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Chapter 1

Background

In the last decades, the adoption of micro-controllers in vehicles has increased
greatly in passenger vehicles, as it is related to new functionalities at multiple levels.
However, as safety is a key element for road vehicles, it is necessary to understand
that these constitute new potential failure points, which can lead to unintended
behaviors with risk of injuries and deaths.

Regulations across the world require the manufacturer to produce documentation
that these systems are safe and it is in this context that the International Organi-
zation for Standardization, also known as ISO, published the standard known as
ISO 26262, addressing the functional safety of electrical and/or electronic (E/E)
systems in road vehicles.

This thesis covers part of the safety lifecycle for an actual industrial case, for
which an analysis on the safety of the system has to be carried out and proper
safety measures shall be implemented to reduce risk.

1.1 1ISO 26262 standard

With the name ISO 26262[1] we identify the adaptation of the IEC 61508 standard|2]
to E/E systems in road vehicles. At the time of writing, two versions were published,
respectively, in 2011 and 2018. We will refer to the latest version, unless explicitly
stated otherwise.

With safety being a key element in vehicle development and the increased
complexity of systems, the standard (or, to be more precise, a series of standards)
aims to reduce risks by providing a reference for the safety lifecycle. This series of
standards is the state-of-the-art methodology used by manufacturers to demonstrate
compliance with safety regulations in many markets.

In the following image, the structure of the series of standards is shown: eleven
parts cover multiple phases of product development, and a V model is used as
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reference both over multiple parts and for single phases. An additional one adapts
the content for motorcycles, which is out of our scope.

‘ 1.Vocabulary ‘
2, Management of functional safety
2-5 Overall safety management 2-6 Project dependent safety management 27 Sa[ety management reg"d!ng.}’r?d"mo"'
operation, service and decommissioning
3. Concept phase 4. Product development at the system level 7. Production, operation,

4-5 General topics for the product 4-7 System and {tem integration servlc_e e}nd_
development at the system level and testing decommissioning

7-5 Planning for production,
3-6 Hazard analysls and risk i i dati g for pi g
36 Hazard analy ‘ ‘ 6 Technicahsafety concept ‘ | 48 safety validation | o
3+7 Functional safety concept
7-6 Production

‘ 35 Item deflnitlon ‘

12. Adaptation of ISO 26262 5!Product development at thé 6. Product development atihie
for motorcycles hardware level software level decommissioning
12-5 General topics for i 5-5 | toples for 6-5 General toplcs for the product
for motorcycles at the hardware level software/level
12-6 Safety culture 5-6 ificati ‘hardware 6-6 Specification of software
safety pequirements safety requirements
12-7 Confirmation measures 5-7 Hardware deslgn 16=7 Software archtecturgl deslgn
5-8 lion of the hardware ﬂ_f\ 6-8 Software unit designand
12-8 Hazard analysis and risk hi | metric N/
5.9 of safety goal 6-9 Software unit verification
129 Vehicle integration and violations due torandom 6-10 Software integration and
testing hardware fallupes werlfication,
12-10 Safety validation 5-10 Hardware fntegration and 6-11 Testingof the embedded
verification software

8. Supporting processes

8-5 Interfaces within distributed developments 8-9 Verification 8-14 Proven In use argument

86 Specification and management of safety 810 g 15 Interfacing an application that Is out of scope
requirements 8-11 Confidence in the use of software tools of IS0 26262

87 G i 812 Qualification of software components 816 ‘of safety-related systems not
8-8 Change management [8-13 on of hardware elements developed according to IS0 26262

9. Automotive safety integrity level (ASIL)-oriented and safety-oriented analyses

[9-5 Requlrements decompositfon with respect to ASIL talloring ] [9+7 Analyss of dependent fallures ]
9-6 Criterta for coexistence of elements ] | 9-8 Safety analyses |

[ 10. Guidellnes on IS0 26262 |
‘ 11. Guidelines on application of ISO 26262 to semiconductors ‘

Figure 1.1: ISO 26262 structure

Several phases are declared for each part of the standard. Each one of them has
"Prerequisites", consisting in documentation or information produced in previous
phases, and activities, which may result in "Work products".

Over the standard, some tables are given for guidance in carrying out the
activities. Tables can either be normative or informative and are made of entries
or methods, which can either be consecutive or alternative.

For any given entry and safety level, one of three possible levels of recommanda-
tion is associated: "++" when highly recommended, "+" when recommended and
'0" when it is not.

For consecutive entries, all methods recommended (whether highly or not) for a
given safety level apply. Explanations are expected when substituting one of these
methods with an unlisted one, or when some of them are not adopted for the given
activity.

For alternative entries, appropriate combination of methods shall be adopted,
with a bias for the highly recommended ones.

In this work, we will focus on elements discussed mainly in Parts 3 to 6 and 11,
in addition to any terms introduced in the Part 1, named "Vocabulary".
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1.2 Concept phase

Before diving into the hardware and any development, the Concept phase requires us
to start by defining the item, which is the system (or combination of) to which ISO
26262 is applied. As anticipated, these involve E/E elements (system, components,
hardware parts or software units) providing some functionality at vehicle level. No
indication regarding their scope is given: this applies to systems that target safety,
comfort, performance.

1"
Item e = =3 Function

1.3 1. ?
L System | A Realization: one instance is realized by another instance

(e-g- a function or part of a function is realized by an item)

0.* |
1. * systern: Aggregation: one instance has a set of other instances
- sensor, controller
(e.g. a system has a set of components)

and actuator
Component
0.*
component:
* e.g. microcontroller,
1 application software,
HW-Part/
SW-Unit
e.g CPU,

SW-RAM Test Module

Figure 1.2: Relationship between item elements taken from Part 10 of [1]

While this specific item will not be explicitly defined in this essay, it is possible
to say that, as it is composed of at least one system, it has at least a sensor, a
micro-controller unit (MCU, also written as 4C) and an actuator.

The next step consists in the Hazard analysis and risk assessment (HARA),
which identifies hazardous events of items and specifies safety goals and ASILs
to prevent or mitigate associated hazards, ultimately reducing risk. Risk is the
combination of probability that an harm, injury or damage to people, occurs
and its severity, in other words, an estimate of the extent. Faults are abnormal
conditions which could lead an element or item to failure, a termination of the
planned behavior.

This is a crucial step, as an incorrect evaluation of the Automotive Safety
Integrity level, from now on called ASIL, specifies either insufficient safety require-
ments, with risk not being mitigated enough, or excessive requirements with an
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increased cost needed to contain risk more than necessary.

All the different scenarios possibly occurring during vehicle operation (operational
situations) shall be identified with the operational modes (i.e., the item in question
being actually used in the scenario). With hazards being derived with a variety
of approaches, which may involve reports and Failure Mode Effect Analysis, all
hazardous events are determined with combinations of operational situations and
hazards.

For each event, three important aspects need to be evaluated: Severity S,
exposure E, which indicates the probability of being in a given scenario which
can be hazardous if it coincides with a failure mode, and controllability C, which
measures the ability to avoid a given harm by reaction of people. Severity targets
the extent of harm to people and spans from S0, in absence of injuries, to S3 with
fatal or life-threatening injuries. The ISO provides a baseline for the evaluation of
this parameter by AIS stages, but as the data may vary, based on elements like
accident variability or medical research or treatment, different injury scales may be
better suited for a given analysis.

Exposure can be classified into five possible levels, from EO being the lowest
(which actually does not require further analysis, as it is associated to very unlikely
phenomena) to E4, the highest. The values can be estimated with two approaches,
either on duration of the situation or frequency of ending up in the considered
situation.

