet (with pretraining) and
YOLOvV11-N exhibited stable convergence and minimal overfitting. However, YOLO
achieved this while also delivering substantially higher accuracy and more robust
validation performance. This makes YOLO not only better at generalization but also the
more reliable choice for deployment.

3. Pipeline Consistency: Using a YOLO model matches the architecture chosen for the
instance segmentation task. This creates a more streamlined and unified system, which
could make it easier to deploy and manage in the future.

The primary challenge in this task was the limited size of the custom dataset used for fine-tuning.
This lack of data caused the overfitting seen in the pure classification model. The success of the
YOLOv11-N model highlights how a good pretraining strategy, combined with the benefit of
having the model learn two tasks at once, helped it overcome this problem.
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5.3 Keypoint Detection Results

Following the object recognition stage, the keypoint detection models were evaluated to evaluate
their ability to localize semantic landmarks on each garment. This task is crucial for enabling
downstream robotic manipulation, as these keypoints provide a structured representation of the
garment's geometry and the location that the robot can pick and fold the clothes. The evaluation
was based on the specialized, group-based approach detailed in the methodology, where separate
models were trained for clusters of garments with the same number of keypoints.

5.3.1 Performance of Group-Based Models

The quantitative performance of the specialized models for each garment group was assessed using
Object Keypoint Similarity (OKS) and Percentage of Correct Keypoints (PCK). The results,
summarized in Table 4, show the effectiveness of the grouping strategy, though performance varied
significantly across the different groups.

Test | Group Training Setup Overall PCK Mean
OKS

1 1 (T-shirt, Sweater, Trouser) 5000 epochs 0.97 0.9001

2 2 (Tank Top, Crop Top) 5000 epochs 0.55 0.4581

3 3 (Boxers, Shorts, Briefs) 5000 epochs 1.00 0.8660

4 3 (Boxers, Shorts, Briefs) 5000 epochs 1.00 0.8813
more Aug

5 3 (Boxers, Shorts, Briefs) 1000 epochs 0.96 0.8444
more Aug

6 4 (Long Socks, Skirt) 5000 epochs 0.50 0.2476

7 4 (Long Socks, Skirt) 1000 epochs 0.50 0.3563
With more Aug

Table 4 - the performance of models for different groups in key point detection tasks. The best performing model in each group is
bolded.

5.3.2 Analysis and Observations

A key consideration for this analysis is that the validation set for all groups was very small.
Consequently, the validation loss curves appear noisy and are not a fully reliable indicator of the
model's final generalization ability. Instead, the combination of final test metrics (Table 4) and
visual inspection of inference results provides a more accurate assessment of performance.
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The qualitative results, shown in the figures below, align with the quantitative metrics. For high-
performing groups like T-shirts and Trousers, the predicted keypoints (red) show a very close
alignment with the ground truth annotations (yellow). For underperforming categories like the
Skirt, the predictions are less precise, visually confirming the lower OKS scores.

Figure 23 — (left) inference of key point detection for test 1, group 1 on a t-shirt, (right) inference of key point detection for test
7, group 4 on a skirt, the red points are the predicted ones, and the yellow points are the ground truth
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Figure 24 — training loss curves of test 1, group 1 with 5000 epochs (left) and test 7, group 4 with 1000 epochs (right)
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The results clearly indicate that model specialization led to high performance for categories with
sufficient samples. Group 1 and Group 3 achieved excellent results, with the augmented Group
3 model reaching a perfect PCK of 1.00 and a high Mean OKS of 0.8813.

This high accuracy is confirmed visually in Figure 23, where predicted keypoints on garments like
T-shirts show a near-perfect match with the ground truth. The learning process for these successful
groups was also stable, as exemplified by the Group 1 loss curve in Figure 24 (left). In the graph,
the train loss (blue line) shows a strong, consistent decrease, which is a clear sign that the model
is effectively learning from the training data. The corresponding validation loss (orange line),
while noisy, remains stable for most of the training process and only begins to trend slightly
upward at the very end. This illustrates a healthy learning dynamic that achieved strong
performance before any significant overfitting could occur, a conclusion supported by the excellent
final test metrics.

On the other hand, the performance for Group 2 (Tank Top, Crop Top) and Group 4 (Long Socks,
Skirt) was significantly lower, a result directly attributable to the limited number of training
samples for these categories. The less precise predictions for these groups are evident in the
example for the skirt in Figure 23(right).

