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Abstract 

The manipulation of deformable objects, particularly garments, remains a significant challenge in 

robotics due to their infinite-dimensional state space and unpredictable dynamics. This thesis 

addresses the critical need for robust perception systems by designing, implementing, and 

evaluating an end-to-end vision pipeline for autonomous robotic handling of clothing. The research 

is contextualized within the VolPix project from EUROBIN, which targets the automation of 

laundry tasks involving ten distinct garment categories in both wet and dry states. 

The proposed system employs a multi-stage approach to transform a single RGB image into 

actionable data for a robotic manipulator. The pipeline begins with instance segmentation to isolate 

individual garments from cluttered scenes, followed by object recognition to determine each item's 

category. Subsequently, a specialized keypoint detection module localizes semantic landmarks 

crucial for grasping and folding, and a final stage reconstructs the garment's 3D mesh using a 

monocular depth estimation technique. To train and validate these components, a custom dataset 

was collected and annotated, supplementing pretraining on the large-scale DeepFashion2 dataset. 

This work establishes a comprehensive perception framework that integrates segmentation, 

recognition, keypoint detection, and 3D reconstruction, providing a strong foundation for 

advancing autonomous robotic manipulation of deformable objects. 
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Chapter 1 

1 Introduction 

1.1 Motivation 

The field of modern robotics is rapidly expanding from structured industrial settings into the 

unstructured environments of everyday human life, where robots must handle a far greater 

diversity of objects. In particular, the manipulation of deformable objects (such as cloth, 

garments, and other soft materials) presents unique challenges not encountered with rigid bodies. 

Unlike rigid objects, which can be described by a small number of pose parameters, textiles and 

garments have an effectively infinite-dimensional state space with complex, non-linear 

dynamics[1]. Even small forces can cause large and unpredictable shape changes, and garments 

readily fold, bend, or wrinkle in ways that occlude parts of the object. These characteristics (high 

sensitivity to external forces, frequent self-occlusion, and dramatic topology changes) make 

deformable objects fundamentally difficult to perceive, model, and handle reliably[2]. In computer 

vision terms, for example, segmenting or tracking a garment in an image is far harder than 

segmenting a rigid object, because clothing continuously deforms and lacks a stable geometry. 

Despite these challenges, the ability to manipulate soft materials is crucial for many high-impact 

applications. In industrial settings, advanced cloth handling could transform garment 

manufacturing, automated packing, and logistics (for example, automating sorting, folding, or 

seam-sealing processes). In the service and domestic domains, robots that can sort laundry, fold 

garments, or assist with household chores would dramatically reduce human effort and expand the 

utility of personal assistant robots. In the healthcare and assistive sectors, robots capable of 

handling soft materials are essential for tasks like assistive dressing, moving bedding or linens, 

and providing aid to the elderly or disabled. In fact, enabling robots to manage soft fabrics could 

improve quality of life and generate significant economic benefits across industry and daily 

living[1]. 

Recent years have seen remarkable breakthroughs in deep learning for computer vision, with 

neural networks achieving near-human accuracy on many recognition tasks. However, the 

effective handling of garments by robots remains a largely unsolved research problem. Much of 

the existing computer vision progress in clothing comes from the fashion industry or e-commerce 

(e.g. clothing classification, virtual try-on, and retrieval), where images typically show a well-

posed garment on a model under controlled conditions. Large fashion datasets (e.g., DeepFashion 

and its variants) contain hundreds of thousands of images of apparel, but these images are 

structured and clean: garments are worn by people or displayed in ideal orientations[3]. By 
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contrast, in real-world robotic scenarios clothing items are often found crumpled in a pile, upside-

down, partially occluded, or even wet or soiled. Such “non-ideal” configurations are rarely present 

in fashion datasets[2]. Moreover, the fashion datasets focus on tasks like category labeling or 

landmark detection on flat clothing, without providing the detailed spatial or topological 

information needed for physical interaction. In practice, robotic manipulation requires fine-grained 

understanding of garment geometry and state, for example, the precise location of sleeves, cuffs, 

collars, and corners, far beyond what is encoded in typical fashion images. 

This gap between fashion-centric vision tasks and the physical needs of robotics motivates the 

development of specialized perception pipelines and tailored datasets. In particular, a vision 

system for garment manipulation must be able to handle the difficult, realistic states in which 

clothing is often encountered by robots (e.g. garments in a cluttered bin or lying on a folding table). 

Addressing this gap is essential to enable truly intelligent robotic clothing manipulation. The 

present thesis therefore aims to bridge the gap between computer vision and robotic manipulation 

of deformable objects, by designing a multi-stage vision pipeline and creating suitable data 

resources that together enable reliable perception of garments in challenging real-world 

conditions[2]. 

 

1.2 Problem Statement 

The central research problem of this thesis is to design, implement, and evaluate a robust vision-

based perception system for autonomous robotic manipulation of garments in realistic settings. 

The system must accurately interpret garments under diverse, real-world configurations (e.g. 

crumpled in a pile, partially folded, or lying on a surface) and do so quickly enough for use in a 

manipulation pipeline. This problem directly confronts the core challenges of deformable object 

perception: high variability and unpredictability in shape, infinite-dimensional state of cloth, and 

frequent self-occlusion and deformation under any robot-induced force[2]. In particular, garments 

can take on countless shapes and poses, and visual appearance can change dramatically with 

lighting or pose; any perception system must be robust to this diversity. 

This thesis is carried out within the VolPix project, which is one of the research activities 

conducted under the euROBIN network. The euROBIN network aims to advance AI tools, 

software, architectures, and hardware components through a reproducible approach. Within this 

framework, VolPix focuses on automating the handling of laundry by robots. It targets 10 distinct 

clothing categories (such as T-shirts, trousers, socks, etc.) and requires operation in both wet and 

dry states. To support the autonomous manipulation tasks proposed by VolPix, the perception 

system must carry out a complete sequence of vision tasks, each of which presents its own 

challenges. These tasks include: 

• Instance Segmentation: The first step is to isolate each garment instance from a 

cluttered scene (e.g. a pile of wet or dry clothes). This requires distinguishing one garment 
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from another and from the background at the pixel level. The difficulty is that garments 

often overlap and lack clear boundaries, and may share similar colors or textures. Effective 

segmentation in such cases is an open problem. Reliable methods must work without prior 

knowledge of the scene or a predefined background[1]. In practice, we employ state-of-

the-art instance segmentation networks (e.g. Mask R-CNN or YOLO-based models) 

trained on garment images, but their accuracy can suffer under occlusion and background 

clutter. As noted in the literature, a major obstacle for data-driven garment segmentation is 

the scarcity of annotated images showing garments in realistic, occluded configurations[3]. 

To address this, our approach will investigate data augmentation to improve segmentation 

robustness on the intended domain. 

• Object Recognition (Category Classification and Detection): Once each garment is 

segmented, the system must identify its category (e.g. “t-shirt” vs. “trousers” vs. “sock”). 

This task is inherently challenging due to intra-class variation (many different styles of t-

shirts, trousers, or skirts) and inter-class similarity (e.g. briefs and boxers, or certain shirts 

and towels that share similar textures and shapes). Traditional deep convolutional neural 

networks such as ResNet or EfficientNet can be employed for multi-class image 

classification, but their success depends heavily on the availability of representative 

training data. In robotic manipulation contexts, labeled datasets are often small and task-

specific, forcing careful adaptation through fine-tuning and transfer learning. For example, 

rotation-invariant or attention-based architectures can help account for arbitrary garment 

orientations, while augmentation strategies such as random rotations, scaling, and 

brightness variation improve robustness to appearance changes. In this work, transfer 

learning from large fashion datasets like DeepFashion2 is used as a foundation, with fine-

tuning on our custom dataset to adapt to the specific challenges of EUROBIN. 

In addition to classification, this thesis also investigates object detection as an alternative 

recognition strategy. Rather than treating each garment image as a whole, object detection 

methods predict both the bounding box and the class label of each item. This approach 

leverages the spatial localization capabilities of modern detectors and makes better use of 

large-scale datasets that provide bounding-box annotations. In this project, a lightweight 

YOLOv11-N model was pretrained on DeepFashion2 and then fine-tuned on a smaller, 

custom-collected dataset. The detection-based approach proved particularly effective: by 

jointly learning localization and classification, the YOLO-based model demonstrated 

improved robustness to cluttered scenes and positional variations, outperforming purely 

classification-based methods in several scenarios. As a result, object detection with 

YOLOv11 was adopted as the primary recognition method within the pipeline, while 

classification served as a complementary baseline for comparative analysis. 

• Keypoint Detection: To facilitate grasping and manipulation, the system must detect 

semantic keypoints or landmarks on the garment, such as sleeve ends on a shirt, collars, 



Introduction 

 

4 
 

cuffs, or waist ends. These keypoints serve as grasp points or as references for planning 

actions (e.g. folding along a detected edge). Unlike rigid objects with fixed features, 

garments have no fixed skeleton or topology, so keypoints must be localized from 

appearance alone. The problem is further complicated when garments are crumpled: 

important landmarks may be occluded, folded, or obscured by other cloth. Contemporary 

keypoint detection techniques typically treat this as a heatmap regression problem with 

convolutional networks. Prior work on robotic cloth has successfully used such models 

[2]to find corner points and edges. As Lips et al. demonstrate, detecting non-occluded 

keypoints on flattened clothes enables downstream tasks like folding via scripted 

motions[2]. In our system we adopt Detectron2’s Keypoint R-CNN, which predicts 2D 

heatmaps for each semantic keypoint within a region of interest, providing accurate 

localization of garment landmarks. We must carefully design the set of keypoints for each 

garment type (e.g., sleeve endpoints and collar for a shirt) and train the model on labeled 

examples. The core difficulty is robustness: the detector must handle arbitrary 

deformations and partial occlusions, and yet still reliably identify points. We will explore 

grouping strategies treating similar clothes as a group. 

• 3D Shape Inference (Mesh Prediction): Finally, the system must reconstruct the 3D 

shape (mesh) of a garment from a single RGB image. A full 3D model is crucial for 

advanced reasoning about manipulation tasks such as estimating drape, tension, or planning 

folding actions. Since specialized RGB-D cameras were not available in this project, we 

adopted a monocular approach that relies on learning-based priors. Our method follows a 

multi-stage pipeline: a state-of-the-art monocular depth estimator (Depth Anything V2) 

provides dense depth information from the RGB input; garment segmentation masks from 

YOLOv11 (optionally refined with SAM) are applied to isolate the target garment; and the 

segmented depth map is then used to reconstruct a textured 3D mesh. This approach allows 

mesh reconstruction without additional hardware, though it inherits the limitations of 

monocular inference, particularly in handling thin structures such as edges and open 

garment boundaries. Due to the lack of ground-truth 3D garment datasets for evaluation, 

we performed a qualitative assessment, focusing on the plausibility of reconstructed 

topology, folds, and textures. While this method demonstrates the feasibility of RGB-only 

mesh prediction, it also highlights open challenges in achieving high-fidelity garment 

reconstruction for robotic manipulation. 

In summary, the research problem is to build a vision perception pipeline that integrates these 

four core tasks (instance segmentation, category classification, keypoint detection, and 3D mesh 

reconstruction) into a unified system for robotic garment manipulation. Each subtask brings its 

own open challenges, compounded by the highly deformable and variable nature of cloth [1], 

[2].The success criterion is a system that can take an input image of a real garment (or pile of 

garments) and output all needed information reliably enough to be used by a downstream motion 

planner or control algorithm. 
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1.3 Thesis Structure 

This thesis is organized into six chapters, progressing from background concepts to final 

conclusions: 

• Chapter 2 (Literature Review): This chapter surveys related work in vision-based 

deformable object manipulation. It begins with an overview of robotic manipulation of 

deformable objects, highlighting classical modeling and modern data-driven approaches. 

It then reviews the specific vision tasks in our pipeline: instance segmentation (e.g. Mask 

R-CNN, U-Net methods for cloth segmentation), garment classification (deep networks 

trained on fashion datasets), semantic keypoint or landmark detection (especially in cloth 

manipulation contexts), and 3D shape estimation techniques (including mesh prediction 

from images). For each task, we compare the existing algorithms, emphasizing those 

focused on clothing or similar soft objects.  

• Chapter 3 (Dataset): This chapter describes the data used for training and evaluation. We 

make use of the public DeepFashion2 dataset, which contains hundreds of thousands of 

annotated images of garments (with segmentation masks and landmarks). However, 

DeepFashion2 primarily consists of well-dressed models and studio images, so we detail 

how we adapt it to our robotic context. Crucially, we introduce our custom garment 

dataset collected for the EUROBIN project. This dataset includes images of the ten target 

garment categories in both dry and wet conditions, captured on a flat surface by a single 

camera. We describe the data collection protocol (variations in pose, lighting, wetness) and 

annotation process, which includes instance masks, category labels, and keypoint locations. 

We also compare statistics of the datasets (image count, keypoints per item, etc.) to show 

their coverage and relevance to the task. 

• Chapter 4 (Methodology): Here we detail the proposed multi-stage perception pipeline. 

We first describe the instance segmentation model (e.g. a fine-tuned Mask R-CNN or a 

YOLO-based segmentation network), including network architecture, loss functions, and 

training setup. Next, we present the object recognition stage, which is investigated using 

two complementary approaches: (1) traditional multi-class classification models (e.g. 

ResNet, EfficientNet, VGG16), trained with transfer learning and extensive augmentation 

to cope with limited data, and (2) a YOLO-based object detection framework, which 

simultaneously localizes and classifies garments, leveraging bounding-box annotations and 

demonstrating improved robustness to clutter and positional variation. Then we detail the 

keypoint detection approach: the network architecture, the choice of semantic keypoints 

for each garment type, and the training procedure. Finally, we discuss the 3D mesh 

prediction model. We describe the model that takes an RGB image and outputs vertex 

positions of a garment mesh. Throughout, we discuss our design choices, network 

inputs/outputs, and implementation details. Any novel architectural contributions or multi-

task learning strategies are also explained in this chapter. 
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• Chapter 5 (Experiments & Results): This chapter presents the evaluation of each 

component and the overall system. We report quantitative results using standard metrics: 

mean Average Precision (mAP) for segmentation and object detection, Object Keypoint 

Similarity (OKS) for keypoint detection, and classification accuracy. For segmentation, we 

compare models trained with different architectures and training epochs. For object 

recognition, we analyze both classification and object detection methods: evaluating the 

effect of transfer learning for classification and comparing its performance against 

YOLOv11-based detection models fine-tuned on the custom dataset. For keypoints, we 

evaluate the performance of the group-based models and show qualitative examples of 

predicted keypoints on real images. For 3D shape, we visualize predicted meshes overlaid 

on images and provide qualitative assessments of mesh coherence. We discuss the results 

thoroughly, highlighting which approaches worked best and analyzing failure cases. An 

end-to-end system evaluation, showing the pipeline in operation on robot-like tasks, is also 

included. 

• Chapter 6 (Conclusion and Future Work): In the last chapter we will discuss about the 

key findings and results of this work and possible future work. We restate the importance 

of robust cloth perception for robotic automation and note how our multi-stage pipeline 

addresses the challenges. We summarize the performance gains and novel findings shown 

in the experiments. We also discuss the limitations of the current system and how these 

might be overcome. Finally, we propose directions for future research: this may include 

collecting more diverse training data or extending the pipeline to handle dynamic 

manipulation. We highlight how the learnings from this work can serve as a foundation for 

advancing deformable object manipulation in robotics. 

Each chapter builds upon the previous, moving from foundational concepts through 

implementation details to evaluation and broader implications. Together, they constitute a 

comprehensive study of 3D perception of garments in robotic applications, grounded in the 

goals of the EUROBIN project. 
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Chapter 2 

2 Literature Review 

2.1 Vision-Based Robotic Manipulation 

Manipulating deformable objects presents a significant set of unresolved challenges in robotics, 

encompassing modelling, perception, and control [4]. The complexity of this problem arises from 

two primary factors that characterize deformable objects like cloth: their state is high-dimensional 

and difficult to represent canonically, and their interaction dynamics are non-linear and influenced 

by physical properties that are typically not known in advance. While properties such as elasticity, 

stiffness, and friction are evidently significant in cloth manipulation, accurately categorizing them 

remains a difficult task [5]. 

