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Abstract

Over the past century, transportation technologies have evolved rapidly due
to breakthroughs in automation, vehicle connectivity, and the rise of cooperative
systems. These innovations are reshaping how vehicles, infrastructure, and road
users interact, moving toward shared situational awareness and coordinated safety.
In this context, protecting Vulnerable Road Users (VRUs, including pedestrians,
cyclists, powered two-wheelers, and other unprotected participants, has become a
priority, as they face a higher risk of injury or death in traffic accidents, making
their safety a crucial objective for modern intelligent transportation systems.

To address this challenge, the European Telecommunications Standards Institute
(ETSI) has developed the VRU Basic Service (VBS) and the VRU Awareness
Message (VAM) to enable VRUs to be consistently represented within Cooperative-
ITS environments. VAM generation is regulated by a hybrid mechanism: it combines
periodic transmission and seven event-driven triggering conditions, avoiding network
overload. Among these conditions, the Trajectory Interception Probability (TIP)
trigger is one of the most challenging to implement: indeed, while ETSI specifies
that a VAM must be sent when the TIP changes by at least 10% compared to
the last transmission, it does not provide a computation method, leaving a gap
available for research and studies to be filled.

This thesis tackles this gap by developing and integrating an innovative method
to compute TIP in real time, beginning from the Time-to-Collision (TTC) metric.
Firstly, to ensure the focus is on actual safety-critical situations, the TTC domain
is limited to a relevant temporal horizon, using minimum and maximum thresholds.
Within the bounded range, several TTC to TIP mapping strategies were compared,
including fixed intervals, linear and exponential functions. After a comparative
analysis, the solution was to use a discrete exponential mapping: this function leads
to an increase in collision probability more sharply as TTC decreases, reflecting the
rapidly growing urgency of an imminent collision, while avoiding sudden jumps that
could lead to unnecessary message triggering. Its smooth yet responsive behavior
ensures compliance with ETSI’s standard requirements, achieving a robust and
efficient implementation of the triggering condition.

The proposed methodology, implemented within the VaN3Twin framework, starts
from computing TTC from kinematic state variables, maps it to TIP through the
chosen exponential function, and triggers a new VAM whenever the ETSI-defined
condition is met, enabling a continuous frame-by-frame assessment of collision
risk. The proposed approach was validated through a set of simulation scenarios
designed to reproduce realistic interactions between vehicles and pedestrians. These
scenarios were first used to identify the key parameters required by the chosen



mapping function, such as the temporal evaluation window and the growth rate
of the probability curve. Once defined, the calibrated parameters were applied
again to the same scenarios to analyse how the introduction of the TIP-based
condition influences VAM triggering behaviour. This two-step process allowed both
the tuning of the method and the assessment of its impact on message generation,
showing that the new condition ensures timely yet non-redundant transmissions and
improves VRU awareness, while avoiding to overload the communication channel.
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Chapter 1

Introduction

1.1 Urban and Smart Mobility

Over the past century, the evolution of transportation technologies has significantly
reshaped how people and goods move in modern society. During the journey from
the early attempts at automation to today’s interconnected transport systems, the
limitations of traditional systems, such as congestion, environmental sustainability
and safety risks, have become increasingly apparenty, laying the groundwork for
the emergence of a new paradigm: Smart Mobility. This new concept is the
natural outcome of decades of technological evolution in transportation: it refers
to an integrated, efficient, and sustainable approach to mobility that leverages
automation, connectivity, and data-driven decision-making to address the growing
complexities of urban transport. Its roots can be traced back to the earliest attempts
at autonomous driving, one of the pillars of Smart Mobility, to the early 20th
century. In 1920s, experiments such as radio-controlled cars began exploring the
possibility of vehicles operating without human intervention. By 1960s, magnetic
cables embedded in roads were being tested to guide cars automatically, pushing the
idea further through notable trials, like the one with the Citroën DS reaching speeds
of 130 km/h under automated control. However, the real turning point cambe in the
1980s and 1990s, when pioneering research projects like Carnegie’s Mellon’s Navlab
and the EUREKA Prometheus Project brought computer vision and artificial
intelligence into the picture. These systems could perceive road environments and
make autonomous decisions, paving the way for truly intelligent vehicles. In the
early 2000s, the DARPA Grand Challenges accelerated the momentum, driving
advancements in LIDAR, radar and AI systems, enabling vehicles to perceive and
navigate complex environments with greater efficiency and accuracy. During this
evolution, it became clear that to unlock the full potential of autonomous driving
technology, the mobility would need to shift from an isolated perspective to a
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Introduction

collaborative one, as vehicles should have been able to communicate not only with
each other, but also with road users and infrastructures. The need of having a
connected transportation ecosystem marked the actual shift from autonomy to the
concept of Smart Mobility, which today leverages real-time data, connectivity and
automation to improve safety, efficiency and sustainability in urban environments.
Furthermore, the concept encompasses a wide range of innovations other than
autonomous driving, such as electric vehicles (EVs), ride-sharing and Mobility-
As-A-Service (MaaS) platforms, that aim to increasingly respond to the urban
challenges in the mobility systems.

Crucial to this transformation and to its success is the development of Intelligent
Transport Systems (ITS). ITS provides the infrastructure to enable real-time data
exchange between vehicles and their environment through advanced communication
technologies like Vehicle-To-Everything (V2X). It allows coordinated behavior
among road users, improving safety and optimizing traffic management, playing a
key role in realizing the vision of Smart Mobility.

1.2 Communication technologies in Intelligent
Transportation Systems

Intelligent Transportation Systems (ITS) represent the integration of advanced
sensing, processing and communication technologies into vehicles, road infrastruc-
ture and personal user devices, with the ultimate goal of enhancing road safety,
traffic efficiency and environmental sustainability of modern transportation systems.
In Europe, the design, deployment, and interoperability of ITS are guided by the
European Telecommunications Standards Institute (ETSI) reference architecture,
which follows a layered approach inspired by the Open System Interconnection
(OSI) model but adapted to the specific requirements of cooperative vehicular
environments. It comprises four horizontal functional layers, supported by two
entities that operate vertically across the whole architecture. This design ensures
modularity, interoperability, and flexibility for future technological integration [1].

• Access Layer – provides the physical and data link services to facilitate the
exchange of information between the physical elements of the ITS. It supports
multiple radio access technologies for different types of communications, such as
Dedicated Short Range Communications (DSRC), low-latency, cellular-based
and wireless. The Access Layer is also responsible for channel management,
spectrum usage in the 5.9 GHz band and basic mechanisms for Decentralized
Congestion Control (DCC) at the physical layer, which becomes particularly
critical in scenarios with a high density of pedestrians or cyclists. This layer
represents the foundation that enables common consumer devices, such as
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smartphones, wearables, e-scooter modules, to behave as ITS Stations and
to transmit their presence to nearby vehicles and other Road Station Users
(RSUs).

• Networking & Transport Layer – manages data addressing, routing, and
end-to-end transport. It supports GeoNetworking, a key geographic addressing
and routing protocol that enables both direct (single-hop) and indirect (multi-
hop) message delivery based on the geographic position of nodes, ensuring
resilience. Moreover, support of IPv6 integration for interoperability with
conventional IP-based networks enables devices to integrate data into cloud-
based services or central traffic management platforms.

• Facilities Layer – provides a set of core services that process and manage
information exchanged across the ITS stack, bridging the lower communi-
cation layers with applications. It is responsible for generating, handling,
and interpreting standardized messages (e.g., CAM, DENM, VAM), ensuring
their correct formatting, security and dissemination. The Facilities Layer
also supports data storage (e.g., Local Dynamic Map), service access control
and interfaces for cooperative awareness, enabling applications to operate on
meaningful and structured information rather than raw communication data.
Moreover, this layer is also in charge of managing cluster creation, mainte-
nance and breakup, ensuring efficient use of the channel in dense environments.
Finally, optional information such as motion prediction data are also processed
here, such as path history and future trajectory of the devices.

• Application Layer – At the top of the stack, the Application Layer hosts
the ITS applications that transform the information processed at the Facilities
Layer into services that are directly delivered to users and system operators.
This includes road safety functions, traffic efficiency services and environmental
objectives. In this sense, the Application Layer bridges the technical exchange
of standardized messages with tangible safety and efficiency outcomes.

The two vertical entities are:

• Management Entity – oversees resource allocation, operational configuration
and system monitoring across all horizontal layers. It includes functionalities
for Multi Channel Operation (MCO), allowing simultaneous use of multiple
radio channels for improved capacity and reliability in dense traffic scenarios.

• Security Entity – ensures trust, authenticity, and integrity of messages
through a Public Key Infrastructure (PKI) defined by ETSI. Also, it manages
certificate issuance, validation, and revocation, as well as protects user privacy
via pseudonym certificates that are periodically changed to prevent tracking.
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This architecture is designed to be technology-agnostic at the Access Layer,
allowing the integration of new communication standards without impacting higher
layers, and to ensure interoperability across vendors and regions.

Within the framework, four types of ITS Stations (ITS-S) have been defined,
each associated with a different role in the ITS ecosystem:

1. Personal ITS Station (Personal ITS-S) – portable devices such as smart-
phones or wearable electronics, typically used by Vulnerable Road Users
(VRUs) to communicate with the ITS environment. They can transmit loca-
tion, speed, and heading data, enabling vehicle systems to anticipate potential
conflicts.

2. Vehicle ITS Station (Vehicle ITS-S) – vehicles equipped with On-Board
Units (OBUs) that connect to on-board sensors (GNSS, radar, LiDAR, cam-
eras) and control systems (braking, steering, powertrain). The Vehicle ITS-S
supports both V2V and V2I communications and may act as a relay for
multi-hop data forwarding.

3. Roadside ITS Station (Roadside ITS-S) – infrastructure nodes equipped
with Road Side Units (RSUs), often deployed at intersections, motorway
entries, or hazardous road segments. RSUs extend the communication range,
collect environmental and traffic data, and act as gateways to central systems.

4. Central ITS Station (Central ITS-S) – backend systems operated by
traffic management centres, fleet operators, or service providers. They process
aggregated data, coordinate large-scale traffic operations, and manage long-
term strategic actions.

Each ITS-S includes an ITS-S internal network interconnecting its functional
modules and providing standardised interfaces for external communication. Multiple
ITS-S can form an ITS Constellation (ITS-C), a temporary group of stations sharing
a common geographic and temporal context. Within an ITS-C, the Position and
Time Management (PoTi) service ensures synchronisation of spatial and temporal
data, which is critical for cooperative awareness and hazard prediction.

The implications of ITS innovations are significant. First, ITS enhance safety
by providing vehicles with information that may be outside the range of onboard
sensors, ensuring redundancy in critical decision-making scenarios. For instance,
ITS allow for vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communi-
cation, where vehicles can exchange crucial data about traffic conditions, obstacles,
or potential hazards. This integration not only reduces the likelihood of collisions
but also allows for better coordination in emergency situations, such as accidents
or sudden braking. As noted by the American Association of State Highway and
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Transportation Officials [2], redundancy in vehicle sensors and external commu-
nication can significantly improve the reliability of automated driving systems,
enhancing safety outcomes.

In practical terms, ITS can be deployed across a wide variety of scenarios, ranging
from traffic management to safety-critical operations. A prominent example is the
optimisation of urban traffic flows through intelligent traffic signals that adjust
dynamically in response to real-time conditions, thereby reducing delays and
improving overall efficiency. ITS also underpin advanced driver assistance features,
such as lane change assistance and cooperative collision risk warning, which enhance
safety by enabling vehicles to share data and coordinate manoeuvres.

ITS applications are typically grouped into three main categories:

• Road safety – collision avoidance, VRU protection, emergency vehicle priori-
tisation, and intersection movement assistance;

• Traffic efficiency – adaptive traffic signal control, real-time rerouting, and
congestion mitigation;

• Environmental sustainability – eco-driving feedback, integration with elec-
tric vehicle infrastructure, and emission monitoring and reduction strategies.

Among these, Cooperative ITS (C-ITS) represents the most advanced class of
applications. In C-ITS, vehicles, infrastructure, and VRUs exchange information
in real time to establish a shared situational awareness, enabling proactive safety
measures such as early collision avoidance, coordinated lane merging, and network-
level traffic flow optimisation. A key enabler of this paradigm is Vehicle-to-
Everything (V2X) communication to improve situational awareness and safety.
While V2X is discussed in detail in the following section, it is important to note
here that it plays a key role in the future of connected transportation.

Overall, ITS aim to make transportation safer, more efficient, and more sus-
tainable. Leveraging advances in data collection, wireless communication, and au-
tomation, they provide the technological foundation for innovations in autonomous
driving, smart cities, and environmentally responsible mobility. By enabling gov-
ernments and private organisations to tackle pressing challenges such as congestion,
safety, and accessibility, ITS also open the door to new transportation services and
business models that can enhance the quality of life for all road users.

Within this context, the ITS framework, built on a standardised architecture,
modular design, and secure, low-latency communication, offers a robust platform
for the development of next-generation mobility systems capable of delivering
cooperative, safe, and sustainable transport services.
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1.2.1 IoT-enabled ITS
A factor to consider in terms of innovation is the integration of the Internet
of Things (IoT) with ITS, which represents a transformative advancement in
transportation technology. IoT enables the connection of millions of devices,
vehicles, and infrastructure components, allowing for seamless communication and
data exchange. This interconnected ecosystem provides a new level of real-time
data acquisition and analytics that can improve traffic management, enhance safety,
and optimize transportation networks.

Within the IoT-enabled ITS ecosystem, vehicles are equipped with sensors that
continuously gather data on position, speed, and driving conditions, while roadside
infrastructures such as traffic lights and road signs are fitted with sensors capable of
communicating directly with passing vehicles. This interconnected network allows
for real-time monitoring of traffic conditions, immediate hazard-detection, and
signal timing to be adapted dynamically. This results in smarter traffic management,
characterized by reduced congestion, smoother vehicle flow and personalized route
suggestions for drivers, improving both efficiency and road safety.

IoT technologies play a key role in Vehicle-to-Everything (V2X) communication,
which includes vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-
pedestrian (V2P), and vehicle-to-network (V2N) interactions.

1.2.2 Communication Protocols
V2X is a key technological innovation within ITS that enables real-time communi-
cation between vehicles and their surrounding environment. By allowing vehicles
to exchange data with one another and with roadside infrastructure, V2X systems
provide a comprehensive view of the road environment, leading to better decision-
making and coordination. V2X communication includes several sub-categories,
such as V2V, V2I, V2N, and V2P, all of which play a crucial role in enhancing
road safety, traffic efficiency, and driving experience:

1. Vehicle-to-Vehicle: V2V allows vehicles to share real-time data about their
speed, position, and direction. This helps vehicles anticipate potential hazards
and enables quicker reactions to sudden events, such as braking or swerving
vehicles ahead. By receiving alerts about potential risks before they become
visible, V2V can significantly reduce the risk of collisions, especially in high-
speed or low-visibility conditions.

2. Vehicle-to-Infrastructure: V2I enables vehicles to interact with roadside
infrastructure such as traffic signals, road signs, and other control systems.
Through V2I, traffic signal timings can be dynamically adjusted based on
real-time vehicle flow, reducing congestion and improving overall traffic man-
agement. V2I can also notify drivers of upcoming hazards, such as roadwork or
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lane closures, allowing for better trip planning and safer driving. Additionally,
it can provide speed recommendations to vehicles to help minimize unnecessary
stops and optimize fuel consumption.

3. Vehicle-to-Network: V2N connects vehicles to cloud-based systems, pro-
viding access to various services, such as traffic monitoring, weather updates
and navigation assistance. As it allows linking vehicles to a centralized traffic
management system, V2N enhances the coordination of multiple entities and
infrastructure, allowing for a full view of the traffic network: this improves traf-
fic flow, especially in urban areas, and enhances the overall driving experience
by offering real-time updates.

4. Vehicle-to-Pedestrian: V2P focuses on the safety of vulnerable road users,
such as pedestrians and cyclists. By enabling vehicles to detect and commu-
nicate with nearby pedestrians through smartphones, wearable devices, or
sensors, drivers can receive alerts about people crossing the road or moving
in blind spots. This is particularly valuable in urban areas with high pedes-
trian traffic, as it can significantly reduce the likelihood of accidents involving
pedestrians and cyclists.

The most significant impact of V2X technology is its potential to increase road
safety. Through V2V communication, vehicles can share real-time data about
their speed, position, and direction, enabling drivers or autonomous systems to
anticipate and react to potential hazards more quickly than with traditional sensors
alone. For example, if a vehicle ahead applies sudden brakes, the following vehicles
can receive immediate notifications and begin decelerating even before the obstacle
becomes visible. This early-warning mechanism can drastically reduce the risk of
rear-end collisions, especially in high-speed or low-visibility conditions.

V2X technology relies heavily on communication protocols to ensure the seamless
transfer of data between vehicles, infrastructure, and other road users. The two
primary communication protocols used in V2X systems are DSRC and Cellular-V2X
(C-V2X).

1. Dedicated Short Range Communication:
Dedicated Short-Range Communications (DSRC) is a wireless technology
created specifically to enable vehicles to communicate with each other and
with the surrounding infrastructure. It operates in the 5.9 GHz frequency band
and supports very low-latency exchanges over distances typically between 300
and 1000 meters. Thanks to these characteristics, DSRC is well suited for
safety-critical situations where rapid reactions are required, such as emergency
braking alerts, collision warnings, or vehicle coordination at intersections.
At its core, DSRC is based on the IEEE 802.11p amendment to the Wi-Fi
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standard, which was adapted to handle the unique challenges of fast-changing
traffic scenarios. This design guarantees robust and predictable performance
even at high speeds, allowing vehicles to exchange crucial data within just
a few milliseconds. Over the past decade, DSRC has matured significantly:
numerous field trials and large-scale pilot projects worldwide have validated
its reliability, low latency, and interoperability under real-world conditions.
One of its most appreciated strengths is that it works independently of cellular
networks — direct V2V and V2I communication ensures that vital safety
messages continue to be exchanged even in rural or poorly covered areas,
maintaining a consistent level of cooperative awareness.

2. Cellular-V2X:
Cellular Vehicle-to-Everything (C-V2X) is a communication protocol defined
by 3GPP that builds on existing cellular networks such as 4G LTE and 5G to
enable long-range, high-capacity data exchange between vehicles, infrastruc-
ture, and the cloud. C-V2X supports two complementary modes of operation:
device-to-device (D2D), which allows vehicles to communicate directly with
each other and with infrastructure without relying on the cellular network,
and device-to-network (D2N), which connects vehicles to the cloud via cellular
towers, enabling wide-area communication. The first generation, LTE-V2X
(3GPP Release 14), extends the range and reliability of V2X communica-
tions compared to DSRC, supporting most cooperative applications with
low-to-moderate latency requirements. It is particularly well suited for safety
services, traffic efficiency functions, and non-time-critical data exchange in
both urban and highway scenarios. The next evolution, 5G NR-V2X (3GPP
Release 16), introduces ultra-reliable low-latency communications (URLLC),
network slicing, and advanced resource management, unlocking demanding
use cases such as coordinated autonomous driving, high-speed platooning, and
real-time sharing of rich sensor and perception data. One of the key strengths
of C-V2X lies in its scalability and its seamless integration with existing cellular
infrastructure, making it easier to deploy over large areas and in dense urban
environments. The introduction of 5G further enhances its capabilities by
providing ultra-low latency — potentially down to 1 millisecond — increased
bandwidth, and higher reliability. These features make C-V2X suitable not
only for real-time safety-critical applications but also for bandwidth-intensive
services such as high-definition map distribution, over-the-air updates, and
cooperative perception. Compared to DSRC, C-V2X can offer comparable or
even better latency while supporting a much broader range of applications,
making it a highly versatile technology. Moreover, as cellular networks evolve,
C-V2X will continue to benefit from ongoing improvements in 5G and fu-
ture 6G technologies, ensuring its long-term relevance and compatibility with
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next-generation mobility services.

Finally, the choice between DSRC and C-V2X often depends on the specific
application and region of deployment. While DSRC provides robust, reliable
communication for short-range, safety-critical applications, C-V2X offers greater
scalability and integration into broader mobile networks, making it a more future-
proof solution as vehicles become increasingly autonomous and connected (see
Table 1.1 for a comparative summary of key characteristics).

Table 1.1: Comparison of main V2X communication technologies

Feature DSRC LTE-V2X 5G NR-V2X
Frequency 5.9 GHz 5.9 GHz 5.9 GHz / mmWave
Latency ∼10 ms <20 ms <5 ms
Range 300–1000 m 500–1500 m 500–3000 m
Throughput 3–27 Mbps 15–100 Mbps >100 Mbps
Infrastructure dependency None Optional Optional
Scalability Medium High Very high
Maturity High Medium Emerging

Hybrid approaches are increasingly being explored to combine the strengths
of both DSRC and C-V2X technologies. In such configurations, DSRC can be
used for ultra-low-latency, short-range communication in safety-critical scenarios,
while LTE-V2X or 5G NR-V2X provide extended coverage, higher throughput, and
integration with cloud-based services. A practical example of this vision is the
design of hybrid vehicular network architectures where DSRC manages immediate
localized safety alerts, such as collision warnings at intersections, while C-V2X
ensures wide-area connectivity and coordination with cloud-based services, for
instance enabling real-time traffic monitoring and cooperative route optimization.
This dual-technology strategy improves robustness, guarantees service continuity
across diverse environments, and provides a gradual migration path towards future
communication standards [3].

The deployment of these communication technologies, whether individually or
in hybrid configurations, forms the backbone of connected mobility services. Their
ability to deliver timely, reliable, and context-aware information is particularly
critical for applications involving Vulnerable Road Users (VRUs), where even small
reductions in latency can significantly improve safety outcomes. This technological
foundation enables the transition from reactive to proactive safety strategies, as
will be explored in the following section.
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1.3 Vulnerable Road Users and the shift to proac-
tive safety strategies

One of the most critical challenges in the design of ITS lies in ensuring the safety
of Vulnerable Road Users (VRUs). Unlike vehicle occupants, VRUs do not benefit
from the protection of a chassis or passive safety systems, making them highly
exposed in the event of collisions. According to the World Health Organization
(WHO), pedestrians, cyclists, and motorcyclists together account for more than
50% of global road traffic deaths each year, with particularly high proportions
in urban areas where traffic density and multimodal interactions are highest[4].
In Europe, official statistics confirm that in 2024 VRUs, including pedestrians,
cyclists, and motorcyclists, comprise nearly 70% of urban fatalities[5]. These
numbers underscore the urgency of prioritizing VRU protection as an integral part
of cooperative mobility strategies.

