POLITECNICO DI TORINO

Master’s Degree in Computer Engineering
Artificial Intelligence and Data Analytics

Master’s Degree Thesis

Inverse Reinforcement Learning for Mastering
Long-Horizon Procedural Tasks from Visual
Demonstrations

Relatori Candidato
prof. Giuseppe Bruno Averta Luca Ianniello
prof. Francesca Pistilli

M.Sc. Andrea Protopapa

firma dei relatori firma del candidato

Anno Accademico 2024-2025

Voglio dedicare questa
tesi alla mia famiglia che
mi ha sempre sostenuto
sita da vicino che da
lontano in questi due
annt, ai Mier amict € al
miet coinquilini che
hanno alleggerito le
lunghe giornate di
Torino, alla testa che fa
sempre le scelte piu
difficili e al cuore che
deve sopportarne le
consequenze.

Summary

Robotic manipulation represents one of the most challenging domains in robotics, requir-
ing precise coordination and adaptability to complex environments. While Reinforcement
Learning approaches show promise, they face significant limitations in practical applica-
tions: reward engineering can be prohibitively complex, exploration in high-dimensional
spaces can be inefficient, and physical robot training requires extensive resources. Imita-
tion Learning (IL), particularly Inverse Reinforcement Learning (IRL), offers an alterna-
tive by learning directly from demonstrations rather than explicit reward signals.

However, current IRL approaches face several fundamental challenges when applied
to robotic manipulation tasks. Long-horizon manipulation tasks with multiple sequential
stages are difficult to learn end-to-end due to sparse rewards and temporal complexity.
Additionally, the effectiveness of different visual representation learning architectures for
IRL in manipulation contexts remains under-explored, especially when combined with
procedural decomposition strategies.

With procedural decomposition, complex tasks are broken down into manageable sub-
tasks, allowing the agent to focus on mastering each subtask before integrating them into
a complete solution. However, choosing the appropriate number of subtasks is an impor-
tant challenge, as too few may not capture the task’s complexity, whereas too many can
lead to overfitting and increased computational costs. Furthermore, balancing exploration
and exploitation becomes even more critical in this context because the agent must learn
from demonstrations while exploring new strategies.

In this thesis, we present INEST-IRL, a novel framework that integrates inverse Re-
inforcement Learning with procedural decomposition and active exploration strategies to
effectively learn complex manipulation tasks from visual demonstrations. The framework
leverages state-of-the-art visual representation learning models to extract meaningful fea-
tures from demonstrations, which are then used to learn the reward functions for each
subtask through embedding diversity enhancement. The active exploration strategy in-
corporates a reward component based on the difference between the current and previous
embedding frames within the same subtask, promoting more effective exploration.

Our results demonstrate that INEST-IRL outperforms existing IRL methods on com-
plex manipulation tasks in the X-Magical environment, particularly in scenarios that re-
quire long-horizon planning and sequential decision-making. We also provide an extensive
evaluation of the impact of different numbers of procedural steps and the contribution of
each component of the proposed framework to the learning performance.

Acknowledgements

Questa & molto probabilmente la parte piu difficile da scrivere dell’intera tesi, perche le
conoscenze, le nozioni, le idee si possono imparare o emulare, ma i sentimenti no. Cio che
una persona prova non si pud imparare e nemmeno percepire, anche se si pensa di aver
provato qualcosa di simile. Durante la mia esperienza a Torino, ho imparato a gestire
questi sentimenti, passando da momenti di gioia a quelli di solitudine e infine a momenti
in cui 'unica cosa da dire ¢ "Grazie". Il valore di questa parola ¢ mistico. Ogni giorno la
pronunciamo per qualcuno soltanto per aver fatto qualcosa per noi o per averci aiutato.
Dietro di essa, perod, nasconde amore, fiducia. Il potere che ha un Grazie e sconfinato. E’
capace di scacciare le nubi che riempiono la nostra mente. Ha anche il potere di allegerire
ogni peso che ci portiamo appresso ogni giorno ininterrottamente. Perche un Grazie,
accompagnato da un sorriso, fa capire che c¢’¢ qualcuno di cui ci si puo fidare e che &
pronto a dare una mano.

Quando ho scritto i ringraziamenti per la tesi triennnale, la vita era molto diversa.
Vivevo con i miei genitori e mio fratello in una citta che al tempo ritenevo grigia, sognando
di girare per altri posti in cerca di qualcosa che mi mancava. Adesso che sto scrivendo
i ringraziamenti per la tesi magistrale, soltanto 2 anni dopo, vivo con 3 persone di cui
conoscevo poco o nulla in quel momento di 2 anni fa e in una citta diversa, ma che ¢ un
po meno grigia. Non intendo dire che Torino sia una noiosa e monotona citta, ma che
le manca qualcosa di importante. Qualcosa che ho imparato proprio stando a Torino e
andando via da Caserta.

Cio che manca a Torino € molto semplice: la mia famiglia. Questo molto probabilmente
¢ l'insegnamento piu importante che mi ha dato questa esperienza. In passato ho sempre
sottovalutato la quotidianita di vivere in famiglia. Ogni momento insieme, che fosse un
pranzo della domenica o un uscita in giro, era sempre uguale. Adesso invece, pagherei
per rivivere ogni singolo momento del passato. Pagherei per godermi tutti quei momenti
che avevo considerato uguali. E se ora ho imparato cio, lo devo proprio alla mia famiglia.
Per loro non basterebbero milioni di Grazie per far capire quanto sono grato per avermi
dato 'opportunita di essere qui. Per tutti i sacrifici fatti, per tutte le chiamate ricevute
ogni giorno, per tutte le volte in cui ho ritrovato il calore di casa quando tornavo dopo
mesi e mesi. Per tutti gli abbracci e i saluti dati alla stazione, per tutte le volte in cui ho
disfatto la valigia e per tutte le volte in cui mi hanno aiutato a rifarla prima di partire.
Grazie di tutto cio, Mamma e Papa. Grazie per avermi permesso di vivere tutto cio e di
aver potuto imparare dai miei errori e dai vostri consigli.

Oltre a Mamma e Papa, devo ringraziare anche mio fratello, Marco. Ma a lui non devo

5

dire solo Grazie, ma anche Scusa. Scusa per non esserci stato sempre in questi 2 anni,
come avrei voluto. Scusa per non averti potuto veder crescere negli anni piu importanti
della tua vita. Ogni volta che sono tornato a casa, ho sempre visto come eri cambiato e
come eri cresciuto e cio ha fatto crescere anche me. Sono molto contento della persona che
sei e stai diventando, anche grazie ai tuoi amici. Ci sono stati tanti momenti in passato
in cui non ci sopportavamo a vicenda. Poi siamo cresciuti, e siamo finalmente diventati
fratelli. Probabilmente anche questo ¢ stato frutto della lontananza. Entrambi abbiamo
capito quanto I'uno era importante per I’altro nella quotidianita e tu sei importantissimo
per me. Grazie per avermi distratto da tutti i problemi che avevo quando tornavo a casa.
Grazie per avermi coinvolto sempre di pitu nella tua vita, anche quando ero a 800km di
distanza. Grazie per essere diventato cio che ho sempre voluto e forse cio che avrei sempre
voluto diventare io.

A Torino, pero, non sono stato solo. Anche se non c¢’e la mia famiglia, qui si & formata
un’altra vita, diversa, ma piacevole sotto alcuni aspetti. A renderla piacevole, ci sono i
miei amici e i miei coinquilini, con cui ho vissuto moltissime esperienze e non basterebbe
una tesi per raccontarle tutte.

Prima di parlare della mia nuova 'famiglia", devo ringraziare due persone, senza le
quali non sarei cio che sono diventato ora e forse senza di loro non avrei superato molte
avversita facilmente: Matteo e Domenico.

Ormai sono 5 anni che io e Matteo ci conosciamo. In questo tempo, il nostro rapporto
¢ cambiato moltissimo e sono sicuro che continuera a cambiare anche in futuro. Matteo,
per me, ¢ come un fratello adottivo. E’ quel tipo di amico che se deve dire qualcosa, lo fa,
anche se so che non mi piacera. E’ quell’amico con cui ti puoi confrontare su tutto, anche
su stupidaggini. E’ quell’amico a cui racconto tutto cio che faccio, dalla mattina alla sera.
Matteo € quell’amico che risponde sempre ai miei racconti, alle mie richieste, ai miei dubbi,
ed & quell’amico che c¢’¢ sempre, indipendentemente da tutto e da tutti. E la cosa che mi
piace di pitt di Matteo & che siamo simili, ma diversi. Paradossalmente, ogni situazione la
possiamo affrontare sia nello stesso modo sia in modo diverso e cio permette di imparare
qualcosa di nuovo I'uno dall’altro. Forse questo ¢ il segreto della nostra amicizia. Prima
di conoscere Matteo, venivo da svariate delusioni. Amici che ritenevo come fratelli che se
ne sono andati senza salutare e altri con cui non & mai scattato qualcosa. Con Matteo
invece, quel qualcosa ¢ scattato fin da subito. L’anno in cui ¢ stato a Stoccolma ¢ stato
particolare. Nonostante lo sentissi ogni giorno, avevo paura che quando sarebbe tornato,
lo avrei trovato diverso oppure che anche lui se ne sarebbe andato. Invece, non solo ¢
rimasto, ma siamo cresciuti entrambi e con noi il nostro rapporto. Grazie Matteo per
esserci sempre stato e spero di poterti ringraziare altre mille volte in futuro.

La mia amicizia con Domenico ¢ una vera eccezione alla regola. Ho sempre dubitato
delle amicizie a distanza, perche avevo sempre il dubbio che si potesse perdere 'intesa tra
le parti. Invece, mi sbagliavo. Perche, purtroppo, la mia amicizia con Domenico e stata
solo un’amicizia a distanza. Il purtroppo ¢ doveroso. Avrei voluto tantissimo vivere tante
avventure e tante esperienze con Domenico. Avrei voluto averlo nella mia quotidianita.
E un po ¢ cid che ho fatto. Anche Domenico ¢ quel tipo di amico come Matteo, che
ritengo come un fratello acquisito. Ma il rapporto che ho con Domenico ¢ diverso. E’
un legame che accomuna persone con un animo affine. Abbiamo interessi molto simili,
idee di pensiero equivalenti e sempre qualcosa di cui parlare. Proprio questa ¢ la forza del

6

nostro legame. In Domenico ho trovato una persona con cui potrei parlare per giornate
intere senza stancarmi e sapendo sempre che dai lui otterro sempre una risposta. Che sia
un messaggio scritto o un vocale da 30 minuti, lui rispondera sempre. E nel parlare ogni
giorno, siamo cresciuti molto. Sono veramente contento di averti visto raggiungere molti
traguardi e di averti visto superare molte difficolta. Grazie per avermi fatto crescere con
la tua fiducia e presenza e grazie per avermi reso il confidente della tua storia.

Oltre a Matteo e Domenico, devo ringraziare la mia "famiglia". Questa nuova famiglia
¢ composta da tre persone, una piu strana dell’altra e una piu diversa dell’altra. Proprio
questa diversita (e stranezza) mi hanno permesso di crescere molto durante questi 2 anni.
Il rapporto tra me e Michele e stato molto particolare. Siamo passati da momenti di
confidenze reciproche a momenti di astio e avversita. La maggior parte delle volte in cui
si creavano conflitti ¢ stata per colpa mia, forse perche la diversita tra me e Michele ¢
molta, sia dal punto di vista caratteriale sia per gli interessi. Proprio questi momenti mi
hanno dato una grande lezione: Tutti siamo diversi, ma tutti vogliamo qualcuno che ci
stia vicino. Prima di questo viaggio, conoscevo molto poco Michele, ma devo dire di essere
contento di avere avuto una persona come lui al mio fianco. E’ la persona che ti riesce ad
alleggerire momenti stressanti con una battuta o semplicemente parlando. E quando vedi
che cio non succede, vuol dire che devi essere tu ad alleggerire i suoi momenti stressanti.
Grazie Michele per avermi sopportato e supportato in questi momenti e per esserci stato
quando ne avevo piu bisogno. A differenza di Michele, conoscevo gia Luca. Nella tesi
triennale, avevo espresso il desiderio di volerlo conoscere di piu perche sapevo che mi
avrebbe potuto dare tanto. Cosl ¢ stato. Luca ¢ quella persona che vuoi sempre avere
vicino, perche sai che dira sempre qualcosa o di divertente o di utile. E’ quella persona che
c’e sempre quando gli si propone di fare qualcosa o spesso ¢ lui a proporre qualcosa da fare.
E’ una persona semplice, e nella sua semplicita riesce a trasmetterti calore e felicita. Poi
diciamo anche che Luca € una persona con cui si puo inciuciare tranquillamente, ma quello
¢ per altre storie. Sono molto contento di averti avuto vicino durante questo percorso.
Grazie dottore per avermi insegnato un po di semplicita in una vita complicata. Il terzo
membro della famiglia ¢ Francesco e purtroppo ¢ anche la persona che conosco da meno
tempo e con la quale ho vissuto meno esperienze. Tuttavia, in questi pochi momenti ho
capito perfettamente che tipo di persona ¢. Francesco ha una caratteristica che purtroppo
mi manca: 'adeguarsi ad ogni situazione. Pud succedere qualunque cose, lui si adeguera
e la rendera molto semplice. Magari non ¢ la persona piu affidabile che ho conosciuto,
perd & amico con cui puoi parlare di tutto e ti dara sempre dei buoni consigli. Spero che
la nostra amicizia continui e si fortifichi di piu in futuro e spero che possa imparare altro
da te.

Oltre a loro, voglio ringraziare tutti gli amici che ci sono stati sempre durante questa
esperienza. Voglio ringraziare Tonino, Manuel, Raffaele, Pietro e Andrea, per aver con-
tribuito alla mia crescita, qui a Torino e per tutti gli insegnamenti e le bellissime esperienze
che abbiamo vissuto. Voglio ringraziare anche Pietro e Manuel, che, nonostante la dis-
tanza, ci sono sempre stati dalla triennale e ancora mi aiutano ad imparare cose nuove
ogni giorno.

Voglio ringraziare anche i miei relatori, il Professor Averta, la Professoressa Pistilli, e
Andrea. Grazie mille per tutto I'aiuto che mi avete dato in questi 8 mesi affinche tutto
cio fosse possibile. Specialmente voglio ringraziare Andrea. Sei la persona che piu mi

7

ha aiutato a crescere dal punto di vista lavorativo durante questa esperienza e mi voglio
anche scusare con te per tutti i momenti tesi che ci sono stati durante il percorso.

Infine, voglio ringraziare il me del passato. Questa volta pero, il ruolo che ha avuto il
me del passato € stato molto, ma molto piu marginale rispetto al ruolo che hanno avuto
tutte le persone che ho nominato in questa pagina. Diciamo che il suo ruolo ¢ stato quello
di accettare una decisione difficile come quella di lasciare casa e cercare nuove sfide. Se
potessi incontrarti, avrei tante cose da dirti e da insegnarti, ma adesso cio che conta &
dove siamo arrivati e cio che faremo da ora in avanti, perché con questa tesi finisce un
percorso di studio di 18 anni e adesso inizia la vita vera, quella che tutti temono e anche
tu, come tutti, dovrai affrontare, dando sempre tutto, come hai sempre fatto.

Contents

List of Tables

List of Figures

1

2

3

Introduction

1.1 Problem Statement

1.2 Objective and Contributions
1.2.1 Inverse Reinforcement Learning from Visual Demonstrations
1.2.2 Procedural Learning
1.2.3 Imtrinsic Reward
1.2.4 INEST-IRL

1.3 Structure of the Contents

Background

2.1 Reinforcement Learning
2.1.1 What is Reinforcement Learning?
2.1.2 Markov Decision Process L.
2.1.3 Model-based vs Model-free Methods
2.1.4 Value-based Methods
2.1.5 Policy-based Methods
2.1.6 Actor-Critic Methods

2.2 Imitation Learning
2.2.1 Behavior Cloning
2.2.2 Adversarial Imitation Learning
2.2.3 Inverse Reinforcement Learning

2.3 Representation Learningo oL
2.3.1 Convolutional Neural Networks (CNNs)
2.3.2 Residual Networks L.
2.3.3 Vision Transformers
2.3.4 Temporal Cycle-Consistency (TCC)

Related Work
3.1 Imitation Learning in Robotics
3.2 Procedural Learning in Robotics

11

12

15
16
16
17
18
18
19
19

21
21
21
22
24
25
26
27
30
31
32
34
36
36
38
39
40

3.3 Intrinsic Reward in Robotics 47

4 Methodology 49
4.1 INtrinsic Exploration via SubTask Inverse Reinforcement Learning (INEST-

IRL) . 49

4.2 Training Procedure oo 50

4.2.1 Representation Learning 0L 50

4.2.2 Policy Learning 51

4.2.3 Reward estimation L oL 52

5 Experiments and Results 57

5.1 Experiment setupo 57

5.1.1 Environment used and Data Collection 57

5.1.2 Baseline Architectures L. 60

5.1.3 Evaluation Metrics 64

5.2 Ablation Studies 65

5.2.1 Ablation Study 1: Visual Perspective 65

5.2.2 Ablation Study 2: Subtasks Number 67

5.2.3 Ablation Study 3: Intrinsic Reward 70

5.3 Baseline Comparison 75

6 Conclusions and Future Work 81

10

List of Tables

5.1

5.2

5.3

5.4

9.5

5.6

5.7

Success rates for egocentric and allocentric models. The egocentric model
shows a higher success rate for placing two and three blocks correctly. . . .
End-of-episode subtask completion and success rates for the ST-IRL 1-
Subtask, ST-IRL 3-Subtasks, and ST-IRL 6-Subtasks models. The ST-IRL
3-Subtasks model achieves the highest success in placing two and three
blocks correctly.
End-of-episode subtask completion and success rates for the three models.
The embedding-based Intrinsic Reward model achieved the highest success
when three blocks were placed correctly.
End-of-episode subtask completion and success rates for different subtask
models with and without Intrinsic Reward. The embedding-based Intrinsic
Reward with 3 subtasks shows the highest rate for placing three blocks
correctly. L
Performance comparison of different backbone architectures across multi-
ple evaluation metrics. Lower MSE and MAE values indicate better per-
formance, whereas higher Spearman correlation values indicate stronger
alignment with the ground truth rankings.
Distances comparing the cosine similarity Gaussian for each model and sub-
task to the ground truth Gaussian plot. Shorter distances indicate better
performance in predicting the correct subtasks.
End-of-episode subtask completion and success rates for different base-
line architectures. INEST-IRL shows the highest success for placing three
blocks correctly, indicating its superior ability to complete the task in the
correct order. L

11

67

List of Figures

2.1

2.2

4.1

4.2

0.1

5.2

5.3

0.4

9.5

Markov Decision Process (MDP) Representation. The figure illustrates the
key components of an MDP, including states, actions, transition dynamics,
and rewards. L L L L e
Categories of Imitation Learning. The figure illustrates the three main
categories of imitation learning: behaviour cloning, adversarial imitation
learning, and inverse Reinforcement Learning. Each category has distinct
methodologies for learning from expert demonstrations.
Overview of the training pipeline. The process consists of two main phases:
representation learning from demonstration videos to learn a reward func-
tion, and policy learning using the learned reward to train an agent via
Reinforcement Learning. L
[Mustration of the reward function evolution through the task sequence.
The left panel shows the reward progression with three subtasks, whereas
the right panel illustrates the reward structure with six subtasks. Each
image in the plot indicates the completion of a subtask phase. The reward
function is designed to provide increasing incentives as the agent progresses
through the subtasks, culminating in a high reward upon task completion.
Example frames from the demonstration dataset, showcasing both allocen-
tric (left) and egocentric (right) viewpoints. The agent is seen manipulating
the colored blocks to move them into the target area at the top of the en-
vironment. . ..o Lo oL
Evaluation scores for the egocentric and allocentric models over 150 evalu-
ation episodes. The egocentric model demonstrates a higher average score
and lower variance, indicating more consistent performance across different
initial configurations. L
Evaluation scores for the 1 Subtask, 3 Subtasks, and 6 Subtasks models over
150 evaluation episodes. The 3-Subtasks model demonstrates the highest
average score and lowest variance. L.
Evaluation scores over 150 evaluation episodes. The embedding-based In-
trinsic Reward model demonstrated the highest average score and lowest
variance.o
Coverage of the embedding space during training. The embedding-based
Intrinsic Reward model achieves the highest coverage, indicating more ef-
fective exploration of the state space.

12

54

72

0.6

5.7

5.8

Evaluation scores for different subtask models with and without Intrinsic
Reward contribution over 150 evaluation episodes. The embedding-based
Intrinsic Reward model demonstrates the highest average score and low-
est variance, indicating more consistent performance across different initial
configurations.
Reward function plots for the INEST-IRL, XIRL, HOLD-R, and REDS
baselines over a never-seen demonstration. INEST-IRL demonstrated a
clear and consistent reward progression, indicating effective learning of the
task structure. L
Evaluation scores for the INEST-IRL, XIRL (Allo and Ego), HOLD-R, and
REDS baselines over 150 evaluation episodes. The INEST-IRL backbone
demonstrates the highest average score and lowest variance, indicating more
consistent performance across different initial configurations.

13

79

Flectere si nequeo superos, Acheronta
movebo
[PUBLIO VIRGILIO MARONE, Eneide]

Ti conviene lasciare un posto dove sei
qualcuno per andare in un posto dove sei
solo un numero?

[UN PROFESSORE, 2 ANNI FA|

Despite everything, it’s still you
[UNDERTALE]

Chapter 1

Introduction

Robotic manipulation is one of the most challenging domains in robotics. At its core,
robotic manipulation involves the interaction between robots and objects in their envi-
ronment through physical contact to achieve the desired operations. As highlighted by
Kroemer et al. [1], manipulation encompasses a diverse set of tasks, including grasp-
ing, pushing, lifting, assembling, and rearranging objects. All these tasks require precise
control and sophisticated perception capabilities.

Despite significant progress, robotic manipulation faces several fundamental challenges
that limit its practical application.

 Perception challenges, as highlighted by Kroemer et al. [1], require robots to accu-
rately capture object properties including shape and pose. Many physical properties
must be inferred through interactions, creating a complex relationship between per-
ception and action.

 The physics of contact introduces additional complexity, with Billard et al. [2] noting
that contact dynamics are highly sensitive to initial conditions and involve transitions
between different states that require specialized control strategies.

e Long-horizon planning presents computational challenges due to the combinatorial
nature of action sequences and interdependencies between decisions, as identified by
Han et al. [3]. These planning challenges are compounded by the need for robust
adaptation when confronted with perceptual or execution-related uncertainties.

o Kroemer et al. [1] emphasize that generalization across novel objects, tasks, and
environments remains a persistent limitation, as robots trained in controlled set-
tings often struggle to transfer their skills to new situations. This generalisation
gap significantly constrains the practical utility of robotic manipulation systems in
environments where adaptability is essential, necessitating solutions that can extract
underlying manipulation principles rather than memorising specific instances.

