\? ™3

5)
\ 'g; Politecnico
\’.ﬁﬁﬁiﬁ%ﬁ}iiiii.....iiiiiﬁi;i’!ﬁﬁi‘}'l di Torino
\\‘\ 1859 #.f;
‘\Q\g“#

Politecnico di Torino

Computer Engineering - Artificial Intelligence and Data Analytics

A.a. 2024/2025
Graduation Session October 2025

Multi-robot Collaborative
Simultaneous Localization
and Mapping

Relatori: Candidato:
Marcello Chiaberge Simone Borella

Giorgio Audrito
Mauro Martini
Stefano Primatesta

Abstract

Advancements in multi-robot systems represent a significant frontier in robotics,
with growing applications in domains such as agriculture, search and rescue, industry,
domestic environments, and transportation. A key challenge in these settings is
enabling multiple robots to operate collaboratively, safely, and efficiently while
navigating complex, dynamic environments. This thesis focuses on the development
of a multi-robot collaborative SLAM (Simultaneous Localization and Mapping)
system designed to provide robust and accurate localization while enabling the
coordinated and efficient exploration and mapping of unknown environments. By
employing a centralized framework, the system integrates sensor data and robot
dynamics to maintain global consistency across the multi-robot network. Factor
graph formulations are employed as a powerful tool to jointly solve SLAM, decision-
making, and trajectory planning for the multi-robot system, implemented using the
GTSAM library. Within the SLAM component, the framework optimizes the entire
system’s state by integrating motion constraints and sensor measurements while
simultaneously building the map and exploring frontiers to discover unknown areas.
For decision-making, discrete factor graphs are used to assign frontiers to individual
robots, ensuring an efficient allocation of exploration tasks. In local trajectory
planning, the factor graph solution naturally extends to jointly optimize robot
paths, promoting efficient, safe navigation while enforcing collision avoidance and
coordinated behaviors across the team. Experimental evaluations are conducted
in simulation and indoor environments using a team of TurtleBot3 robots, with a
Vicon motion capture system providing ground truth references. These experiments
assess mapping accuracy, localization reliability, and efficiency in multi-robot
exploration. The results show the effectiveness of factor graph-based frameworks
enhancing multi-robot collaboration in complex, unstructured environments, while
also pointing out some limitations and directions for further improvement.

Acknowledgements

This thesis marks the end of an incredible journey at Politecnico di Torino, a
journey filled with challenges, discoveries, and unforgettable experiences that have
shaped both my academic path and personal growth. Along the way, I've been
lucky to have the support of many wonderful people, and this section is dedicated
to all of you with my deepest gratitude.

To all the people I've met in Turin - thank you for the moments we shared, and
the friendships that made this city feel like home. Each of you, in your own way,
has left a mark on this journey.

To my housemates - thank you for sharing daily life with me, for all the Clash
Royale and Burraco sessions, and for the daily support. You turned our home into
a place that I can really call home.

To the friend of "Scugna" - thank you for being there through every high and
low, always ready to share laughter, encouragement, and, of course, something to
drink together. You made these years brighter and unforgettable.

To Giorgio - one of the most important people in my life. Your friendship has
been a constant source of fun, strength, and inspiration. Thank you for being there,
always.

To Stefania - thank you for the wonderful moments we’ve shared, for always
cheering for me, and for your constant support.

To my whole family - who have continuously pushed me to grow, to do better,
and to become a better person every day. Your support has been the foundation of
everything I've achieved up until now.

II

To Luca - my brother and great adventure companion. Thank you for walking
this path with me. I can’t wait to dive into all the amazing adventures that still
awalt us.

To my mom and dad - my life teachers, my life supporters, my life. Thank you
for your love, for your wisdom, for your patience, and for celebrating every small
victory with me. None of this would have been possible without you.

I am deeply grateful to all of you and for making this journey truly unforgettable.
Oh and thank you, dear reader, hope you find my thesis interesting!

And last but not least...

II1

Table of Contents

List of Tables VIII
List of Figures X
Glossary XI1
1 Introduction 1
1.1 Goal 2
1.2 Thesis structure 2

2 Background 4
2.1 Factor Graphs and Probabilistic Inference 4
2.1.1 Definition of Factor Graphs 4

2.1.2 Probabilistic Inferenceo L.)

2.1.3 Maximum a Posteriori Inference 5

2.1.4 Nonlinear Optimization 6

2.1.5 Incremental Inference 6

2.2 Simultaneous Localization and Mapping 7
2.2.1 Problem Formulation 8

2.2.2 Graph-Based SLAM, 8

2.2.3 Active SLAM 10

2.2.4 Active Collaborative SLAM 11

225 Mappingo 12

2.3 Path Planning o 13
2.3.1 Global Planning 13

2.3.2 Local Planningo 13

3 State of the Art 14
3.1 Factor Graphs applications in Robotics 14
3.1.1 Tracking oo 14

3.1.2 Switching Systems oL 14

3.1.3 Optimal Control 14

3.1.4 Pose Graph Optimization (PGO) 15
3.1.5 Simultaneous Localization and Mapping (SLAM) 15
3.1.6 Structure from Motion (StM) 15
3.2 Simultaneous Localization and Mapping 17
3.2.1 Evolution of SLAM techniques 17
3.2.2 Modern Trends and Challenges 18
3.3 Active SLAM 19
3.4 Frontier detectiono 19
3.5 Active Collaborative SLAM L. 22
3.5.1 Network Topology 22
3.5.2 Distributed AC-SLAM 23
Methodology 24
4.1 Sensor Setup 24
4.2 Architectures 25
4.2.1 Single-robot architecture 00 25
4.2.2 Multi-robot architecture L. 26
4.3 Feature extraction oL 28
4.4 SLAM 29
4.4.1 Localization oo 29
4.4.2 Data association 35
443 Mapping 37
4.5 Frontier detection 40
4.6 Decision Making Lo 42
4.7 Global Planning 44
4.8 Local planning oo 46
4.9 Simulationo 54
4.10 Implementation Lo o7
Experiments and Results 58
5.1 Multi-robot systemo 59
5.2 Experimental environments 61
5.3 Ground Truth 64
5.4 Testing Modality 65
5.5 Results and discussion 66
5.5.1 Experiment 1 66
5.5.2 Experiment 2 L 75
5.5.3 Experiment 3o 84
5.5.4 Experiment4 93
5.5.5 Experiment 5 Lo 102

6 Conclusions and Future Works
6.1 Future Works

Bibliography

VII

List of Tables

5.1
5.2
9.3
5.4
9.5
5.6
5.7
0.8
2.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18

Experiment 1 - Timing evaluation
Experiment 1 - Position and orientation accuracy metrics

Experiment 1 - Exploration coverage for each robots combination

Experiment 1 - Mapping accuracy confusion-based rate metrics . . .
Experiment 2 - Timing evaluation
Experiment 2 - Position and orientation accuracy metrics

Experiment 2 - Exploration coverage for each robots combination

Experiment 2 - Mapping accuracy confusion-based rate metrics . . .
Experiment 3 - Timing evaluation
Experiment 3 - Position and orientation accuracy metrics

Experiment 3 - Exploration coverage for each robots combination

Experiment 3 - Mapping accuracy confusion-based rate metrics . . .
Experiment 4 - Timing evaluation
Experiment 4 - Position and orientation accuracy metrics

Experiment 4 - Exploration coverage for each robots combination

Experiment 4 - Mapping accuracy confusion-based rate metrics . . .

Experiment 5 - Exploration coverage for each robots combination
Experiment 5 - Mapping accuracy confusion-based rate metrics .

VIII

.. 102

List of Figures

2.1
2.2
2.3

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16

5.1
5.2
2.3
5.4
9.5
5.6
5.7

Factor graph variable and factor representation 5
Graph-Based SLAM factor graph problem formulation 9
Active SLAM perception-action cycle 11
Factor graph applications 16
AC-SLAM network topologies 22
Single-robot architectureo 25
Multi-robot architecture 26
RGB-D image keypoint and feature extraction 28
Huber loss function 32
GraphSLAM factor graph formulation 34
Probabilistic Data Association 36
Probabilistic Occupancy Grid Map 37
Costmap 40
Frontier detection 41
Decision-making factor graph 0L 43
A* Search 45
Dynamic Window Approach 48
Factor graph-based local planner formulation 52
Factor graph-based local planner 53
Random generated simulation environments 54
Simulator Rviz visualization 56

Multi-robot TurtleBot3 system with robot_ 12, robot 13, and robot_14 59

Experiment 1 environment 62
Experiment 2 environment L0000 62
Experiment 3 environmento oL 63
Experiment 4 environment00 63
Vicon motion capture system 64
Experiment 1.1 - Localization trajectory with Vicon ground truth . 68

IX

0.8
5.9
5.10
5.11
5.12

5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23

5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34

9.35
5.36
5.37
5.38
5.39
5.40
0.41
0.42
5.43
5.44

Experiment 1.2 - Localization trajectories with Vicon ground truth
Experiment 1.3 - Localization trajectories with Vicon ground truth
Experiment 1 - RTAB-Map ground truth
Experiment 1 - Mapping results
Experiment 1 - Confusion error metric (Green — TP, White — TN,
Blue - FP, Red —FN)
Experiment 1.1 - Robot exploration and trajectory
Experiment 1.2 - Single robots exploration maps
Experiment 1.2 - Robots exploration and trajectories
Experiment 1.3 - Single robots exploration maps
Experiment 1.3 - Robots exploration and trajectories
Experiment 2.1 - Localization trajectory with Vicon ground truth
Experiment 2.2 - Localization trajectories with Vicon ground truth
Experiment 2.3 - Localization trajectories with Vicon ground truth
Experiment 2 - RTAB-Map ground truth
Experiment 2 - Mapping results L.
Experiment 2 - Confusion error metric (Green — TP, White — TN,
Blue - FP, Red - FN)
Experiment 2.1 - Robot exploration and trajectory
Experiment 2.2 - Single robots exploration maps
Experiment 2.2 - Robots exploration and trajectories
Experiment 2.3 - Single robots exploration maps
Experiment 2.3 - Robots exploration and trajectories
Experiment 3.1 - Localization trajectory with Vicon ground truth
Experiment 3.2 - Localization trajectories with Vicon ground truth
Experiment 3.3 - Localization trajectories with Vicon ground truth
Experiment 3 - RTAB-Map ground truth
Experiment 3 - Mapping results L.
Experiment 3 - Confusion error metric (Green — TP, White — TN,
Blue = FP, Red —=FN)
Experiment 3.1 - Robot exploration and trajectory
Experiment 3.2 - Single robots exploration maps
Experiment 3.2 - Robots exploration and trajectories
Experiment 3.3 - Single robots exploration maps
Experiment 3.3 - Robots exploration and trajectories
Experiment 4.1 - Localization trajectory with Vicon ground truth
Experiment 4.2 - Localization trajectories with Vicon ground truth
Experiment 4.3 - Localization trajectories with Vicon ground truth
Experiment 4 - RTAB-Map ground truth
Experiment 4 - Mapping results

X

68
69
71
71

71
72
73
73
74
74
7
7
78
80
80

80
81
82
82
83
83
86
86
87
89
89

5.45

5.46
5.47
5.48
5.49
5.50
5.51
5.52
5.53

5.54
9.59

Experiment 4 - Confusion error metric (Green — TP, White — TN,

Blue - FP, Red - FN) 98
Experiment 4.1 - Robot exploration and trajectory 99
Experiment 4.2 - Single robots exploration maps 100
Experiment 4.2 - Robots exploration and trajectories 100
Experiment 4.3 - Single robots exploration maps 101
Experiment 4.3 - Robots exploration and trajectories 101
Experiment 5 - RTAB-Map ground truth 103
Experiment 5 - Mapping results 103
Experiment 5 - Confusion error metric (Green — TP, White — TN,

Blue - FP, Red - FN) 103
Experiment 5 - Single robots exploration maps 104
Experiment 5 - Robots exploration and trajectories 104

XI

Glossary

PIC4SeR

PoliTo Interdipartimental Center for Service Robotics

SLAM

Simultaneous Localization And Mapping

A-SLAM

Active Simultaneous Localization And Mapping

AC-SLAM

Active Collaborative Simultaneous Localization And Mapping

V-SLAM

Visual Simultaneous Localization And Mapping

VI-SLAM

Visual Inertial Simultaneous Localization And Mapping

GTSAM
Georgia Tech Smoothing and Mapping Library

MAP

Maximum a Posteriori

iSAM2
Incremental Smoothing and Mapping 2

GPS
Global Positioning System

XII

IMU

Inertial Measurement Unit

LiDAR

Laser Imaging Detection and Ranging

EKF
Extended Kalman Filter

PGO
Pose Graph Optimization

StM

Structure from Motion

WFD

Wavefront Frontier Detection

FFD

Fast Frontier Detection

OBB-FD

Oriented Bounding Box Frontier Detection

NaiveA A

Naive Active Area

EWFD

Expanded Wavefront Frontier Detection

FTFD

Frontier Tracing Frontier Detection

GBP

Gaussian Belief Propagation

XIII

ORB
Oriented Fast and Rotated Brief

SE

Special Euclidean

JCBB
Joint Compatibility Branch and Bound

PDA

Probabilistic Data Association

DBSCAN
Density-Based Spatial Clustering of Applications with Noise

BFS
Breadth First Search

DWA
Dynamic Window Approach

FGP
Factor Graph-based Planner

ROS2
Robot Operating System 2

LAN
Local Area Network

RTAB-Map
Real Time Appearance Based Mapping

XIvV

Chapter 1

Introduction

As automation continues to advance, multiple robotic systems will increasingly
need to operate side by side — whether ground rovers in farms, service robots
in homes, industrial machines in factories, or autonomous vehicles on roads. En-
suring both safety and efficiency in such settings, especially when operating at
higher speeds or within limited spaces, requires careful coordination of motion
and task planning. Robots first need to ensure collision avoidance by being aware
of each other’s trajectories. Beyond this basic requirement, tighter coordination
enables significant gains in efficiency, where large teams can move in harmony and
collectively accomplish complex tasks.