The training dynamics for these struggling models were also visibly unstable, as shown by the
Group 4 loss curve in Figure 24(right). The validation loss (orange line) is highly noisy and
exhibits an upward trend, a pattern that typically suggests overfitting.

Nevertheless, this conclusion should be approached carefully. Due to the extremely small
validation set for these groups, the validation loss curve is not a reliable indicator of the model's
true generalization ability. In fact, the performance on the separate, held-out test set tells a different
story. As shown in Table 4, extending the training for Group 4 actually improved the Mean OKS
from 0.2476 to 0.3563. Actually, the model has low performance for the skirts in group 4 and tank
top in group 2. These two categories of clothes have the least samples among all datasets as shown
in Figure 8 - chart of distribution of physical clothing samples.

This suggests a complex scenario: while the model was likely beginning to overfit to the few
specific examples in the tiny validation set (causing the validation loss to rise), it was
simultaneously continuing to learn broader, more useful features that improved its performance on
the unseen test data. This highlights a key limitation of relying on small validation sets and
confirms that the final test metrics provide the most accurate assessment of the model's practical
performance.

This analysis underscores both the success of the group-based training strategy and the critical
dependence on sufficient, category-specific training data. While the approach is sound, future work
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must focus on increasing dataset for the underrepresented categories to achieve consistent, high
accuracy keypoint detection across all garment types.

5.4 3D Mesh Prediction Results

The final component of the perception pipeline focused on reconstructing a three-dimensional
mesh of a garment from a single 2D RGB image. This capability is crucial for enabling a robot to
understand an object's full spatial properties, which is a prerequisite for executing advanced
manipulation tasks such as folding. This section presents the qualitative results of the mesh
prediction methodology.

5.4.1 Mesh Reconstruction from a Single RGB Image

The reconstruction process was designed as a multi-stage pipeline that leverages state-of-the-art
deep learning models to infer 3D geometry from 2D inputs. As illustrated in Figure 15, the process
begins with an RGB image of a garment. A dense depth map is generated using the Depth
Anything V2 model, providing an initial estimation of the object's geometry. Simultaneously, the
selected model in segmentation task (Yolo vl11 Nano with 200 epochs) produces a segmentation
mask to isolate the garment from the background. For instances with particularly complex folds or
ambiguous boundaries, the Segment Anything Model (SAM) was employed to achieve a more
precise segmentation.

The refined mask is then applied to the depth map to isolate the garment's depth information. This
segmented data, combined with the original RGB image for texture, is used to reconstruct the final
3D mesh.

5.4.2 Visualizing Mesh Prediction in a Manipulation Scenario

To demonstrate the pipeline's effectiveness in a practical context, the mesh reconstruction was
applied to a sequence of images depicting a T-shirt at different stages of a manipulation task:
flattened, partially folded, and fully folded. The mesh prediction results, shown in Figures 25, 26,
and 27, illustrate the system's ability to capture the changing shape and deformation of the garment
throughout the process. This visual evidence confirms that the pipeline can successfully track the
garment's topology in various states.
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Figure 25 - 3D mesh reconstruction of a T-shirt in a flat state. The pipeline successfully captures garment shape and surface
topology from a single RGB image using monocular depth estimation and segmentation.

' -

Figure 26 - 3D mesh reconstruction of a T-shirt in a partially folded state. The reconstructed mesh adapts to the garment's

changing geometry, demonstrating the pipeline s capability to track deformation.
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Figure 27 - 3D mesh reconstruction of a T-shirt in a fully folded state. The results show coherent surface representation despite
occlusions, confirming the pipeline s effectiveness in handling real-world garment manipulation scenarios.

5.4.3 Qualitative Assessment

Because of the lack of ground-truth 3D data for the custom-collected garments, a quantitative
evaluation of the mesh prediction accuracy was not feasible. Therefore, the performance of this
component was assessed qualitatively through visual inspection. The generated 3D meshes were
evaluated based on the coherence of their overall shape, the accuracy of the reconstructed topology
(e.g., correctly representing folds and wrinkles), the absence of noises and the visual quality of the
applied texture.