Reinforcement Learning has emerged as a promising approach to address many of the
challenges in robotic manipulation. In contrast to traditional methods that rely on ex-
plicit models and handcrafted control strategies, RL enables robots to learn manipulation

15

Introduction

policies through trial-and-error interactions with their environment. This learning-based
approach offers several theoretical advantages, particularly for complex tasks in which
analytical solutions are difficult to derive.

1.1 Problem Statement

Reinforcement Learning allows to handle long-horizon tasks by maximising cumulative
rewards. This characteristic is particularly relevant for manipulation tasks that require
sequences of coordinated actions to achieve the desired object configurations. The ability
to learn from delayed rewards theoretically enables agents to discover action sequences
with beneficial long-term consequences, even when the immediate outcomes appear sub-
optimal.

However, the use of Reinforcement Learning in robotic manipulation tasks presents
several challenges. One of these is the reward specification problem. Designing reward
functions that effectively guide learning toward desired manipulation behaviours is chal-
lenging. As Billard et al. [2] noted, manipulation tasks often involve multiple objectives
and constraints that are challenging to capture in a single scalar reward signal. Sparse
rewards lead to inefficient learning, whereas highly shaped rewards may introduce unin-
tended biases that result in suboptimal or unstable policies.

Another significant challenge is learning to solve long horizon tasks. As highlighted by
Wang et al. [4], complex robotic manipulation tasks often require sequences of coordinated
actions that extend across long temporal horizons, creating several fundamental difficulties
for standard RL approaches to address.

The primary challenge in long-horizon tasks stems from the temporal credit assignment
problem, in which it becomes increasingly difficult to determine which actions in a long
sequence contribute to the final outcome. In Reinforcement Learning, this is shown as
sparse reward signals that provide limited guidance during the learning process, as the
agent may only receive meaningful feedback upon completing the entire task.

1.2 Objective and Contributions

The purpose of this thesis is to explore and overcome the challenges discussed above. The
proposed approach comprises three main components:

« Inverse Reinforcement Learning from visual demonstrations (Section 1.2.1), which
enables the learning of reward functions directly from video and image data, to
address the reward specification problem.

o Procedural Learning (Section 1.2.2), which decomposes long-horizon tasks into man-
ageable subtasks, facilitating more efficient learning and planning.

« An Intrinsic Reward contribution (Section 1.2.3) that encourages the agent to ex-
plore diverse states and actions within each subtask, thereby enhancing its ability
to discover effective strategies for the overall task.

16

1.2 — Objective and Contributions

The goal of this study is to develop an approach that enables robots to learn complex
manipulation skills from visual demonstrations, addressing the limitations of traditional
Reinforcement Learning methods. By leveraging the strengths of imitation learning, par-
ticularly inverse Reinforcement Learning (IRL), and incorporating Procedural Learning
techniques and Intrinsic Reward mechanisms, this study aims to create a robust and
efficient system for teaching robots long-horizon manipulation tasks.

1.2.1 Inverse Reinforcement Learning from Visual Demonstra-
tions

Imitation learning has emerged as a powerful paradigm for training agents to perform
complex tasks by observing expert performance. This enables agents to acquire skills
without explicit programming or reward engineering, making it particularly suitable for
domains in which defining appropriate reward functions is challenging.

The three main categories of imitation learning approaches are:

o Behaviour Cloning: learning a direct mapping from states to actions by mimicking
expert demonstrations.

o Adversarial Imitation Learning: employing a generative adversarial method where a
policy is trained to produce behaviors indistinguishable from expert demonstrations.

o Inverse Reinforcement Learning: recovering the underlying reward function that
explains expert behavior from demonstrations.

Among the different imitation learning approaches, Inverse Reinforcement Learning
(IRL) represents the most relevant paradigm for learning complex manipulation tasks
from visual demonstrations. Unlike behaviour cloning, which directly mimics actions,
or adversarial imitation learning, which matches state-action distributions, IRL aims to
recover the underlying reward function that explains expert behaviour directly from video
and image data.

The application of IRL to visual data, particularly demonstration videos, involves a
structured pipeline consisting of two primary phases: representation learning and pol-
icy learning. In the representation learning phase, visual demonstrations are processed
through encoder architectures to extract meaningful embeddings that capture the task-
relevant features. These embeddings act as compact representations of the visual state
space, facilitating subsequent reward inference.

The output of the representation learning phase is a trained encoder that maps visual
observations to embeddings that capture the essential task features and progress. These
embeddings serve as the foundation for inferring the reward function, which is typically
formulated as a distance metric in embedding space. States similar to those demonstrated
by experts receive higher rewards, whereas dissimilar states receive lower rewards. This
approach enables the system to learn reward functions directly from visual observations
without requiring explicit state or action labels to be defined.

In the policy learning phase, the learned reward function guides the optimisation of
a policy using standard Reinforcement Learning algorithms. As the agent interacts with

17

Introduction

the environment, its current visual observations are processed through an encoder to
determine rewards based on their similarity to the demonstrated states.

1.2.2 Procedural Learning

Procedural Learning has emerged as a fundamental paradigm for addressing the challenges
mentioned above by decomposing complex, long-horizon tasks into manageable subtasks
that can be learned and executed sequentially. As demonstrated by Liu et al. [5], this
approach leverages the insight that many complex behaviours can be understood as com-
positions of simpler and more atomic actions. By breaking down a complex manipulation
task into a sequence of intermediate objectives, Procedural Learning transforms a single
difficult learning problem into multiple, more tractable subproblems.

This decomposition offers several advantages. First, it simplifies the learning process
by allowing the agent to focus on mastering individual subtasks before integrating them
into a coherent, overall strategy. This stepwise approach can lead to more efficient learn-
ing because each subtask can be optimised independently, reducing the complexity of the
policy search space. Second, Procedural Learning facilitates better exploration of state
spaces. By defining clear intermediate goals, the agent can explore relevant regions of the
environment more effectively, thereby leading to improved sample efficiency and faster
convergence. Finally, it enhances the interpretability and modularity of the learned be-
haviours. Each subtask can be understood and analysed independently, allowing for easier
debugging and refinement of specific components of the overall task.

1.2.3 Intrinsic Reward

One issue that characterizes Procedural Learning in Reinforcement Learning is the exploration-
exploitation trade-off. In Reinforcement Learning, agents must balance the exploration of
new actions to discover potentially better strategies and the exploitation of known actions
that yield high rewards. This trade-off is particularly pronounced in long-horizon tasks,
where the consequences of actions may not be immediately evident, and the state space
can be vast and complex.

Dividing a long-horizon task into smaller subtasks can create issues in which the agent
focuses too much on exploiting known strategies for individual subtasks, potentially ne-
glecting the exploration of alternative approaches that could lead to better overall per-
formance. This can result in suboptimal policies that fail to generalise across the entire
task.

To address this challenge, an Intrinsic Reward contribution is proposed to encourage
the agent to explore diverse sets of actions and states within each subtask. This strategy
involves an additional contribution to the reward function based on the diversity of the
visited embeddings. By rewarding the agent for visiting a wide range of states, the Intrinsic
Reward contribution incentivises the agent to explore beyond the immediate goals of
each subtask, thereby enhancing its ability to discover novel strategies that may lead to
improved performance in the overall task.

18

1.3 — Structure of the Contents

1.2.4 INEST-IRL

The proposed approach, named INEST-IRL, integrates the strengths of Inverse Rein-
forcement Learning from visual demonstrations, Procedural Learning for long-horizon
tasks, and an Intrinsic Reward contribution to create a robust framework for teaching
robots complex manipulation skills. By leveraging visual data to infer reward functions,
decomposing tasks into manageable subtasks, and encouraging exploration through diver-
sity rewards, INEST-IRL aims to overcome the limitations of traditional Reinforcement
Learning methods and enable robots to learn effective manipulation policies in complex
environments.

This strategy is particularly relevant for robotic manipulation tasks, where the ability
to learn from visual demonstrations and adapt to new situations is crucial for practi-
cal applications. The integration of these components creates a comprehensive learning
framework that addresses the challenges of reward specification, long-horizon planning,
and exploration in a unified way.

1.3 Structure of the Contents

The thesis is structured as follows:

o Chapter 2 provides an overview of the key concepts and techniques relevant to
this thesis, including Reinforcement Learning, imitation learning, and representa-
tion learning.

o Chapter 3 reviews the existing literature on robotic manipulation, imitation learning,
and inverse Reinforcement Learning, highlighting the strengths and limitations of
current approaches.

o Chapter 4 details the proposed approach, including the dataset used, the structure
of the inverse Reinforcement Learning pipeline, and the contributions of Procedural
Learning and Intrinsic Reward.

o Chapter 5 presents the experimental setup, evaluation metrics, and results of ap-
plying the proposed approach to various robotic manipulation tasks. It includes
comparisons with baseline methods and ablation studies to assess the contribution
of each component.

o Chapter 6 summarises the findings of the thesis, discusses their implications for
robotic manipulation, and outlines potential directions for future research.

19

20

Chapter 2
Background

This chapter provides an overview of the key concepts and techniques useful for under-
standing this thesis. In detail, this chapter covers the fundamental concepts of Rein-
forcement Learning, starting from the Markov Decision Process (MDP) and the different
types of algorithms, such as value-based, policy-based, and actor-critic methods. Then,
it introduces the concept of Imitation Learning, with a focus on Inverse Reinforcement
Learning (IRL) from images. Finally, the techniques used for representation learning, in-
cluding Convolutional Neural Networks (CNNs), Residual Networks, Vision Transformers,
and Temporal Cycle-Consistency (TCC), are discussed. These concepts are essential for
a better understanding of the methodology and experiments presented in the following
sections of this paper.

2.1 Reinforcement Learning

2.1.1 What is Reinforcement Learning?

Reinforcement Learning (RL) is the fundamental paradigm of Machine Learning and Ar-
tificial Intelligence that focuses on training agents to make sequences of decisions by
interacting with an environment. As defined by Sutton and Barto [6], an agent learns to
achieve a goal by receiving feedback in the form of a reward or penalty.

To properly contextualise Reinforcement Learning, it is important to understand Ar-
tificial Intelligence (AI) and Machine Learning (ML) and how Reinforcement Learning
differs from other learning paradigms. Artificial Intelligence refers to the development
of computational systems capable of performing tasks that would typically require hu-
man intelligence. These tasks include reasoning, problem solving, understanding natural
language, and visual perception and recognition. Machine Learning, as a subset of Al,
represents a paradigm shift from traditional programming approaches. Rather than ex-
plicitly programming a computer with specific rules for every situation, machine learning
algorithms enable systems to automatically learn patterns from data and improve their
performance based on experience. This capability allows machine learning systems to
adapt to new scenarios and handle complex problems that would be impractical to solve

21

Background

using conventional programming techniques. Machine Learning can be categorised into
different paradigms, including supervised, unsupervised, self-supervised, and Reinforce-
ment Learning.

In supervised learning, algorithms learn a function from labelled training data by map-
ping inputs to known outputs under direct supervision. In this case, the given dataset
is composed of input-output pairs, and the model learns to predict the output from the
input on unseen new data. On the other hand, unsupervised learning works with unla-
belled data to discover hidden patterns or intrinsic structures without receiving explicit
feedback. Self-supervised learning, a relatively new paradigm, autonomously generates
supervisory signals from the data structure, creating pseudo-labels for training.

Reinforcement Learning differs from these approaches in several key aspects, as high-
lighted by Arulkumaran et al. [7]. Unlike supervised learning, RL does not require
pre-labelled examples but learns through trial-and-error interactions. Kaelbling et al. [§]
describe how RL agents must sequentially make decisions and observe outcomes to max-
imise cumulative reward over time. The agent receives feedback only after completing
actions, often with delayed rewards, making it challenging to determine which actions
are advantageous. This temporal credit assignment problem is unique to Reinforcement
Learning. In addition, RL must balance exploration (trying new actions to discover better
strategies) and exploitation (using known effective actions), a trade-off that is not present
in other learning paradigms, such as supervised learning. The agent must balance exploit-
ing what it already knows to earn rewards and exploring less tested actions that might
lead to greater long-term success.

In the context of robotic manipulation, Kober et al. [9] demonstrated how Reinforce-
ment Learning offers distinct advantages, as it allows robots to learn complex manipulation
skills through interaction with the physical world, gradually refining their behaviour based
on task success rather than requiring explicit programming of every movement.

2.1.2 Markov Decision Process

state reward action
St Rt At
’ 4
Rt+1]
< Environment
St

) —B—E
n,,,// Rt+1 \

Figure 2.1: Markov Decision Process (MDP) Representation. The figure illustrates the
key components of an MDP, including states, actions, transition dynamics, and rewards.

22

2.1 — Reinforcement Learning

To better understand the fundamental concepts and elements of Reinforcement Learn-
ing, it is essential to introduce the Markov Decision Process (MDP), which provides a
mathematical foundation for modelling decision-making problems in RL.

As described by Kaelbling et al. [8], an MDP is defined as a tuple (S, A, P, R,~y) where

« S is a finite set of states representing all possible configurations of the environment.
Each state encodes the complete observable information necessary to determine the
optimal action at any time.

o A is a finite set of actions available to the agent. It includes all possible moves that
an agent can make in the environment.

« P is the state transition probability function, where P(s'|s,a) represents the proba-
bility of transitioning to state s’ when taking action a in state s.

e R is the reward function, where R(s,a,s’) defines the immediate reward received
after transitioning from state s to state s’ due to action a. It can be positive or
negative, depending on whether the action leads to desirable or undesirable results.
The return is the total discounted reward received over time, starting from a given
state and following a specific policy.

o v € [0,1] is the discount factor that determines the importance of future rewards
relative to immediate rewards.

The Markov Decision Process is based on the Markov property, which states that the
future state depends only on the current state and action and not on the entire sequence
of states and actions. Formally, this means that

P(si41]8¢, e, 8¢-1, p—1, ..., S0, a0) = P(5¢41|5¢, ar) (2.1)

This property significantly simplifies the Reinforcement Learning problem by eliminat-
ing the need to consider the entire history of states and actions. Reinforcement Learning
algorithms rely on this property to learn optimal policies efficiently.

The goal in an MDP is to find a policy 7 that maps states to actions (7 : S — A) in
a way that maximises the expected cumulative discounted reward, defined as

Ex Z WtR(Sm 7(S¢), St41) (2.2)
t=0

This policy guides the agent’s behaviour in the environment, determining which actions
to take in each state to achieve the highest cumulative discounted reward.

Kaelbling et al. [8] highlight two fundamental functions used to evaluate policies:
the state-value function V7 (s), which represents the expected return when starting in a
state s and following policy 7, and the action-value function Q™ (s, a), which represents
the expected return when starting in a state s, taking action a, and following policy 7
thereafter. These functions form the basis of many Reinforcement Learning algorithms.

23

Background

2.1.3 Model-based vs Model-free Methods

In Reinforcement Learning, algorithms can be categorised into two main approaches based
on how they learn and make decisions: model-based and model-free approaches. This
distinction is based on whether the agent explicitly learns a model of the dynamics of the
environment or directly learns optimal behaviours without modelling the environment.

Model-based methods, as described by Sutton and Barto [6], involve learning an ex-
plicit model of the environment that predicts state transitions and rewards. This model
represents the agent’s understanding of how the environment responds to its actions. Once
a model is learned, the agent can use it to simulate experiences and plan without directly
interacting with the robot’s actual environment. Using the learned model, the agent can
improve its ability by considering actions that allow it to achieve the best rewards. The key
advantage of model-based approaches is their high efficiency. They typically require fewer
interactions with the environment to learn effective policies because they can generate
synthetic experiences via simulations.

Notable model-based algorithms include the Monte Carlo Tree Search (MCTS), which
builds a search tree to find optimal decisions by simulating possible future states, and
Dyna, which integrates both real and simulated experiences from the learned model to
update the policy. As highlighted by Arulkumaran et al. [7], model-based methods are
particularly valuable in domains where interactions with the environment are costly, such
as robotics.

In contrast, model-free methods learn directly from experience without explicitly mod-
elling the environmental dynamics. These approaches focus on estimating value functions
or directly optimising policies based on observed rewards and state transitions. Sutton
and Barto [6] emphasised that model-free methods are often simpler to implement and can
be more effective in complex environments where accurate models are difficult to learn.

Model-free methods can be divided into two main categories based on how the policy is
updated: on-policy and off-policy methods. On-policy methods, such as SARSA, update
the policy based on the actions taken by the same current policy. In contrast, off-policy
methods, such as Q-learning, consider two policies: the target policy, which is to be
improved, and the behaviour policy, which the agent follows and uses to generate the
data. This allows off-policy methods to learn from experiences generated by different
policies, thereby enhancing the exploration and learning efficiency.

The most famous model-free algorithm is Q-learning and its variants. Q-learning is a
fundamental model-free algorithm that learns the value function by mapping the state-
action pairs to the expected returns. Its simplicity and effectiveness make it a popular
choice for various Reinforcement Learning tasks.

The choice between model-based and model-free approaches is based on the specific
problem and available resources. Model-based methods typically offer better sample ef-
ficiency but may suffer from model bias if the learned model is inaccurate. Model-free
methods are generally straightforward to implement and can handle complex environ-
ments; however, they often require more interaction with the environment to achieve
comparable performance. Recent research, as noted by both Sutton and Barto [6] and
Arulkumaran et al. [7], has focused on hybrid approaches that combine the strengths of
both paradigms to develop more efficient and effective Reinforcement Learning algorithms.

24

2.1 — Reinforcement Learning

Both approaches play important roles in the context of robotic manipulation. Model-
based methods can reduce the need for extensive real-world training, which is particularly
valuable when working with physical robots in real-world environments. However, the
complexity of modelling physical interactions in manipulation tasks often makes pure
model-free or hybrid approaches more practical for several applications.

2.1.4 Value-based Methods

Another important distinction between Reinforcement Learning algorithms is their rep-
resentation and optimisation of the agent’s behaviour. Three main categories can be
identified: value-based, policy-based, and actor-critic methods.

Value-based methods focus on estimating the value of states or state-action pairs to
derive optimal policies for the agents. These methods are based on the approximation of
the state-value function V(s) and action-value function Q(s,a).

As described by Pashenkova et al. [10], the core idea of value-based methods is to
iteratively improve the estimates of these value functions until they converge to their
optimal values. The two classical approaches are value and policy iterations. The value
iteration works by repeatedly applying the Bellman optimality equation as follows:

Viti(s) = max R(s,a) + 72P(s’|s, a)Vi(s") (2.3)

This update rule propagates the value information backward from the future states
to the current states. In contrast, policy iteration alternates between policy evaluation
(computing the value function for the current policy) and policy improvement (making the
policy greedy with respect to the current value function). Pashenkova et al. [10] analyse
these algorithms in terms of their computational complexity and convergence properties,
noting that while policy iteration often requires fewer iterations, each iteration can be
more computationally intensive.

A particularly influential value-based algorithm is the previously mentioned Q-learning,
which learns the optimal action-value function directly as follows:

Q(st,at) + Q(s¢,a) + [Tt + 7y max Q(5¢41,a) — Q(s4, at)} (2.4)

where « is the learning rate. Q-learning is an off-policy algorithm, which means that
it can learn the optimal policy while following a different behaviour policy, making it
particularly efficient.

The integration of deep neural networks with value-based methods has significantly
expanded their applicability to complex problems that involve high-dimensional state
spaces. Wang et al. [11] introduce the Duelling Network Architecture, a novel neural
network architecture designed specifically for value-based Reinforcement Learning. This
architecture explicitly separates the representation of the state values from the action
advantages.

Q(s,a) =V (s)+ A(s,a) — |A‘ZAsa (2.5)

Background

where V(s) estimates the value of being in state s and A(s,a) estimates the relative
advantage of taking action a in state s. The advantage function, defined as A7 (s,a) =
Q™ (s,a) — V™ (s), measures how much better a specific action is compared to the average
performance of the policy in the state. Wang et al. [11] demonstrate that this decompo-
sition helps the network learn which states are valuable without having to learn the effect
of each action in each state, leading to more efficient learning in many environments. The
authors showed that this architecture consistently outperformed standard Q networks in
multiple Atari games, particularly in environments with many actions.

Another significant advancement in value-based methods is the Deep Q-Network (DQN)
which combines Q-learning with deep convolutional neural networks to handle high-
dimensional visual inputs. DQN employs two key mechanisms to stabilise learning: ex-
perience replay, which breaks the correlation between consecutive samples by randomly
sampling from a buffer of past experiences, and target networks, which reduce the moving-
target problem by periodically updating a separate network used to compute target values.

2.1.5 Policy-based Methods

While value-based methods focus on learning value functions and deriving policies from
them, policy-based methods take a different approach by directly parameterising and
optimising the policy itself. As Peters [12] explains, these methods work by explicitly
representing the policy as a parameterised function my(als), which gives the probability
of taking action a in state s under the policy parameters 6. The goal is to determine the
parameters that maximise expected returns.

The fundamental theoretical foundation of policy-based methods is the Policy Gradient
Theorem, which provides an analytical expression for the gradient of the expected return
with respect to the policy parameters. According to Peters [12], this gradient can be
expressed as

VoJ(0) = E(s.a)~pn, [Vologma(als) - Q™ (s, a)] (2.6)

where J(6) is the expected return and Q™(s,a) is the action-value function for the
current policy. This formulation allows for the direct optimisation of the policy through
gradient ascent, without the need to compute the value functions.

One of the most fundamental policy gradient algorithms is REINFORCE, which esti-
mates the gradient using Monte Carlo (MC) sampling. The update rule for REINFORCE
is the following:

0«6+ aVe 10g W@(at|5t) . Gt (27)

where Gy is the observed return starting from time step t and « is the learning rate of
the model. Peters [12] noted that while REINFORCE is unbiased, it often suffers from
high variance in gradient estimates, leading to slow and unstable learning.

To address these limitations, various improvements have been made to the policy
gradient methods. Schulman et al. [13] introduced Proximal Policy Optimisation (PPO),
a significant advancement that offers better sample efficiency and stability. PPO addresses
a key challenge in policy optimisation: determining the appropriate step size for policy

26

2.1 — Reinforcement Learning

updates. Taking a step that is too large can lead to destructive updates that collapse the
performance, whereas steps that are too small result in slow learning.

As described by Schulman et al. [13], PPO achieves this balance through a clipped
objective function as follows:

LEHIP () = By [min(ry(0) Ay, clip(ri(0),1 — €1 + €) A,)| (2.8)

o (at]st)
0,14 (at]5t)
policy to that under the old policy, A; is the advantage estimate at time ¢, and € is

a hyperparameter that controls the clipping range. This clipping mechanism prevents
excessive policy updates by limiting the incentive for the new policy to deviate significantly
from the previous one.