1.3.1 VRU Profiles

The ETSI TR 103 300-1 standard classifies VRU into four primary profiles, each
presenting distinct vulnerabilities and interaction dynamics with the other elements
of the ITS[6]:

1. Pedestrians (VRU Profile 1):
Individuals who walk along or across roads, often without protection from ve-

hicles. This profile includes subcategories particularly at risk, such as children,
elderly individuals, and people with disabilities. Pedestrians are frequently found
in urban areas, where they are highly exposed to various risk scenarios like in-
tersections, crosswalks, and school zones, given the limited visibility and their
unpredictable behavior. When pedestrians are detected, V2X systems can trigger
several important behaviors:

2. Cyclists and Personal Mobility Device Users (VRU Profile 2):
Cyclists and users of Personal Mobility devices (e-scooters, e-bikes, hoverboards)

represent a rapidly expanding category of VRUs, driven by the growth of micro-
mobility solutions in urban areas. Their speed and maneuverability place them in
an intermediate position between pedestrians and motor vehicles, but the absence of
physical protection makes them highly vulnerable. Typical conflict scenarios include
intersections, lane changes, and overtaking maneuvers, where their limited stability,
variable speeds, and reduced visibility to drivers often result in a heightened risk of
accidents.

10



Introduction

3. Motorcyclists (VRU Profile 3):
Even if motorized, motorcyclists are classified as VRUs due to their exposure

to the environment and the lack of protective structures typical of passenger
vehicles. Their characteristics includes small dimensions, high speeds, and great
maneuverability, all of which allows for other users on the road to notice them less,
especially in high-speed scenarios. Therefore, they are exposed to a higher risk of
collision, often linked to failures in detection during lane changes or when entering
blind spots. Furthermore, when crashes occur, the consequences are usually severe,
as motorcyclists are not provided with robust protective mechanisms like vehicles
are.

4. Animals (VRU Profile 4):
Animals, whether domestic or wild, are also classified as VRUs, as they pose a

significant risk to road safety, especially in rural and peri-urban areas. This profile
includes pets, farm animals, wildlife, and service animals that may unpredictably
enter the roadway, creating sudden collision risks. Such scenarios are particularly
dangerous at night or in low-visibility conditions, while larger wild species such
as deer or wild boars can cause severe accidents with both serious injuries and
extensive material damage.

This categorization highlights that VRUs are not a homogeneous group: each
profile requires specific detection methods, communication strategies, and counter-
measures within ITS. While the vulnerabilities differ, the common denominator is
the absence of protective structures and the consequent severity of outcomes in the
event of collisions.

1.3.2 From Reactive to Proactive Safety
Traditionally, both human drivers and vehicle assistance systems have relied on
reactive safety mechanisms: braking when an obstacle is detected, warning when a
collision appears imminent, or swerving in response to sudden changes in the road
environment. While effective in many conventional traffic situations, this paradigm
is inadequate for VRUs. Critical events often unfold in fractions of seconds, with
very short time-to-collision (TTC) values. Pedestrians stepping out from occluded
areas, cyclists rapidly changing lanes, or animals unexpectedly crossing the road
frequently create situations where the reaction time available is insufficient to
prevent accidents.

For this reason, ITS research and standardization emphasize a transition toward
proactive safety strategies, where potentially hazardous interactions are anticipated
and addressed before they become unavoidable. A central enabler of this shift is
V2X communication, which expands the detection capabilities of vehicles beyond
the line-of-sight of onboard sensors and forms a core component of the layered
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architecture defined by [1].
A distinction between passive and active detection is essential in this context. In

the first case, mainly efficient in scenarios with high pedestrian density, the presence
of VRUs is detected by roadside infrastructure, for example cameras, radar units
or thermal sensors, and then communicated to nearby vehicles or traffic control
systems. The second case works in the opposite way; it is the VRUs themselves
that broadcast their presence, using devices like smartphones, wearable electronics,
or dedicated communication units. Thanks to V2P communication, vehicles can
receive information about the position and trajectory of nearby VRUs even if they
are hidden from view or outside the range of onboard sensors. The best results
are achieved when the two approaches work together: if infrastructure sensors are
obstructed or weather conditions degrade their performance, connected VRUs can
still announce their presence; conversely, if pedestrians or cyclists are not equipped
with any device, roadside sensors compensate by spotting them externally. Building
on this enhanced detection capability, the next natural step is to make use of the
available information not only to respond to what is happening, but to anticipate
what might happen next. This shift marks the transition from simple reaction to
true prevention: detection, communication, and prediction are no longer separate
tasks but part of a single, continuous process that allows vehicles to intervene
before a collision course is even established. Risk metrics such as Time to Collision
or trajectory conflict probability can be computed and transmitted in real time,
allowing vehicles to slow down, change lanes, or issue an early warning before a
collision becomes unavoidable. Such anticipatory awareness is particularly effective
in high-risk settings such as school zones, at intersections with heavy bicycle traffic,
or along rural roads where animals may suddenly cross, significantly increasing the
available margin of safety.

This paradigm also introduces the concept of cooperation. By combining onboard
perception (radar, LiDAR, cameras) with external information flows from V2X
networks and detection infrastructures, ITS can compensate for the limitations
of individual sensors, ensuring robustness in adverse weather, low visibility, or
occluded environments. Cooperative detection and anticipation thus become the
cornerstone of VRU protection, moving safety management from an individual,
vehicle-centric approach to a systemic, network-wide strategy.

In this perspective, protecting VRUs requires going beyond incremental im-
provements of current systems. It calls for a structural integration of proactive,
cooperative ITS architectures, where real-time communication, predictive algo-
rithms, and coordinated behaviors work together to reduce fatalities and serious
injuries. This approach is aligned with European policy frameworks such as Vi-
sion Zero, which aims to eliminate road fatalities by addressing not only vehicle
occupants but also the most exposed road users [7].
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1.4 Collision Risk as a Key Metric for VRU Pro-
tection

VRU awareness in traffic environments can be conceptualised around three primary
types of situations. The first corresponds to an imminent collision between a VRU
and another road user, which represents a direct and immediate safety threat. The
second involves proactive awareness of the VRU’s presence, aimed at preventing
potential conflicts before they materialise. The third concerns the adaptation of
traffic operations when VRUs with special requirements are present, for example
children, elderly pedestrians, or persons with reduced mobility, where the system
must balance safety with the continuity of traffic flows.

In all these situations, the common element is the need to estimate the likelihood
that trajectories of vehicles and VRUs will converge in a conflict point. A collision
occurs if both reach this point at the same time, leaving no margin for evasive
action. Empirical evidence confirms that such conditions often arise in urban
contexts: most pedestrian–vehicle collisions occur at mid-block crossings, while
cyclist–vehicle accidents are concentrated at junctions, where multiple trajectories
intersect in limited spaces.

To support timely intervention, these qualitative notions of awareness must be
translated into quantitative indicators of collision risk. Over time, several metrics
have been proposed to measure this risk by combining factors such as relative speed,
distance, and temporal margins. Among these, the Time-To-Collision (TTC) metric
has become one of the most widely adopted, due to its intuitive interpretation and
suitability for real-time computation. TTC provides a direct estimate of the time
remaining before two agents, if maintaining their current trajectories and speeds,
would reach the same point. This enables both vehicles and infrastructure systems
to rank the urgency of threats and to prioritise responses accordingly. Alternative
indicators, such as Post-Encroachment Time (PET) or Deceleration Rate to Avoid
Collision (DRAC), have also been studied, but TTC remains the most operationally
efficient for continuous monitoring in cooperative ITS.

The practical application of collision risk metrics depends on reliable detection
and communication of VRU presence. This can be achieved through passive
detection, in which roadside infrastructure (e.g., cameras, radar, thermal sensors)
identifies a VRU and communicates this information to vehicles, or through active
detection, where VRUs broadcast their own status via smartphones, wearable
devices, or personal ITS stations. Both modes contribute complementary strengths:
passive systems ensure coverage even for unconnected users, while active systems
provide early warnings beyond line-of-sight or in occluded environments. By
feeding accurate position and trajectory data into TTC calculations, these detection
mechanisms enable the timely generation of alerts, adaptive traffic control, and
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cooperative avoidance strategies.
In high-risk contexts such as school zones, crosswalks, or areas where VRUs

may inadvertently enter vehicle-dominated spaces, the integration of awareness
mechanisms and collision risk metrics is particularly critical. Vehicles can adjust
speed or trajectory in advance, while VRUs themselves can be warned of approaching
hazards. In this way, collision risk metrics become the analytical foundation through
which ITS can transform situational awareness into measurable safety interventions,
ensuring consistent and proactive protection for VRUs.
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Chapter 2

VAM Triggering Framework

2.1 The ETSI VRU System
The ETSI framework dedicated to Vulnerable Road Users (VRUs) defines the
functional concept, service behaviour, message set and operational policies of these
elements. Therefore, it constitutes a major extension of Cooperative-ITS (C-ITS)
aimed at making pedestrians, cyclists, powered-two wheelers and other vulnerable
entities first-class participants in the cooperative safety loop. Within the ETSI
reference architecture [6], the VRU System is defined as an heterogeneous system
of ITS stations interacting with each other to support VRU use cases; in particular,
in this thesis we consider the same ones taken into account in the ETSI framework,
which corresponds to C-ITS made of a combination of at least one VRUs and at
least one ITS-S running VRU-dedicated functions. Its primary goal is to increase
situational awareness and to reduce collision risk by enabling reliable detection,
timely communication, and short-horizon motion prediction for VRUs in real-time
traffic.

The VRU System reuses the ETSI ITS-S architecture defined in Section 1.2, out
of which there are some components that are key to its operation, mainly in the
Facilities layer, as shown in 2.1.

2.1.1 The VRU Basic Service (VBS)
The core element of the ETSI VRU System is the VRU Basic Service (VBS), an
entity defined within the Facilities Layer [8]. The VBS is responsible for generating,
receiving, and handling VRU Awareness Messages (VAMs), as well as for managing
the internal state and cluster behaviour of VRU stations. Its role is to guarantee
that VRUs are consistently represented in the cooperative ITS environment and
that their information is disseminated efficiently and reliably.

The internal functional components of the VBS are the following:
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• VRU Basic Service Management – it acts as the coordinator core of
the VBS: it is responsible for coordinating and supervising all the functions
required for the correct operation of the basic service dedicated to Vulnerable
Road Users. First, it preserves the necessary identifiers and configurations,
either received during the ITS-S initialization phase or updated later, which
are essential for the correct encoding of VAM data elements, and ensure that
they remain consistent with ETSI specifications, as well as with the needs of
the VRU. In parallel, it regulates external interactions with other basic services
of the ITS architecture in order to ensure the VBS integration within it. The
function also controls the activation and deactivation of VAM transmissions,
according to the profile parameters defined for each VRU. Finally, it enforces
the triggering conditions for VAM generation, while taking into account the
network congestion control rules specified in [9].

• Cluster Management – extends the VBS logic to support group interactions,
managing all procedures related to VRU clustering, including cluster creation,
leader election, membership updates, and breakup if conditions for group
coordination are no longer met. Therefore, it is designed to handle the
organization and coordination of VRUs when group-based communication
becomes relevant. It ensures that VAM transmission behavior is aligned with
the collective dynamics of VRUs, computing and storing parameters specific
to clustered scenarios. Another important aspect is the integration with the
VRU Basic Service (VBS) state machine: the cluster management function
updates and controls the state of the VBS according to the cluster events that
have been detected.

• VAM decoding - available only if the VRU is enabled to receive VAMs,
it extracts all relevant data elements present in the received standardized
message, which are then communicated to the VAM reception management
function.

• VAM reception management – if present, it handles all the aspects regard-
ing the decoded VAM messages that have been received: checks the relevance
according to its current mobility state, determine if the message meets all
the necessary security requirements and deletes or stores the data within the
VAM in the LDM, according to previous results.

• VAM encoding – available only if the VRU is enabled to send VAMs, it
encodes the data elements provided by the VAM transmission management
function, that comply with VAM specifications. Then, it triggers the VAM
transmission to the Network and Transport layer through a specific port
highlightning the communication profile.
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• VAM transmission management – if present, it assembles the data elements
complying with the VAM specification and send the constructed message to
the VAM encoding function.

Figure 2.1: Conceptual 4-layer view of the ETSI VRU System (taken from [8]).

Beyond its internal components, the VBS interacts with several other entities
within the Facilities layer that enrich its operation and integrate VRU data into
the wider cooperative framework, due to the presence of various interfaces. For
example, it exchanges VAM data with the Local Dynamic Map (LDM), which is
mainly used as a receiving terminal that incorporates decoded messages into a
consolidated representation of the traffic environment. Furthermore, the Device
Data Provider (DDP) and the Position and Time management (PoTi) are exploited
for data collection, respectively, for device status information collected from its local
perception entities and for timing and partitioning, ensuring accurate geolocation
and synchronization. The VBS also leverages the DCC-FAC interface to adapt
message generation rates to prevailing channel conditions, thereby preventing
congestion in dense traffic scenarios, while interaction with the Congestion Control
function enables the optimization of the available channel usage. Furthermore,
the ability of the VBS to interact with Human Machine Interface (HMI) support
enables the dissemination of VRU-related warnings to end users through devices
such as smartphones or wearables. Finally, the VBS operates in parallel with other
Facilities services such as the Cooperative Awareness Service (for CAMs) and the
DEN Basic Service (for DENMs), ensuring that VRU information becomes part of
a harmonised, multi-source situational awareness.

Another key point to take into account is that the VBS is also able to interact
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with other layers of the ITS architecture, both vertical and horizontal, due to the
presence of Service Access Points (SAPs):

• NF-SAP - enables the communication with the Network & Transport layer to
exchange VAMs with other ITS-S.

• SF-SAP - allows interaction with the Security entity to access security services
for VAM transmission and reception.

• FA-SAP - interfaces the VBS with the application layer, exploited if received
VAM data are direcly provided to the applications

• MF-SAP - enables the interaction with the Management entity in order to
learn all relevant VRU information, such as the role, the profile, the type, if it
belongs to a cluster and so on.

Through these interactions, the VBS consolidates its dual role as both a communi-
cation enabler and an awareness provider: it ensures the correct transmission and
reception of VAMs, but also embeds VRU information into the broader cooperative
ITS architecture, where it can be exploited by multiple services to enhance road
safety.

2.1.2 VRU Awareness Messages (VAMs)
VAMs are the ETSI-standardised messages used to represent VRUs in the coop-
erative environment, handled by the VBS at the Facilities layer. VAMs’ content
is tailored to VRU dynamics and it can vary depending on the VRU profile, but
the fields remain the same, defined in [8] and filled each time the originating VRU
ITS-S wants to generate and transmit a VAM:

• ITS PDU header;

• Generation delta time;

• Basic container, which provides the station type of the originating ITS-S
and the latest geographical position;

• VRU High Frequency container, which houses the fast-changing information,
like VRU heading, speed and acceleration;

• VRU Low Frequency container, which is characterized by the slow-changing
information, like lateral acceleration and yaw rate;

• Cluster information container, which is filled with relevant cluster data, only
if the originating VRU is the leader of a cluster;
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• Cluster operation container, which can be filled with data related to changes in
a cluster state and composition, even if the originating VRU is only a member
of a cluster;

• Motion prediction container, which contains data related to the past and
future motion state of the originating VRU. In particolar, it is also where all
the information related to the Trajectory Interception Probability must be
inserted before VAM transmission.

Out of all these fields, only the first four are mandatory, while the others remain
defined as optional, because they depend on the nature and operation of the VRU
ITS-S originating the message.

The generation of VAMs follows a hybrid logic that combines periodic and
event-driven transmissions. Periodic messages are produced at intervals that adapt
dynamically to the mobility state of the VRU and to the surrounding traffic density,
typically ranging from 100 ms to 5 s. Event-driven transmissions complement this
baseline by ensuring timeliness whenever state changes or contextual conditions may
influence safety. Representative triggers include variations in kinematic parameters,
role transitions within the VRU Basic Service (VBS), or cluster-related events.
The details of these conditions will be presented in the following section, while
here it is sufficient to underline that the aim is to guarantee that a VRU can
promptly announce its presence and status whenever this information is most
relevant for cooperative safety. Transmission is further regulated by congestion
control mechanisms—DCC for ITS-G5 and RAT-specific resource allocation for
C-V2X—so as to preserve reliability even under high-density deployments.

After the generation, VAMs are disseminated locally using broadcast or anycast
mode, with a geographic scope tailored to the specific context, such as an intersection
approach or a pedestrian crossing. On the receiving side, vehicles and other road
station units integrate VAMs both with other standardized messages, as well as with
onboard or roadside perception, increasing the level of their situational awareness.
Eventually, this information can be exploited to compute different risk metrics, such
as TTT, and to trigger cooperative warnings or adaptive maneuvers. In scenarios
with multiple VRUs, clustering mechanisms further optimise dissemination: a single
elected leader can represent the group, reducing the number of VAM transmitted,
limiting channel occupancy while maintaining precise awareness.

The clustering logic is an integral part of the VBS and defines three possible
operating states for each VRU: active-standalone, where the device transmits its
own VAMs at a rate adapted to dynamics and channel conditions; passive member,
where the VRU remains mostly silent while being represented by the cluster leader;
and cluster leader, responsible for broadcasting representative information about the
group footprint and membership. Cluster formation and maintenance are managed
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through configurable parameters such as numCreateCluster, maxClusterDistance
and timeClusterContinuity. Leader election typically favours stability, privileging
centrality and coherence of velocity, while mandatory fallback triggers ensure safety:
for example, if a leader is lost, members are required to immediately resume VAM
transmission until a new leader is elected.

These mechanisms find practical application in a variety of traffic scenarios. At
an unsignalised pedestrian crossing, a VRU device may increase its VAM generation
frequency as it approaches the road, allowing vehicles to fuse this information with
perception and react in advance when TTC drops below a critical threshold. In the
case of a cyclist platoon navigating an urban roundabout, clustering allows a single
leader to represent the group, so that vehicles can anticipate collective movement
and plan safe entry and exit manoeuvres. Similarly, in non-urban contexts, roadside
units equipped with sensors can issue VAMs on behalf of non-connected VRUs,
such as wildlife crossing at night, thus extending awareness beyond line-of-sight
and providing early warnings to approaching vehicles.

Overall, the ETSI VRU System operationalises cooperative protection of vul-
nerable users by codifying message generation, dissemination logic, and clustering
behaviours. Together, these mechanisms fill the gap that limits purely reactive
driver assistance systems, especially in occluded or highly dynamic environments.
The approach is agnostic with respect to the access technology and fully aligned
with the ETSI security and management framework [1], thereby ensuring interoper-
ability. Most importantly, it provides the foundation for proactive safety strategies
based on risk prediction metrics such as TTC, enabling earlier conflict detection
and cooperative mitigation in line with the European Vision Zero objectives.

Table 2.1: Comparison of ETSI awareness and notification messages for cooperative
safety.

Feature CAM DENM VAM

Primary purpose Cooperative aware-
ness of vehicles/R-
SUs

Event/incident notifi-
cation (hazards, ob-
structions)

Cooperative awareness
of VRUs (individual or
clustered)

Generation Periodic (100 ms–1 s)
with adaptation

Event-driven (with va-
lidity/expiry)

Hybrid: periodic
(100 ms–5 s) + event-
driven

Core content Kinematic state,
heading, dimensions

Event type, location,
cause, duration

VRU profile, position,
kinematics, (optional)
cluster and prediction

Producer Vehicles, RSUs Vehicles, RSUs VRU devices (smart-
phone, wearable, tag),
cluster leader

Facilities service CA Basic Service DEN Basic Service VRU Basic Service
(VBS)
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2.2 Triggering conditions
The generation of VRU Awareness Messages (VAMs) within the ETSI framework
is governed by a set of triggering conditions defined in ETSI TS 103 300-3 [8].
Unlike a purely periodic broadcast, which would overload the channel and provide
limited added value, triggering conditions ensure that a new VAM is transmitted
only when the information carried is sufficiently fresh or safety-relevant. The VRU
Basic Service (VBS) evaluates these conditions every TCheckVamGen (nominally ≤
100 ms), subject to the minimum and maximum generation intervals TGenVamMin and
TGenVamMax. This balance guarantees that VRUs remain visible in the cooperative
environment without creating redundant traffic.

A new individual VAM is therefore generated as soon as one of the following
seven conditions is satisfied:

1. Time since last VAM. If the elapsed time since the previous individual
VAM exceeds TGenVamMax (maximum generation period, typically set to 1–5 s),
a new message must be produced. This “keep-alive” mechanism guarantees
that each VRU remains periodically visible to nearby ITS stations, even when
it is stationary or its dynamics do not change.

2. Position change. When the current reference position differs from that in the
last transmitted VAM by more than minReferencePointPositionChangeThresh-
old (typically ∼4 m), a new VAM is generated. This condition is particularly
relevant for pedestrians, whose continuous small displacements would other-
wise not be communicated. By setting an appropriate threshold, the system
ensures that only meaningful changes are transmitted, avoiding excessive
signalling due to GNSS jitter.

3. Speed change. If the ground speed differs from the value in the last VAM by
more than minGroundSpeedChangeThreshold (around 0.5 m/s), a new message
is issued. This captures transitions such as a pedestrian starting to run, a
cyclist accelerating after a stop, or a scooter slowing down when approaching a
crossing. It allows surrounding vehicles to update their situational awareness
in response to changes that significantly alter collision risk.

4. Heading/orientation change. A new VAM must be transmitted when the
orientation of the ground-velocity vector changes by more than minGroundVe-
locityOrientationChangeThreshold. ETSI suggests a value of 4°, though in
practice slightly higher values (7–10°) are often used to mitigate false triggers
caused by GNSS noise. This condition is essential for scenarios such as a
pedestrian suddenly changing direction to cross the street, or a cyclist turning
into an intersection.

21



VAM Triggering Framework

5. Trajectory interception probability change. When the locally estimated
trajectory interception probability with respect to other road users increases
or decreases by more than minTrajectoryInterceptionProbChangeThreshold
(default 10%), a VAM is triggered. This mechanism extends beyond kinematic
changes, directly incorporating predicted risk of collision. In practice, it
ensures that other ITS stations are informed whenever the likelihood of a
conflict involving the VRU changes significantly. Importantly, the ETSI
standard does not specify how this probability should be calculated, leaving it
to implementers. The present thesis focuses on filling this gap by developing
a method to compute the collision probability in real time, starting from the
Time-to-Collision (TTC) metric, and by evaluating how it can be applied to
satisfy this triggering condition.

6. Cluster join intent. When a standalone VRU decides to join a cluster, it must
first broadcast a VAM containing a cluster operation container. This ensures
that neighbouring stations are aware of the membership change before the
VRU switches to a passive role and stops transmitting individually. Without
this trigger, information about the VRU could be lost until the new cluster
leader updates its VAM.

7. Proximity to other road users. If the VRU station detects the simulta-
neous presence of one or more road users within the minimum safe lateral,
longitudinal, and vertical distances (MSLaD, MSLoD, MSVD), an immediate
VAM is generated. This condition captures high-risk situations, such as a
pedestrian walking too close to moving vehicles or a cyclist squeezed between
cars, and ensures that other participants are alerted in time. To avoid message
storms in dense crowds, this trigger is moderated by redundancy mitigation
mechanisms.