The qualitative assessment confirms that the proposed RGB-only pipeline is capable of generating
plausible and coherent 3D representations of garments in various states. The findings highlight the
efficiency of this approach in 3D perception for robotic manipulation, providing a strong basis for
future research that may incorporate RGB-D sensors to improve accuracy.
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5.5 Evaluating the Integrated Perception Pipeline

Although the previous sections examined each element of the perception pipeline separately, its
overall value for the EUROBIN project relies on its performance as a fully integrated system.
Because the pipeline operates sequentially, the success of each step depends heavily on the output
of the preceding step, which can lead to a cascade where errors accumulate and increase.

e The "Successful Path" and Key Strengths:

The pipeline's primary strength lies in its "front-end" performance. The selected YOLOv11-N
instance segmentation model (200 epochs) proved to be highly robust, achieving a perfect
mAP@50 and an F1-score of 0.9524. This ensures that the initial and most critical step, isolating
a single garment from a cluttered pile, is highly reliable. As demonstrated in preliminary robotic
integration tests, this module's accuracy and efficiency are sufficient to guide a robotic arm to
successfully pick a target garment from a pile, validating its real-world applicability. Once a
garment is isolated, the YOLOV11-N object recognition model (300 epochs) provides a strong
classification accuracy of 81.8%. When these first two stages succeed, the system correctly passes
a correctly identified garment to the appropriate specialized keypoint detection model.

e Bottlenecks and Error Propagation Analysis:

The pipeline's overall reliability is constrained by the performance of its subsequent stages,
creating two primary failure points:

1. Object Recognition Errors: The 81.8% accuracy of the recognition model, while strong,
implies that for approximately one in five cases, a garment will be misclassified. This type
of error is critical. For example, if a "T-shirt" is misclassified as a "Tank Top," the system
will invoke the Group 2 keypoint model (10 keypoints) instead of the correct Group 1
model (14 keypoints). The resulting keypoint predictions would be meaningless and
unusable for any downstream manipulation task, causing a complete failure of the pipeline
for that item.

2. Keypoint Detection Inconsistency: Even with correct classification, the performance of
the keypoint detection varies significantly across garment groups. For common categories
like T-shirts and Trousers (Group 1), the model is highly reliable, with a PCK of 0.97 and
a Mean OKS of 0.90. However, for underrepresented categories like Skirts (Group 4), the
performance is poor (Mean OKS of 0.3563). Therefore, even if a skirt is correctly
segmented and identified, the pipeline would likely fail to provide the accurate grasp points
necessary for manipulation.

In summary, the integrated pipeline is highly effective for a significant portion of common garment
types where data is plentiful. However, its overall reliability is currently bottlenecked by the object
recognition stage and the inconsistent performance of keypoint detection on less-frequent clothing
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categories. The system's architecture is sound, but its end-to-end success rate is dictated by its
weakest links.
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Chapter 6

6 Conclusion and Future Work

6.1 Conclusion

The research presented in this thesis has addressed the problem of vision-based robotic cloth
manipulation, with the objective of building and validating a perception pipeline able of
identifying, localizing, and reconstructing garments from a small, custom dataset. The work
focused on four interconnected tasks: instance segmentation, object recognition, keypoint
detection, and 3D mesh prediction. Together, these tasks form the essential building blocks of a
pipeline that was successfully demonstrated within the EUROBIN robotic system for autonomous
textile handling.

This research achieved several significant results. Firstly, a custom dataset was collected and
annotated which has ten garment categories under both wet and dry conditions. Although relatively
small in size, this dataset is as a valuable benchmark for training and evaluating models on diverse
perception tasks.

In the area of instance segmentation, extensive experiments with YOLOv11l and Detectron2
showed that YOLOvI11-N trained for 200 epochs provided the most balanced solution, combining
near-perfect mAP@50 with excellent recall and efficiency. This initial stage proved highly robust
in physical experiments with robotic in real world application, consistently enabling a robotic
manipulator to accurately distinguish and pick a target garment from a cluttered pile, validating its
real-world applicability.

For object recognition, we compared traditional classification networks with an object detection
method. While EfficientNet, pretrained on DeepFashion2 and trained on our dataset, showed
strong generalization and reasonable performance, YOLOvV11-N once again demonstrated superior
accuracy and reliability, ultimately making it the selected choice for this phase of the pipeline.