Schulman et al. [13] demonstrate that PPO achieves state-of-the-art performance
across a variety of benchmark tasks while being much simpler to implement and tune than
previous policy optimisation methods. This combination of simplicity and effectiveness
has made PPO one of the most widely used Reinforcement Learning algorithms in practice,
particularly for continuous control tasks and robotics applications.

where 14(0) = is the ratio of the probability of the action under the new

2.1.6 Actor-Critic Methods

However, both Value-based and Policy-based methods have their limitations. Value-based
methods struggle with high-dimensional action spaces and may not effectively handle con-
tinuous actions. On the other hand, policy-based methods can suffer from high variances
in gradient estimates, leading to slow and unstable learning.

Actor-critic methods represent a hybrid approach that combines the strengths of value-
based and policy-based methods. As their name suggests, these algorithms consist of two
primary components: an actor that determines the policy (how to act) and a critic that
evaluates the policy by estimating value functions.

The seminal work of Konda and Tsitsiklis [14] established the theoretical foundations of
actor—critic algorithms. In their formulation, the critic estimates the action-value function
Q™ (s, a) or the advantage function A™ (s, a), which is then used to guide the actor’s policy
updates.

The update mechanism for the basic actor-critic method can be formulated as follows.

(St =1+ ’}/V(St+1) — V(St) (29)
01, — 91) + OdvétV&JV(St) (210)
O <+ Or + z0:Vy, log m(as|ss) (2.11)

where 0, is the temporal difference (TD) error, 6, is the parameter of the value function
approximator, and 6 is the policy parameter. The temporal difference (TD) error repre-
sents the difference between the observed reward and expected value, providing a signal
for both the actor and critic to update their parameters. The critic updates the value
function to minimise the TD error, whereas the actor updates the policy in the direction
suggested by it.

27

Background

Actor-critic methods offer several advantages over pure policy or value based ap-
proaches. By using a critic to provide a baseline for policy updates, they significantly
reduced the variance of the gradient estimates compared to methods such as REINFORCE,
leading to more stable and efficient learning. Additionally, they can operate in an online,
step-by-step manner rather than requiring complete episodes for updates, making them
more suitable for continuous tasks and environments in which the episodes may be very
long.

These methods have been particularly successful in robotics applications because of
their ability to handle continuous action spaces and sampling efficiency. In the context
of robotic manipulation, actor-critic methods can learn fine-grained control policies while
making efficient use of interaction data, which is often expensive to collect in physical
systems.

Several advanced actor-critic algorithms have emerged in recent years, with notable ex-
amples including the Deep Deterministic Policy Gradient (DDPG) and Soft Actor-Critic
(SAC) algorithms. DDPG extends the actor-critic method to deep Reinforcement Learn-
ing with continuous action spaces using deterministic policy gradients and techniques,
such as target networks and experience replay, to stabilise learning.

Although Actor-Critic methods have shown impressive performance, they also face
challenges. Balancing the learning rates of the actor and critic is crucial for stable conver-
gence because the two components must learn at appropriate speeds. Additionally, these
methods can suffer from high bias in their value estimates if the critic approximation is
inaccurate.

More recent algorithms have introduced various improvements to address these chal-
lenges, including entropy regularisation to encourage exploration, multiple critics to reduce
the overestimation bias, and sophisticated architectures that better handle complex state
spaces.

Soft Actor-Critic (SAC)

Soft Actor-Critic (SAC) is an advanced off-policy actor-critic algorithm introduced by
Haarnoja et al. [15] which represents a significant innovation in Reinforcement Learn-
ing for continuous action spaces. Unlike traditional Reinforcement Learning algorithms,
which seek to maximise the expected cumulative reward, SAC incorporates an entropy
maximisation objective that encourages exploration by rewarding the agent for behaving
randomly, in addition to seeking high rewards.

The foundation of SAC lies in the maximum entropy Reinforcement Learning frame-
work, where the objective is to maximise both the expected return and entropy of the
policy:

M=

J(m) = D Bsiampn (56, a1) + aH(m(]s))] (2.12)

t

Il
o

where H(7(-|s¢)) is the entropy of the policy at state s;, and « is a temperature
parameter that determines the relative importance of the entropy versus the reward. This
entropy term encourages exploration by rewarding the agent for maintaining stochastic

28

2.1 — Reinforcement Learning

behaviour, which helps to prevent premature convergence to suboptimal deterministic
policies.

As Haarnoja et al. [15] explained, SAC employs a stochastic policy that outputs a
probability distribution over actions, which is typically represented as a Gaussian distri-
bution in continuous action spaces. The algorithm concurrently learns three functions as
follows:

+ The policy (actor) me(als), which is responsible for selecting actions based on the
current state.

o Two Q-value functions (critics) Qg, (s, a) and Qg, (s, a), which estimate the expected
return of taking action a in state s.

The use of two Q-networks is a critical design choice that addresses the overestimation
bias common in value-based methods by taking the minimum of the two Q-values:

n Qo (51, ar) (2.13)
The Q-functions are updated to minimise the soft Bellman residual as follows:

Jo(0i) = E(s, a0)~D B (Qo,(st, a¢) — (r(se, ar) +7Eq,, [V(5t+1)]))2} (2.14)

where D is a replay buffer of past experiences, and the soft value function V'(s¢y1) is
implicitly defined as

V(sty1) =]Eat+1N7T¢ {Q(StJrl; ai1) — alog 7r¢(at+1|5t+1)} (2.15)

The policy (actor) is updated to minimise the Kullback-Leibler divergence between the
policy and a Boltzmann distribution induced by the Q-function:

Jr(¢) = Eg,p {an% [a log 7y (ay|s¢) — Q(sy, at)H (2.16)

A key innovation in SAC is the automatic tuning of the temperature parameter «,
which controls the trade-off between exploration (entropy maximisation) and exploitation
(reward maximisation) of the policy. This is achieved by formulating a as a learnable
parameter that is adjusted to maintain the target-entropy level.

Haarnoja et al. [15] demonstrate that SAC achieves state-of-the-art performance on
a range of continuous control benchmark tasks, outperforming prior methods in terms
of sample efficiency, stability, and final performance. The algorithm’s robustness to hy-
perparameter settings makes it particularly valuable for practical applications, including
robotics, where sample efficiency is crucial because of the high cost of collecting real-world
data required for training.

29

Background

2.2 Imitation Learning

Imitation Learning (IL) is a subtype of Reinforcement Learning in which an agent learns
to perform tasks by observing and mimicking expert demonstrations rather than through
explicit programming or trial-and-error interactions with the environment. As defined by
Zare et al. [16], imitation learning aims to enable agents to acquire skills or behaviours
by observing and replicating the actions of an expert demonstrator and inferring the
underlying policy or reward function that describes the expert’s behaviour.

The fundamental motivation for imitation learning stems from the challenges inher-
ent in traditional Reinforcement Learning approaches. In complex environments with
high-dimensional state and action spaces, sparse rewards, or long-horizon tasks, design-
ing appropriate reward functions is exceedingly difficult. Additionally, many real-world
tasks, particularly in robotics, require extensive interactions with the environment to
learn effective policies through trial and error, which can be impractical, time-consuming
or potentially dangerous. Imitation learning overcomes these challenges by using expert
demonstrations to accelerate the learning process and reduce the need for environmental
interactions.

According to Zare et al. [16], imitation learning algorithms can be categorised into
three primary approaches, each with distinct methodologies and theoretical foundations.

» Behaviour Cloning (BC) treats imitation as a supervised learning problem, directly
mapping states to actions by mimicking the expert’s behaviour through demon-
strated state-action pairs.

o Adversarial Imitation Learning (AIL) formulates the imitation problem as a distri-
bution matching task, where the goal is to train a policy that generates state-action
distributions indistinguishable from those of the expert demonstrations.

o Inverse Reinforcement Learning (IRL) aims to infer the underlying reward function
that explains the expert’s behaviour, under the assumption that the expert is opti-
mising some unknown reward function. Once this reward function is learned, it can
be used with standard Reinforcement Learning algorithms to derive a policy.

30

2.2 — Imitation Learning

Supervised
—»| Learning

» Optimal Policy

| Behavior Cloning

Reinforcement . .
Imitation L1, Reward | Leaming » Optimal Policy

Learning

Inverse Reinforcement Learning

Generator » Adversarial » Discriminator » Expert Policy

Generative Adversarial Imitation Learning

Figure 2.2: Categories of Imitation Learning. The figure illustrates the three main cate-
gories of imitation learning: behaviour cloning, adversarial imitation learning, and inverse
Reinforcement Learning. Each category has distinct methodologies for learning from ex-
pert demonstrations.

The strengths of imitation learning are particularly evident in complex high-dimensional
tasks, in which reward engineering is challenging. By observing expert demonstrations,
agents can efficiently learn to perform tasks without requiring carefully designed rewards.
This approach is especially valuable in robotics and human-computer interaction scenar-
ios, where natural demonstrations can guide the learning process. Furthermore, imitation
learning enables agents to acquire behaviours that may be difficult to specify but are easy
to demonstrate, such as natural movement patterns or task-specific heuristics.

Despite these advantages, imitation learning has some limitations. As highlighted by
Zare et al. [16], one significant challenge is the distribution shift problem, in which the
agent encounters states during execution that were not present in the demonstrations, re-
sulting in compounding errors. Additionally, imitation learning approaches often assume
that the demonstrations are optimal or near-optimal, which may not always be true. The
quality and quantity of demonstrations significantly impact learning outcomes, poten-
tially limiting generalisation to novel scenarios. Moreover, pure imitation approaches may
struggle with tasks that require exploration beyond the demonstrated behaviours.

Recent studies on imitation learning have focused on addressing these limitations us-
ing hybrid approaches that combine elements from different paradigms. These include
methods that integrate Reinforcement Learning with imitation rewards, approaches that
handle suboptimal demonstrations, and techniques that enable generalisation to novel en-
vironments and tasks. These developments have expanded the applicability of imitation
learning to increasingly complex real-world problems, particularly in robotic manipula-
tion tasks, where traditional Reinforcement Learning approaches encounter significant
challenges.

2.2.1 Behavior Cloning

Behaviour Cloning (BC) is the first category of Imitation Learning algorithm. This is
based on the formulation of the problem as a supervised learning task. As described by
Zare et al. [16], behaviour cloning directly learns a mapping from states to actions by

31

Background

treating expert demonstrations as labelled training data, where states are inputs and the
corresponding expert actions are target outputs.

The fundamental principle of behaviour cloning is to minimise the discrepancy between
the actions chosen by the learned policy and those demonstrated by the expert. Formally,
given a dataset D = {(s;,a;)}Y, of state-action pairs collected from expert demonstra-
tions, Behaviour Cloning aims to find a policy my parameterised by 6 that minimises the
following objective:

Lpo(0) = % > £mols), a0 (2.17)

where L is a suitable loss function, such as the mean squared error for continuous action
spaces or the cross-entropy loss for discrete action spaces. The policy my is typically
represented as a neural network that can approximate complex mappings from high-
dimensional state spaces to action spaces.

The primary strength of behaviour cloning lies in its simplicity and efficiency. It does
not require interaction with the environment during training, making it particularly valu-
able in scenarios in which such interactions are costly, dangerous, or impractical. For
instance, in robotic manipulation tasks, collecting expert demonstrations can be signifi-
cantly more efficient than allowing robots to explore the environment via trial and error.

However, behaviour cloning suffers from several limitations. The most significant chal-
lenge, as noted by Zare et al. [16], is the distribution shift problem, also known as the
covariate shift or compounding error. During execution, small deviations from the states
observed in the training data can lead the agent to unfamiliar states, where the policy
may make errors, potentially resulting in catastrophic failure. This issue arises because
the policy is trained only on states from expert trajectories and does not learn how to
recover from errors or handle novel situations.

In addition, behaviour cloning typically requires a large amount of demonstration data
to achieve good performance, particularly for complex tasks with high-dimensional state
spaces. It also assumes that expert demonstrations are optimal or near-optimal, which
may not always be the case. Suboptimal demonstrations can lead to the replication of
inefficiencies or errors present in expert behaviour.

To address these limitations, several extensions of the basic behaviour cloning frame-
work have been proposed. These include data augmentation techniques to improve gen-
eralisation, interactive approaches that allow the agent to query the expert in uncertain
states, and hybrid methods that combine behaviour cloning with Reinforcement Learning
to enable learning from both demonstrations and environmental interactions.

2.2.2 Adversarial Imitation Learning

Adversarial Imitation Learning (AIL) is the second category of Imitation Learning method-
ologies. This approach addresses some of the fundamental limitations of the behaviour
cloning techniques. As described by Zare et al. [16], AIL formulates the imitation problem
as a distribution-matching task, where the objective is to train a policy that generates

32

2.2 — Imitation Learning

state-action distributions that are indistinguishable from those demonstrated by an ex-
pert.

The foundational concept behind AIL is inspired by Generative Adversarial Networks
(GANs) [17], where two neural networks, a generator and a discriminator, are trained
simultaneously in a min-max game. In the context of imitation learning, the policy func-
tions as a generator, producing actions given states, whereas the discriminator attempts
to differentiate between state-action pairs from expert demonstrations and those from the
learned policy. Formally, this adversarial framework can be expressed as

min max E;rpllog D(7)] + Err[log(l — D(7))] (2.18)

™

where 7 is the policy being learned, mg is the expert policy, D is the discriminator, and
T represents the trajectory or state-action pair. The policy aims to minimise this objec-
tive, whereas the discriminator aims to maximise it, resulting in a policy that generates
trajectories that are indistinguishable from the expert demonstrations.

A key strength of AIL lies in its ability to address the distribution shift problem that
affects behavioural cloning. By considering imitation as distribution matching rather than
supervised learning, AIL implicitly accounts for the sequential nature of decision-making
and the temporal dependencies between states and actions. This allows AIL methods
to generalise better to novel situations and recover from errors, as the learned policy is
trained to match the expert’s state visitation distribution rather than simply mimicking
individual actions.

Furthermore, AIL approaches do not require explicit reward function engineering be-
cause the discriminator effectively learns an implicit reward function that guides the policy
optimisation. This characteristic makes AIL particularly valuable in complex environ-
ments in which reward designs are challenging. Additionally, AIL methods can often
learn from fewer demonstrations than behaviour cloning, as they leverage the power of
Reinforcement Learning to explore and improve on the demonstrated behaviours.

However, AIL has some limitations. As noted by Zare et al. [16], adversarial methods
typically involve a more complex optimisation process than behaviour cloning, requiring
careful balancing of the generator and discriminator training. This complexity can lead to
training instability and sensitivity to hyperparameter settings. Moreover, the adversarial
training process is generally more computationally intensive and requires environmental
interactions during training, which may be impractical in certain real-world applications,
particularly in robotics, where physical interactions are costly.

Recent advancements in AIL have focused on addressing these limitations using various
techniques, including more stable adversarial training procedures, sample-efficient policy
optimisation, and methods for extracting more information from limited demonstration
datasets. These developments continue to enhance the applicability of AIL to increasingly
complex imitation learning scenarios, particularly in domains requiring sophisticated be-
havioural patterns beyond what can be achieved through simple mimicry.

33

Background

2.2.3 Inverse Reinforcement Learning

Inverse Reinforcement Learning (IRL) is the third category of Imitation Learning. As
initially proposed by Russell [18], IRL aims to recover the underlying reward function
from expert demonstrations, operating under the assumption that an expert optimises an
unknown reward function. This approach is particularly valuable in scenarios where the
expert’s objectives are complex or implicit, making direct reward specification impractical.

The core idea of IRL is that the reward function can be directly understood from
the representations of the task. By inferring this function from demonstrations, IRL can
potentially capture an expert’s intentions more robustly than methods that directly mimic
actions. Formally, given expert demonstrations Dy = {1, T2, ..., 7,} consisting of state-
action trajectories, IRL seeks to find a reward function R(s,a) such that the expert’s
policy 7g is optimal with respect to the reward function. This can be expressed as finding
R such that

T
t
mp = argmax B . [gfy R(sy, at)] (2.19)

where « is the discount factor. Once the reward function is recovered, standard Rein-
forcement Learning algorithms can be used to derive a policy that optimises the reward.

Trajectories can be represented in different ways, such as sequences of state-action
pairs or more structured forms, such as graphs or images, depending on the nature of
the task and the available data. The choice of representation can significantly affect the
effectiveness of the IRL process.

Graph-based IRL methods leverage structured representations of the environment and
tasks in the form of graphs, where nodes typically represent entities or states, and edges
represent relationships or transitions. Kumar et al. [19] demonstrated that these struc-
tured representations can capture causal relationships and compositional knowledge more
explicitly than raw sensory inputs, enabling more sample-efficient and interpretable reward
learning. Similarly, Rodin et al. [20] utilised action scene graphs to represent the temporal
dynamics of egocentric videos, allowing for more effective modelling of long-term depen-
dencies and sequencing actions. These graph-based approaches excel in domains where
the relevant entities and relationships can be readily identified and modelled, providing a
compact and human-interpretable representation of the task’s structure.

In contrast, image-based IRL methods work directly with visual observations and learn
reward functions from raw pixel inputs without requiring explicit feature engineering or
structural assumptions to be made. These approaches, exemplified by the work of Ma et
al. [21], leverage deep neural networks to extract meaningful representations from visual
data, thereby enabling end-to-end learning of reward functions from demonstrations.

The pipeline of Inverse Reinforcement Learning from videos and frame images is com-
posed of two steps:

e Representation Learning: The first step involves learning a compact and informative
representation of the visual input, typically using convolutional neural networks
(CNNs) or other deep learning architectures. This representation should capture the
essential features of the scene that are relevant to the task. In this phase, a reward

34

2.2 — Imitation Learning

function was learned from visual data, allowing the model to associate specific visual
features with the corresponding rewards.

o Policy Learning: In the second step, the learned reward function is used to guide
the agent’s behaviour. The second step aims to learn a policy that maximises the
expected reward and can guide the agent to correctly complete the task learned in
the Representation Learning phase. The second phase typically involves the use
of Reinforcement Learning algorithms to optimise the agent’s policy based on the
inferred reward function.

The primary advantage of image-based methods is their flexibility and applicabil-
ity to diverse scenarios without requiring domain-specific knowledge or feature designs.
As demonstrated by Zakka et al. [22], image-based IRL can effectively learn cross-
embodiment reward functions, allowing robots to learn from demonstrations performed
by different embodiments, including humans, which is particularly valuable for robotic
manipulation tasks.

For the research presented in this thesis, image-based IRL was selected as the primary
approach for the following reasons. First, robotic manipulation tasks typically involve
complex visual scenes with numerous objects and spatial relationships that are difficult to
model explicitly as graphs without significant domain engineering. Image-based methods
offer a more direct path from perception to action, which aligns with the end-to-end learn-
ing paradigm that has proven successful in many modern robotic applications. Second,
as Jiang et al. [23] observed, although graph-based methods offer interpretability advan-
tages, they often struggle with scalability in diverse environments and require substantial
prior knowledge of the relevant entities and relationships. Conversely, image-based ap-
proaches can adapt more readily to new scenarios without requiring task-specific graph
construction or feature-extraction pipelines.

Furthermore, image-based IRL methods have demonstrated superior performance in
cross-embodiment settings, where the expert and learner may have different morphologies
or action spaces. This capability is crucial for the long-term goal of enabling robots to
learn from human demonstrations because humans and robots inherently possess different
embodiments. By learning reward functions directly from visual observations, image-
based IRL can abstract the specific details of the demonstrator’s embodiment and focus
on the task-relevant features of the environment, facilitating a more effective transfer of
skills from humans to robots.

A significant strength of IRL lies in its ability to generalise beyond the demonstrated
behaviours. By learning the underlying objectives rather than specific actions, IRL meth-
ods can adapt to novel situations in which optimal behaviour differs from demonstrations
but still serves the same goals. This is particularly valuable in robotics applications, where
environments and tasks may vary considerably between the training and deployment con-
ditions. Furthermore, as Kumar et al. [19] noted, IRL provides interpretable reward
functions that can offer insights into the decision-making process of experts, potentially
facilitating better human-AI collaboration.

However, IRL faces several challenges. This problem is fundamentally ill-posed be-
cause multiple reward functions can explain the same observed behaviour, necessitating

35

Background

additional constraints or assumptions to achieve unique solutions. This challenge can be
addressed by optimising the Representation Learning phase such that the learned reward
is more robust to variations in the input data and better aligned with the true objectives
of the task.

2.3 Representation Learning

Video and image processing form the foundation of modern visual perception systems, par-
ticularly in the context of imitation learning from visual demonstrations. As highlighted
by Li et al. [24], the ability to effectively extract, encode, and decode visual information is
crucial for enabling agents to understand and replicate complex behaviours demonstrated
through visual media.

Encoder-decoder architectures are central to modern visual processing frameworks.
An encoder transforms a high-dimensional visual input (such as RGB images or video
frames) into a lower-dimensional latent representation that captures the essential features
of the input. This process, often referred to as feature extraction or embedding, is critical
for reducing computational complexity while preserving task-relevant information. As
demonstrated by O’Shea and Nash [25], effective encoders should be capable of extracting
hierarchical features ranging from low-level patterns (edges and textures) to high-level
semantic concepts (object parts, complete objects and spatial relationships).

Complementary to the encoder, a decoder maps the compressed latent representa-
tion back to a higher-dimensional space by either reconstructing the original input or
generating new visual content. In the context of Reinforcement Learning from visual
demonstrations, decoders can be used for various purposes, including action and future
state predictions and reward estimation. The encoder-decoder paradigm enables the de-
velopment of efficient and effective visual representation learning techniques that form the
backbone of image-based IRL.

As previously discussed, IRL from visual demonstrations involves two key phases:
representation learning and policy optimisation. The effectiveness of the representation
learning phase directly affects the quality of the inferred reward function, which, in turn,
determines the success of the subsequent Reinforcement Learning phase. By examining
various visual processing architectures, this chapter provides the necessary background
for understanding how visual demonstrations can be transformed into meaningful repre-
sentations that capture task-relevant features and relationships, ultimately enabling the
effective transfer of skills from human demonstrators to robotic systems.

2.3.1 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a specialised class of deep neural networks
that have revolutionised the field of computer vision and, by extension, visual-based Re-
inforcement Learning. As described by Li et al. [24], CNNs are designed to automatically
and adaptively learn the spatial hierarchies of features from input images using a series of
specialised layers. This architecture is inspired by the organisation of the animal visual
cortex, where individual neurons respond to stimuli only in a restricted region of the visual

36

2.3 — Representation Learning

field known as the receptive field.

The fundamental building block of a CNN is the convolutional layer, which applies a
set of learnable filters (or kernels) to input data. Each filter is convolved across the width
and height of the input volume, computing the dot products between the filter entries and
the input at each position, resulting in a feature map that responds to specific patterns or
features in the input. O’Shea and Nash [25] explained that these filters typically detect
features such as edges, corners, and textures in the early layers, whereas deeper layers
capture more complex, abstract features such as object parts or complete objects.