At the most basic level, multi-robot SLAM enables each robot to estimate
its trajectory and build a local map of the environment. When combined with
centralized coordination, these local maps and individual pose estimates can be fused
into a consistent global representation, reducing uncertainty in both localization
and mapping while enabling the team to plan efficient, non-conflicting paths.
Centralized approaches can use a single computational system to manage the
positions, localization estimates, decision-making goals, and trajectories of all
agents together. By optimizing these elements at the system-wide level, the
approach can coordinate localization and motion planning, prevent collisions, and
improve exploration efficiency.

Multi-robot SLAM and path planning pose two key challenges in complex envi-
ronments: (i) maintaining a consistent and accurate global map as multiple rovers
navigate and sense the environment, and (ii) generating coordinated trajectories
that maximize coverage while avoiding collisions and respecting dynamic constraints.
Factor graph formulations are particularly well-suited for this task, as they can
naturally encode robot dynamics, sensor measurements, and obstacle avoidance
constraints within a unified probabilistic framework. Centralized inference over the
factor graph ensures that global consistency is maintained, and optimal trajectories
can be computed for the entire team.

Introduction

In agricultural settings, rovers must efficiently cover large fields while navigating
around obstacles such as crops, vineyards, orchards, trees, uneven terrain, and
farm equipment. In search and rescue, robots navigate cluttered, unpredictable
environments with limited visibility, where efficient exploration and mapping are
critical for mission success. Centralized, factor-graph-based SLAM and path
planning allow teams of ground rovers to operate safely and effectively in both
scenarios, providing accurate global maps and smooth, coordinated trajectories.

In summary, the thesis contributions are:

o A centralized factor-graph-based multi-robot SLAM framework enabling
consistent global localization of the robot system and global mapping in
previously unknown environments.

o Integration of centralized trajectory optimization and path planning into the
SLAM framework, ensuring collision-free, efficient, and smooth exploration.

o A broad evaluation in agricultural and search and rescue scenarios, highlight-
ing the key advantages of the proposed approach and outlining potential
directions for future improvements.

1.1 Goal

The main goal of this thesis is to design, implement, and evaluate a centralized
multi-robot framework that integrates SLAM with trajectory optimization and
path planning. The framework leverages a factor-graph formulation to ensure
global consistency in both localization and mapping, while simultaneously enabling
efficient and safe coordination of multiple ground rovers in complex and dynamic
environments.

The proposed approach is analyzed in scenarios relevant to agriculture and
search and rescue, where efficient exploration and mapping are critical.

Furthermore, the work investigates the potential of factor graphs as a unified
tool for addressing the coupled challenges of localization, mapping, and planning
in multi-robot systems.

1.2 Thesis structure

The thesis is structured as follows:

o Chapter 2: Background introduces the theoretical foundations of SLAM,
factor graphs, and optimization techniques that form the basis of the proposed
framework.

Introduction

Chapter 3: State of the Art reviews the existing literature on SLAM,
and other algorithms employed, applied to multi-robot systems.

Chapter 4: Methodology presents the design and development of the
centralized multi-robot SLAM and path planning system, describing the
architecture, algorithms, and integration details.

Chapter 5: Experiments and Results outlines the experimental setup,
evaluation metrics, and test scenarios in both simulation and real-world ex-
periments. Reports and analyzes the outcomes of the experiments, evaluating
the performance of the proposed framework in terms of localization accuracy,
mapping quality, trajectory efficiency, and robustness.

Chapter 6: Conclusions and Future Works summarizes the main
findings of the thesis, discusses the advantages and limitations of the current
approach, and suggests directions for future research and improvements.

Chapter 2

Background

2.1 Factor Graphs and Probabilistic Inference

A factor graph is a bipartite probabilistic graphical model that represents how a joint
probability distribution can be decomposed into a product of local factors. This
structure provides an intuitive and efficient way to reason about high-dimensional
probabilistic models, making it especially useful in robotics, signal processing, and
computer vision. Factor graphs form the foundation of many inference algorithms
by explicitly encoding the relationships, defined as factors, between variables.

2.1.1 Definition of Factor Graphs

Formally, let X = {x1,22,...,2,} be a set of variables. Suppose we want to
represent a global function F(X) that factorizes into a product of local functions:
F(X) = Hfi(Xi)7 (2.1)

where each factor f; depends only on a subset of the variables X; C X.
A factor graph is a bipartite graph G = (V, F, E) consisting of:

e Variable nodes V: each corresponding to a variable z; € X
o Factor nodes F': each corresponding to a local function f;,

o Edges E: connecting a factor node f; to all variables x; € X; on which it
depends.

This bipartite structure makes explicit which subsets of variables interact with
each other through local factors, enabling modular and sparse representations of
large systems.

Background

Variable Node

Factor Node

Figure 2.1: Factor graph variable and factor representation

2.1.2 Probabilistic Inference

In probabilistic models, the global function F'(X) often represents a joint probability
distribution. For example, if X denotes random variables, we may write:

p(X) Hfz(Xz)a (2.2)

where each factor f; is typically associated with a probability distribution, likelihood
term, or prior. This factorization expresses the conditional independencies in the
model and is the starting point for efficient inference.

2.1.3 Maximum a Posteriori Inference

A central task in probabilistic inference is to compute the most probable value of
the unknown variables given measurements and prior knowledge. This task, known
as Maximum a Posteriori (MAP) inference, can be formulated as:

XMap = arg m}zngf,-(Xi), (2.3)

where f;(X;) are the factors encoding measurements or prior information.

In robotics applications such as SLAM, factors are often modeled using mea-
surement functions h;(X;) with associated observations z; corrupted by zero-mean
Gaussian noise with covariance ;. In this case, each factor takes the form:

£ ox exp (=5 (%) — =12, (2.4)

where |e;[|%, = e/ X; "e; is the Mahalanobis distance and e; = h;(X;) — z; is the
residual error of the measurement.

Taking the negative logarithm of the MAP objective yields the equivalent
nonlinear least squares problem:

Xnmap = arg m)%nz || (X;) — Zl||222 (2.5)

5

Background

Thus, MAP inference reduces to minimizing the sum of squared residual errors
between predicted and observed measurements, weighted by their uncertainties.
This process naturally performs sensor fusion by combining multiple measurement
likelihoods and priors to produce a consistent estimate of the unknowns. In practice,
algorithms such as the elimination algorithm or its nonlinear extensions form the
computational core of MAP inference in robotics.

2.1.4 Nonlinear Optimization

Because the measurement functions h;(-) are nonlinear, the optimization problem
cannot be solved in closed form. Instead, iterative algorithms such as Gauss—
Newton or Levenberg-Marquardt are applied. These methods rely on successive
linearizations of the measurement functions around a current estimate Xg:

hi(X,) ~ hi(X?) + H, 8, (2.6)

where H; is the measurement Jacobian evaluated at X?, and d; is a perturbation
update.

By stacking all Jacobians into a global sparse matrix A and residuals into a
vector b, the update step is expressed as a standard least squares problem:

§* = arg méin | Ad — b||*. (2.7)

The sparsity and block structure of A mirror the underlying factor graph, and
efficient solvers exploit this structure through sparse elimination algorithms. The
updated estimate X <— X 4 0* is then re-linearized, and the process repeats until
convergence.

2.1.5 Incremental Inference

While batch optimization solves the full problem at once, robotics applications such
as SLAM require continuous updates as new sensor data arrive. Recomputing the
entire solution from scratch is computationally prohibitive, motivating incremental
inference techniques.

A key innovation in this context is the use of the Bayes tree, a data structure
that compactly represents the factorization of the posterior distribution after
variable elimination. The Bayes tree organizes the problem into a hierarchy of
conditional probability densities, where each clique corresponds to a subset of
variables conditioned on their ancestors in the tree. This representation not only
exposes the conditional independence structure of the problem but also enables
localized updates: when new factors are added, only the affected part of the

6

Background

tree needs to be relinearized and updated, while the rest of the solution remains
unchanged.

The iSAM2 algorithm, explained in [1] and [2], leverages Bayes trees to perform
efficient incremental inference. It supports:

« Selective relinearization: only variables whose linearization points are
significantly outdated are re-expanded.

o Incremental variable reordering: the variable elimination order can be
updated locally to maintain sparsity and efficiency.

» Localized updates: thanks to the tree structure, updates propagate only
through the relevant branches, avoiding redundant computations.

By exploiting Bayes trees, iSAM2 achieves real-time performance while main-
taining the accuracy of batch optimization. The use of Bayes trees allow also an
improvement in multi-robot SLAM application as outlined in [3]. This makes it
particularly suitable for large-scale, online SLAM and other robotic estimation
problems where the factor graph grows continually with new measurements.

2.2 Simultaneous Localization and Mapping

In robotics, the problem of enabling a robot to navigate an initially unknown
environment requires solving two tasks simultaneously: constructing a map of the
surrounding environment while concurrently estimating its own pose with respect to
the map. This coupled problem, known as Simultaneous Localization and Mapping
(SLAM), is challenging because accurate localization relies on a reliable map, while
map construction itself depends on precise localization.

The importance of SLAM in robotics research comes from the fact that robot
poses are rarely available in practice. External systems such as differential GPS
or motion capture can provide accurate localization, but they are costly and
limited to constrained environments, making them unsuitable for large-scale or
real-world deployments. To address this, SLAM algorithms aim to estimate both
the environment and the robot trajectory directly from sensor measurements,
combining information from proprioceptive sensors, such as wheel odometry and
IMUs, with exteroceptive sensors, such as cameras, LIDAR, or radar.

Formally, SLAM can be viewed as an inverse problem: given a sequence of
measurements, the task is to determine the map and the corresponding robot
poses that best explain them, enabling autonomous navigation without relying on
external localization infrastructure.

Background

2.2.1 Problem Formulation

Formally, the full SLAM problem can be expressed as the estimation of the joint
posterior:

p<X1:T7m ‘ Zl:TaulzT)a (28)

where:

X 1.7 are the robot poses over time,

m represents the map,

U,.7 are control inputs (odometry measurements),
e Zy.p are sensor measurements.

This posterior expresses the probability of the robot poses and map given all
sensor and odometry measurements. Solving this problem can be approached in
two main ways. From a probabilistic perspective, Bayesian filtering techniques can
be used, such as the Extended Kalman Filter (EKF) or particle filters (FastSLAM).
Alternatively, the problem can be formulated as a batch optimization task, where
the goal is to find the Maximum a Posteriori (MAP) estimate of the poses and
map that best satisfies all measurement constraints. Graph-based SLAM and
factor-graph formulations fall into this category, exploiting the sparse structure of
the problem to efficiently compute optimal solutions for large-scale environments.

2.2.2 Graph-Based SLAM

Graph-based SLAM reformulates the problem as a nonlinear optimization over a
factor graph structure (2.1), where nodes represent robot poses and landmarks,
and edges encode motion or measurement constraints. The goal is to find the
configuration of poses and landmarks that best satisfies all constraints, typically
using nonlinear least-squares optimization. This approach scales well and has
become the dominant paradigm in modern SLAM systems.

Factor graphs nodes, in the SLAM context, are defined as:

» Variable nodes representing the unknown quantities to estimate, which are
robot poses x; at time t and landmark positions l;.

» Factor nodes encoding probabilistic constraints between variables. Typical
factors in SLAM include:

— Odometry factors which relate consecutive robot poses through control
inputs or odometry measurements.

8

Background

— Measurement factors which relate robot poses to observed landmarks
or environmental features measured through sensors.

— Prior factors which encode known information about initial poses or
fixed landmarks.

. Landmark Variable > Robot Pose Variable

Observation Factor Tt Odometry Factor

Prior Factor

Figure 2.2: Graph-Based SLAM factor graph problem formulation

Using this formulation, the joint posterior over all variables can be factorized
as:

p(xlzTa m | Zl:T?”l:T) (S8 ka(Xk, lk)a (29)
k

where each factor f; represents the likelihood of a measurement or the constraint
imposed by the motion model.

The SLAM estimation problem then reduces to finding the set of variable values
that maximizes the posterior, equivalently minimizing the sum of squared residuals
associated with each factor:

x*, 1" = arg mllnz 7k (X,].]C)H;;l, (2.10)
ok

9

Background

where 7 are the residuals corresponding to each factor, and 3, are the associated
covariance matrices representing measurement uncertainty.

Factor graphs exploit the sparsity inherent in SLAM, since each measurement
typically connects only a small subset of variables. This enables efficient optimiza-
tion using techniques such as Gauss-Newton, Levenberg-Marquardt, or incremental
solvers like iISAM2, supporting real-time performance even in large-scale environ-
ments.

By separating variables and factors explicitly, factor graphs also provide a
natural foundation for extending SLAM to centralized or distributed multi-robot
systems.

2.2.3 Active SLAM

Active SLAM (A-SLAM) extends the traditional SLAM problem by not only
estimating the robot trajectory and the map, but also enabling the robot to actively
and autonomously explore unknown environments. The system plans its own
movements to gather the most informative measurements, planning actions that
actively reduce uncertainty, and build a complete map, all while ensuring safe
navigation.

From an architectural perspective, Active SLAM can be described using the
following structure:

o Front-End: The front-end is responsible for processing raw sensor data to
generate observations and constraints. This typically includes:

— Feature extraction to extract meaningful observations from raw sensor
data.

— Data association, matching observed features to previously seen ones,
stored as landmarks.

— Odometry estimation or motion prediction.
— Detection of loop closures when revisiting known areas.

The front-end essentially produces the measurements that will be incorporated
in the SLAM solution employed in the back-end.

« Back-End: The back-end performs state estimation and optimization. Given
the constraints produced by the front-end, the back-end updates the robot
trajectory and map using techniques such as:

— Nonlinear least-squares optimization over a factor graph.