To generalize manipulation skills, robots must be able to adapt to variations in an object's pose, 

shape, and physical properties. Feedback-loop manipulation is a powerful class of methods for 

adapting to these variations; however, its application to deformable objects is under-explored due 

to the core challenges of state estimation and dynamics modelling [6]. A robust computer vision 

pipeline is therefore a foundational component for enabling these advanced manipulation 

strategies. 

A recent comprehensive survey of the field [7], organizes the current state-of-the-art around 

several key research thrusts that highlight the primary issues and dominant approaches. This 

review follows a similar structure, examining the literature through the lenses of state 

representation, the use of simulation and the resulting reality gap, and the trend towards end-to-

end learning policies. 

One of the most fundamental issues tackled in the literature is state representation. Accurately 

describing the configuration of a piece of cloth is non-trivial and is a prerequisite for any successful 

manipulation. Approaches range from using explicit geometric descriptors, such as a sparse set of 

semantic keypoints or a dense 3D mesh[8], to more recent methods that learn implicit, latent 

representations directly from sensor data. These learned representations aim to capture the 

essential features of the cloth's state without being constrained to a predefined structure, which is 

a key focus of current data-driven methodologies[9]. The choice of representation directly impacts 

the feasibility and success of downstream manipulation tasks. 

A dominant approach to overcoming data scarcity in robotics is the use of simulation for policy 

learning. Researchers leverage physics simulators to generate millions of interaction samples, 

which would be infeasible to collect in the real world[1]. However, this approach introduces the 
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significant issue of the "simulation-to-reality" gap. Policies trained exclusively in simulation often 

fail on physical systems due to subtle differences in dynamics, friction, and visual appearance. 

Consequently, a major cluster of recent research focuses explicitly on bridging this gap, with 

studies dedicated to benchmarking the performance drop from sim-to-real and developing 

techniques like domain randomization to create more robust policies [10]. 

Paralleling these efforts is the trend towards learning end-to-end manipulation policies that map 

perception directly to motor commands. Instead of relying on a modular pipeline of state 

estimation followed by planning, these methods use large neural network models, often based on 

Transformer or diffusion architectures, to learn the entire control sequence from raw visual input 

[11]. While powerful, these methods are data-hungry and often opaque, making their success 

heavily dependent on the quality of training data and the effectiveness of the sim-to-real transfer. 

This highlights a foundational requirement across all modern approaches: the need for a robust 

and comprehensive perception system, as developed in this thesis, to provide the high-quality state 

information that these advanced policies depend on. 

2.2 Instance Segmentation for Garment Isolation 

2.2.1 Instance Segmentation 

In the field of computer vision, there has been a clear progression from coarse to fine-grained 

image inference. This evolution begins with image classification, the task of assigning a single 

categorical label to an entire image. An incremental step forward is object detection, which not 

only classifies objects but also localizes them within the image, typically by drawing a bounding 

box around each one. A further refinement is semantic segmentation, which aims to classify every 

pixel in an image according to the object class it belongs to. However, semantic segmentation does 

not differentiate between separate instances of the same class; for example, it would label all pixels 

belonging to multiple t-shirts as one single "t-shirt" region [12]. 

Instance segmentation represents a more advanced and challenging stage in this evolution, as it 

combines the goals of the previous tasks. The objective is to correctly detect all objects in an image 

while also precisely segmenting each individual instance [13]. This means it provides a different 

label or mask for separate objects, even if they belong to the same class. In essence, instance 

segmentation can be understood as a task that simultaneously solves the problem of object 

detection and semantic segmentation [12], [13]. The rapid progress in this area has been 

significantly driven by the introduction of large-scale benchmark datasets, such as Microsoft 

COCO, which provide the rich, per-instance mask annotations necessary for training and 

evaluating models [14]. 

A useful way to frame these different tasks is by dividing a scene's components into "stuff" and 

"things" [15]. "Stuff" refers to amorphous, uncountable regions like the sky or a road, while 
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"things" are countable, distinct objects like cars or people. With this framework, semantic 

segmentation can be seen as a method that excels at understanding "stuff" but merges all "things" 

of the same class. In contrast, instance segmentation focuses specifically on "things," aiming to 

delineate each one precisely. A third paradigm, panoptic segmentation, unifies the two by 

providing a comprehensive map of both "stuff" and "things" [15]. The conceptual differences 

between these tasks are clearly illustrated in Figure 1. 

 

Figure 1:  A visual comparison of segmentation tasks. (a) The original image. (b) Semantic segmentation classifies all pixels. (c) 

Instance segmentation isolates each distinct object ("thing"). (d) Panoptic segmentation provides a complete scene map of both 

"stuff" and "things”.[16] 

For this project, instance segmentation was selected as the most appropriate method. While 

semantic segmentation would fail at the primary goal of separating one t-shirt from another in a 

pile, panoptic segmentation introduces unnecessary complexity and computational overhead for 

the task at hand. The robotic manipulation of a garment does not require a complete semantic map 

of the entire scene; rather, it requires a direct answer to the question: "Where is the specific, 

individual garment that I need to pick up?"[15]. Instance segmentation provides the perfect balance 

by focusing exclusively on delineating the countable "things", the garments, that are the target of 

manipulation. 

Therefore, applying instance segmentation in this context moves the challenge beyond standard 

benchmarks into a complex, real-world scenario where the "things" are deformable, heavily 

occluded, and lack a fixed shape. A highly accurate and robust instance segmentation model is the 
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critical foundation for the entire perception pipeline, making it an essential area of investigation 

for this thesis. 

2.2.2 State-of-the-Art Approaches 

Modern approaches to instance segmentation are predominantly categorized into two main 

families, representing a fundamental trade-off between performance and computational efficiency. 

The first are two-stage methods, which prioritize accuracy by first proposing regions of interest 

and then generating masks for each region in a sequential process, a paradigm famously established 

by Mask R-CNN [13]. In contrast, single-stage methods are designed for speed and real-time 

applications, performing object detection and mask prediction simultaneously in a single pass, an 

approach popularized by the YOLO (You Only Look Once) family of models [17]. The selection 

between these two paradigms is a critical design choice, often dictated by the specific requirements 

of the application, such as the need for high-precision masks versus the demand for low-latency 

inference in robotic systems. 

 

2.2.2.1 Two-Stage Methods: Mask R-CNN 

Two-stage methods are renowned for their high accuracy. The archetypal model for this category 

is Mask R-CNN, which extends a powerful object detector (Faster R-CNN) with the capability to 

produce high-quality segmentation masks for each detected instance. Its architecture can be 

understood as a multi-step process that refines information progressively[13]. 

 

Figure 2. The Mask R-CNN framework for instance segmentation.[13] 

The main components of the Mask R-CNN architecture are[13]: 

1. Backbone Network: The process begins with a standard Convolutional Neural Network 

(CNN), which acts as a feature extractor. This "backbone," such as a ResNet or the 

ResNeXt-101 model used in this thesis, processes the input image and generates a rich set 

of feature maps that capture details at various scales. 

2. Region Proposal Network (RPN): The feature maps are then fed into an RPN. This 

network efficiently scans the features and proposes a set of rectangular Regions of Interest 
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(RoIs) areas that are likely to contain an object. This completes the first stage of the 

process. 

3. RoIAlign: This is a key innovation of Mask R-CNN. For each proposed RoI, RoIAlign 

extracts a small, fixed-size feature map. It does so with precise alignment, preserving the 

exact spatial locations of features, which is crucial for generating accurate pixel-level 

masks. 

4. Prediction Heads: In the second stage, the fixed-size feature map for each RoI is passed 

to three parallel "heads" to perform the final tasks: 

o A classification head predicts the object's class (e.g., "t-shirt," "trousers"). 

o A bounding box regression head refines the coordinates of the box to tightly 

enclose the object. 

o A mask head, which is a small Fully Convolutional Network (FCN), generates a 

pixel-level binary mask that outlines the object's exact shape within the bounding 

box. 

By decoupling the tasks of finding objects (stage one) and classifying/masking them (stage two), 

Mask R-CNN often achieves superior precision, making it a benchmark for tasks where mask 

quality is paramount. 

 

2.2.2.2 Single-Stage Methods: YOLO 

In contrast to the multi-step process of two-stage models, single-stage methods are engineered for 

speed and efficiency, making them highly suitable for real-time applications like robotics. The 

pioneering and most prominent family of models in this category is YOLO (You Only Look 

Once), which reframes instance segmentation as a problem that can be solved in a single pass 

through a neural network. 

The foundational architecture of YOLO is built on a unified detection pipeline that treats object 

detection as a single regression problem [17]. The model divides an input image into an S×S grid, 

and a single Convolutional Neural Network (CNN) simultaneously predicts bounding boxes, 

confidence scores, and class probabilities for each grid cell. A key concept is the confidence score, 

which combines the probability that a box contains an object with the Intersection over Union 

(IoU) of the predicted and ground-truth boxes. After this single network pass, a post-processing 

step called Non-Max Suppression (NMS) is used to prune duplicate detections and yield the final 

set of bounding boxes. This unified design is the source of YOLO's renowned speed. 

To extend this high-speed detector to instance segmentation, modern YOLO-based models add a 

parallel mask prediction branch that also operates in a single stage. This is a key difference from 
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Mask R-CNN, which first finds the object and then generates a mask in a second step. A common 

approach, popularized by models like YOLACT, involves two parallel tasks [18]: 

1. A "protonet" branch generates a set of general-purpose "prototype" masks over the entire 

image. 

2. The main detection head, in addition to predicting classes and boxes, also predicts a set of 

"mask coefficients" for each detected instance. 

The final mask for an instance is then generated by linearly combining the prototype masks using 

the predicted coefficients for that instance. Because this entire process, detection and mask 

creation, is done in a single forward pass without any feature re-pooling, the model maintains its 

real-time performance, making it a powerful choice for robotic applications where both speed and 

segmentation are required. The YOLOv11 model used in this thesis is an evolution of this single-

stage philosophy. 

 

2.3 Garment Recognition: Classification and Detection 

In garment-manipulation applications, vision systems must both recognize what clothing is present 

(classification) and where it is (detection). Clothing manipulation is inherently challenging due to 

the deformable, highly variable nature of fabrics. For example, Nocentini et al. note that “clothing 

manipulation is a daily activity and represents a challenging area for a robot,” and emphasize that 

detection and classification are key points for the manipulation of clothes[19]. Recent robotic 

systems therefore often combine deep networks for garment categorization with detectors for 

salient features. Gustavsson et al. (2022) propose a pipeline that first classifies the garment 

category from an image and detects landmarks on the cloth, then uses this information to plan a 

stretching strategy[20]. In practice, classification typically determines the garment class (e.g. 

“shirt” vs “pants”) to select an appropriate manipulation, while object detection and gives a 

bounding box with the class label[21]. Below we review the key architectures used in this context, 

focusing on VGG16, ResNet, EfficientNet (classification) and YOLOv11 Nano (detection), 

including their building blocks, depth, parameter/FLOP counts, and trade‐offs between accuracy 

and efficiency. 

2.3.1 Image Classification Models 

Deep convolutional neural networks (CNNs) are the standard for visual classification. After the 

breakthrough of AlexNet (2012), deeper architectures like VGG16 and ResNet were 

introduced[22].  

VGG16: A deep CNN with 16 weight layers (13 convolutional + 3 fully-connected). VGG16 uses 

only small 3×3 convolutions (stride 1) and 2×2 max-pooling, stacked uniformly through the 

network. This simple, repetitive structure yields rich feature representations. The final layers are 
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three FC layers (two with 4096 units) and a 1000-way softmax. It has roughly 138 million 

parameters and requires about 15.3 billion FLOPs per 224×224 input [23].  

• Advantages: strong classification accuracy (92.7% top-5 on ImageNet) and wide transfer-

learning support.  

• Drawbacks: very large model size and slow inference, making it cumbersome on 

embedded robotic hardware. 

ResNet: A family of deep convolutional neural networks that introduced the concept of "residual 

learning" to solve the degradation problem that plagued very deep models. This issue manifested 

as a paradoxical decrease in accuracy as network depth increased, even on the training data, 

indicating a fundamental optimization challenge rather than just overfitting. The core innovation 

is the reformulation of what layers learn; instead of learning a direct mapping, the network learns 

a residual mapping relative to the input[24].    

This is implemented architecturally through the use of skip or shortcut connections, which 

bypass one or more layers and add the input to the output of the stacked layers[24]. This simple 

addition allows gradients to flow more directly to earlier layers during backpropagation, mitigating 

the vanishing gradient problem and making it possible to effectively train networks with hundreds 

or even thousands of layers[24], [25], [26]. The architecture is built from repeating blocks, such 

as the "basic block" (two 3x3 convolutional layers) used in shallower models like ResNet-34, or 

the more computationally efficient "bottleneck block". The bottleneck block, used in deeper 

models like ResNet-50, employs a sequence of 1x1, 3x3, and 1x1 convolutions to reduce and then 

restore the number of channels, making the 3x3 layer a computational bottleneck and significantly 

improving efficiency[25], [26].  

• Advantages: Its revolutionary skip connections enabled the training of extremely deep 

networks, a fundamental breakthrough in deep learning. The architecture's simplicity and 

strong performance have made it a robust and versatile baseline for a wide range of 

computer vision tasks. Its reliance on standard convolutions makes it highly optimized for 

hardware like GPUs and TPUs.[27] 

It has much lower parameter count and computational cost than VGG16 for comparable 

accuracy; easier training of very deep models due to identity shortcuts. For garment tasks, 

a ResNet-50 backbone is often used as a feature extractor: e.g., GarmNet employs a 

pretrained 50-layer ResNet to produce a 7×7 feature map for garment classification and 

landmark detection[28].  

• Disadvantages: It is less parameter-efficient than more modern architectures, requiring a 

higher computational cost (FLOPs) and more parameters to achieve the same accuracy as 
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models like EfficientNet. The conventional method of scaling ResNets by simply adding 

more layers is less optimal than more principled scaling approaches. [29] 

EfficientNet: A family of convolutional neural networks designed to optimize both accuracy and 

computational efficiency through a principled approach to model scaling. It introduced a novel 

compound scaling method that uniformly scales network depth, width, and input resolution with a 

single coefficient, ensuring a balanced allocation of resources. The architecture's baseline 

(EfficientNet-B0) was discovered through a neural architecture search and is built upon mobile 

inverted bottleneck blocks (MBConv) that incorporate efficient depthwise separable convolutions 

and Squeeze-and-Excitation modules for channel-wise feature recalibration.[29], [30], [31] 

• Advantages: Achieves state-of-the-art accuracy with significantly fewer parameters and 

FLOPs compared to previous models like ResNet, making it highly efficient. Its 

lightweight and efficient design makes it ideal for deployment in resource-constrained 

environments, such as mobile and edge devices. [29] 

• Disadvantages: slightly lower raw accuracy than very large models, and the complex 

block structure can be more intricate to implement. The use of depthwise separable 

convolutions can be less efficient on certain hardware accelerators where memory access 

is a bottleneck, potentially leading to higher inference latency than the low FLOP count 

might suggest.  

 

Tan & Le (2019) show that EfficientNet models achieve state-of-the-art accuracy with far fewer 

parameters; for instance, EfficientNet-B7 attains 84.4% top-1 accuracy on ImageNet while being 

~8.4× smaller and 6.1× faster than the previous best models[29]. 

In garment tasks, these pretrained CNNs (VGG, ResNet, EfficientNet, etc.) are often fine-tuned 

on clothing datasets (e.g. DeepFashion, Fashion-MNIST) to classify apparel. The resulting model 

can robustly recognize garment categories under varying poses or lighting, providing the robot 

with the item’s identity and thereby informing downstream actions. 