A typical CNN architecture incorporates several components beyond the convolutional
layers. Pooling layers perform downsampling operations to reduce the spatial dimensions
of feature maps, thereby decreasing the computational requirements and providing trans-
lation invariance. Activation functions, typically Rectified Linear Units (ReLU), introduce
non-linearity into the network, enabling it to learn complex patterns. Fully connected lay-
ers, often positioned at the end of the network, integrate the extracted features for final
classification or regression tasks.

The hierarchical feature extraction capability of CNNs makes them particularly well-
suited for processing visual inputs in the context of Reinforcement Learning. Mnih et al.
[26] demonstrated this in their work on Deep Q-Networks (DQN), where they successfully
applied CNNs to learn control policies directly from high-dimensional visual input in
Atari games. Their approach processes raw pixels from the game screen through several
convolutional layers to extract relevant features, which are then used to approximate the
action-value function for Reinforcement Learning. This study established that CNNs can
effectively bridge the gap between raw sensory inputs and the abstract representations
required for decision-making in complex environments.

In the specific context of imitation and inverse Reinforcement Learning from visual
demonstrations, CNNs serve as powerful feature extractors during the representation
learning phase. Claessens et al. [27] demonstrated that CNNs can automatically ex-
tract state-time features from raw sensory data, eliminating the need for manual feature
engineering. This capability is crucial for image-based IRL, where the goal is to learn a
reward function directly from visual observations of expert demonstrations.

CNNs have proven particularly valuable for robotic manipulation tasks because they
can process visual information about the robot environment, including object positions,
orientations, and spatial relationships, without requiring explicit state representations.
This aligns with the end-to-end learning paradigm, in which a single network learns to
map directly from raw sensory inputs to task-relevant outputs, whether they are action
predictions or reward estimates.

Despite their strengths, CNNs have certain limitations that are relevant to visual Rein-
forcement Learning applications. They typically require large amounts of data for effective
training, which can be challenging to obtain in robotics. Additionally, standard CNNs
lack explicit mechanisms for modelling temporal dependencies in sequential data, which
are important for understanding demonstrations that occur over time. These limitations
have motivated the development of more sophisticated architectures, such as residual
networks and transformers, as well as specialised temporal learning approaches, such as
Time-Contrastive Networks, which are discussed in the subsequent sections.

37

Background

2.3.2 Residual Networks

Residual Networks (ResNets) represent a significant architectural improvement in deep
learning that addresses a fundamental challenge in training deep neural networks. As
comprehensively surveyed by Xu et al. [28], the key innovation of ResNets lies in the
introduction of skip connections, also known as residual connections, which allow infor-
mation to bypass one or more layers of a network. This solution mitigates the vanishing
gradient problem, which previously limited the depth of effectively trainable neural net-
works.

The core building block of a ResNet is the residual unit, which can be formally defined
as

y=F(x, {W;}) +x (2.20)

where x and y are the input and output vectors of the layers considered, F'(z,{W;})
represents the residual mapping to be learned, and the direct connection performing the
identity mapping x is the skip connection. This formulation fundamentally transforms
the learning objective: rather than directly fitting a desired underlying mapping H(x),
the network learns the residual function F(z) = H(xz) —z. As Xu et al. [28] explained,
this reformulation makes optimisation easier because it is typically simpler to optimise
the residual mapping than the original, unreferenced mapping.

The practical implementation of ResNets involves stacking multiple residual blocks,
each containing several convolutional layers with batch normalisation and ReLLU activation
functions. Skip connections periodically bypass these blocks, allowing the gradients to flow
more effectively during backpropagation. This design enables the training of substantially
deeper networks than previously possible, with state-of-the-art implementations reaching
depths of over 100 layers while maintaining or improving the performance.

Two particularly influential architectures in the ResNet family are ResNet-18 and
ResNet-50, which have become standard backbones for several computer-vision tasks.
ResNet-18 consists of 18 layers organised into four main blocks with two residual units
each, offering a good balance between computational efficiency and representational power.
ResNet-50, with its 50 layers and more complex bottleneck design, provides enhanced fea-
ture extraction capabilities at the cost of increased computational requirements. Both
architectures employ downsampling between major blocks to reduce the spatial dimen-
sions while increasing the feature channels, thereby creating a hierarchical representation
of visual information.

In the context of visual representation learning for imitation learning, ResNets offer
several advantages over standard convolutional neural networks (CNNs). The increased
depth enables the extraction of more detailed features from visual demonstrations, which
is particularly valuable when learning complex behaviours such as driving. As Xu et
al. [28] noted, skip connections also facilitate better gradient flow through the network,
resulting in more stable training dynamics and faster convergence, which is especially
beneficial when working with the limited demonstration data that are often available in
imitation learning scenarios.

Furthermore, the hierarchical nature of ResNet representations aligns well with the
requirements of inverse Reinforcement Learning, in which different levels of abstraction

38

2.3 — Representation Learning

may be relevant for reward inference. Lower-level features may capture immediate visual
cues, such as object positions, whereas higher-level features may encode more abstract
concepts, such as progress toward task completion or relationships between entities. This
multi-scale representation capability makes ResNets particularly suitable for extracting
meaningful reward-relevant features from visual demonstrations in robotics applications
such as Reinforcement Learning.

2.3.3 Vision Transformers

Vision Transformers (ViTs) represent a paradigm shift in computer vision architectures,
adapting the transformer model originally designed for natural language processing to vi-
sual tasks. As extensively reviewed by Han et al. [29], transformers fundamentally differ
from convolutional networks by replacing the local weight-sharing operations of convo-
lution with global self-attention. This architectural distinction enables ViTs to capture
long-range dependencies and the global context of images more effectively than CNN-
based approaches.

The core innovation of ViT lies in its image processing. Rather than operating di-
rectly on pixel-level data, the standard ViT first divides an input image into a sequence of
nonoverlapping patches. These patches were linearly projected into an embedding space
and augmented with positional encoding to preserve the spatial information. The re-
sulting sequence of patch embeddings was then processed using a series of transformer
encoder blocks, each consisting of multi-head self-attention (MHSA) and feed-forward
neural network (FFN) layers. The self-attention mechanism can be formally expressed as

. (QKT>
Attention(Q, K, V') = softmax Vv (2.21)
vy,

where @, K, and V represent the query, key, and value matrices derived from the
input embeddings, respectively, and dj is a scaling factor equal to the dimensionality
of the key vectors. This formulation allows each patch to attend to all other patches,
enabling the model to capture the relationships across the entire image regardless of the
spatial distance.

A particularly advanced implementation of vision transformers is DINOv2, which was
introduced by Oquab et al. [30]. DINOv2 represents a significant advancement in self-
supervised visual representation learning and is trained on a diverse dataset of images
without human annotation. It employs a teacher-student framework with a knowledge
distillation objective, in which the student network learns to match the output distribu-
tion of a momentum-updated teacher network. This training approach produces highly
transferable visual features that demonstrate strong performance across a wide range of
downstream tasks, from image classification to dense prediction tasks such as semantic
segmentation.

Compared with ResNets, Vision Transformers offer several distinct advantages. First,
the self-attention mechanism provides greater flexibility in capturing the global context
and modelling long-range dependencies, which is particularly valuable for understanding
complex scenes with multiple interacting objects. Han et al. [29] highlighted that this

39

Background

capability enables ViTs to better recognise relationships between distant image elements,
which traditional CNNs struggle to capture efficiently because of their locality-constrained
receptive fields. Second, Vision Transformers demonstrate superior scaling properties.
Their performance continues to improve with larger model sizes and more training data,
often surpassing the saturation points observed for convolutional architectures.

ViTs also offer computational benefits for certain operations. Unlike CNNs, which
process the entire spatial dimension at each layer, transformers process a fixed-length
sequence of patch embeddings, making the computational complexity independent of the
spatial resolution after the initial patch embedding stage. This property is advantageous
when processing high-resolution images or when computational resources must be allo-
cated more flexibly.

However, ViTs have certain limitations compared to ResNets. As noted by Han et
al. [29], ViTs typically require larger datasets for training from scratch because of the
lack of inductive biases inherent in CNNs, such as translation equivariance and locality.
The quadratic complexity of self-attention with respect to the sequence length also poses
computational challenges, particularly for high-resolution input or dense prediction tasks.
Furthermore, the discrete patch-based representation may not capture fine-grained local
structures as effectively as convolutional operations, potentially limiting performance on
tasks requiring detailed local feature extraction.

2.3.4 Temporal Cycle-Consistency (TCC)

Temporal cycle consistency (TCC) is a self-supervised learning framework designed to
address the challenge of learning representations from temporal data without explicit
supervision. As introduced by Dwibedi et al. [31], TCC approaches this challenge through
the concept of cycle consistency across time, that is, the idea that corresponding events in
different video sequences should be aligned in a temporally consistent manner, regardless
of variations in speed, viewpoint, or embodiment.

The fundamental principle underlying TCC is the establishment of dense and fine-
grained correspondences between temporal sequences in the data. Unlike methods that
rely on global video-level representations, TCC operates at the frame level and learns
embeddings in which the distance between frames reflects their temporal alignment in the
underlying activity. This is achieved through a cycle-consistency objective that enforces
a powerful constraint: if a frame from one video is mapped to a frame in another video
and then mapped back, it should return to a temporally close position in the original
sequence. Formally, the cycle-consistency constraint can be expressed as

d(fi, feyele) < € (2.22)

where f; is the original frame, feyqe is the frame reached after the cycle mapping
process, d is a temporal distance metric (typically the frame index difference), and e is
a small threshold. This constraint is implemented using a contrastive learning objective
that encourages the embedding space to preserve temporal relationships across sequences.
The TCC architecture consists of two primary components: a feature extraction back-
bone, which can be any suitable neural network, such as ResNet or Vision Transformer,

40

2.3 — Representation Learning

and a temporal embedding module that transforms the extracted features into a space in
which the Euclidean distances correspond to temporal alignment. The training process
does not require explicit labels or annotations of the correspondences. Instead, it leverages
the natural temporal structure of the video data.

When implemented with different backbone architectures, TCC demonstrates inter-
esting trade-offs. When paired with ResNet architectures, the TCC benefits from the
strong spatial feature extraction capabilities and inductive biases of CNNs, resulting in
stable training and good performance in tasks where spatial features are predominant.
As noted by Dwibedi et al. [31], the hierarchical nature of the ResNet features provides
a multiscale representation that can capture both fine-grained spatial details and higher-
level semantic concepts, which is valuable for establishing correspondences across visually
diverse sequences.

Alternatively, when combined with ViT architectures, such as DINOv2, TCC can lever-
age the global contextual understanding and long-range dependency modelling capabilities
of transformers. This configuration excels in scenarios involving complex scenes with mul-
tiple interacting elements, in which the global context is crucial for understanding the
temporal progression of activities.

However, each configuration presents its own specific challenges. ResNet-based im-
plementations may struggle with long-range temporal dependencies and scenarios that
require a global context understanding. Transformer-based implementations, while more
flexible in modelling complex relationships, typically require more computational resources
and larger datasets for effective training. They may also lack the strong spatial inductive
biases that make CNNs effective for visual tasks with limited amounts of data.

41

42

Chapter 3

Related Work

In this chapter, we review the existing literature on imitation learning, Procedural Learn-
ing and Intrinsic Reward and their applications in robotics. In detail, we focus on the
key methodologies, findings, and challenges identified in the literature and highlight the
most relevant works in each area. The aim is to provide a comprehensive overview of the
state-of-the-art in these fields and to identify potential avenues for future research.

3.1 Imitation Learning in Robotics

The evolution of imitation learning in robotics has been driven by the necessity to over-
come several critical limitations of traditional Reinforcement Learning approaches. As
discussed in Section 2.2, the challenge of reward engineering becomes particularly rel-
evant in robotic manipulation tasks, where the desired behaviours are often easier to
demonstrate than specify. Furthermore, the high cost and potential safety risks associ-
ated with exploratory interactions in physical systems make learning from demonstrations
an attractive alternative to trial and error learning.

The application of imitation learning in robotics faces several fundamental challenges
that have shaped the development of the field. The use of images and videos in inverse
Reinforcement Learning introduces complications caused by variations in the viewpoint,
brightness changes, background clutter, and occlusions. These factors can significantly
complicate the learning process and require sophisticated algorithms to effectively utilise
visual information. Additionally, the diverse nature of videos and embodiments intro-
duces substantial variability in the demonstrations that learning algorithms must handle
robustly.

The methodology has evolved in several key directions, each addressing different as-
pects of these fundamental challenges. Cross-embodiment learning has emerged as a
critical capability that enables robots to learn from demonstrations performed by differ-
ent embodiments, including humans. This advancement addresses the practical need for
scalable solutions that can leverage demonstrations from various sources without requiring
an embodiment-specific data collection. Zakka et al. [22] introduced Cross-Embodiment
Inverse Reinforcement Learning (XIRL), which addresses the fundamental problem of

43

Related Work

learning reward functions from demonstrations across different embodiments without re-
quiring action labels or correspondence annotations. Their approach leverages temporal
cycle consistency to align the corresponding task phases across demonstration videos,
regardless of the demonstrator’s morphology. The key innovation lies in learning em-
beddings, where temporal distances in the embedding space correspond to the semantic
alignment between different sequences. The method demonstrates significant improve-
ments in cross-embodiment transfer, allowing robots to learn manipulation skills from
human demonstrations without requiring robot-specific training data.

Liu et al. [32] introduced the Imitation from Observation (IfO) framework, which
enables agents to learn behaviors directly from raw video demonstrations without requiring
expert action labels. Their method relies on a context translation model that maps expert
demonstrations into the learner’s environment, effectively bridging domain gaps, such as
differences in viewpoints or backgrounds. This approach highlights the potential of purely
vision-based imitation learning, particularly in scenarios in which multimodal sensory data
or explicit action information are unavailable.

Parallel developments in visual representation learning have focused on extracting
meaningful reward functions directly from such demonstrations. Das et al. [33] devel-
oped a model-based approach for inverse Reinforcement Learning from visual demonstra-
tions that combines unsupervised keypoint detection with learned visual dynamics models.
Their method addresses the challenge of learning stable reward functions from raw visual
data without requiring action labels or robot-specific demonstrations. The approach first
learns to detect semantically meaningful keypoints in demonstration videos using unsuper-
vised techniques and then constructs a dynamics model that predicts keypoint trajectories
over time. The reward function is formulated based on the alignment between the ob-
served and predicted keypoint trajectories, providing a stable learning signal that is less
sensitive to visual variations than pixel-level comparisons.

The challenge of distribution shift, fundamental to behaviour cloning approaches, as
discussed in 2.2.1, has motivated the development of goal-oriented learning frameworks.
Yang et al. [34] proposed a framework for predicting goal-directed human attention using
inverse Reinforcement Learning. Unlike methods that directly imitate observed trajecto-
ries, their approach infers the latent objectives driving expert behaviour by modelling at-
tention as a reward-guided process. Specifically, they used a hierarchical goal-conditioned
model that first identified a human’s likely goal from contextual cues and then predicted
the attention patterns that would be optimal for achieving that goal. This formulation im-
proves robustness to changes in the initial conditions and environmental variations while
also handling scenarios in which multiple trajectories can achieve the same outcome. By
focusing on goal-directed allocation of attention rather than the exact action sequence,
the method demonstrates stronger generalisation in complex environments.

Recent advances have also addressed the scalability limitations of traditional imitation
learning using methods that leverage large-scale, unlabelled human demonstration videos.
Frameworks such as HOLD [35] learn goal-conditioned reward functions by modelling
functional distances between states, enabling robots to generalise across unseen embodi-
ments and environments. By exploiting the multimodality and diversity of human video
datasets, these approaches substantially reduce the supervision and data collection bur-
den typical of imitation learning, establishing new paradigms for reward learning from

44

3.2 — Procedural Learning in Robotics

raw observation sequences.

These diverse developments demonstrate several important trends that are directly con-
nected to the fundamental concepts discussed in Chapter 2. The progression from single-
embodiment to cross-embodiment learning reflects practical scalability needs, whereas the
emphasis on visual representation learning directly leverages advances in CNNs, ResNets,
and Vision Transformers discussed in 2.3. The temporal consistency objectives employed
by several methods are closely related to the temporal cycle-consistency framework dis-
cussed in 2.3.4, demonstrating how advances in representation learning enable more effec-
tive imitation learning.

3.2 Procedural Learning in Robotics

Procedural Learning is a fundamental paradigm for managing complex, long-horizon tasks
by decomposing them into manageable subtasks that can be learned and executed se-
quentially. This approach relies on the assumption that many complex behaviours can
be understood as compositions of simpler atomic actions or skills. This decomposition
approach addresses one of the most significant challenges in robotics and artificial intel-
ligence: the curse of dimensionality and temporal complexity that arise when learning
policies for tasks with extended temporal horizons.

The motivation for Procedural Learning arises from several practical and theoretical
considerations. Long-horizon tasks often exhibit sparse reward signals, making it difficult
for traditional Reinforcement Learning algorithms to establish effective credit assignments
across extended sequences of actions. Additionally, the exponential growth in the state-
action space complexity with task length renders direct policy learning computationally
intractable for many real-world applications. Procedural Learning addresses these chal-
lenges by creating intermediate objectives that provide more frequent feedback signals
and reduce the complexity of the learning problem.

A central challenge in Procedural Learning is determining appropriate task decompo-
sition strategies. The number and nature of the subtasks significantly impact the learning
efficiency and final performance. Too few subtasks may fail to adequately simplify the
learning problem, while too many subtasks can introduce unnecessary complexity and
coordination challenges between components. Kim et al. [36] demonstrated that the op-
timal number of subtasks is task-dependent and often requires a careful analysis of the
underlying task structure and dynamics.

Several distinct approaches have emerged for implementing Procedural Learning in
robotic manipulations. Hierarchical decomposition methods break complex tasks into
nested hierarchies of subtasks, where higher-level policies coordinate the execution of
lower-level skills. Wang et al. [4] proposed MimicPlay, which learns long-horizon manipu-
lation skills through hierarchical imitation learning, demonstrating how complex assembly
tasks can be decomposed into sequences of primitive manipulation actions. This approach
leverages human demonstrations to identify natural breakpoints in task execution and cre-
ate a curriculum of increasingly complex subtasks.

Bootstrap learning approaches represent a particularly sophisticated development in
Procedural Learning, where agents learn to generate their own training subtasks through

45

Related Work

self-supervised task generation. Yang et al. [37] demonstrate how agents can bootstrap
increasingly complex skills by generating intermediate tasks that bridge the gap between
current capabilities and target behaviors. This self-directed learning capability reduces
the dependence on manually designed curricula and enables more autonomous skill acqui-
sition.

Recent advances have focused on addressing the coordination and transition challenges
that are inherent to Procedural Learning systems. Ajay et al. [38] demonstrated how in-
dependently learned skills can be effectively combined and coordinated to solve novel tasks
using compositional learning frameworks. Their approach addresses the critical challenge
of skill composition by demonstrating how modular components can be recombined in
new ways without requiring complete retraining.

Temporal segmentation of demonstrations presents another significant challenge in
Procedural Learning. Pan et al. [39] developed methods for automatically identifying
natural breakpoints in human demonstrations, creating meaningful subtask boundaries
that align with the human cognitive segmentation of complex activities. This automated
segmentation capability is crucial for scaling Procedural Learning approaches to diverse
tasks without requiring extensive manual annotation of the demonstration data.

Marzari et al. [40] propose a hierarchical Reinforcement Learning framework for robotic
pick-and-place tasks, where complex manipulations are decomposed into low-level sub-
tasks. Each subtask is parameterised as an expert network trained independently via deep
Reinforcement Learning, and a high-level choreographer coordinates their sequential exe-
cution. This modular design allows the system to adapt to different initial configurations
and environmental uncertainties. Both simulation and real-robot experiments demon-
strated significant improvements in sample efficiency and robustness compared with tra-
ditional learning-from-demonstration approaches. Their work highlights how hierarchical
task decomposition can address the challenges of long-horizon manipulation by leveraging
modular-policy learning and hierarchical control mechanisms.

The integration of inverse Reinforcement Learning with procedural decomposition has
yielded sophisticated approaches for learning from demonstrations of complex behaviour.
Sosic et al. [41] presented methods for learning hierarchical reward functions that capture
the multilevel structure of expert demonstrations, enabling agents to understand both
immediate action selection and higher-level strategic planning. This hierarchical reward
learning approach addresses the challenge of extracting meaningful supervisory signals
from demonstrations of complex, multi-stage tasks.

Liu et al. [5] developed curricular methods tailored specifically for Inverse Reinforce-
ment Learning that automatically generate sequences of training tasks with progressively
increasing difficulty. By structuring training in this manner, their approach facilitates
more effective learning of reward functions in complex environments, helping agents ac-
quire robust foundational skills before progressing to challenging tasks. This curriculum-
driven IRL framework is particularly valuable for robotic manipulation, where mastering
intricate tasks often depends on learning a hierarchy of motor skills and spatial under-
standing through intermediate subgoals. Their work demonstrated how adaptive curricu-
lar subgoals can significantly enhance the stability and generalisation of reward learning
in IRL, paving the way for more scalable and efficient imitation from demonstrations.

The integration of Procedural Learning with modern deep learning architectures has

46

3.3 — Intrinsic Reward in Robotics

enabled more sophisticated skill representation and composition mechanisms. These ap-
proaches leverage the representational power of deep networks to learn abstract skill em-
beddings that can be flexibly combined and adapted to novel contexts. This development
is particularly important for robotic manipulation, where skills must generalise across
variations in object properties, environmental conditions, and task specifications.

In inverse Reinforcement Learning, the combination of Procedural Learning and deep
learning has led to improved methods for inferring reward functions from demonstrations.
By leveraging the hierarchical structure of skills and the representational power of deep
networks, agents can learn to predict rewards for complex behaviours more effectively
than traditional RL methods. This integration enhances the agent’s ability to generalise
from limited demonstrations and adapt to new situations.

These developments collectively demonstrate the maturation of Procedural Learning
from simple task decomposition to sophisticated frameworks capable of handling com-
plex real-world problems. The field’s progression toward adaptive, self-supervised, and
hierarchically organised learning systems provides a foundation for the methodological
contributions examined in subsequent chapters, particularly in contexts that require com-
plex manipulation skills and long-horizon planning capabilities.

3.3 Intrinsic Reward in Robotics

Intrinsic Reward mechanisms have emerged as a powerful paradigm for enhancing explo-
ration and learning in Reinforcement Learning (RL) agents, particularly in environments
where rewards are sparse or delayed. These mechanisms provide internal motivation sig-
nals that encourage agents to find novel states, learn diverse skills, and improve their
understanding of the environment, thereby addressing some fundamental challenges asso-
ciated with traditional RL approaches.