Together, these conditions balance the trade-off between communication effi-
ciency and safety responsiveness. Kinematic thresholds (position, speed, heading)
capture direct changes in VRU motion, while event-based triggers (cluster op-
erations, proximity) ensure correct representation of contextual dynamics. The
time-based condition maintains periodic visibility, and the collision probability
trigger explicitly ties message generation to predictive safety assessment. Among
them, the fifth condition is the most challenging to implement, as it requires a
robust definition of collision probability. Addressing this open issue forms the core
objective of this thesis.
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2.3 Collision Probability as a Triggering Param-
eter

One of the most demanding aspects of cooperative safety systems is the ability to
estimate collision probability in real time. This challenge is particularly critical in
scenarios involving Vulnerable Road Users, whose movements are less predictable
and whose exposure in case of collision is absolute. Unlike vehicles, which tend to
follow structured trajectories, VRUs may abruptly change direction or enter the
roadway without warning. As a result, the time available to detect a VRU, assess
the risk, and trigger a VAM is often reduced to fractions of a second.

The ETSI specification recognizes this urgency by defining strict timing con-
straints. The VRU Basic Service must evaluate triggering conditions every TCheckVamGen ≤
100 ms, while the construction of a VAM must complete within TAssembleVAM ≤ 50 ms
[8]. Furthermore, VAM generation is bounded by minimum and maximum intervals
(TGenVamMin and TGenVamMax) to avoid both message bursts and excessively long
silences. These requirements imply that collision probability must be estimated in
just a few milliseconds, continuously, and on resource-constrained devices.

From these constraints and from the operational realities of VRU protection,
four main requirements for real-time probability estimation can be identified:

• Low latency. Estimation must run within the strict timing bounds defined
by ETSI, ensuring that collision risk information is available before the next
triggering check. Delays of even tens of milliseconds can render the message
ineffective in high-risk VRU scenarios.

• Uncertainty handling. VRU localisation is often based on noisy GNSS
or smartphone sensors, subject to occlusions and multipath effects. Robust
probability estimation must therefore incorporate uncertainty in position,
speed, and heading, rather than relying on idealised measurements [10].

• Computational efficiency. VRU devices such as smartphones or wearables
have limited processing capacity compared to vehicle ECUs. Methods suit-
able for deployment must be lightweight and energy-efficient, avoiding heavy
sampling schemes like Monte Carlo simulations while maintaining acceptable
accuracy.

• Predictive accuracy. The triggering condition refers to a trajectory inter-
ception probability, which requires short-horizon prediction. Estimation must
therefore forecast whether trajectories will intersect in space and time, not
merely evaluate the current state.

The importance of these requirements is highlighted by some of the latest
research on collision risk estimation: for example, [11] recently proposed a Machine
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Learning based framework for collision risk estimation in V2X environments. The
approach combines decision tree models and random forests in order to be able
to efficiently process spatial and temporal features, enforcing how the factors
defined above are fundamental to achieve real-time operation while maintaning
interpretability and robustness.

Despite the advances done in the field, there is still an important gap when it
comes to precisely implement the ETSI specifications for the triggering condition
object of this work: indeed, it requires that a VAM should be triggered whenever
the estimated collision probability changes by at least 10% compared to the last
broadcasted value, but it does not provide a method to compute this probability.
This thesis directly addresses this gap: by deriving the collision probability from
the TTC metric, the aim is to provide a method that is accurate, lightweight,
and robust to uncertainty, while fully compliant with ETSI’s real-time constraints.
However, before developing the methodology, it was imperative to choose the best
branch of existing collision risk estimation methods to start from: therefore, in
the next section all of them are thoroughly described and analysed, highlightning
the reason why it was decided to follow a TTC-based approach, discarding all the
others.

2.4 Collision Risk Estimation Methods
ITS increasingly rely on quantitative collision risk estimates to support proactive
safety strategies and satisfy triggering requirements. In cooperative settings, these
estimates must be computed under tight real-time constraints, must be able to
tolerate imperfect and heterogeneous sensing, while staying interpretable so that
human stakeholders and certification bodies can understand the need for eventual
interventions. From the system perspective, risk computation is a scalar quantity,
obtained through the application of geometry and kinematics, coupled with intent
and uncertainty, that encapsulates different aspects: perception, prediction, and
decision. Therefore, it is comparable and can be easily transformed into a probability
to be compared with different thresholds.

This is the reason why the collision probability becomes a key concept in this
framework. Traditionally, it is defined as the likelihood that two road users, like
a vehicle and a pedestrian, will end up colliding if they both keep their current
speed and direction. Therefore, it constitutes a clear and intuitive indicator of risk,
widely exploited since it can be updated step by step using various motion data,
such as distance, speed, acceleration and trajectories of the entities involved. In
practical terms, collision probability acts as a bridge between perception, prediction
and decision: it reduces the complexity of traffic interactions into a single value
that can be compared against thresholds, in order to judge the level of risk, decide
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when to issue warnings, and trigger awareness messages when the chance of impact
becomes dangerous. By proactively highlighting possible collisions early, ITS can
then perform more detailed checks and take on preventive safety measures, such as
trajectory interception.

This chapter surveys the main families of collision probability estimation methods
and positions them with respect to the requirements of ETSI cooperative services
and message triggering. We first outline a taxonomy of partially overlapping
approaches, that differs between each other in terms of modeling assumptions,
uncertainty treatment, computational cost and interpretability. Then, we explain
more in detail the probabilistic forecasting and learning-based models, as they are
the more divulged, studied and where more advancements have been made, before
discussing their limitations in the context of ETSI-compliant triggering. Finally,
we motivate the choice of implementing a TTC-based probability mapping, tailored
for real-time VAM generation.

Deterministic kinematics and surrogate safety measures
A long-established line of work computes deterministic indicators directly from
relative geometry and motion, without explicit uncertainty modeling. Canoni-
cal measures include Time to Collision (TTC), Post-Encroachment Time (PET),
Time-to-Intersection / Time-to-Conflict, Deceleration to Avoid Collision (DRAC),
minimum distance, and braking reserve. They are attractive because they are sim-
ple, interpretable, and cheap to compute at cycle time (order of micro–milliseconds).
In cooperative ITS, these indicators can be evaluated using fused local and remote
(V2X) state estimates and used to trigger warnings or message transmissions. How-
ever, determinism makes them sensitive to noise/occlusions and to intent changes
(e.g., sudden yielding), which can cause false positives/negatives unless combined
with filtering or hysteresis. Comprehensive reviews compare these “surrogate safety
measures” (SSMs) and discuss their operational ranges and pitfalls, especially in
dense urban interactions.

In VRU-centric cooperative services, TTC and related conflict-time indicators
already appear within “collision risk analysis” functions that fuse motion prediction
with confidence levels to determine whether evasive actions or messaging are
warranted.

Probabilistic risk from state uncertainty propagation
When sensor and intent uncertainty cannot be ignored, deterministic indicators are
extended to probabilistic risk by propagating state covariances or sampled uncertain-
ties and integrating the likelihood of future overlap in space–time. Typical pipelines
maintain Gaussian (or Gaussian-mixture) beliefs over actor states, propagate them
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with process/measurement models, and compute (i) the probability that relative
distance falls below a safety margin within a horizon, (ii) the probability that TTC
drops below a threshold, or (iii) chance constraints that bound collision probability
along candidate trajectories. This yields risk as a probability (or upper bound) and
is naturally compatible with ETSI-style triggering rules expressed in probabilistic
terms. Pros include principled uncertainty handling and tunable confidence; cons
are model dependence and potentially higher online cost (sampling, convolution,
or numerical quadrature). Overviews and tutorials cover Bayesian/Monte-Carlo
propagation and chance-constrained formulations for autonomous driving.

Set-based safety and reachability analysis
Reachability-based methods represent one of the most rigorous families of ap-
proaches for safety assessment in autonomous driving and robotics. The key
principle is to compute the set of all states that a system, together with its possible
obstacles, can reach within a given time horizon. If these so-called reachable sets
intersect with unsafe regions of the state space, a collision is deemed possible.
The classical formulation is based on Hamilton–Jacobi (HJ) partial differential
equations, which allow the derivation of Backward Reachable Tubes (BRTs) and
value functions that provide strict worst-case safety guarantees. These certificates
are mathematically elegant and provably correct, making HJ reachability one of
the strongest theoretical tools available for collision risk analysis [12].

Over the years, however, several works have highlighted the computational
burden associated with this methodology. The dimensionality of the state space
grows rapidly when considering realistic models of vehicles, pedestrians, and other
VRUs, leading to the well-known “curse of dimensionality.” For example, while
HJ reachability can be tractably solved for four-dimensional systems (e.g., two-
dimensional position and velocity), extending to higher dimensions or to multi-agent
scenarios becomes prohibitive without substantial approximations. Recent research
has explored hardware acceleration to mitigate this limitation: [12] demonstrated
that FPGA-based implementations can achieve real-time updates of reachable sets
for simplified vehicle dynamics, opening the door to embedded applications where
computational resources are constrained.

To improve scalability, alternative set representations have been proposed.
Althoff and colleagues pioneered the use of zonotopes and ellipsoids to over-
approximate reachable sets in traffic scenarios, enabling faster propagation of
reachable tubes with reduced complexity [13]. Although these approximations
inevitably introduce conservatism, they make it possible to evaluate safety margins
for autonomous vehicles in more complex environments. More recent advances, such
as hybrid zonotopes for nonlinear feedback systems, aim to reduce over-conservatism
while maintaining scalability [14].
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Despite these advances, the applicability of reachability-based methods to ETSI-
oriented VRU protection remains limited. In dense urban traffic, the number of
interacting agents is large and the required update frequency is high, which makes
online computation of reachable sets unrealistic without heavy approximations.
Moreover, conservative bounds often trigger false alarms, which can flood the com-
munication channel with unnecessary VAMs, contrary to the lightweight philosophy
of ETSI’s triggering framework. For this reason, in practical ITS deployments,
reachability is typically not employed as the primary decision-making tool. Instead,
it is sometimes envisioned as a “safety filter” that can wrap around faster but less
rigorous predictors, or as a certified override for emergency situations where strict
guarantees are needed [12, 13].

In summary, reachability analysis provides unmatched theoretical rigor and worst-
case guarantees. It is therefore extremely valuable as a benchmark for validating
lighter methods or as a fallback guard in cooperative safety systems. Nevertheless,
due to its high computational cost and the conservatism of its approximations, it
remains unsuitable as the main method for real-time VRU collision risk assessment
in ETSI-compliant scenarios. This motivates the choice of simpler TTC-based
approaches in this thesis, which strike a more favorable balance between accuracy,
interpretability, and computational feasibility.

Interaction and intent-aware prediction with risk scoring
Another family of approaches to collision risk estimation is based on predicting the
intent of multiple agents and generating interaction-aware trajectory ensembles.
Instead of directly propagating worst-case reachable sets, these methods first
attempt to infer whether a pedestrian intends to yield or cross, or whether a
vehicle plans to turn or continue straight. Once intent hypotheses are available, a
distribution of possible trajectories is propagated forward, and collision likelihood
is assessed over this ensemble.

The concrete formulations vary widely. Early work relied on rule-based inter-
action models, encoding heuristic assumptions about how agents would react in
negotiation scenarios. More sophisticated approaches draw on game theory, where
each agent is modeled as a rational player optimizing its utility subject to the
predicted behaviour of others. Another line of research uses partially observable
Markov decision processes (POMDPs), treating intent as a latent variable to be
inferred online from partial observations. In all cases, the central idea is to make
the risk estimator “interaction-aware” rather than simply extrapolating motion
independently for each actor.

The resulting risk score can take different forms. It may be the expected collision
probability obtained by weighting across discrete intent hypotheses; it may reflect
a worst-case criterion by taking the maximum collision likelihood over the set
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of plausible behaviours; or it may adopt a quantile-based approach, identifying
high-risk but low-probability outcomes. Such flexibility allows these models to
capture the richness of urban negotiation, particularly in unsignalized crossings or
shared spaces where VRU behaviour is highly context-dependent.

At the same time, these methods face notable challenges. They require strong
priors on behaviour patterns—often learned from data—and careful calibration of
model parameters to avoid overconfidence in intent predictions. Moreover, their
computational cost grows with the number of interacting agents and the size of the
intent space. Recent studies, such as the interaction-aware learning model described
in [15], demonstrate how these methods can be embedded into decision-making
pipelines for autonomous driving. However, despite their promising performance,
their adoption in ETSI-oriented VRU safety systems remains limited, since intent-
aware models are harder to validate under safety-critical requirements and can
suffer from cascading errors when the inferred intent is wrong.

Learning-based and data-driven risk estimation
Data-driven methods learn collision scores or probabilities directly from features or
raw trajectories. Classical machine learning (e.g., decision trees, random forests,
gradient boosting) offers interpretable feature importances and low-latency inference
on edge devices; deep learning (LSTM/GRU, graph neural networks, transformers)
captures rich spatio-temporal dependencies but is more computationally demanding
and less transparent. In VRU scenarios, recent work shows hybrid pipelines in which
a lightweight predictor filters high-risk interactions (e.g., turning vehicles) before
a classifier/regressor estimates collision probability, striking a balance between
robustness and real-time deployability. Reviews of criticality/risk metrics and
intelligent-vehicle prediction summarize the landscape and evaluation practices.

Occupancy and field-based risk maps
Another strand aggregates uncertainty over space (rather than over discrete actors)
via dynamic occupancy grids or Bayesian “risk fields,” then integrates overlap
between an ego occupancy tube and others’ predicted occupancy. This spatial view
is robust to identity switches and scales to many agents at the cost of discretization
and diffusion artifacts. It is particularly relevant for radar- and camera-heavy
stacks and for fusing cooperative perception into a common grid.

Hybrid architectures
In practice, production-grade stacks combine the above: e.g., kinematic SSMs
as fast pre-filters, probabilistic bounds for thresholding, learned components for
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ranking or resolving ambiguous cases, and set-based guards for certified safety.
Cooperative ITS adds further hybridisation by fusing local perception with V2X
messages and using confidence-weighted data fusion before risk computation, as
already envisaged in the VRU Basic Service’s collision risk analysis and manoeuvre
coordination functions.

Across families, five axes drive suitability for ETSI-compliant triggering: (i)
latency (cycle-time execution on embedded or edge hardware), (ii) uncertainty
handling (sensitivity to noisy, partial, or occluded data), (iii) interpretability
and auditability (supporting threshold selection and diagnostics), (iv) operational
coverage (urban VRU interactions, multi-agent density), and (v) compatibility with
probabilistic triggers (e.g., thresholds on collision probabilities or their increments).
Deterministic SSMs excel on (i) and (iii) but need augmentation for (ii)–(v);
probabilistic and chance-constrained methods score well on (ii) and (v) with
moderate cost; reachability offers strong guarantees for (ii) and (iv) at higher
computational expense; learning-based models can improve (iv) and practical
accuracy if their training data and validation match the deployment domain, and
if their runtime is bounded (e.g., via two-stage hybrids).

Finally, within the ETSI VRU context, existing functional allocations (motion
prediction, confidence-weighted perception fusion, collision risk analysis, and avoid-
ance/coordination) provide natural integration points for all families above and
motivate the TTC-centered mapping to probabilistic triggers pursued later in this
chapter.

2.5 Probabilistic Forecasting
Probabilistic models constitute one of the most rigorous families of methods for
estimating collision probability. The underlying assumption is that neither sensor
measurements nor vehicle dynamics can be known with absolute certainty: every
position, velocity or orientation measurement is affected by noise, and the future
evolution of a trajectory is subject to unpredictable variations. Deterministic
indicators such as Time-to-Collision are therefore only approximations, which may
lead to inaccurate or misleading results when uncertainty is significant. Probabilistic
forecasting tackles this issue by representing the state of each road user as a
distribution rather than a single value, and by propagating this uncertainty forward
in time. The probability of collision is then defined as the likelihood that the
stochastic trajectories of two entities intersect within a given prediction horizon.

The most established approach to implement this principle is the Monte Carlo
simulation. Instead of computing a single trajectory, the algorithm generates a
large number of random samples from the uncertainty distributions that describe
the state of the host vehicle and the surrounding targets. Each sample represents
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one possible realization of reality, obtained by perturbing variables such as position,
speed, acceleration, heading angle or yaw rate according to their statistical error
models. All these trajectories are then propagated through a motion model,
and for each of them the algorithm checks whether an overlap between vehicles
occurs. The collision probability is finally estimated as the ratio between the
number of simulated collisions and the total number of samples. In this way, the
method directly approximates the true distribution of outcomes without restrictive
assumptions on noise or dynamics.

An additional strength of the Monte Carlo paradigm is its flexibility. The
uncertainty models can be tailored to the specific sensor suite employed, be it
radar, lidar, or camera-based perception. Moreover, the geometry of vehicles can
be represented more realistically than in simplified point-based models, for instance
using rectangular or polygonal approximations of the occupied area. This allows
the algorithm to distinguish between different collision configurations: a frontal
impact, a side collision, or a near miss scenario can all be captured within the
same probabilistic framework. In practice, this enables the system to compute
not only whether a collision is possible, but also how likely it is under the current
uncertainty conditions. As demonstrated in recent studies, this capability leads
to improved robustness, with a much lower false alarm rate compared to classical
approaches based solely on Kalman filtering and Gaussian noise assumptions [16].

The usefulness of such models in the automotive field is evident. By accounting
for realistic noise distributions and by explicitly propagating uncertainty, they can
provide a more faithful estimate of risk in critical scenarios such as rear-end crashes,
intersection collisions or encounters with oncoming traffic. From the perspective of
advanced driver assistance systems and autonomous driving research, probabilistic
forecasting methods are appealing because they reduce the number of false positives,
a crucial requirement when automated interventions such as emergency braking
are triggered. Furthermore, they offer a forward-looking perspective: instead of
assessing risk only at the present instant, they predict how collision probability may
evolve over the next few seconds, giving valuable information for tactical planning.

2.6 Learning-Based Methods and Data-Driven
Models

A third family of approaches for collision probability estimation is based on the use
of learning-based and data-driven models. While analytical formulations compute
probability starting from explicit equations, and probabilistic methods approximate
it through sampling processes, this group of methods learn patterns of risk directly
from data, exploiting the availability of large data sets. The main concept is that
the mechanisms leading up to a collision may be too complex to describe them only
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with formulas, while they can be deduced if a model is exposed to a sufficiently
large number of examples. Therefore, it implies applying Machine Learning in this
domain, transforming in a way to approximate the mapping between the observable
state of the traffic scene and the collision probability itself, even in highyl dinamic
and uncertain situations.

Out of the many research done in this direction, a first representative study is
the work of Altché and de La Fortelle [17], who applied Long Short-Term Memory
(LSTM) networks to predict vehicle trajectories on highways. LSTMs are a type
of recurrent neural network designed to capture temporal dependencies, making
them suitable for modelling driving behaviours evolution over time: by training the
network on trajectory data, the authors were able to predict future positions. Then,
these forecasts were exploited to estimate the possibility of a collision between the
two vehicles. This is an important research because it demonstrated that neural
networks could successfully capture the non-linear and sequential nature of traffic
interactions, offering more flexible risk estimation than rule-based approaches.

Building on this foundation, researchers have explored architectures capable of
modelling both individual trajectories and the interactions among multiple agents.
[18] introduced the Graph-based Trajectory Predictor (GTP), which represents a
traffic situation as a graph, where each vehicle or pedestrian is a node, while the
edges represents the interactions: the structure allows the model to study spatial
and temporal dependencies across several entities at the same time. Therefore,
the system can predict trajectories in dense or urban contexts, where the relative
position and behaviour of neighbours strongly influence collision risk. The advantage
of this approach lies in its ability to represent traffic as a network of relationships
rather than as isolated time series, leading to more realistic and interaction-aware
estimates of collision probability.

Another relevant line of research focuses on multimodal perception and generative
models. Recently, Salzmann et al. proposed Trajectron++ [19], a deep learning
framework that integrates heterogeneous different kind of inputs, such as road maps,
agent dynamics and environmental constraints, into a model that generates multiple
possible future trajectories instead of a single deterministic forecast. This feature is
particularly valuable for collision risk estimation, because in the majority of cases,
there are several possible outcomes, each with the same probability of becoming
true, but each one carries with them a different associated risk. Trajectron++
explicitly models this uncertainty, providing relevant information that can be
exploited for many safety applications.

The development of large-scale datasets has played a crucial role in supporting
these approaches. Zhan et al. created the INTERACTION dataset [20], which
contains detailed recordings of highly interactive driving scenarios such as inter-
sections, roundabouts and merges. This dataset was designed to capture both
cooperative and adversarial behaviours, reflecting the complexity of real traffic. It
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has since become a benchmark for evaluating learning-based models that estimate
collision probability. In parallel, Caesar et al. presented nuScenes [21], a multi-
modal dataset collected in urban settings that includes lidar, radar, camera images
and high-definition maps. Datasets of this kind are indispensable for training and
validating data-driven models, since they provide the diversity of conditions and
behaviours needed for generalisation.

Despite their advantages, learning-based approaches face important challenges.
One of the most discussed issues is the ability to generalise beyond the specific
scenarios on which the models were trained. A survey by Kiran et al. [22] emphasises
that deep learning models for autonomous driving must often be complemented
by reinforcement learning or hybrid approaches that incorporate prior knowledge
about physics and safety. For example, formal safety guarantees can be layered on
top of data-driven models to ensure that even when the network encounters novel
situations, the system does not behave unpredictably. This integration of learning
with control theory is seen as a promising way to balance flexibility with reliability
in safety-critical applications.

In summary, learning-based and data-driven approaches offer a powerful and
flexible framework for estimating collision risk. Recurrent models such as LSTMs
capture temporal patterns in trajectories; graph-based networks explicitly model
interactions among agents; and generative models like Trajectron++ account for
uncertainty and multimodality in future behaviour. Supported by datasets such
as INTERACTION and nuScenes, these methods provide probabilistic outputs
that can inform high-level planning and decision-making. However, their reliance
on data availability and the difficulty of guaranteeing robustness across unseen
environments highlight the need for hybrid solutions that combine the adaptability
of data-driven learning with the formal guarantees of model-based approaches.

2.7 Limitations in the Context of ETSI-Compliant
Triggering

The probabilistic forecasting methods described in Section 3.2 and the learning-
based approaches outlined in Section 3.3 represent powerful families of models for
collision risk estimation. They are capable of capturing uncertainty in a rigorous way,
of exploiting large amounts of data, and of providing rich predictions that extend
beyond the instantaneous state. These strengths make them particularly attractive
in domains such as autonomous driving or advanced driver assistance systems, where
multi-second forecasts and robust decision-making are essential. Nevertheless, when
considered in the specific framework of ETSI-compliant triggering for Vulnerable
Road Users, they present limitations that are difficult to reconcile with operational
requirements.
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A first limitation is the computational cost. Probabilistic forecasting methods,
and in particular those based on Monte Carlo simulation, require thousands of tra-
jectory samples to produce statistically reliable estimates. Similarly, learning-based
models — especially those built on recurrent or deep neural networks — involve
complex architectures that demand significant processing resources. While such re-
quirements may be acceptable for high-performance autonomous driving platforms
or for offline analysis, they are impractical for on-board units constrained by strict
latency and power budgets. ETSI specifications mandate message generation and
evaluation on the order of tens of milliseconds, a regime that leaves little room for
heavy computation.