10

Background

— Probabilistic filtering methods (EKF, particle filter) for incremental
updates.

The back-end maintains a consistent global estimate and propagates uncer-
tainty, which is essential for informed decision-making in active exploration.

Decision-making and Planning Layers: In Active SLAM, decision-
making and planning modules use the current map and uncertainty estimates
from the back-end to choose control actions that maximize information gain.
Common strategies include:

— Selecting paths that observe unexplored regions or reduce map uncer-
tainty.

— Balancing exploration and exploitation to efficiently cover unknown
areas.

— Considering risk and collision constraints to ensure safe navigation.

These layers close the loop by generating control inputs that feed back into
the front-end and back-end, forming a continuous perception-action cycle.

—Robot—— e Active SLAM

“ ‘ Front-End' S Making
Feature Detection

Back-End Global and Local

Pose Estimation and

. Planning
Mapping

Figure 2.3: Active SLAM perception-action cycle

2.2.4 Active Collaborative SLAM

Collaborative SLAM (C-SLAM) is a method where multiple robots work together
by sharing information, allowing them to improve both their own position estimates
and the quality of the map they build. This cooperation is especially valuable
for tasks that require large-scale exploration. Despite its benefits, C-SLAM also
introduces new difficulties. Robots usually have limited computing capabilities,

11

Background

and they can only exchange a restricted amount of data due to communication
bandwidth, while handling possible network interruptions or failures.

Active Collaborative SLAM (AC-SLAM) builds on the idea of Active SLAM
but adds specific requirements for how robots communicate and share parameters
with each other. The shared information can include different types of data such
as uncertainty, or entropy, measures, differences between probability distributions,
localization details, visual features captured from sensors, and frontier points that
mark unexplored regions.

2.2.5 Mapping

In the context of SLAM, mapping is the process of constructing a representation of
the environment while simultaneously estimating the robot’s trajectory. Different
mapping strategies are designed to balance trade-offs between memory usage,
computational efficiency, scalability, and the level of detail captured in the map.

For small and structured environments, fine-grained approaches such as occu-
pancy grids or direct dense mapping are effective, since the computational and
memory demands remain manageable while producing highly detailed reconstruc-
tions. In contrast, large-scale or unstructured environments benefit from more
lightweight and scalable methods, such as topological or feature-based mapping,
which reduce memory requirements and allow long-term operation over extended
trajectories. Hybrid techniques combine the advantages of both, employing detailed
local maps for accuracy while keeping global relationships between local maps for
efficiency and scalability.

Common approaches include:

o Feature-based Mapping Represents the environment as a sparse set of
landmarks used for localization. Highly efficient in terms of memory and
computation.

e Occupancy Grid Mapping Divides the environment into grids of fixed
resolution, each storing an occupancy probability. Memory-intensive, but
widely used with 2D LiDAR due to its simplicity and robustness.

« Topological Mapping Models the environment as a graph of nodes, repre-
senting places and edges, representing connections. Lightweight and scalable,
making it suitable for very large spaces.

« Hybrid Mapping Combines occupancy grids with topological representa-
tions, maintaining a local occupancy grid for each topological place.

12

Background

e Direct Mapping Builds maps directly from raw sensor data rather than
extracted features, enabling highly detailed reconstructions at the cost of
higher computation.

2.3 Path Planning

Path planning is the task of computing a feasible and efficient trajectory that
allows a robot to move from its current position to a desired goal while avoiding
obstacles. Formally, the path planning problem can be expressed as the search for
a sequence of robot states xy.7 that satisfies kinematic and dynamic constraints
while minimizing a cost function, such as path length, energy consumption, or risk
of collision.

In practice, path planning is typically separated into Global Planning and Local
Planning, each serving a distinct but complementary role.

2.3.1 Global Planning

Global planning computes a path from the current position to a distant goal using
a global map of the environment. Because it reasons over the entire map, it ensures
completeness and optimality with respect to the chosen cost function. Global
planning is especially effective in structured and static environments where the
map is known and obstacles remain largely unchanged. Since the evaluation of
the path is made globally on the entire map it requires high computational effort,
making global planning slower and less suitable for frequent updates in dynamic
settings. Global planning is typically executed at a lower frequency to provide a
long-term reference path, which is later refined and adapted by local planning to
account for short-term changes and unforeseen obstacles.

2.3.2 Local Planning

Local planning, often referred to as reactive planning, is responsible for generating
short-term trajectories based on local sensor information. Its main objective is to
guarantee immediate collision avoidance and smooth motion while following the
trajectory suggested by the global plan. Local planning is reactive and allows the
robot to respond dynamically to unexpected changes in the environment, such as
moving obstacles or uncertainties in the map, maintaining a smooth local trajectory
and providing control actions.

13

Chapter 3

State of the Art

3.1 Factor Graphs applications in Robotics

Factor graphs, as explained in details in [4] naturally capture the structure of a
wide range of estimation and decision-making problems in robotics.

3.1.1 Tracking

In tracking, the goal is to estimate a trajectory over time given noisy measurements
and motion models. This problem can be viewed as trajectory optimization
or smoothing, with tracking as its incremental version. Under linear-Gaussian
assumptions, it reduces to classical Kalman filtering and smoothing.

3.1.2 Switching Systems

Switching systems extend the tracking formulation by introducing discrete variables
that select between different motion models. These models allow robots to adapt
to changing dynamics but significantly increase computational complexity, as
many possible mode sequences must be considered. A well-known example under
linear-Gaussian assumptions is the switching linear dynamical system.

3.1.3 Optimal Control

Factor graphs can also encode decision-making problems such as planning and
control. Here, factors represent system dynamics and cost functions on states
and control inputs. Optimizing the resulting graph yields optimal control policies,
with the classical linear quadratic regulator arising in the linear case. The same
structure generalizes to nonlinear dynamics and objectives.

14

State of the Art

3.1.4 Pose Graph Optimization (PGO)

Pose graph optimization (PGO) estimates a robot’s poses over time from relative
pose measurements, often obtained from lidar, cameras, or inertial sensors. The
graph is composed of binary factors between successive poses, with additional loop
closure factors when the robot revisits a known location. PGO is a key building
block for SLAM and structure-from-motion pipelines.

3.1.5 Simultaneous Localization and Mapping (SLAM)

SLAM extends PGO by jointly estimating the robot’s trajectory and the positions
of landmarks in the environment. Landmark variables are connected to robot poses
through measurement factors, such as bearing-range or camera observations. Visual
SLAM is a common special case where a moving camera observes 2D projections
of 3D landmarks.

3.1.6 Structure from Motion (SfM)

StM, originating in computer vision, reconstructs 3D structures from collections of
images taken from different viewpoints. Its factor graph resembles that of SLAM,
but with additional variables for camera calibration parameters and typically with-
out relative pose constraints. SfM has become a standard tool for 3D reconstruction
from large, unstructured photo collections.

15

State of the Art

=]
B
H

i | Measurement Factor Loop closure Factor

ii" | Dynamic Factor

. State Variable Prior Factor ‘ Pose Variable

(a) Tracking (b) Pose Graph Optimization

.—I—.—Imn
Observation Factor

Mode Variable Mjj'| Mode Transition Factor Dynamic Factor ‘ Landmark Variable Odometry Factor
State Variable Measurement Factor E Prior Factor . Pose Variable Prior Factor

(c) Switching system (d) Simultaneous Localization and Mapping

Odometry Factor

Prior Factor

.E .“_- .&.

[+] (]

. Control Variable Control Cost Factor State Cost Factor . Landmark Variable Observation Factor
. State Variable Dynamic Factor Prior Factor . Camera Pose Variable Prior Factor

(e) Optimal control (f) Structure from Motion

Figure 3.1: Factor graph applications

16

State of the Art

3.2 Simultaneous Localization and Mapping

Simultaneous Localization and Mapping (SLAM) is a fundamental problem in
robotics and autonomous systems, concerning the ability of a robot or vehicle to con-
struct a representation or a map of an unknown environment while simultaneously
determining its own position within that map. The concept was first introduced in
the mid-1980s, emerging as one of the core challenges in autonomous navigation
and perception. SLAM provides the foundation for enabling truly autonomous
operation in environments where prior maps or external localization systems are
unavailable or unreliable. The survey at [5] review the actual state of the art and
new frontiers of SLAM.

The SLAM problem can be formally defined as a state estimation task: given a
sequence of sensor measurements, the goal is to estimate both the trajectory of the
robot and the spatial configuration of environmental features. This dual estimation
introduces a strong coupling between localization, estimating the robot’s pose, and
mapping, estimating the environment, making SLAM a highly interdependent and
nonlinear problem. In practical terms, accurate localization depends on the quality
of the map, while building an accurate map requires precise localization.

Over the years, Simultaneous Localization and Mapping (SLAM) has evolved
through several methodological paradigms.

3.2.1 Evolution of SLAM techniques

« Filter-based Methods: These include the Extended Kalman Filter (EKF-
SLAM) and Particle Filter-based approaches like FastSLAM, which were
dominant in the early 2000s. Such methods maintain a probabilistic belief
over both the robot and map states, recursively updating them as new sensor
measurements become available. However, they often suffer from scalability
issues, as computational complexity increases quadratically with the number
of landmarks, limiting their applicability to large-scale environments.

e Optimization-based or Graph-based SLAM: These approaches reformu-
late the estimation problem as a nonlinear least-squares optimization, where
robot poses and landmarks are represented as variable nodes in a graph, and
constraints, like odometry or sensor observations, are represented as factor
nodes. Solving SLAM then reduces to minimizing the global error defined over
this graph structure. This paradigm, thanks to the advances in sparse matrix
optimization and numerical solvers, has established graph-based SLAM as
the standard framework for modern large-scale mapping and localization
systems.

17

State of the Art

e Visual SLAM (VSLAM): Visual SLAM extends these principles using
visual data from cameras, providing dense and rich spatial information
at a lower cost and power consumption compared to LiDAR. Prominent
examples include MonoSLAM, ORB-SLAM, and Direct Sparse Odometry
(DSO), which achieve accurate motion estimation and map reconstruction
from image sequences. A complete review of visual SLAM methods can
be found in [6]. Visual methods are particularly attractive for applications
where lightweight, low-cost sensors are required, such as mobile robotics and
augmented reality.

 Visual-Inertial SLAM (VI-SLAM): To further improve robustness against
motion blur, feature loss, and scale ambiguity, Visual-Inertial SLAM (VI-
SLAM) integrates visual information from cameras with inertial measurements
from IMUs. This multimodal fusion enhances motion estimation accuracy
and enables reliable operation in dynamic or GPS-denied environments, such
as indoor navigation or aerial robotics.

3.2.2 Modern Trends and Challenges

Recent advancements in SLAM research increasingly leverage machine learning and
deep neural networks to enhance key components such as feature extraction, loop
closure detection, and semantic scene understanding. Deep learning-based feature
descriptors and place recognition systems have improved the robustness of SLAM
in challenging conditions, including dynamic or poorly illuminated environments.

Furthermore, semantic SLAM integrates high-level contextual understanding,
such as object recognition, surface segmentation, and scene semantics, into the
mapping process, enriching geometric maps with meaningful information for higher-
level robotic reasoning and decision-making.

Despite significant progress, several open challenges remain. These include:

o Achieving real-time performance on computationally constrained platforms.
« Ensuring scalability and consistency in large-scale and dynamic environments.
o Managing uncertainty and drift over extended trajectories.

o Integrating semantic and geometric information without compromising accu-
racy or efficiency.

Additionally, the deployment of SLAM in real-world applications, such as
autonomous driving, aerial robotics, and augmented or virtual reality, demands
systems that are not only accurate but also robust, adaptable, and computationally
efficient under diverse environmental conditions.

18

State of the Art

3.3 Active SLAM

Active Simultaneous Localization and Mapping extends traditional SLAM by
integrating localization, mapping, and motion control into a unified decision-
making framework. As explained in [7], while classical SLAM methods passively
estimate the robot’s trajectory and environment based on available sensor data,
Active SLAM enables a robot to autonomously decide its future actions to optimize
information gain and map quality. The objective is to build the most accurate and
complete model of an unknown environment while ensuring efficient exploration
and safe navigation.

Active SLAM can be interpreted as a decision-making process in which the robot
must balance two competing objectives: exploration of new areas to expand the
map and exploitation of known regions to improve map accuracy and localization
confidence. This trade-off, known as the exploration—exploitation dilemma, lies at
the core of Active SLAM research.

Historically, the concept of active perception dates back in the 1980s and
1990s, who emphasized the importance of actively acquiring information to achieve
specific goals. In the context of robotics, related problems were initially studied
independently as active mapping and active localization. Active mapping focuses on
determining the next best view to improve environmental reconstruction, whereas
active localization seeks the optimal robot motion that minimizes future pose
uncertainty.

Recent advances in Active SLAM are being driven by developments in spatial
perception, machine learning and deep learning. Neural network-based models
have enabled predictive reasoning, improved uncertainty modeling, and enhanced
decision-making in dynamic and unstructured environments. Furthermore, Active
SLAM research increasingly incorporates ideas from planning under uncertainty,
information theory, Reinforcement Learning and Graph Neural Networks, offering
powerful frameworks for autonomous exploration.

3.4 Frontier detection

The concept of frontiers was first introduced in 1997 as a fundamental strategy
for autonomous robot exploration. Frontiers are defined as the boundary between
known free space and unexplored regions in an occupancy grid map. By navigating
toward these frontier cells, a robot can systematically explore an unknown environ-
ment. Since its introduction, frontier-based exploration has been widely adopted
in both single-robot and multi-robot systems.

In occupancy grid mapping, the environment is discretized into cells, each
representing a physical location that can be in one of three states: unknown, free

19

State of the Art

space, or occupied. Frontier cells are those marked as free space and adjacent to
at least one unknown cell. Detecting these cells efficiently is critical, as frontier
detection often represents the computational bottleneck in real-time exploration.
Faster frontier detection directly contributes to improved exploration performance,
enabling the robot to make quicker and more informed decisions based on up-to-date
map data.