To address the challenge of reliably identifying manipulation landmarks, we used a group-based
keypoint detection approach to have different models according to the specific structures of
different garments. This strategy proved particularly effective for categories with sufficient
training examples, such as T-shirts and trousers, where PCK and OKS scores approached high and
acceptable accuracy. While performance was lower for less-represented categories, such as skirts
and crop tops, the experiments still demonstrated that the specialized model framework is feasible
for robotic manipulation and highlighted how important dataset balance is for achieving strong
performance.
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Finally, this thesis introduced a pipeline for predicting 3D garment meshes using only RGB
images, combining monocular depth estimation, segmentation masks, and reconstruction
techniques. Although the evaluation was necessarily qualitative due to the absence of ground-truth
meshes, the results showed that it is possible to generate plausible cloth reconstructions without
specialized hardware. Overall, these contributions provide a complete proof of concept for a
robotic perception system capable of manipulating deformable objects, indicating that the YOLO-
based architectures are effective, also showing the benefits of transfer learning, and the importance
of a modular design in creating a robust pipeline.

6.2 Limitations

While the thesis establishes a promising foundation, several limitations restrict the scope and
generalizability of its findings. The most significant constraint lies in the size and diversity of the
dataset. With only 51 garments represented and considerable imbalance between categories, some
models, particularly for keypoint detection, struggled to generalize to less frequent classes. Wet
garments were included to increase variability, but challenges such as reflections and lighting
effects remained unresolved.

Another limitation concerns the evaluation of the 3D mesh prediction pipeline. Without access to
ground-truth 3D data, performance could only be assessed visually, making it difficult to quantify
accuracy in capturing fine details such as folds or fabric thickness. In addition, we could not train
any model for mesh prediction for clothes specifically and we had to use pretrained models like
Depth Any Thing. The reliance on monocular RGB input also imposed constraints, as depth
estimation from single images remains prone to artifacts and distortions.

6.3 Future Work

The outcomes of this study point to multiple promising directions for future research. The first
step would be to expand the dataset and especially increase the samples of underrepresented
classes, since broader and more balanced data would directly address current limits in model
generalization. Collecting a larger set of garments that spans different poses, fabrics, and
environmental conditions would strengthen the pipeline considerably. At the same time, synthetic
data generated through garment simulations or rendering could be used to complement real
samples, especially for underrepresented categories, while also allowing for experiments under
more controlled conditions.

Building on the initial successful integration with the EUROBIN platform, a clear next step is to
enhance the closed-loop control system. A real-world test with two robotic arms illustrates how
perception translates to successful grasps; future work should focus on using the pipeline's visual
feedback in real-time to create adaptive strategies during manipulation of the clothes. For instance,
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the robot could dynamically adjust its folding trajectory based on continuous feedback from the
keypoint detection and mesh prediction modules. That kind of integration would reveal the
robustness of the pipeline under real-time constraints and unstructured conditions.

Future work could also explore the use of RGB-D fusion. By introducing depth cameras, the
pipeline could achieve more accurate mesh prediction while reducing the reliance on monocular
depth estimation. Fusion of color and depth information is likely to improve robustness under
challenging lighting and occlusion scenarios.

To improve the performance of specific pipeline modules, several targeted enhancements could be
pursued. For object recognition, techniques like automated background removal could reduce
noise and improve classification accuracy. For keypoint detection, developing more targeted data
augmentation strategies or even re-evaluating the keypoint definitions for structurally ambiguous
garments like skirts could yield significant gains.

Advances in keypoint detection offer another direction. Transformer-based or graph-based models
could better capture the structural relationships between garment parts, while semi-supervised
learning might reduce annotation costs. For 3D mesh prediction, future efforts should aim at
quantitative benchmarking by creating a small test set with ground-truth 3D scans and training
using real dataset with depth information. Real-time mesh refinement during manipulation could
eventually allow the robot to adapt its perception dynamically as the garment deforms.

Finally, the pipeline’s modular design itself points toward a promising future in end-to-end
architectures. We could develop a multi-task network to perform segmentation, recognition, and
keypoint detection in unison, thus reducing latency through shared features. This integration would
be a major advantage for deployment on robotic systems, which critically depend on speed and
robustness.