Intrinsic Reward mechanisms can be broadly categorised into several approaches based
on their underlying principles. Curiosity-driven exploration encourages agents to seek
states or transitions that are difficult to predict or understand, thereby promoting the
discovery of novel behaviours and environmental dynamics. Novelty-based approaches re-
ward agents for visiting states that differ significantly from previously encountered states,
encouraging comprehensive coverage of the state space. Empowerment-based methods
focus on maximising the agent’s ability to influence its environment, promoting the ac-
quisition of skills that enhance the agent’s control capabilities.

The application of Intrinsic Rewards to robotic manipulation tasks has been explored
in various studies, demonstrating their potential to improve learning efficiency and policy
robustness. In most of these studies, Intrinsic Reward is used in the representation learning
phase to encourage the agent to explore and learn diverse behaviours that can be leveraged
for downstream tasks or to allow learning in tasks where the reward signal is weak or
absent.

Liu and Abbeel [42] introduced the Active Pre-Training (APT) approach, which lever-
ages unsupervised exploration to enable agents to learn meaningful behaviours without
explicit reward signals. This method is based on entropy maximisation in an abstract
representation space. The use of Intrinsic Rewards in APT encourages agents to explore

47

Related Work

diverse states and actions, leading to the acquisition of a wide range of skills that can be
fine-tuned for specific tasks.

Building upon this foundation, Liu and Abbeel [43] further developed Active Pre-
training with Successor Features (APS), which combines the benefits of unsupervised
exploration with structured representation learning. APS employs successor features to
encode information about future state visitation patterns, enabling agents to learn repre-
sentations that capture the long-term consequences of actions. This approach is especially
valuable for manipulation tasks in which understanding the temporal dynamics of object
interactions is crucial for effective policy learning. In this case, the Intrinsic Reward signal
is derived from the novelty of the successor features, which encourages agents to explore
behaviours that lead to diverse future states.

A complementary direction was explored by Yarats et al. [44], who introduced pro-
totypical representations for Reinforcement Learning. By clustering similar states into
prototypes, their method provides more stable and structured representations that im-
prove exploration efficiency and skill organisation. Such prototypical abstractions are
especially relevant for multi-object manipulation, where capturing coherent interaction
patterns across diverse spatial configurations is essential for achieving optimal perfor-
mance.

While the aforementioned approaches focus on enhancing representation learning through
intrinsic motivation, Schneider et al. [45] addressed a complementary challenge by incor-
porating Intrinsic Rewards directly into the Reinforcement Learning phase. They intro-
duced curiosity-driven exploration based on forward dynamics prediction errors, which
encouraged the agent to interact with objects in novel ways and improved sample effi-
ciency in manipulation tasks with sparse rewards. Unlike methods that pre-train diverse
skills, their approach integrates exploration and policy learning simultaneously, enabling
the discovery of manipulation strategies that may not emerge under standard exploration.
This makes their work particularly relevant for frameworks such as inverse Reinforcement
Learning, where representation and policy learning are often considered separate stages.

The application of Intrinsic Rewards in robotic manipulation offers several advantages.
First, these mechanisms can help agents overcome the exploration challenges inherent in
high-dimensional continuous control problems, where random exploration is often inef-
ficient and ineffective. Second, Intrinsic Rewards can facilitate the discovery of useful
strategies that may not be immediately understood from task-specific rewards.

However, the implementation of Intrinsic Reward systems presents several challenges.
The balance between intrinsic and distance rewards requires careful tuning, as excessive
emphasis on intrinsic motivation may lead agents to neglect the task-specific objectives.
Additionally, the computational overhead associated with calculating Intrinsic Rewards,
particularly those based on prediction errors or state novelty, can be significant in high-
dimensional robotic systems such as humanoid robots.

48

Chapter 4

Methodology

This chapter details the methodologies employed in this thesis, encompassing data col-
lection, environment setup, training procedures, and evaluation metrics. Each section
provides a comprehensive overview of the specific techniques and configurations used to
implement and assess the proposed approaches.

4.1 INtrinsic Exploration via SubTask Inverse Rein-
forcement Learning (INEST-IRL)

After reviewing the state-of-the-art in imitation learning, Procedural Learning, and In-
trinsic Reward, as discussed in Chapter 3, we identified several key challenges that our
methodology aims to address. The primary objective of this thesis is to develop a ro-
bust framework for learning complex manipulation tasks from visual demonstrations us-
ing inverse Reinforcement Learning (IRL). This framework leverages Procedural Learning
techniques to decompose long-horizon tasks into manageable subtasks, facilitating more
efficient learning and generalisation, and intrinsic motivation strategies to encourage ex-
ploration and skill acquisition.

The specific task we focus on is the "Sweep to top in order' task, as described in
4.1. This task is a variant of the standard "Sweep to top" task and requires an agent
to manipulate objects within a simulated environment and move them to a designated
target area in a given order. In this variant, the order is defined by the colour of the
block. In detail, the task focuses on moving three coloured blocks (Red, Blue and Yellow)
to a green target area located at the top of the environment in this specific order: first
the red block, then the blue block, and finally the yellow block. The agent must learn to
perform this task effectively based on visual observations alone, without access to explicit
state information or action labels.

This task was selected for several reasons. First, it represents a fundamental manipu-
lation challenge relevant to many real-world applications, such as sorting and organising
objects. Second, the complexity of the task arises from the need to coordinate multiple
actions over an extended temporal horizon, making it an ideal candidate for Procedural
Learning approaches. Finally, the structure of the task allows us to understand how well

49

Methodology

the learned reward functions can guide behaviour in a sequential decision-making context.

4.2 Training Procedure

As described in 2.2.3, inverse Reinforcement Learning is a two-step process: first, we train
a reward function from demonstrations in the representation learning phase, and then
we use this learned reward to train a policy using Reinforcement Learning in the policy
learning phase.

Policy Learning

Action

/ Reward
Environment Policy r (5)
total \°i

Representation Learning Observatlon
Reward
Embedding Intrinsic Tintrinsic ()
Storage Reward
o |8 - ¢ =)

Distance
Estimation

”\/
>z 1t

(s:)

4:
Subtask Frame
(Ssubmskl)

Figure 4.1: Overview of the training pipeline. The process consists of two main phases:
representation learning from demonstration videos to learn a reward function, and policy
learning using the learned reward to train an agent via Reinforcement Learning.

r(si)
Current frame T
[

4.2.1 Representation Learning

The representation learning phase is dedicated to learning a reward function and robust
visual representations from demonstration videos, which serve as the foundation for the
subsequent policy learning phase. This phase leverages self-supervised learning techniques
to extract task-relevant features without requiring manual annotations or explicit super-
vision.

The core of the representation learning process is an encoder network, which can be
instantiated as either a ResNet or a Vision Transformer (ViT), depending on the objective
of the model, as discussed in 2.3. For this study, the chosen encoder is a ResNet-18,
because it strikes a good balance between complexity and performance for the visual
tasks at hand. The encoder is trained using a loss function that guides the learning

50

4.2 — Training Procedure

process. In this study, the Temporal Cycle-Consistency (TCC) loss was chosen as the
loss function, which encourages the network to produce embeddings that are temporally
aligned across different demonstration sequences. This approach enables the model to
learn representations that are invariant to changes in the viewpoint, embodiment, and
environmental conditions, capturing the underlying structure of the manipulation task.

During the representation learning phase, a demonstration dataset was used to sample
batches of frames from different videos. In this case, the TCC loss is applied to ensure that
temporally corresponding frames are mapped to similar points in the embedding-space.
This process facilitates the emergence of features that are sensitive to task progress and
subtask boundaries, which are critical for effective reward inference in the policy learning
phase.

By the end of the representation learning phase, the encoder produces compact and
informative embeddings that summarise the essential aspects of the manipulation task,
providing a strong basis for learning reward functions that generalise across diverse sce-
narios and agent embodiments.

After the representation learning phase, a copy of the embedding representation for
each subtask was stored. These are used in the policy learning phase for reward estimation,
as described in 4.2.3.

4.2.2 Policy Learning

The policy learning phase focuses on utilising the pre-trained encoder and learned reward
function to guide policy optimisation for the task. This phase involves integrating the
learned visual representations with Reinforcement Learning algorithms to learn a policy
that can effectively complete a task based on inferred rewards.

The policy learning process begins by freezing the weights of the pretrained encoder, en-
suring that the learned representations remain stable during policy learning. The learned
reward function is then employed to provide feedback to the agent based on its actions and
the resulting state transition. This reward signal is crucial for guiding the agent towards
behaviours that align with the demonstrated task.

In this study, we employed a Soft-Actor Critic (SAC) algorithm for policy optimisation,
as it is well-suited for continuous action spaces and has demonstrated strong performance
in various robotic manipulation tasks. The choice of SAC is motivated by its ability to
balance exploration and exploitation through entropy maximisation, which is particularly
beneficial in environments with complex dynamics and sparse rewards, as reported in
Section 2.1.6.

During training, the agent interacts with the environment and collects experience tu-
ples consisting of observations, actions, rewards, and next states. The Reinforcement
Learning algorithm uses this experience to update the policy network, optimising it to
maximise the cumulative reward over time.

The training process is iterative, with the agent continually refining its policy based
on feedback from the learned reward function. This iterative optimisation continues until
the agent achieves a satisfactory performance on the task, as measured by the success
rates or other relevant metrics.

51

Methodology

4.2.3 Reward estimation

The reward estimation process is a critical component of the training phase, as it directly
influences the agent’s learning trajectory and ultimate performance on the task. The
learned reward function, derived from the pretrained encoder, provides a continuous feed-
back signal that guides the agent’s behaviour towards achieving the desired manipulation
objectives.

The reward function is designed to capture the essential aspects of task progress, pro-
viding higher rewards for actions that bring the agent closer to completing the task and
lower rewards for actions that deviate from the desired behaviour. The implementation
consists of three main components: embedding distance computation, reward transforma-
tion and subtask completion detection.

In this study, the reward was estimated based on the embeddings produced by the
frozen encoder. The current observation is passed through an encoder to obtain its em-
bedding. This embedding is then compared to the stored embeddings for each subtask,
which are obtained during the representation learning phase. Distance computation is
performed using the Euclidean norm:

d= Hecurrent - egoal‘ |2 (41)

where €.yyrent Tepresents the embedding of the current observation, and eg,q; represents
the stored embedding for the current subtask. This distance metric quantifies how closely
the current state aligns with the target subtask states in the learned embedding space.

The raw Euclidean distance was transformed into a reward signal using a carefully
designed function that provided smooth gradients and appropriate reward shaping. The
distance-to-reward transformation follows a composite function that combines quadratic
and square root terms as follows:

r(d) = —ad® — B\/d? 4+~ (4.2)

where a = 0.001, 5 = 0.01, and v = 0.001 are hyperparameters that control the
reward landscape. The quadratic term —ad? provides strong negative rewards for large
distances, encouraging the agent to move towards the target embedding. The square root
term —f/d? + ~ ensures smoothness near the origin and prevents numerical instability
when the distance approaches zero. The small constant v acts as a regularisation term
that maintains differentiability at d = 0.

This dual-component design creates a reward landscape that is both informative and
stable for gradient-based policy optimisation. The quadratic component dominates for
large distances, providing strong directional signals, while the square root component
ensures smooth behaviour in the vicinity of the target state.

Procedural Learning Integration

To effectively manage the complexity of long-horizon manipulation tasks, the reward func-
tion incorporates a Procedural Learning mechanism that tracks task progress through a

52

4.2 — Training Procedure

sequence of subtasks. Each subtask corresponds to a specific phase of the manipula-
tion task: picking up and placing each coloured block in the correct order. The system
maintains a subtask index that progresses as the agent completes each subtask.

To encourage progression through the task sequence, a bonus reward component was
added to the distance-based reward:

Ttotal = T(d) + S Csubtask (43)

where cguprask 1S & constant subtask cost that provides incrementally higher rewards
as the agent advances through the task sequence. This bonus structure ensures that the
later subtasks receive higher baseline rewards, preventing the agent from becoming stuck
in the early phases of the task.

The system employs a threshold-based mechanism to detect subtask completion, which
prevents premature transitions due to noisy reward signals. For each subtask, a specific
threshold was defined based on an empirical analysis of the reward distribution during
successful task execution. The thresholds vary across the subtasks to account for the
different levels of precision required for each manipulation phase.

The completion detection mechanism requires the reward to remain above the threshold
for a consecutive number of steps before triggering the subtask transition. This approach,
implemented through a counter-based system, ensures robustness against temporary fluc-
tuations in the reward signal and prevents oscillatory behaviour between the subtasks.

When the reward r(d) exceeds the threshold for the current subtask, the counter is
incremented. If the counter reaches the required duration, the subtask index is incre-
mented and the counter is reset. If the reward falls below the threshold before reaching
the hold duration, the counter is reset to zero, requiring the agent to maintain a consistent
performance before progressing.

Upon completion of all subtasks (s > 6), the reward function transitions to a constant,
high-reward state:

T final = S * Csubtask (44)

This terminal reward structure ensures that the agent receives the maximum reward
upon successful task completion while maintaining the progressive bonus structure estab-
lished during training.

53

Methodology

Figure 4.2: Illustration of the reward function evolution through the task sequence. The
left panel shows the reward progression with three subtasks, whereas the right panel
illustrates the reward structure with six subtasks. Each image in the plot indicates the
completion of a subtask phase. The reward function is designed to provide increasing
incentives as the agent progresses through the subtasks, culminating in a high reward
upon task completion.

Intrinsic Reward Integration

The Intrinsic Reward mechanism implemented encourages the exploration of diverse em-
bedding states during policy learning. This system addresses the fundamental challenge
of maintaining adequate exploration throughout the learning process, particularly in long-
horizon manipulation tasks, where agents may become trapped in suboptimal local minima
or exhibit insufficient behavioural diversity within individual subtasks.

The core of the Intrinsic Reward is based on measuring the novelty of the visited
states in the learned embedding space. Unlike traditional state-based novelty metrics that
operate directly on raw observations, this approach leverages the structured representation
learned during the representation learning phase to compute more meaningful novelty
signals. The system maintains separate memory buffers for each subtask, storing the
embeddings of the previously visited states within that specific phase of the task.

For each subtask s, a memory buffer M, is maintained with a maximum capacity
of 5,000 embedding. When a new embedding €.y,rent i Observed, it is compared with
the stored embeddings in the current subtask’s memory buffer. The novelty reward is
computed based on the smaller distance between the current embedding and the previously
stored embeddings for the same subtask. An higher value corresponds an high exploration.

dp = [l¢(s:) — B (4.5)

Tintrinsic(si) = ||¢(si) — min(d3)||2 (4.6)

This formulation ensures that states similar to previously visited states receive lower
novelty rewards, whereas novel states in the embedding space receive higher rewards,
encouraging the agent to explore diverse behaviours within each subtask.

54

4.2 — Training Procedure

The contribution of Intrinsic Rewards to the total reward signal is dynamically ad-
justed based on task progress and subtask transition. The Intrinsic Reward component is
integrated into the total reward as follows:

Ttotal = Tdistance + Aintrinsic * Tintrinsic (47)

where Qntrinsic 1S the adaptive scaling factor. Under normal conditions, apntrinsic = 0.2,
which provides moderate encouragement for exploration. However, immediately following
subtask transitions (for n time steps after completion), the scaling factor is increased to
Qintrinsic = 0.4 to encourage more aggressive exploration in the new subtask phase.

04 ift— ttransition <n
Clim s o = 4.8
mmtrinsie {0.2 otherwise (4.8)

where ¢ is the current time step, and tiansition is the time step of the most recent
subtask transition. This adaptive mechanism addresses the exploration challenge that
arises when transitioning between subtasks, where the agent must discover new behaviours
that are appropriate for the next phase of the task.

To evaluate the effectiveness of the Intrinsic Reward mechanism, the approach in-
cludes a comprehensive coverage analysis framework that tracks the exploration patterns
across multiple dimensions. Coverage analysis employs two complementary approaches:
similarity-preserving grid mapping and hash-based unique state counting.

Similarity-preserving grid mapping projects high-dimensional embeddings onto a 2D
grid while preserving the similarity structure of the original embedding space. This is
achieved through Principal Component Analysis (PCA) on a buffer of collected embed-
dings:

p2p = (e — u)Wpca (4.9)

where p is the mean of the collected embeddings, W pca contains the first two prin-
cipal components, and pap is the 2D projection. The projected coordinates were then
normalised and discretised to create grid coordinates as follows:

gridcaords = \\pQme”L ’ (G - 1)J (410)
Pmaz — Pmin

where G = 100 is the grid size, and pyin and P are the bounds of the projected
space. This approach creates a coverage grid that maintains the topological relationships
in the embedding space while enabling efficient coverage tracking.

In addition to the grid-based coverage analysis, the system maintains a hash-based
tracking mechanism for more precise and unique state counting. The embeddings were
rounded to three decimal places and converted to hash values.

hash(e) = hash(round(e, 3)) (4.11)

This approach provides an exact count of the unique states visited while remaining
computationally efficient. The combination of grid-based and hash-based tracking pro-
vides both coarse-grained spatial analysis and fine-grained uniqueness detection.

55

Methodology

To ensure computational efficiency during training, the system implements several
memory-management strategies. The embedding memory buffers use a first-in-first-out
(FIFO) policy when the maximum capacity is reached, ensuring that the most recent
experiences are retained while maintaining a bounded memory usage.

The Intrinsic Reward computation is designed to be sufficiently efficient for real-time
policy learning, with the smallest distance search implemented using efficient distance
computations and coverage analysis performed asynchronously to avoid affecting the train-
ing speed.

56

Chapter 5

Experiments and Results

This chapter presents the experimental setup, results, and analyses of the proposed
method. The experiments were designed to evaluate the effectiveness of the proposed
method in completing tasks using the described environment. We conducted a series of
experiments to assess the performance of different baseline architectures, ablation studies
to understand the impact of various components, and a comprehensive analysis of the
results.

5.1 Experiment setup

5.1.1 Environment used and Data Collection

The X-Magical environment, originally introduced by Toyer et al. [46], provides a con-
trolled simulation platform for studying embodied Al challenges, particularly those in-
volving cross-embodiment imitation learning. This environment was selected for our ex-
periments because of its flexibility, controllable complexity, and suitability for evaluating
learning approaches, as demonstrated by Zakka et al. [22].

X-Magical consists of a two-dimensional world populated by various objects and agents
with different embodiments, all rendered using a top-down perspective. The environment
features a physics engine that handles collisions, object interactions, and movement dy-
namics, thereby creating a realistic yet simplified simulation of physical manipulation
tasks. This simplified physics model strikes an effective balance between computational
efficiency and behavioural realism, making it ideal for large-scale Reinforcement Learning
experiments.

The core tasks in X-Magical involve object manipulation, where agents must move
objects to target locations or arrange them in a specific configuration. In this study, we
focused on a variant of the "Sweep to top" task, which requires agents to gather scattered
objects into a designated target area. This task was selected because it represents a
fundamental manipulation challenge that remains consistent across different embodiments,
while allowing for varied solution strategies.

In detail, the objects in our version of the environment are three squares with different

o7

Experiments and Results

colours: Red, Blue and Yellow. The target area is visually distinct owing to its green
colour and location at the top of the environment, allowing agents to learn to recognise it
from visual observations. In the standard configuration, the success criterion for the task is
defined as having all objects within the target area, which provides a clear and measurable
objective for the learning algorithms. However, for our experiments, we modified the
success criterion because it needed to account for the specific order in which the blocks
must be placed in the target area for the task to be considered successfully completed.

One of the key features of X-Magical is its support for multiple agent embodiments
with distinct physical characteristics and action space.

o ShortStick: A simple short stick that can push objects around the environment.

o MediumStick: A longer stick that provides greater reach and leverage for manip-
ulating objects.

o LongStick: An even longer stick that allows for more complex manipulation strate-
gies.

o Gripper: A two-pronged manipulator that can grasp and release objects.

For our experiments, we used only the gripper embodiment, as it provided the most
complex manipulation capabilities and closely resembled real-world robotic manipulators.
The ability of a gripper to grasp and release objects introduces additional challenges in
learning effective manipulation strategies, making it an ideal testbed for evaluating the
proposed methodologies.

For our experimental purposes, we implemented several modifications to the original
X-Magical environment.

 Enhanced Observation Space: We expanded the observation space to include
depth information, block colors, block positions, and flags indicating whether a
block is in the target area. This additional information provides a richer context
for learning algorithms and supports more effective representation learning.

« Reward Customization: Instead of using the default sparse reward structure, we
implemented a dense reward function that provides continuous feedback based on
the distance of objects to the target area, considering the object order. This reward
is used to evaluate the learned reward functions, as described in Section 4.2.3.

The environment provides RGB observations at a resolution of 128 x128 pixels, which
serve as the primary input to our representation learning models. Observations can be
captured from either an egocentric or allocentric viewpoint, with the latter providing
a consistent frame of reference across different embodiments of the same concept. For
our experiments, both viewpoints were used to evaluate the robustness of the learned
representations in both cases.

The action space varies by embodiment: the ShortStick, MediumStick, and LongStick
use a 2D continuous action vector representing velocity commands, whereas the Gripper
uses a 3D continuous vector for position control and grasping. This diversity in action

58

5.1 — Experiment setup

spaces represents a significant challenge for cross-embodiment learning approaches because
the mapping between perceptual states and effective actions differs substantially across
embodiments.

The X-Magical environment was also used to collect demonstration data for training
our models. As described in Section 2.2.3, inverse Reinforcement Learning is composed
of a two-step process: representation learning and policy learning. In the first step, the
importance of the dataset used is crucial, as the quality and diversity of the demonstra-
tions directly impact the effectiveness of the learned reward function. Since the X-Magical
environment allows for easy configuration and control, we generated a dataset of demon-
stration videos using scripted policies that successfully complete the task. These scripted
policies were designed to exhibit various strategies for manipulating objects, ensuring that
the demonstrations captured a wide range of behaviours and scenarios.

The dataset consists of 1000 demonstration videos, each lasting 4-5 seconds and recorded
at 10 frames per second, resulting in a total of 40 frames per video. The demonstrations
were collected using the gripper embodiment, as it provides the most complex manipu-
lation capabilities and closely resembles real-world robotic manipulators. The gripper’s
ability to grasp and release objects introduces additional challenges in learning effective
manipulation strategies, making it an ideal testbed for evaluating our proposed method-
ologies. In each demonstration, the agent successfully completes the task by moving all
three objects to the target area in the correct order (Red, Blue, Yellow). In addition, the
position of the blocks is randomized at the beginning of each episode, ensuring that the
demonstrations cover a diverse range of initial configurations. This diversity is crucial for
training robust reward functions that can generalise across different scenarios.

®

L

Figure 5.1: Example frames from the demonstration dataset, showcasing both allocentric
(left) and egocentric (right) viewpoints. The agent is seen manipulating the colored blocks
to move them into the target area at the top of the environment.