A second limitation concerns the temporal nature of the output. Both probabilis-
tic forecasting and learning-based models typically provide a distribution of collision
probabilities over a prediction horizon. This forward-looking representation of risk
is valuable for tactical planning, as it allows the system to anticipate how risk may
evolve in the near future. However, it does not align with the ETSI triggering
logic, which requires a single scalar probability to be evaluated frame-by-frame. In
practice, the ETSI framework mandates that the transmission of VRU Awareness
Messages (VAMs) be triggered whenever the instantaneous collision probability
changes by at least 10% relative to the last transmission. Horizon-based forecasts
cannot be directly compared against such thresholds without introducing additional
heuristics or compressions that compromise interpretability.

These two limitations, computational cost and horizon-based formulation, ex-
plain why the approaches previously described, despite their accuracy and theo-
retical appeal, are not directly suitable for cooperative ITS safety communication.
They highlight the need for methods that are lightweight, interpretable, and capable
of delivering instantaneous collision probability values. This observation motivates
the exploration of alternative approaches that build on simpler time-related met-
rics, such as Time-to-Collision, which naturally lend themselves to frame-by-frame
evaluation and ETSI-compliant triggering.

2.8 Motivation for a TTC-based approach
The considerations outlined in this chapter clearly indicate that, despite their ana-
lytical rigor and predictive accuracy, neither probabilistic forecasting nor learning-
based approaches are well suited for the requirements of ETSI-compliant triggering.
Their reliance on computationally intensive processes and their tendency to formu-
late risk as a distribution evolving over a prediction horizon make them difficult
to reconcile with the need for instantaneous, frame-by-frame estimates of collision
probability. For this reason, the present work concentrates on the first category of
methods: those based on time-related metrics.
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Time-related indicators represent one of the most established traditions in traffic
safety research. The underlying rationale is straightforward: the likelihood of colli-
sion depends critically on the time available before a potential conflict materializes.
By translating spatial and kinematic relationships into temporal margins, these
metrics provide an intuitive and operationally meaningful representation of risk.
Over the years, several such indicators have been proposed, each with its own
strengths and limitations.

The Time-to-Collision (TTC) is by far the most widely used. Its origins can
be traced back to early research on collision avoidance in both the aviation and
automotive domains. Initial formulations were introduced in the mid-twentieth
century, notably by Gibson and Cooks in 1938 [23], as part of efforts to enhance
safety systems by incorporating human factors into collision prediction. A further
milestone was provided by Lee in 1976 [24], who emphasized the role of visual
perception in estimating time-to-contact and formalized the link between temporal
margins and human reaction in driving tasks. These foundational contributions
established TTC as a simple yet powerful tool, making it one of the most widely
adopted temporal metrics in Intelligent Transport Systems (ITS).

Formally, TTC expresses the time remaining before two entities would collide
if they continued along their current trajectories with unchanged speeds. This
property makes it a direct, real-time measure of collision risk: a high TTC indicates
a safe situation, while a low TTC reflects an urgent and critical one where the
probability of impact is significantly higher. Its ability to condense complex
interactions into a single scalar quantity has made it a cornerstone in both traffic
safety analysis and the design of driver assistance systems, as well as a valuable
instrument for supporting proactive safety strategies aimed at accident prevention.

Closely related to TTC is the Post-Encroachment Time (PET), which measures
the temporal gap between one road user leaving a conflict point and another
entering it. PET is widely used in retrospective safety assessments, for example in
evaluating intersection conflicts, but by definition it is not predictive: it quantifies
events that have already occurred rather than anticipating imminent risk. Another
indicator often discussed is the Deceleration Rate to Avoid Collision (DRAC),
which expresses the minimum constant deceleration required for a vehicle to avoid
collision under the current conditions. While informative for studying driver
response, DRAC depends heavily on assumptions about braking capabilities, road
conditions, and human reaction times, which limits its robustness in real-time
cooperative contexts. Beyond these, several other measures have been proposed,
such as distance-to-conflict-point metrics or composite indices that combine speed,
acceleration, and trajectory information. Although useful in specific analytical
frameworks, these indicators tend to be either less interpretable or less directly
related to instantaneous collision probability.

When these alternatives are compared, TTC consistently emerges as the most
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suitable candidate for the purpose of this thesis: the metric can be directly computed
from easily measurable state variables, with negligible computational cost and
without the need for scenario-specific calibration. Its main advantage is given by
its intrinsic balance between the computation simplicity and its power in efficient
predictions. It is inherently forward-looking, rather than retrospective like the
PET metric is. Unlike DRAC, it does not rely on uncertain behavioral or physical
assumptions about braking dynamics. Most importantly, TTC is naturally suited
for frame-by-frame evaluation, producing at each time instant a scalar value that
reflects the imminence of a potential collision: this is precisely the property required
by the ETSI framework, which states that VRU Awareness Messages should be
triggered based on frame-by-frame changes in collision probability.

Furthermore, the widespread use of TTC in both research and practice reinforces
its suitability. It has been adopted in numerous traffic safety studies as a surrogate
measure for accident risk, and its strong empirical correlation with collision occur-
rence has been repeatedly demonstrated. It also features prominently in the design
of advanced driver assistance systems, where thresholds on TTC are often used
to activate warning or braking functions. This established role provides not only
methodological justification, but also practical validation: TTC is a metric that has
been proven effective in operational systems, and its interpretation is transparent
for both engineers and end users.

For these reasons, TTC is chosen as the foundation for the method developed
in this thesis. By mapping TTC values into collision probabilities, it becomes
possible to obtain a lightweight, interpretable, and ETSI-compliant indicator that
can be updated at every frame. This approach combines the intuitive appeal and
computational efficiency of time-based metrics with the formal requirement of
producing a probability suitable for triggering. The following chapter will detail
how this mapping is constructed and how it integrates with the overall logic of
cooperative safety communication.
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Chapter 3

VaN3Twin

3.1 Environment Overview
This thesis has been carried out on VaN3Twin, the first open-source, full-stack
Network Digital Twin (NDT) framework to simulate the coexistence of multiple
V2X communication technologies, developed by Politecnico di Torino [25] and
fully available on GitHub [26]. The framework is an extension of another tool,
presented by Politecnico di Torino as well: Multi-Stack VANET framework for
ns-3 (ms-van3t), an integrated multi-stack framework specifically developed to
enable virtual validation of V2X communication and cooperative ITS services.
As highlighted in [27], the framework is capable of efficiently managing vehicle
mobility and connectivity by using two other well-known simulation tools, Network
Simulator 3 (ns3) and Simulation of Urban Mobility (SUMO), and supporting
the integration of hardware in the loop (HIL). In particular, ms-van3t is the first
project that combines vehicle emulation through SUMO mobility scenarios, the
possibility to use various communication technologies through ns3, and a complete
implementation of the ETSI C-ITS stack, together with another set of features,
filling a gap in the current simulation ecosystem by providing a holistic integration
of all these factors within a single environment. Some of the main features of
ms-van3t are briefly explained below:

• Full ETSI C-ITS stack
One of the distinctive features of ms-van3t is the presence of a complete ETSI
C-ITS protocol stack, from the Application layer down to the Access layer,
included to support standard-compliant simulations with vehicles exchanging
messages. The functions, information and services given to ITS applications
are provided by the Facilities layer: in it, the simulator focuses on the Cooper-
ative Awareness (CA), Decentralized Environmental Notification (DEN), and
Vulnerable Awareness (VA) basic services, ensuring the generation, encoding,
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and decoding of CAMs, event-triggered DENM and VAMs, in strict alignment
with ETSI standards. Furthermore, ms-van3t introduces the Basic Services
Container: an additional facility, that wraps together multiple Basic Services
together, to hide most of the low-level configuration, reducing the complexity
the user needs to face to run and manage simulations in this environment.
The BS Container is given as an object in C++, the main programming
language used in ms-van3t, that can be assigned to a simulated vehicle and
can be used to access the underlying Basic Services to perform actions, e.g.,
to start the dissemination of VAMs. Finally, the layer includes the presence of
the Local Dynamic Map (LDM), a facility that stores relevant data on road
users and other perceived objects, providing information to applications when
needed. The Transport layer hosts the Basic Transport Protocol (BTP), which
provides connectionless multiplexing/demultiplexing between Facilities and
GeoNetworking, adding minimal overhead. The Network layer implements
ETSI GeoNetworking (GN), a protocol designed to cover ad-hoc communi-
cations challenges, as it features ’geographical addressing and forwarding’,
through the implementation of Single-Hop Broadcast (SHB) and GeoBroad-
cast (GBC), two forwarding schemes for message dissemination. Finally, the
Access layer connects this stack to multiple supported radio technologies, such
as IEEE 802.11p, 3GPP LTE-V2X, and 3GPP NR-V2X, allowing seamless
comparison between them. [27]. The integration of the stack within the
framework is achieved through the module automotive, that also includes
the applications and networking logic, as well as the encoding and decoding
schemes.

• Multi-technology access support
A second major feature of ms-van3t is flexibility: as stated previously, it
is capable of supporting multiple access technologies, even within the same
simulation. The framework natively integrates IEEE 802.11p and cellular
variants of V2X (LTE-V2X Mode 4 and 5G NR-V2X), with the possibility to
extend to new RATs. This multi-technology capability is crucial in a period
of technological transition, where different manufacturers adopt distinct V2X
standards and interoperability remains an open challenge. By allowing direct
comparison across technologies under identical mobility conditions, ms-van3t
enables fair and reproducible benchmarking of V2X protocols and services.

• Mobility integration.
A distinctive aspect of ms-van3t is its advanced mobility integration, which can
rely either on synthetic traffic simulation through SUMO or on pre-recorded
GNSS traces, without having to face many configuration changes. In the first
case, a native and bidirectional coupling with SUMO is achieved through an
extended TraCI interface, allowing ns-3 not only to import vehicle dynamics

37



VaN3Twin

(position, speed, acceleration) but also to directly control them. This enables
the realization of complex scenarios where vehicles can be partially or fully
autonomous and where VRUs are natively supported. Each entity simulated
in SUMO is automatically equipped with a complete ETSI C-ITS stack in
ns-3, ensuring realism in message exchange and mobility evolution. Beyond
this efficient SUMO integration, ms-van3t introduces a major innovation
with the gps-tc module, which permits the use of pre-recorded GNSS traces
as an alternative mobility source. Unlike most frameworks, this module
allows researchers to replay real-world trajectories, capturing the impact of
GNSS inaccuracies, especially significant in urban canyon scenarios, on V2X
communications. The gps-tc module, written in C++, provides a helper
object to accept flexible CSV inputs containing at least vehicle ID, timestamp,
latitude, longitude, speed, and heading, with optional acceleration (if not
provided, gps-tc can perform the computation from speed values at each time
istant) in order to simplify trace import; then, once the simulation starts, traces
are reproduced, at the same time or with delays depending on the timestamp,
thanks to the internal scheduling of ’position update’ events at the right time.
Moreover, gps-tc provides a solution for one of the greatest challenges when
importing CSV files: coordinate conversion. Indeed, usually GNSS receivers
report data with Geodetic coordinates, while ns-3 mobility models only accept
Cartesian ones. This module uses an accurate projection, identifying the
central meridian as the average longitude of all vehicles, averaged over all
timestamps in the trace, which is efficiently implemented within the framework
by importing a set of dedicated functions for geodesic calculations [28]. Both
TraCI and gps-tc act as Vehicle Data Providers (VDPs) for the higher protocol
stack, ensuring that applications in ms-van3t can seamlessly operate with
either synthetic SUMO mobility or real-world GNSS-based mobility. This
dual design represents a significant advancement over previous frameworks
and broadens the spectrum of experiments by enabling the evaluation of V2X
applications under realistic positioning uncertainties typically neglected in
SUMO-only approaches.

• HIL and emulation
Unlike many simulation frameworks, ms-van3t also supports emulation and
communication modes where simulated nodes exchange ETSI messages with
real devices via network interfaces. In this mode, the ETSI C-ITS stack imple-
mented in ns-3 can operate as if it were running on an OBU or RSU, transmit-
ting real CAMs or DENMs over sockets. This feature enables Hardware-in-the-
Loop (HIL) experiments, bridging simulation and field testing, enabling the
possibility to create hybrid scenarios where emulated vehicles can interact with
real ones, and facilitating the transition from virtual validation to prototyping
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and deployment.

• Scalability
The ns-3 engine allows ms-van3t to scale to large-scale scenarios with any
number of vehicles, only limited by the hardware capabilities of the device
where the framework is currenlty running, while the modular stack ensures
efficient execution even under heavy traffic loads. However, a problem that
usually arise when many vehicles are involved is related to the complexity
of gathering relevant data for each entity: ms-van3t tackles this through a
dedicated module, called MetricSupervisor, that is in charge of collecting two
fundamental metrics, Packet Reception Ratio (PRR) and one-way latency
between a packet transmission and reception. The module can be easily
extended to include other metrics for different purposes, such as comparison
between different protocols or performance evaluation.

In summary, ms-van3t represents the state of the art in vehicular network simu-
lation: it merges mobility, communications, and applications in a single extensible
and robust framework, offers ETSI compliance and multi-technology access, sup-
ports emulation and Hardware-in-the-Loop, and scales to large and heterogeneous
scenarios. This integrated environment is particularly well-suited for research on
VRUs protection. It allows for the design of controlled experiments where vehicles
and VRUs interact in complex traffic environments, while their communication
exchanges are simultaneously subject to realistic channel dynamics and network
constraints. By providing a holistic view of both mobility and communication
aspects, ms-van3t enables large-scale testing of cooperative awareness messages,
triggering strategies, and collision risk estimation methods under reproducible
conditions. Its seamless integration of SUMO and ns-3, which are explained in
more detail in the following sections, along with specialized modules for handling
real-world data and collecting performance metrics, makes it an invaluable tool for
advancing research in V2X communication.

3.2 Simulation of Urban Mobility
SUMO is an open-source traffic simulation suite that has been under continuous
development since 2001 by the German Aerospace Center (DLR) [29]. It is designed
as a time-discrete, space-continuous microscopic simulator where each vehicle is
explicitly modeled in terms of position, route, and behavioral properties. SUMO
supports classical microscopic traffic models, including car-following (e.g., Krauss
and IDM) and lane-changing algorithms, but its extensible architecture allows addi-
tional models to be integrated through dedicated APIs. Vehicles can be described
in detail with attributes such as departure time, physical parameters, emission
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class, or noise category, enabling both traffic-flow studies and environmental impact
assessments.

Overall, SUMO must be understood as a complete simulation suite rather than
a single executable. It is equipped with a collection of tools for network generation
and import, demand modeling, and routing. Road networks can be rather generated
synthetically via netgen tool or idigitally mported from a wide range of sources using
netconvert, including OpenStreetMap (OSM), allowing for the possibility to create
highly realistic scenarios based on real-world topologies, which is the case exploited
in this thesis. Furthermore, the suite includes tools to generate travel demand:
for example, od2trips converts origin–destination matrices into single-vehicle trips,
while jtrrouter computes routes based on intersection turn ratios. Once generated,
routes can be dynamically adapted using different routing algorithms supported by
SUMO, including even online re-routing during the simulation.

Therefore, SUMO scenarios can range from a single intersection to an entire
metropolitan areas, giving the tool two important advatages: scalability and efficient
execution. These qualities also affects the simulation step length, which is 1s by
default, but it can also be tuned for higher temporal resolution. Moreover, in terms
of visualization and debugging, SUMO offers two choices: a command-line mode
for batch processing and a GUI mode, where vehicles can be color-coded according
to different variables, i.e., speed or emissions. Finally, output formats are equally
flexible, covering single-vehicle trajectories, aggregated measures on edges or lanes,
as well as pollutant emissions and fuel consumption estimation.

One of SUMO’s key innovations is the TraCI (Traffic Control Interface), a
socket-based API developed to allow external programs to interact within the
simulation in real time. Through TraCI, it is possible to query or modify the state
of vehicles and infrastructure at each simulation step, making SUMO a powerful
suite to be coupled with communication simulators, such as ns-3 or OMNeT++, or
to be exploited for testing advanced traffic management strategies: large European
research projects have taken advantage of this feature. For example, iTETRIS
integrates SUMO with ns-3 for V2X evaluations, while CityMobil models scenarios
of automated driving and platooning through the suite.

In ms-van3t, SUMO provides the mobility simulation, ensuring that the micro-
scopic movement of vehicles and VRUs is faithfully reproduced. Its integration
through TraCI allows ms-van3t to synchronize mobility events with communication
events simulated in ns-3, guaranteeing consistency between traffic dynamics and
networking behavior. Thanks to its open-source nature, active development, and
large user community, SUMO has become the de-facto standard in research on
intelligent transport systems, offering flexibility, scalability, and extensibility that
few other tools can match.
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3.3 Network Simulator 3
ns-3 is an open-source, modular and extensible network simulator widely adopted
in both research and education. It provides a realistic and flexible environment
for modeling the behavior of complex communication systems, supporting a wide
range of networking technologies including Wi-Fi, LTE, 5G NR, Bluetooth, and
satellite networks. The simulator is released under the GNU GPLv2 license and
maintained by an active research community, encouraging continuous contributions
of new models and features [ns3website, mohta2023ns3].

At its core, ns-3 is a discrete-event simulator, meaning that all actions within the
network are represented as events scheduled in time. Its architecture is written in
modern C++ with optional Python bindings, and leverages object-oriented design
principles such as smart pointers, templates, callbacks, and copy-on-write to ensure
modularity, extensibility, and efficient memory management. Unlike monolithic
simulators, ns-3 is structured into reusable modules, which makes it possible to
integrate new protocols and models without disrupting the rest of the system.

The simulator provides detailed models across the entire network stack: from
the physical layer (with support for fading channels, propagation loss models such
as Friis, log-distance, Rayleigh and Rician fading, and detailed PHY models for
IEEE 802.11 variants) up to the application layer, where sockets-like APIs allow
the execution of traffic generators and emulated applications. Transport protocols
include UDP, TCP (with multiple variants), and SCTP, while the Internet stack
features both IPv4 and IPv6 with support for routing protocols such as OSPF, BGP,
RIP, and ad hoc routing protocols like OLSR, AODV, and DSDV. These models
enable the study of both wired and wireless networks under realistic conditions.

A key feature of ns-3 is its attention to realism and integration. Nodes in ns-3
are designed to closely resemble real devices: each node can host multiple network
interfaces, run Internet stacks, and communicate through sockets, making them
a faithful abstraction of physical hosts. This design also supports emulation and
virtualization: ns-3 can exchange real packets with external systems via raw sockets
or virtual LANs, and even run real Linux protocol stacks inside the simulation.
The simulator includes a tracing and statistics architecture, which decouples trace
sources from sinks using callbacks, making it possible to export simulation data to
external tools such as Wireshark, MATLAB, or custom analysis scripts.

3.4 VRU and VAM Support in ms-van3t
The extension of ms-van3t to include support for Vulnerable Road Users (VRUs)
and the generation of VRU Awareness Messages (VAMs) represents a fundamental
milestone in the evolution of the framework. In its original conception, ms-van3t
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was primarily developed to model vehicle-centric scenarios, with a focus on the
dissemination of Cooperative Awareness Messages (CAMs) and Decentralized En-
vironmental Notification Messages (DENMs). While this architecture enabled the
simulation of many aspects of ETSI Cooperative ITS systems, it excluded VRUs
from the communication loop, limiting them to passive entities in SUMO mobility
traces. As a consequence, VRUs could only be represented as moving obstacles,
without the ability to generate, transmit, or receive standardized awareness mes-
sages, and therefore without the possibility of being considered as active participants
in cooperative safety strategies. This limitation became increasingly critical with
the publication of ETSI TS 103 300-2 and TS 103 300-3, which formally introduced
the concept of VAMs and defined their role within the ETSI ITS architecture. To
align simulation tools with these specifications, it was essential to integrate VRUs
as first-class entities into the framework, equipped with their own service logic and
message types.

This gap was addressed by Alessandro Genovese in his Master’s thesis [30], who
extended ms-van3t to provide native support for VRUs and VAMs. The core of
this contribution is the implementation of the VRUBasicService, a dedicated C++
module that manages all aspects of VAM generation, transmission, and reception.
Through this service, VRUs simulated in SUMO (pedestrians or cyclists) can now
be directly coupled with the ETSI C-ITS stack in ns-3, thus becoming active ITS-S
nodes within the cooperative communication ecosystem. The service was designed
to be fully compliant with the ETSI specifications and to provide a structured
interface for VRU configuration, message dissemination, and service interaction.

The VRUBasicService is responsible for several key functions:

• VRU configuration management: storing the parameters of the VRU
profile (e.g., pedestrian, cyclist), either at initialization or dynamically during
the simulation.

• Message generation and encoding: creating VAMs that include informa-
tion such as position, heading, speed, and profile type, encoded in accordance
with ETSI standards.

• Interaction with other basic services: exchanging information with the
PoTi (Position and Time) service and the DDP (Decentralized Data Processing)
service, and supporting interaction with the Human-Machine Interface (HMI)
depending on the VRU profile.

• Transmission control: activating or deactivating VAM dissemination based
on VRU profile parameters and network congestion control rules, as required
by ETSI TS 103 300-2.
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• Triggering condition management: ensuring that VAMs are transmitted
when one or more state changes of the VRU satisfy predefined thresholds, in
alignment with ETSI TS 103 300-3.

• Cluster management (initial design): laying the foundation for func-
tions related to VRU clusters, such as leader election and aggregated VAM
dissemination, although these features were not yet fully implemented.

Among these functions, the triggering logic is of particular importance. Gen-
ovese’s implementation included several of the triggering conditions required by
ETSI, namely:

• Time-based triggering: a VAM is sent if the maximum generation interval
(TGenV amMax) has elapsed since the last transmission.

• Position change: a VAM is triggered if the VRU has moved beyond a
configurable distance threshold since the last message.

• Speed change: a VAM is generated if the speed variation relative to the last
transmission exceeds a threshold.

• Heading change: a VAM is triggered when the heading deviation is greater
than a predefined angular threshold.

• Safe distance violation: a VAM is sent when another road user breaches
the minimum safe distance (longitudinal, lateral, or vertical).

These conditions ensure that VAMs are not generated at a fixed rate but
adaptively, based on meaningful changes in the VRU’s state, thereby reducing
channel load and maintaining message relevance. However, despite the completeness
of this implementation, two important conditions remained absent:

• Trajectory Interception Probability (TIP): ETSI specifies that a new
VAM must be triggered if the probability of trajectory interception changes
by more than a defined threshold (typically 10%). This condition was not
implemented because, at the time, the framework lacked the infrastructure to
compute TTC-based metrics and translate them into probabilities.

• Cluster-based triggering: ETSI also foresees VRU cluster formation, where
groups of VRUs (e.g., pedestrians walking together, cyclists in a peloton) are
represented by a cluster leader that disseminates aggregated VAMs on behalf
of the group. While the VRUBasicService included preliminary structures
to support clustering, the full implementation of cluster management and
triggering was not yet realized.
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The work presented in this thesis builds directly upon this foundation. In
particular, it focuses on the implementation of the missing TIP-based triggering
condition. To this end, a dedicated methodology was developed to compute the Time
to Collision (TTC) between VRUs and surrounding vehicles, map it into a collision
probability through several possible strategies (as discussed in Chapter 4), and
integrate this probability into the VRUBasicService as a new triggering parameter.
The implementation ensures compliance with ETSI TS 103 300-3, specifically by
activating a new VAM whenever the TIP changes by more than 10% with respect
to the previous transmission. This addition significantly enhances the realism
and safety relevance of the simulation environment, as it introduces a proactive
condition that anticipates collision risk even in the absence of direct changes in
position, speed, or heading.