Controllability spans from 0 being generally controllable, to 3 for difficult
to control or uncontrollable. Table B.6 of Part 3 provides some examples of
classification which could support other procedures.

. Controllability class
Severity class Exposure class
C1 cz Cc3

E1 QM QM QM

s1 E2 QM QM oM
E3 QM QM A
E4 QM A B
E1 QM QM QM
E2 M M A

2 Q Q
E3 QM A B
E4 A B C
E1 QM QM Aa
E2 M A

S3 q
E3 B C
E4 B C

2 See6.4.3.11.

Figure 1.3: ASIL determination table given in [1]:3
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Part 3 of the standard provides the table, also reported in figure 1.3, to compute
the ASIL, for each hazardous event, given the values of S,E and C. If the value
obtained is QM, no ASIL is attributed as it is considered a Quality Management
problem, otherwise the unacceptable risk grows as we go from ASIL A to ASIL D.

For each hazardous event a safety goal, which states safety requirement as
functional objective, without considering any technical implementation to avoid
unreasonable risk, is determined, with an associated ASIL given from the event
itself.

In many cases, similar safety goals collapse into a single one, with multiple
events eventually being covered by a single goal. In this case, the ASIL assigned to
the combined safety goal is the highest among the covered ones.

The steps performed to carry out HARA for our application are not part of the
scope of this thesis, however it is necessary to know that an ASIL C has been
assigned.

1.3 Hardware development

Our application case belongs to the widespread case of an MCU being integrated
into the rest of the system to provide a given functionality. As one may expect,
lots of elements, with the MCU being one, are not developed in the context of an
upper-level item, but integrated into it.

According to the ISO standard, these are called SEooC, safety-related elements
which are not developed in the context of a specific item and could potentially
contribute against safety goals.

Part eleven of the standard will help us clarify some concepts about its application
to semiconductors, while part 5 gives insight on product development at hardware
level, giving us information also when integrating an already existing element, as
the MCU, into the overall system.

The MCU chosen for our case is a variant of an Infineon Aurix™ TC36x, having
two TriCore CPUs, memories and several peripherals. In addition to the general
documentation for this kind of devices, some of which is available freely on their
website, additional documentation regarding their use in safety-related applications
is given, as this was developed as an SEooC.

The Safety Manual is a key document, as it explains safety mechanisms that
are provided or supported in the MCU, along with assumptions of use.

In particular, the manufacturer of this device claims support up to ASIL-D
applications and gives information on how to reach given performances for the
safety goals of the specific use case.

It is powered by an Infineon TLF35584, a Power Management IC also suited for
applications up to ASIL D.
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In this thesis we focus mostly on the power supply, the CPU, memories and
some other peripherals.

Table D.1 of Part 5 provides typical failure modes for different classes of E/E
elements: we will explore these later on, but a preview includes Under and over
voltage for power supply, errors in memories and incorrect results by the CPU.

At this point, we have to introduce some new definitions from Part 1 of the
standard:

o Safety mechanism, a technical solution to detect and mitigate faults or control
or avoid failure, maintaining the intended functionality or reaching safe state

o Fuailure rate, denoted as A the probability density of failure divided by proba-
bility of survival for a hardware element

e Diagnostic coverage, or DC, is the percentage of failure rate either of an
hardware element or of one of its failure mode, detected or controlled by the
implemented safety mechanism

Tables D.2 to D.10 give us some safety mechanisms which could be found or
implemented for the classes of elements, along with plausible values for achievable
diagnostic coverage. This will also be explored further later on.

1.4 Software development

The ISO 26262 series of standards[1] also targets the software development process
in part 6. Before the specification of safety requirements for the software, its
design and the following development and testing phases, the software development
environment and language shall be chosen.

These should be suited for the development of the embedded software in accor-
dance with the guidelines and work products required by the standard.

The programming language adopted in this application case is C, a widespread
language in embedded environments due several factors, such as efficient code
once compiled, existance of compilers and the low-level hardware abstraction. The
MCAL (Micro controller Abstraction layer) by Infineon, which is a set of source
code files given to customers to abstract the components and peripherals of an
MCU, is written in this language.

Unlike languages such as Rust, which enforce strict compiler checks to ensure
code correctness, catching issues like concurrency errors at compile time, C offers
programmers a high degree of freedom, which, while powerful, also makes it easier
to introduce mistakes.

In order to address the criteria for suitable safety-related programming, addi-
tional guidelines shall be adopted if these are not addressed adequately by the
language itself.
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For the C language, a reference coding guideline, also mentioned in the ISO
standard, is MISRA CJ3].

1.4.1 MISRA C

It is a set of guidelines to reduce probability of mistakes during C programming,
as C can lead to undefined behaviors, misuse and little run-time checking.

A guideline can be classified as either rule, for which a complete description
is provided and the source code is sufficient to verify compliance, or directive, for
which additional information is required.

For rules, a further classification applies: decidable, if a program can verify
compliance in every case, undecidable otherwise, typically for dynamic cases such
as those that depend on run-time values.

A guideline can also be classified as either mandatory or required, for which
deviation is allowed but shall be formally justified, or advisory, if they should be
followed as reasonably as possible but are not necessary.

Directives revolve around broader phases of development, while rules characterize
all the aspects of the source code.

Proper adoption of MISRA C into a software development process, which is
expected to be integrated into other processes targeting correctness starting from
the requirements, requires programmers to make a compliance matrix, along with
any deviation justification.

1.5 3-level monitoring concept

With this in mind, it is now possible to introduce the E-GAS Monitoring Concept[4],
a monitoring concept standardized by the EGAS Workgroup, made up of several
German manufacturers and, in its form, intended for engine control units.

In particular, for our case, the most important part is the & Level monitoring
concept, as it plays an important role in how functionalities are spread out.

e Level 1, called function level, contains the control functions, implementing the
intended functionalities

o Level 2, called function monitoring level, monitors the activities of level 1
and the output produced, by comparison with permitted values, and triggers
reactions in case of fault (or monitors fault reaction of level 1, in case these
cannot be generated by level 2 itself).

e Level 3, called controller monitoring level, is independent of the application-
specific implementation, as it is responsible for monitoring the correct operation
of the MCU.
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Input Signals Coatrolier Funciians 1
Power
Determining Cutput
T T . T T Stages /
Function Mannomng Satety-relevant Bus
Communication
Program Flow Check
Mamory Test 1
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Hardwars-
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FFC Management
Tast of Hard- Linking oduls Enabis
Ware-Canfiguration
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I I
I
Test of the auta =
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HVMDaUIE Functians Test
Manitaring Moduie Enanle
-
Question
Monibaring Medules Enatiz

Figure 1.4: 3-level concept with lockstep-core[4]

The focus of the activities carried out for this thesis, and explored in the next
chapters is on level 3. Several elements, such as the processing units and memories,
are therefore subject to checks which, as the monitoring concept says, can be
performed as a combination of internal error detection hardware and software
functions.

Figure 1.4 provided in [4] shows how this concept works and, to a wider extent,
how safety-related functions play an important role in the overall item, whose
functionality is implemented in the first yet smallest level.

In the next chapter we will focus on the combination of software functions
and hardware measures which mitigate random hardware failures and lead to
satisfactory metrics. As it is not possible to disclose specific documents by the
MCU manufacturer, parts 5 and 11 of ISO 26262, along with further available
documentation, will be discussed.

1.6 Thesis structure

As an introduction to the problem has been provided, the core of the work can be
further discussed: the series of standards can be explored in more detail, posing
the foundation for application-specific design choices.