Early approaches, referred to as Naive Frontier Detection, examined every cell
in the occupancy grid to determine whether it met the frontier condition. Although
conceptually simple, this approach scales poorly with map size and is impractical
for large environments due to its high computational cost.

To overcome these limitations, several optimized algorithms, described in detail
in [8], have been proposed:

« Wavefront Frontier Detection (WFD): Performs a Breadth-First Search
(BFS) from the robot’s current position through free-space cells until frontiers
are found, significantly reducing the search space compared to the naive
method.

« Incremental WFD (WFD-INC): Restricts the BFS to the active area
modified by the most recent sensor scans, making computation proportional
to the updated region rather than the entire map.

« Incremental-Parallel WFD (WFD-IP): Extends WED-INC with parallel
processing to further improve runtime efficiency.

« Fast Frontier Detection (FFD): Evaluates only the edges of the latest
scan, where new frontiers are likely to appear. Although efficient, its accuracy
decreases for frontiers at the sensor’s maximum range.

« Oriented Bounding Box Frontier Detector (OBB-FD): Tracks updated
cells and their prior states to maintain frontier consistency with minimal
redundant computation.

o Tree-based Frontier Detection: Employs a random tree expansion from
the robot’s current position to locate frontiers efficiently, dynamically pruning
explored branches to conserve memory.

o Multi-Robot Frontier Detection: Each robot detects frontiers locally,
and these local maps are later merged into a global map for cooperative
exploration.

Recent research has introduced hybrid and incremental frontier detection algo-
rithms that improve both speed and accuracy. Examples include:

20

State of the Art

« Naive Active Area (NaiveA A): The Naive Active Area algorithm focuses
on evaluating only the active area of the map, which include the region
modified by the most recent sensor scans, rather than the entire occupancy
grid. During each update cycle, all cells within this active area are checked
to determine whether they have become new frontier cells.

« Expanding Wavefront Frontier Detection (EWFD): The EWFD al-
gorithm extends the wavefront-based frontier detection paradigm. Initially,
when no frontiers exist, the method performs a Breadth-First Search (BFS)
from the robot’s position to locate frontier cells adjacent to unknown space.
Once an initial set of frontiers is established, subsequent iterations start BF'S
only from previously detected frontiers that fall within the new active area,
marking them as unvisited and re-evaluating their status. This incremental
process avoids re-examining the entire map and ensures that only updated
regions are processed.

« Frontier-Tracing Frontier Detection (FTFD): The Frontier-Tracing
Frontier Detection (FTFD) algorithm leverages spatial relationships between
previously known frontiers and the perimeter of the robot’s latest sensor
observation. The approach begins by identifying previous frontier cells within
the active scan area and combining them with the endpoints of new sensor
rays as the starting points for a BFS. During traversal, new frontiers are
added, obsolete ones are removed, and obstacle-adjacent freespace cells are
queued for further evaluation.

21

State of the Art

3.5 Active Collaborative SLAM

3.5.1 Network Topology

In AC-SLAM, the network topology defines how robots communicate and exchange
data. The main approaches discussed in the literature are:

o Centralized: All data is transmitted through a single central server. This
structure is simple but highly sensitive to server failures.

e Decentralized: Communication is organized through intermediate sub-
servers or clusters, reducing load on the main server but still maintaining a
degree of central dependence.

« Distributed: Robots exchange information directly with each other, remov-
ing the need for a central server. This approach is more robust but requires
careful management of bandwidth, task allocation, and data sharing.

Robot

Robot

(a) Centralized

Robot
Robot i Robot
Robot Robot

Robot

(c) Distributed

Figure 3.2: AC-SLAM network topologies

22

State of the Art

3.5.2 Distributed AC-SLAM

Distributed Active Collaborative SLAM (AC-SLAM) focuses on enabling multi-
robot teams to perform localization, mapping, and exploration without reliance
on a central server. In such systems, each robot performs local computation
and communicates directly with nearby peers through peer-to-peer links. This
design enhances scalability, robustness, and fault tolerance, making it suitable for
large-scale or communication-constrained environments.

However, achieving full autonomy in distributed teams remains challenging. A
multi-robot system must simultaneously address several interdependent competen-
cies such as localization, path planning, mapping, and coordinated information
gathering. Each of these tasks is complex in isolation, and coupling them in a
distributed fashion requires maintaining consistency and cooperation among all
robots. For instance, accurate localization is essential for effective planning, while
planning directly affects the success of coordinated exploration and data acquisition.

Recent research has proposed representing these interdependent competencies
as layers within a unified factor graph framework. Each layer captures a distinct
aspect of the robot’s operation, and connections between layers encode how these
aspects influence one another. This representation allows the system to jointly
optimize multiple objectives while maintaining modularity and scalability.

The key innovation in distributed AC-SLAM lies in enabling robots to optimize
their local copies of a shared global state asynchronously. Using Gaussian Belief
Propagation (GBP), as employed in [9], robots exchange only partial or summarized
information with their neighbors, iteratively refining their estimates until reaching
a global consensus. This allows each robot to contribute to the joint estimation
process based on its own observations while remaining robust to communication
delays or losses.

23

Chapter 4

Methodology

This chapter presents the methodology adopted to address the active collaborative
multi-robot SLAM problem, along with the corresponding implementation details.

As a preliminary step, the A-SLAM problem was first addressed in the context of
a single-robot system. The solution was then extended to the multi-robot scenario
by incorporating collaborative strategies and interactions among the robots.

4.1 Sensor Setup

This section describes the sensor setup employed on each robot, which provides the
necessary perception capabilities for localization, mapping, and navigation. Each
robot is equipped with:

o LiDAR: provides accurate 2D range measurements by emitting laser beams
and measuring the time of flight of the reflected signals. This enables the
estimation of distances to surrounding objects and the generation of geometric
representations of the environment.

« RGB-D Camera: provides both color and depth information, allowing
feature extraction and the generation of 3D landmarks for visual SLAM.

o IMU: delivers inertial measurements that support odometry estimation and
improve robustness in feature-poor environments.

e« Wheel Encoders: provides velocity feedback for motion estimation.

The data produced by these sensors form the input to the system architectures
described in the following section.

24

Methodology

4.2 Architectures

This section examines the overall system architectures in order to provide a com-
prehensive overview of the framework and its main components.

4.2.1 Single-robot architecture

Figure 4.1 shows the block diagram of the A-SLAM framework for a single-robot
system. In this scenario, a single computational unit handles all processing tasks.

UsB
A

—Robot

RGB-D Image Scan Odometry Velocity Comman d

Feature extraction Localization
timizad pi
3D Landmarks
osed Scans

. Frontier Detection
M e a —>
apping and Decision Making J'
Map pe

Nav2 Stack

Global path

Figure 4.1: Single-robot architecture

Here is a detailed description of the role of each component:

o Feature extraction: 3D landmarks extraction from RGB-D images to allow
accurate localization.

» Localization: integrates odometry, LiDAR scan, and visual landmarks to
estimate the pose, aligning scans for subsequent processing.

o Mapping: builds and maintains a map for environment representation.

o Frontier Detection and Decision Making: identifies unexplored regions,
known as frontiers, within the map, serving as candidate goals for exploration
and assigns a frontier to the robot.

25

Methodology

e NAV2 Stack: perform navigation given a frontier goal position executing
Global Planning and Local Planning internal modules and sending the relative
velocity command.

4.2.2 Multi-robot architecture

Figure 4.2 illustrates the block diagram of the proposed AC-SLAM framework in
the multi-robot scenario. A centralized network topology is employed, introducing
a centralized server that aggregates data from multiple robots and coordinates
their exploration strategies and navigation directives.

UsB
resm e “ “

—Robot

RGB-D Image Scan Odometry Velocity Comman d

Feature extraction

Robot

—Server

Velocity €

Multi-robot
Decision Making and
Global Planning

Multi-robot
Local Planning

Multi-robot

Localization

Figure 4.2: Multi-robot architecture

The scheme represents the framework distinguishing the components executed
on the robots and those executed by the server, providing a view of the framework’s
division of responsibilities.

Each robot communicates with the server, providing the current 3D landmarks
extracted from the RGB-D camera, LiDAR scans, and odometry measurements

26

Methodology

while listening to velocity commands.
Here is a detailed description of the role of robot components:

o Feature extraction: 3D landmarks extraction from RGB-D images to allow
accurate localization.

Here is a detailed description of the role of server components:

o Multi-robot Localization: integrates odometry, LiDAR scans, and visual
landmarks from all robots to estimate their poses in a common reference
frame. This module provides optimized poses and aligned scans for subsequent
processing.

o Multi-robot Mapping: builds and maintains a shared global map by merg-
ing the contributions of individual robots. This allows consistent environment
representation and supports collaborative exploration.

« Frontier Detection: identifies unexplored regions, known as frontiers, within
the shared map, serving as candidate goals for exploration.

e Multi-robot Decision Making and Global Planning: assigns frontiers
to different robots and computes global paths, ensuring efficient distribution
of exploration tasks and avoiding redundancy.

e Multi-robot Local Planning: generates feasible and optimized local tra-
jectories for each robot based on its assigned goal and the surrounding
environment, while taking into account to each other positions, obstacles and
kinematic constraints.

27

Methodology

4.3 Feature extraction

The feature extraction process relies on RGB-D images, where each pixel provides
both color and depth information. From the RGB image, a set of salient visual
features (keypoints) is extracted using the ORB (Oriented FAST and Rotated
BRIEF) detector from the OpenCV library, ensuring that the most distinctive
image regions are selected. The corresponding depth map is then used to assign a
metric 3D position to each keypoint, thus creating a set of landmarks in space.

Given a keypoint located at pixel coordinates (z,y) in the image plane and its
associated depth value d, the 3D position (XY, Z) of the landmark in the camera
reference frame is computed using the pinhole camera projection model:
(:E_Cw)'Z7 Y:(y_cy)'Z (41)
f T f Y

where (f;, f,) are the focal lengths of the camera, (c,,c,) denotes the principal
point (optical center), and d is the measured depth.
To ensure robustness, only landmarks within a valid depth range are considered:

Z=d, X-=

Zmin S Z S Zmax (42)

where Z ., and Z,,.x define the minimum and maximum sensing ranges of the depth
sensor. Furthermore, landmarks near the image borders are discarded to avoid
unreliable measurements. Finally, the resulting set of landmarks £ = {(X,Y, Z)}
provides a sparse representation of the surrounding environment. These landmarks
serve as stable reference points that can be exploited by the localization module,
enabling the robots to estimate their pose accurately within the space.

=
Figure 4.3: RGB-D image keypoint and feature extraction

28

Methodology

4.4 SLAM

Simultaneous Localization and Mapping (SLAM) is the fundamental process that
enables a robot system to build a consistent representation of the environment
while simultaneously estimating robots trajectories within that environment. In
the considered setup, localization and mapping tasks are formulated within a
probabilistic framework, where environmental feature measurements extracted
from the RGB-D camera and odometry information are fused to incrementally
refine estimates of the robot poses and the positions of landmarks. Here are the
implementation details explained about the localization, data association, and
mapping tasks.

4.4.1 Localization

Localization refers to the problem of estimating the robot’s trajectory given a
sequence of observations from the environment together with motion or odometry
constraints. The framework employed is GraphSLAM, which formulates this
problem as an optimization over a factor graph.

In this formulation, robot poses and landmarks are represented as nodes in the
graph, while constraints arising from prior knowledge, odometry measurements, and
landmark observations are represented as factors. The solution to the localization
problem is then obtained by optimizing the factor graph to produce the most likely
trajectory consistent with all available information.

Before describing the variables and factors, here is a brief introduction to the
mathematical spaces in which variables are defined and the relative operations.

The Special Euclidean Group SFE(3) is a space in which elements encode a
3D rotation and translation:

X = [gﬁ ﬂ . ReSO@), teR (4.3)

where SO(3) is the space of 3D rotations and t is a translation vector in R3.
The difference operator © between elements x,,x, € SE(3) can be interpreted
as the relative transformation between the two elements and is described as:

LOg(RbTRa)] c RS (4.4)

Xa © Xp = [Rg(ta - tb)

where Log(-) maps a rotation matrix to its 3D rotation vector.

29

Methodology

The composition operator - between two elements x,,x, € SE(3) represents
the composition of rigid body transformations:

R.R; Rty +t,
R Vi 1

Intuitively, making the composition of x;, by x, applies the transformation of x;
first, followed by the transformation of x,.
The relative transformation from x, to x;, is obtained using the inverse of x,:

ol xy = [RJR,) R, (t, — tq)

€ SE(3) (4.5)

. oT 1 1 € SE(3) (4.6)

This operation gives the transformation of x; expressed in the coordinate frame of
X,

The following paragraphs provide a detailed description of the variables and
the different types of factors used in the graph-based formulation.

Pose variables The robot pose variables are elements of the Special Euclidean
group SE(3), which jointly represent a 3D rotation and translation. A pose
x; € SE(3) at time 7 can be expressed as a homogeneous transformation matrix:

X; = [(E){-ﬁ tl] (4.7)

where R; € SO(3) is the rotation matrix and t; € R? is the translation vector.
Thus, each pose variable encodes both the robot’s orientation and position in the
world frame.

Landmark variables Landmark variables represent fixed points in the environ-
ment observed by the robot. Each landmark 1; € R? encodes its position in 3D
space as a simple vector:

L= Y (4.8)

where X, Y]}, Z; denote the coordinates of the landmark in the world frame.