By closing this gap, the present work strengthens the VRU support in ms-
van3t and VaN3Twin, providing a more complete and ETSI-compliant framework.
Although clustering remains an open research avenue for future extensions, the
integration of TIP triggering represents a major step forward in enabling the study
of cooperative safety solutions for VRUs under realistic and reproducible simulation
conditions.
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Chapter 4

From TTC to Collision
Probability: Methodology
Development

This chapter presents in detail the methodology developed throughout this thesis
to define a procedure for computing the Trajectory Interception Probability (TIP)
starting from the TTC metric. The first step involved implementing the selected
TTC computation within the ms-van3t framework and testing it across different
scenarios to evaluate the influence of key parameters and overall performance.
Building on this foundation, several strategies for mapping TTC into TIP were
investigated, leading to the final choice of an exponential growth function to
discretize TTC values into TIP intervals. The complete method was then integrated
into ms-van3t, together with the triggering condition defined by the ETSI standard
that is represented by the pseudocode in Algorithm 1. Finally, a set of simulations
was conducted over multiple scenarios to assess the performance of the proposed
approach and to analyze its impact on VAM transmissions.

4.1 Time to Collision
As discussed in the literature review, the TTC has been identified as the most
suitable metric to serve as the foundation for this work. Its widespread adoption in
traffic safety research, together with its intuitive interpretation and computational
efficiency, constitutes for an effective starting point to derive a frame-by-frame
estimation of collision probability. For this reason, the methodology developed
builds directly on this metric. However, the original definition of TTC poses a
significant limitation, since it relies on the assumption that both entities move with
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constant velocities. This simplification ignores possible accelerations, making the
metric less precise and less consistent with real-world dynamics, where vehicles
and VRUs frequently brake, accelerate, or change direction. For this reason, in
this thesis the computation of TTC explicitly accounts for accelerations, through
a method developed in [31]. The approach is twofold: if the relative acceleration
between the entities is negligible, the problem reduces to the constant-velocity case,
which admits a simple closed-form solution; otherwise, the constant-acceleration
case is considered, leading to a higher-order formulation where the candidate
collision times are obtained by solving a cubic polynomial.

In any case, the procedure at a given istant begins by defining the relative
kinematic state of the two entities in a Cartesian coordinate system: let the
position of entity i at the current point in time be wi = (xi, yi), its velocity
vi = (vx,i, vy,i), and its acceleration ai = (ax,i, ay,i). Similarly, the second entity j
is characterized by wj = (xj, yj), vj = (vx,j, vy,j), and aj = (ax,j, ay,j).

The relative position, velocity, and acceleration of j with respect to i are defined
as:

w0 = (wi − wj) =
C
∆x
∆y

D
=

C
xi − xj

yi − yj

D
, (4.1)

v = (vi − vj) =
C
∆vx

∆vy

D
=

C
vx,i − vx,j

vy,i − vy,j

D
, (4.2)

a = (ai − aj) =
C
∆ax

∆ay

D
=

C
ax,i − ax,j

ay,i − ay,j

D
. (4.3)

These six scalar quantities fully describe the relative kinematic state of the
two entities. The future relative displacement of i with respect to j at time t is
therefore given by:

w(t) = wo + v ∗ t + 1
2 ∗ a ∗ t2 (4.4)

A collision between two entities occurs when they occupy the exact same position
in space at the same instant of time, which means that the difference between their
positions must be null, so the following condition must be satisfied:

w(t) = 0 (4.5)

However, it is better to work with the squared Euclidean distance of the displace-
ment vector than the raw vector itself, as it produces scalar polynomial equations
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in time, avoids square roots and still preserves the equivalence with the collision
condition. Hence, we can define the following:

d2(t) = ∥w(t)∥2 = w(t)⊤w(t) = 0 (4.6)

Since the function 4.6 is always non-negative and polynomial in time, an impact
can only happen at an instant where this function reaches a minimum. To determine
the time candidates for which this is true, the derivative of the squared distance is
computed and set to zero:

d

dt
d2(t) = 2 w(t)⊤ẇ(t) = 0 (4.7)

Since ẇ(t) = v + at, this gives:

d

dt
d2(t) = 2

1
w0 + vt + 1

2at2
2⊤

(v + at) = 0 (4.8)

Solving 4.8 yields a set of candidate times tc ≥ 0, but they are not sufficient on
their own: the distance at such instants may be minimal but still strictly positive.
Therefore, each candidate t must be checked against the exact collision condition
stated in 4.6. Finally, the TTC can be defined as the smallest non-negative time
out of all the valid candidates, therefore the operational definition in this thesis is:

TTC = min
I

t ≥ 0
----- d

dt
d2(t) = 0 and d2(t) = 0

J
(4.9)

If no such solution exists, the two entities never meet under the current motion
states and the TTC is set to -1.

At this point, in order to understand how the explicit form of the polynomial is
going to become and how it needs to be solved, two case must be distinguished,
depending on the relative acceleration being negligible or not.

Case 1: constant velocity. If relative acceleration is null, the derivative reduces
to a linear equation that directly provides the candidate collision time:

d

dt
d2(t) = 2 (w0 + vt)⊤v = 0 (4.10)

From here the possible TTC can easily be derived from the condition set to null:

d

dt
d2(t) = 0 =⇒ t⋆ = −w⊤

0 v
∥v∥2 . (4.11)
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Taking into account the kinematic states previously defined, it is possible to
further develop the equation to compute the candidate time defined in 4.11:

t⋆ = − (xi − xj)(vx,i − vx,j)− (yi − yj)(vy,i − vy,j)
(vx,i − vx,j)2 + (vy,i − vy,j)2 . (4.12)

In 4.12, the numerator inspects whether the two cars could collide or not looking
at their directions: indeed, if (xi − xj)(vx,i − vx,j) < 0 or (yi − yj)(vy,i − vy,j) < 0,
it means that the entities are moving away from each other, making the collision
impossible. Instead, the denominator is linked to the relative speed of the system
and if one of the elements is null, it means that the entities are moving behind one
another at the same speed, meaning the collision is also impossible in this case. If,
indeed, the impact can happen, we can compute 4.12, which is returned as TTC, if
positive (a negative value would be meaningless, leading to the impossibility of the
collision).

Case 2: constant acceleration When accelerations are present, the deriva-
tive leads to a cubic polynomial in time, which is solved using Ruffini’s rule for
factorization when possible:

d

dt
d2(t) = 2 w(t)⊤ẇ(t) = 2

1
w0 + vt + 1

2at2
2⊤

(v + at) = 0. (4.13)

Expanding the products in 4.13, we obtain a cubic polynomial in t:

At3 + Bt2 + Ct + D = 0, (4.14)

with coefficients defined as:

A = ∥a∥2 = (ax,i − ax,j)2 + (ay,i − ay,j)2,

B = 3 v⊤a = 3
è
(vx,i − vx,j)(ax,i − ax,j) + (vy,i − vy,j)(ay,i − ay,j)

é
,

C = 2∥v∥2 + 2 w⊤
0 a = 2

è
(vx,i − vx,j)2 + (vy,i − vy,j)2

é
+ 2

è
(xi − xj)(ax,i − ax,j) + (yi − yj)(ay,i − ay,j)

é
,

D = 2 w⊤
0 v = 2

è
(xi − xj)(vx,i − vx,j) + (yi − yj)(vy,i − vy,j)

é
.

(4.15)

Equation 4.14 must be solved to obtain the candidate instants of minimum
relative distance. In practice, Ruffini’s rule can be applied to test for rational roots
and reduce the cubic to a quadratic whenever possible, simplifying the solution.
Otherwise, the cubic is solved either analytically or numerically.
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Once the candidate times t⋆ are found, each root must be checked against the
original collision condition:

w(t⋆) = 0 ⇐⇒ d2(t⋆) = 0.

If at least one non-negative real root satisfies this condition, the TTC is defined
as the smallest among them. If no admissible solution exists, either because all
roots are negative, complex, or do not reduce the distance to zero, then the collision
is deemed impossible and the TTC is set to -1.

By recomputing this procedure for every pair of entities at each frame, the
system produces a deterministic, frame-by-frame estimate of TTC. The constant-
velocity formulation ensures a lightweight and robust closed-form solution when
accelerations are negligible, while the constant-acceleration formulation extends the
method to more complex scenarios, making use of Ruffini’s rule to efficiently solve
the cubic equation. In all cases, the TTC represents the exact time of intersection
of the two trajectories, with the minimum distance explicitly set to zero.

4.1.1 Implementation in VaN3Twin
As previously stated, the main goal of this thesis is to develop a methodology to
compute the Trajectory Interception Probability and, consequently, to implement
the VAM triggering condition regarding this metric within VaN3Twin. Up to this
point, the theoretical reasoning and analysis that led up to the decision that the
best approach was to develop a TTC-based method to compute TIP has been
extensively explained. In order to assert that the chosen TTC computation method
is the best fit, the first analytical analysis conducted in VaN3Twin for this work
regards the elements needed to compute the metric whenever needed. However, in
order to show and explain the insights provided by the results, it is first necessary
to discuss in detail how the TTC computation has been implemented within the
simulation framework and how the analyses were conducted.

Since VaN3Twin did not originally include a dedicated mechanism for Time To
Collision evaluation, this functionality was implemented as part of the thesis work.
To this end, a new class named t2c was developed, following the object-oriented
design principles of the framework. The class encapsulates all the attributes
(positions, velocities, accelerations) and methods required for the computation, and
exposes a core routine, compute_t2c, that retrieves the necessary data, standardizes
the units, and applies the analytical formulation presented in the previous section.

The introduction of t2c served two purposes. In the first place, it provided a
modular and reusable component for TTC calculation, enabling consistent eval-
uation of both VRU–VRU and VRU–vehicle interactions. At the same time, it
created a natural entry point for extending the functionality: although initially
focused solely on TTC, the class was progressively expanded to incorporate the
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TTC to TIP mapping and the evaluation of VAM triggering conditions. In this
way, what began as a computation module for a single metric gradually became
the core element that supports the entire methodology developed in this thesis.

Within the simulation workflow, TTC computation is triggered every time a
VRU receives a message:

• a CAM, received from a vehicle via the CA Basic Service;

• or a VAM, received from another VRU via the VRU Basic Service.

In both cases, the event activates the compute_t2c method, which:

1. extracts the relevant state variables from the message,

2. converts them into consistent units and formats,

3. determines whether the entities are on a collision course,

4. and, if so, estimates the remaining time before the potential collision.

Initially, the resulting TTC values were stored for inspection and analysis. In
the extended version of the class which forms the actual scope of this thesis, these
values became the input to the TIP mapping function and, ultimately, to the logic
used to trigger VAMs.

4.1.2 Analytical Validation
In order to evaluate if the chosen TTC computation method was the best fit, a
simulation was designed and run in VaN3Twin. The reference scenario lasted 25
seconds and involved a single pedestrian and one vehicle moving along trajectories
that inevitably led to a collision. It was chosen to use a very trivial and controlled
setup for a reason: by isolating a minimal interaction case, it becomes possible to
clearly highlight the effect of the main physical factors on the TTC values, without
interference from additional actors or external dynamics.

The analysis focused on the correlation, graphically shown below, between TTC
values and three main parameters:

• the distance between the VRU and the vehicle, which was additionally com-
puted each time a TTC value was obtained;

• the relative velocity of the entities, extrapolated from the cartesian velocity
components used in the TTC computation ;

• the acceleration of the entities, deduced from the cartesian acceleration com-
ponents as well.
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Figure 4.1: Relation over time between Time to Collision and entities’ distance

Figure 4.1 shows the relation over time between TTC and the distance from the
pedestrian to the vehicle. The trend is intuitive: as the distance decreases, the Time
to Collision shortens accordingly, up until to the point when the potential collision
occurs (i.e., approximately at 21 seconds after the beginning of the simulation).
When the two entities meet, the TTC curve approaches zero, correctly signalling
that the predicted impact has occurred. From that instant onward, as can be seen
in all the plots, the TTC value is set to -1, indicating that no further collision is
expected, since the vehicle and the pedestrian continue along separate trajectories.
For this reason, the part of the curve after the impact is not relevant to the
objectives of this thesis, which focus on the prediction of collisions in the approach
phase rather than on later dynamics. This behaviour provides a first proof that
the implementation correctly reproduces the expected physical intuition behind
TTC. However, it shows another interesting insights: there are some peaks on the
TTC trend at the beginning of the simulation and it is obvious from Figure 4.1
that they are not caused by the distance between the entities. Therefore, TTC
captures other information as well and can be affected by other factors.
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Figure 4.2: Relation over time between Time to Collision and entities’ relative
velocity

Figure 4.2 illustrates the relation between Time to Collision and the velocities
of both entities, which are not simple Cartesian components, but the magnitudes
of the velocity vectors, computed as the Euclidean norm of their horizontal and
vertical components used to compute TTC values, in order to reflect in the plot
the actual intensity of the motion, regardless of its direction in the plane:

vped =
ñ

v2
pedx

+ v2
pedy

, vveh =
ñ

v2
vehx

+ v2
vehy

(4.16)

In the plot, the pedestrian’s behaviour is coherent with typical VRU dynamics:
its speed remains almost constant and very low throughout the scenario, making
its influence negligible in the TTC trend. In contrast, the vehicle’s speed plays an
important role: in the first part of the scenario it remains constant, which translates
into a gradual and almost linear decrease of TTC as the distance between the
entities closes. Near the collision point, the vehicle temporarily brakes, as can be
seen by the drop in the velocity trend, then accelerates again: the TTC curve reacts
accordingly, flattening during the deceleration phase and then dropping sharply as
the vehicle speeds up, up to the collision instant. Overall, this correlation confirms
two key insights. First, TTC is highly sensitive to changes in vehicle speed, while
the pedestrian velocity can be neglected in practical terms. Second, the formulation
based on the norm of the velocity vector ensures that the metric captures the
effective closing speed in any direction, rather than just scalar differences of speeds.
This guarantees that the TTC implementation in VaN3Twin responds in a realistic
and consistent way to the kinematic conditions of the entities involved.
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Figure 4.3: Relation over time between Time to Collision and vehicle’s acceleration

Finally, Figure 4.3 illustrates the relation between TTC and the vehicle’s accel-
eration, which is not a single Cartesian component but the resultant magnitude,
computed as:

aveh =
ñ

a2
vehx

+ a2
vehy

(4.17)

At the beginning of the analysis, the pedestrian acceleration was also considered.
However, during the simulations it proved to be consistently null or very close to
zero, reflecting once again the slow motion typical of VRUs, which is why only the
vehicle acceleration is reported and discussed here.

The graph highlights that the vehicle acceleration remains almost null for most
of the simulation, corresponding mainly to a uniform motion. However, when the
vehicle performs even small peaks of acceleration, both positive and negative, the
TTC curve reacts immediately:

• if it accelerates, TTC decreases sharply, showing that the possible collision is
approaching faster than before;

• if it decelerates, TTC temporarily increases, reflecting that the time horizon
to impact has been extended.

This high sensitivity to acceleration is crucial, since it demonstrates that TTC
is not only a function of instantaneous distance and velocity but also captures
dynamic variations in motion. In conclusion, the observed behaviour highlights
what we wanted to confirm with this analysis: how crucial it is to account for the
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entities’ acceleration in the TTC computation. The inclusion of this factor confirms
that the adopted method represents the best fit for the objectives of this thesis:
it ensures greater reliability and realism when modelling traffic interactions, and
it captures dynamic variations that simpler approaches would overlook, a feature
especially valuable in scenarios involving VRUs, where unpredictable and sudden
changes in the environment must be detected with high priority to enable timely
safety interventions.

4.2 Thresholding the TTC Range
The direct use of the time to collision (TTC) as a collision risk indicator requires
the definition of a meaningful validity range. Without an appropriate thresholding,
very small values of TTC would always correspond to certain collision events
(probability equal to 1), while very large values would misleadingly indicate non-
negligible risk in situations where a crash is not realistically plausible. For this
reason, two thresholds are commonly introduced: a minimum threshold (TTCmin)
and a maximum threshold (TTCmax), delimiting respectively the boundary of
imminent danger and the one of safe conditions.

The lower threshold TTCmin is motivated by experimental and perceptual
studies on human drivers. Brown [32] demonstrated through field tests that a value
of 1.5 s represents a realistic lower bound, below which a conflict is perceived as
critical and evasive maneuvers are triggered. Similar conclusions are reported in
other works, which identify thresholds in the range between 1.5 s and 4 s, depending
on reaction time, driving conditions and perceptual variability [33]. Nonetheless,
most studies confirm that values between 1.5 s and 4 s cover the typical span of
driver reaction thresholds.

On the other hand, the upper threshold TTCmax accounts for the fact that
very high TTC values lose predictive meaning. When the time available before
a potential collision exceeds a certain duration, the situation can be considered
intrinsically safe, as both the driver and the system have enough time to react.
Several works in the literature suggest values in the order of 10 s to 20 s as upper
bounds beyond which the TTC no longer indicates an actual risk.

The introduction of these two thresholds allows for the partitioning of the TTC
domain into three distinct zones (Figure 4.4):

• Critical zone (TTC < TTCmin): imminent collision risk, probability is set
to 1.

• Transition zone (TTCmin ≤ TTC ≤ TTCmax): intermediate region where
the collision probability is mapped as a TTC-based function (see Section 4.3
and Section 4.4).
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• Safe zone (TTC > TTCmax): negligible risk, probability tends to 0.

Figure 4.4: Conceptual partition of the TTC domain into three risk zones.

This thresholding strategy ensures that the TTC is taken into account only
when within a meaningful range, anchoring the estimation of collision probability
to values consistent with both human perception and empirical evidence. It
prevents attributing significance to extreme values that do not reflect realistic
safety conditions, and provides a structured basis for the subsequent mapping of
TTC into collision probability.

4.3 Mapping Strategies
As previously stated, the main objective of this thesis is to establish a computation
method for Collision Probability. In order to achieve this, after having established
to follow a TTC-based approach, various mapping strategies were developed in
order to map the TTC values into Collision Probability ones: the best fit was
determined through various analysis and considerations.

Transforming time to collision (TTC) into a collision probability requires the
definition of a mapping function that converts temporal values into a normalized
probability scale. This step is necessary to align the TTC metric with ETSI
triggering conditions, which rely on the variation of the Trajectory Interception
Probability (TIP). The mapping must satisfy a few key requirements: (i) it must be
bounded between 0 and 1, (ii) it must increase monotonically as TTC decreases, (iii)
it should be computationally efficient to support real-time applications, and (iv) it
should exhibit sufficient smoothness to prevent unstable triggering. In this section,
four mapping strategies are analyzed in detail: fixed intervals, linear mapping,
exponential mapping, and discrete interval mapping.
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4.3.1 Fixed intervals

The first mapping approach considered in this thesis directly derives from the ETSI
triggering condition. According to [8], a new VAM shall be generated whenever
the variation of the Trajectory Interception Probability (TIP) is greater or equal
to 10%. Starting from this definition, the most straightforward strategy was to
discretize the TIP range [0,1] into 10 fixed intervals of equal size (each representing
a 10% change). In order to maintain consistency, the Time to Collision (TTC)
domain between the chosen thresholds TTCmin and TTCmax was also partitioned
into the same number of intervals. The width of each TTC interval is thus defined
as:

Width = TTCmax − TTCmin

n
(4.18)

where n is the number of TIP intervals (in this case, n = 10).
Given this discretization, any TTC value TTCi at a given time instant can be

directly mapped to the corresponding TIP value through the following relation:

TIPi =
n− 1

W idth
∗ (TTCi − TTCmin)

n
(4.19)

The formulation can be visualised in 4.5, where the TIP value decreases in fixed
steps as the TTC increases from its minimum to its maximum threshold, which in
this illustrative example have been set at 1.5 s and 10 s accordingly. This ensures
that:

• if TTC = TTCmax, the resulting TIP approaches 0,

• if TTC = TTCmin, the TIP reaches 1,

• intermediate TTC values are mapped proportionally to the corresponding
discrete TIP interval.

56



From TTC to Collision Probability: Methodology Development

0 1 2 3 4 5 6 7 8 9 100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

TTC

T
IP

Figure 4.5: Fixed-interval mapping using reference thresholds

4.3.2 Linear Mapping

The linear mapping represents another intuitive approach to transform the Time
to Collision into a collision probability value. Due to its simplicity and clarity, its
application has already been analysed in the literature: an example can be found
in [34], which explores the context of cooperative overtaking scenarios, where a
linear relationship between TTC and collision probability is assumed in order to
simplify computation and enable real-time implementation. Building on this main
concept, the present work considers a straightforward proportional mapping, in
which the collision probability decreases linearly as TTC increases. For the same
reasons stated before, a time horizon is defined here as well, limiting the scope of
the function: therefore, the probability starts from a maximum value of 100% when
the Time to Collision corresponds to the lower threshold TTCmin, and reaches zero
at the upper limit TTCmax, its trend defined by the following equation:

TIPi = 1− TTCi

TTCmax

. (4.20)

In this expression, TTCi denotes the instantaneous Time to Collision at step i,
while TTCmin and TTCmax are the previously defined thresholds that define the
operative range, as discussed in Section 4.2. Therefore, the mapping is normalized
over the selected interval, ensuring a bounded and predictable transformation of
TTC values into collision probabilities, which is clearly illustrated in 4.6, where
the mapping is performed using the same time horizon as the other strategies, to
ensure consistency during comparisons, given by these parameters: TTCmin = 1.5s
and TTCmax = 10s.
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Figure 4.6: Linear mapping with TTCmin = 1.5 s and TTCmax = 10 s.

The mapping is trivial, as it involves only a basic arithmetic operation, which
makes it computationally efficient, highly scalable and particularly attractive for
real-time applications in environments where resources are limited. Furthermore,
the linear structure guarantees predictability and a uniform sensitivity to variations
in TTC, a property that can be very useful during the design and debugging
phase of safety mechanisms. Finally, another advantage of this strategy is its
interpretability: the function generates a monotonic and directly proportional
curves, where it is immediate that each unit decrease in TTC corresponds to an
equivalent increase in probability.

However, this very simplicity also highlights the limitations of the linear mapping.
By construction, the model does not reproduce the nonlinear escalation of collision
risk that is typically observed both in human perception and in engineered warning
systems. As TTC approaches small values, the perceived urgency and required
system responsiveness tend to increase more sharply than a linear law would
suggest. As a result, the mapping may either produce premature triggering in
relatively safe situations, or conversely, underestimate the severity of truly imminent
collisions. In addition, the constant proportional sensitivity can amplify small
fluctuations in TTC near the ETSI threshold of 10% variation in TIP, potentially
generating redundant VAM transmissions and reducing the stability of the triggering
mechanism.