The following structure is adopted for this document in order to cover as
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reasonably as possible the activities carried out, part of which unfortunately cannot
be disclosed.

o Chapter 2 will provide the state of the art of hardware development for
automotive applications by ISO, providing typical failure modes affecting
MCU’s elements and common safety measures which increase coverage.

o Chapter 3 will focus on safety mechanisms chosen and implemented for
the specific case. As this document will not be marked as confidential and
most of the documentation and software developed is under NDA, this will be
approached in a sensible way.

o Chapter 4 will conclude the document, providing final considerations.



Chapter 2

State of the art

In this chapter, we are going to further analyze the adoption of a microcontroller
into the item, with a focus on some of the elements it is composed of. Typical
failure modes for these elements will be provided, along with safety measures.
For this purpose, Parts 5 and 11 of the standard will be considered, together
with this[5] application note by Infineon, publicly accessible from their website

2.1

Safety mechanisms timing

When adopting safety mechanisms into the item, it is necessary to consider the
timing regarding faults and their consequences.
Hence, several time intervals are defined:

Fault tolerant time interval (FTTI) is the minimum interval from a fault
happening to the hazardous event, in absence of safety mechanisms.

It has direct implications on safety goals and safety mechanisms, which have

to maintain or reach a safe state within this interval.

Diagnostic test time interval (DTTI) is the interval between executions of
diagnostic tests for a given safety mechanism.

Fault detection time interval (FDTI) is the time between a fault occurring
and its detection. With lower values of DTTI, this interval becomes shorter,
however this implies greater overhead due to frequent diagnostic tests.

Fault reaction time interval (FRTI) is the time-span between the detection of
the fault and safe-state being reached.

Fault handling time interval (FHTI) is the sum of FDTI and FRTI. It is a
property for a given safety mechanism.

10
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The following figure 2.1, given in the Vocabulary of ISO 26262[1], shows their
relation.
Fault causing

malfunctioning
behaviour of the item

!’ ‘ Without Safety Mechanism \

I
| t
|
1

Malfunctioning behaviour
resulting in hazardous event

|
| Malfunctioning Behaviour
)

Fault Tolerant Time Interval

Fault Detected

‘ Safety Mechanism Implemented |

-

[ [ I \ I
) o ‘ |
f \ f ! 1
Diagnostic Test |
Time Intervals I
|

1

Time to Detect Fault

Transition to Safe State

|
|
|
|
| /
Time to Transition to Safe State ! Safe State
f

Fault Detection Fault Reaction Time Interval
Time Interval

Fault Handling Time Interval

Figure 2.1: Safety time intervals, from ISO26262-1

When designing a safety mechanism and its response time, this crucial property
shall always hold true: FTTI > FHTI = FDTI + FRTI. Otherwise, there is no
point in adopting the measure, as the hazardous event cannot be prevented and a
safe state cannot be reached in time.

DT'TT shall be chosen appropriately: low values lead to lower FDTI, however
more time is spent doing monitoring, which hampers both normal functions and
other safety mechanisms.

Moreover, it is possible to have instances in which a single detection of a fault is
not valid to raise an alarm, and filtering is needed against disturbances, dirty data
and other phenomena, in a similar way to that of debouncing. In this case, lower
values of DTTI shall adopted to ensure timely detection and handling of the fault.

The discussion so far implicitly assumes that the safety mechanism activation
leads to safe state being also being reached inside the FTTI, which is not always
the case.

In this case an emergency operation can be adopted. It is an operating mode in
which performance is degradated, it shall be initiated before FTTI and safe state
shall be reached inside another interval, the emergency operation tolerance time
interval (EOTTI).

This mode plays a role in the "Warning and degradation strategy", adopted
when it is not possible or convenient to stop providing entirely a functionality.
As the name implies, warnings are issued to the driver for proper reaction and
performance is limited when compared to the nominal one.

One example could be an electronic accelerator or steering wheel actuator
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which, in case of fault, shall not shut down abruptly. Instead, limited performance
(restricted acceleration or steering wheel angle) give room to move aside before risk
cumulates and becomes too high.

2.2 Hardware metrics

The addition of safety measures contributes, along with design changes, to improved
safety properties of the item. Several metrics can be defined, some of them requiring
us to classify faults as follows:

o Single-point fault is a hardware fault in an element that leads directly to
violation of safety-goal and no fault in the element is covered by any safety
mechanism

o Multiple-point fault is an individual fault that, combined with other faults,
could lead to multiple-point failure (and, ultimately, to a violation of a safety-
goal)

o Latent fault, a multiple-point fault not detected by a safety mechanisms nor
perceived by the driver before reaching failure

o Safe fault for faults that do not increase greatly the probability of violating a
safety goal when they occur

o Residual fault is a portion of an hardware fault, which leads to violation, not
controlled by a safety mechanism

The following figure 2.2 from Part 5 gives us a visual representation of this
classification.

Another important result to be considered during the lifecycle of the product is
the evaluation of the hardware architecture metrics, which demonstrate that the
design is suitable for the item, as it is able to detect and control hardware failures.

These are the Single-point fault metric, from now on called SPFM, and the
latent-fault metric, from now on LFM. Higher values are associated to a more
robust item with respect to either single-point faults or latent faults.

These can be achieved by adopting suitable safety measures or by designing an
inherently safe product.

If we adopt the same graphical representation as the standard, high values
indicate a lower proportion between the area linked to the considered faults and
the overall circle.

We can take note of the target values which are provided in 8.4.5 and 8.4.6 of
Part 5.

In particular, for safety goals associated with ASIL C the SPFM has to be
> 97%, while LFM has to be > 80%.

12
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safe faults

latent multiple-point faults

single-point or
residual faults [ 1
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multiple-point multiple-point

faults WI % & E 4 ?‘? faults

Figure 2.2: Fault classification of hw elements, from 1S026262-5:C.1

2.2.1 Failure rate

We have defined failure rate in chapter 1 as the probability density of failure divided
by probability of survival for a given hardware element.

These values, denoted with A, are necessary to compute SPFM and LFM defined
in the ISO 26262 standard, which assumes these to be constant.

In order to provide these values, models for failures are needed, with one of the
most popular ones being the bathtub curve reported in 2.3, which assumes that
failure rate is exponential in the earliest phases of the product life, nearly steady
for some time and exponentially increasing when it is worn out.

Simplifications of this model, useful for A evaluation, include defects during
production, and up to the item being used by the customer, being filtered out, and
"wear out" failures to be minimal during the expected operational lifespan of the
product.

The model can be customized, as screening and stress procedures during pro-
duction can improve the filtering performance, or it can be based on several fault
models for different failure modes, which help in the safety analysis by considering
separately the failure modes.

Numerical values can be derived from the models, testing phases and industry
books. For semiconductor products, it is common to expect failure rates for the
silicon die, for the enclosure and for connections between elements.

13
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FIT Rate

; Constant value during the Exponential
§ useful life of the product / model
Highly Accelerated: ™ y
Stress Screening - | \
\ / , \ . \ time
Delivery to |Warranty Failure rate Failure rate
customer | Period almost constant  increases due to
- - (continues to wear out failures

decrease slightly)

Figure 2.3: Bathtub curve for failure rate evaluation

The manufacturer can then select a suitable A for their product, based on
multiple factors. For example, it can be equal to the "exponential model" value,
shown in figure 2.3, calculated for a given confidence level (in the figure, 70%).
This approximation could be more appropriate when the product is expected to
operate also outside of its nominal lifespan; on the other hand, a less cautious
evaluation could assign to A the value observed during its operational lifespan
(when the product is expected to be delivered to the end user, with the negligible
decrease over time), making it appropriate only when inside this period.

Failure rate can be expressed with FIT units, which stands for Failure In Time
and 1 FIT = 1 failure per 10° hours or as failures per hours, h~!.