2.3.2 Object Detection Frameworks 

Object detectors extend classification by also localizing items in the image. Early methods (R-

CNN family) use region proposals, but these are slow for real-time use. In contrast, the YOLO 

(You Only Look Once) family of one-stage detectors predicts bounding boxes and class scores in 

a single forward pass[22]. In YOLO, the image is divided into a grid and each cell directly outputs 

the coordinates of any object it contains along with confidence scores. This design dramatically 

speeds up detection: the model needs only one evaluation per image, making YOLO ideal for real-

time applications. For example, YOLO-based systems have been successfully deployed on high-

speed textile production lines for automated defect inspection[32]. The single-stage approach 

trades a small drop in accuracy for large gains in efficiency and throughput. Subsequent YOLO 
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versions (v2, v3, v4, etc.) incorporate multi-scale feature maps, anchor boxes, and attention 

mechanisms to boost accuracy while preserving speed[32]. Compact variants like Tiny YOLO or 

YOLO Nano are designed for embedded devices. Wong et al. introduce YOLO Nano, a highly 

compact model (~4 MB) optimized via human-machine design; it requires only ~4.6 billion 

operations and achieves ~69.1% mAP on Pascal VOC, outperforming Tiny YOLOv2/v3 in 

accuracy despite its smaller size[33]. 

In the fashion and textile context, YOLO-based detectors have been adapted to find clothing items 

and features. Lee & Lin (2021) propose a two-phase YOLOv4 detector for fashion apparel: their 

model detects garments (jackets, tops, pants, skirts, bags) in images and benefits from transfer 

learning on fashion datasets[34]. Li et al. (2024) develop a real-time fabric wrinkle and corner 

detector using YOLOv5: they train on a custom dataset of cloth deformations and achieve over 

90% detection accuracy[21]. The detected wrinkle lines and corner points are then used by the 

robot to perform a quadrilateral flattening maneuver, successfully smoothing the fabric. Such 

examples illustrate how object detection integrates into robotic cloth workflows: the vision system 

not only identifies the garment, but also pinpoints key regions for grasping or spreading, thus 

closing the loop between perception and action. 

Building upon the advances in YOLO-based garment detection, our work employs the latest 

YOLOv11 Nano, which combines the efficiency of prior Nano variants with modern architectural 

enhancements tailored for robotic applications. 

YOLOv11 Nano: A lightweight one-stage detector in the YOLO family, tailored for edge devices. 

YOLO models split an image into a grid and simultaneously regress bounding box coordinates and 

class probabilities[28]. The YOLOv11 architecture (2024) employs an optimized backbone and 

neck for enhanced feature extraction, and its Nano variant is pruned for speed. YOLO11-Nano 

contains only 2.6 million parameters, and about 6.5 billion FLOPs at 640×640 resolution. Despite 

its small size, YOLO11-Nano achieves competitive accuracy by leveraging modern improvements 

(e.g. efficient CSP-like modules, feature pyramid networks).  

• Advantages: extremely fast real-time detection (designed for sub-40ms inference on a 

modern GPU) with a tiny model size, suitable for onboard processing.  

• Disadvantages: lower accuracy than larger YOLO models, and still higher FLOPs than 

lightweight classifiers because detection requires multi-scale heads. In garment tasks, 

YOLO-style detectors can directly locate garments or landmarks: their single-shot output 

(object bounding boxes) speeds up recognition of deformed cloth pieces under clutter[28]. 

In summary, modern garment-manipulation pipelines leverage powerful CNN classifiers (e.g. 

VGG16, ResNet, EfficientNet) to recognize clothing types, and efficient detectors (e.g. YOLO 

variants) to localize garments and cloth features. Together, these methods provide the semantic 

and spatial understanding needed for robotic arms to autonomously handle and manipulate 

garments[19], [21]. 
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2.4 Keypoint Detection for Robotic Grasping 

2.4.1 Introduction 

Keypoint detection aims to localize semantically meaningful points on objects or scenes (e.g. 

human joints, object corners) from images. For deformable objects like garments, reliable 

keypoints (e.g. sleeve ends, collar corners) provide a compact representation of object 

configuration that is useful for recognition and manipulation. In robotics, knowing the positions 

of a few salient keypoints on a piece of cloth or clothing can reduce the high-dimensional 

perception problem to a tractable state (e.g. four corners of a towel)[35]. Indeed, early cloth 

manipulation systems exploit cloth corners or landmarks to plan folding[35], [36].  

Modern methods for keypoint detection range from traditional feature-based approaches to deep 

learning techniques. This review focuses on approaches applied to garments and robotic cloth 

manipulation. We will consider more recent CNN- and transformer-based models, such as 

Detectron2’s Keypoint R-CNN, highlighting their advantages and limitations when applied to 

deformable objects. While classical approaches were functional in controlled environments, they 

were fundamentally brittle, struggling with complex textures, requiring precise prior segmentation, 

and failing to generalize to varied garment shapes or cluttered scenes. These limitations highlighted 

the lack of robustness of feature-based methods and motivated the shift toward modern, data-

driven techniques[37]. Finally, we discuss the evaluation metrics most commonly reported in the 

literature, including the COCO benchmark’s OKS-based average precision. 

2.4.2 Deep Learning Approaches 

2.4.2.1 Heatmap-Based CNN Methods 

Modern keypoint detectors are dominated by deep neural networks, which learn to output 

confidence “heatmaps” for each keypoint. A common strategy is to use a convolutional backbone 

(e.g. ResNet, Hourglass) and append deconvolutional layers that produce a spatial heatmap for 

each of K keypoint types. Each heatmap pixel represents the probability of a keypoint at that 

location. For training, a 2D Gaussian (or peaked label) is placed at each ground-truth keypoint, 

and the network is trained (e.g. with pixel-wise cross-entropy or MSE) to match this target. This 

was used in seminal works like Convolutional Pose Machines[35] and the Stacked Hourglass 

model, and continues in state-of-the-art pipelines. 

For example, Lips et al. use a fully convolutional “U-Net” style network to detect cloth keypoints 

as heatmaps[35]. Their network has encoder-decoder skip connections, ReLU activations, and a 

final sigmoid output for probability (trained with pixel-wise BCE loss)[35]. Similarly, the Mask 

R-CNN architecture adds a small “keypoint head” on top of ROI features: it applies four 3×3 conv 

layers followed by a 2× up-sampling (deconvolution) to output K heatmaps (one per keypoint) at 

e.g. 56×56 resolution[13]. 

The Detectron2 Keypoint R-CNN (built on Mask R-CNN) follows this design: it uses a 

ResNet+FPN backbone to extract features and ROI Align to crop proposals, then a keypoint head 
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that outputs per-keypoint heatmaps. Each heatmap uses a sigmoid and is trained to match a 

Gaussian-labeled ground truth at the true keypoint location[35]. Because heatmaps preserve spatial 

detail, these architectures achieve high precision in keypoint localization. In practice, modern pose 

estimation models (e.g. OpenPose, HRNet, SimpleBaseline) all adopt heatmap regression. The 

output keypoint predictions are then extracted by taking the argmax (or using a small neighborhood 

max-filter) of each heatmap[35]. 

Heatmap methods are very effective when plenty of annotated data is available. They elegantly 

handle a varying number of instances (in bottom-up approaches) or per-instance output (in top-

down pipelines). However, they require careful calibration: output resolution vs. input down-

sampling trade-offs. They also produce dense outputs even when many pixels contain no 

keypoints, and may struggle with highly deformable or symmetric patterns (leading to multiple 

high responses). In clothing scenarios, heatmap methods have been applied to landmark detection 

on garments and to human-cloth interactions. 

This heatmap regression approach has proven far more effective than earlier methods that 

attempted to directly regress keypoint coordinates. 

 

2.4.2.2 End-to-End Detection Frameworks (Keypoint R-CNN) 

A powerful modern approach is to integrate keypoint detection into an object detection pipeline. 

For example, Mask R-CNN extends Faster R-CNN to output segmentation masks[13]; a similar 

extension is Keypoint R-CNN, which outputs keypoint heatmaps per detected instance. 

Detectron2’s implementation is a state-of-the-art example. In this top-down pipeline, the network 

first generates object proposals and classifies them (e.g. to find each person or garment). Then, for 

each proposal, ROI features are pooled (via ROI Align) and fed to multiple prediction heads: one 

head for bounding box regression, one for class, one for mask (if used), and one for keypoints. The 

keypoint head consists of several convolutional layers and upsampling to produce K heatmaps as 

described above. During training, it only computes loss on visible keypoints. Inference yields for 

each detected object both its bounding box and a set of keypoint coordinates (the argmax of each 

heatmap). In practice, training Keypoint R-CNN requires labeled bounding boxes and keypoint 

annotations, as in COCO. Its advantage is instance awareness: it explicitly ties keypoints to 

detected objects. This is very useful when multiple cloth items overlap or multiple humans appear. 

However, it is a multi-stage and relatively heavy approach (RPN + ROI heads) and may not 

leverage image-wide context for keypoint grouping. 

Recently, Transformer-based architectures like Vision Transformer (ViT) and DETR have emerged 

as a powerful alternative to CNNs for keypoint detection. By leveraging self-attention mechanisms 

to capture global context, these models have shown results comparable or superior to established 

CNN methods on standard benchmarks. However, they are often computationally demanding, and 

their specific application to the challenges of deformable garment keypoint detection remains an 

active area of research[38], [39]. 
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Figure 3. A visualization of the heatmap regression technique for keypoint detection. The model predicts a distinct heatmap for 

each keypoint (right), where the brightest area indicates the most likely location. These heatmaps are then used to determine the 

final keypoint coordinates on the input image (left).[40] 

2.4.2.3 Detectron2 Keypoint R-CNN Architecture 

Detectron2 (a PyTorch framework from Meta) provides a modular implementation of Mask R-

CNN, including the keypoint head. Its architecture illustrates a typical state-of-art pipeline: 

• Backbone and FPN: ResNet (or ResNeXt) network extracts multi-scale convolutional 

features. A Feature Pyramid Network (FPN) combines these into a pyramid of feature maps 

(with strides e.g. 4, 8, 16, 32)[35]. 

• Region Proposal Network (RPN): On top of the backbone, an RPN proposes candidate 

object bounding boxes. 

• ROI Align: Proposed boxes are cropped from the backbone features using ROIAlign to 

yield a fixed-size feature (e.g. 7×7×C) per proposal. 

• Bounding Box and Class Heads: Standard Fast R-CNN heads (fc layers) classify each 

ROI and refine its box coordinates. 

• Keypoint Head: For K keypoints per instance, the keypoint head takes the ROI features 

(e.g. 14×14 if up-sampled) and applies four 3×3 convolutions (with ReLU), followed by a 

deconvolution (transpose conv) to up-sample to e.g. 56×56 spatial resolution[35]. This 
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yields K heatmap channels. Each channel is a sigmoid map indicating the probability of 

that keypoint at each pixel. In training, these heatmaps are supervised with binary cross-

entropy to target heatmaps (Gaussians at ground-truth locations)[35]. The total loss 

includes the sum of all keypoint map losses (often normalized by number of visible 

keypoints). 

Because it is integrated into Mask R-CNN, Detectron2’s Keypoint R-CNN is end-to-end trainable 

(given boxes and keypoints). It benefits from strong backbones and FPN context, and shares 

computation with the detection tasks. Its limitations include requiring box annotations (to train the 

RPN) and being relatively heavy for real-time. Nonetheless, it remains a popular choice for both 

human pose and object landmark tasks. As evidence of performance, on fashion images 

DeepFashion2, a Mask R-CNN baseline yields only ~0.56 AP on the landmark task[41], indicating 

keypoint R-CNN is struggling with highly variable cloth. In contrast, in domains with more data 

(like human pose), Keypoint R-CNN and its variants set strong baselines. 

 

2.4.2.4 Keypoint Detection for Garments and Robotic Manipulation 

Garments pose unique challenges: they are nonrigid, highly deformable, and often self-occluding. 

Clothing landmarks (e.g. garment corners, collar points, garment-specific joints) must be defined 

in a way that is both semantically meaningful and physically reachable. In fashion vision, fashion 

landmark detection has been studied to improve clothing recognition and retrieval. Liu et al. and 

Yan et al. introduced landmark sets for garments (e.g. neckline corners, sleeve ends, hem 

corners)[37], [42]. Yan et al.’s DLAN network jointly detected clothes bounding boxes and 

landmarks in unconstrained images, achieving robust results without manual cropping[37]. These 

approaches treat landmarks similar to human body joints but on garments. 

In robotic cloth manipulation, papers often focus on a few keypoints relevant to tasks. For example, 

in towel folding one needs the four corners; in shirt folding, elbows and shoulders may define fold 

lines. Classical robot pipelines (e.g. Doumanoglou et al.) used edge detection and corner templates 

for towels, then computed folds[43]. More recent work learns to detect cloth corners with CNNs. 

Lips et al. train a CNN on synthetic towels to detect all four corner points as heatmaps[35]. Even 

when transferring to real towels, their detector achieved a grasp success rate of 77% and full fold 

success of 53%. The key was generating a diverse synthetic dataset (random cloth textures, 

distractors) and using a U-Net style heatmap predictor[35]. Similarly, Lips et al. extend this idea 

to multiple garment types (T-shirts, shorts, towels), reporting ~64% AP on real images from 

synthetic-only training (improving to 74% after limited real fine-tuning)[8]. These works underline 

that cloth keypoint detectors can generalize if enough variability is synthesized. 

Strengths and Weaknesses: CNN-based keypoint detectors excel when adequate training data (or 

realistic simulations) are available[8]. Their localization precision can be very high for visible 

keypoints. However, garment detection suffers from occlusion and ambiguity: when cloth is 

crumpled or overlapping, even humans may disagree on “where” a sleeve end is. Keypoint R-CNN 
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mitigates some issues by reasoning per detected object, but background clutter and clothing prints 

still confound models. Moreover, many garment classes have relatively few annotated examples, 

so transfer learning or synthetic data (as in Lips et al. or ClothesNet[44]) is often used. In contrast, 

classical methods need strong assumptions (flat cloth, known color), and unsupervised methods 

may not discover semantically stable points like sleeves. 

Semantic Keypoints: A novel trend is to define semantic garment keypoints (e.g. “left sleeve 

cuff”, “right hem”) that match human language and commonsense. Deng and Hsu propose 

semantic keypoints for clothing items, learned via vision-language models. Each keypoint has a 

text label (e.g. “collar”) and a 2D location, offering interpretability[45]. Their system (CLASP) 

automatically discovers such points on prototypes and transfers them to new clothes, which helps 

a robot plan folds by following language-like instructions. While very promising for generalizing 

across many garment types, semantic keypoint methods are in their infancy and rely on large 

foundation models. They highlight that beyond purely visual features, language-grounded 

knowledge can improve garment representations. 

 

2.4.3 Summary and Outlook 

Keypoint detection methods have evolved from handcrafted features and geometric fit to deep 

learning models that produce dense heatmaps or end-to-end detections. For rigid or semi-

deformable objects (like humans or articulated bodies), deep CNNs (stacked hourglass, HRNet, 

Mask R-CNN) achieve high accuracy given large annotated datasets. For highly deformable 

objects like garments, however, challenges remain. Classical approaches require strong 

assumptions (flatness, plain background) that limit real-world use[35]. CNN-based methods can 

learn robustness, but must grapple with occlusion, variability, and limited data. Synthetic data and 

augmentation help (as shown by Lips et al. achieving 77% grasp success on towels[35]), but a 

reality gap persists[35]. 

Detectron2’s Keypoint R-CNN embodies the current standard pipeline: a ResNet-FPN backbone 

with ROI heads for classification, bounding box regression, mask prediction and keypoint 

heatmaps. It leverages multi-task training and provides strong performance when data is abundant. 

Yet even Mask R-CNN yields modest performance on clothing landmarks (AP ≈56% on 

DeepFashion2[41]). Transformer-based models (DETRPose, ViTPose) offer alternative pipelines 

that remove components like ROI cropping or introduce global attention. Early results suggest 

transformers can match or exceed CNNs on pose tasks[38], [39], but they demand more compute 

and data. 

In the context of clothing manipulation, effective keypoint detection requires both visual precision 

and task relevance. For example, detecting arbitrary corner points is insufficient if they don’t 

correspond to graspable features. Future work is likely to combine vision with language and 

physics: the CLASP semantic keypoints approach[45] is one example where keypoints are chosen 
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for their actionability. On the technical side, gaps remain in few-shot learning of landmarks, 

unsupervised adaptation to new garment types, and robustness to heavy occlusion. 