The 1000 demonstration videos were split into training and validation sets, with 800
videos used for training the reward functions and 200 videos reserved for validation and
hyperparameter tuning. This split ensures that the learned reward functions are evaluated
on unseen data, providing a measure of their generalisation capabilities.

Since the demonstrations are generated using scripted policies, they are guaranteed to
be successful, providing clear examples of the desired behaviour. This success criterion is
essential for training effective reward functions, as it ensures that the learning algorithms

59

Experiments and Results

can identify the key features and actions that lead to task completion. All this demon-
strations reaches the 100% of success using the custom environment reward, as the agent
always complete the task in the given time.

In addition, we created two different versions of the dataset for the viewpoint experi-
ments: one with an egocentric viewpoint and another with an allocentric viewpoint. This
allows us to evaluate the robustness of learned representations and reward functions across
different perspectives.

Together with the image frame, we have also introduces a textual description for each
frame of each video, describing the current subtask. This textual description is used for
the CLIP-based model, as described in the next sections. The textual descriptions were
generated using a simple template-based approach, ensuring consistency and clarity across
the dataset. The chosen textual descriptions are as follows:

o The robot pushes the red block into the green zone
e The robot pushes the blue block into the green zone

e The robot pushes the yellow block into the green zone

5.1.2 Baseline Architectures

In this section, we describe the backbone architectures used in our experiments. Each
architecture was selected based on its ability to learn robust visual representations from
the demonstration videos, which are crucial for effective reward function learning and
policy optimisation. These architectures were used for comparisons with our proposed
method, as described in Section 4.1.

XIRL: Cross-Embodiment Inverse Reinforcement Learning

Cross-Embodiment Inverse Reinforcement Learning (XIRL), introduced by Zakka et al.
[22], addresses one of the most fundamental challenges in robotic imitation learning: en-
abling agents to learn from demonstrations performed by different embodiments without
requiring action labels or explicit correspondence annotations. This capability is par-
ticularly crucial for scaling imitation learning to real-world scenarios in which human
demonstrations must be translated into robotic execution.

The core innovation of XIRL lies in its application of temporal cycle consistency (TCC)
to the inverse Reinforcement Learning problem. Instead of learning a direct mapping from
states to actions or attempting to match state-action distributions, XIRL learns reward
functions by establishing temporal correspondences across demonstration videos from dif-
ferent embodiments. The method operates under the assumption that semantically similar
phases of task execution should be temporally aligned in a learned embedding space, re-
gardless of the demonstrator’s morphology or action space.

The temporal cycle consistency objective forms the foundation of the XIRL learning
process. Given two demonstration videos from potentially different embodiments, the
method learns embeddings such that if frame f; from video A corresponds to the most

60

5.1 — Experiment setup

similar frame in video B (based on the embedding distance), then the reverse mapping
should return to a temporally nearby frame in video A.

This objective encourages the model to learn embeddings that preserve the temporal
structure across embodiments while being invariant to morphological differences.

XIRL formulates the reward as a function of the embedding similarity to the goal
states, typically using a Gaussian kernel around the target embeddings extracted from
successful demonstration endings. This approach enables the system to provide dense
reward signals that guide Reinforcement Learning agents toward task completion while
maintaining embodiment invariance.

The training procedure for XIRL involves sampling batches of frames from demonstra-
tion videos and applying cycle consistency loss to encourage proper temporal alignment.
The method also incorporates data augmentation techniques, including random cropping
and colour jittering, to improve robustness against visual variations that are irrelevant to
task progress. This augmentation strategy is particularly important for cross-embodiment
learning, where demonstrations can be collected under different lighting conditions or cam-
era angles.

HOLD: Learning Reward Functions by Observing Humans

HOLD (Human Observation Learning for Demonstration), introduced by Alakuijala et
al. [35], addresses the fundamental challenge of learning reward functions for robotic
manipulation tasks directly from human demonstration video. This approach represents
a significant advancement in cross-embodiment learning by enabling robots to acquire
manipulation skills from readily available human video data, substantially reducing the
data collection burden typical in imitation learning scenarios.

The HOLD framework operates under the assumption that human demonstrators are
approximately optimal when performing manipulation tasks and that the reward function
can be inferred by understanding the progression toward task completion, as evidenced
by state transitions in demonstration videos. This method learns embeddings in which
Euclidean distances correspond to functional distances in the task space, thereby enabling
the extraction of dense reward signals without explicit reward supervision.

HOLD introduces two distinct architectural variants that address different aspects
of the reward learning problem: HOLD-R (HOLD-Regression) and HOLD-C (HOLD-
Contrastive). Both variants share a common foundation in learning visual representations
that capture task-relevant semantics but differ in their specific learning objectives and
architectural implementations.

HOLD-R formulates reward learning as a regression problem, where the model learns
to predict the functional distance between states in the demonstration trajectories. The
architecture consists of a visual encoder that maps RGB observations to high-dimensional
embeddings, followed by a distance prediction network that estimates the number of
optimal steps required to transition between states.

The core training objective of HOLD-R is based on temporal distance prediction within
demonstration sequences. We assume that the demonstrations are optimal and pose the
functional distance learning problem as a supervised regression task:

61

Experiments and Results

T, Ti—t
= arg Hll Z Ilda(5t75t+5 - 4|3 (5.1)
i=1t=1 §=1

where s¢ is the ¢-th frame of the i-th video, T} is the length of the i-th video, and dy is a
function parameterised by 6 that is trained to predict ¢ from the functional distance. The
third summation corresponds to data augmentation, allowing any future time step in the
video to be considered the goal rather than only the last. This objective encourages the
model to learn embeddings in which the predicted distance correlates with the temporal
progression of successful demonstrations.

HOLD-C approaches the reward learning problem using a contrastive learning frame-
work, where the model learns to distinguish between state pairs that are temporally close
and those that are temporally distant in demonstration sequences. Since directly pre-
dicting time intervals is difficult and sensitive to noise, HOLD-C considers learning an
embedding space where distances can be defined using a single-view time-contrastive ob-
jective.

The contrastive learning objective in HOLD-C is designed to pull together the embed-
dings of states that are temporally close in successful demonstrations while pushing apart
the embeddings of states that are temporally distant. Frames within a small temporal
window are encouraged to lie close together in the embedding space, whereas embeddings
for frames outside a temporal neighbourhood are pushed apart.

Specifically, if sP is a positive instance for anchor s, and s” is a negative instance for
all triplets, the objective is

1£(s) = (DI +m < |If(s) = F(s™)]I3 (5.2)
where f is the embedding function and margin m is a hyperparameter that controls
the separation between positive and negative pairs in the embedding space.

The positive and negative sampling strategies in HOLD-C are crucial for effective
representation learning. Positive pairs are constructed from states that are within a small
temporal window of each other in the same demonstration sequence, ensuring that they
represent similar stages of task progression. Negative pairs are constructed from states
that are temporally distant within the same sequence or from different demonstration
sequences, providing the necessary contrast to learn discriminative embeddings.

This approach leverages the insight that states with similar functional distances to the
goal should have similar representations, whereas states at different stages of task progress
should be easily distinguishable in the learned embedding space.

For this study, only the HOLD-R, variant was considered, as it represented the most
interesting approach for our specific task and because of the absence of negative samples
in our dataset, which are essential for the contrastive learning approach used in HOLD-C.

During reward inference, both HOLD variants compute rewards based on the learned
distance estimates or embedding similarities to the goal states extracted from successful
demonstrations. The reward function is typically formulated as a monotonically decreas-
ing function of the predicted distance or as an increasing function of similarity to goal
embeddings, providing dense reward signals that guide Reinforcement Learning agents
toward task completion.

~+

62

5.1 — Experiment setup

REDS: Subtask-Aware Visual Reward Learning

REDS (REward learning from Demonstration with Segmentations), introduced by Kim et
al. [36], addresses the challenge of learning reward functions for long-horizon, multi-step
robotic manipulation tasks using a subtask-aware framework. Unlike methods that treat
complex tasks as monolithic learning problems, REDS explicitly leverages the hierarchical
structure inherent in manipulation tasks by segmenting demonstrations into semantically
meaningful subtasks and learning specialised reward functions for each of these phases.

REDS architecture employs a multimodal approach that combines visual and textual
information to create robust reward representations. Visual inputs are processed using a
pre-trained CLIP ViT-B/16 encoder, which provides strong visual representations trained
on large-scale image-text datasets. This choice of backbone enables the system to leverage
the rich semantic understanding of pretrained models while adapting to specific manipu-
lation tasks.

Subtask information is incorporated through text embeddings generated by CLIP,
which are then projected onto specialised subtask embeddings. This design allows the
system to condition rewards on explicit subtask indices while enabling generalisation to
new tasks, given appropriate textual descriptions of their subtasks.

REDS employs a sophisticated training framework that combines three complementary
objectives to ensure effective, reward learning. The first component is an EPIC-based
(Equivalent-Policy Invariant Comparison) objective that minimizes the distance between
the learned reward function and ground-truth subtask segmentation signals.

The second component is a progressive reward regulariser that enforces monotonic
progress within the subtask by ensuring that rewards increase as the agent advances
through each subtask.

The third component is a contrastive alignment loss that pulls video segment repre-
sentations closer to their corresponding subtask embeddings in the learned space. The
combination of these three loss components creates a robust training framework that
learns both accurate reward functions and reliable subtask classification capabilities.

During the policy learning phase, REDS uses a multimodal approach that combines
visual perception with language understanding. Unlike embedding-based approaches that
rely solely on visual similarity, REDS dynamically identifies the current subtask from a
set of predefined text descriptions and computes the rewards accordingly.

These text descriptions are also used in the training phase, as each frame of the demon-
stration videos is paired with a textual description of the current subtask, allowing the
model to learn the association between visual states and subtask semantics.

The process begins by encoding the current observation into visual features using the
CLIP ViT-B/16 backbone. Simultaneously, a collection of task descriptions is encoded
into text embeddings.

For each observation, the algorithm computes a contrastive similarity matrix between
the visual features and all text descriptions using the cosine similarity. A biased selection
mechanism is then applied to determine the most relevant subtask descriptions. Once the
most relevant subtask is identified, the corresponding text embedding is extracted and
used to compute the reward.

63

Experiments and Results

The reward prediction model, which was trained using a three-component loss func-
tion (EPIC-based objective, progressive reward regularisation, and contrastive alignment),
produced a scalar value that indicated how well the current state aligned with progress
toward the identified subtask.

This text-conditioned reward mechanism allows REDS to dynamically adapt to dif-
ferent phases of the task without requiring explicit thresholds or distance calculations,
theoretically enabling more flexible task sequencing.

The method also shows strong performance on real-world furniture assembly tasks
from FurnitureBench, where the complexity of long-horizon manipulation is particularly
challenging. Explicit subtask conditioning enables REDS to provide more informative
reward signals than methods that attempt to learn monolithic reward functions for entire
task sequences.

However, REDS has some limitations, as reported in the original study. This approach
assumes that subtasks can be clearly defined and separated with a text prompt that distin-
guishes them, which may not hold for all manipulation tasks. Furthermore, while REDS
demonstrates strong generalisation capabilities, its performance may still be sensitive to
the quality and diversity of the data used for training.

5.1.3 Evaluation Metrics

To evaluate the performance of INEST-IRL and compare it with other baseline archi-
tectures, we employed several metrics that provided insights into the effectiveness of the
learned reward function and policies.

For all experiments, the number of evaluation episodes was set to 150. This parameter
was chosen to provide a sufficient sample size for reliable performance estimation while
ensuring that the episodes remained computationally feasible.

The first metric used is the evaluation score, which measures the proportion of episodes
in which the agent successfully completed the task within a specified time limit. This
metric provides a clear and interpretable measure of an agent’s overall performance and
ability to achieve the desired objectives. To estimate the evaluation score, we conducted
a series of evaluation episodes in which the agent interacted with the environment using a
learned policy. Each episode begins with a random initial configuration of objects, and the
agent must manipulate them to reach the target area in the correct order. The evaluation
score is calculated as the ratio of successful episodes to the total number of episodes,
averaged over multiple runs. The score assigned to an episode was proportional to the
number of blocks placed in the target area in the correct order. Specifically, a score of 0
was assigned if no blocks were placed in the target area, a score of 0.33 if only the red
block was placed in the target area, a score of 0.66 if the red and blue blocks were placed
in the target area, and a score of 1 if all three blocks were placed in the target area in the
correct order. The maximum score of 1 indicates that the agent successfully completed
the task.

The evaluation score plot shows the moving average over a window of five evaluation
points, which helps smooth out short-term fluctuations and highlight longer-term trends in
performance. The standard deviation is also plotted to provide insights into the variability
of the agent’s performance across different evaluation episodes.

64

5.2 — Ablation Studies

Together with the analysed models, a dashed line is shown, representing the perfor-
mance obtained with the environmental reward and providing a benchmark for compar-
ison. This environmental reward is based on the geometric positions of each block and
provides a partial positive reward for each subtask completed in the correct order. The
episode that completed the task achieved the highest reward. It works as defined in
Section 5.1.1 this

In addition to the evaluation score, we considered the success rate, which measures
the proportion of episodes in which an agent successfully completed a task. This metric
provides a clear and interpretable measure of an agent’s overall performance and ability to
achieve the desired objectives. To estimate the success rate, we considered the number of
episodes in which the agent achieved the highest evaluation score, indicating that it had
successfully completed the task. The success rate is calculated as the ratio of successful
episodes to the total number of episodes, averaged over multiple runs.

Additional metrics will be used in some ablation studies to provide a more compre-
hensive evaluation of the learned policies and reward functions, which will be described
in the respective sections.

5.2 Ablation Studies

In this section, we present a series of ablation studies designed to investigate the impact
of various components and design choices of our proposed method. Each ablation study
focused on a specific aspect of the architecture or training procedure, allowing us to isolate
its contribution to the overall performance. The results of these studies provide valuable
insights into the effectiveness of different design elements and inform future improvements
to this method.

Because INEST-IRL evolved through different components and design choices, the
ablation studies were conducted sequentially, with each study building upon the findings
of the previous one. This approach allows us to systematically evaluate the impact of each
component while controlling for confounding factors.

Initially, INEST-IRL was built on an Inverse Reinforcement Learning (IRL) frame-
work based on the XIRL architecture, as described in Section 5.1.2, with the addition
of Procedural Learning to better understand the strengths and weaknesses of this model.
Therefore, the given name for the model is called Subtask Inverse Reinforcement Learning
(ST-IRL). In the third ablation study, we introduced an Intrinsic Reward mechanism based
on embedding space coverage, as described in Section 4.2.3, to evaluate its effectiveness in
enhancing exploration and improving task performance. Considering the results obtained
from the ablation studies, we understood the correct direction to follow to improve the
model and develop the final version of the INEST-IRL.

5.2.1 Ablation Study 1: Visual Perspective

The first ablation study focused on the impact of the visual perspective on the performance
of the learned policies and reward functions. Specifically, we compared the effectiveness

65

Experiments and Results

of using an egocentric viewpoint versus an allocentric viewpoint in the X-Magical envi-
ronment, as described in Section 5.1.1. The choice of visual perspective can significantly
influence an agent’s ability to perceive and interpret its surroundings, which in turn affects
its learning capabilities.

In this study, we trained two separate instances of the ST-IRL architecture: one using
egocentric observations and the other using allocentric observations. To correctly evaluate
the impact of the visual perspective, we considered the allocentric dataset and created
an egocentric version by changing the camera viewpoint in the environment and main-
taining the same action and state sequence. Both models were trained using the same
hyperparameters, training procedures, and evaluation metrics to ensure a fair comparison.

To better understand the impact of the visual perspective, we considered ST-IRL with-
out the Intrinsic Reward and a subdivision of the task into three subtasks, as described
in Section 4.2.3, to simplify the learning process and focus on the effect of the visual per-
spective on the learning process. The training was conducted for 8 million environmental
steps, with evaluations performed every 50,000 steps to monitor progress and performance
over time.

== Environmental
1.0 == ST-IRL Allocentric
—— ST-IRL Egocentric ~ !/ SN

0.8

e
o

Mean Eval Score
o
IS

0.2

0.0

0 1 2 3 4 5 6 7 8
Training Steps (Millions) 1le6
Figure 5.2: Evaluation scores for the egocentric and allocentric models over 150 evaluation

episodes. The egocentric model demonstrates a higher average score and lower variance,
indicating more consistent performance across different initial configurations.

The results of this ablation study are shown in Figure 5.2. The egocentric model
achieved a final average evaluation score of 0.59, whereas the allocentric model achieved an
average score of 0.44. The egocentric model also exhibited a lower variance in performance
across different evaluation episodes, suggesting that it was more robust to variations in
the initial object configurations.

66

5.2 — Ablation Studies

Model End-of-Episode Subtask Completion (%) | Success Rate (%)
1 block 2 blocks 3 blocks

ST-IRL Allocentric 11.11 56.00 0.00

ST-IRL Egocentric 10.67 65.11 13.11

Table 5.1: Success rates for egocentric and allocentric models. The egocentric model
shows a higher success rate for placing two and three blocks correctly.

The table in Figure 5.1 shows the success rates for the egocentric and allocentric
models, broken down by the number of blocks that were correctly placed in the target
area. The egocentric model demonstrated a higher success rate for placing two blocks
(65.11% vs. 56.00%) and three blocks (13.11% vs. 0.00%) correctly, indicating its superior
ability to complete the task in the correct order.

From these results, we can conclude that the egocentric viewpoint provides a signifi-
cant advantage in learning effective manipulation policies in the X-Magical environment.
The egocentric perspective offers a more intuitive and direct representation of an agent’s
interactions with objects, which likely facilitates the learning process. In contrast, the
allocentric viewpoint may introduce additional complexity in interpreting spatial rela-
tionships, making it more challenging for agents to learn effective strategies.

The embedding learned by the egocentric model demonstrated a clearer understanding
of the precise block boundaries and their relative positions, which is crucial for tasks that
require precise manipulation. This improved spatial understanding likely contributed to
the higher evaluation scores obtained for the egocentric model. On the other hand, the
allocentric model can still learn a reasonable representation of the environment, but it
may struggle with accurately capturing the nuances of object interactions due to the less
direct perspective.

This aspect also affects the agent’s learning ability. As shown in. 5.2, the egocentric
model showed a more rapid improvement in evaluation scores during the early stages of
training, indicating that it could quickly adapt to the task requirements. The allocentric
model, while still improving over time, exhibits a slower learning curve, suggesting that
it may require more training data or iterations to achieve a performance comparable to
that of better understanding the correct block boundaries.

However, it is important to note that the allocentric viewpoint may still be beneficial
in certain scenarios, particularly in tasks that require a broader understanding of the
environment or when dealing with multiple agents. The choice of visual perspective should
be carefully considered based on the specific requirements and constraints of the task.

5.2.2 Ablation Study 2: Subtasks Number

The second ablation study investigates the impact of task subdivision into different num-
bers of subtasks on the performance of the learned policies and the reward functions. In
this study, we evaluate how varying the number of subtasks affects the learning process
and overall task performance.

As a previous ablation study demonstrated the superiority of the egocentric viewpoint,
we continued to use this perspective in the current study. We trained three separate

67

Experiments and Results

instances of the ST-IRL architecture, each with a different number of subtasks (1, 3, and
6). The choice of subtask numbers was motivated by the desire to explore a range of
task decompositions, from coarse (1 subtask) to fine-grained (6 subtasks), to understand
how this granularity influences learning. The ST-IRL model with 1 subtask is equivalent
to the XIRL architecture, as described in Section 5.1.2, in the egocentric view. For this
reason, in the results, we refer to it as the XIRL (EGO).

The ST-IRL 1-Subtask treats the entire task as a single, monolithic objective, whereas
the ST-IRL 3-Subtasks divides the task into three distinct phases: placing each of the
three blocks in the correct order. The ST-IRL 6-Subtasks further refines this decom-
position by breaking down each block manipulation into two separate subtasks: picking
the block and pushing it into the target area. This finer granularity aims to provide
more detailed feedback during learning, potentially facilitating better credit assignment
for actions performed at different stages of the task.

All models were trained using the same hyperparameters, training procedures, and
evaluation metrics to ensure fair comparison. The training was conducted for 8 million
environment steps, with evaluations performed every 50,000 steps to monitor progress and
performance over time.

= = Environmental

1.0 == ST-IRL 1-Subtask (XIRL)
= ST-IRL 6-Subtasks
= ST-IRL 3-Subtasks = Nt

0.8

o
o

Mean Eval Score
o
=

0.2

0.0

0 1 2 3 4 5 6 7 8
Training Steps (Millions) 1e6

Figure 5.3: Evaluation scores for the 1 Subtask, 3 Subtasks, and 6 Subtasks models over
150 evaluation episodes. The 3-Subtasks model demonstrates the highest average score
and lowest variance.

The results of this ablation study are shown in Figure 5.3. The ST-IRL 3-Subtasks
achieved the highest final average evaluation score of 0.59, outperforming both the ST-
IRL 1-Subtask (0.24) and the ST-IRL 6-Subtasks (0.31). The ST-IRL 3-Subtasks also
exhibited the lowest variance in performance across different evaluation episodes, along
with the ST-IRL 1-Subtask, suggesting that it was more robust to variations in the initial
object configurations.

68

5.2 — Ablation Studies

Model End-of-Episode Subtask Completion (%) | Success Rate (%)
1 block 2 blocks 3 blocks
ST-IRL 1-Subtask (XIRL) | 54.97 0.00 0.00
ST-IRL 6 Subtasks 34.00 45.33 0.00
ST-IRL 3 Subtasks 10.67 65.11 13.11

Table 5.2: End-of-episode subtask completion and success rates for the ST-IRL 1-Subtask,
ST-IRL 3-Subtasks, and ST-IRL 6-Subtasks models. The ST-IRL 3-Subtasks model
achieves the highest success in placing two and three blocks correctly.

The table in Figure 5.2 shows the success rates for the three models, broken down by
the number of blocks correctly placed in the target area. The ST-IRL 3-Subtasks model
demonstrated a higher success rate for placing two blocks (65.11% vs. 0.00% and 45.33%)
and three blocks (13.11% vs. 0.00% and 0.00%) correctly, indicating its superior ability
to complete the task in the correct order. As can be seen, the ST-IRL 3-Subtasks model
is the only model that can place the three blocks correctly.

The superior performance of the ST-IRL 3-Subtasks model can be attributed to its
balanced approach to task decomposition. By dividing the task into three distinct phases,
the model receives more targeted feedback during learning, allowing it to focus on mas-
tering each phase. This structured approach likely facilitates better credit assignment for
actions taken at different stages of a task, leading to more effective learning.