30

Methodology

Prior factors Prior factors encode the initial knowledge about the robot’s pose
at the start of the trajectory. Let the first pose be denoted by xo € SE(3). A
prior measurement is modeled as a Gaussian distribution with mean py € SE(3),
denoting the initial guess, and covariance ¥q € R%*%, encoding the uncertainty in
translation and rotation. The prior factor can be written as:

1
fprior(XO) = N<XO ‘ o, EO) o 6‘5”’%9#0”%0 (49)

where © denotes the pose difference operator in SE(3).
A small covariance ¥ is assigned to reflect high confidence in the prior knowl-
edge.

Odometry factors Odometry factors introduce constraints between consecutive
poses based on relative motion estimates. Let x;,x;,1 € SFE(3) be consecutive poses
and u; ;41 the relative motion measurement obtained from the state estimation
using wheel encoders and IMU sensor fusion. The measurement model is:

€iit1 = W1 S (X, - Xip1) (4.10)

with Gaussian noise
€iit1 ~ N(0, Xodom) (4.11)

The corresponding odometry factor is:
_Lie 2
Jodom (X, Xi1) = N<ei,i+1 ‘ 0720d0m> o e 2otz g, (4.12)

where Yogom € R%6 encodes translational and rotational noise from wheel slip,
IMU drift, and encoder errors.

Observation factors Observation factors connect robot poses to the positions
of observed landmarks in the environment. Let x; € SFE/(3) be the robot pose at
time ¢, and let 1; € R® be the position of landmark j in the world frame. The
measurement model is expressed as the difference between the landmark position
and the robot pose:

e; =1 —t, (4.13)

where t; € R? is the translation component of the robot pose x; € SE(3).

Since observations can include outliers due to incorrect data association between
new features and existing landmarks, the measurement noise is modeled with a
Huber robust kernel to reduce the effects of outliers:

el-j ~ N(O, Elm) (414)
31

Methodology

with Huber weighting applied to ||e;|3, .
The corresponding observation factor is expressed in the factor graph as:

1 iy
fobs(xi7 l]) - N<eij 0, Elm) X e_QP(HGUHZEIm) (415)

where p(-) is the Huber loss function.
For a scalar residual e and a threshold 6 > 0, the Huber loss is defined as:

1.2 :
e if |e] <0 416
ple) = 152 : (4.16)
dle| — 56%, if |e] > 6
Huber Loss vs Gaussian Reference
\ —— Huber loss (6=0.5) B
12 4 \ Huber loss (6=1.0) !
\ = Huber loss (6=2.0) [I
\ |
\ == Gaussian 1

10 -

Loss
o

Residual (e)

Figure 4.4: Huber loss function

Factor graph optimization The goal of GraphSLAM is to estimate the set of
robot poses X = {xq,X1,...,xy} and landmark positions L = {1y, ..., 1/} that
maximize the posterior probability given all measurements.

Using the factorization provided by the factor graph, the joint posterior can be
written as:

N—1
p(X, L | measurements) o forior(X0) [[fodom(XisXix1) [T fobs(x4,15) (4.17)

=0 7,7
prior factor odometry factors 7 observation factors

32

Methodology

Equivalently, in the nonlinear least-squares form, the maximum a posteriori
(MAP) estimate is obtained by minimizing the sum of squared residuals:

(X", L") = argmin { %0 © paol I3,
k) N —— —
prior factor
N-1
+ D i © (57 x5, (4.18)

=0

odometry factors

+ (I~ till%,) }
[2¥}

observation factors

To solve the optimization problem efficiently, the iISAM2 algorithm provided
by the GTSAM library is employed. This incremental smoothing method updates
the solution whenever new odometry or landmark factors are introduced, without
requiring full re-optimization of the graph. As a result, the system achieves real-
time localization performance while maintaining global consistency of both robot
poses and landmark estimates.

Multi-robot factor graph optimization For multi-robot systems, the local-
ization problem is formulated over a single, large factor graph that includes the
poses and landmarks of all robots in the system. Let X() = {x(()r), <\ ,XS\Q}
denote the trajectory of robot 7, and let X = U, X be the set of all robot poses.
Similarly, let L) = {1&’“), ce 1%’2} be the set of landmarks observed by robot r, and
let L = U, L™ denote the set of all landmarks in the system. The joint posterior

for all robots can then be factorized as:

Ny—1
p(X, L | measurements) o< H fprior(xér)) H fodom(xgr),xgi)l) H fobs(XET), 1;)
" prior factor - odometry factors I observation factors

(4.19)
Equivalently, in the nonlinear least-squares form, the MAP estimate is obtained

33

Methodology

by minimizing the sum of residuals for all robots:

(X, L7) = arguin § 3| [Ix” © 1,

prior factor

Nyr—1
+ 3 iy o xR, (4.20)
=0

odometry factors

+ (I - 6713,
]

observation factors

This formulation naturally incorporates all robots’ trajectories and relative
landmarks into a single optimization problem.

. Landmark Variable > Robot Pose Variable

T ; T
lij Observation Factor wii’

Odometry Factor

Prior Factor

Figure 4.5: GraphSLAM factor graph formulation

34

Methodology

LiDAR posed scans 2D LiDAR measurements provide geometric information
about the environment. Each scan is associated with the estimated robot pose
at the time of acquisition, resulting in a posed scan. Storing scans together with
their reference pose enables the system to preserve spatial consistency between
successive LiDAR acquisitions. These posed scans are employed concurrently to
construct an accurate mapping of the environment.

4.4.2 Data association

A critical step in SLAM is to determine whether a newly observed feature corre-
sponds to an existing landmark in the graph or should instead be inserted as a new
node. This task, known as data association, is typically performed by comparing
the newly observed features with the set of already estimated landmarks.

Non-probabilistic strategies, such as nearest-neighbor search with a k-d tree
or Joint Compatibility Branch and Bound (JCBB), assign each measurement to
the most likely landmark deterministically. While these approaches are robust in
environments with sparse landmarks, they may fail in dense scenes where landmarks
are close to each other, leading to ambiguous associations.

To address this, Probabilistic Data Association (PDA) is employed, which assigns
to each candidate landmark a probability of being the correct correspondence, rather
than committing to a single hard assignment. This formulation naturally accounts
for measurement noise and landmark uncertainty.

Probabilistic Data Association Let z denote an observed feature in the robot’s
local frame, and let 1; be the position estimate of landmark j in the map with
covariance ;.

The innovation is defined as the Euclidean distance between the landmarks and

the observation:

Landmarks with innovation over a certain threshold are discarded from the set
of candidate associations.
The Mahalanobis distance between the observation and landmark is then

which measures how consistent the observation is with landmark j, relative to its
covariance.
The likelihood of landmark j generating observation z is computed as:

1
Li; = ———exp(—1D}, (4.23)
(2m)4 |51 ()

35

Methodology

where d = 3 is the dimension of the innovation d;;. The likelihood is shaped as
a multivariate Gaussian where the covariance determinant |X;| ensures proper
normalization, and the exponential term penalizes landmarks that are far in
Mahalanobis distance.

Finally, after filtering landmarks with likelihood below a threshold, probabilities
are obtained by normalizing the likelihoods across all candidate landmarks:

Sk L’

so that >, P;; = 1. This yields a soft assignment, allowing each measurement to
be distributed among multiple plausible landmarks.

In practice, a threshold is applied on the Euclidean distance ||d;;|| between the
new features and the landmarks to extract the set of candidate associations. Then
the Mahalanobis distance D;; and relative likelihood are evaluated for each landmark
and low likelihood values are discarded. After a normalization of likelihood values
across all candidates, probabilities are then used to make weighted soft association
to landmarks in the factor graph.

P, = (4.24)

p=0.86

/
/ / /
7
/ - //
/ e
7 / e
/ /
/
/
/
/
/
/
/ pzd
/ e
/ e
/S
/o
/
Po o1

& New observation > Robot Pose Variable
. Landmark Variable L Odometry Factor

li; Observation Factor i Prior Factor

Figure 4.6: Probabilistic Data Association

36

Methodology

4.4.3 Mapping

The mapping module constructs a consistent spatial representation of the environ-
ment from the sensor data collected by the robot system. The chosen representation
is a probabilistic occupancy grid, where the environment is discretized into a two-
dimensional array of cells, and each cell is assigned a probability of being occupied.
This formulation naturally accounts for measurement uncertainty and has become a
standard approach in mobile robotics. A global occupancy grid map is maintained
in the world frame, integrating information from all robots. This unified map
provides the necessary environment knowledge for subsequent tasks such as frontier
detection, path planning, and obstacle avoidance.

Probabilistic Occupancy Grid Representation FEach cell in the occupancy
grid is modeled as a binary random variable, representing whether the cell is
occupied or free. To allow recursive updates, the log-odds formulation is employed:

Li= L, +log (%) (4.25)

where L, is the log-odds of occupancy at time ¢, m is the map state, and z; is the
current sensor measurement. This formulation ensures that new measurements
can be integrated additively and avoids numerical instabilities. The occupancy
probability can be recovered from the log-odds using the logistic function:

1

_— 4.26
1+ et (4.26)

p(m | Zl:t) =

00| 00})00]00J|00|00]00]|00]}|00]|00 -1 -1 -1

00)00)00)}01)|00|00]00)]03]|01]|0.0]|00 -1 -1

00|00} 01]03}06]|05]|06 mXMO07]|01]|00]0.2 0

0.0 0.1 |02 | 0.6 0 0 0 0 B 0.4 | 0.0 | 0.2 LR
Occupied cell 0.0 | 00 | 03 0 0 ! -1 -1 QOEE 06 | 0.2 | 0.1 UK

0.0 | 0.0 | 0.3 [EOX 0.8 -1 -1 -1 0.8 0 -1 = =
Free cell

00| 00| 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
II‘ Unknown cell 00| 00| -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Figure 4.7: Probabilistic Occupancy Grid Map

37

Methodology

Posed Scans integration LiDAR measurements are integrated into the prob-
abilistic occupancy grid through the posed scans update concurrently by the
localization process. A posed scan consists of the raw laser range data together
with the corresponding robot pose estimate. By associating each scan with its pose,
the mapping remains consistent with pose corrections from localization and enables
incremental map construction.

To integrate LiDAR beams into the occupancy grid, the path of each beam
is discretized into grid cells using the Bresenham line algorithm. Given a beam
from the robot origin (z,,¥,) to an endpoint (zp,y) in grid coordinates, the goal
of the algorithm is to determine the sequence of grid cells that approximate the
continuous straight line segment.

The line can be described by the implicit equation

F(z,y) = (yr —)z + (2o — 2)y + (2,96 — Tpyr) =0 (4.27)

where sign(F'(z,y)) indicates on which side of the line a point (x,y) lies.
Bresenham’s algorithm in an iterative algorithm that constructs the path
incrementally along the dominant axis of the line.
Having initially (z,y) = (2, y,) let’s define

Az =|zy—z,|, Ay=|yp—y|, s, =sign(z,—2x,), s, =-sign(y,—y.) (4.28)
and initialize the error term as
e=Azr — Ay (4.29)

At each iteration, the current grid cell (x,y) is part of the ray. The algorithm
then updates the error and the coordinates according to:

eq = 2e (4.30)
ifeo >—-Ay: e<—e—Ay, x4 x+s, (4.31)
ifeo <Az: ee+ Az, y<+y+s, (4.32)

The procedure is repeated until (x,y) = (x4, yp)-

During this traversal, each visited cell along the ray, except for the final endpoint,
is updated as a free cell since the LIDAR beam has passed through it without hitting
an obstacle. Let L(z,y) denote the log-odds value of the occupancy probability of
cell (z,y). The free-space update follows

L('rv y) A L($7 y) + 6free ' (1 - Oéd(fl),y)) (433)

where dge. < 0 is the log-odds belief factor for free cells, d(z,y) is the distance of
the cell from the sensor along the ray, and « is a distance-dependent scaling factor
that reduces the confidence in updates for distant cells.

38

Methodology

At the beam endpoint (x4, y,), the grid is updated as occupied. To account for
sensor uncertainty, the occupied update is applied not only to the endpoint but
also to neighboring cells within a radius r using a Gaussian kernel:

@) = ()2

Lx,y) < L@, y) + 0oce - €~ 22 - (1—ad(z,y)) (4.34)

where d,.. > 0 is the log-odds increment for occupied cells, and ¢ controls the
spread of the noise model.

This probabilistic update step models distance-dependent confidence and local
uncertainty around obstacle boundaries.

Costmap generation In addition to the probabilistic occupancy grid, a costmap
is generated to represent the traversability of the environment for safe navigation.
Each occupied cell (z,,y,) in the occupancy grid acts as a source of potential risk.
To model the effect of obstacles on nearby space, a distance-based decay function is
applied to the surrounding cells, assigning high costs near obstacles and gradually
lower costs with increasing distance
Let C(z,y) denote the cost assigned to cell (z,y), and d((x,y)) the Euclidean
distance to an obstacle cell (z,,%,). The cost contribution of a single obstacle can
be expressed as
Co(2,y) = Crnax e~ A (@), (zo,y0)) (4.35)

where Cl.x is the maximum cost assigned to obstacle cells, and A is a decay
parameter controlling how quickly the cost decreases with distance from the obstacle.

The final cost of a cell is obtained by combining the contributions from all
nearby obstacles, typically via a max operation to ensure that the cell cost reflects
the closest or most significant obstacle:

C(z,y) = max Cy(x,y) (4.36)

(90071/0)

for each (z,,y,) in the set of all occupied cells in the occupancy grid within a
specified radius 7.

39

Methodology

00| 00| 00| 00| 0.0 |0.06|0.11 0.11 | 0.06 | 0.06 | 0.11
0.0 | 0.0 | 0.06 | 0.11 0.11]0.11
0.0 | 0.06 | 0.11 0 0
0.0 |0.11 0 0 0 0 0 0
0.0 0 0 0 0
0.0 0 0 0 0
Occupied cell
0.0 |0.11 0.1 0.11
Free cell 0.0 | 0.06 0.11 | 0.06 | 0.11 0.11 0.06 | 0.0

Figure 4.8: Costmap

4.5 Frontier detection

Frontiers are defined as regions at the boundary between known free space and
unexplored areas. Frontier detection is performed by analyzing the occupancy grid
and identifying cells that are adjacent to unknown regions.