In summary, the linear mapping offers a computationally efficient and inter-
pretable baseline that has been recognized in the literature, but its oversimplified
proportional behaviour makes it less suited for capturing the dynamic escalation of
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collision risk that characterizes real-world safety-critical interactions.

4.3.3 Exponential Mapping
The motivation for adopting an exponential relation between TTC and collision
probability originates from previous research, where the Time to Collision was not
treated as a simple proportional indicator but rather transformed into a nonlinear,
normalized probability. The central idea emerging from these studies is that drivers
and intelligent systems do not perceive the urgency of a potential collision in a
linear fashion: when the TTC is large, small variations do not alter the perceived
level of danger, whereas in the final instants before an impact, even a fraction of a
second can dramatically change the associated risk. This asymmetry in perception
suggests that collision probability should not increase linearly with decreasing TTC,
but should instead follow a nonlinear escalation, with a slow growth in the safe
region and an increasingly steep rise in the critical region [10].

Although no closed-form formula was originally specified, this principle was
made evident by showing curves where the TTC decreases over time while the
associated collision probability increases with an exponential-like shape. Such
curves, an example of which is reproduced qualitatively in Figure ??, highlight
the conceptual link between the physical variable (TTC) and the probability of
collision, emphasizing that the latter should reflect the nonlinear escalation of
urgency rather than a proportional trend.
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Figure 4.7: Conceptual relationship between TTC and TIP inspired by [10]

Building on this conceptual foundation, the present work translates the intuition
of an exponential-like increase into a concrete and implementable mapping. In order

59



From TTC to Collision Probability: Methodology Development

to ensure real-time usability, the mapping has been formalized with an explicit
closed-form function that links the instantaneous TTC value to the TIP. The chosen
formulation is:

TIPi = e−α T T Ci (4.21)

This expression captures the nonlinear escalation of risk but, taken alone, would
suffer from unrealistic boundary behaviour: the probability would asymptotically
approach one as TTC → 0 without ever reaching it, and it would remain strictly
positive even for arbitrarily large TTC. To avoid these issues, the exponential
law is not applied over the entire domain, but only within the bounded interval
already defined by TTCmin and TTCmax. Outside this region, the function sat-
urates by construction: TIP = 1 when TTC ≤ TTCmin, and TIP = 0 when
TTC ≥ TTCmax. In this way, the mapping remains consistent with the operational
thresholds previously established.

Within the active interval, the curve is governed by the growth-rate parameter α,
which controls its steepness and therefore the sensitivity of the system to variations
in TTC. A practical and intuitive choice for this parameter is to tie it directly to
the maximum considered horizon, so that the mapping automatically adapts to
the scale of interest:

α = 1
TTCmax

. (4.22)

This definition ensures that the response of the curve is normalized across
different configurations. A larger TTCmax produces a slower and more gradual rise
in probability, while a smaller TTCmax makes the function steeper and more reactive
to small TTC variations. In this sense, α becomes a design knob intrinsically linked
to the choice of time horizon, enabling a balance between early-warning sensitivity
and trigger stability.

As a result, the exponential mapping takes on a form that is both bounded
and interpretable. It preserves the desired nonlinear escalation of urgency, while
remaining compatible with the explicit thresholds discussed earlier and directly
implementable in real-time triggering mechanisms in line with ETSI requirements.

4.3.4 Final Choice: Discrete Mapping with Exponential
Growth

In order to evaluate whether the mapping strategies previously introduced could be
suitable for the objectives of this thesis, and to identify which of them represented
the most promising candidate for further development, a dedicated simulation was
performed in the ms-van3t environment.
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A controlled test scenario was designed, consisting of a single pedestrian and
a single vehicle set on an unavoidable collision course. In this configuration, the
Time to Collision (TTC) naturally decreased over time, starting from safe values at
the beginning of the simulation and steadily converging to near-zero at the impact
point. In this way, the entire operational domain of interest was covered, from
negligible risk to imminent collision.

During the simulation, a CSV log file was generated containing all relevant
TTC metrics, with one entry recorded for each time instant in which the TTC was
computed. For every TTC value collected, the corresponding TIP was then derived
according to the three candidate strategies under consideration:

• fixed intervals,

• linear mapping,

• exponential mapping.

Finally, for each method the behaviour of the TIP values was analysed and the
triggering of VAMs was verified according to the ETSI 10% variation condition.
This procedure provided a systematic and comparable basis to assess the advantages
and limitations of each strategy, and to guide the selection of the final approach.

The fixed-interval approach, although simple, revealed abrupt discontinuities.
Small variations in TTC around an interval boundary produced large jumps in TIP,
leading to multiple artificial triggers (24 probability-change triggers in Scenario 5,
as shown in the slides) and to long flat regions with no updates despite an increasing
collision risk. The linear mapping, adopted in the literature by Chen et al. [34],
provided smoother curves but suffered from uniform sensitivity: it overestimated
risk at long horizons and underestimated urgency at short ones, producing either
premature or delayed triggers. In Scenario 5, this led to redundant transmissions
due to oscillations around the 10% threshold. The exponential mapping, inspired by
[Belmekki2024], better reflected the nonlinear escalation of urgency and reduced
premature warnings, but its asymptotic behaviour prevented saturation at TIP=1
and TIP=0. In practice, this resulted in unstable behaviour, with multiple small
TIP variations around the triggering threshold (13 probability-change triggers in
Scenario 5, still excessive for ETSI compliance).

Based on these observations, the final choice converged towards a hybrid solution:
discrete mapping with exponential growth. This method integrates the boundedness
and interpretability of interval-based approaches with the realism of exponential
escalation. The TTC domain is divided into N discrete intervals between TTCmin

and TTCmax, but instead of being assigned constant values, each interval is weighted
according to an exponential law:

Let N be the number of discrete levels and [TTCmin, TTCmax] the operative
domain. The interval boundaries are defined as:
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interval(i) = TTCmin +
1
TTCmax−TTCmin

2
· e

growthrate·i/N − 1
e growthrate·N − 1 i = 0,1, . . . , N

(4.23)
with interval(0) = TTCmin and interval(N) = TTCmax. By doing this, N

interval widhts:

∆i = interval(i)− interval(i− 1) (4.24)

follow a geometric progression that produces narrower bins near TTCmin, high-
lighting the higher sensitivity due to the increasing possibility of a collision, and
wider ones near TTCmax, suggesting less urgency in terms of risk of impact.

Once the TTC sample falls into the i-th slot, the corresponding discrete proba-
bility is assigned as:

TIP (i) = 1− i

N
, (4.25)

so that TIP equals 1 when i = 0 (i.e. TTC ≤ TTCmin, unavoidable collision) and
decreases step by step down to 0 when i = N (i.e. TTC ≥ TTCmax, negligible risk).
This ensures that smaller TTC values correspond to higher collision probabilities,
as required by the logic of the triggering mechanism.

The definition of the growthrate parameter is crucial. It regulates how quickly
the TIP values increase across the intervals. A small growthrate (close to zero)
yields almost linear spacing, while a large growthrate produces a highly nonlinear
distribution, with low sensitivity at long horizons and sharp escalation as TTC
approaches the critical threshold. The correct computation of growthrate therefore
depends on the desired sensitivity profile. In our work, growthrate was tuned as a
design parameter, ensuring that the escalation within the interval domain reflected
the nonlinear perception of risk while remaining ETSI-compliant. Following the
approach suggested by [10], we defined growthrate relative to the maximum horizon
TTCmax, so that the scaling adapts automatically to different operational ranges.
This guarantees that the mapping remains consistent across scenarios with different
maximum TTC values, while providing the flexibility to adjust the steepness when
higher or lower sensitivity is required.

Applied to the simulation scenarios, the discrete exponential mapping showed
the most balanced behaviour. In Scenario 5, it triggered 13 VAMs due to proba-
bility changes, a significant reduction compared to the 24 of fixed intervals, while
maintaining 12 mandatory triggers under the TTCmin threshold, identical to the
other methods. In Scenario 8, where the dynamics were less critical, it produced
only one probability-change trigger compared to ten with fixed intervals, again
proving its efficiency. The method therefore eliminated the discontinuities of fixed
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intervals, the premature warnings of linear mapping, and the instability of pure
exponential functions, while still capturing the nonlinear escalation of urgency.

In conclusion, discrete mapping with exponential growth emerged as the most
suitable strategy, striking a balance between theoretical soundness, practical appli-
cability, and compliance with ETSI standards. Its flexibility through the growthrate
parameter, its deterministic thresholds, and its empirical validation in simulation
make it a robust choice for real-time triggering in cooperative VRU protection.

4.4 Triggering logic implementation
The methodological path developed throughout this thesis led to the design and im-
plementation of the logic for triggering VAMs based on the Trajectory Interception
Probability, which is fully represented by the combination of the pseudocodes in
Algorithm 1 and Algorithm 6. This constitutes the central contribution of the work,
as it translates the analytical reasoning and comparative evaluation of mapping
strategies into a concrete procedure that can be directly integrated into VaN3Twin.
The final logic is described below:

Whenever a CAM or VAM is received by a pedestrian entity, the Local Dynamic
Map (LDM) is updated to incorporate the new information. As part of this
update, the TIP with respect to the sender of the message is recomputed and
stored, alongside all other relevant data, in the LDM of the receiving stationID.
Subsequently, during the periodic evaluation of triggering conditions, performed
every 100 ms, an additional check has been introduced compared to the previous
implementation [30]. Specifically, for each element in the LDM, the current TIP is
compared with the value associated to the last VAM transmitted by the receiver.
If any variation is greater than or equal to 10%, the triggering condition is satisfied
and a new VAM is generated and broadcast. Furthermore, whenever a new VAM
is triggered (independently of the condition that caused it), the LDM is updated so
that the current TIP becomes the new reference value for subsequent comparisons,
ensuring consistency in the evaluation of this condition. This design directly
implements the requirement defined in [8], which specifies that a new VAM should
be triggered whenever the reported TIP differs by at least 10% from the last
transmitted value. By construction, this mechanism makes the algorithm stateful,
since each decision depends not only on the current situation but also on its
relation to the previously reported risk level. It also acts as a filter for stability:
minor oscillations or measurement noise do not lead to unnecessary transmissions,
preventing redundant use of the communication channel.

The core of the logic lies in the computation of TIP itself, described by Algo-
rithm 1. The procedure responsible for this task, TIP, starts by retrieving the
kinematic states of the VRU and the interacting entity: positions, velocities, and
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accelerations form the input set required to project motion and estimate collision
risk. Before performing any detailed calculation, however, the algorithm evaluates
whether the other entity is close enough to be relevant through the IsInRange
function. This step is fundamental, as it avoids spending computational resources
on distant or diverging actors, preventing the generation of misleading risk values.
Instead, if the entities are within a predefined interaction range, the algorithm
proceeds.

The next stage is the computation of Time to Collision. This temporal metric
captures how long it would take, under current kinematic conditions, for the
trajectories of the VRU and the other entity to intersect. Once obtained, the TTC
value is immediately compared against two predefined thresholds: a minimum value
TTCmin and a maximum value TTCmax. If the TTC is smaller than TTCmin and
non-negative, the situation is considered critical: the time available for reaction is
insufficient, and the collision is effectively unavoidable. Conversely, if the TTC is
greater than TTCmax or equal to −1 (a sentinel value indicating no intersection
is expected), the encounter is deemed irrelevant for triggering purposes. These
thresholds enforce deterministic saturation: below TTCmin the TIP is fixed to
one, while above TTCmax the TIP is fixed to zero. This ensures full compliance
with ETSI requirements, which call for clear boundaries rather than asymptotic
behaviours, and provides interpretability to system designers and testers.

For TTC values lying within the interval (TTCmin, TTCmax), the algorithm
performs a further check of spatial plausibility. This is achieved through the
computation of the Space to Collision (s2c), which measures the minimum separation
distance expected at the predicted interception time. If the separation is larger
than a design threshold s2cth, the potential collision is deemed spurious: the TTC
may suggest that trajectories cross, but in practice the lateral or longitudinal offset
is sufficient to prevent any real risk. Only if the s2c is below its threshold does the
algorithm proceed to the actual probability mapping.

At this point, the TTC is converted into a TIP value through the discrete
exponential mapping that was developed in the thesis. This choice combines the
robustness of discrete quantisation with the realism of exponential escalation. The
interval between TTCmin and TTCmax is subdivided into N bins, whose boundaries
are defined exponentially rather than linearly. The formula is:

interval(i) = TTCmin + (TTCmax − TTCmin) e growthrate·i/N − 1
e growthrate·N − 1 , i = 0, . . . , N,

(4.26)
with interval(0) = TTCmin and interval(N) = TTCmax.

This construction produces narrower bins close to TTCmin, where sensitivity must
be higher, and wider bins near TTCmax, where variations are less relevant. Once
the current TTC has been assigned to one of these bins, the TIP is computed as:
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TIP (i) = 1− i

N
(4.27)

This ensures that smaller TTC values correspond to higher TIPs, with determin-
istic saturation at the extremes. The growth-rate parameter regulates how quickly
bin widths expand as i increases, effectively controlling the balance between resolu-
tion near imminent collisions and coarseness at safe horizons. In practice, a larger
growth-rate compresses bins near TTCmin, increasing reactivity, while a smaller one
approaches uniform spacing. This parameter is therefore a powerful design knob,
offering flexibility to adapt the mapping to different contexts while maintaining
ETSI compliance. Overall, the pseudocode is a practical implementation of the
carefully layered methodology developed throughout the thesis: a range check to
filter out irrelevant actors, a temporal check to enforce deterministic bounds, a
spatial plausibility gate to avoid incorrect predictions, and finally a mapping step
that discretises TTC into TIP through an exponential law, the core of the work.
Each of these stages contributes to a robust and interpretable mechanism, that
allows to trigger VAMs reliably in cooperative VRU protection scenarios. The use
of thresholds and discrete steps guarantees compliance with the ETSI 10% variation
rule, while the exponential spacing of intervals reflects the nonlinear escalation of
risk as TTC decreases.
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Algorithm 1 Main pseudocode for TIP computation
Require: CAM/VAM received by pedestrian
Ensure: Current TIP in respect to the stationID of the sender is stored in the

LDM

1: procedure UpdateLDM
2: newInterjectionProbability ← TrajectoryInterjectionProbability()
3: Store newInterjectionProability in LDM
4: end procedure

5: procedure TrajectoryInterjectionProbability
6: Retrieve p⃗v, p⃗w, s⃗v, s⃗w, a⃗v, a⃗w

7: r ← IsInRange(p⃗v, p⃗w, s⃗v, s⃗w, TTCmax)
8: if r = true then
9: t2c← ComputeTimeToCollision(p⃗v, p⃗w, s⃗v, s⃗w, a⃗v, a⃗w)

10: if TTC ≤ TTCmin and TTC ≥ 0 then
11: s2c← ComputeSpaceToCollision(p⃗v, p⃗w, s⃗v, s⃗w, a⃗v, a⃗w, TTC)
12: if s2c ≤ s2cth then
13: return 1
14: else
15: return 0
16: end if
17: end if
18: if t2c ≥ t2cmax or t2c = −1 then
19: return 0
20: else
21: s2c← ComputeSpaceToCollision(p⃗v, p⃗w, s⃗v, s⃗w, a⃗v, a⃗w, TTC)
22: if s2c ≤ s2cth then
23: return ComputeTIP(TTC, growthrate, num_intervals, TTCmin, TTCmax)
24: else
25: return 0
26: end if
27: end if
28: else
29: return 0
30: end if
31: end procedure

In VaN3Twin, the entire logic has been implemented within the t2c C++ class,
where each of the functions described above is implemented as a separate module.
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This modular approach guarantees clarity, reusability, and scalability: each block
can be executed independently, while contributing to the overall pipeline that leads
from TTC computation to the TIP mapping and VAM triggering.

The state information required by the class is retrieved from two different sources.
For the sender, position, velocity, and acceleration vectors are directly extracted
from the content of the received message, VAMs in the case of VRUs and CAMs in
the case of vehicles. For the receiver, the same parameters are obtained through
the m_traciclient interface, which provides access to the live mobility data of all
entities present in the SUMO simulation. In this way, both actors in a potential
interaction are fully characterized at each computation step.

Regarding the parameters that control the mapping from TTC to TIP, which
are growthRate, TTC_min, TTC_max, and n_intervals these are defined within
the v2p-vam-80211p application. When a new t2c object is instantiated inside the
BSContainer, the chosen parameter values are passed to its constructor. This design
ensures that the t2c class remains focused on computation, while the configuration
logic is handled externally, leaving the parameters’ choice to the users, allowing
them to adjust the behaviour of the mapping function at runtime without modifying
the internal implementation of the class.

With this structure, the necessary inputs are defined and available. The t2c
class can therefore execute the full chain of functions, which are described more
in detail in the following sections, before applying the TIP mapping and deciding
whether the triggering condition for VAM transmission must be activated.

4.4.1 IsInRange: filtering entities
The IsInRange function, whose pseudocode is available in Algorithm 2, is used
as a preliminary filtering step to decide whether it is necessary to execute the
whole collision detection procedure. The rationale is simple: if two entities (a
vehicle and a VRU, or two VRUs) are not expected to get sufficiently close within
a predefined temporal horizon TTCmax, then a collision is highly unlikely, and
running the entire algorithm would only result in unnecessary computational
overhead. Introducing this check allows the system to optimize execution time,
which is particularly relevant in realistic scenarios with a large number of road
users exchanging messages.

The function operates by first estimating the positions that both entities will
reach after t2cth seconds under the assumption of constant velocity (lines 1–4 of
Algorithm 2). From these projected positions, it computes the distances that each
entity will have travelled in this time interval (lines 5–6). The larger of the two
values is taken as a reference (line 7), corresponding to the fastest entity.

Next, the function derives a so-called range of action around the faster entity
(line 8). This range, dmax, is not set equal to the travelled distance itself, but
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rather computed as the hypotenuse of a right-angled triangle whose two sides are
both equal to that distance, effectively scaling the radius by a factor of

√
2. This

more conservative approach introduces a safety margin, accounting for possible
unexpected changes in speed or direction.

Finally, the actual Euclidean distance between the two entities is computed
(line 9). If this distance is smaller than dmax, it means that the slower entity lies
within the action range of the faster one, and therefore the system triggers the full
collision detection procedure (lines 10–14). Otherwise, the function returns false
and the pair is discarded from further analysis.

In summary, IsInRange serves as an efficient pre-check mechanism: it reduces
the number of unnecessary collision detection calls, while at the same time ensuring
that no potentially critical situation is ignored. This makes it a crucial component
for scalability when implementing TTC- and TIP-based methods in VaN3Twin,
especially in dense urban environments with many VRUs.

Algorithm 2 IsInRange(p⃗v, p⃗w, s⃗v, s⃗w,, TTCmax) function
Require: p⃗v, p⃗w, s⃗v, s⃗w, max_s, TTCmax

Ensure: true if the distance between the two vehicles is small enough to call the
collision detection algorithm, false otherwise
p∗

vx
← pvx + svx · TTCmax ▷ future position of vehicle v (x-axis)

2: p∗
vy
← pvy + svy · TTCmax ▷ future position of vehicle v (y-axis)

p∗
wx
← pwx + swx · TTCmax ▷ future position of vehicle w (x-axis)

4: p∗
wy
← pwy + swy · TTCmax ▷ future position of vehicle w (y-axis)

dv ←
ñ

(p∗
vx
− pvx)2 + (p∗

vy
− pvy)2 ▷ distance traveled by v

6: dw ←
ñ

(p∗
wx
− pwx)2 + (p∗

wy
− pwy)2 ▷ distance traveled by w

d← max(dv, dw)
8: dmax ←

√
2 · d

dvw ←
ñ

(pvx − pwx)2 + (pvy − pwy)2 ▷ distance between the two entities
10: if dvw < dmax then

return true
12: else

return false
14: end if

4.4.2 ComputeTimeToCollision
The ComputeTimeToCollision function is the core component for estimating the
temporal horizon to a potential collision between two entities. Its goal is to
determine the time instant t2c at which the distance between them will be minimized,
under the assumption of known positions, velocities, and accelerations.
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The function first defines the expression for the relative distance D(t) between
the two entities as a function of time (line 1 of Algorithm 3). By taking the
derivative of this distance and solving dD(t)

dt
= 0, the algorithm identifies the set of

candidate instants T at which the distance reaches a minimum (line 2).
If all the candidate instants are negative, it means that the two entities were

closer in the past and are currently diverging, so no future collision is possible.
In this case, the function assigns t2c = −1 (line 4). Otherwise, the algorithm
selects the smallest positive solution, i.e., the first future instant at which the
entities approach each other most closely (line 6). This value is then returned as
the predicted time-to-collision (line 8).

Importantly, the convention t2c = −1 is used throughout the implementation to
indicate the absence of a collision path. This makes the output easy to interpret:
positive values correspond to the predicted time remaining before collision, while a
negative result signals that no collision will occur.

In practice, this function provides the temporal backbone for the entire method-
ology: it not only feeds the SpaceToCollision computation but also serves as the
basis for mapping TTC values into collision probability. Its ability to account for
acceleration makes it more robust than simpler time-based indicators such as PET
or PPE, and better suited for realistic traffic scenarios involving VRUs.

Algorithm 3 TimeToCollision(p⃗v, p⃗w, s⃗v, s⃗w, a⃗v, a⃗w) function
Require: p⃗v, p⃗w, s⃗v, s⃗w, a⃗v, a⃗w

Ensure: time-to-collision (t2c)
Define equation for D(t), the distance between the two entities
T ← {t | dD(t)

dt
= 0} ▷ set of times when distance is minimum

3: if all elements of T are < 0 then
t2c← −1

else
6: t2c← mint>0 T

end if
return TTC

4.4.3 ComputeSpaceToCollision: trajectory filtering
The ComputeSpaceToCollision function is designed to estimate the spatial separa-
tion that will exist between two entities (e.g., a vehicle and a VRU) at the specific
instant when a potential collision is expected to occur. In other words, while the
TimeToCollision function provides a temporal horizon, SpaceToCollision translates
this horizon into a physical distance.

The function begins by projecting the future positions of both entities after
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TTC seconds, this time explicitly including not only the effect of their current
positions and velocities, but also their accelerations (lines 1–4 of Algorithm 4).
This formulation makes the prediction more realistic, as it accounts for dynamic
changes in motion rather than assuming constant speed.

Once the predicted positions are obtained, the function computes the Euclidean
distance between them (line 5). This value, denoted as space-to-collision (s2c),
indicates how far apart the two entities are expected to be at the time of the
potential collision.

If s2c equals zero, the entities are expected to physically collide. Conversely,
a positive s2c value suggests that, although their trajectories come close in time,
a residual distance will remain between them. This distinction is particularly
important for filtering false positives: entities with a low TTC but a high s2c can
be safely ignored, as they will not actually intersect in space.

In summary, ComputeSpaceToCollision complements the TTC computation by
providing a spatial perspective on the predicted interaction. Used together, the
two functions enable VaN3Twin to discriminate between purely temporal overlaps
and actual collision risks, which is especially valuable in scenarios involving VRUs
where spatial margins are often very limited.