The ST-IRL 1-Subtask model, while simpler in its approach, may struggle with the
complexity of the task as it attempts to learn a single policy that encompasses all aspects
of the manipulation sequence. This monolithic approach can lead to challenges in credit
assignment because the model must discern which actions contribute to success across the
entire task. In particular, the model may find it difficult to learn effective strategies for
intermediate steps, such as picking up blocks, without explicit guidance because the task
is too complex to be learned in a single step.

The ST-IRL 6-Subtasks, while providing a finer granularity of feedback, may introduce
additional complexity that hinders learning. An increased number of subtasks can lead to
fragmentation of the learning signal, making it more challenging for the model to integrate
information across subtasks and develop a coherent overall strategy. Additionally, the
model may struggle to effectively transition between subtasks, as an increased number
of phases requires more precise timing and coordination. This fragmentation can lead to
slower learning and lower overall performance, as observed in the evaluation scores. In
addition, in the 6 Subtasks decomposition, the picking and placing subtasks are treated as
separate entities, but the time distance between them is small, making it difficult for the
model to learn distinct representations for each subtask. This close temporal proximity
can lead to confusion in the learning process, as the model may struggle to differentiate
between the two actions and their respective contributions to task success, as the agent
sees a continuously increasing reward. This confusion can result in suboptimal policies
that fail to effectively execute the required actions for each subtask, ultimately leading to
lower performance compared to the more balanced 3 Subtasks approach.

69

Experiments and Results

5.2.3 Ablation Study 3: Intrinsic Reward

The third ablation study explored the impact of incorporating an Intrinsic Reward mecha-
nism based on embedding space coverage, as described in Section 4.2.3, on the performance
of the learned policies and reward functions. This study aimed to evaluate whether the
addition of intrinsic motivation could enhance exploration and improve task performance.

For this study, we trained three separate instances of the ST-IRL architecture using the
egocentric viewpoint and subdivided the task into three subtasks, as these configurations
demonstrated superior performance in previous ablation studies. One model was trained
with the Intrinsic Reward mechanism enabled, while the other model was trained without
it. Both models were trained using the same hyperparameters, training procedures, and
evaluation metrics to ensure a fair comparison.

The third model is the state-based Intrinsic Reward model, a variant of the embedding-
based Intrinsic Reward model. In this model, the Intrinsic Reward is computed based on
the entire observation provided by the environment instead of the embedding space. This
model is used to understand if the Intrinsic Reward is effective because of the embedding
space or if it is effective in general. The working process of the state-based Intrinsic
Reward is the same as that of the embedding-based version. The training was conducted
for 8 million environment steps, with evaluations performed every 50,000 steps to monitor
progress and performance over time.

= = Environmental

1.0 == ST-IRL

= ST-IRL + State Intrinsic
—— ST-IRL + Embedding Intrinsic (INEST-IRL) SN / -~

0.8 1

o
o

Mean Eval Score
o
=

0.2

0.0

0 1 2 3 4 5 6 7 8
Training Steps (Millions) 1le6

Figure 5.4: Evaluation scores over 150 evaluation episodes. The embedding-based Intrinsic
Reward model demonstrated the highest average score and lowest variance.

The results of this ablation study are shown in Figure 5.4. The embedding-based
Intrinsic Reward model achieved the highest final average evaluation score of 0.73, out-
performing both the state-based Intrinsic Reward model (0.51) and the no-intrinsic-reward
model (0.59). The state-based Intrinsic Reward model exhibited the highest variance in
performance across different evaluation episodes, suggesting that it was less robust to

70

5.2 — Ablation Studies

variations in the initial object configurations.

The superior performance of the embedding-based Intrinsic Reward model can be
attributed to its ability to encourage exploration in a manner closely aligned with the
learned representation of the task. By incentivising the agent to visit novel states in
the embedding space, the model promotes a more structured exploration strategy that
facilitates the discovery of effective manipulation strategies. This targeted exploration is
likely to lead to more efficient learning and better overall performance.

Although the state-based Intrinsic Reward model provides an additional exploration
incentive, it may not be as effective in guiding the agent toward task-relevant states. The
Intrinsic Reward in this model is based on the raw observation space, which can be high-
dimensional and noisy, making it challenging for the agent to discern which states are
novel and relevant to task completion. This lack of structure in the exploration strategy
may lead to less efficient learning and lower overall performance levels.

The no Intrinsic Reward model, while still capable of learning effective policies, may
struggle to explore complex environments where the reward signal is sparse or delayed.
Without the additional motivation provided by Intrinsic Rewards, the agent may be less
inclined to explore novel states, potentially leading to suboptimal policies that fail to
exploit the dynamics of the environment fully.

The embedding-based Intrinsic Reward also demonstrated a more rapid improvement
in evaluation scores during the early stages of training, indicating that it could quickly
adapt to task requirements. The state-based Intrinsic Reward model, while still improving
over time, exhibits a slower learning curve, suggesting that it may require more training
data or iterations to achieve a performance comparable to that of better understanding
the correct block boundaries.

Model End-of-Episode Subtask Completion (%) | Success Rate (%)
1 block 2 blocks 3 blocks
ST-IRL + State Intrinsic 33.90 66.10 0.00
ST-IRL 10.67 65.11 13.11
ST-IRL + Embedding Intrinsic (INEST-IRL) 0.00 77.55 22.45

Table 5.3: End-of-episode subtask completion and success rates for the three models. The
embedding-based Intrinsic Reward model achieved the highest success when three blocks
were placed correctly.

The table in Figure 5.3 shows the success rates for the three models, broken down by
the number of blocks correctly placed in the target region. The embedding-based Intrinsic
Reward model demonstrated a higher success rate for placing three blocks (22.45% vs.
0.00% and 13.11%) correctly, indicating its superior ability to complete the task in the
correct order. The introduction of the Intrinsic Reward increased the success rate for
placing two and three blocks, while reducing it to 0.00% for placing zero and one block.
This result suggests that the Intrinsic Reward effectively encourages the agent to explore
and learn strategies that lead to successful task completion. In contrast, the state-based
Intrinsic Reward model showed a higher success rate for placing one block (33.90% vs.
0.00% and 10.67%), but failed to place three blocks correctly, indicating that while it
could learn some aspects of the task, it struggled with the overall sequence required for
full task completion.

71

Experiments and Results

In addition to this analysis, we evaluated the impact of Intrinsic Rewards on the
exploration behaviour of the agent. We measured the coverage of the embedding space
during training, which is defined as the proportion of unique embedding states visited
by the agent. We considered the unique visited embedding states and plotted them on
a grid, where each cell in the grid represented a distinct region of the embedding space.
The coverage metric was calculated as the ratio of occupied cells to the total number of
cells in the grid.

10 10 10
Coverage Grid at Step 8000000 Coverage Grid at Step 8000000 Coverage Grid at Step 8000000
Coverage: 41.2% (4122/10000 cells) Coverage: 38.8% (3877/10000 cells) Coverage: 56.2% (5621/10000 cells)
o O o = F PR

Visited (1) / Not Visited (0)

Visited (1) / Not Visited (0)

Visited (1) / Not Visited (0)

Grid Y (Projected Embedding Dim 2)
4

20 20 60 80 20 20 60
Grid X (Projected Embedding Dim 1) Grid X (Projected Embedding Dim 1)
00 00 00

20 40 60 80
Grid X (Projected Embedding Dim 1)

(a) ST-IRL (41.2%) (b) ST-IRL + State (38.8%) (c) INEST-IRL (56.2%)

Figure 5.5: Coverage of the embedding space during training. The embedding-based
Intrinsic Reward model achieves the highest coverage, indicating more effective exploration
of the state space.

The three figures in Figure 5.5 illustrate the coverage of the embedding space for the
three models considered in this ablation study. The embedding-based Intrinsic Reward
model (Figure b) demonstrated a significantly higher coverage rate than both the state-
based Intrinsic Reward model (Figure ¢) and the no Intrinsic Reward model (Figure a).
This increased coverage indicates that the embedding-based Intrinsic Reward effectively
encourages the agent to explore a broader range of states, which is likely to contribute to
its excellent performance. The state-based Intrinsic Reward model showed lower coverage
than the model without Intrinsic Reward contribution, suggesting that it may not be as
effective in promoting exploration because the observation can include information that
is not relevant to increase the agent exploration.

An interesting observation is that the embedding-based Intrinsic Reward model ex-
hibits a more uniform distribution of visited states across the embedding space, indicating
that the agent explores a wider variety of regions rather than concentrating on specific
regions. The resulting coverage pattern differed from those of the other two models, sug-
gesting that the agent could reach states that were not visited by the others. This broader
exploration is beneficial for learning robust policies that generalise better to different ini-
tial configurations and task variations.

ST-IRL with embedding-based Intrinsic Reward is the final version of INEST-IRL, as
described in Section 1.2.4.

Because our INEST-IRL is complete with the introduction of the embedding-based
Intrinsic Reward, we want to understand whether the introduction of this contribution

72

5.2 — Ablation Studies

is the main reason for the improvement of the model or whether the improvement is due
to the combination of all the components. For this reason, we compared the embedding-
based Intrinsic Reward model with the 3-Subtasks model without Intrinsic Reward, the
1-Subtask model with and without Intrinsic Reward, and the 6-Subtasks model with and
without Intrinsic Reward. The results of this comparison are shown in Figure 5.6.

== = Environmental
1.0 *** ST-IRL 1-Subtask (XIRL)
= ST-IRL 1-Subtask (XIRL) + Intrinsic Lt antaial Sel U Ve
+ STIRL 6-Subtasks PRI N/
=== ST-IRL 6-Subtask + Intrinsic 4 v
= ST-IRL 3-Subtasks - -

osdl"
=== ST-IRL 3-Subtasks + Intrinsic (INEST-IRL) ,-\—’

o

o
o

Mean Eval Score
o
=

............................

9 »
0.2 ¢ S T s o

.....

0.0

0 1 2 3 4 5 6 7 8

Training Steps (Millions) 1e6
Figure 5.6: Evaluation scores for different subtask models with and without Intrinsic Re-
ward contribution over 150 evaluation episodes. The embedding-based Intrinsic Reward

model demonstrates the highest average score and lowest variance, indicating more con-
sistent performance across different initial configurations.

The embedding-based Intrinsic Reward model achieved the highest final average eval-
uation score of 0.73, outperforming all other models in this study. The 3-Subtasks model
without Intrinsic Reward achieved an average score of 0.59, while the 1-Subtask model
with Intrinsic Reward achieved a score of 0.02, and without Intrinsic Reward, it achieved
a score of 0.24. The 6-Subtasks model with Intrinsic Reward achieved a score of 0.40,
whereas without Intrinsic Reward, it achieved a score of 0.31.

These results indicate that the combination of task subdivision into three subtasks
and the embedding-based Intrinsic Reward mechanism is crucial for achieving optimal
performance. The 3-Subtasks model without Intrinsic Reward still performs reasonably
well, suggesting that task decomposition alone provides significant benefits. However, the
addition of Intrinsic Rewards further enhanced exploration and learning efficiency, leading
to the highest performance.

Notably, the 1-Subtask model with Intrinsic Reward performed poorly, achieving an
average score of only 0.02. This suggests that while Intrinsic Rewards can enhance explo-
ration, they may not be sufficient to overcome the challenges associated with learning a
monolithic task without task decomposition. The lack of structure in the learning process

73

Experiments and Results

likely hinders the agent’s ability to effectively utilise the Intrinsic Reward signal. More-
over, the introduction of the Intrinsic Reward reduces the performance, meaning that for
the 1-Subtask model, the Intrinsic Reward contribution works as noise that confuses the
agent during the learning process.

Model End-of-Episode Subtask Completion (%) | Success Rate (%)
1 block 2 blocks 3 blocks
ST-IRL 1-Subtask (XIRL) 54.97 0.00 0.00
ST-IRL 1-Subtask (XIRL) + Intrinsic 6.29 0.00 0.00
ST-IRL 6-Subtasks 34.00 45.33 0.00
ST-IRL 6-Subtasks + Intrinsic 33.33 49.33 0.00
ST-IRL 3-Subtasks 10.67 65.11 13.11
ST-IRL 3-Subtasks + Intrinsic (INEST-IRL) 0.00 77.55 22.45

Table 5.4: End-of-episode subtask completion and success rates for different subtask mod-
els with and without Intrinsic Reward. The embedding-based Intrinsic Reward with 3
subtasks shows the highest rate for placing three blocks correctly.

The table in Figure 5.4 shows the success rates of all the models. The embedding-
based Intrinsic Reward model with three subtasks demonstrated the highest success rate
for placing three blocks (22.45%), indicating its superior ability to complete the task
in the correct order. The 3-Subtasks model without Intrinsic Reward also showed a
reasonable success rate for placing two blocks (65.11%) and three blocks (13.11%), while
the 6-Subtasks model with and without Intrinsic Reward struggled to place three blocks
correctly. The 1-Subtask model with Intrinsic Reward had a very high success rate for
placing zero blocks (93.71%), indicating that the agent often failed to progress in the task.
Its success rate decreased significantly compared to the 1-Subtask model without Intrinsic
Reward, which had a more balanced distribution of success rates across different numbers
of blocks placed. This result is consistent with the low evaluation score, indicating that
the model struggled to learn effective policies for task completion.

Overall, these findings highlight the importance of Procedural Learning and intrinsic
motivation in developing effective learning strategies for complex manipulation tasks.
The embedding-based Intrinsic Reward mechanism, when combined with well-structured
task decomposition, leads to significant improvements in task performance and learning
efficiency.

74

5.3 — Baseline Comparison

5.3 Baseline Comparison

In this section, we present a comparative analysis of the different baseline architectures
implemented for learning reward functions from demonstration videos using INEST-IRL.
The baselines considered in this study included XIRL [22], HOLD-R [35], and REDS [36].
Each baseline represents a distinct approach to learning from demonstrations with unique
architectural designs and training objectives.

All models were trained using the same dataset, training procedure, and evaluation
metrics to ensure a fair comparison. In this case, we used the same visual perspective
because we wanted to compare the baselines with the same dataset. The training was
conducted for 8 million environment steps, with evaluations performed every 50,000 steps
to monitor progress and performance over time.

Before discussing the training results, we analysed the pretraining results to understand
how well each model understood the task. For this purpose, two different metrics were
used: the reward function plot, which shows the development of the reward function
during the inference of a never-seen demonstration, and a distance metric that compares
the cosine similarity Gaussian plot of each model with the ground truth Gaussian plot.

The cosine similarity Gaussian plot is obtained by calculating the cosine similarity
between the embeddings of each frame in a demonstration video and the embedding of
the subtask frame for models that work with subtask decomposition and the final frame
for models that work without subtask decomposition. The cosine similarity values were
then plotted against the frame indices, resulting in a Gaussian-like curve that reflects how
well the model embeddings align with the subtask or goal state over time. A higher cosine
similarity indicates a closer alignment between the current state and the subtask or goal
state, suggesting that the model effectively captures progression toward task completion.
In detail, we are interested in the shape of the Gaussian curve, which should increase as
the agent approaches the subtask or goal state and decrease as it moves away from it. The
ideal curve would show a smooth and consistent increase in cosine similarity as the agent
progressed through the demonstration, indicating that the model accurately captured the
task’s temporal structure.

The distance metric reported in Table 5.6 was calculated by comparing the cosine sim-
ilarity Gaussian plot of each model with the ground truth Gaussian plot, which represents
the ideal progression toward task completion. The distance was computed using the mean
squared error to quantify the discrepancy between the curves. For models that work with
multiple subtasks, the distance is computed for each subtask individually and then av-
eraged. A lower distance value indicates a closer alignment between the model’s learned
representation and the ground truth, suggesting that the model effectively captures the
temporal structure and progression of the task.

75

Experiments and Results

1.0 === Environment
= XIRL
= XIRL (Ego) /
=== HOLD-R y
0.8 REDS /
—_ == |NEST-IRL /
-
e
B
& 0.6
H
]
4
-]
8
= 0.4
£
£
)
=z
0.2
0.0 A

0 5 10 15 20 25 30 35 40
Training Steps

Figure 5.7: Reward function plots for the INEST-IRL, XIRL, HOLD-R, and REDS base-
lines over a never-seen demonstration. INEST-IRL demonstrated a clear and consistent
reward progression, indicating effective learning of the task structure.

The reward function plots for each baseline are presented in Figure 5.7, and the average
distances comparing the cosine similarity Gaussian for each model to the ground truth
are reported in Table 5.6. The INEST-IRL and HOLD-R baselines demonstrated clear
and consistent reward progression, indicating effective learning of the task structure. The
XIRL baseline showed a moderately defined reward signal, whereas REDS exhibited erratic
performance with some inconsistencies.

Method MSE MAE Bias
XIRL 6438 2488 -2.488
XIRL (Ego) | 6.565 2.465 -2.465
HOLD-R 1.925 1.139 0.810
REDS 116.864 10.424 -10.424
INEST-IRL | 1.130 0.802 0.422

Table 5.5: Performance comparison of different backbone architectures across multiple
evaluation metrics. Lower MSE and MAE values indicate better performance, whereas
higher Spearman correlation values indicate stronger alignment with the ground truth
rankings.

The table in Figure 5.5 summarises the performance of each baseline across multi-
ple evaluation metrics, including the Mean Squared Error (MSE), Mean Absolute Error
(MAE), and bias. These metrics are the result of comparisons with the environment re-
ward curve. The INEST-IRL baseline achieved the lowest MSE (1.130) and MAE (0.802)
values, indicating superior performance in accurately predicting rewards compared with

76

5.3 — Baseline Comparison

the other baselines. HOLD-R also performed well, with an MSE of 1.925 and an MAE
of 1.139, suggesting that it effectively captured the task’s reward structure. The XIRL
baseline had higher error metrics, indicating less accurate reward prediction. However, in
this case, the high values are related to the different numbers of subtasks because XIRL
relies on one final goal embedding, whereas the environment reward is composed of three
subtasks. REDS exhibited significantly higher error values (MSE of 116.864 and MAE of
10.424), reflecting the challenges in learning a consistent reward function.

Backbone Cosine Similarity Average Distances
REDS 3.655451
HOLD-R 2.713410
INEST-IRL 1.968344

Table 5.6: Distances comparing the cosine similarity Gaussian for each model and subtask
to the ground truth Gaussian plot. Shorter distances indicate better performance in
predicting the correct subtasks.

The average distances in Table 5.6 further support these observations. The INEST-IRL
baseline is the model with the lowest distance of 1.968344, suggesting that it effectively
captures task progression. HOLD-R has a higher distance of 2.713410, indicating some dis-
crepancies in its learned representation, while REDS has the highest distance of 3.655451,
suggesting that it struggles to accurately capture the task’s temporal structure.

From the cosine similarity distance, we can see that INEST-IRL is the best model for
understanding the task because it shows a lower value than the models that work with Pro-
cedural Learning HOLD-R and REDS. This result is consistent with the reward function
plots, where INEST-IRL shows a clear and consistent reward progression. HOLD-R and
REDS exhibited higher distances and more erratic reward signals, indicating challenges
in accurately capturing the temporal structure of the task.

Considering all the results, HOLD-R and REDS underperformed in our experimental
setting compared to the INEST-IRL. The HOLD-R model can obtain a reward shape
similar to that of INEST-IRL but struggles to accurately capture the subtask divisions,
as indicated by its higher distance. In contrast, REDS exhibited significant challenges in
learning a consistent reward function, as reflected in both the erratic reward signal and
high distance metric.

The inferior performance of HOLD-R and REDS in our experimental setting can be
attributed to several key factors that misalign with the specific characteristics of our task
and dataset.

The architecture of HOLD-R relies heavily on temporal distance prediction and regression-
based learning, which tends to focus on low-level frame alignment rather than under-
standing the procedural and subtask-driven nature of complex manipulation tasks. In our
"Sweep to top in order' task, HOLD-R has difficulty capturing the semantic relationships
between objects and their sequential manipulation requirements. The model’s regression
objective, designed to predict temporal distances between states, becomes problematic
when dealing with tasks that require an understanding of object identity, colour-based
ordering, and multi-stage procedural execution.

7

Experiments and Results

As evidenced by the higher distance metric of 2.713410, HOLD-R struggles to under-
stand the precise subtask division, even though the reward progression is partially correct.
The model tends to overfit easily predictable visual features, such as the position of the
gripper, while failing to capture the critical relationships between coloured blocks and
their correct sequential placement in the target area. The generated embedding focuses
more on the robot position and not on the object identities and their relationships. This
limitation is particularly pronounced in our task, where the reward should reflect not
only temporal progression but also the correct understanding of which block should be
manipulated at each stage based on the prescribed order (Red, Blue, Yellow).

Although REDS was designed for subtask-aware learning, it exhibited significant per-
formance degradation in our experimental context because of its heavy reliance on high-
quality subtask segmentations and robust subtask classification during online interactions.
The model’s dependence on CLIP-based visual-text embeddings and contrastive learning
objectives creates robustness gaps when dealing with the subtle visual transitions charac-
teristic of our manipulation tasks.

The highest distance metric of 3.655451 achieved by REDS, along with the most er-
ratic reward function plots, indicates fundamental challenges in accurately inferring task
progress and maintaining consistency across the subtask transitions. In our task, where
subtasks involve picking and placing coloured blocks in sequence, REDS struggles to
maintain distinct representations for visually similar manipulation phases. The model’s
contrastive learning framework may misclassify current subtasks when the visual similarity
between different phases (e.g. approaching differently coloured blocks) leads to ambiguous
embeddings.

As reported in the original REDS paper [36], the model performance is sensitive to
the quality of subtask annotations and the clarity of subtask boundaries. In our case, the
subtasks were defined by object identity and colour, which may not provide sufficiently
distinct visual cues for the REDS to effectively differentiate between them. The model’s
reliance on textual prompts for subtask identification may also introduce noise, especially
if the visual differences between subtasks are subtle or if the prompts do not capture the
full context of the manipulation task. In the limitations section of the original REDS
paper, the authors noted that the model may struggle with tasks that have similar vi-
sual features but small text differences. Unfortunately, our task falls into this category,
as the primary visual difference between the subtasks is the colour of the block being
manipulated, whereas the overall scene and robot actions remain visually similar.

Furthermore, REDS’s architecture assumes clear subtask boundaries and high-quality
textual annotations, which may not adequately capture nuanced transitions in our ma-
nipulation task. The model’s performance deteriorates when dealing with gradual state
transitions or when the visual differences between subtasks are subtle, as is often the case
in sequential manipulation tasks, where the primary distinguishing factor is the target
object rather than the manipulation strategy itself.

The inferior performance of HOLD-R and REDS in our experimental setting highlights
the importance of aligning model architectures and training objectives with the specific
characteristics of the task and dataset used. In our case, INEST-IRL’s design, which em-
phasises Procedural Learning and intrinsic motivation, proves more effective in capturing
the complexities of the "Sweep to top in order" task, leading to superior performance in

78

5.3 — Baseline Comparison

both reward function learning and task execution.