6.4 Concluding Remarks

This thesis has demonstrated that vision-based methods can serve as a practical basis for robotic
cloth manipulation. Through a systematic evaluation of different architectures and strategies, it has
shown the effectiveness of YOLOvI1 models in both segmentation and recognition tasks,
highlighted the advantages of transfer learning for classification, and confirmed the feasibility of
extracting manipulation landmarks and generating 3D reconstructions from limited data. The
project still faces key obstacle, namely the dataset's limited diversity, the need for more rigorous
3D mesh evaluation, and the challenge of practical pipeline integration. Nonetheless, the outcomes
lay down a firm groundwork for future investigations. With larger datasets, the use of depth
sensors, and integration into robotic systems, the pipeline proposed here could develop into a
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reliable perception framework for garment handling, moving the field closer to the broader goal
of autonomous textile manipulation.
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Appendix A: Additional Instance Segmentation Training Curves

This appendix provides the complete set of training and validation loss curves for all instance
segmentation models evaluated in Chapter 5.1. These plots include the performance of YOLOv11-
N (300 Epochs), YOLOvI1-S (300 and 600 Epochs), and all Detectron2 configurations. These
figures complement the summary table and primary loss curves in the main text, offering deeper

insight into the training dynamics and convergence behavior of each model.
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Figure 28 - Training and validation loss curves for the YOLOv1I-N model trained for 300 epochs. The curves show early

convergence, with performance plateauing, suggesting that extended training offered limited additional benefit compared to 200

epochs.
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A.2 YOLOvI11 S (300 Epochs)
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Figure 29 - Training and validation loss curves for the YOLOvI11-N model trained for 300 epochs. The curves show early

convergence, with performance plateauing, suggesting that extended training offered limited additional benefit compared to 200

epochs.
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Figure 30- Training and validation loss curves for the YOLOv11-S model trained for 600 epochs. The extended training further
reduces loss but offers only marginal improvements in segmentation quality, consistent with observed results. A.4 Detectron2

(Mask R-CNN)
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A.4 Detectron2:

Train vs Validation Loss
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Figure 31 - Training and validation loss curves for the Detectron2 model configurations (500 epochs).
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Figure 32 - Training and validation loss curves for the Detectron2 model configurations (1000 epochs).
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Figure 33 - Training and validation loss curves for the Detectron2 model configurations (2000 epochs).
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Appendix B: Additional Object Recognition Training Curves

This appendix contains the training and validation accuracy and loss curves for the multi-class
image classification models evaluated in Chapter 5.2.1. The figures illustrate the learning
dynamics of ResNet, VGG16, and EfficientNet, both when trained from scratch and when
pretrained on the DeepFashion2 dataset. These plots provide a visual comparison of model
generalization and overfitting tendencies, supporting the quantitative analysis presented in the
main results section.
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Figure 34 - Training and validation curves for the ResNet model pretrained on DeepFashion2 with 500x500 resolution.
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B.2 VGG16 (500x500, Pretrained)
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Figure 35 - Training and validation curves for the VGG 16 model pretrained on DeepFashion2 with 500x500 resolution.

B.3 Models without Pretraining
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Figure 36 - Training and validation curves for EfficientNet models trained from scratch on the custom dataset image size
500*500.
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Figure 37 - Training and validation curves for VGG16 models trained from scratch on the custom dataset image size 500*500.
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Figure 38 - raining and validation curves for ResNet models trained from scratch on the custom dataset image size 500*500.
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Appendix C: Keypoint Detection Training Curves

This appendix presents the training and validation loss curves for the specialized, group-based
keypoint detection models discussed in Chapter 5.3. The plots correspond to the different garment
groups and training configurations. It is important to note that due to the small validation set sizes
for some groups, these curves can appear noisy and may not be a perfect indicator of final test
performance, but they provide valuable context for the training process.
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Figure 39 - Training and validation loss curve for the Group 2 model, trained for 5000 epochs.
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Figure 40 - Training and validation loss curves for the Group 3 models, including the baseline training and the runs with
extended epochs and increased augmentation.
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Train vs Validation Loss (Keypoint Detection)
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Figure 41 - Training and validation loss curves for the Group 3 models, including the baseline training and the runs with
extended epochs and increased augmentation.
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Figure 42 - training and validation curve for group 4 with 5000 epochs
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Figure 43 - training and validation curves of group 4 for 10000 epochs
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