 

2.5 3D Mesh Prediction from a Single Image 

Single-view 3D reconstruction has seen rapid advances in recent years, driven by the demand for 

virtual modeling and robotics applications (e.g. real-to-sim). Early approaches used voxel grids or 

coarse point clouds, but more recent work focuses on directly predicting mesh geometries from 

RGB images. Meshes are preferred in graphics and robotics (for simulation) due to their compact 

explicit surface representation[46], [47]. The challenge of reconstructing 3D meshes from a single 

image has been approached through several distinct methodologies. This review will cover the 

main paradigms, from early template-based and volumetric methods to more recent implicit and 

depth-assisted pipelines, highlighting the advantages and disadvantages of each. 

2.5.1 Template Deformation and Regression-based Methods 

Template-based methods start from a fixed mesh (often a simple ellipsoid or human body model) 

and learn to deform it to match the image. Pixel2Mesh is a seminal example: it uses a graph-CNN 

to iteratively deform an ellipsoid so that its rendered image matches the input[48]. A coarse-to-

fine strategy ensures stability, and various mesh-specific losses (edge length, normal consistency) 

help produce plausible geometry. Wang et al. report that Pixel2Mesh yields more detailed meshes 

and higher shape accuracy than prior methods[48]. Follow-up work (e.g. Pixel2Mesh++ for multi-

view) and Mesh R-CNN extend this idea. Mesh R-CNN augments Mask R-CNN detection with a 

mesh branch: after detecting an object, it predicts a coarse voxel shape which is converted to a 

mesh and then refined by graph convolutions[46]. These methods excel on object benchmarks 

(ShapeNet, Pix3D)[46].  

For garments and humans, body models provide a natural template: e.g. CAPE learns a generative 

clothing model as an extension of the SMPL body mesh. CAPE trains a conditional mesh-VAEs 

(with mesh-GAN discriminators) to deform the SMPL surface according to clothing type and 

pose[49]. As a result, CAPE can “dress” SMPL bodies in a variety of clothing styles, preserving 

global shape and local wrinkles[49]. These template methods are fast at inference (single forward 

pass) and work well when the training categories match the test (e.g. known garment types), but 

they can overfit to limited topologies.  

DeepFashion3D highlights this: existing cloth models were limited to fixed topologies, so the 

authors propose an “adaptable template” that can represent multiple clothing topologies in one 

mesh[42]. In practice, this combines a base mesh (like SMPL) with learned offsets for different 

garment types, yielding strong reconstruction on a new garment dataset. In summary, template-
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deformation models (graph CNNs on meshes) provide a direct mesh output and leverage image 

features effectively[49], [50], but they may struggle with open boundaries or unseen topologies 

unless specifically designed (as in DeepFashion3D). 

2.5.2 Volumetric and Implicit Function-Based Methods 

A second class of methods predicts a coarse volumetric shape (e.g. a voxel grid or occupancy grid) 

from the image, which is then converted to a mesh (e.g. by marching cubes). The earliest neural 

examples (e.g. 3D-R2N2) used 3D convolutional decoders to generate a low-resolution occupancy 

grid from one or more images[51]. While volumetric methods can represent arbitrary topology and 

are easy to train with 3D CNNs, their resolution is typically limited by memory. Mescheder et al. 

cast the problem in function space: instead of a fixed grid, a neural network predicts an occupancy 

value for any 3D point given the image. This defines a continuous surface as the learned decision 

boundary. Occupancy Networks can produce very high-resolution shapes “at infinite resolution” 

without huge memory (just by querying the network many times)[52].  

In experiments, Occupancy Networks achieved competitive single-view reconstruction results, 

handling complex topologies and noisy input[52]. Park et al. similarly train a neural signed-

distance function per shape class, enabling high-quality interpolation and completion[53]. These 

implicit or occupancy approaches can naturally represent thin structures (like garments) and 

unseen topology. They also easily fuse multiple views or depth as inputs. However, they are often 

slower at inference, since evaluating the implicit network many times is needed to extract a mesh 

(by marching cubes).  

Related to occupancy nets are methods that directly learn implicit fields from images. A 

breakthrough in 2019 was PIFu (Pixel-aligned Implicit Function)[54]. PIFu represents the human 

(with clothing) by an implicit function that maps 3D points to occupancy (or distance), where the 

function is conditioned on aligned image features. In practice, a CNN encodes the input image to 

a feature map, and a small MLP takes a 3D point’s image-plane projection as input to predict if 

it’s inside the surface. PIFu allows fine detail (hair, wrinkles, clothing layers) and arbitrary 

topology, and its authors demonstrate that it produces extremely high-resolution meshes that 

capture unseen parts (like the back of a person)[54].  

Importantly, PIFu’s implicit surface is memory-efficient and continuous, unlike a voxel grid[54]. 

The multi-level extension PIFuHD (CVPR 2020) further improves fidelity by operating at 

multiple scales. Other works use similar ideas: Occupancy networks applied to images, or 

conditional NeRFs (e.g. PixelNeRF) for multi-view. In general, implicit methods (PIFu) excel in 

detail and generality, but often need large networks and sampling loops, making them slower than 

direct mesh regression[47]. 



Literature Review 

 

23 
 

2.5.3 Depth- and Multi-View Assisted Pipelines 

 

Figure 4. A qualitative comparison of monocular depth estimation models. Depth Anything V2 produces finer details and higher 

accuracy compared to prior state-of-the-art method Depth Anything V1. (Image from Depth anything V2 paper) 

Some recent systems leverage intermediate depth or multi-view reasoning to improve 

reconstruction from a single image. For example, GarmentCrafter (2025) first predicts a depth map 

from the input garment image, warps it to generate novel views, and then uses a multi-view 

diffusion model to "inpaint" occluded areas before a final RGB-D to mesh pipeline yields the 3D 

garment[55]. This type of hybrid approach helps enforce consistency across different viewpoints 

and can recover geometry from limited image data. 

Similarly, when multiple images or a video sequence are available, traditional methods like multi-

view stereo or structure-from-motion can be used. However, for single-image cases, these 

heuristics introduce significant uncertainty, especially in occluded regions. To address this 

challenge in RGB-only pipelines, a crucial approach is to rely on monocular depth estimation 

(MDE) networks.  

Building upon this, the Depth Anything model significantly advanced the field by designing a 

data engine to leverage massive-scale unlabeled data, over 62 million images, to greatly enhance 

the model’s generalization and robustness[56]. The most recent iteration, Depth Anything V2, 

further refines this data-centric philosophy[57] (Figure 4). It trains a highly capable teacher model 

exclusively on precise synthetic data to learn fine-grained details, and then uses this teacher to 

generate high-quality pseudo-labels for large-scale real images. This strategy effectively bridges 
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the synthetic-to-real domain gap while retaining detail, resulting in depth predictions that are both 

robust and precise. The ability of Depth Anything V2 to generate high-quality depth maps for any 

image without task-specific fine-tuning is the primary reason it was selected for the methodology 

of this thesis.  

2.5.4 Garment- and Deformable-specific Methods 

Garments pose special challenges (thin surfaces, self-occlusion, large deformations). Dedicated 

datasets and methods have emerged. DeepFashion3D provides ~2000 real 3D garment models 

with varied categories (shirts, skirts, etc.) and corresponding images. Zhu et al. use it to benchmark 

single-view cloth reconstructions, proposing a hybrid mesh+implicit network with an adaptable 

mesh template[50]. They show that combining mesh templates (for global shape) with implicit 

detail (for wrinkles) yields state-of-art garment reconstructions. Likewise, Layered-Garment Net 

tackles multi-layer clothing on a human: it represents each layer by a signed-distance field (SDF) 

and enforces intersection-free layering via a “garment indicator field”[58]. This implicit approach 

can model, e.g., an inner shirt and outer jacket simultaneously. In summary, garment-specific 

methods leverage strong priors about cloth (e.g. templates, learned style parameters) and often 

combine multiple cues (segmentation, skeletal pose, normal maps) to disambiguate shape. They 

highlight that open boundaries and occlusions are especially severe: simple voxel or implicit grids 

struggle to model the thin open surfaces of a shirt or dress, so template meshes (with learned 

offsets) or layered SDFs are favored[58]. 

2.5.5 Challenges and Trade-offs 

Key issues in single-image mesh prediction include occlusion, generalization, and fidelity. 

Occlusion of unseen surfaces is inherent: methods must “hallucinate” back-of-object geometry 

from context. Nolte et al. find that occluded regions incur 40–95% higher reconstruction error 

compared to visible parts[47]. Some works add a dedicated completion module (e.g. image 

inpainting or learned depth fusion) to mitigate this, but at computational cost. Clothing exacerbates 

this: a folded sleeve’s underside is rarely visible, requiring strong shape priors or multiple layers 

of implicit fields. 

Generalization is another concern. Many networks are trained on limited object classes or synthetic 

datasets. They often overfit to training shapes and fail on novel categories. Implicit methods 

(DeepSDF, PIFu) are somewhat more class-agnostic but still rely on training priors; generative 

diffusion models aim to be “open-vocabulary” but currently exhibit artifacts on everyday objects. 

In garments, generalizing to new styles or textiles remains hard: networks must learn shape and 

fine-scale wrinkle priors, which is why large real-cloth datasets (DeepFashion3D, CAPE) are 

crucial. 
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Fidelity (surface detail) involves a trade-off with speed and data. Pixel2Mesh yields reasonably 

detailed shapes quickly[48], while PIFu produces extremely detailed cloth geometry at the expense 

of a slow implicit inference. Nolte et al. report that most state-of-the-art reconstructions take 

multiple seconds to tens of seconds per object (even on a powerful GPU)[47]. Only a few 

methods (e.g. recent feed-forward mesh decoders like SF3D or optimized parametric fits) can run 

in under a second[47]. For real-time robotics, such latency is usually prohibitive. Memory usage 

also varies: volumetric methods are heavy in 3D tensors, while implicit fields use smaller networks 

but require many evaluations to extract a mesh. 

Overall, recent benchmarks (e.g. DeepFashion3D, CAPE, Pix3D) show steady progress. 

Pixel2Mesh and similar achieve reasonable IoUs on chairs/cars; PIFu achieves state-of-art on 

clothed humans by capturing detail[54]. However, surveys like Nolte et al. highlight that current 

single-view methods often fall short of robotics needs: meshes may have holes, collisions, or be 

unstable under physics[47]. This gap suggests that future work must better address occlusions 

(through scene context or learned priors), ensure collision-free outputs, and optimize speed. 

In summary, the literature presents a clear trade-off. Template-based and regression models are 

fast but often lack the flexibility for the diverse topologies of garments. In contrast, implicit and 

volumetric methods offer this flexibility but at a higher computational cost for inference. Recent 

surveys highlight that many of these methods still fall short of robotic needs, often producing 

meshes with holes or physical instabilities. This suggests that a hybrid approach, which leverages 

the strengths of powerful pretrained models for an initial geometric estimate, offers a practical path 

toward generating robust 3D meshes for real-world manipulation. 

Given the need for a practical, hardware-independent solution for robotic manipulation, a hybrid 

pipeline leveraging a state-of-the-art monocular depth estimator presents the most promising 

balance of performance and flexibility, which is the approach adopted in this work. 
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Chapter 3 

3 Dataset 

Deep learning models rely heavily on the diversity and reliability of the training data for both 

performance and generalization. This is especially true for complex computer vision tasks such as 

the robotic manipulation of deformable objects, where models must learn to handle wide variations 

in texture, shape, and lighting conditions. Therefore, this thesis adopts a dual-dataset strategy. This 

approach leverages a large, publicly available dataset to build a foundational understanding of 

garment features, which is then refined using a smaller, custom-collected dataset tailored to the 

specific requirements of the manipulation pipeline. 

The first component of this strategy utilizes the large-scale DeepFashion2 dataset [41] for 

pretraining. Its extensive and richly annotated collection of clothing items provides a robust 

starting point for learning generalizable features. The second component involves a custom dataset 

created specifically for this project, featuring 10 categories of clothing in both wet and dry states 

to address the unique challenges of the EUROBIN project's objectives. The mentioned dataset is 

essential for fine-tuning the models on scenarios directly relevant to robotic interaction, which are 

not present in existing public datasets. 

In this chapter, the two datasets used in this study are described in detail. We describe the data 

collection and annotation procedures, the strategies for splitting the data into training, validation, 

and test sets, and the extensive preprocessing and augmentation techniques used to enhance model 

robustness and performance across all vision tasks. 

 

3.1 DeepFashion2 Dataset Overview  

To establish a strong baseline for feature extraction, this work utilizes DeepFashion2[41], a large-

scale and diverse benchmark dataset. While other garment datasets exist, DeepFashion2 was 

selected for its unique combination of scale and rich, multi-modal annotations[41]. It comprises 

491,895 images containing 801,732 distinct clothing items across 13 popular categories such as 

short sleeve top, long sleeve top, trousers, and skirt. A key strength of DeepFashion2 is its sourcing 

from both commercial stores and consumer photographs, which ensures that models are exposed 

to a comprehensive range of real-world variations[41].  
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Figure 5: Deepfashion2 examples. Image reproduced from [41] 

Each clothing item in the dataset is accompanied by a rich set of annotations that are particularly 

well-suited for pre-training manipulation-oriented models. These include: 

• Bounding Boxes and Per-Pixel Segmentation Masks: For precise localization and 

identification of garments. 

• Dense Landmarks: A total of 294 landmarks are defined across the 13 categories, 

identifying key points such as collars, hemlines, sleeve cuffs, and waistbands. These are 

critical for learning a structured understanding of garment topology. 

• Viewpoint and Occlusion Labels: Each item is labeled with a viewpoint such as no wear, 

frontal, or side/back. The 'no wear' images, which depict garments on flat surfaces, are 

especially valuable for providing a canonical view of clothing shape, which is a useful prior 

for robotic unfolding tasks. 

The dataset is formally divided into training (391,000 images), validation (34,000 images), and 

test (67,000 images) sets, providing a standardized structure for model development and 

evaluation. 

Within the scope of this thesis, DeepFashion2 serves a critical role as the pre-training source for 

the segmentation, classification, and keypoint detection models. By pre-training on such a vast and 
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varied dataset, the initial models learn a robust feature representation capable of handling 

challenges such as occlusions, different viewpoints, and significant variations in clothing 

appearance. 

However, it is crucial to acknowledge the limitations of DeepFashion2 in the context of robotic 

manipulation. The dataset predominantly features clothing that is either worn by models or laid 

out flat. It lacks images of garments in complex, non-ideal states such as crumpled, folded, or in a 

pile, that are characteristic of real-world robotic interaction scenarios. This gap makes the use of a 

specialized, custom-collected dataset for fine-tuning necessary. The foundational training on 

DeepFashion2 provides a powerful starting point, which is then adapted using our custom data to 

specialize the models for the specific demands of the manipulation pipeline. 

 

3.2 Custom Dataset for Robotic Manipulation 

While large-scale datasets like DeepFashion2 provide an excellent foundation for pretraining, they 

often lack the specific requirements of applications like robotic manipulation. In particular, they 

lack images of garments in challenging, real-world states such as crumpled piles, partial occlusion, 

or wet conditions, which are common in robotic cloth handling. To bridge this gap, a custom 

dataset was developed to fine-tune the models on tasks and conditions directly relevant to the 

EUROBIN project's goals.  

 

 

Figure 6 - sample of pile of clothes 
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Figure 7 - samples of 10 categories 

3.2.1 Data Collection 

A total of 51 physical clothing items spanning 10 categories were purchased to ensure 

coverage of a representative range of garment types commonly encountered in laundry-

handling scenarios. These garments served as the source materials for image acquisition, from 

which the dataset samples were generated. 

The selected categories include: 

• T-shirt 

• Sweater 

• Tank top 

• Crop top 

• Trousers 

• Long Socks 

• Shorts 

• A-line skirts 

• Briefs 

• Boxers 

 

The distribution of the physical garments across categories is shown in Figure 8. Multiple 

images were then captured for each item or items under different configurations and viewpoints 

to build the final dataset used for training and evaluation. 
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Figure 8 - chart of distribution of physical clothing samples 

For each garment, images were captured in both wet and dry conditions, enabling the models to 

learn material appearance changes due to water absorption, reflections, and altered drape. This 

approach is crucial for improving robustness in real-world robotic operations, where the same 

object may present significantly different visual features depending on its state. 