In addition, it is possible to find in literature the MTTF metric, which stands
for Mean Time To Failure, and is the reciprocal of the failure rate expressed as
failures per hour. Therefore, one hour is the base unit for it.

It is possible to convert from FIT to failures/hour by dividing by 10°, the
opposite can be done by multiplication.

Once failure rates have been computed or derived, in order to compute the
SPFM and LFM, it is necessary to classify them based on the corresponding failure
modes. A subscript is added to A to refer to the specific fault types.

Figure 2.4, provided in [1], shows a suitable flow diagram for classification,
starting from the failure modes.
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Figure 2.4: Failure mode classification flow diagram, from 1S026262-5:B.2 [1]

SPEFM can be computed as follows:

Z (Aspr + Arp) Z (Avpr + Ag)

| _ SRHW _ SRH

> A WZA

SR,HW SR,HW

where the sum symbol denoted the sum of the A of safety-related hardware elements
and A = Agpr + Apr + Ayrpr + Ag.
LFM, on the other hand, is given by the following:

> (Auprr)
SRHW

Z (A= Aspr — Arr)

SR,HW

2.2.2 PHMF

The ISO 26262 part 5, with its Clause 8, requires the evaluation of the aforemen-
tioned metrics. However, that is not sufficient for the evaluation of the residual
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risk of safety goal violations, due to random hardware failures.

For this purpose, the clause 9 introduces the Probabilistic Metric for random
Hardware Failures, in short PHMF, for a quantitative analysis.

This additional metric covers a gap introduced with the other metrics: even
though they were based on failure rates, which is linked to the probability over
time, the ratio cancels out the time dimension, leaving only a percentage expressing
relative robustness with respect to the faults.

The standard provides once again possible target values, with a constraint of
PHMF < 107 h~! for ASIL C. This can be also expressed, by FIT units, as an
upper limit of 100 FIT.

An approximated value of PHMF can be obtained as follows:

PHMFgsr =Y _ (Aspr+ Agr) + Y (ApPEu, * ADPEyn; * Diifetime)

Generally speaking, the first sum is the greatest contribution to PHMF, as
single-point faults and residual faults greatly contribute to safety goal violations.
However, an additional element can be found, as the probability of dual point
failures, based on a detected fault and an undetected latent fault, may not be
negligible over the lifetime.

ASIL | Single Point Fault Metric | Latent Fault Metric | Residual PHMF
B > 90% > 60% < 100 FIT
C > 97% > 80% < 100 FIT
D > 99% > 90% < 10 FIT

Table 2.1: Target fault metrics based on ASIL

2.3 Failure modes and safety mechanisms

It is possible to discuss about the elements in a system to which ISO 26262 applies,
covering some of the faults that could happen and exploring common mechanisms
to detect them and increase the aforementioned hardware metrics.

Our reference will be provided by the standard itself, which targets E/E com-
ponents either at a generic level or focused on semiconductor ones; however, the
Failure Mode, Effects and Diagnostic Analysis, hereafter referred to as FMEDA, is
a common methodology in the industry to determine failure causes in the device
and their effects on the system.

Manufacturers of safety-related components, developed as SEooC, generally
provide support for the evaluations of the ISO random-fault-related metrics with
a configurable FMEDA template that may be modified for the application. This
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gives guidance on how to tailor the design choices according to the desired ASIL.
However, it is distributed only under NDA and we can disclose only some elements
available to the public.

D.2 E/E System
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Figure 2.5: Generic hardware of a system, from 1S026262-5:2018:D.1

It is also possible to observe metrics for Hard Errors, which are permanent, and
Soft Errors, with a transient before going away, as different elements and safety
measures can affect differently these types.

In figure 2.5 an overview of a safety-related system is reported: we can now dive
into the several kinds commonly found an discuss at a part level.

2.3.1 Power supply

This element is a semiconductor component which handles both digital and analog
signals. With its main purpose being to provide specific voltage levels to the
MCU, typical failure modes involve, according to D.1 in iso 26262-5[1], drift and
oscillation, undervoltage and overvoltage.

Although the primary functionality is to provide analog voltage signals, safety
mechanisms can either alter these signals directly or generate digital outputs to
the MCU to signal failures for countermeasures.

Here, we will list some of the approaches commonly found in such devices.

o Voltage clamp refers to circuitry that limits voltage in a node, with at least an
upper or lower bound. Voltage clamps are typically used for transient events.

o A Current limiter is used to reduce output current using transistors, ICs, or
other components, thereby reducing stress on electronic.
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Circuit under test—|

Linear voltage
regulator

Low drop
regulator

Voltage
monitor

Figure 2.6: Mixed signal hardware element, from 1S026262-11:D.1 [1]

o Overvoltage and undervoltage monitoring are used for bounded voltage signals.
However, unlike a clamp, this does not limit the amplitude. Instead, the signal
is compared to reference signals (which shall be independent to avoid common
cause faults) and an output, which can be digital. While voltage clamps
actively protect the circuit, these monitoring ensure detection for system-level
countermeasures.

e Resistive pull-up/pull-down is another way to limit voltage signals. It involves
resistive elements that either ground a node or connect it to supply voltage
when the driving signal is disconnected.

Their most common application is with I/O pins, common in MCUs and also
found in power supply interfaces with the supplied microcontroller.

These circuits define default voltage levels for pins, preventing unexpected
behavior when a driving signal is absent.

These strategies could suffer from other faults and, based on the desired diag-
nostic coverage, require additional measures.

One of them consists of Analog Built In Self-Test, which improves coverage
by verifying the functionality of diagnostic elements under simulated faults. For
this element, it is obtained by injecting analog signals. The idea of self-tests is
widespread also for other E/E elements.

Power supplies generate heat due to conversion losses, dissipation with resistive
elements, conduction losses and control logic. Harsh environmental conditions can
aggravate their sensitivity to thermal issues. For this reason, Thermal monitoring
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is an important measure to signal faults when the measured temperature exceeds a
specified threshold.

Countermeasures can be taken to avoid component failure or system malfunc-
tions.

2.3.2 CPU

The processing unit is a key element in any MCU, responsible for executing
instructions in a given flow. Typical failure modes for it include, at the very
minimum, the following: instruction flow not executed, execution of unintended
instruction flow, incorrect flow timing, incorrect results.

Some concepts behind safety measures include self-tests, redundancy either in
software or hardware and different types of monitoring.

Let’s take a look at some of them, starting from those targeting expecially
incorrect results.

o Hardware redundancy, with an high achievable diagnostic coverage according
to the ISO, consists of a step-by-step comparison of the results produced by
different processing units.

With reference to the Dual Core Lockstep, a specific version which is also
present in the specific MCU considered, two symmetrical processing units are
in the same die, with one being Master, i.e. the "'nominal" one, and the other
being the Checker.

These run the same operations, either in parallel or delayed by a fixed amount
of time, in order to avoid certain disturbances, and results are compared: in
case of mismatches there are errors and some action is taken, generally with
some signal to report the fault or reset.

With this approach the same code can be used for both units; however, it
has disadvantages both in potential performance, as the secondary unit is
relegated to a checker role, and failures, as in this form systematic errors are
not covered: certain kinds of failure, called [common cause failures| or CCF
will have the same impact on both cores, leading to wrong behavior without
any mismatches.

Proper implementation of this technique addresses these weaknesses.

o Software based self-tests detect failure by software means. A number of patterns
is used to test correctness of registers or functional units, with diagnostic
coverage generally lower than hw-redundancy, as not all memories or units
can be thoroughly tested.
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Respectively, IEC 61508[2] reports the need for at least two complementary
data patterns for failure detection through patterns, or walking-bit as an
example to test data and address registers inside the processing unit.