= = Environmental

1.0{ = HOLD-R - PN ~
REDS A\ JDAERT NN
— ~7 N1 <7
XIRL (Ego) / v
-
05l = XRL U

— INEST-IRL o~

o
o

Mean Eval Score
o
=

0.2

0.0

° ' ? 3Training Ste‘:)s (Millions)5 ° ! 1e(?
Figure 5.8: Evaluation scores for the INEST-IRL, XIRL (Allo and Ego), HOLD-R, and
REDS baselines over 150 evaluation episodes. The INEST-IRL backbone demonstrates

the highest average score and lowest variance, indicating more consistent performance
across different initial configurations.

As shown in Figure 5.8, INEST-IRL achieved the highest final average evaluation score
of 0.73, outperforming the XIRL baseline (0.16), XIRL baseline with the egocentric view
(0.24), HOLD-R (0.05), and REDS (0.00). INEST-IRL also exhibited the lowest variance
in performance across different evaluation episodes, suggesting that it was more robust to
variations in the initial object configuration.

The superior performance of INEST-IRL can be attributed to its effective integration
of Procedural Learning and intrinsic motivation, which together facilitate efficient explo-
ration and mastery of the task structure. The model’s ability to decompose tasks into
meaningful subtasks allows it to focus on mastering each phase sequentially, leading to
more effective learning and higher overall performance.

All the issues discussed previously for HOLD-R and REDS are reflected in their train-
ing performances. HOLD-R’s low evaluation score of 0.05 indicates significant challenges
in learning effective manipulation policies, likely because of its focus on low-level frame
alignment rather than understanding the procedural nature of the task. The model’s
struggle to capture the semantic relationships between objects and their sequential ma-
nipulation requirements results in suboptimal policies that fail to effectively execute the
required actions. Similarly, REDS’ evaluation score of 0.00 highlights its inability to
learn effective policies in our experimental context. The model’s reliance on high-quality
subtask segmentations and robust subtask classification proves detrimental when dealing
with the subtle visual transitions characteristic of our manipulation task. The model’s
failure to maintain distinct representations for visually similar manipulation phases leads

79

Experiments and Results

to erratic performance and an inability to complete tasks successfully.

End-of-Episode Subtask Completion (%)

Success Rate (%)

Model 1 block 2 blocks 3 blocks
XIRL 13.33 17.33 0.00
XIRL (Ego) 54.97 0.00 0.00
HOLD-R 17.22 0.00 0.00
REDS 0.00 0.00 0.00
INEST-IRL | 0.00 77.55 22.45

Table 5.7: End-of-episode subtask completion and success rates for different baseline
architectures. INEST-IRL shows the highest success for placing three blocks correctly,
indicating its superior ability to complete the task in the correct order.

The table in Figure 5.7 shows the success rates of all the baselines. INEST-IRL demon-
strated a higher success rate for placing three blocks (22.45%), indicating its superior
ability to complete tasks in the correct order. The XIRL baseline showed a reasonable
success rate for placing one block (54.97%) and two blocks (17.33%), whereas HOLD-R
struggled to place one block correctly (10.22%) and failed to place two or three blocks.
REDS failed to place any blocks correctly, indicating that it struggled to learn effective
policies for the task completion.

80

Chapter 6

Conclusions and Future Work

In this study, we presented INEST-IRL, a novel architecture for learning reward functions
from demonstration videos, which is specifically designed to address the challenges of
complex manipulation tasks in robotics. Our approach integrates Procedural Learning
through task subdivision and intrinsic motivation using an embedding-based Intrinsic
Reward mechanism. We demonstrated the effectiveness of INEST-IRL through a series of
ablation studies and comparative analyses with existing baseline architectures.

Ablation studies have highlighted the importance of the visual perspective, task sub-
division, and intrinsic motivation in improving learning performance. The egocentric
viewpoint was superior to the allocentric perspective, providing a more intuitive represen-
tation of the agent’s interactions with objects. The subdivision of tasks into three subtasks
emerged as the optimal granularity, balancing the need for structured learning with task
complexity. In general, the number of subtasks depends on the task and should be se-
lected based on the specific requirements of the manipulation task. The embedding-based
Intrinsic Reward mechanism significantly improved exploration and learning efficiency,
leading to higher evaluation scores and better task-completion rates.

Comparative analyses with existing baselines, including XIRL, HOLD-R, and REDS,
demonstrated the superior performance of INEST-IRL in both reward function learning
and task execution. The integration of Procedural Learning and intrinsic motivation
proved crucial in capturing the complexities of the "Sweep to top in order" task, leading
to more effective policies and robust performance across varying initial configurations.

In future work, several avenues can be explored to further enhance the capabilities of
the INEST-IRL. One potential direction is to investigate more sophisticated methods for
task subdivision, such as adaptive or hierarchical approaches that can dynamically adjust
the granularity of the subtasks based on the agent’s learning progress. In this study, the
subtask division was defined manually. One possible idea is to incorporate better object-
detection mechanisms and work with the relationship between the agent and object to
automatically understand the task context and correct subtask division. Additionally,
exploring alternative Intrinsic Reward mechanisms may provide further insights into how
intrinsic motivation can be leveraged to improve learning efficiency.

Another promising direction is to extend the evaluation of INEST-IRL to a broader
range of manipulation tasks and environments, including real-world robotic systems and

81

Conclusions and Future Work

human environments. This would help to assess the generalizability and robustness of the
approach in more complex and dynamic settings. Finally, integrating INEST-IRL with
advanced Reinforcement Learning algorithms could further enhance its ability to learn
effective policies from demonstration videos, potentially leading to more autonomous and
adaptable robotic systems.

82

Bibliography

[1]

Oliver Kroemer, Scott Niekum, and George Konidaris. A review of robot learning
for manipulation: Challenges, representations, and algorithms. Journal of Machine
Learning Research, 2021. doi: 10.48550/arXiv.1907.03146. URL https://www. jmlr.
org/papers/v22/19-804.html.

Aude Billard and Danica Kragic. Trends and challenges in robot manipulation. Sci-
ence, 2019. doi: 10.1126/science.aat8414.

Dong Han, Beni Mulyana, Vladimir Stankovic, and Samuel Cheng. A survey on
deep reinforcement learning algorithms for robotic manipulation. Sensors, 2023. doi:
10.3390/s23073762. URL https://www.mdpi.com/1424-8220/23/7/3762.

Chen Wang, Linxi Fan, Jiankai Sun, Ruohan Zhang, Li Fei-Fei, Danfei Xu, Yuke Zhu,
and Anima Anandkumar. Mimicplay: Long-horizon imitation learning by watching
human play, 2023. URL https://arxiv.org/abs/2302.12422.

Shunyu Liu, Yunpeng Qing, Shuqi Xu, Hongyan Wu, Jiangtao Zhang, Jia Cong,
Tian Chen, Yang Liu, and Ming Song. Curricular subgoals for inverse reinforcement
learning. arXiv preprint arXiv:2306.08232, 2023. doi: 10.48550/arXiv.2306.08232.

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction.

MIT Press, Cambridge, MA, 2 edition, 2018. ISBN 978-0262039246. URL https://
web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd. pdf.

Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony
Bharath. A brief survey of deep reinforcement learning. IEFE Signal Processing
Magazine, 2017. doi: 10.1109/MSP.2017.2743240.

Leslie P Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learn-
ing: A survey. Journal of Artificial Intelligence Research, 1996. doi: 10.1613/jair.301.
URL https://www. jair.org/index.php/jair/article/view/10166.

Jens Kober, J. Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics:
A survey. The International Journal of Robotics Research, 2013. doi: 10.1177/
0278364913495721.

33

https://www.jmlr.org/papers/v22/19-804.html
https://www.jmlr.org/papers/v22/19-804.html
https://www.mdpi.com/1424-8220/23/7/3762
https://arxiv.org/abs/2302.12422
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://www.jair.org/index.php/jair/article/view/10166

BIBLIOGRAPHY

[10] Elena Pashenkova, Irina Rish, and Rina Dechter. Value iteration and policy
iteration algorithms for markov decision problem. 1996. URL https://api.
semanticscholar.org/CorpusID:8013442.

[11] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and Nando
de Freitas. Dueling network architectures for deep reinforcement learning. arXiv
preprint arXiw:1511.06581, 2016. doi: 10.48550/arXiv.1511.06581.

[12] Jan Peters. Policy gradient methods. Scholarpedia, 2010. doi: 10.4249/scholarpedia.
3698.

[13] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.
doi: 10.48550/arXiv.1707.06347.

[14] Vijay Konda and John Tsitsiklis. Actor-critic algorithms. In S. Solla, T. Leen, and
K. Miiller, editors, Advances in Neural Information Processing Systems, volume 12.
MIT Press, 1999. URL https://proceedings.neurips.cc/paper_files/paper/
1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper . pdf.

[15] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In
Proceedings of the 35th International Conference on Machine Learning, Proceedings
of Machine Learning Research. PMLR. URL https://proceedings.mlr.press/
v80/haarnojal8b.html.

[16] Maryam Zare, Parham M. Kebria, Abbas Khosravi, and Saeid Nahavandi. A survey of
imitation learning: Algorithms, recent developments, and challenges. arXiv preprint
arXiv:2309.02473, 2023. doi: 10.48550/arXiv.2309.02473. URL https://arxiv.
org/abs/2309.02473.

[17] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks.

Communications of the ACM, 2020. doi: 10.1145/3422622.

[18] Stuart Russell. Learning agents for uncertain environments (extended abstract).
In Proceedings of the 11th Annual Conference on Computational Learning Theory

(COLT), pages 101-103. ACM, 1998. doi: 10.1145/279943.279964.

[19] Sateesh Kumar, Jonathan Zamora, Nicklas Hansen, Rishabh Jangir, and Xiaolong
Wang. Graph inverse reinforcement learning from diverse videos. arXiv preprint
arXiw:2207.14299, 2022. doi: 10.48550/arXiv.2207.14299. URL https://arxiv.
org/abs/2207.14299.

[20] Ivan Rodin, Antonino Furnari, Kyle Min, Subarna Tripathi, and Giovanni Maria
Farinella. Action scene graphs for long-form understanding of egocentric videos. arXiv
preprint arXiv:2312.03391, 2023. doi: 10.48550/arXiv.2312.03391. URL https:
//arxiv.org/abs/2312.03391.

84

https://api.semanticscholar.org/CorpusID:8013442
https://api.semanticscholar.org/CorpusID:8013442
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.mlr.press/v80/haarnoja18b.html
https://proceedings.mlr.press/v80/haarnoja18b.html
https://arxiv.org/abs/2309.02473
https://arxiv.org/abs/2309.02473
https://arxiv.org/abs/2207.14299
https://arxiv.org/abs/2207.14299
https://arxiv.org/abs/2312.03391
https://arxiv.org/abs/2312.03391

BIBLIOGRAPHY

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[29]

Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash
Kumar, and Amy Zhang. Vip: Towards universal visual reward and representation
via value-implicit pre-training. arXiv preprint arXiw:2210.00030, 2023. doi: 10.
48550 /arXiv.2210.00030. ICLR 2023, Notable-Top-25

Kevin Zakka, Andy Zeng, Pete Florence, Jonathan Tompson, Jeannette Bohg, and
Debidatta Dwibedi. Xirl: Cross-embodiment inverse reinforcement learning. In Con-
ference on Robot Learning (CoRL), 2021. doi: 10.48550/arXiv.2106.03911. URL
https://arxiv.org/abs/2106.03911.

Hanxiao Jiang, Binghao Huang, Ruihai Wu, Zhuoran Li, Shubham Garg, Hooshang
Nayyeri, Shenlong Wang, and Yunzhu Li. Roboexp: Action-conditioned scene
graph via interactive exploration for robotic manipulation. arXiv preprint
arXiv:2402.15487, 2024. doi: 10.48550/arXiv.2402.15487. URL https://arxiv.
org/abs/2402.15487.

Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. A survey of
convolutional neural networks: Analysis, applications, and prospects. IEEE Trans-
actions on Neural Networks and Learning Systems, 33(12):6999-7019, 2022. doi:
10.1109/TNNLS.2021.3084827.

Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks.
arXiv preprint arXiv:1511.08458, 2015. doi: 10.48550/arXiv.1511.08458.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep re-
inforcement learning. In NIPS Deep Learning Workshop, 2013. doi: 10.48550/arXiv.
1312.5602.

Bert J. Claessens, Peter Vrancx, and Frederik Ruelens. Convolutional neural net-
works for automatic state-time feature extraction in reinforcement learning applied
to residential load control. IEEE Transactions on Smart Grid, 9(4):3259-3269, 2018.
doi: 10.1109/TSG.2016.2629450.

Guoping Xu, Xiaxia Wang, Xinglong Wu, Xuesong Leng, and Yongchao Xu. De-
velopment of skip connection in deep neural networks for computer vision and
medical image analysis: A survey. arXiv preprint arXiv:2405.01725, 2024. URL
https://arxiv.org/abs/2405.01725.

Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua Liu,
Yehui Tang, An Xiao, Chunjing Xu, Yiping Xu, Zhaohui Yang, Yiman Zhang, and
Dacheng Tao. A survey on visual transformer. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2022. doi: 10.1109/TPAMI.2022.3152247. URL
https://arxiv.org/abs/2012.12556.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil
Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby,
et al. Dinov2: Learning robust visual features without supervision. arXiv preprint
arXiv:2504.07193, 2023.

85

https://arxiv.org/abs/2106.03911
https://arxiv.org/abs/2402.15487
https://arxiv.org/abs/2402.15487
https://arxiv.org/abs/2405.01725
https://arxiv.org/abs/2012.12556

BIBLIOGRAPHY

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre Sermanet, and Andrew
Zisserman. Temporal cycle-consistency learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2019. doi: 10.
48550 /arXiv.1904.07846. URL https://arxiv.org/abs/1904.07846.

YuXuan Liu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Imitation from
observation: Learning to imitate behaviors from raw video via context translation.
In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages
1118-1125, 2018. doi: 10.1109/ICRA.2018.8462901.

Neha Das, Sarah Bechtle, Todor Davchev, Dinesh Jayaraman, Akshara Rai, and
Franziska Meier. Model-based inverse reinforcement learning from visual demon-
strations. In Jens Kober, Fabio Ramos, and Claire Tomlin, editors, Proceedings of
the 2020 Conference on Robot Learning, Proceedings of Machine Learning Research.
PMLR, 2021. URL https://proceedings.mlr.press/vi55/das21la.html.

Zhibo Yang, Lihan Huang, Yupei Chen, Zijun Wei, Seoyoung Ahn, Gregory Zelin-
sky, Dimitris Samaras, and Minh Hoai. Predicting goal-directed human attention
using inverse reinforcement learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June 2020.

Minttu Alakuijala, Gabriel Dulac-Arnold, Julien Mairal, Jean Ponce, and Cordelia
Schmid. Learning reward functions for robotic manipulation by observing humans.

arXiv preprint arXiw:2211.09019, 2022.

Changyeon Kim, Minho Heo, Doohyun Lee, Jinwoo Shin, Honglak Lee, Joseph J.
Lim, and Kimin Lee. Subtask-aware visual reward learning from segmented demon-
strations. arXiv preprint arXiv:2502.20630, 2025. doi: 10.48550/arXiv.2502.20630.
URL https://arxiv.org/abs/2502.20630.

Jiaming Yang, Kun Chen, Zhi Li, Shengkai Wu, Yu Zhao, Liangliang Ren, Wen
Luo, Chen Shang, Meng Zhi, and Lu Gao. Bootstrapping imitation learning for
long-horizon manipulation via hierarchical data collection space. arXiv preprint
arXw:2505.17389, 2025. doi: 10.48550/arXiv.2505.17389.

Suyoung Lee, Myungsik Cho, and Youngchul Sung. Parameterizing non-parametric
meta-reinforcement learning tasks via subtask decomposition. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in
Neural Information Processing Systems, volume 36, pages 43356-43383. Curran As-
sociates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/86c1£d74£a25bd6be0072937803e0bd1-Paper-Conference. pdf.

Xiaoxiao Pan, Yan Xu, and Kris M. Kitani. Human-interactive subgoal supervision
for efficient inverse reinforcement learning. arXiv preprint arXiv:1806.08479, 2018.
doi: 10.48550/arXiv.1806.08479.

Luca Marzari, Davide Corsi, Enrico Marchesini, and Alessandro Farinelli. Towards
hierarchical task decomposition using deep reinforcement learning for pick and place
subtasks. arXiv preprint arXiv:2102.04022, 2021. doi: 10.48550/arXiv.2102.04022.

86

https://arxiv.org/abs/1904.07846
https://proceedings.mlr.press/v155/das21a.html
https://arxiv.org/abs/2502.20630
https://proceedings.neurips.cc/paper_files/paper/2023/file/86c1fd74fa25bd6be0072937803e0bd1-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/86c1fd74fa25bd6be0072937803e0bd1-Paper-Conference.pdf

BIBLIOGRAPHY

[41]

[50]

[51]

Adrian Sogi¢, Elmar Rueckert, Jan Peters, Abdelhak M. Zoubir, and Heinz Koeppl.
Inverse reinforcement learning via nonparametric spatio-temporal subgoal modeling.
arXiv preprint arXiv:1803.00444, 2018. doi: 10.48550/arXiv.1803.00444.

Hao Liu and Pieter Abbeel. Behavior from the void: Unsupervised active pre-training.
Advances in Neural Information Processing Systems, 34:18459-18473, 2021.

Hao Liu and Pieter Abbeel. Aps: Active pretraining with successor features. In
International Conference on Machine Learning, pages 6736-6747. PMLR, 2021.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Reinforcement
learning with prototypical representations. In International Conference on Machine
Learning, pages 11920-11931. PMLR, 2021.

Tim Schneider, Boris Belousov, Georgia Chalvatzaki, Diego Romeres, Devesh K.
Jha, and Jan Peters. Active exploration for robotic manipulation. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2022. doi: 10.
48550 /arXiv.2210.12806. URL https://arxiv.org/abs/2210.12806.

Sam Toyer, Rohin Shah, Andrew Critch, and Stuart Russell. The MAGICAL bench-
mark for robust imitation. In Advances in Neural Information Processing Systems,
2020.

Alessandro Gasparetto and Lorenzo Scalera. A brief history of industrial robotics in
the 20th century. Advances in Historical Studies, 2019. doi: 10.4236/ahs.2019.81002.
URL https://doi.org/10.4236/ahs.2019.81002.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imita-
tion learning: A survey of learning methods. ACM Computing Surveys, 2017. doi:
10.1145/3054912. URL https://doi.org/10.1145/3054912.

Muhammad Nasib, Hong Xiao, Dongbin Zhao, and Haiqin Yao. A sur-
vey of imitation learning algorithms: Recent developments and challenges.
ACM Computing Surveys, August 2023. doi: 10.48550/arXiv.2309.02473.
URL https://www.researchgate.net/publication/373714865_A_Survey_
of _Imitation_Learning Algorithms_Recent_Developments_and_Challenges.

Sebastian Hofer, Kostas Bekris, Ankur Handa, Juan Camilo Gamboa, Melissa Mozi-
fian, Florian Golemo, Christopher G Atkeson, Joelle Giguere, Heni Ben Amor, Mar-
tial Hebert, et al. Sim2real in robotics and automation: Applications and chal-
lenges. IEEE Transactions on Automation Science and Engineering, 2021. doi:
10.1109/TASE.2021.3064065.

Elisa Salvato, Gianfranco Fenu, Eric Medvet, and Francesco A Pellegrino. Cross-
ing the reality gap: A survey on sim-to-real transferability of robot controllers in
reinforcement learning. IEEE Access, 2021. doi: 10.1109/ACCESS.2021.3126658.

87

https://arxiv.org/abs/2210.12806
https://doi.org/10.4236/ahs.2019.81002
https://doi.org/10.1145/3054912
https://www.researchgate.net/publication/373714865_A_Survey_of_Imitation_Learning_Algorithms_Recent_Developments_and_Challenges
https://www.researchgate.net/publication/373714865_A_Survey_of_Imitation_Learning_Algorithms_Recent_Developments_and_Challenges

BIBLIOGRAPHY

[52]

[53]

Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan
Schaal, and Sergey Levine. Time-contrastive networks: Self-supervised learning from
video. In IEEFE International Conference on Robotics and Automation (ICRA), 2018.
doi: 10.48550/arXiv.1704.06888. URL https://arxiv.org/abs/1704.06888.

Sujoy Paul, Jeroen Vanbaar, and Amit Roy-Chowdhury. Learning from tra-
jectories via subgoal discovery. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/
6£518c31f6baa365£55c38d11cc349d1-Paper . pdf.

Pierre Sermanet, Kelvin Xu, and Sergey Levine. Unsupervised perceptual rewards
for imitation learning. arXiv preprint arXiv:1612.06699, 2016. doi: 10.48550/arXiv.
1612.06699. URL https://arxiv.org/abs/1612.06699.

Siddhant Bansal, Chetan Arora, and C.V. Jawahar. My view is the best view: Proce-

dure learning from egocentric videos. In Furopean Conference on Computer Vision,
2022. doi: 10.48550/arXiv.2207.10883. URL https://arxiv.org/abs/2207.10883.

88

https://arxiv.org/abs/1704.06888
https://proceedings.neurips.cc/paper_files/paper/2019/file/6f518c31f6baa365f55c38d11cc349d1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/6f518c31f6baa365f55c38d11cc349d1-Paper.pdf
https://arxiv.org/abs/1612.06699
https://arxiv.org/abs/2207.10883

	List of Tables
	List of Figures
	Introduction
	Problem Statement
	Objective and Contributions
	Inverse Reinforcement Learning from Visual Demonstrations
	Procedural Learning
	Intrinsic Reward
	INEST-IRL

	Structure of the Contents

	Background
	Reinforcement Learning
	What is Reinforcement Learning?
	Markov Decision Process
	Model-based vs Model-free Methods
	Value-based Methods
	Policy-based Methods
	Actor-Critic Methods

	Imitation Learning
	Behavior Cloning
	Adversarial Imitation Learning
	Inverse Reinforcement Learning

	Representation Learning
	Convolutional Neural Networks (CNNs)
	Residual Networks
	Vision Transformers
	Temporal Cycle-Consistency (TCC)

	Related Work
	Imitation Learning in Robotics
	Procedural Learning in Robotics
	Intrinsic Reward in Robotics

	Methodology
	INtrinsic Exploration via SubTask Inverse Reinforcement Learning (INEST-IRL)
	Training Procedure
	Representation Learning
	Policy Learning
	Reward estimation

	Experiments and Results
	Experiment setup
	Environment used and Data Collection
	Baseline Architectures
	Evaluation Metrics

	Ablation Studies
	Ablation Study 1: Visual Perspective
	Ablation Study 2: Subtasks Number
	Ablation Study 3: Intrinsic Reward

	Baseline Comparison

	Conclusions and Future Work