Although the dataset was custom-collected, the distribution of garment categories could not be 

fully balanced because the clothing items were provided as part of the project resources rather than 

being independently selected. As a result, some categories, such as crop tops and A-line skirts, 

were underrepresented. Despite this limitation, the dataset still ensured sufficient variability for 

training and evaluating the perception models, as discussed in Section 5. 
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3.2.2 Data Annotation Process 

 

Figure 9 - key point labeling samples 

Annotations were performed using Label Studio, with a single annotator to ensure consistency 

and labeling quality across all samples. These annotations included: 

• Segmentation masks for accurately identifying the precise boundary of each clothing 

item. 

• Bounding boxes to locate each garment within the image. 

• Keypoints marking essential features, such as the shoulders or corners of a garment, which 

are critical for robotic grasping and manipulation (Figure 9). 

 

3.2.3 Dataset Structure and splits 

Separate subsets were prepared for each vision task (segmentation, classification, object detection, 

and keypoint detection) to enable task-specific optimization. An example split for the segmentation 

task includes: 

• 610 total images 

 - 310 dry 

 - 300 wet 

• Split: 90 % training, 5 % validation, 5 % testing 
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For the object recognition task, a smaller dedicated dataset of 96 images was created due to the 

manual overhead of bounding box verification. This was split into 80 % training, 10 % validation, 

and 10 % testing. 

For keypoint detection, the dataset was organized into garment-specific groups according to their 

number of labeled keypoints, ensuring more effective model specialization. 

3.2.4 Preprocessing and Augmentation 

Subsequently, a comprehensive suite of data augmentation techniques was applied to enhance 

model robustness and generalization. Geometric transformations, including horizontal flips, 

rotations, and perspective distortion, were used to simulate diverse cloth orientations and layouts. 

To address lighting differences, particularly between wet and dry garments, color adjustments such 

as variations in hue, saturation, and brightness were applied. Finally, advanced augmentation 

strategies such as Mosaic, MixUp, and Copy-Paste were employed to introduce greater structural 

diversity, making the models more resilient to real-world challenges like occlusion and background 

clutter. 

• Instance segmentation & Object detection: All images were resized to 640 × 640 px and 

normalized, following the input specifications of YOLOv11-based architectures. 

• Classification: Images were prepared at two resolutions (256 × 256 px and 500 × 500 px) 

to compare the effect of input resolution on accuracy across architectures like VGG16, 

ResNet, and EfficientNet. 

• Keypoint detection: Images were resized according to Detectron2’s keypoint detection 

pipeline defaults, preserving aspect ratio while fitting the model’s expected input scale. 

Given the modest dataset size, a diverse augmentation strategy was applied to simulate real-world 

variations and improve generalization. Augmentations were grouped into three main categories 

and applied inline (during training) for all tasks, except for the keypoint detection dataset, 

where augmentations were generated offline to preserve annotation consistency. 

Common augmentation: 

1. Geometric Transformations 

• Horizontal flips (50 %) 

• Vertical flips (30 %) 

• Rotation (±15°) 

• Translation (20 %) 

• Scaling (±20 %) 

• Shear (10 %) 

• Perspective distortion (15 %) 
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2. Color Adjustments 

• Hue shift (±0.015) 

• Saturation variation (±70 %) 

• Brightness variation (±40 %) 

3. Advanced Augmentations 

• MixUp (15 %) 

• Copy-Paste (30 %) 

• Random Erasing (20 %) 

• Mosaic (applied for object detection and segmentation tasks) 

 

Representative examples of augmented images for the keypoint detection task are shown in Figure 

10, illustrating the applied geometric and color transformations. 

 

  
Figure 10 - Augmented samples for key point detection task 

Task-specific application: 

While the above list summarizes the full augmentation toolbox, in practice the exact combination 

and intensity of augmentations were tailored to each vision task: 

• Instance segmentation: Prioritized spatial diversity (flips, rotation, scaling, 

perspective distortion) and moderate color changes to handle lighting variation between 

wet and dry garments. 

• Object detection: Used the full augmentation set, with emphasis on composition 

techniques like Mosaic, MixUp, and Copy-Paste to handle occlusion, clutter, and scale 

variation. 

• Keypoint detection: Applied transformations carefully to preserve garment geometry, 

focusing on controlled rotations, flips, and mild color jitter. For garment groups with 

fewer samples, augmentation intensity and variety were increased to mitigate class 

imbalance.  
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Chapter 4 

4 Methodology 
This chapter provides an overview of the vision-based pipeline developed for deformable garment 

manipulation in the EUROBIN project. The system processes RGB images of clothing to extract 

information that enables robotic manipulation through a multi-stage perception approach. The 

chapter details each pipeline component, including segmentation, object recognition, keypoint 

localization, and 3D mesh reconstruction, with emphasis on model selection, training procedures, 

and evaluation strategies. 

 

Figure 11 - overall system pipeline stages 
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The methodology builds upon established approaches in fashion-based computer vision but adapts 

and extends them to meet the challenges of robotic interaction with real-world garments, including 

both wet and dry variations. Instead of using a single-task system, this work emphasizes a complete 

multi-task pipeline capable of analyzing complex visual scenes such as piles of overlapping 

clothes. Particular attention was given to balancing accuracy with real-time feasibility, which is 

important for robotic applications. 

The proposed system for robotic cloth manipulation implements a structured vision pipeline (see 

Figure 11) that begins with instance segmentation to separate a pile of clothes into individual 

garments, followed by object recognition (classification and object detection) to determine each 

item’s category and location. Instance segmentation was approached using lightweight real-time 

models (YOLOv11-N and YOLOv11-S) and high-accuracy frameworks (Detectron2 with Mask 

R-CNN), while classification and detection were evaluated with pretrained backbones such as 

EfficientNet and ResNet and YOLOv11-N. Once the clothing type is identified, a task-specific 

grouping strategy for keypoint detection locates critical points like corners and edges for grasping. 

Finally, 3D mesh reconstruction is achieved by combining monocular depth estimation with 

segmentation and post-processing to produce detailed meshes from RGB input, enabling precise 

tracking of garment deformation and movement during manipulation. 

 

4.1 Instance segmentation 

 

Figure 12 - Instance segmentation task of clothes pile process 

The initial and fundamental step within the proposed vision-based pipeline for robotic 

manipulation of deformable objects is instance segmentation. This technique goes beyond simply 

identifying objects; it aims to detect and create a pixel-level mask for each individual garment in 

an image. This is particularly critical in scenarios involving cluttered environments, such as a pile 

of clothes, where garments often overlap and obscure one another. The objective is to provide a 

comprehensive perception of the clothing items, distinguishing their precise boundaries and 

locations. 

The overall process begins with an input image containing a pile of clothes (Figure 12). This image 

undergoes a preprocessing step and augmentation, typically involving resizing to a standardized 
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resolution. The preprocessed image is then passed to a segmentation model, which predicts a mask 

and a confidence filter is applied to retain only the most reliable detections. 

To determine the grasping point for robotic manipulation, a post-processing step computes the 

maximum inscribed point (MIP) within the segmentation mask. Unlike the geometric centroid, 

which may lie near edges or outside the garment in irregular shapes, the MIP represents the pixel 

farthest from any boundary point, ensuring that it is well within the garment’s interior. This 

point is obtained by applying a Euclidean distance transform on the binary mask and selecting 

the location of the maximum distance value. The resulting coordinate provides a stable and reliable 

target for robotic grasping, reducing the risk of slippage or failed picks during manipulation. 

To determine the grasping point, we computed the Maximum Inscribed Point (MIP) within each 

segmentation mask. Given a binary mask 𝑀(𝑥, 𝑦), the Euclidean distance transform 

𝐷(𝑥, 𝑦)assigns each pixel its distance to the nearest background pixel: 

𝐷(𝑥, 𝑦) = min⁡
(𝑥′,𝑦′)∈boundary(𝑀)

√(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2  (1) 

 

The maximum inscribed point is then defined as: 

(𝑥∗, 𝑦∗) = arg⁡ max⁡
(𝑥,𝑦)∈𝑀

𝐷(𝑥, 𝑦) (2) 

 

This point lies deepest inside the mask, ensuring a robust and central grasping location for the 

robotic arm. 

This ability to isolate and target a single, distinct garment through segmentation and MIP 

extraction serves as the foundation for all subsequent tasks in the pipeline, including classification, 

keypoint detection, and 3D mesh prediction. 

4.1.1 Models and architecture 

For the instance segmentation task, a comparative study was conducted using two distinct model 

families, each selected for its specific strengths in computer vision. The goal was to identify a 

model that could achieve a robust balance between segmentation accuracy and computational 

efficiency, a critical requirement for a real-time robotic application.  

YOLOv11: 

YOLOv11, a prominent single-stage, real-time object detection and segmentation model, was 

selected primarily for its exceptional speed and efficiency. Its architecture is optimized for fast 
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inference, making it an ideal candidate for integration into robotic systems where low latency is 

paramount. To assess the performance, two different versions of the model were evaluated: 

• YOLOv11-N (Nano): This is the most lightweight variant, designed for minimal 

computational overhead. It is well-suited for deployment on edge devices and robotics 

platforms with limited processing resources, offering high throughput at the expense of a 

slight reduction in accuracy compared to larger models. 

• YOLOv11-S (Small): This version represents a larger, more powerful variant. It provides 

a more balanced compromise between speed and accuracy, maintaining real-time 

capabilities while delivering improved detection and segmentation performance, making it 

a strong contender for the final pipeline. 

Detectron2: 

In parallel, the Detectron2 framework, developed by Facebook AI Research, was employed to 

implement a more complex, two-stage segmentation approach. This framework is widely 

recognized for delivering high accuracy across diverse computer vision tasks. The specific 

architecture used was Mask R-CNN with a ResNeXt-101 (X-101-32x8d-FPN-3x) backbone. This 

configuration was chosen for its robustness and proven performance on complex instance 

segmentation tasks. The multi-stage refinement process of Mask R-CNN, which first proposes 

regions of interest and then refines them, is particularly effective in scenarios with overlapping or 

deformable objects. Given that the pipeline also includes keypoint detection for garments, a task 

for which Detectron2's capabilities are well-suited, its inclusion provided a valuable benchmark 

for performance and a potential unified solution. 

 

4.1.2 Training Details 

To achieve robust and generalizable performance, a two-stage training strategy was implemented. 

The chosen models were first pretrained on the large-scale DeepFashion2 dataset to learn a rich 

feature representation of garments. Subsequently, the models were fine-tuned on a smaller, custom 

dataset specifically designed for the instance segmentation task. This dataset consisted of 610 

images, including 310 images of dry clothes and 300 images of wet clothes, to ensure the model 

was robust to real-world conditions. The dataset was partitioned into a 90% training set, a 5% 

validation set, and a 5% testing set. 

All images were preprocessed and augmented as described in Section 3.2.4, including resizing, 

normalization, and a range of geometric, color-based, and compositional augmentations to enhance 

model robustness during fine-tuning. 
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Hyperparameter Configuration: 

For YOLOv11-based models, the training was conducted using a batch size of 16, image size of 

640 × 640 px, and an initial learning rate of 0.01 with cosine learning rate scheduling and SGD 

optimizer (momentum = 0.937, weight decay = 0.0005). The training incorporated built-in 

regularization through flip (0.5), rotation (±10°), HSV-saturation (0.7), HSV-value (0.4), and 

perspective distortion (0.001) augmentations as defined in the training script. 

For the Detectron2 Mask R-CNN model, training was performed with a batch size of 2 images per 

iteration, a base learning rate of 0.00025, and the Adam optimizer. The maximum iterations were 

varied (500, 1000, and 2000) to evaluate convergence behavior.  

These hyperparameters were empirically selected based on common defaults for each framework 

and fine-tuned through preliminary experiments to balance stability, speed, and segmentation 

accuracy. 

4.1.3 Evaluation Metrics 

For evaluating the performance of the segmentation models, a standard set of metrics was used to 

ensure a comprehensive assessment: 

• Mean IoU (Intersection over Union): This metric quantifies how well the predicted 

segmentation masks match the ground truth masks. It computes the average overlap ratio 

between the predicted and true masks for all classes.[16] 

• mAP@50 (mean Average Precision at IoU threshold 0.50): This metric evaluates the 

performance of object detection and instance segmentation models by calculating the 

average precision when the Intersection over Union (IoU) threshold is set to 0.50.[16] 

• Precision: Precision measures the correctness of positive predictions. It represents the 

proportion of true positives among all instances that the model predicted as positive. High 

precision indicates few false positives.[59] 

• Precision = ⁡
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3) 

• Recall: Recall measures the ability of the model to detect all relevant instances. It 

represents the proportion of actual positives correctly identified by the model. High recall 

indicates few false negatives.[59] 

Recall = ⁡
𝑇𝑃

𝑇𝑃+𝐹𝑁
⁡ (4) 

• F1-score: The F1-score combines precision and recall into a single metric by computing 

their harmonic mean. It is particularly useful when dealing with imbalanced classes or 

when both false positives and false negatives are important.[59] 

F1-score = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁡×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁡+𝑅𝑒𝑐𝑎𝑙𝑙
 (5) 
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The models were trained under various configurations to identify the optimal setup. The YOLOv11 

N model was trained for both 200 and 299 epochs. The YOLOv11 S model was trained for 300 

and 600 epochs. Detectron2 was trained for 500, 1000, and 2000 epochs to observe performance 

changes over extended training periods. 

 

4.2 Object Recognition 

4.2.1 Rationale for Dual-Methodology Investigation 

 

Figure 13 - Classification and Object detection tasks process 

Once a single garment is isolated by the instance segmentation module, the next critical step is to 

identify its category. For the object recognition task, a study using two complementary 

methodologies was conducted to identify the most effective approach for this particular 

application. The core question was whether a straightforward image classification model would be 

sufficient, or if a more complex object detection framework would yield superior performance. 

As shown in Figure 13, The first approach, multi-class image classification, represents the more 

traditional path. It treats the entire image of the single garment that has already been physically 

isolated from the pile as a single entity and assigns it to a category label. This method is 

computationally simpler but relies on the model learning distinguishing features from the pixel 

data alone. 

The second approach reframes the task as object detection for classification. Here, the model's 

goal is not only to classify the garment but also to localize it with a bounding box. The primary 

motivation for exploring this method was its potential to better utilize large-scale datasets like 

DeepFashion2, which contain extensive bounding box annotations. By pretraining on both 

localization and classification data, the model could potentially learn a more robust and spatially 

aware feature representation, making it less sensitive to variations in the garment's position or scale 

within the frame. 
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Through empirical evaluation of both methodologies, this study seeks to determine the best trade-

off between model complexity and classification accuracy, ultimately choosing the most 

dependable approach for the subsequent stages of the robotic manipulation pipeline. 

 

4.2.2 Multi-Class Image Classification 

The first methodology investigated for object recognition was a traditional multi-class image 

classification approach. In this approach, an image of a single garment is processed as a whole and 

passed through a deep convolutional neural network (CNN) to classify it into one of the ten 

predefined categories. The primary advantage of this approach is its relative simplicity and the 

wide availability of well-studied, high-performing architectures. 

 

4.2.2.1 Model Architectures 

To ensure a thorough evaluation, three distinct and influential CNN architectures were selected, 

each representing a different design philosophy: 

• VGG16: A classic architecture known for its straightforward design, which uses a deep 

stack of small (3x3) convolution filters. Its uniform structure has proven effective for many 

image classification tasks, serving as a solid baseline. 

• ResNet (Residual Network): This model introduced the concept of "residual connections" 

or "skip connections," which allow the network to learn residual functions. This innovation 

effectively mitigates the vanishing gradient problem in very deep networks, enabling the 

training of much deeper and more powerful models. 

• EfficientNet: A more modern architecture designed through a principled approach of 

compound scaling. It systematically balances network depth, width, and resolution to 

achieve state-of-the-art accuracy with significantly fewer parameters and lower 

computational cost compared to older models, making it highly efficient. 

 

4.2.2.2 Experimental Setup and Training 

A set of experiments were designed to systematically evaluate the performance of these models 

under different conditions: 

• Image Resolution: To study the impact of input detail on classification accuracy, all 

models were trained and evaluated on two different image resolutions: 256x256 and 

500x500 pixels. 

• Pretraining Strategy: The effect of transfer learning was a key point of investigation. For 

each model and resolution, two training schemes were executed: (1) training from scratch 
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using only the custom-collected dataset, and (2) pretraining the model on the large-scale 

DeepFashion2 dataset before fine-tuning it on the custom dataset of 96 images. 