Algorithm 4 SpaceToCollision(p⃗v, p⃗w, s⃗v, s⃗w, a⃗v, a⃗w, TTC) function
Require: p⃗v, p⃗w, s⃗v, s⃗w, a⃗v, a⃗w, t2c
Ensure: space-to-collision (s2c)

p∗
vx
← pvx + svx · TTC + 1

2avx · TTC2

p∗
vy
← pvy + svy · TTC + 1

2avy · TTC2

p∗
wx
← pwx + swx · TTC + 1

2awx · TTC2

4: p∗
wy
← pwy + swy · TTC + 1

2awy · TTC2

s2c←
ñ

(p∗
vx
− p∗

wx
)2 + (p∗

vy
− p∗

wy
)2

return s2c

4.4.4 ComputeTrajectoryInterjectionProbability
The function ComputeTIP is the last piece of the main logic: it implements the
core mapping between the continuous TTC domain and the discrete probability
values that are going to be stored in the LDM to be subsequently evaluated in
the correspondent triggering condition. Once a valid TTC has been obtained and
verified to lie within the admissible range [TTCmin, TTCmax], the first step is to
normalize it with respect to these thresholds (line 4). This ensures that the mapping
only depends on the value position in the chosen range. The normalized TTC value
is then projected into a non-linear space through an exponential scaling factor
(lines 5–6), controlled by the growthrate parameter and the number of discrete
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intervals, to highlight that the collision probability should not increase linearly with
decreasing TTC: risks grow slowly at larger TTC values, but accelerate rapidly as
the collision becomes imminent, leading to a higher sensitivity in the region near
TTCmin.

The intermediate variable x (line 6) is computed through the inverse of the
exponential mapping, in order to actually identify the index of the interval corre-
sponding to the current TTC, which is later discretized via a floor operation and
bounded to avoid negative values (line 7). The actual TIP value is obtained by
inverting the index with respect to the total number of intervals (line 8), so that
lower TTC values correspond to higher TIP levels. Finally, the result is rounded
to one decimal place (line 9), both to comply with the ETSI specification that
requires a variation of at least 10% in TIP to trigger a new VAM, and to prevent
spurious oscillations that could be introduced by minimal floating-point differences.

In summary, this function transforms the continuous dynamics of motion into
a discrete, probabilistic representation of collision risk that is lightweight, inter-
pretable, and directly usable for triggering conditions. By combining thresholding,
exponential growth, and discretization, the mapping ensures that TIP values remain
stable at longer time horizons but respond aggressively when a collision is imminent,
which is exactly the behaviour expected in VRU protection systems.

Algorithm 5 ComputeTIP(t2c, growthrate, numIntervals, TTCmin, TTCmax)
function
Require: t2c, growthrate, numIntervals, TTCmin, TTCmax
Ensure: TIP

scaled← t2c− TTCmin

TTCmax − TTCmin
norm← exp(growthrate · numIntervals)− 1

x← log(1 + scaled · norm)
growthrate

interval← max(0, ⌊x⌋)
5: TIP ← 1− interval

numIntervals
TIP ← round(TIP, 1)
return TIP

4.4.5 TIP checks and updates
To provide a complete picture of the proposed methodology, it is also necessary to
describe how the new triggering condition is actually verified in order to decide
whether a new VAM should be generated and transmitted: the definition and
implementation of this procedure within VaN3Twin was one of the specific contri-
butions of this thesis. In particular, starting from the method defined by [30] in
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the VRUBasicService class, named checkVamConditions, the TIP-based triggering
condition was integrated, following the logic described in Algorithm 6.

The mechanism is straightforward: at every evaluation step, each VRU iterates
over the elements stored in its Local Dynamic Map (LDM). For every entry, the
current TIP value is compared against the one associated with the last VAM
transmitted by the same VRU. If the difference between the two values is greater
than or equal to 0.1, the triggering condition is satisfied, and a new VAM is
generated and transmitted. The condition has been placed immediately after the
four standard ETSI checks (heading, position, speed, and elapsed time) but before
the verification of safe distances. This choice reflects its conceptual role: while
the standard checks react to direct variations in state variables, the TIP condition
encapsulates a probabilistic assessment derived from them, thus fitting naturally as
a complementary evaluation. At the same time, placing it before the safe distances
check ensures that probabilistic risk variations are prioritized when present, while
the distance-based condition remains available as a conservative safeguard.

Finally, it is important to highlight that whenever a VAM is transmitted, the
VRU updates each entry of its Local Dynamic Map so that the most recently com-
puted TIP values become the new reference values associated with the transmission.
This ensures that subsequent evaluations are always performed against the last
disseminated state, avoiding redundant triggers caused by outdated comparisons
and maintaining consistency in the assessment of future changes.

Algorithm 6 TIP-based triggering condition (executed every 100 ms)
1: procedure TIPTriggeringCheck
2: for all elements e in LDM do
3: if |TIPcurrent(e)− TIPlastV AM(e)| ≥ 0.1 then
4: return Trigger VAM()
5: end if
6: end for
7: end procedure
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Chapter 5

Analysis and Results

This chapter presents the outcomes of the simulations carried out in VaN3Twin with
the TIP-based triggering condition. Each of the exploited scenarios is described in
Section 5.1, while the logic behind the choice of the parameter sets is explained
in Section 5.2. Then, the actual analysis and results obtained are extensively
explained: the objective is to evaluate how the new condition integrates with
the existing ETSI triggers and how its contribution evolves as traffic density and
interaction complexity increase.

5.1 Simulation scenarios
To analyse and validate the methodology developed in this thesis, all simulations
were carried out within the VaN3Twin framework using a dedicated and realistic
urban scenario. The environment used is the same as in [30], to ensure method-
ological consistency with the other triggering conditions previosuly defined and the
possibility of direct comparison. In detail, the simulation environment reproduces
a section of Corso Castelfidardo, located near the Politecnico di Torino campus,
which offers an urban structure particularly suitable for Vehicle-to-Pedestrian
(V2P) interaction and collision avoidance studies: the selected portion of the map
features two central roads composed of two lanes each, flanked by two secondary
single-lane roads. On both sides, wide sidewalks are accessible only to pedestrians,
while a dedicated bicycle lane runs along the right edge of the map, currently not
leveraged in order to maintain the focus on pedestrian–vehicle interactions. Three
pedestrian crossings are positioned at the upper, middle, and lower parts of the
segment, allowing multiple and realistic interaction points between vehicles and
VRUs. This configuration offers a balanced trade-off between geometric simplicity
and interaction density, making it ideal for studying the evolution of collision risk
and VAM triggering behaviour.
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The map was downloaded from the OpenStreetMap database [35], converted into
a .net.xml file using the netconvert tool, later refined through netedit. During
this refinement process, sidewalks and pedestrian areas were prioritised to ensure
proper accessibility, while all traffic lights were configured to remain constantly
green for both vehicles and pedestrians. This simplification was introduced to
guarantee continuous movement and to increase the odds for potential collision
conditions to present themselves, leading to the generation of meaningful risk
events for the analysis. Two different configurations were used throughout the
study, both based on the same map and simulation duration of 45 seconds, which
are characterized in two different scenarios. The first one, which will be referred
to as the preliminary scenario, consists of a single vehicle and one pedestrian
placed along intersecting trajectories that unavoidably lead to a collision at the
central crossing, which is forced by neutralizing all the preventive measures SUMO
takes autonomously in order to prevent dangerous situations. This setup served
as a controlled environment for selecting and fine-tuning the parameters of the
proposed methodology: in particular, we are referring to the choice of set of
values for the TTC thresholds, the growthrate and the space to collision limit.
Limiting the interaction within the simulation to a single pair of entities allowed
for the detailed ananlysis regarding the evolution of the triggering behaviour under
varying parameter configurations, whose results were later leveraged to assess the
sensitivity of the system’s responsiveness. After this calibration phase, the same
spatial and temporal configuration was extended into a complete scenario, shown
in 5.1, which includes a total of 24 pedestrians and 19 vehicles. Within this richer
environment, the same pedestrian–vehicle pair from the preliminary setup was
reintroduced among the other road users, ensuring the presence of at least one
explicitly forced collision event while maintaining a realistic background traffic
flow. This comprehensive configuration was used for the core part of our anlaysis,
regarding the comparison between the pre-TIP and post-TIP implementations,
as well as the evaluation of the overall efficacy, selectivity, and relevance of the
developed TIP-based triggering condition.
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Figure 5.1: Complete simulation scenario used in VaN3Twin for the analysis of
the TIP-based triggering condition.

Using the same environment for both scenarios ensures methodological continuity:
the first phase provides a controlled basis for parameter selection, while the second
delivers the validation and performance assessment under more complex and realistic
traffic dynamics. This approach guarantees that all observed differences in system
behaviour can be exclusively attributed to the introduction of the TIP condition,
rather than to scenario-dependent variations, which further reinforce the robustness
and reproducibility of the results that were obtained and studied.

5.2 Parameters’ choice
Before carrying out the core analysis regarding the effects of the new TIP triggering
condition, it was necessary to determine a correct set of parameters for the TTC-to-
probability mapping function. This step was crucial to ensure that the methodology
maintained two main characteristics: being realistic and consistent with ETSI
requirements. At the same time, it was fundamental to avoid configurations
that would lead to extreme or unbalanced behaviours. The four parameters that
were investigated were the minimum and maximum TTC thresholds (TTCmin

and TTCmax), the growth rate, which controls the steepness of the exponential
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increase of collision probability, and the space to collision limit, to avoid situations
where the temporal urgency signalled is actually realistic impossible due to the
spatial positions and trajectories of the entities taken into consideration. The
selection process was based on a series of systematic simulations carried out on the
preliminary scenario defined in Section 5.1. The following subsections present the
rationale and results for each parameter, supported by the graphs obtained during
the exploration campaign.

5.2.1 TTC thresholds
There are two thresholds to be defined in order to set a realistic range for the
Time-to-Collision (TTC) within the Trajectory Interception Probability (TIP)
computation: the lower bound, corresponding to the minimum TTC threshold
(TTCmin), and the upper bound, corresponding to the maximum TTC threshold
(TTCmax).

The parameter TTCmin defines the limit below which the collision probability
saturates to 1, meaning that the time left before impact is too short to allow any
preventive action. To assess the effect of this threshold, simulations were conducted
by varying TTCmin from 0.5 s to 4.5 s in steps of 0.5 s, for different TTCmax values
(5 s, 10 s, 15 s, and 20 s).

Figure 5.2: Number of potential transmissions corresponding to frames where
TIP = 100%, as a function of TTCmin for different TTCmax thresholds.

Figure 5.2 does not represent the number of VAMs actually transmitted according
to the ETSI triggering logic, but rather the number of potential transmissions
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that would occur if, in addition to the +/-10% variation rule, the system also
transmitted a message whenever the TIP reached 100%. This analytical metric
provides a useful quantitative indication of how frequently the probability function
reaches saturation before the TTC resets to −1 from being 100%, which happenes
whenever the moment of possible collision passes and situation is not critical
anymore, whether because it happened or due to the change of conditions within
the environment.

The observed trend confirms that:

• Very low TTCmin values (0.5–1.0 s): lead to almost no TIP = 100%
occurrences, since the probability saturates only in the very last instants
before impact, when the event is practically unavoidable.

• Intermediate TTCmin values (1.5–3.0 s): yield a moderate number of
near-collision situations, meaning the model still distinguishes between low-risk
and imminent-risk conditions.

• High TTCmin values (> 3.5 s): lead to premature saturation, resulting in
basically continuous detection of high-risk conditions, which would translate
into excessive triggering if applied in real time.

From this analysis, combined with the reference literature presented when the
TTC thresholding reasoning was introduced in Chapter 4, the possible values to
leverage in the mapping function for this parameter that were selected are:

TTCmin = {1.5, 2.5, 3.0} s.
These values capture a balanced trade-off:

• 1.5 s: corresponds to a reactive but selective configuration, marking only the
truly imminent collisions;

• 2.5 s: represents a realistic average response horizon for typical VRU–vehicle
interactions in urban contexts;

• 3.0 s: acts as a conservative upper bound, anticipating the warning in
borderline situations while still avoiding early saturation.

These thresholds allow the exploration of the model behavior from a strictly
ETSI-compliant conservative setup (1.5 s) to a more proactive risk signaling
configuration (3.0 s), while maintaining coherence with empirical evidence and
ensuring that the framework does not unrealistically over-trigger near-collision
alerts.

Moving on, the next parameter that was explored was TTCmax, which represents
the maximum horizon beyond which collision probability is forced to zero, as the
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situation is considered safe and no criticalities are expected, assuming the same
configuration is mantained. Therefore, it determines how far into the future the
system considers a potential collision relevant, which would beg the necessity of a
TIP computation. Figure 5.3 shows the number of VAMs triggered according to
the ETSI-defined triggering condition while varying the growth rate of the TIP
mapping for different TTCmax values and for three representative TTCmin settings
(1.5 s, 2.5 s, and 3.0 s).
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Figure 5.3: VAMs triggered as a function of the TIP growth rate, for different
TTCmax horizons and TTCmin values previously chosen.
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Overall, the results show a clear monotonic relationship between the growth
rate and the number of triggered transmissions: as the growth rate increases, the
number of VAMs decreases. This occurs because a steeper rise in the TIP curve
compresses the transition phase between TTCmax and TTCmin into fewer frames,
thereby reducing the number of +/-10% increments that can generate new messages.
The differences among the curves corresponding to distinct TTCmax values are
more evident with the usage of low growth rates, where the TIP evolves slowly
and it is exposed to more intermediate states. In such conditions, larger TTCmax

horizons encompass a longer portion of the approach and capture more potential
risk variations, while smaller horizons cut off many relevant situations. As the
ramp steepens, the distance between curves narrows, indicating that the influence
of TTCmax progressively diminishes when the TIP dynamics are too fast.

Although this first analysis reveals how the shape of the mapping (i.e., the
growth rate) affects the frequency of transmissions, in this phase the focus remains
on the TTC thresholds themselves, as they determine the effective time horizon
over which the collision probability is evaluated. The growth-rate parameter will
be further discussed later, once the TTC range is consolidated. Concentrating on
the thresholds allows us to isolate their effect on the anticipatory capability of the
system and to establish realistic temporal boundaries for risk estimation.

From this perspective, it becomes evident that TTCmax plays a crucial role in
defining the system’s temporal foresight. A very short horizon, such as TTCmax =
5 s, is not adequate because it excludes numerous relevant interactions and fails
to capture gradual risk increases, leading to systematic underestimation of near-
collision conditions and reduced situational awareness. On the contrast, a very
long horizon, such as TTCmax = 20 s, can theoretically be able of detecting
early variations in the TIP: however, it extends the operative window beyond the
realistically perceivable or controllable domain for both vehicles and pedestrians,
causing the system to react with too much anticipation in response to uncertain or
non-critical events, increasing the communication load without actually providing
a correspondent safety advantage. Furthermore, the marginal benefit between 15 s
and 20 s is minimal for most of the configurations, confirming that such extended
horizons add redundancy rather than useful anticipation.

For these reasons, TTCmax = 10 s emerges as the most suitable configuration
value. This horizon offers a balanced trade-off between responsiveness and selec-
tivity: it is long enough to include the relevant portion of the approach phase,
but also short enough to prevent premature triggering on non-critical interactions.
The 10 s threshold represents a realistic and widely adopted anticipation hori-
zon, consistent with reaction and braking times reported in literature for urban
VRU-vehicle encounters. Finally, looking at the comparison across TTCmin values
confirms the stability of these horizons, supporting their adoption as reference
parameters for the next stages of evaluation. After careful considerations done
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on these observations and on the results discussed regarding the lower bound
of the TTC range, the combination TTCmin = 1.5 s and TTCmax = 10 s was
selected as the baseline configuration for the following steps. This choice ensures
a coherent balance between early risk perception and communication efficiency,
enabling a timely ETSI-compliant triggering behavior, aligned with real-world
reaction capabilities.

5.2.2 Growthrate
The third parameter explored was the growth rate, which controls the steepness of
the exponential increase of collision probability between TTCmax and TTCmin. As it
was firstly observed in the previous section, lower values of this parameter generate
a smoother and slower increase of the probability, delaying its escalation towards
saturation, while higher values produce a much steeper progression, resulting in
sudden jumps and early saturation. To evaluate its effect, simulations were carried
out by varying the growth rate from 0.1 to 2.0 in increments of 0.1, in combination
with all previously defined threshold pairs for TTCmin and TTCmax.

Since the overall behaviour of the different growth rates was found to be
qualitatively consistent across the tested threshold combinations, the analysis
is presented here for one representative configuration, with TTCmin = 1.5 s and
TTCmax = 10 s, which corresponds to the baseline previously selected. Figure 5.4
illustrates the resulting evolution of collision probability over time for the different
growth rates.

The results highlight a clear dependency between the shape of the curve and the
dynamic behaviour of the probability. Growth rates below 0.3 lead to unrealistically
flat profiles, where the collision probability remains low for most of the approach and
increases only in the very last instants. This behaviour could delay the triggering
of awareness messages and compromise the responsiveness of the system in real
scenarios. Conversely, growth rates above 1.0 produce extremely steep transitions,
where the probability abruptly rises from near zero to saturation in a very short
time span. This generates unstable behaviour, characterized by sudden jumps that
could lead to oscillations in the triggering condition, especially when the TTC
fluctuates around the threshold boundaries.

Intermediate values between 0.4 and 0.6 provide the most balanced evolution of
the curve, with a progressive yet timely rise in collision probability. In this range, the
TIP mapping preserves a smooth and interpretable growth, maintaining continuity
between successive frames and ensuring that the +10% triggering condition behaves
predictably. Among these, a growth rate of 0.5 was selected as the reference
configuration for the remaining analyses. This choice offers a good compromise
between sensitivity and stability: it enables the system to anticipate risk escalation
early enough to meet ETSI responsiveness requirements, while preventing spurious
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Figure 5.4: Evolution of collision probability over time for different growth rates,
with TTCmin = 1.5 s and TTCmax = 10 s.

fluctuations that would increase channel load.
In summary, the combination of TTCmin = 1.5 s, TTCmax = 10 s, and a

growthrate = 0.5 provides a robust and well-balanced setup for subsequent valida-
tion, ensuring that the collision probability evolves smoothly and proportionally to
the perceived risk throughout the interaction.

5.2.3 Space-to-Collision threshold
The last parameter introduced in the analysis is the Space-to-Collision (s2c) thresh-
old, which defines the minimum distance expected to separate two entities at the
moment of their closest approach, assuming that both follow their current projected
trajectories. It is expressed in meters and directly complements the TTC metric,
providing a spatial perspective on the proximity of interaction. In practice, the s2c
is evaluated as the instantaneous distance between the two entities at the computed
TTC, a parameter fundamental in the proposed methodology in order to perform
a final check after the TTC processing part is over in order to understand if the
spatial features reflects the same implications as the temporal one, which ultimately
leads to the TIP computation part.

The concept and implementation of S2C originate from the work developed in
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[31], where it is leveraged as a filtering condition to determine whether entities are
close enough to justify executing collision detection, just as in the methodolohy
proposed in this thesis. In order to perform the final check previously mentioned,
two threshold values were tested: 5 m and 10 m: finally, the choice was to adopt the
lower possibility to perform the subsequent core part of the analysis. This choice
ensures methodological consistency with the previous implementation developed in
[31], from which the TTC computation leveraged here was also derived, as well as it
aligns with the typical spatial margins observed in urban vehicle versus pedestrian
interactions. The 5 m value effectively represents a conservative and realistic bound
for possible collision proximity, filtering out distant entities unlikely to interact,
while still being able to capture those within a critical safety range, ensuring that
the spatial and temporal urgency are aligned.

5.3 Results
The results presented in this chapter are obtained by applying the TIP-based
triggering condition to the complete set of scenarios introduced in Section 5.1. The
analysis was carried out in two complementary phases.

In order to inspect the effects and the resulting outcome of the developed TIP-
based triggering condition in Van3Twin, the main analysis was conducted on the
complete scenario defined in Section 5.1, applying the defined mapping function
with the final selection of parameters being as previously defined:

TTCmin = 1.5seconds, TTCmax = 10seconds, growthrate = 0.5, s2c = 5m

During the simulation run, three CSV files are produced to support post–processing
and reproducibility of the results. The three logs are complementary: the first
captures all computations related to Time-To-Collision (TTC), the second records
every VAM transmission, and the third provides a TIP–focused diagnostic trace to
explain why a TIP–based trigger occurred.

1. TTC_metrics
As previously explained, every time the LDM of an entity is updated during the

simulation, a distance check is performed which leads to TTC computation. Each
one of this operation equal to one new row in the log, comprised of many different
elements:

• timestamp: simulation time (ms);

• sender_ID: VRU or vehicle ID sending the VAM that led to the LDM update;

• receiver_ID: VRU ID performing the LDM update;
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• kinematic state variables: position components, speed, acceleration and
heading of both sender and receiver;

• TTC: time-to-collision value between the two entities at timestamp (s);

• s2c: space-to-collision value between the two entities at timestamp (m).

This file is the basis for all TTC distributions, threshold sweeps and sensitivity
analyses.

2. VAM_metrics
Every time a VAM is generated during the simulation, a new row is added to

the log with the characteristics of the message for further analysis. In our scope,
the main elements stored are:

• timestamp: simulation time (ms);

• station_ID: VRU ID sendind the VAM;

• time_elapsed_since_last_gen: how long it has been since that VRU sent
another VAM (ms);

• triggering_condition: enumerated cause (e.g., time/periodic, position,
speed, heading, safe distance, TIP);

This file serves as the primary source for the graphical analyses that have been
carried out to examine VAM transmissions in detail. It supports the evaluation
of the total number of messages generated, their temporal occurrences, and their
dissemination patterns. Through these analyses, it becomes possible to better un-
derstand the behaviour of the proposed methodology, assess how the new triggering
condition influences VAM generation compared to the previous implementation,
while deriving considerations on its performance and impact.

3. TIP_metrics
To make TIP-triggered VAMs available to be analyzed in detail in the post-

processing phase, a dedicated log is produced only for the messages transmitted
due to a variation in Trajectory Interjection Probability, each row containing:

• timestamp: simulation time (ms);

• sender_ID: VRU ID sending the VAM;

• snapshot of the sender’s LDM at that instant: list of all the elements
in the LDM of the sender at that time instant, each one comprised of two TIP
values, one related to the current VAM that is being generated and the other
to the previously transmitted one.
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By listing, for each LDM entry, both the TIP value at the current emission and
the TIP value at the previous emission of the same sender, this log makes explicit
which counterpart(s) caused the TIP variation that crossed the triggering threshold,
and by how much. This file is used to reconstruct TIP spikes, attribute triggers to
specific interactions, and verify compliance with the configured variation rule.

The three logs are time–aligned via timestamp, enabling cross–referencing (e.g.,
linking a VAM row to the corresponding TTC samples and to the TIP diagnostic
snapshot). Together, they allow (i) reproducible TTC calculations, (ii) complete
accounting of VAM generation across all causes, and (iii) fine–grained explainability
of TIP–based triggers.