A first strategy to extract frontier cells is the Expanding Wavefront Frontier
Detection (EWFD) algorithm. Subsequently, a density-based clustering method
(DBSCAN) is applied to group nearby frontier cells into coherent clusters, each
representing a candidate exploration frontier.

Expanded Wavefront Frontier Detection The Expanded Wavefront Frontier
Detection (EWFD) algorithm is an efficient strategy for detecting frontier cells by
expanding wavefronts outward from the robot’s current position. Unlike standard
breadth-first search methods, EWFD reduces redundant computations by avoiding
revisits to already explored regions and expanding only into newly discovered free
cells. During this expansion, a frontier cell is identified whenever a free cell has at
least one neighboring cell classified as unknown. The wavefront initially consists of
the robot initial position cell and in the first iteration a Breadth First Search (BFS)
is performed to find new frontier cells, keeping memory of already visited cells. By
the second iteration the starting point of the BF'S is not the robot position but
the set of frontier cells, and is performed passing only through new explored cells,
within an active exploration area, which radius is defined as the maximum sensor
range. By incrementally propagating the wavefront only through new free explored
space, the algorithm efficiently constructs a frontier map without exhaustively
scanning the entire occupancy grid. This efficiency allow online exploration also in
large-scale environments.

In order to adapt this strategy to a multi-robot system, each robot independently
executes the EWFD algorithm within its own local occupancy grid, centered
around its current pose, while having knowledge of globally visited cells. An active

40

Methodology

exploration area is defined by a radius proportional to the maximum sensor range,
ensuring that each robot only considers frontiers that are within its effective sensing
capability. The results of local EWFD are then merged into a shared frontier grid,
which maintains a global memory of visited cells. For each robot, the frontier cells
detected locally are projected into the global frontier map representation, resolving
conflicts between different robot detections by prioritizing newly confirmed frontiers
when cells were previously globally marked as unknown, and identifying as free
those cells visited by at least one robot.

This fusion process ensures consistency across the multi-robot system and pre-
vents redundant exploration of already visited cells during the BFS step, increasing
efficiency. Furthermore, by distributing the computation of EWFD and fusing
the results into a unified frontier grid, the system leverages the parallel sensing
capabilities of multiple robots, improving scalability.

Frontier Clustering Once frontier cells are identified, they are grouped into
exploration frontiers using the Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) algorithm. This clustering algorithm is well-suited for this
task as it does not require the number of clusters to be specified in advance and is
able to filter out isolated noise points, avoiding to identify frontiers with a poor
granularity. The algorithm groups cells into clusters based on two parameters: the
neighborhood radius € and the minimum number of points n,. Formally, a point p
is a core point if its e-neighborhood contains at least n, points. Points within the
e-neighborhood of a core point are considered part of the same cluster, while points
not reachable from any core point are treated as noise. DBSCAN clusters adjacent
frontier cells into contiguous groups, each corresponding to an actual exploration
frontier.

00|00} 00|00 00]|00]00]|00]o0.0 -1 -1 -1
|:| Frontier cluster 00|00]|o00|o01|00]00]o00]|03]o01 A | oA

00|00)|01})03}]06] 05|06 XM 07| 0.1 0
m Frontier cell

0.0 01|02} 06 0 0 0 EER 0.4 | 0.0 | 0.2 EOX
Occupied cell 00|00 |03 0 N -1 -1 -1 K 0.9

0.0 0.9 0.8 -1 -1 -1 0.8 0 = <] =
Free cell

0.0 Aalalalalalalala]lalala
E Unknown cell 0.0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Figure 4.9: Frontier detection

41

Methodology

4.6 Decision Making

In a multi-robot exploration system, decision making is responsible for assigning
exploration tasks to each robot in a coordinated and efficient way. Each robot must
autonomously select which frontier region to explore next, while ensuring that the
overall system minimizes redundant coverage and maximizes the exploration rate.

Several factors influence this decision process, including the distance between
each robot and the available frontiers, the size or information gain associated with
each frontier, and the conflict avoidance between robots that may attempt to reach
the same target region. Since these aspects are inherently coupled across multiple
robots and frontiers, a global optimization framework is required to balance these
objectives.

Discrete Factor Graph Formulation The assignment problem is formulated
as a discrete optimization task represented through a factor graph, where variables
correspond to robot assignments, and factors encode the cost or reward associated
with each possible allocation. Let R = {ry,...,rx} denote the set of robots and
F =A{f1,..., fu} the set of frontier centroids. The goal is to find the optimal
assignment x* = {z1,...,xy}, where each x; € F corresponds to the frontier
assigned to robot 7;.
The global cost function is expressed as:

N
x" = arg max 1T @i (@) T s (s,) (4.37)
i=1 i<j
where ¢;(z;) represents the individual cost for robot r; to reach frontier z;, and
Yij(x;, x;) models the pairwise compatibility between robots r; and r;.

Taking the negative log-likelihood formulation this additive cost minimization
problem is obtained:

x" = argmin — log(H@-(az’i) T ¢ij (i, xj)) (4.38)

1<j

N
= argmin > —log ¢i(x;) + > —log iz, x;) (4.39)
i=1 i<j
The unary cost captures both the distance to the frontier and its expected
utility:

—ad(ry, z;) + B s(w;)

—_— —
(bl(xl) = e distance cost size cost (440)
where d(r;, x;) is the Euclidean distance between robot r; and the potentially
assigned frontier x;, s(x;) denotes the size or information gain of the frontier, and

42

Methodology

a, B are scaling parameters that control the influence of distance and frontier size,
respectively.

To avoid the robots to have redundant assignments, pairwise factors introduce
a penalty when two robots select the same frontier:

et ifz; =y

) (4.41)
e, otherwise

Vij(wi, x5) = {
where A << 1 is a conflict penalty factor that discourages multiple robots from
targeting the same region.

Finally the optimization function is formulated as follows:

N
x" =argmin Y ad(ri, ;) = Bs(x;) — D bilai,) (4.42)
=1 S~ i<j
distance cost size cost uniqueness factor

This discrete factor graph formulation allows the optimization problem to
be efficiently solved using probabilistic inference techniques, providing a globally
consistent assignment of frontiers to robots. Compared to heuristic or greedy
methods, the factor graph approach ensures scalability, robustness to uncertainty,
and the ability to incorporate easily additional decision criteria such as energy

consumption or communication constraints in a modular way.

Coo C10
Co1 C11
Po1
Co2 C12
Cof Cif
Po2 P12

Robot Frontier
Assignment Variable

Dii Uniqueness Factor

C20 | C21 | C22 | C2f Cif Cost Factor

Figure 4.10: Decision-making factor graph

43

Methodology

4.7 Global Planning

Once the objective frontiers are assigned to each robot, the global planning provides
the high-level navigation strategy that determines the optimal path for each robot
to reach its assigned frontier while avoiding static obstacles and minimizing traversal
costs. In this framework, the global path planning problem is formulated as a
discrete graph search on the costmap representation of the environment, where each
cell corresponds to a node in the graph, and edges connect adjacent traversable cells.
The A* algorithm is adopted due to its optimality, completeness, and computational
efficiency when guided by an admissible heuristic.

A* Search Algorithm The A* algorithm finds the path that minimizes the
total traversal cost between a start node ns and a goal node n,. At each step, A*
evaluates nodes according to a cost function:

f(n) = g(n) + h(n) (4.43)

where g(n) represents the accumulated cost from the start node to n, and h(n) is
a heuristic estimate of the cost to reach the goal from n. The algorithm expands
nodes in order of increasing f(n), ensuring that the first time the goal is reached,
the corresponding path is optimal if h(n) never overestimates the true cost-to-go.

As the search progresses, the cost-to-come g(n) is incrementally updated when
moving from node n to a neighboring node n’ as:

g(n') = g(n) + c(n,n’) (4.44)

where ¢(n,n’) is the traversal cost associated with the edge between n and n’. This
cost reflects the risk of crossing that region of the map, which in this case is cost
defined by the costmap in the moving cell, describing the proximity to obstacles.

The resulting optimal path P* = {ns, ..., ny} is obtained by recursively selecting
the sequence of nodes that minimize f(n) until the goal is reached:

P =arg rrgn > e(n) (4.45)

nep

subject to connectivity constraints between consecutive nodes. The A* algorithm
guarantees that P* is the least-cost path provided that the heuristic h(n) is
admissible and consistent.

Heuristic Function The heuristic hA(n) provides an estimate of the remaining
distance to the goal, guiding the search efficiently toward the target. Typical

44

Methodology

admissible heuristics include:

hManhattan(n) = |xn - xg| + |yn - yg| (446>
hEuclidean(n) == \/(1'” - xg)Q + (yn - yg)2 (447)

where (x,,,y,) are the coordinates of node n and (z,,y,) are the coordinates of the
goal. The heuristic function ensures that the search is both directed and efficient,
with the choice depending on whether the robot moves along four or eight directions.
To make the robots move on eight directions in the costmap the Euclidean heuristic
results to be more effective.

1
Zstart

0
Tstart

Figure 4.11: A* Search

This global planning approach ensures that each robot efficiently navigates
toward its assigned frontier while avoiding collision with static obstacles detected
during mapping task. The global planning will be further integrated with a local
motion controller for real-time navigation and collision avoidance with each other
robot.

45

Methodology

4.8 Local planning

The local planning module bridges the gap between the global planner and the
robot’s low-level motion control. While global planning provides the overall path
toward the assigned frontier for each robot, local planning is responsible for generat-
ing dynamically feasible and collision-free velocity commands that allow the robot
to safely follow the path in real time. Its objectives include ensuring smooth tra-
jectory tracking, maintaining obstacle avoidance within the dynamic environment,
and preserving inter-robot safety in shared exploration spaces. To satisfy these
requirements, a first approach adopts the Dynamic Window Approach (DWA).
A second approach employs a factor graph optimization framework as a factor
graph-based local planner solution.

Dynamic Window Approach The Dynamic Window Approach (DWA) is
a well-established reactive control technique that selects the optimal linear and
angular velocities (v,w) according to the robot’s dynamic constraints, ensuring
real-time feasibility and safety.

At every control cycle, DWA evaluates a discrete set of velocity commands
within the dynamically admissible velocity space:

Umin S Up S VUmax Wmin S wp S Wmax

Vadm = { (Um wp)

v, —v| < a, Ty, |wp, —w| < ay, Tp} (4.48)

where (v,w) are the current velocities, a, and a, represent the maximum
linear and angular accelerations, and 7, is the time prediction horizon. For each
admissible velocity pair, the corresponding trajectory is forward simulated using
the differential-drive kinematics:

T vy, cos 0
X=|y| = |vpsinf (4.49)
0 Wy

Denoting as x = [z,y, 0] the current state of the robot, the predicted state
Xp = [Tp, Yp, 0] over a short time horizon T, for a candidate trajectory is defined

as:
x + T,v, cos 0

Xp=x+%x-T,= |y +T,u,sind (4.50)

0+ Tpw,
Each trajectory is evaluated through a multi-objective scoring function that
balances progress toward the goal, obstacle avoidance, and coordination with other

46

Methodology

robots:

J(vp, Wp) = Wy forogress(Vps Wp)
+ Wi, fheading (Up, Wp)
+ we f. costmap(vpa Wp)
+ Wy frobot (Vp, W) (4.51)

The contributions of each term in the objective function are described as follows:

* fprogress Mmeasures advancement along the global path, favoring trajectories
that move the robot closer to its next waypoint.

dlg)oal _ \/(:Up - xgoal)Q + (yp - yg0a1)2
dgoal \/([L' - $g0a1)2 + (y - ygoal)2

fprogress(va (U) =1- (452)

* fheading €valuates the angular alignment between the robot’s orientation and
the desired heading toward the goal.

Af
fheading(vaw) = - u, AQ - (egoal - 9) - [—7'(', 7T] (453)

™

e feostmap Penalizes proximity to obstacles using the costmap representation,
thus ensuring safety margins.

dobs
fcostmap(vaw) = _(1 - d‘fbs) (454)

max

where dzo)bS is the distance between the predicted robot state and the closest
obstacle costmap cell and d°"_is the maximum range in which the obstacle
factor is evaluated.

e frobot introduces inter-robot repulsion, preventing collisions and maintaining
safe distances in multi-robot contexts.

robot
dp

frobot (V,w) = —(1 — drobot) (4.55)

max

where d;ObOt is the distance between the predicted robot state and the closest
robot in its current position and d*°P°" is the maximum range in which the

inter-robot repulsion factor is evaluated.

47

Methodology

The optimal velocity command (v*, w*) is obtained as:

(v, w*) =arg max J(v,w), (4.56)

(Uyw)evadm

subject to kinematic and dynamic feasibility constraints. This ensures that the
chosen control inputs lead to smooth, safe, and dynamically achievable motion.

» N

Figure 4.12: Dynamic Window Approach

A significant limitation of the Dynamic Window Approach (DWA) is the
possibility of some robots becoming stuck without having a good prediction in
certain conditions. This occurs because the predicted trajectory over the short
time horizon T}, is generated assuming a constant velocity command (v, w), without
reaching a good long-term prediction. As a result, the robot may fail to explore
alternative motions that could escape narrow passages or situations with multiple
nearby robots, potentially causing it to oscillate or stop indefinitely.

Factor Graph-based Local Planner Inspired by [10], the Factor Graph-based
Planner (FGP) formulates the local planning problem as a nonlinear least-squares
optimization problem, where the robot trajectory over a finite horizon is represented
as a sequence of discrete states connected through factors that encode dynamic
feasibility, goal attraction, obstacle avoidance, and inter-robot interactions.