• Training Parameters: All models were trained for a maximum of 100 epochs. An early 

stopping mechanism was employed to avoid overfitting, halting the training process if no 

improvement in validation loss was observed over a set number of epochs (patient for 15 

epochs). Performance was measured using Test Loss (Categorical Cross-entropy), 

Accuracy, Precision, and Recall, averaged across all 10 clothing classes. 

 

4.2.3 Object Detection for Classification 

The second methodology reframed the recognition task as an object detection problem. Instead of 

treating the input as a monolithic image for classification, this approach leverages a model that 

simultaneously localizes the garment with a bounding box and assigns to it a class label. This was 

hypothesized to be a more robust strategy, as it could capitalize on the extensive localization data 

available in large-scale pretraining datasets. 

 

4.2.3.1 Model and Rationale 

The YOLOv11-N model was selected for this approach. The choice was motivated by its 

demonstrated efficiency and strong performance in the instance segmentation phase, making it a 

natural candidate for reuse. By employing the same lightweight architecture, the potential for a 

streamlined, computationally efficient end-to-end pipeline was preserved. The core rationale was 

that a model pretrained on both object localization and classification would develop a more 

spatially aware feature representation, leading to better generalization, especially when fine-tuning 

on a small custom dataset. 

 

4.2.3.2 Training and Fine-Tuning Strategy 

A two-stage transfer learning strategy was implemented to maximize performance: 

1. Pretraining: The YOLOv11-N model was first pretrained on the DeepFashion2 dataset 

for 20 epochs. This initial phase allowed the model to learn a general, robust feature 

representation for a wide variety of clothing items and their bounding boxes. 

2. Fine-Tuning: The pretrained model was then fine-tuned on the small, custom dataset of 96 

images. To investigate the impact of training duration, fine-tuning was conducted for two 

distinct lengths: 100 epochs and 300 epochs. 

The same comprehensive suite of augmentations from the segmentation task was applied, 

including geometric transformations (flips, rotation, scaling), color The same comprehensive suite 

of augmentations from the segmentation task was applied, including geometric transformations 
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(flips, rotation, scaling), color adjustments (hue, saturation, brightness), and advanced techniques 

like Mosaic, MixUp, Copy-Paste. This ensured the model was exposed to a wide variety of 

structural and contextual variations during training. 

 

4.2.4 Evaluation and Comparative Framework 

To facilitate a rigorous and impartial comparison between the two distinct methodologies, a unified 

evaluation framework was essential. Although an object detection model's primary output includes 

localization data (a bounding box), its efficacy within this specific context is determined by its 

ability to correctly classify the garment. Consequently, the performance of the object detection 

approach was benchmarked against the same standard classification metrics used for the dedicated 

classification models. This systematic application of common evaluation criteria allows for an 

empirical conclusion on the more effective methodology for the specific challenge of garment 

recognition in a robotic context. 

The performance of all models across both approaches was assessed using the following metrics, 

calculated on the held-out test set: 

• Test Loss (Categorical Cross-entropy): This metric provides a measure of model 

generalization by quantifying the divergence between the predicted probability distribution 

and the ground-truth distribution of the classes. A lower loss value signifies a model that is 

better calibrated and generalizes more effectively to unseen data. 

• Accuracy: A primary metric representing the overall correctness of the model, defined as 

the ratio of correctly classified instances to the total number of instances in the test set.[59] 

• Precision: This metric assesses the reliability of positive predictions for each class. It is 

the ratio of true positives to the sum of true positives and false positives. The reported value 

is the macro-average precision across all ten classes, providing a measure of performance 

that is not biased by class imbalance.[59] 

• Recall (Sensitivity): This metric evaluates the model's ability to identify all relevant 

instances of each class. It is the ratio of true positives to the sum of true positives and false 

negatives. As with precision, the macro-average recall is reported to give equal weight to 

each class's performance.[59] 

By systematically applying this common set of evaluation criteria, we can have a clear, data-driven 

conclusion regarding the superior methodology for the specific challenge of garment recognition 

in a robotic manipulation context. 
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4.3 Key point detection 

 

Figure 14 - Key point detection process 

Following garment recognition, the next crucial stage in the perception pipeline is keypoint 

detection. The objective of this task is to localize a predefined set of semantic landmarks on a 

garment, such as the corners of a collar, the ends of sleeves, or points along a waistline (Figure 9). 

These keypoints provide a sparse, structured representation of the garment's geometry and pose. 

For a robotic manipulator, this information is important. It transforms a complex, continuous 

deformable object into a set of discrete, functionally important coordinates, which are essential for 

planning robust and precise manipulation strategies, such as defining stable grasp points for 

picking up a shirt or identifying corners for initiating a folding sequence. 

 

4.3.1 Objective and Rationale for a Grouping-Based Approach 

A significant challenge in garment keypoint detection arises from the vast topological diversity 

across different clothing categories. A model trained to find the 14 keypoints of a t-shirt, for 

instance, cannot be directly applied to a pair of socks, which may only require 6 keypoints and 

possesses a fundamentally different structure. Initial experiments confirmed that a single, "one-

size-fits-all" model struggled to perform accurately across all 10 categories, exhibiting poor 

performance especially for classes with unique structures or fewer training samples. 

To overcome this limitation, a key methodological innovation of this work was the development 

of a task-specific grouping strategy. Instead of training a unified model, the garment categories 

were clustered into four distinct groups based on their structural similarity and, most importantly, 

their total number of keypoints. This approach allowed for the training of separate, specialized 

models for each group. The underlying rationale is that a model trained on a more homogenous set 

of objects with a consistent keypoint schema will learn a more focused and accurate feature 

representation, leading to superior localization performance compared to a generalist model. 
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4.3.2 Model Architecture and Implementation 

To perform keypoint detection, the Detectron2 framework was selected due to its robust and 

integrated support for complex computer vision tasks. Specifically, the 

keypoint_rcnn_R_50_FPN_3x architecture was employed. This model is a variant of Mask R-

CNN that extends the architecture to simultaneously predict object bounding boxes and a set of 

keypoints. Its Feature Pyramid Network (FPN) backbone is particularly effective at detecting 

objects and features at multiple scales, a critical capability when dealing with garments of varying 

sizes and camera distances. The model was first initialized with weights pretrained on the 

DeepFashion2 dataset, which offered a solid basis for recognizing garment features prior to fine-

tuning on the custom dataset. 

 

4.3.3 Group-Based Training Details 

The practical implementation of the keypoint detection methodology was centered on the proposed 

grouping strategy. The ten garment categories were partitioned into four distinct clusters, each 

defined by a unique keypoint schema: 

• Group 1 (14 keypoints): T-shirt, Sweater, Trouser 

• Group 2 (10 keypoints): Tank Top, Crop Top 

• Group 3 (8 keypoints): Boxers, Shorts, Briefs 

• Group 4 (6 keypoints): Long Socks, Skirt 

For each cluster, a dedicated Detectron2 model was fine-tuned, enabling the training process to be 

specialized for the unique challenges of each group. A baseline training protocol was first 

established for all models, involving fine-tuning for 5,000 epochs while applying a standard suite 

of 10 data augmentations, such as random rotations and color jitter, to promote generalization. 

However, an adaptive training strategy was employed to address the performance variance 

observed between the groups. For clusters that demonstrated lower initial efficacy, specifically 

Groups 3 and 4, the training protocol was intensified. The training duration for these models was 

extended to 10,000 epochs, and a more aggressive set of 20 augmentations was utilized. This 

enhanced protocol was designed to further diversify the training data and improve model 

robustness, thereby compensating for the limited number of unique samples in these categories 

and ensuring that each specialized model was trained to its optimal performance. 
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4.3.4 Evaluation Framework 

To quantitatively assess the performance of the specialized keypoint detection models, a 

framework based on two standard, complementary metrics was adopted. These metrics provide a 

comprehensive view of localization accuracy from different perspectives. 

• Object Keypoint Similarity (OKS): This is the primary metric used for this task and is 

analogous to the Intersection over Union (IoU) metric in object detection. OKS calculates 

a score based on the normalized distance between a predicted keypoint and its ground-truth 

counterpart, scaled by the object's size. This scaling ensures the metric is robust to 

variations in object size and camera perspective. The score, which varies between 0 and 1, 

offers a detailed measure of localization accuracy, with higher values reflecting closer 

alignment. 

• Percentage of Correct Keypoints (PCK): This metric offers a more intuitive, threshold-

based measure of accuracy. A predicted keypoint is assumed "correct" if the Euclidean 

distance to its corresponding ground-truth annotation falls within a predefined threshold. 

To ensure scale invariance, this threshold is defined as a fraction of a reference object 

dimension. In this work, a threshold of 0.2 times a reference distance was used. The final 

PCK value is the percentage of all keypoints across the test set that satisfy this condition, 

offering a clear measure of overall model reliability. 

Together, OKS and PCK form a robust evaluation framework, allowing for both a detailed analysis 

of per-keypoint similarity and a high-level understanding of the model's practical accuracy. 

 

4.4 Mesh prediction 

The final piece of our system is about building a 3D model of a garment using just a single 2D 

photo. This ability is vital for the robot to truly understand the clothing's shape, position, and how 

it might bend or fold, which is necessary for tricky tasks beyond simply picking it up. 

While special 3D cameras can measure depth directly, they are often expensive, not always 

available, and can fail with reflective materials. For these reasons, our goal was to develop a 

method that can figure out the 3D shape using only a standard camera. This approach makes the 

system more flexible, affordable, and accessible, as it cleverly uses recent advances in software to 

create 3D understanding from a simple 2D image, without needing any specialized hardware. 
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4.4.1 Multi-Stage Reconstruction Pipeline 

 

Figure 15 - 3D Mesh Prediction Pipeline from a Single RGB Image. 

To achieve 3D reconstruction from a single 2D image, a multi-stage pipeline was designed, as 

illustrated in Figure 15. This pipeline sequentially processes the image to extract the necessary 

components for mesh generation: 

1. Monocular Depth Estimation: The input RGB image is first passed to a state-of-the-art 

monocular depth estimation model to generate a dense depth map. This map provides a 

per-pixel estimation of the distance from the camera, forming the initial 3D geometric 

information. 

2. Garment Segmentation: To isolate the garment from the background, the binary 

segmentation mask produced by the previously trained YOLOv11-N model is utilized. This 

ensures that only the pixels corresponding to the garment of interest are considered for 

reconstruction. 

3. Mask Refinement and Depth Segmentation: The binary mask is applied to the depth 

map, effectively cropping out the depth information for the background. To clean up noisy 

edges and improve the boundary definition, an erosion operation is applied to the mask 

before this step. 
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4. 3D Mesh Reconstruction: Finally, with the original RGB image (for texture), the 

segmented depth map (for geometry), and the refined mask (for boundaries), a textured 

mesh representation of the garment. 

4.4.2 Models and Implementation Details 

The implementation of the reconstruction pipeline relies on two key pretrained models: 

• Depth Anything V2: This model was used for the monocular depth estimation step. It is a 

state-of-the-art foundation model for depth perception that has demonstrated remarkable 

performance and generalization capabilities across a wide variety of scenes without 

requiring fine-tuning. 

• Segment Anything Model (SAM): While the primary segmentation was performed by the 

YOLOv11-N model, for particularly challenging cases with ambiguous boundaries or 

complex folds, the SAM was employed to generate more precise binary masks, improving 

the quality of the final reconstruction. 

4.4.3 Evaluation Approach 

Due to the absence of ground-truth 3D data for the custom-collected garments, a quantitative 

evaluation of the mesh prediction accuracy was not feasible. Therefore, no numerical quality 

scores were computed. Instead, the performance of this component was assessed qualitatively 

through visual inspection of the generated 3D meshes. The evaluation focused on the overall 

coherence of the 3D shape, the correctness of the reconstructed topology (e.g., folds and wrinkles), 

and the realism of the applied texture. While this assessment is inherently subjective, it provides a 

practical indication of the model’s ability to produce visually consistent and plausible 3D 

representations, which aligns with the exploratory objectives of this work.  
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Chapter 5 

5 Experiments & Results 

This chapter reports the experimental findings obtained from the methodologies described in 

Chapter 4. Each section is dedicated to a core component of the vision pipeline, providing a 

quantitative and qualitative analysis of the models' performance. The findings are supported by 

visualizations and performance metrics to offer a comprehensive evaluation of the system's 

effectiveness for robotic garment manipulation. 

5.1 Instance Segmentation Results 

The primary objective of the instance segmentation task was to accurately detect and isolate each 

individual garment from a cluttered pile, a critical first step for any subsequent manipulation task. 

This section details the performance of the evaluated models both YOLOv11 (Nano and Small 

variants) and Detectron2 (Mask R-CNN) on the custom-collected dataset. 

5.1.1 Quantitative Performance Analysis 

To determine the most effective model, a series of experiments were conducted by training each 

architecture for a varying number of epochs. The performance was measured using Mean 

Intersection over Union (Mean IoU), mean Average Precision (mAP) at an IoU threshold of 0.50, 

precision, recall, and the F1-score. 

Model/epochs Mean IOU MAP (IOU 50) precision recall f1 

YOLOv11 N, 200 Epochs  0.8616 1.0000 1.000 0.9091 0.9524 

YOLOv11 N, 300 Epochs  0.8563 0.9855 0.9855 0.8831 0.9315 

YOLOv11 S, 300 Epochs  0.8736 0.9851 0.9851 0.8571 0.9167 

YOLOv11 S, 600 Epochs 0.8754 0.9853 0.9853 0.8701 0.9241 

Detectron2, 500 epochs  0.8927 0.7628 0.9385 0.7444 0.8303  

Detectron2, 1000 epochs  0.9001 0.8486 0.9306 0.8701 0.8993 

Detectron2, 2000 epochs  0.9107 0.8231 0.8148 0.8571 0.8354 

Table 1 Performance Comparison of Instance Segmentation Models - This table presents the performance metrics for the 

YOLOv11 and Detectron2 models on the held-out test set. The best-performing model configuration is highlighted in bold. 
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The results, outlined in Table 1, demonstrate that the YOLOv11 N model trained over 200 epochs 

achieved the best performance for our application. It achieved a perfect mAP@50 of 1.0000 and 

the highest F1-score of 0.9524 among all tested configurations. This suggests an exceptional 

ability to both correctly localize and segment nearly every garment instance in the test set. 

Figure 16 shows the loss curves for both training and validation of the chosen model. The curves 

indicate that the model trained smoothly, with losses for both sets steadily decreasing and 

converging, reflecting good generalization. For reference, the loss curves of all other model 

configurations tested can be found in Appendix A. 

The loss curves, depicted in Figure 16, demonstrate a characteristic and intentional drop during 

the final epochs of the 200-epoch training cycle. This behavior results from the standard training 

strategy adopted in YOLO-based models, where the mosaic data augmentation is disabled in the 

final phase of training. This practice, implemented through the close_mosaic parameter in the 

Ultralytics YOLO framework, deactivates mosaic augmentation during the last few epochs 

(typically the final 10) to allow the model to fine-tune on unaltered images that better resemble the 

validation and deployment data[60]. During the initial ~190 epochs, the model was trained with 

mosaic augmentation, which combines four training images into one to increase diversity and 

robustness. While this technique enhances generalization by exposing the model to occluded and 

multi-scale objects, it naturally leads to higher loss values. The transition to simpler, non-

augmented images in the final phase thus allows the model to refine its weights, leading to the 

observed sharp decrease across all loss metrics. 

A deeper analysis reveals several key insights: 

• YOLOv11 N vs. YOLOv11 S: While the larger YOLOv11 S model achieved a slightly 

higher Mean IoU (0.8754 at 600 epochs), it did not surpass the Nano version in the crucial 

mAP and F1 metrics. Given that the Nano version is significantly more lightweight and 

computationally efficient, its superior performance on these key metrics makes it the more 

practical choice. 

• Impact of Training Epochs: For the YOLOv11 N model, extending the training from 200 

to 300 epochs led to a slight decrease in all metrics, suggesting that early stopping at 200 

epochs captured the optimal model state before overfitting could occur. 

It should be noted that the second training session of YOLOv11 Nano was set for a 

maximum of 500 epochs, but it stopped at epoch 300 due to the activation of early stopping. 