The application note from Infineon [5] expects the adoption of these tests for
non-lockstep CPUs in the device.

o Hardware supported self-tests leads to improved coverage with respect to sw-
based tests, as special hardware structures, also with random generated inputs,
is used.

However, these require a more complex design of the processing unit and may
interfere with normal operation.

For this reason, a distinction which can be found also in literature, reported
also in [6], is between online BIST, which has strict timing constraints, as
it shall run inside the diagnostic time interval during operation, and offline
BIST, relegated to the initialization phase as it is slower.

Generally, the former improves SPFM, while the latter is used against latent
faults.

The application note[5] by Infineon mentions self-test of the lockstep com-
parator, which is the unit comparing the results from master and checker
cores.
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Figure 2.7: Lockstep core comparator, from Infineon AN[5]

The document suggests that it is hardware-based as it uses fault injection,
another technique widespread in the industry, however it is continuously
running, which is atypical.

In order to observe valid behavior, it is also necessary that the instruction flow

is correct both temporally and logically. For this purpose, Programme sequence
monitoring measures shall be adopted.
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o Watchdogs are key elements in verifying timely correct operations. At their
core, these can be seen as timer devices which do not share the clock source
with the unit they are monitoring.

Over time, they are triggered to monitor the CPU and program sequence. As
a result, CPUs shall answer.

ISO 26262 expects different levels of achievable diagnostic coverage, based on
time-window being present or not.

A lower coverage is to be expected without the time-window, as only a
maximum time interval for triggering the watchdog is specified. This means
that, while events like task death could be recognized in absence of response,
no error is observed on too fast answers by the processor, which could very
well be caused by wrong programme sequence.

An higher level can be achieved with time-window, as responses by the CPU
are valid only when received inside a given period of time, with also lower
bounds.

o Logical monitoring is another important element in evaluating correctness of
the sequence. As the name implies, it checks parts of software. Checkpoints are
defined in monitored software entities, covering paths which can be dangerous
in case of faults.

In safety-related devices, the sequence is monitored both temporally and logically,
with Program Flow Monitoring techniques that analyze sequence results and timing
properties through external devices, typically advanced watchdogs.

2.3.3 Memories

With the term memory we refer to any semiconductor element that stores data,
which shall be maintained over time and be accessible at any point to continue
with the required instruction flow.

The smallest unit is the bit, an element which stores a low value, 0, or an high
value, 1.

A variety of technologies can be used, as different operating conditions, volatility
needs and design apply.

Here are typical fault models for memories:

o Stuck-at Fault (SAF) indicates a memory cell being stuck at a given logic
value, due to some physical problem.

o Stuck-Open Fault (SOF) indicates a problem in accessing the memory cell,
whose content is not available. This may arise from defects such as open
circuits or damaged transistors and any attempt to read the value is unreliable.
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o Addressing Faults (AF) and Addressing Delay Faults (ADF) are observed
when it is not possible to address and, therefore, reach the memory cell at all
or in nominal time.

 Coupling Faults (CF) happen when operation on one cell affects another one.

These are generally intended for RAM (Random Access Memory), but hold true

also for FLASH and other technologies.

Safety mechanisms can either apply to all memories or depend properties, like

volatility or variability.

With volatile, we refer to a memory that shall hold data as long as it is powered,

while non-volatile ones keep data even without power supply.

Variable memories are subject to modifications in time during operation, while

invariable ones, commonly named read-only, shall not change its content after the
writing procedure.

o Parity bit is common technique found not only in memories, but also in
telecommunication, which allows to detect corruption for an odd number of
bits in a word (which we will consider, for discussion purposes, groups of
8,16,32,64, or 128 "consecutive' bits), but not for even number of faulty bits.

A bit is added to every word and its value is based on the number of 1’s. In
case of even parity bit, the extra bit is set to 1 when the number of ones is
odd. This makes the overall word have an even number of bits equal to 1.

The opposite holds when odd parity bit is adopted, as it makes the word have
an odd number of 1’s.

Upon reading the word, parity is checked and, if the number of 1’s differs from
the expected one, a fault is detected. This approach has limited capabilities,
as it does not help in detecting addressing failures, unless the address is
included in the parity check and, most noticeably, it only has limited detection
properties, as the corrupted bit is unknown, leaving no correction possibility.

The previous technique is a basic form of Error-detection-code, where redundant
bits are added to the original data bits for detection and correction purposes.

In particular, Hamming codes are used, with several distances (the lowest one
being 2, resulting in the parity bit) linked to the number of additional bits.

Figure 2.8 shows, at high level of abstraction, the core concept behind ECC.
Codes of several lengths are available on the TC3xx microcontroller family
based on the specific memories, up to three-bit error detection and two-bit
correction for Flash memories[5].
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Figure 2.8: ECC concept, from Infineon AN[5]

o Checksum is another method for error detection, in which a block of memory
is split in segments of equal size that are treated as binary numbers.

The first two segments are added according to binary sum and result is added
to the third segment and so on. Once all segments have been added, the one’s
complement is applied to the sum, resulting in an additional segment, the
checksum, with bits flipped with respect to the sum.

This value can be stored and used at a later point, when the same activity
is performed, and the obtained checksum shall be compared to the stored
one. Based on the application, checksum comparison could be substituted
with the checksum added to the sum, and the result is complemented. If the
complement is made of only 0’s, no error has been detected.

o Clyclic redundancy check, CRC, is an enhanced checksum alternative that
relies on polynomial-based code, further enhancing its detection properties
and resulting in high diagnostic coverage.

In this method the binary addition is replaced by binary division in which
information block is the dividend and a suitably chosen generator polynomial
is the divisor.

Specific adoptions of CRC are indicated by the polynominal’s degree, which
determines the error detection performanc by indicating the max number of
bursts. Common CRC are CRC-8, CRC-16 and CRC-32.

Periodically, CRC is computed for the block of memory and compared to
stored value.

o Memory Signature is a wider concept consisting in summarizing the content
of a memory block in a far smaller number of bits. This can be achieved by

polynomial division, with capabilities in terms of coverage that are on level
with CRC.
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It is mostly used for invariable memories either at word level (a signature for
each relevant word) or block level.

This variety of methods mostly covers errors at the memory cell level and
increases diagnostic coverage; however, it is still important to adopt self-tests, at
startup or runtime, that can also target faults at decoder level, leading to proper
metrics for the given safety level.

Specific self-test techniques for variable memories, as outline in IEC 61508-7[2],
include:

o Checkerboard, which consists in itialization with alternating 0 and 1 patterns
to detect static bits or addressing faults.

o Galpat initializes memory uniformly (all Os or 1s), then single cells are inverted
and the remaining cells are tested to observe any dynamic coupling or static
bits.

These can be scheduled for execution and complement the methods general
methods above, by covering their dynamic properties.

2.3.4 I/0

Input/Output (I/O) is the interface between a MCU and physical world.

Input allows the MCU to "see" by sensor measurements, used to represent
physical parameters. Output allows the MCU to transmit signals to control things
outside the system, by means of actuators.

ISO 26262 also targets possible failures caused by undetected faults in these
interfaces, as these could affect the functionality provided by the overall system.

The following methods can be applied to achieve required coverage levels and
detect failures in I/O units.

o Test pattern detects static failures by initiating a test, with predefined pattern,
which produces a result that shall be compared to the expected one. Coverage
increases as the pattern information, reception and evaluation gets increasingly
independent from one another.

o Code protection gives detection capabilities that rely on information or time
redundancy. Multiple approaches are possible, as additional bits can be used
for digital channels and additional signals can validate analog 10.

o Monitored outputs can be used to detect several failures when duplication or
redundancy of the outputs themselves is not possible. Independent elements
compare the values with a tolerance range for values and/or timing.
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o Input comparison or voting also provides for a comparison with a tolerance
range. However, the mechanism becomes stronger when redundancy is used,
with independent inputs.