Each robot trajectory is discretized into N time steps over a prediction horizon
T, = N At, where At denotes the discretization time step. Robot states in the
factor graph are represented as N + 1 variable nodes, including the start and goal

48

Methodology

nodes. The state of robot r at time step ¢ is defined as:

T;
X! = vy,f . i=0,....N (4.57)
”Zi

Prior factors, binary factors between consecutive state variables of the same
robot and binary factors between state variables of different robots in the same
timestep impose constraints respectively related to obstacle avoidance, motion
dynamics, and inter-robot collision avoidance. Accordingly, the local planning
problem can be formulated as a probabilistic inference task in which the optimal
joint trajectory X* maximizes the overall likelihood of all factors in the graph:

x T r T r
X" = arg m}%X H start(XO) ' goal(XN)
reER

start prior goal prior

N-1 N
11 FrndX0%001) 11 TdXEM) (w58)

dynamics factors obstacle factors

N
-Hnmwﬁﬂ

=1 sr
inter-robot factors

Below is a detailed description of the formulation of each factor and their role
in the optimization framework.

Start prior factors The start prior anchors the initial state of each robot
trajectory to the robot’s current measured state. This factor acts as a probabilistic
prior:

srtart(xg) = N(XS Sstart (459)

1 . —
or —S|Ix5—x%
X07 Estart) xe 210 0

where Xx{ is the estimated current state and Y., encodes the confidence in the
state estimate. Low covariance values in g .,¢ express high certainty about the
initial robot state.

49

Methodology

Dynamics factors The dynamics factor enforces smooth and dynamically
consistent motion between consecutive states. Assuming a constant-velocity kine-
matic model, the expected next state is predicted as:

xy + vy At
a(x), Af) = |V R (4.60)

(%

Tt
r

Uy i

and the corresponding dynamics error is defined as:
egm =x;,., — P(x}, At). (4.61)

The resulting factor is modeled as a Gaussian model that penalizes deviations
from the expected motion model:

T

_ljer 2
Frons K0 X0 10) = N (XL | @01, A1), S) oc e H0mlun (4.62)

This factor penalizes large accelerations or deviations from the motion model,
promoting temporal smoothness and ensuring dynamically consistent trajectories
that remain feasible for the robot’s kinematic limits.

Obstacle factors The obstacle factor ensures collision avoidance by penalizing
proximity to occupied regions in the local costmap. For each predicted state, the
error is defined based on the distance to the nearest obstacle within a safety radius:

dobs(xr)
1— % if dobs ™) < dobs
egbs,i - d?IPan ! (XZ) - (463>
0, if doPs(x7) > dobs,

where d°”(x7) is the Euclidean distance from the robot’s position to the nearest
obstacle within the safety radius d°>

max*

The corresponding factor is modeled as a Gaussian potential:

T

_1 2
gbs,i<xg§ M) = _/\[(0 ‘ egbs,ia Eobs) x e sleonsills,, . (4.64)
penalizing states that violate the safe distance and guiding the robot through
collision-free regions.

If no obstacle is detected within the safety radius at time step i, the correspond-
ing obstacle factor is omitted from the graph.

50

Methodology

Inter-robot factors The inter-robot factor promotes cooperative and collisiont
free navigation among multiple robots. For each pair of robots, the error is defined
based on their relative distance and a safety threshold:

Ip; —pjll .
1— #’ if T _pill < drobot
v = dgger 1 IPE RS (4:65)
0, if [|p] — pl| > diopet

where p] and p; denote the 2D positions of robots r and s at time step ¢, and
d°P°t is the minimum allowed distance for the error to be evaluated.

max

The corresponding factor is modeled as a Gaussian potential:

1 T,5
Frtak x5 = N (0 | el S) o e B (4.66)
penalizing states that violate the safety margin with collision risk with other robots.

If no other robot lies within the safety radius at time step ¢, no inter-robot
factor is included.

Goal prior factors The goal prior attracts the terminal state of the trajectory
toward a short-term target, previously computed as a lookahead point along the
global path. The lookahead point is found as the point along the global path with
a distance from the current robot position equal to:

dlookahead = Tp " Umax (467)

It provides directional guidance within the local planning horizon while main-
taining flexibility, allowed by moderate values of covariances inside Y4041, to adapt
to dynamic obstacles or other robots:

1” T

r(x" :N x" 5 XN*XgoaIHQEgoal 4.68
goal \“** NV N

- _
Xgoal’ Zgoal) x €

The tuning of ¥, values is really important to balance smoothness with
performance in terms of velocity, ensuring also a good flexibility for obstacle and
other robots collision avoidance.

The maximization of the joint likelihood can be equivalently expressed as a

51

Methodology

nonlinear least-squares problem:

X* = arg mxi;n Z llx(— XSHQEStm + |Ixy — XgoalH%goal
reR

start prior goal prior

N-1 N
+ D Xy — O(xfL A5, + D i (XM, (4.69)
i=0 i=0

dynamics factors obstacle factors

N
+ 3> (xS,

=1 s#r

inter-robot factors

> Robot State Variable

. T8
Constant Dynamics f ’ Inter-robot Factor
" 1
w Factor
7 . T
p [5,9] Start Goal Prior Factor Oi Obstacle Factor

Figure 4.13: Factor graph-based local planner formulation

After solving the optimization problem, the first control command for each
robot is derived from the displacement between the first two optimized states. The
linear velocity is computed as the Euclidean displacement over the discretization
interval:

l,r _xr 2+ T ,T\2
o — \/(1 O)At (¥ — v5) (4.70)

52

Methodology

The angular velocity is obtained from the difference between the heading implied
by the velocity components at the current state and the direction of motion toward
the next state:

. atan2(y] — yi, o — () — atan2(v;70, U;,O)
n At

SUSNEEE:

w (4.71)

Figure 4.14: Factor graph-based local planner

This receding-horizon control strategy updates the command at each iteration
using the most recent optimized trajectory, enabling responsive and coordinated
multi-robot motion while ensuring dynamically feasible and collision-free trajectories.
The factor graph framework further allows the seamless integration of additional
constraints such as velocity bounds and safety margins in a unified probabilistic
formulation.

53

Methodology

4.9 Simulation

A simulation environment was developed to evaluate the algorithms before the
deployment on a real multi-robot system.

The environment is represented as an occupancy grid map, where each cell
corresponds to a discrete portion of the world with a defined resolution. To test
the algorithms in different conditions, random map generators are employed to
create environments such as vineyard-like maps and indoor dungeon-style maps.
Additionally, maps are derived from real-world road networks using OpenStreetMap
data. These generators are fully parametric, enabling the design of multiple testing
scenarios with varying levels of complexity.

(a) Indoor map (b) Vineyard-like map

(c) Road network map

Figure 4.15: Random generated simulation environments

The simulator adopts a multi-threaded architecture in which each robot runs

54

Methodology

several concurrent threads to emulate both its internal state evolution and its
sensors. One thread is responsible for updating the robot’s ground-truth state and
IMU-based estimate at a fixed frequency, while additional threads emulate the
LiDAR and camera sensors at realistic update rates. Each of these threads also
accounts for sensor noise, biases, and limitations, ensuring that the simulated data
closely resembles real-world measurements. The following describes the function of
each thread executed by every robot:

« Robot state and IMU thread: This thread is responsible for updating
both the ground-truth state of the robot and the IMU-based estimate. At
each iteration, the ground-truth pose is advanced using the commanded
velocities according to:

Tip1 = oy + v cos(0y) At, (4.72a)
Yer1 = Yp + vsin(6;) At, (4.72b)
9t+1 = et + wAt. (4720)

where v and w are the linear and angular velocity commands, respectively,
and At is the integration step.

The IMU-based pose is then updated using a noisy motion model that intro-
duces both systematic and stochastic errors. Sensor biases evolve according
to a first-order Gauss—Markov process:

by = ab,_1+N(0,07), (4.73)

where b, is the bias at time ¢, o € [0,1] is the correlation coefficient, and
N (0, 02) represents Gaussian noise. The measured linear and angular veloci-
ties are then corrupted by scale errors and biases:

Um = (1 4+ €,)v + by, (4.74)
wm = (1 + €,)w + by, (4.75)

and integrated using the same kinematic equations employed for the robot
state update (4.72) to obtain the IMU trajectory. This process produces
realistic drift and noise, essential for testing localization algorithms.

o LiDAR thread: This thread simulates a 2D LiDAR by casting laser beams
into the occupancy grid and performing ray tracing. At each update, the
positions and shapes of other robots are temporarily added to the map so they
can be perceived as obstacles. For every beam, the global LiDAR position is
computed from the robot’s pose, and a ray is traced using the Bresenham
algorithm to check for collisions. If a hit is detected, the intersection point

55

Methodology

is transformed into the LiDAR frame and stored; otherwise, the beam is
marked as infinite. Random noise is added to the range and angle of each
beam before the final scan is published.

o Camera thread: The camera is modeled for landmark detection. At
initialization, fixed landmarks are randomly generated in the free space of the
map. At each update, the relative positions of landmarks within the sensor’s
range and field of view are reported, with Gaussian noise added to simulate
real measurement uncertainty:.

Figure 4.16 show the simulator visualization with Rviz tool where LiDAR scans
are represented as points in red, orange and yellow respectively for robot 0, robot 1
and robot_2 and landmarks are marked as blue points.

robot_L:map
robote\'map

robo’__z/map

robot Qi ase. link

JI"

e

Figure 4.16: Simulator Rviz visualization

56

Methodology

4.10 Implementation

The entire system has been developed using the ROS2 Humble framework, which
offers a modular, distributed, and real-time architecture well-suited for robotic
applications. Its support for publish-subscribe communication, real-time execution,
and cross-platform compatibility makes it ideal for multi-robot SLAM systems like
the one proposed here.

The core functionalities are implemented in C++, ensuring efficiency and
real-time performance in computationally demanding tasks.

For visualization and debugging, Rviz is employed, allowing an intuitive rep-
resentation of the robot states, sensor data, and mapping results during both
simulation and real-world experiments.

In order to guaranty portability, reproducibility, and efficient resource manage-
ment across different robotic platforms, the entire software stack is fully container-
ized using Docker. This virtualization approach simplifies deployment, facilitates
system integration, and ensures consistent execution in heterogeneous environments.

57

Chapter 5

Experiments and Results

In this chapter, the experimental validation of the proposed multi-robot exploration
framework is presented. The objective of these experiments is to evaluate the
performance, and scalability of the system under different environmental conditions
and operational scenarios.

The evaluation encompasses all the main components described in the previous
chapter, including localization, mapping, frontier detection, decision making, and
both global and local planning, analyzing how they interact to achieve coordinated
and efficient exploration.

The experiments are designed to demonstrate the multi-robot system’s ability
to:

» construct consistent and accurate maps through cooperation

o detect and assign frontiers efficiently among the robots

« plan globally optimal and locally safe trajectories to reach the frontiers

« achieve robust and fast navigation with real-time coordination and cooperation

Different real-world scenarios are used to assess the framework’s behavior in
semi-structured environments, varying in complexity, obstacle density, and map
topology. Quantitative metrics such as exploration time, localization accuracy,
exploration rate and map accuracy are measured to provide an objective comparison
between the different multi-robot setups explained below. Qualitative results are
also reported through trajectory visualizations and occupancy maps, showing
exploration for each robot employed in the experiments and illustrating the overall
system performance.

58

Experiments and Results

This chapter is organized as follows:

e Multi-robot system: description of the multi-robot system with hardware
and software configurations.

 Experimental environments: specification of the testing environments
and evaluation objectives.

¢ Ground truth: definition of how ground truth data is obtained for perfor-
mance evaluation.

o Testing modality: explanation of the procedure employed to perform the
experiments.

¢ Results and discussion: presentation and analysis of experimental results,
highlighting key findings and insights.

5.1 Multi-robot system

The experimental platform consists of a team of three TurtleBot3 robots, denoted
as robot__ 12, robot 13, and robot 14, configured to perform fully autonomous and
cooperative exploration tasks within indoor environments. Each robot is equipped
with on-board control unit, perception, and actuation modules enabling distributed
sensing and navigation while maintaining wireless communication with the server.

Figure 5.1: Multi-robot TurtleBot3 system with robot_ 12, robot_ 13, and robot_ 1/

59

Experiments and Results

Hardware configuration FEach TurtleBot3 unit is equipped with a set of hard-
ware components designed to support autonomous perception, computation, and
actuation. The main elements of the system are summarized as follows:

LiDAR sensor: an LDS-02 2D LiDAR scanner provides 360° horizontal
coverage with a maximum range of 8 m, an angular resolution of approximately
1°, and distance accuracy of £10 mm within 0.3 m, £3% between 0.3 m and
6m, and 5% between 6 m and 8 m. Operating at 10 Hz, it delivers dense
range measurements used for obstacle detection and occupancy grid mapping.

RGB-D camera: an OAK-D Pro stereo depth camera integrates an RGB
sensor with an active IR projector, enabling accurate depth estimation and
robust visual perception. This sensor is used for landmark detection and 3D
mapping tasks.

Differential-drive configuration: each robot employs a two-wheel differen-
tial drive system powered by independently actuated DC motors with wheel
encoders.

Control unit: a compact Intel NUC computer equipped with an Intel Core
i3 processor, running Ubuntu 22.04 and the ROS 2 framework. This onboard
unit handles communication with the server, sensor handling and feature
extraction and motion control.

Low-level control board: motor control and encoder feedback are managed
by an OpenCR 1.0 microcontroller board, which directly interfaces with the
motor drivers and wheel encoders to execute velocity commands and provide
real-time odometric data.

Power system: two independent batteries supply power separately to the
OpenCR board and the control unit.

The system follows a centralized multi-robot architecture, illustrated in Fig-
ure 4.2. A central server, equipped with an Intel Core i7 processor, manages
the global coordination, localization, mapping, frontier detection, decision mak-
ing, global and local planning, while each robot executes local computation for
perception and motion control.