This regularization strategy helps prevent overfitting by tracking the model’s performance 

on the validation set. Training is automatically terminated when a key validation metric, in 

this case the mask mean Average Precision (mAP50-95), does not improve for a specified 

number of epochs (patience parameter), indicating that the model has reached an optimal 

state. 
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• Detectron2 Performance: The Detectron2 models, leveraging the Mask R-CNN 

architecture, achieved the highest Mean IoU scores overall, with the 2000-epoch model 

reaching 0.9107. This indicates a superior capability in fitting the segmentation masks 

precisely to the ground truth. However, its mAP@50 scores were notably lower than 

YOLOv11's, peaking at 0.8486. This mismatch implies that while Detectron2 creates high-

quality masks when it finds an object, it is less effective at correctly detecting all object 

instances compared to the YOLOv11 N model in this specific task. 

 

Figure 16- Training and validation loss curves for the YOLOv11-N model trained for 200 epochs. The sharp final decrease is 

because of mosaic augmentation. 

5.1.2 Qualitative Results 

Visual inspection of the model outputs on test images supports the quantitative findings. The 

figures below provide a qualitative comparison of the different models' segmentation capabilities 

on a representative image of a clothing pile. 



Experiments & Results 

 

51 
 

  
Figure 17 - sample inference of YOLOv11n Model with 200(left) and 299(right) epochs 

 

  
Figure 18 - sample inference of YOLOv11 S Model with 300(left) and 600(right) epochs 
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(a) 

 
(b) 

 

(c) 

Figure 19 - Detectron2 segmentation results after different training durations: (a) 500 epochs, (b) 1000 epochs, and (c) 2000 

epochs. Longer training improves the model’s ability to fit precise boundaries, but it occasionally misses overlapping items, 

explaining its lower recall. 

The visual results in Figure 17 show that the YOLOv11 N model effectively segments the 

overlapping garments with high confidence. Figure 19 demonstrates that while Detectron2 

produces very tightly fitted masks (aligning with its high Mean IoU), it occasionally struggles with 

distinguishing overlapping items or may miss certain garments entirely, which explains its lower 

recall and mAP scores. 
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5.1.3 Real-world Demonstration 

In addition to quantitative evaluation, we validated the segmentation module in a real robotic setup. 

A dual-arm robotic platform was tasked with picking garments from a table based on the 

segmentation outputs. The real-world demonstration reported here used the maximum inscribed 

point (MIP) as the grasp target (see section 4.1). MIP was chosen to maximize clearance from 

mask boundaries and reduce boundary-only contacts during grasping. Figure 20 shows snapshots 

from the demonstration, where the robot successfully isolated and grasped individual garments 

from a cluttered scene. This experiment highlights the practical feasibility of the proposed 

perception pipeline, demonstrating that the segmentation model can generalize from offline dataset 

training to real-world robotic manipulation scenarios. While these trials were limited in scope, they 

provide evidence that the system can serve as a reliable perception front-end for downstream 

manipulation tasks. 

 

  
Figure 20 - instance segmentation testing with robotic arms with the Yolo v11 Nano model trained for 200 epochs. The robustness 

of the model is shown in real world applications. 

5.1.4 Discussion and Model Selection  

Based on the combined quantitative and qualitative evidence, the YOLOv11 N model trained for 

200 epochs was selected as the optimal choice for the instance segmentation task. 

Its selection is justified by three main factors: 

1. Superior Performance: It achieved the highest F1-score (0.9524) and a perfect mAP@50, 

indicating the best overall balance of precision and recall. 
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2. Computational Efficiency: As the "Nano" variant, it offers extremely fast inference 

speeds with a low computational footprint, which is a critical requirement for integration 

into a real-time robotic system. 

3. Reliability: The model showed strong confidence in its predictions and seldom failed to 

detect garment instances, providing a dependable basis for the following stages of the 

perception pipeline. 

During experimentation, the primary challenges observed were handling severe occlusion and 

distinguishing between garments of very similar color and texture. While the chosen model 

performed admirably, these challenges account for the minor imperfections in recall and justify 

the future work direction of incorporating more diverse and complex pile configurations into the 

training dataset. 

 

5.2 Object Recognition Results 

Following the successful isolation of individual garments via instance segmentation, the next 

critical stage in the pipeline is object recognition. The goal of this task is to accurately determine 

the category of each detected garment from the 10 predefined classes. To identify the most effective 

and robust method for this purpose, a comparative study was conducted between two distinct 

methodologies: a traditional multi-class image classification approach and an object detection 

framework repurposed for classification. 

 

5.2.1 Multi-Class Image Classification Performance 

This approach treats the entire image of an isolated garment as a single input, leveraging various 

Convolutional Neural Network (CNN) architectures to assign a category label. 

 

5.2.1.1 Quantitative Performance Analysis 

A set of experiments was carried out to assess three widely used CNN architectures: ResNet, 

VGG16, and EfficientNet. The study examined the effects of important factors, such as input 

image resolution (256×256 versus 500×500) and the application of pretraining on the 

DeepFashion2 dataset. Model performance was evaluated based on test loss, accuracy, precision, 

and recall. 
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Model Image 

Size 

Pretraining Test Loss Accuracy Precision Recall 

ResNet 256×256 No 1.3161 0.625 0.7647 0.5417 

VGG16 256×256 No 1.5049 0.5833 0.6500 0.5417 

EfficientNet 256×256 No 1.1156 0.6665 0.7619 0.6666 

ResNet 500×500 No 0.9691 0.7083 0.8000 0.6667 

VGG16 500×500 No 1.6645 0.4583 0.4615 0.2500 

EfficientNet 500×500 No 1.1523 0.5833 0.6471 0.4583 

ResNet 500×500 Yes 0.8741 0.7083 0.7778 0.5833 

VGG16 500×500 Yes 1.0233 0.5833 0.7222 0.5417 

EfficientNet 500×500 Yes 0.7398 0.7500 0.7143 0.6250 

Table 2: Performance Comparison of Image Classification Models - This table presents the key performance metrics for the 

classification models on the held-out test set. The best-performing configuration is highlighted in bold. 

The curves showing training and validation losses of the classification models provide additional 

insights into their performance. Figure 21 shows the curves for the best-performing configuration, 

EfficientNet pretrained on DeepFashion2 with 500×500 input resolution. The model exhibits a 

stable decline in both training and validation loss, with close alignment between the two, indicating 

good generalization and minimal overfitting. This complements the quantitative metrics reported 

in Table 2, confirming that EfficientNet benefited substantially from higher-resolution inputs and 

pretraining. The loss curves for the other classification models (ResNet and VGG16) are included 

in Appendix B for reference. Comparing the curves of training with and without transfer learning 

highlights how pretrained models started from a significantly better initial point, achieving lower 

training loss from the beginning. 
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Figure 21 - training and validation loss for EfficientNet with pretrained weights on deep fashion 2 dataset 

The results, summarized in Table 2, yield several important insights: 

• Impact of Image Resolution: Increasing the input image resolution from 256x256 to 

500x500 provided a notable performance boost for both ResNet and EfficientNet, 

underscoring the value of higher-detail input for distinguishing between garment types. 

VGG16, however, struggled to capitalize on the increased resolution. 

• Effect of Pretraining: Pretraining on the large-scale DeepFashion2 dataset consistently 

improved model performance. The most significant gain was observed in the EfficientNet 

model, which achieved the highest accuracy of 75% and the lowest test loss of 0.7398 

when pretrained on 500x500 images. 

• Model Architecture Comparison: Across all experiments, EfficientNet and ResNet were 

strong performers, while VGG16 consistently lagged behind. The superior parameter 

efficiency and architecture of EfficientNet ultimately gave it the edge, establishing it as the 

best model within this methodology. 

 

5.2.2 Object Detection for Classification Performance 

This second methodology reframes the recognition task as an object detection problem, where the 

model's goal is to both localize the garment with a bounding box plus a class label. The YOLOv11-

N model was selected for this task, leveraging its efficiency and the potential for a more robust, 

spatially aware feature representation. 

 



Experiments & Results 

 

57 
 

5.2.2.1 Quantitative Performance Analysis 

The YOLOv11-N model was first pretrained on DeepFashion2 and then fine-tuned on the custom 

dataset for 100 and 300 epochs. 

Model Epochs Test Loss Accuracy Precision Recall 

YOLO (Fine-tuned) 100 5.5243 0.3636 0.2727 0.3636 

YOLO (Fine-tuned) 300 2.3283 0.8182 0.7727 0.8182 

Table 3: Performance of YOLOv11-N for Classification - The results show a dramatic improvement in all metrics when extending 

the fine-tuning duration. 

The results in Table 3 are definitive: 

• Impact of Training Duration: Extending the fine-tuning process from 100 to 300 epochs 

resulted in a dramatic improvement in performance. The model's accuracy surged from a 

modest 36.4% to 81.8%, while the test loss was more than halved. This indicates that the 

additional training was crucial for the model to adapt its pretrained features to the 

particulars of the custom dataset. 

 

 

Figure 22 - training and validation loss for the selected model yolo v11 Nano, 300 epochs 

The training dynamics of the YOLOv11-N model are illustrated in Figure 22, which presents the 

learning curves for the model's two fundamental tasks: bounding box localization (box_loss) and 

garment classification (cls_loss). These graphs provide compelling evidence of a stable and highly 

successful training process. Both training and validation losses decrease in parallel, indicating 
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strong generalization and no major signs of overfitting. Like the segmentation, the drop of loss at 

the final epochs are due to the Mosaic augmentation technique. 

The classification loss, which is the most critical metric for this stage of the pipeline, shows an 

ideal convergence pattern. The validation cls_loss curve closely tracks the decline of the training 

loss, indicating that the model effectively learned to distinguish between garment categories and 

successfully generalized this knowledge to unseen data. This is strongly supported by the bounding 

box loss, which also decreased consistently for both training and validation. The combined success 

in both minimizing loss for localization and classification explains the model's superior 

performance and justifies its selection as the final, most robust method. 

 

5.2.3 Discussion and Final Method Selection 

Comparing the best-performing models from both methodologies, the YOLOv11-N object 

detection model fine-tuned for 300 epochs (81.8% accuracy) significantly outperformed the best 

classification model, EfficientNet (75% accuracy). 

Based on this clear evidence, the YOLOv11-N object detection approach was selected as the final 

method for the object recognition task. This decision is justified by three key factors: 

1. Higher Accuracy: The object detection model achieved a notably higher final accuracy 

score. Training the model to perform both localization and classification at the same time 

allowed it to learn more effective features for telling the garments apart. 

2. Better Generalization and Reliability: Both EfficientNet (with pretraining) and 

YOLOv11-N exhibited stable convergence and minimal overfitting. However, YOLO 

achieved this while also delivering substantially higher accuracy and more robust 

validation performance. This makes YOLO not only better at generalization but also the 

more reliable choice for deployment. 

3. Pipeline Consistency: Using a YOLO model matches the architecture chosen for the 

instance segmentation task. This creates a more streamlined and unified system, which 

could make it easier to deploy and manage in the future. 

The primary challenge in this task was the limited size of the custom dataset used for fine-tuning. 

This lack of data caused the overfitting seen in the pure classification model. The success of the 

YOLOv11-N model highlights how a good pretraining strategy, combined with the benefit of 

having the model learn two tasks at once, helped it overcome this problem. 
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5.3 Keypoint Detection Results 

Following the object recognition stage, the keypoint detection models were evaluated to evaluate 

their ability to localize semantic landmarks on each garment. This task is crucial for enabling 

downstream robotic manipulation, as these keypoints provide a structured representation of the 

garment's geometry and the location that the robot can pick and fold the clothes. The evaluation 

was based on the specialized, group-based approach detailed in the methodology, where separate 

models were trained for clusters of garments with the same number of keypoints. 

5.3.1 Performance of Group-Based Models 

The quantitative performance of the specialized models for each garment group was assessed using 

Object Keypoint Similarity (OKS) and Percentage of Correct Keypoints (PCK). The results, 

summarized in Table 4, show the effectiveness of the grouping strategy, though performance varied 

significantly across the different groups. 

Test  Group  Training Setup Overall PCK Mean 

OKS 

1 1 (T-shirt, Sweater, Trouser) 5000 epochs  0.97 0.9001 

2 2 (Tank Top, Crop Top) 5000 epochs  0.55 0.4581 

3 3 (Boxers, Shorts, Briefs) 5000 epochs  1.00 0.8660 

4 3 (Boxers, Shorts, Briefs) 5000 epochs  

more Aug 

1.00 0.8813 

5 3 (Boxers, Shorts, Briefs) 1000 epochs  

more Aug 

0.96 0.8444 

6 4 (Long Socks, Skirt) 5000 epochs 0.50 0.2476 

7 4 (Long Socks, Skirt) 1000 epochs 

With more Aug 

0.50 0.3563 

Table 4  - the performance of models for different groups in key point detection tasks. The best performing model in each group is 

bolded. 

5.3.2 Analysis and Observations 

A key consideration for this analysis is that the validation set for all groups was very small. 

Consequently, the validation loss curves appear noisy and are not a fully reliable indicator of the 

model's final generalization ability. Instead, the combination of final test metrics (Table 4) and 

visual inspection of inference results provides a more accurate assessment of performance. 
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The qualitative results, shown in the figures below, align with the quantitative metrics. For high-

performing groups like T-shirts and Trousers, the predicted keypoints (red) show a very close 

alignment with the ground truth annotations (yellow). For underperforming categories like the 

Skirt, the predictions are less precise, visually confirming the lower OKS scores. 

 

  
Figure 23 – (left) inference of key point detection for test 1 , group 1 on a t-shirt , (right) inference of key point detection for test 

7, group 4 on a skirt, the red points are the predicted ones, and the yellow points are the ground truth 

 
 

Figure 24 – training loss curves of test 1, group 1 with 5000 epochs (left) and test 7, group 4 with 1000 epochs (right) 
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The results clearly indicate that model specialization led to high performance for categories with 

sufficient samples. Group 1 and Group 3 achieved excellent results, with the augmented Group 

3 model reaching a perfect PCK of 1.00 and a high Mean OKS of 0.8813. 

This high accuracy is confirmed visually in Figure 23, where predicted keypoints on garments like 

T-shirts show a near-perfect match with the ground truth. The learning process for these successful 

groups was also stable, as exemplified by the Group 1 loss curve in Figure 24 (left). In the graph, 

the train loss (blue line) shows a strong, consistent decrease, which is a clear sign that the model 

is effectively learning from the training data. The corresponding validation loss (orange line), 

while noisy, remains stable for most of the training process and only begins to trend slightly 

upward at the very end. This illustrates a healthy learning dynamic that achieved strong 

performance before any significant overfitting could occur, a conclusion supported by the excellent 

final test metrics. 

On the other hand, the performance for Group 2 (Tank Top, Crop Top) and Group 4 (Long Socks, 

Skirt) was significantly lower, a result directly attributable to the limited number of training 

samples for these categories. The less precise predictions for these groups are evident in the 

example for the skirt in Figure 23(right). 

The training dynamics for these struggling models were also visibly unstable, as shown by the 

Group 4 loss curve in Figure 24(right). The validation loss (orange line) is highly noisy and 

exhibits an upward trend, a pattern that typically suggests overfitting. 

Nevertheless, this conclusion should be approached carefully. Due to the extremely small 

validation set for these groups, the validation loss curve is not a reliable indicator of the model's 

true generalization ability. In fact, the performance on the separate, held-out test set tells a different 

story. As shown in Table 4, extending the training for Group 4 actually improved the Mean OKS 

from 0.2476 to 0.3563. Actually, the model has low performance for the skirts in group 4 and tank 

top in group 2. These two categories of clothes have the least samples among all datasets as shown 

in Figure 8 - chart of distribution of physical clothing samples. 

This suggests a complex scenario: while the model was likely beginning to overfit to the few 

specific examples in the tiny validation set (causing the validation loss to rise), it was 

simultaneously continuing to learn broader, more useful features that improved its performance on 

the unseen test data. This highlights a key limitation of relying on small validation sets and 

confirms that the final test metrics provide the most accurate assessment of the model's practical 

performance. 