Based on the adopted number of independent signals, the majority that "shares"
a value imposes itself.

2.3.5 Communication bus

The processing unit assumes that any instruction or data required to continues its
cycle are provided in its registers. However, as most of the information required is
stored or provided by other elements, such as the RAM, non-volatile memories and
additional peripherals, a communication channel shall be adopted.

In MCUs multiple communication buses can be provided, as they generally
handle different timing and throughput requirements.

Devices like a Direct Memory Access, or DMA | allow to transfer data between
peripherals without the intervention of the CPU, which does not have to be busy
handling interrupt to serve; however, also when it is adopted, the communication
bus still provides the path for signals to go.

Faults for these result in repeated, lost, delayed, incorrect information or also
faulty communication path, such as blocked access or incorrect receivers.

Safety mechanisms generally rely on redundancy, patterns and additional moni-
toring. In the scope of information exchange, the mechanisms seen for memories
and I/O are partially useful also in buses.

We can start by taking a look to those that affect the received message.

e Hardware redundancy can be tailored by the MCU designer according to
desired detection capabilities and coverage. The simplest form consists in one
additional line in the bus, equalling an additional bit used for the parity check.

Multiple lines can be added in a bus for stronger mechanisms that use error
codes, of which Hamming codes and CRC are a part of.

A Complete hardware redundancy can be reached when two buses are used for
a single communication channel: the number of lines available is the double,
as values between the channels are directly compared.

One instance of this is a Dual channel FlexRay. It is still useful to remind
that common cause failures, unless somehow targeted in design, can impact
the diagnostic coverage which is otherwise high for this method.

o Transmission redundancy is used for transient failures detection, since the
same information is shared multiple times in a row.
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o Information redundancy expects data to be sent in blocks with a checksum or
CRC.

The receiver also computes the checksum/CRC and compares it with the
obtained one, as we have already stated here.

Also in this case, the choices for data block size, size of the checksum/CRC and,
in the last case, the generator polynomial alter the detection performances.

The following methods can be used for detection of failures affect the message
travel.

e Frame counter is used to detect frame losses.

Frames are sets of data that are identified by a message ID. The counter is
increased by one for each transmitted frame so the receiver can detect whether
a message was lost, with a gap between a frame’s ID and the next received
frame’s ID, or received in the wrong order, as the ID should always increase
one by one upon correct reception.

o Timeout monitoring also allows detection of frame loss, as no frame has been
received in a given period. It can also be tailored to detect loss of messages
with a specific identifier.

An additional method reported in Part 5 of the standard is read-back of the
message, for which the sender reads back from the bus the message it has just
transmitted. It is used by the popular, also in the automotive field, CAN bus.

Let us take a look at sensors and actuators, two types of element which are also
subject to failure mode analysis when adopted into a system. We will not go into
much detail, as these are outside the scope of the thesis activities.

2.3.6 Sensors

A sensor is an element which includes, either physically or virtually, a transducer
and hardware elements that support it and allow the processing of its output.

A transducer is a part that converts energy in one form to another. Therefore,
in the E/E context, it is used to convert a physical quantity (lengths for position,
speed, acceleration, heat for temperature measurements and so on) into a voltage
value. Some mathematical function maps any read voltage value (for a MCU, its
binary reading) to values for the original quantity.
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It is clear that faults in any part between the transducer itself and the sensor
output can lead to wrong overall output and potentially result in hazards.

A common example could be a faulty temperature sensor which reports low
temperatures for an element sensitive to heat, which may catch on fire without
intervention.

Although specific failure modes vary depending on the transducer technology,
typical ones involve:

o Offset outside specifications, which increases or reduces the nominal output of
a given quantity, which could vary over time or due to heat.

Ideally, transducer and circuitry would add zero offset, however true sensors
always introduce some. Its extent is specified by the manufacturer for given
operating conditions.

o Dynamic range outside a given range, leading to reachable voltage values lower
or higher than anticipated.

o Sensitivity or Gain, which indicates how sensible the element is to the input
quantity, could be too high or low, null, sensitive to temperature or deviate
from the mathematical link.

These failure modes can also be derived from the production process of the
sensors, as a wide variety of phenomena can stress them without being able to
visibly observe a fault.

Safety mechanisms for sensors involve self-tests, calibration procedures, adjust-
ments for gain, and offset minimization.

Redundancy can also be useful, with one example being the Reference sensor[2]
which monitors periodically the output of the process (main) sensor. Also sensors
used for different physical properties could be used for detection, as long as they
can be mapped with each other by means of a model.

Therefore, both hardware and software measured can be adopted for these
devices.

2.3.7 Actuators

These are the final elements of our systems, which allow the system to control
the outside world. However, unlike the previous categories, no generalized failure
modes are provided for this class.

As electromechanical elements, we can only provide generic safety measures for
these, which may or may not be adopted.

o Failure detection by online monitoring is used to detect failures in the system
by analyzing its behavior online during operation.
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This is not implemented with specific hardware elements, but relies on com-
parison of some action or entity at system level with the expected one, usually
at specific conditions.

Low diagnostic coverage is expected, as this is not a thorough method and
localization of the fault is not precise.

Test patterns can be adopted. The properties seen for I/O units also apply
here.

Monitoring could also be applied to the actuator, when possible, to monitor
its operation. By measuring a physical quantity, affected by the actuator,
with the expected one, fault detection is achieved and high coverage can be
expected.

Measures against physical environment can be taken during the design or
adoption phase, by enclosing the equipment, to prevent it from being affected
by physical wear or infiltrations which may cause failures[2]. A watertight
enclosure is an example, as it would avoid short circuits caused by water and
corrosion due to rust or salt.
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Chapter 3

Safety mechanisms
implementation

This chapter shall now examine the covered case, providing an overview of the
adopted hardware and the implemented safety mechanisms in order to ensure the
desired safety level.

An overview of the hardware, and some manuals, are provided by Infineon
on their website; however, as we have already stated, much of the safety related
documentation is classified, so we will approach the matter in a suitable way, which
includes generic mechanisms, without their specific names and characteristics, and
the use of pseudo-code to show hints of the software.

3.1 SEooC hardware

The adopted MCU is a variant of an Infineon Aurix™ TC36x, which belongs in
the greater TC3xx family of embedded microcontrollers with multiple CPUs.

In this MCU family, many peripherals are provided to cover the needs for control
applications with real-time requirements, critical bandwidth and signal processing
capabilities, supporting also ADAS applications if required.

The TC36x is characterized by two TC1.6.2 CPUs running at up to 300 MHz,
672KB of RAM with ECC method, up to 4 MB of FLASH with ECC and power
consumption not exceeding a couple of Watts.

ASIL D can be reached when adopting this device, at it features lots of safety
mechanisms, one of which is the adoption of the lockstep cores, with clock delay,
for both CPUs.

Another functional block that allows for easier safety scalability is the Safety
Management Unit, or SMU, which manages several safety critical elements.
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The Integrated Circuit which supplies power to the MCU is an Infineon
TLF35584, also designed for automotive applications up to ASIL D.

[t can also act as a safety monitor, with I/O for safety signals and two watchdogs,
a window one with timing constraints and a functional one, which can check the
correctness of the timely response.

Safety manuals, several safety analysis reports, a customizable FMEDA and
other documents, provided only under NDA, give a guidance of reaching the required
safety levels, by providing the required metrics to prove compliance with respect to
the ASIL.