These logs represent the starting point of the post–processing phase, where one
of the first analyses was performed in terms of absolute numbers to assess the overall
plausibility and consistency of the developed methodology. The objective was to
quantify how many VAMs were generated in total and to break them down by
triggering cause, in order to qualitatively evaluate whether the new condition could
lead to potential channel overuse or unbalanced dissemination behaviour, especially
thinking forward about scenarios with higher density in terms of pedestrians and
vehicles interacting during the simulation. Furthermore, this preliminary assessment
also provides a first overview of the transmission dynamics. The analysis was run
on the same scenario, both without the new triggering condition implemented and
with that one present

Table 5.1: Comparison of VAM transmissions before and after the implementation
of the TIP-based triggering condition.

Triggering cause TIP not implemented TIP implemented

Start dissemination 24 24
Position 158 132
Heading 19 18
Time 0 0
Speed 1 1
Safe distance 3 26
TIP 0 112
Total 205 313

The comparison reported in Table 5.1 shows a clear variation in the number and
distribution of VAM transmissions after the introduction of the TIP-based triggering
condition. The total number of VAMs increases from 205 to 313, corresponding to
an overall rise of approximately 52%. This confirms that the additional triggering
condition makes the system more responsive, generating new messages in situations
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characterised by a growing collision probability, which were previously not captured
by the baseline ETSI triggers.

Looking at the individual causes, it can be observed that the traditional con-
ditions (start dissemination, position, heading, time and speed) remain almost
unchanged. This behaviour confirms that the integration of the TIP-based rule
does not interfere with the normal operation of existing triggering mechanisms,
which continue to dominate in standard mobility situations. A minor decrease
in the number of position-based transmissions (from 158 to 132) suggests that
some interactions previously identified by position changes are now detected earlier
through the TIP function, effectively reducing redundant activations and slightly
rebalancing the message composition.

The most relevant effects are observed in the proximity and TIP triggers. The
proximity condition, which originally accounted for only three VAMs, increases to
26 in the TIP-enabled configuration. This variation does not indicate an error or
instability, but rather an indirect influence of the new trigger on the evaluation order.
In the implemented logic, the TIP condition is checked after time, position, heading
and speed, but before the safe distance rule. Therefore, when a TIP-based event
occurs, the corresponding VAM is transmitted earlier and immediately updates
the Local Dynamic Map (LDM) of nearby entities. At the next simulation step,
those neighbouring VRUs perform their safe distance evaluation based on refreshed
information, which can make the condition true for pairs that were previously
marginal.

This effect explains the change in the agents involved: in the baseline configura-
tion, the safe distance was triggered only by pedestrian 1007 for pedestrian 1006,
whereas with TIP enabled it occurs between pedestrians 1003 and 1006 in both
directions. The reason is that these entities now exchange updates more frequently
due to the TIP mechanism, leading to an earlier perception of proximity and a
higher chance of satisfying the safe distance threshold. As a result, the total number
of safe-distance-related messages increases, but these activations remain meaning-
ful, as they correspond to real updates of perceived risk rather than spurious or
redundant transmissions.

Finally, the 112 messages explicitly attributed to the TIP cause represent a
substantial and coherent addition to the system behaviour. They account for more
than one-third of the total messages in the TIP-enabled configuration, confirming
that the new trigger actively contributes to awareness generation without over-
whelming the channel. Overall, the integration of the TIP-based condition improves
the responsiveness of the system, particularly in potential collision scenarios, while
maintaining stability in normal operation. The increase in message generation is
thus not symptomatic of congestion but rather of an enhanced capacity to capture
and disseminate relevant safety information in a timely manner. To better interpret
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the numerical comparison reported in Table 5.1, a visual analysis of the dissemina-
tion and temporal occurrences of the VAMs was performed for both configurations,
before and after the implementation of the TIP-based triggering condition: the
main goal was to assess whether the additional transmissions introduced by the
new condition correspond to meaningful safety-related activations, or if they lead
to redundant communication. Figure 5.5 presents the dissemination of VAMs for
the baseline configuration, where the TIP condition was not active. The message
composition is strongly dominated by position-based triggers, which account for
more than 77% of all transmissions. The remaining causes, heading, time, speed
and proximity, represent minor shares, collectively contributing less than 25%.
This confirms that in the triggering logic implemented before the work done on
this thesis, the generation of VAMs is primarily driven by motion updates, while
the reaction to potentially critical situations is strictly limited to proximity-based
events, which remains negligible in this case, regardless of the hazardous situations
present in the scenario that will be discussed more in detail below.

Figure 5.5: Dissemination of VAMs per triggering cause before the implementation
of the TIP condition.

Enabling the TIP-based condition brings a substantial change to the VAM
dissemination, as it emerged previously from the numbers and as it is shown in
Figure 5.6. The proportion of position-based VAMs decreases to 42.2%, while the
new TIP category stands out, representing 35.8% of all transmissions. This shift
demonstrates that the additional logic’s impact is not limited to the increase of
the overall message count, but it also redistributes the activation causes to better
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reflect risk-aware behaviour. The system continues to rely on position updates for
general awareness, but it also allows for the logic to be reactive to evolving risk
conditions.

Figure 5.6: Overall dissemination of VAMs per triggering cause after TIP imple-
mentation, including hazardous situations.

The same comparison can be observed from a temporal perspective in Figures 5.7
and 5.8, which illustrate the occurrences of VAMs as a function of their inter-arrival
time, showing when and how frequent messages are sent depending on the cause.
The configuration before our contribution (Figure 5.7) shows that the majority of
transmissions are concentrated around periodicities of 2500–3500 ms, mainly due
to position-based triggers: this corresponds to a steady-state behaviour typical of
pedestrians moving at moderate speeds without abrupt changes in kinematics. Only
a few events appear in the low-periodicity region (below 1000 ms), mostly caused
by minor heading or proximity updates, leading to the conclusion that the system
had a limited responsiveness to rapidly changing situations. Instead, With the TIP
condition active (Figure 5.8), the occurrence pattern changes significantly once
again: a dense cluster of activations appears in the low periodicities region (below
500 ms), corresponding to VAMs generated when the estimated collision probability
increases steadily in a short time frame, leading to a potential dangerous situation.
This confirms that the TIP-based condition enhances system responsiveness exactly
when mostly needed: whenever risk escalation is detected. The second group of
messages around 2500–3500 ms remains visible and dominated by position-based
triggers, indicating that normal dissemination is preserved and not overshadowed
by TIP-induced messages. Finally, the periodic events at 5000 ms keep representing
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mainly passive users not involved in relevant interactions, as the majority of these
occurrences happened whenever a VRU started its dissemination after 5000 ms
from the beginning of the simulation.

Figure 5.7: Temporal occurrences of VAM transmissions before TIP implementa-
tion.

Figure 5.8: Temporal occurrences of VAM transmissions after TIP implementa-
tion.

Overall, the introduction of the TIP condition produces a dual effect: it increases
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the total number of VAMs, but it does not lead to redundant transmissions. Instead,
it redistributes them in time windows and contexts that are most safety-relevant,
achieving a key objective of the ETSI frammework: enhancing it by improving VRU
awareness proactively through selectively intensifying communication in potentially
dangerous contexts.

In order to better assess whether the TIP-triggered VAMs are effective indi-
cators for proactively identifying potential collisions and thus improving overall
system safety, the analysis was further extended to a per-pedestrian level. This
step enables a more granular understanding of the system’s behaviour, clarifying
which VRUs generate the highest number of VAMs and why, which pedestrians are
most influenced by the introduction of the new triggering condition, and how these
changes differ from the baseline configuration without TIP. Both dissemination
and temporal occurrences were therefore analysed for each pedestrian individu-
ally. From this analysis, it emerged that the pedestrians generating the largest
number of VAMs are also those for which the new TIP-based condition becomes
active. Conversely, pedestrians that never trigger the TIP condition maintain a
nearly identical behaviour to the baseline: their transmissions are dominated by
position or heading updates, and the total count of messages per entity remains
low and stable. The only exceptions with relevant activations due to proximity
are pedestrians 1003 and 1006, already discussed in Section ??, whose mutual
interaction produces additional VAMs in both configurations but without leading
to critical risk evolutions. For those pedestrians that do generate VAMs through
the TIP condition, each message was examined in detail to identify whether it
corresponded to an actual hazardous situation. This verification was carried out
using the TIP_metrics log, by inspecting the temporal evolution of the estimated
collision probability between each pedestrian and the surrounding vehicles. A
situation was classified as hazardous whenever a pedestrian exhibited a consistent
increase of collision probability over a short time window, typically a few seconds,
with respect to at least one vehicle. This procedure led to the identification of four
distinct hazardous events:

• Pedestrian 1003 vs Vehicle 0: collision probability starts increasing at
timestamp 31 977 ms and reaches 90% after approximately 2 s;

• Pedestrian 1007 vs Vehicle 5: collision probability starts increasing at
timestamp 18 486 ms and reaches 90% after about 8 s;

• Pedestrian 1014 vs Vehicle 7: collision probability starts increasing at
timestamp 33 271 ms and reaches 90% after roughly 7 s;

• Pedestrian 1014 vs Vehicle 3: collision probability starts increasing at
timestamp 30 271 ms and reaches 90% after approximately 5 s.
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Interestingly, the three pedestrians involved in these cases are also the ones
generating the highest total number of VAMs across the entire scenario. The
first case (pedestrian 1003 vs vehicle 0) is a special configuration intentionally
designed to force a collision by disabling SUMO’s internal safety logic for the
vehicle. As a result, this interaction shows the fastest escalation of risk, with the
TIP reaching its 90% threshold in around two seconds, a value comparable to the
human reaction time reported in literature (about 1.5 s). In contrast, the remaining
three cases display a more progressive increase in collision probability, typically
over 6–7 s, which demonstrates that the system is capable of detecting risk early
enough to allow potential avoidance or mitigation actions. This behaviour confirms
the proactive nature of the proposed approach and its ability to enhance VRU
awareness dynamically. Furthermore, each of these hazardous intervals corresponds
to several consecutive VAM transmissions. On average, at least seven VAMs
are generated during each critical phase, showing that the system maintains a
sustained level of communication throughout the period of increasing risk: this
excludes the possibility of such activations being random or caused by instantaneous
kinematic fluctuations; instead, they represent a consistent and meaningful response
to evolving collision probability. To provide a visual enhancement of this behavior,
the dissemination and occurrences analysis for each of these three VRU is reported
below (Figures 5.9–5.11): the hazardous situations are represented by the light-
orange share in the inner ring of the dissemination charts and by the corresponding
light-orange bars in the occurrence histograms.
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Figure 5.9: VAM dissemination and temporal occurrences for pedestrian 1003,
involved in an intentionally forced collision with vehicle 0.
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Figure 5.10: VAM dissemination and temporal occurrences for pedestrian 1007,
interacting with vehicle 5.
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Figure 5.11: VAM dissemination and temporal occurrences for pedestrian 1014,
interacting with vehicles 3 and 7.

Finally, to further validate the contribution of the proposed methodology to
implement the triggering condition, a quantitative comparison was carried out
within the same time windows corresponding to the four hazardous situations
identified above. For each of these intervals, the total number of VAMs generated
by the corresponding pedestrian was counted both before and after the introduction
of the TIP condition: in the TIP-enabled configuration, the messages triggered
specifically by the new condition were also highlighted separately. This allows to
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directly assess how the new logic modifies the system’s behaviour in critical phases,
without the influence of external scenario changes.

Table 5.2: Comparison of VAM transmissions within hazardous time windows,
before and after the implementation of the TIP condition.

Interaction Without TIP With TIP (total) of which TIP-triggered

Ped1003 – Veh0 0 4 4
Ped1007 – Veh5 2 8 6
Ped1014 – Veh7 1 8 3
Ped1014 – Veh3 7 17 6

Total 10 37 19

The results reported in Table 5.2 highlight several key findings. First, the total
number of VAMs transmitted within the hazardous intervals increases from 10 to 37
when the TIP condition is active, showing a clear enhancement of communication
during risk escalation. Furthermore, more than half of these additional messages
(19 out of 37) are directly triggered by the new TIP logic, confirming that the
increase is not random but driven by the estimated collision probability.

The case that needs to be highlighted the most is the Ped1003–Veh0 interaction:
in the configuration without the new triggering logic, no VAM is generated during
the critical phase, meaning that the system entirely fails to signal the developing
collision. This occurs because this interaction was intentionally designed as an
aggressive collision scenario: SUMO’s built-in safety mechanisms were disabled
to force the crash and test the system’s responsiveness. The fact that, with the
TIP condition enabled, four consecutive VAMs are transmitted within this short
two-second interval demonstrates the value of the new trigger: it detects and
communicates in an effective way the imminent collision, which would otherwise
remain unnoticed. This is a clear indicator of the system’s ability to provide
proactive warnings even in extreme situations.

For the other cases (Ped1007–Veh5, Ped1014–Veh7, and Ped1014–Veh3), the
number of VAMs roughly triples after the introduction of TIP, with a significant
share (from 30% to 75%) explicitly due to the new condition. This pattern indicates
that the system increases message frequency proportionally to the evolving risk
level, rather than uniformly across time or users. In particular, the Ped1014–Veh3
pair exhibits the highest overall communication density, with 17 VAMs transmitted
in a window of approximately five seconds, six of which are TIP-triggered. This
suggests that the new logic enables sustained information flow during the most
dynamic stages of risk evolution, offering sufficient lead time for cooperative safety
responses such as braking or path adjustment.
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Overall, these findings confirm that the TIP-based condition improves both the
selectivity and the timeliness of VAM transmissions. The system becomes more
sensitive to genuinely hazardous developments, as it produces multiple, consecutive
messages during escalating risk, while remaining stable in low-risk situations. This
dual effect reinforces the proactive design goal of the proposed approach: enhancing
VRU awareness and safety without introducing unnecessary channel congestion.

To get a quantitative overview of the whole scenario, the VAMs associated with
these four hazardous interactions amount to 19 messages, which represent 20.5% of
all TIP-triggered transmissions and 7.4% of the total VAMs generated during the
simulation. This fraction, also visible in Figure 5.6, highlights that a non-negligible
portion of the new TIP-based activations corresponds directly to situations where
the system identifies a genuine and increasing collision probability: this shows
that the methodology developed to implement this TIP condition increases the
awareness level of the system, as well as it contributes to the selective and timely
signalling of safety-critical interactions. In particular, the sustained message flow
observed during these hazardous episodes confirms that the mechanism operates
proactively, continuously updating the surrounding vehicles about the increasing
risk, and provides a time window sufficient for cooperative safety actions to be
taken, such as speed adaptation or trajectory adjustment.

Overall, these results demonstrate that the proposed TIP-based triggering
method successfully fulfils its intended function: it enhances the sensitivity of VAM
generation to real collision risks while maintaining stable communication elsewhere,
achieving a meaningful balance between responsiveness and efficiency in accordance
with the ETSI framework.

Once the effectiveness of the proposed methodology was demonstrated through
the comparative analyses described above, a further question naturally arose
regarding the relevance of the additional VAMs produced by the new triggering
logic. While the obtained results confirm that the TIP-based condition significantly
enhances awareness during genuinely hazardous phases, it remains essential to
verify whether these additional transmissions always correspond to meaningful and
safety-related events. Indeed, even though the overall number of TIP-triggered
VAMs observed in this scenario is not large enough to cause channel congestion, it
is important to ensure that each transmission contributes effectively to the system’s
purpose of protecting VRUs.

To address this aspect, all the VAMs activated by the TIP condition were
re-examined through the TIP_metrics log in order to determine whether they
corresponded to an increase or a decrease in the estimated collision probability.
According to the ETSI specification, the TIP variation triggering rule is defined
symmetrically — that is, a VAM is generated whenever the collision probability
changes by more than a fixed threshold, regardless of whether this change is positive
or negative. However, this formulation implies that the system transmits a new
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message also when the situation becomes safer, i.e. when the collision probability
decreases.

As shown in Figure 5.12, a non-negligible portion of the TIP-triggered messages
(approximately 30%) corresponds to decreases in collision probability. This means
that while the system correctly detects changes in the estimated risk, not all
such changes are equally relevant for awareness enhancement. In the context of
VRU protection, a decrease in collision probability does not provide actionable
information for safety: it merely reflects a return to a safer state, which does
not require urgent dissemination to other entities. Therefore, these transmissions,
although compliant with the ETSI rule, can be considered redundant in terms of
their contribution to situational awareness.

Figure 5.12: Division of all TIP-triggered VAMs by variation type: increases
versus decreases in collision probability.

Based on these considerations, a refinement to the ETSI definition is proposed:
TIP-based triggering should occur exclusively in the case of a positive variation
of collision probability, which corresponds to when the estimated risk is increas-
ing. This ensures that every additional VAM generated through this mechanism
corresponds to a meaningful and safety-relevant event, while avoiding redundant
communications in the opposite case. Such an adjustment would further reduce
the possibility of channel overload in dense traffic scenarios, as well as eliminate
unnecessary transmissions not contributing to the enhancement of VRU awareness.

To verify the potential effect of this modification, the global dissemination results
were recalculated by excluding all TIP-triggered VAMs corresponding to decreasing
collision probability. The adjusted distribution is presented in Figure 5.13: the
share of TIP-triggered messages decreases from 35.8% to 28.2%, while the fraction
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associated with genuinely hazardous situations increases slightly for mathematical
motives, but it remains around 8%, confirming that the most critical events are
preserved.

Figure 5.13: Adjusted dissemination of VAMs after removing TIP-triggered
messages corresponding to decreasing collision probability.

This refined outcome further reinforces the conclusions drawn from the previous
analyses. The TIP-based condition, when limited to positive variations, maintains
high responsiveness to genuine risk evolution while reducing unnecessary load on the
communication channel. It improves the relevance of generated messages, ensuring
that every TIP-triggered VAM either reflects an increasing collision probability
or anticipates a potentially hazardous situation. Such behaviour aligns perfectly
with the design goal of cooperative safety systems: to transmit information that is
both timely and meaningful for decision-making, avoiding redundant or irrelevant
updates.

Overall, the comprehensive analyses presented in this chapter confirm the effec-
tiveness, selectivity, and operational efficiency of the proposed TIP-based triggering
methodology. The introduction of the new condition substantially improves the
system’s capability to identify hazardous situations and maintain communication
continuity during risk escalation, while keeping message rates stable under nomi-
nal conditions. Pedestrian-specific analyses showed that the method dynamically
adapts to the evolution of collision probability, producing consistent transmissions
in high-risk phases and avoiding unnecessary bursts elsewhere. Furthermore, the
relevance refinement proposed above provides a practical improvement to the ETSI
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framework, ensuring that only meaningful variations of collision probability result
in new VAMs, thereby enhancing both safety effectiveness and communication
efficiency.

In conclusion, the TIP-based approach demonstrates strong potential as a
proactive mechanism for VRU safety enhancement. Indeed, it increases awareness
in the presence of developing hazards, as well as it introduces an interpretable and
computationally efficient logic compatible with real-time ETSI-compliant VAM
generation. By selectively amplifying communication in critical moments and
suppressing non-essential updates, the proposed refinement paves the way toward
a more responsive, reliable, and context-aware cooperative safety framework.
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Chapter 6

Conclusion

This thesis has presented the design, implementation, and evaluation of a real-time
framework for estimating collision probability in Vulnerable Road User scenarios,
developed within the ETSI-compliant triggering logic for VRU Awareness Messages.
The proposed methodology leverages the Time-to-Collision as a base metric and
maps it into a probabilistic indicator, the Trajectory Interception Probability,
enabling an interpretable and computationally efficient representation of instanta-
neous collision risk. The work addressed the need for a risk estimation model that
remains consistent with the ETSI TS 103 300-3 requirements, in particular with
the rule stating one of the seven triggering conditions for these kind of messages:
the transmission shoul occur whenever the collision probability with respect to
an entity in the LDM of the pedestrian changes by more than 10% compared to
the previously sent value related to that identified element. By grounding the
approach on TTC, the framework ensures two key features: interpretability and
temporal responsiveness, without requiring predictive or data-driven models that
would unnecessarily increase the computational complexity of the implementation,
without even assuring standard compliance. The chosen methodology requires the
definition of a set parameters in order to be able to map TTC values into TIP
ones. Through the simulations performed, several combinations were explored and
refined to identify an optimal configuration able to balance reactivity, stability, and
communication efficiency. The resulting setup, which is defined by TTCmin = 1.5s,
TTCmax = 10s, growthrate = 0.5 and s2c = 5m was shown to produce a smooth
but responsive evolution of the TIP, capturing risk escalation in an accurate way,
while preventing excessive triggering at the same time. This developed methodology
ensures that the system reacts promptly to real danger without saturating the
communication channel. Indeed, the results confirmed the effectiveness of the
TIP-based approach as a valid, lightweight, and fully ETSI-compliant solution for
collision risk estimation: the method demonstrated the ability to mirror the real
evolution of pedestrian versus vehicle encounters, snapshotting the transition from
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low-risk to possible collision conditions through a gradual increase in probability.
Moreover, as it relies on a continuous and frame-by-frame evaluation, the algorithm
maintains real-time responsiveness while offering high interpretability. The combi-
nation of these properties makes the approach particularly suited for cooperative
safety applications, where decisions must be both timely and explainable. From a
system-level perspective, the analysis revealed that the chosen parameters results in
a good trade-off between anticipation and communication stability. The approach
also proved scalable and computationally efficient, making it a promising candidate
for integration within cooperative ITS frameworks and future field deployments.
While the achieved results demonstrate the feasibility and robustness of the pro-
posed method, several research directions remain open for future development. The
first and most natural step concerns experimental validation in real-world condi-
tions. Field tests involving both pedestrians and vehicles are necessary to assess the
method’s performance under realistic noise, latency, and sensor uncertainty. Such
experiments would make it possible to evaluate the triggering behavior in dynamic
environments and verify that the +/-10% variation rule maintains its effectiveness
when facing unpredictable VRU trajectories. A second avenue of research involves
the extension of the current study to denser and more complex traffic scenarios.
While the present simulations focused on moderate-density settings, urban intersec-
tions and shared spaces often involve multiple simultaneous interactions. Analyzing
the TIP-based triggering behavior in these contexts would help quantify potential
channel congestion effects and assess the scalability of the proposed framework.
This would also allow the investigation of strategies for adaptive message scheduling
or prioritization, ensuring that the communication channel remains efficient even
under heavy network load. Finally, the methodology developed here could serve as
a foundation for proposing refinements to the ETSI standard itself. Future versions
of the specification could consider integrating adaptive or context-aware thresholds,
probabilistic filtering mechanisms, or combined temporal–spatial indicators that en-
hance both accuracy and efficiency. The present work provides a first empirical step
toward such evolution, offering quantitative evidence on how real-time probabilistic
triggering can improve situational awareness without overloading the network. In
conclusion, this thesis has proposed and validated a method that bridges theoretical
collision risk modeling with operational constraints of cooperative ITS communi-
cation. By combining simplicity, interpretability, and standard compliance, the
approach advances the understanding of how TTC-based metrics can effectively
support real-time safety mechanisms for VRUs. The proposed mapping framework
provide a reproducible and adaptable basis for future research, opening various
range of possibilities. In this context, the work represents a concrete step toward
more intelligent, proactive, and reliable cooperative safety systems in the urban
mobility landscape.
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