This analysis underscores both the success of the group-based training strategy and the critical 

dependence on sufficient, category-specific training data. While the approach is sound, future work 
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must focus on increasing dataset for the underrepresented categories to achieve consistent, high 

accuracy keypoint detection across all garment types. 

5.4 3D Mesh Prediction Results 

The final component of the perception pipeline focused on reconstructing a three-dimensional 

mesh of a garment from a single 2D RGB image. This capability is crucial for enabling a robot to 

understand an object's full spatial properties, which is a prerequisite for executing advanced 

manipulation tasks such as folding. This section presents the qualitative results of the mesh 

prediction methodology. 

5.4.1 Mesh Reconstruction from a Single RGB Image 

The reconstruction process was designed as a multi-stage pipeline that leverages state-of-the-art 

deep learning models to infer 3D geometry from 2D inputs. As illustrated in Figure 15, the process 

begins with an RGB image of a garment. A dense depth map is generated using the Depth 

Anything V2 model, providing an initial estimation of the object's geometry. Simultaneously, the 

selected model in segmentation task (Yolo v11 Nano with 200 epochs) produces a segmentation 

mask to isolate the garment from the background. For instances with particularly complex folds or 

ambiguous boundaries, the Segment Anything Model (SAM) was employed to achieve a more 

precise segmentation. 

The refined mask is then applied to the depth map to isolate the garment's depth information. This 

segmented data, combined with the original RGB image for texture, is used to reconstruct the final 

3D mesh. 

5.4.2 Visualizing Mesh Prediction in a Manipulation Scenario 

To demonstrate the pipeline's effectiveness in a practical context, the mesh reconstruction was 

applied to a sequence of images depicting a T-shirt at different stages of a manipulation task: 

flattened, partially folded, and fully folded. The mesh prediction results, shown in Figures 25, 26, 

and 27, illustrate the system's ability to capture the changing shape and deformation of the garment 

throughout the process. This visual evidence confirms that the pipeline can successfully track the 

garment's topology in various states. 
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Figure 25 - 3D mesh reconstruction of a T-shirt in a flat state. The pipeline successfully captures garment shape and surface 

topology from a single RGB image using monocular depth estimation and segmentation. 

 

Figure 26 - 3D mesh reconstruction of a T-shirt in a partially folded state. The reconstructed mesh adapts to the garment’s 

changing geometry, demonstrating the pipeline’s capability to track deformation. 
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Figure 27 - 3D mesh reconstruction of a T-shirt in a fully folded state. The results show coherent surface representation despite 

occlusions, confirming the pipeline’s effectiveness in handling real-world garment manipulation scenarios. 

5.4.3 Qualitative Assessment 

Because of the lack of ground-truth 3D data for the custom-collected garments, a quantitative 

evaluation of the mesh prediction accuracy was not feasible. Therefore, the performance of this 

component was assessed qualitatively through visual inspection. The generated 3D meshes were 

evaluated based on the coherence of their overall shape, the accuracy of the reconstructed topology 

(e.g., correctly representing folds and wrinkles), the absence of noises and the visual quality of the 

applied texture. 

The qualitative assessment confirms that the proposed RGB-only pipeline is capable of generating 

plausible and coherent 3D representations of garments in various states. The findings highlight the 

efficiency of this approach in 3D perception for robotic manipulation, providing a strong basis for 

future research that may incorporate RGB-D sensors to improve accuracy. 
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5.5 Evaluating the Integrated Perception Pipeline 

Although the previous sections examined each element of the perception pipeline separately, its 

overall value for the EUROBIN project relies on its performance as a fully integrated system. 

Because the pipeline operates sequentially, the success of each step depends heavily on the output 

of the preceding step, which can lead to a cascade where errors accumulate and increase. 

• The "Successful Path" and Key Strengths: 

The pipeline's primary strength lies in its "front-end" performance. The selected YOLOv11-N 

instance segmentation model (200 epochs) proved to be highly robust, achieving a perfect 

mAP@50 and an F1-score of 0.9524. This ensures that the initial and most critical step, isolating 

a single garment from a cluttered pile, is highly reliable. As demonstrated in preliminary robotic 

integration tests, this module's accuracy and efficiency are sufficient to guide a robotic arm to 

successfully pick a target garment from a pile, validating its real-world applicability. Once a 

garment is isolated, the YOLOv11-N object recognition model (300 epochs) provides a strong 

classification accuracy of 81.8%. When these first two stages succeed, the system correctly passes 

a correctly identified garment to the appropriate specialized keypoint detection model. 

• Bottlenecks and Error Propagation Analysis: 

The pipeline's overall reliability is constrained by the performance of its subsequent stages, 

creating two primary failure points: 

1. Object Recognition Errors: The 81.8% accuracy of the recognition model, while strong, 

implies that for approximately one in five cases, a garment will be misclassified. This type 

of error is critical. For example, if a "T-shirt" is misclassified as a "Tank Top," the system 

will invoke the Group 2 keypoint model (10 keypoints) instead of the correct Group 1 

model (14 keypoints). The resulting keypoint predictions would be meaningless and 

unusable for any downstream manipulation task, causing a complete failure of the pipeline 

for that item. 

2. Keypoint Detection Inconsistency: Even with correct classification, the performance of 

the keypoint detection varies significantly across garment groups. For common categories 

like T-shirts and Trousers (Group 1), the model is highly reliable, with a PCK of 0.97 and 

a Mean OKS of 0.90. However, for underrepresented categories like Skirts (Group 4), the 

performance is poor (Mean OKS of 0.3563). Therefore, even if a skirt is correctly 

segmented and identified, the pipeline would likely fail to provide the accurate grasp points 

necessary for manipulation. 

In summary, the integrated pipeline is highly effective for a significant portion of common garment 

types where data is plentiful. However, its overall reliability is currently bottlenecked by the object 

recognition stage and the inconsistent performance of keypoint detection on less-frequent clothing 
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categories. The system's architecture is sound, but its end-to-end success rate is dictated by its 

weakest links. 
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Chapter 6 

6 Conclusion and Future Work 

6.1 Conclusion 

The research presented in this thesis has addressed the problem of vision-based robotic cloth 

manipulation, with the objective of building and validating a perception pipeline able of 

identifying, localizing, and reconstructing garments from a small, custom dataset. The work 

focused on four interconnected tasks: instance segmentation, object recognition, keypoint 

detection, and 3D mesh prediction. Together, these tasks form the essential building blocks of a 

pipeline that was successfully demonstrated within the EUROBIN robotic system for autonomous 

textile handling. 

This research achieved several significant results. Firstly, a custom dataset was collected and 

annotated which has ten garment categories under both wet and dry conditions. Although relatively 

small in size, this dataset is as a valuable benchmark for training and evaluating models on diverse 

perception tasks. 

In the area of instance segmentation, extensive experiments with YOLOv11 and Detectron2 

showed that YOLOv11-N trained for 200 epochs provided the most balanced solution, combining 

near-perfect mAP@50 with excellent recall and efficiency. This initial stage proved highly robust 

in physical experiments with robotic in real world application, consistently enabling a robotic 

manipulator to accurately distinguish and pick a target garment from a cluttered pile, validating its 

real-world applicability. 

For object recognition, we compared traditional classification networks with an object detection 

method. While EfficientNet, pretrained on DeepFashion2 and trained on our dataset, showed 

strong generalization and reasonable performance, YOLOv11-N once again demonstrated superior 

accuracy and reliability, ultimately making it the selected choice for this phase of the pipeline. 

To address the challenge of reliably identifying manipulation landmarks, we used a group-based 

keypoint detection approach to have different models according to the specific structures of 

different garments. This strategy proved particularly effective for categories with sufficient 

training examples, such as T-shirts and trousers, where PCK and OKS scores approached high and 

acceptable accuracy. While performance was lower for less-represented categories, such as skirts 

and crop tops, the experiments still demonstrated that the specialized model framework is feasible 

for robotic manipulation and highlighted how important dataset balance is for achieving strong 

performance. 
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Finally, this thesis introduced a pipeline for predicting 3D garment meshes using only RGB 

images, combining monocular depth estimation, segmentation masks, and reconstruction 

techniques. Although the evaluation was necessarily qualitative due to the absence of ground-truth 

meshes, the results showed that it is possible to generate plausible cloth reconstructions without 

specialized hardware. Overall, these contributions provide a complete proof of concept for a 

robotic perception system capable of manipulating deformable objects, indicating that the YOLO-

based architectures are effective, also showing the benefits of transfer learning, and the importance 

of a modular design in creating a robust pipeline. 

 

6.2 Limitations 

While the thesis establishes a promising foundation, several limitations restrict the scope and 

generalizability of its findings. The most significant constraint lies in the size and diversity of the 

dataset. With only 51 garments represented and considerable imbalance between categories, some 

models, particularly for keypoint detection, struggled to generalize to less frequent classes. Wet 

garments were included to increase variability, but challenges such as reflections and lighting 

effects remained unresolved. 

Another limitation concerns the evaluation of the 3D mesh prediction pipeline. Without access to 

ground-truth 3D data, performance could only be assessed visually, making it difficult to quantify 

accuracy in capturing fine details such as folds or fabric thickness. In addition, we could not train 

any model for mesh prediction for clothes specifically and we had to use pretrained models like 

Depth Any Thing. The reliance on monocular RGB input also imposed constraints, as depth 

estimation from single images remains prone to artifacts and distortions.  

 

6.3 Future Work 

The outcomes of this study point to multiple promising directions for future research. The first 

step would be to expand the dataset and especially increase the samples of underrepresented 

classes, since broader and more balanced data would directly address current limits in model 

generalization. Collecting a larger set of garments that spans different poses, fabrics, and 

environmental conditions would strengthen the pipeline considerably. At the same time, synthetic 

data generated through garment simulations or rendering could be used to complement real 

samples, especially for underrepresented categories, while also allowing for experiments under 

more controlled conditions. 

Building on the initial successful integration with the EUROBIN platform, a clear next step is to 

enhance the closed-loop control system. A real-world test with two robotic arms illustrates how 

perception translates to successful grasps; future work should focus on using the pipeline's visual 

feedback in real-time to create adaptive strategies during manipulation of the clothes. For instance, 
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the robot could dynamically adjust its folding trajectory based on continuous feedback from the 

keypoint detection and mesh prediction modules. That kind of integration would reveal the 

robustness of the pipeline under real-time constraints and unstructured conditions. 

Future work could also explore the use of RGB-D fusion. By introducing depth cameras, the 

pipeline could achieve more accurate mesh prediction while reducing the reliance on monocular 

depth estimation. Fusion of color and depth information is likely to improve robustness under 

challenging lighting and occlusion scenarios. 

To improve the performance of specific pipeline modules, several targeted enhancements could be 

pursued. For object recognition, techniques like automated background removal could reduce 

noise and improve classification accuracy. For keypoint detection, developing more targeted data 

augmentation strategies or even re-evaluating the keypoint definitions for structurally ambiguous 

garments like skirts could yield significant gains. 

Advances in keypoint detection offer another direction. Transformer-based or graph-based models 

could better capture the structural relationships between garment parts, while semi-supervised 

learning might reduce annotation costs. For 3D mesh prediction, future efforts should aim at 

quantitative benchmarking by creating a small test set with ground-truth 3D scans and training 

using real dataset with depth information. Real-time mesh refinement during manipulation could 

eventually allow the robot to adapt its perception dynamically as the garment deforms. 

Finally, the pipeline’s modular design itself points toward a promising future in end-to-end 

architectures. We could develop a multi-task network to perform segmentation, recognition, and 

keypoint detection in unison, thus reducing latency through shared features. This integration would 

be a major advantage for deployment on robotic systems, which critically depend on speed and 

robustness. 

 

6.4  Concluding Remarks 

This thesis has demonstrated that vision-based methods can serve as a practical basis for robotic 

cloth manipulation. Through a systematic evaluation of different architectures and strategies, it has 

shown the effectiveness of YOLOv11 models in both segmentation and recognition tasks, 

highlighted the advantages of transfer learning for classification, and confirmed the feasibility of 

extracting manipulation landmarks and generating 3D reconstructions from limited data. The 

project still faces key obstacle, namely the dataset's limited diversity, the need for more rigorous 

3D mesh evaluation, and the challenge of practical pipeline integration. Nonetheless, the outcomes 

lay down a firm groundwork for future investigations. With larger datasets, the use of depth 

sensors, and integration into robotic systems, the pipeline proposed here could develop into a 
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reliable perception framework for garment handling, moving the field closer to the broader goal 

of autonomous textile manipulation. 
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Appendix:  

Appendix A: Additional Instance Segmentation Training Curves 
This appendix provides the complete set of training and validation loss curves for all instance 

segmentation models evaluated in Chapter 5.1. These plots include the performance of YOLOv11-

N (300 Epochs), YOLOv11-S (300 and 600 Epochs), and all Detectron2 configurations. These 

figures complement the summary table and primary loss curves in the main text, offering deeper 

insight into the training dynamics and convergence behavior of each model. 

A.1 YOLOv11 N (300 Epochs) 

 

Figure 28 - Training and validation loss curves for the YOLOv11-N model trained for 300 epochs. The curves show early 

convergence, with performance plateauing, suggesting that extended training offered limited additional benefit compared to 200 

epochs. 
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A.2 YOLOv11 S (300 Epochs) 

 

Figure 29 - Training and validation loss curves for the YOLOv11-N model trained for 300 epochs. The curves show early 

convergence, with performance plateauing, suggesting that extended training offered limited additional benefit compared to 200 

epochs. 

A.3 YOLOv11 S (600 Epochs) 

 

Figure 30- Training and validation loss curves for the YOLOv11-S model trained for 600 epochs. The extended training further 

reduces loss but offers only marginal improvements in segmentation quality, consistent with observed results. A.4 Detectron2 

(Mask R-CNN) 
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A.4 Detectron2: 

 

Figure 31 - Training and validation loss curves for the Detectron2 model configurations (500 epochs). 

 

Figure 32 - Training and validation loss curves for the Detectron2 model configurations (1000 epochs). 

 

Figure 33 - Training and validation loss curves for the Detectron2 model configurations (2000 epochs). 
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Appendix B: Additional Object Recognition Training Curves 

This appendix contains the training and validation accuracy and loss curves for the multi-class 

image classification models evaluated in Chapter 5.2.1. The figures illustrate the learning 

dynamics of ResNet, VGG16, and EfficientNet, both when trained from scratch and when 

pretrained on the DeepFashion2 dataset. These plots provide a visual comparison of model 

generalization and overfitting tendencies, supporting the quantitative analysis presented in the 

main results section. 

B.1 ResNet (500x500, Pretrained) 

 

Figure 34 - Training and validation curves for the ResNet model pretrained on DeepFashion2 with 500x500 resolution. 
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B.2 VGG16 (500x500, Pretrained) 

 

Figure 35 - Training and validation curves for the VGG16 model pretrained on DeepFashion2 with 500x500 resolution. 

 

B.3 Models without Pretraining 

 

Figure 36 - Training and validation curves for EfficientNet models trained from scratch on the custom dataset image size 

500*500. 
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Figure 37 - Training and validation curves for VGG16 models trained from scratch on the custom dataset image size 500*500. 

 

Figure 38 - raining and validation curves for ResNet models trained from scratch on the custom dataset image size 500*500. 
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Appendix C: Keypoint Detection Training Curves 

This appendix presents the training and validation loss curves for the specialized, group-based 

keypoint detection models discussed in Chapter 5.3. The plots correspond to the different garment 

groups and training configurations. It is important to note that due to the small validation set sizes 

for some groups, these curves can appear noisy and may not be a perfect indicator of final test 

performance, but they provide valuable context for the training process. 

C.1 Group 2 (Tank Top, Crop Top) 

 

Figure 39 - Training and validation loss curve for the Group 2 model, trained for 5000 epochs. 

 

C.2 Group 3 (Boxers, Shorts, Briefs) 

 
 

Figure 40 - Training and validation loss curves for the Group 3 models, including the baseline training and the runs with 

extended epochs and increased augmentation. 
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Figure 41 - Training and validation loss curves for the Group 3 models, including the baseline training and the runs with 

extended epochs and increased augmentation. 

 

C.3 Group 4 (Long Socks, Skirt) 

 

Figure 42 - training and validation curve for group 4 with 5000 epochs 

 

Figure 43 - training and validation curves of group 4 for 10000 epochs 