In addition to the classification, reported in chapter 2, of safety mechanisms
being implemented either in hardware or in software, another classification is
possible: a mechanism is internal if it is provided with the MCU itself (along with
software libraries, if any), external if the system integrator is expected to implement
them. We can refer to the former as simply SMs and the latter as ESMs.

Lists of these are provided in the safety manual for the microcontroller family.

3.2 Safety Mechanisms

3.2.1 Program Flow Monitoring

The program flow monitoring mechanisms is one of those which have been chosen
and implemented for the item. It can be a quite powerful measure with respect to
soft errors, as it targets several aspects, as mentioned in subsection 2.3.2.

In this implementation, the technique can be used for periodic tasks that are
safety-relevant, which we will also call monitored entity. Structures in software
shall be declared, with useful fields, before compilation, in order to have reference
values for each entity. One of these is the monitored entity identifier, which has to
be unique.

Due to their periodic nature, constraints on timing are expected: too frequent
or delayed activations can result in incorrect behavior and potential hazards.

As a result, a time window is configured, for a single entity, with a minimum
inter-arrival time and the maximum inter-arrival time.

Any monitored task is expected to call, through some API, the software module
responsible for PFM. Each one of these calls corresponds to a checkpoint, points
in which the application gives space to the PFM module to either signal some
condition or execute some tests.

The first checkpoint shall be invoked as soon as a specific instance of the entity
starts executing, as the initial time for the instance shall be noted.

The PFM module stores, in some way, the activation time for the current
instance and the previous one: at a certain checkpoint a test on these is performed
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and, in case of interval between activations being outside a window, a fault is
reported.

Contributing to the detection properties of PFM, logical monitoring is also part
of the module.

In the implemented mechanism, for each checkpoint a CRC is generated before
compile time and, during normal operation, the monitored entity produces, at
runtime, the CRC value for the specific checkpoint.

During the checkpoint call, the PFM module shall compare the generated value
with the pre-compile one, and report a fault if these differ, as either a soft fault in
the CPU or clock altered the original instruction flow.

This PFM module expects a minimum of two checkpoints for a task: each
checkpoint can be useful for logical monitoring, as errors may appear before the
task instance ends and one may be interested in checking before or after specific
operations, but a minimum of two checkpoints also allows for deadline monitoring.

During the discussion about safety mechanisms timing in chapter 2, we have
implicitly declared deadline, as some intervals shall be respected.

A deadline refers to the maximum time at which some operation can end. For a
periodic task, the deadline limits how much time can elapse between one instance’s
activation and its ending.

In this case, it is a relative deadline (amount of time after each activation),
however absolute deadlines can also be used, by defining the time interval against
some fixed point in time.

The second checkpoint call can then be used to check whether the deadline was
met or not.

void EntityID@(void){
CheckpointAPI(@,FirstCheckpoint);
foo () ;
CheckpointAPI (@, SecondCheckpoint);
bar () ;
CheckpointAPI (@, ThirdCheckpoint);

Listing 3.1: Periodic task example

Listing 3.1 reports an example of a periodic task, in pseudo C code, with
identifier 0 and three checkpoints.

The first and last lines invoke the checkpoint API at the start and end of a
given instance, while the middle function call serves for logical monitoring between
some initial operation, called foo() and the following operations, bar().

Listing 3.2 reports a plausible implementation of the PFM module with the
overall behavior, as discussed so far. An array of structures, named Task and with
length based on the number of monitored entities, contains data for monitoring,
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both pre-compile defined properties, as the number of checkpoints it shall call in
each instance and the allowed interval times, and runtime fields.

void CheckpointAPI(int ID, int Checkpoint){
if (Checkpoint == Task[ID].FirstCheckpoint){
Task[ID].NewActivationTime = getTime();
difference = Task[ID].NewActivationTime - Task[ID].
PreviousActivationTime;
if(difference > Task[ID].MaxInterArrival || difference < Task
[ID].MinInterArrival){
ReportFault (ID, TimingFault);
3
3

computeCRC = CRC(Q);
if (Task[ID].CRC[Checkpoint] != computeCRC){
ReportFault (ID, LogicalFault);

3
Task[ID].currentCheckpoint++;

if (Checkpoint == Task[ID].LastCheckpoint){
Task[ID].endTime = getTime ();
Task[ID].hasEnded = true;
if(Task[ID].endTime - Task[ID].NewActivationTime > Task[ID].
Deadline){
ReportFault (ID, DeadlineFault);
3

Listing 3.2: Checkpoint function example

When a task calls the function, its structure is accessed through its ID. At
the first checkpoint, the arrival time is stored in Task[ID].NewActivationTime,
the activation time of the previous instance is substracted and the result is then
compared to the lower and upper allowed bounds; a fault is reported if it is
outside specifications. As the code fragment is a simplification, true software shall
adopt good practices, for instance by correctly handling boundary cases and initial
conditions.

Then, CRC is computed in some way, depending on the task and checkpoint
number, and compared to a value stored in the structure.

At final checkpoint, a deadline miss can be detected by comparing the difference
between current and activation time with the deadline.

The function ReportFunction(int ID, FaultType fault) is external to the
PFM module, and its behavior depends on the task which generated the fault and
the specific type, as different actions may be necessary.

These monitoring activities rely on a timer, separated from the clock used for
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the CPU and assumed to be safe to use, and the tasks themselves being able to
invoke the API for the module.

However, it may be the case that a task may fail to do so, which includes a
wrong control path or being stuck in some loop.

Guidelines on software development by the ISO and the MISRA C standard
mitigate these issues, however aliveness monitoring can be implemented for more
robustness.

void EntityID1(void){
CheckpointAPI(1,FirstCheckpoint);
return; /* Task dies before last point =*/
CheckpointAPI (1, SecondCheckpoint);

}

Listing 3.3: Misbehaving monitored tasks

Listing 3.3 shows an example task that would require aliveness monitoring, as it
behaves differently than what programmers had in mind. The function ends with
return before calling the last API, with no deadline monitoring possible.

It is clear that, in order to detect this fault type, an external method, with
respect to the tasks, has to be adopted.

The use of a watchdog makes this possible by making it a part of the watchdog
service routine, which answers the watchdog inside an allowed time window.

void WatchdogService(void){
/* ... */
AlivenessMonitor () ;
VA V4

}

void AlivenessMonitor (){
int i;
for(i=0; i<MONITORED_TASKS_NUMBER; i++){
if(Task[i].hasEnded == false){

if(getTime () - Task[i].NewActivationTime >= Task[il].

maxTime){
ReportFault(i,Aliveness);
3

Listing 3.4: Aliveness monitoring

As the watchdog routine is independent of PFM tasks, a check on all monitored
entities is performed. Information about the task having called the last checkpoint
API is stored and, if it did not, two options are possible: either the task has been
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interrupted during the watchdog routine, and it shall continue after it, or the task
has died prematurely.

If that happened, this is detected during a service routine (not necessarely the
first one, depending on the time window properties of the watchdog) by comparison
with the maximum allowed time. This last information may be derived from the
periodicity of the task: a common assumption is that a task’s instance ends before
the next one appears.

For example, if a periodic task, of nominal period 100 ms and allowed range of
90 to 110 ms, ends prematurely, there is no point in waiting more than 110 ms:
whether it ended or is still stuck running, the intended behavior is not observed.

3.2.2 Tests

We shall now introduce a new type of safety mechanisms which were added into
the system, consisting of several tests (mostly self-tests) triggered by the software,
at startup or periodically, that are supported by hardware.

Unlike program flow monitoring, which is strongly connected with the periodic
tasks, these tests are generally run either once per driving cycle or periodically.

In the former case, they can conveniently be inserted in the startup phase, which
also provides results about correct behavior for the following usage; in the latter,
the period can be derived from different factors, but is still related to the relevant
FHTI constraints.

int CoreX_main(){

InitializeDevice ();

for(int i=0;i<STARTUP_TESTS_NUMBER;i++){
TestResult_t result = ExecuteStartupTest(i);
if(result != 0K){

ReportError (i, result);

}

3

InitiatePeriodicTasks (); /* Application software x/
InitiatePeriodicTests () ;
while (1);

Listing 3.5: Test management

3.2.3 Logic BIST

Upon startup of the MCU, one of the first activities consists in a set of self-tests to
verify the health of its digital logic. These tests rely on specialized on-chip circuitry
that generates carefully generated random patterns to examine the system’s core

34




Safety mechanisms implementation

components. The Logic Built-In Self-Test (LBIST) builds on this foundation,
offering a robust way to uncover hidden faults in the microcontroller’s digital logic
without any external testing tools.

LBIST can start automatically during startup or be activated later by software,
depending on the system’s needs. It works by feeding pseudo-random test patterns
through the chip’s logic paths, capturing responses, and condensing them into a
unique signature using dedicated registers. This signature reveals whether the
logic is functioning correctly or carrying faults. In order to maintain the required
stability of the MCU during execution, LBIST skips testing the power management
and control units, focusing instead on the broader digital logic.

Settings for this mechanism can be tweaked, like the number of test patterns or
the speed of execution, to obtain a balance between thoroughness and efficiency.

Once the test completes, the system typically resets to resume normal operation,
though some memory areas might need reinitializing afterward.

LBIST allows for high diagnostic coverage, catching potential faults early.

3.2.4 Secondary monitors BIST

For a microcontroller in safety critical applications, unexpected voltage levels can
lead to unexpected results, with an impact on the safety of the system and overall
item.

A power supply developed as a SEooC may require additional validation to meet
the requirements of higher ASIL when integrated into a system, MCU manufacturers
may choose to adopt additional measures on the microcontroller itself, using
techniques found in power supplies or common to analog signal processing, as
discussed in chapter 2.

Monitors, which may work in a purely analog way, or through analog to digital
conversion, can be a solid choice to improve fault detection properties on the
package.

In this MCU, redundant monitoring for a set of signals improves diagnostic
coverage and mitigates common cause failures, as monitors cover different aspects.

For improved detection capabilities, self-tests on the monitors can be adopted.

Among startup tests, the manufacturer also supports tests for the monitors at a
secondary level, improving latent fault coverage metrics.

These tests were successfully added to the project and run at initialization phase.

3.2.5 Register self tests

In the previous chapter, we examined common failure modes and mechanisms
affecting safety-critical memories. In order to address potential faults, a series of
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tests are carried out during startup, before application software is executed along
with any cyclic test.

For this case, Built In Self Tests for testable internal memories are performed
through the Memory Test Unit (MTU).

Each testable memory is equipped with hardware circuitry to support these tests
and to provide interfaces to control them by the MTU. In addition to BIST, MTU
and the support hardware also provide support for memory error detection and
correction methods, which can be configured via this unit, while also supporting
fault detection for addressing elements.

By adopting these features, the system can reach high levels of diagnostic
coverage, as discussed in chapter 2.

With this device, BIST setup and execution are managed by configuring specific
registers, which also store test status and results.
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Chapter 4

Conclusion

The activities carried out for this thesis cover fundamental steps during the devel-
opment of an item for automotive use.

Although it was not possible to disclose techniques and documentation related to
the specific instance, this thesis demonstrates how the entire development process
is shaped by risk management requirements.

Efforts to ensure the item’s core functionality represent only a fraction of the
work, as each component’s failure potential must be analyzed and addressed.

For this purpose, ISO 26262 provides an in-depth reference for the entire process,
with steps and requirements for each phase, including also production and service
after design and development.

This thesis demonstrates that compliance to the ISO 26262 enables deep un-
derstanding of the item’s parts and quantitative risk metrics to ensure effective
mitigation.

Failure modes for each element, based on their type, are also provided in
the standard and its generic version, the IEC 61508; however, as most elements
are sourced by semiconductor manufacturers, technical documentation from the
manufacturers provided are required.

These documents provide deep understanding of the elements, developed as
safety elements independent of the item’s context, to integrate them into specific
devices.

At this point, project decisions and development takes place, with a set of
mechanisms implemented in the firmware to contribute towards the required
metrics for the assigned safety integrity level.

Subsequent testing of hardware and software safety mechanisms ensures effective
risk management without compromising functionality.

Even though compliance with these standards provides improved safety and a
legal standpoint against any lawsuit, it also requires additional costs in money and
time, making development of modern and reliable systems complex. Addressing
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these aspects is not trivial, as absence of thorough analysis may lead to serious
danger in the future, with significant costs for recalls or lawsuits.

Adoption of already proven elements, where economically and functionally
compatible, provides a big benefit. Suitable project organization, reliance on past
reports and experience also help towards efficient development. Future research
could also explore cost-effective methods to comply with standards, with model-
based software design being an example of streamlined software development phase.
These methods would support technological innovation while keeping low risk or
even reducing cost to the consumer.

38



Bibliography

ISO 26262: Road vehicles — Functional safety. Geneva, Switzerland: Interna-
tional Organization for Standardization, 2018 (cit. on pp. 1, 3, 4, 6, 11, 14, 15,
17, 18).

International Electrotechnical Commission. IEC 61508: Functional Safety of
FElectrical/Electronic/Programmable Electronic Safety-related Systems. Stan-
dard. Parts 1-7, Second Edition. International Electrotechnical Commission,
2010. URL: https://www.iec.ch/functionalsafety (cit. on pp. 1, 20, 24, 27,
28).

MISRA Consortium. MISRA C:2012 Guidelines for the use of the C language
in critical systems. Tech. rep. Motor Industry Software Reliability Association
(MISRA), 2013 (cit. on p. 7).

EGAS Workgroup. Standardized E-Gas Monitoring Concept for Gasoline and
Diesel Engine Control Units. Version 6.0 (cit. on pp. 7, 8).

Infineon. AN0001 AURIX™ TC3zx functional safety (FuSa) in a nutshell.

Application Note. 2025. URL: https://documentation.infineon.com/aurixt
c3xx/docs/owq1745576218449 (cit. on pp. 10, 20, 22, 23).

Alessandra Nardi and Antonino Armato. «Functional safety methodologies for
automotive applications». In: 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). 2017, pp. 970-975. DOI: 10.1109/ICCAD.
2017.8203886 (cit. on p. 20).

39


https://www.iec.ch/functionalsafety
https://documentation.infineon.com/aurixtc3xx/docs/owq1745576218449
https://documentation.infineon.com/aurixtc3xx/docs/owq1745576218449
https://doi.org/10.1109/ICCAD.2017.8203886
https://doi.org/10.1109/ICCAD.2017.8203886

	List of Figures
	Background
	ISO 26262 standard
	Concept phase
	Hardware development
	Software development
	MISRA C

	3-level monitoring concept
	Thesis structure

	State of the art
	Safety mechanisms timing
	Hardware metrics
	Failure rate
	PHMF

	Failure modes and safety mechanisms
	Power supply
	CPU
	Memories
	I/O
	Communication bus
	Sensors
	Actuators


	Safety mechanisms implementation
	SEooC hardware
	Safety Mechanisms
	Program Flow Monitoring
	Tests
	Logic BIST
	Secondary monitors BIST
	Register self tests


	Conclusion
	Bibliography