Communication and coordination Communication between the robots and
the central server is managed through the ROS 2 communication framework,
operating over a wireless LAN. This setup enables reliable message exchange with
low latency, ensuring real-time coordination, data sharing, and synchronization
among all robots and the central control unit.

60

Experiments and Results

5.2 Experimental environments

The experimental evaluation is conducted within indoor environments constructed
specifically in the laboratory of the PoliTo Interdepartmental Center for Service
Robotics (PIC4SeR). Each environment is designed to progressively increase in
spatial complexity, number of frontiers, and possible exploration paths, allowing for
a systematic assessment of the efficiency and scalability of the proposed AC-SLAM
multi-robot exploration framework. The environments are thus configured to test
how the system adapts its frontier detection, assignment, and navigation behavior
under varying levels of environmental complexity.

The figures below show the four test environments employed during the exper-
iments, illustrating the expected distribution of frontiers and the corresponding
qualitatively feasible paths for the robots. These visualizations provide an overview
of the exploration scenarios and highlight the increasing difficulty and coverage
requirements of each test.

Figure 5.2 show the first experiment environment in which there is a single
initial frontier and the at most two frontiers to discover during the exploration
process.

Figure 5.3 show the second experiment environment with three starting explo-
ration frontiers, one for each robot when tested with all three robots.

Figure 5.4 show the third experiment environment with a slightly more complex
structure and four initial frontiers.

Figure 5.5 shows the fourth experiment environment with a more labyrinth-style
structure and five initial frontiers to explore.

A fifth experiment is conducted on a big area of the PIC4SeR floor including
the laboratory and other rooms.

The experiments are designed to evaluate the performance of the multi-robot
system when operating with different numbers of agents (one, two, or three robots),
analyzing how the number of frontiers and their spatial distribution affect the overall
exploration efficiency, coverage time, and coordination dynamics with respect to
the number of agents employed.

61

Experiments and Results

robot 14 robot 13 robot_12

Figure 5.2: Experiment 1 environment

robot_14 robot 13 robot 12

4 m———

*

+
1
]
1
]
1
1
1
1
1
1
1
1
1
1
\}
\}

Figure 5.3: Experiment 2 environment

62

Experiments and Results

robot_14 robot 13 robot_12

4 m——

e

*

*

—_—

P L T Y

Figure 5.4: Experiment 3 environment

robot 12

B
4”

-
’

-
Seeem

Figure 5.5: Experiment 4 environment

63

Experiments and Results

5.3 Ground Truth

To assess the performance of the proposed multi-robot exploration framework,
reference ground truth data are employed for both localization and mapping
evaluation, providing quantitative measurement of accuracy.

Localization ground truth For localization assessment, a Vicon motion capture
system is used to provide high-precision ground truth trajectories. The system is
composed of eleven infrared cameras strategically placed around the experimental
area, capable of capturing the three-dimensional position and orientation of each
robot with millimetric accuracy. Each TurtleBot3 is equipped with reflective
markers that allow the Vicon system to track its pose (x,y, 6) in real time. This
setup enables precise comparison between the estimated robot trajectories, obtained
from the AC-SLAM system, and the ground truth trajectories measured by Vicon.

Figure 5.6: Vicon motion capture system

Mapping ground truth Since a precise ground truth map of the experimental
environments is not available, the mapping accuracy is evaluated through a com-
parative approach. The occupancy grid maps produced by the proposed AC-SLAM
framework are compared with reference maps generated using the well-established
RTAB-Map (Real-Time Appearance-Based Mapping) system. RTAB-Map is a
widely recognized SLAM method based on graph optimization and visual loop
closure detection, providing high-quality maps suitable as a comparison reference.
This approach allows assessing the fidelity of the reconstructed maps and the
consistency of the merged multi-robot maps relative to a proven SLAM baseline.

64

Experiments and Results

5.4 Testing Modality

For each of the four experimental environments presented above, three sets of
experiments are conducted to evaluate the performance and scalability of the
proposed AC-SLAM framework when operating with different numbers of robots,
specifically, one, two, and three robots. This configuration allows assessing how
cooperative exploration improves mapping efficiency, coverage rate, and overall
system robustness as the team size increases.

All experiments are performed under controlled indoor conditions within the
PIC4SeR laboratory, ensuring repeatability and comparability across tests. Each
experimental trial begins with all robots positioned at predefined starting locations,
chosen to ensure similar initial conditions for every setup.

During each trial, the Vicon motion capture system continuously records the
ground truth position and orientation of each robot at a high sampling rate,
providing precise reference trajectories for localization accuracy assessment. Si-
multaneously, elaborated data are logged to enable offline analysis of performance
metrics.

At the end of each exploration session, the occupancy grid maps generated by
the system are compared against reference maps produced using the RTAB-Map
SLAM framework in the same controlled environment.

65

Experiments and Results

5.5 Results and discussion

5.5.1 Experiment 1

In the following description of results, the sub-experiments and their respective
robot configurations are indicated as follows:

o Experiment 1.1: (robot_13)
o Experiment 1.2: (robot_ 12, robot_13)
« Experiment 1.3: (robot_ 12, robot_ 13, robot_1/)

Timing evaluation

Robot Exp 1.1 Exp 1.2 Exp 1.3
robot 12 - 129.724 s 158.238 s
robot_ 13 165.404 s 133.751 s 105.732 s
robot 14 - - 135.568 s
Total time 165.404 s 133.751 s 158.238 s
Gap time - 4.027 s 52.505 s

Table 5.1: Experiment 1 - Timing evaluation

As shown in Figure 5.2, the robots starting positions are located within a closed
area containing a single opening, thus initially yielding only one frontier. After the
discovery of this first frontier, the system identified a maximum of two frontiers
during exploration process.

Table 5.1 indicates that the best performance, in terms of exploration time,
was achieved with the (robot_12, robot 13) configuration, with a remarkable
low gap time between the end of the exploration of the first and the last robot.
This setup proved optimal for efficiently covering both sides of the map once the
robots exited the initial area. In contrast, the single-robot configuration (robot_13)
was significantly slower, while the three-robot configuration (robot 12, robot 13,
robot_ 1/) was less efficient due to the redundancy of one robot initially following
the same trajectory as another, causing interference and reducing overall flexibility
in path planning.

66

Experiments and Results

Localization Evaluation

Robot Final dist. error [m] | MAE [m] | RMSE [m] | STD [m]
robot 13 0.14 0.12 0.14 0.07
Robot Final yaw error [rad] | MAE [rad] | RMSE [rad] | STD [rad]
robot_ 18 0.02 0.04 0.05 0.02
(a) Experiment 1.1
Robot Final dist. error [m] | MAE [m] | RMSE [m] | STD [m]
robot__12 0.13 0.13 0.15 0.07
robot 13 0.04 0.11 0.12 0.06
Robot | Final yaw error [rad] | MAE [rad] | RMSE [rad] | STD [rad]
robot__12 0.03 0.02 0.02 0.01
robot__13 0.01 0.03 0.03 0.01
(b) Experiment 1.2
Robot Final dist. error [m] | MAE [m] | RMSE [m] | STD [m]
robot__12 0.36 0.14 0.18 0.10
robot__13 0.03 0.08 0.10 0.06
robot__14 0.06 0.05 0.05 0.02
Robot | Final yaw error [rad] | MAE [rad] | RMSE [rad] | STD [rad]
robot__12 0.14 0.07 0.09 0.05
robot__13 0.08 0.05 0.05 0.02
robot_ 14 0.02 0.01 0.01 0.01

(c) Experiment 1.3

Table 5.2: Experiment 1 - Position and orientation accuracy metrics

67

Experiments and Results

Robot trajectories

—— Measured trajectory - robot_13
. Y, g Ground truth trajectory - robot 13
Missing ground truth - robot_13
3
2
1
E
>
o
-1
-2
-3
-4 -2 0 2 4

X [m]

Figure 5.7: Experiment 1.1 - Localization trajectory with Vicon ground truth

Robot trajectories

—— Measured trajectory - robot_12
4 Ground truth trajectory - robot_12
Missing ground truth - robot_12
—— Measured trajectory - robot_13
~~ Ground truth trajectory - robot_13
s Missing ground truth - robot_13
2
1
E o
=
-1
-2
-3
-4
-4 -2 0 2 a 6
X [m]

Figure 5.8: Experiment 1.2 - Localization trajectories with Vicon ground truth

68

Experiments and Results

Robot trajectories

—— Measured trajectory - robot_12
4 Ground truth trajectory - robot_12
Missing ground truth - robot_12
—— Measured trajectory - robot_13
—~ Ground truth trajectory - robot_13
Missing ground truth - robot_13
3 —— Measured trajectory - robot_14
Ground truth trajectory - robot_14
Missing ground truth - robot_14
2
1
E
> 0
-1
-2
-3
-4
-4 -2 0 2 4 6
X [m]

Figure 5.9: Experiment 1.3 - Localization trajectories with Vicon ground truth

69

Experiments and Results

Mapping evaluation
The mapping spatial resolution of the grid maps is 0.05 m/pixel, spanning an
area of 40m x 40m (800 x 800 cells).

Robots Area [m?] Rate [%]
robot 13 64.79 100.00%

(a) Experiment 1.1

Robots Area [m?] Rate [%)]
robot 12 59.29 80.75%
robot 13 52.00 80.30%
robot 12, robot_ 13 64.75 100.00%

(b) Experiment 1.2

Robots Area [m?] Rate [%]
robot__ 12 58.74 90.27%
robot 13 41.38 63.60%
robot 14 43.76 67.25%
robot__ 12, robot 13 62.79 96.50%
robot__ 12, robot_ 1} 62.26 95.69%
robot 13, robot_ 1} 57.63 88.57%
robot 12, robot__ 13, robot_ 1/ 65.07 100.00%

(c) Experiment 1.3

Table 5.3: Experiment 1 - Exploration coverage for each robots combination

Metric Exp 1.1 Exp 1.2 Exp 1.3
Accuracy 93.7% 91.9% 93.5%
True Positive Rate (TPR) 42.7% 35.0% 39.4%
True Negative Rate (TNR) 97.4% 95.7% 97.5%
False Positive Rate (FPR) 2.6% 4.3% 2.6%
False Negative Rate (FNR) 57.3% 65.0% 60.6%

Table 5.4: Experiment 1 - Mapping accuracy confusion-based rate metrics

70

Experiments and Results

(a) Experiment 1.1 (b) Experiment 1.2 (c) Experiment 1.3

Figure 5.11: Experiment 1 - Mapping results

(a) Experiment 1.1 (b) Experiment 1.2 (c) Experiment 1.3

Figure 5.12: Experiment 1 - Confusion error metric (Green — TP, White — TN,
Blue — FP, Red — FN)

71

Experiments and Results

Table 5.3 once again shows that the most efficient configuration is (robot_ 12,
robot__13), achieving a balanced distribution of the explored area between the two
robots. From the coverage values, it can also be observed that in the (robot_ 12,
robot__13, robot__14) configuration, the pairs (robot_12, robot_13) and (robot_ 12,
robot__14) together explored approximately 96% of the entire area during the task.
This indicates that the addition of a supplementary robot is unnecessary, as two
robots are sufficient to ensure efficient coverage.

Figure 5.13: Experiment 1.1 - Robot exploration and trajectory

72

Experiments and Results

(a) robot_ 12 map (b) robot 13 map

Figure 5.14: Experiment 1.2 - Single robots exploration maps

Figure 5.15: Experiment 1.2 - Robots exploration and trajectories

73

Experiments and Results

(a) robot_ 12 map (b) robot 13 map (c) robot_ 14 map

Figure 5.16: Experiment 1.3 - Single robots exploration maps

Figure 5.17: Experiment 1.3 - Robots exploration and trajectories

74

Experiments and Results

5.5.2 Experiment 2

In the following description of results, the sub-experiments and their respective
robot configurations are indicated as follows:

o Experiment 2.1: (robot_13)
o Experiment 2.2: (robot_ 12, robot_13)
« Experiment 2.3: (robot_ 12, robot_ 13, robot_1/)

Timing evaluation

Robot Exp 2.1 Exp 2.2 Exp 2.3
robot 12 94.105 s 86.612 s
robot_ 13 141.704 s 94.709 s 58.303 s
robot 14 - - 65.513 s
Total time 141.704 s 94.709 s 86.612 s
Gap time 0.603 s 28.308 s

Table 5.5: Experiment 2 - Timing evaluation

In this experiment, the environment shown in Figure 5.3 contains three ini-
tial frontiers to be discovered, making it particularly suitable for the (robot_ 12,
robot__13, robot_14) configuration, where each robot targets the closest initial
frontier. Thanks to the environment’s symmetry, the (robot 12, robot_13) config-
uration exhibits the smallest exploration time gap, with both robots completing
their tasks almost simultaneously.

75

Experiments and Results

Localization Evaluation

Robot Final dist. error [m] | MAE [m] | RMSE [m] | STD [m]
robot 13 0.15 0.09 0.11 0.05
Robot Final yaw error [rad] | MAE [rad] | RMSE [rad] | STD [rad]
robot__13 0.06 0.03 0.03 0.02
(a) Experiment 2.1
Robot Final dist. error [m] | MAE [m] | RMSE [m] | STD [m]
robot__12 0.07 0.10 0.12 0.07
robot 13 0.11 0.09 0.11 0.05
Robot | Final yaw error [rad] | MAE [rad] | RMSE [rad] | STD [rad]
robot__12 0.03 0.03 0.04 0.02
robot__13 0.02 0.02 0.02 0.01
(b) Experiment 2.2
Robot Final dist. error [m] | MAE [m] | RMSE [m] | STD [m]
robot__12 0.05 0.08 0.08 0.03
robot__13 0.14 0.11 0.12 0.05
robot__14 0.10 0.08 0.09 0.03
Robot | Final yaw error [rad] | MAE [rad] | RMSE [rad] | STD [rad]
robot__12 0.01 0.01 0.02 0.01
robot__13 0.03 0.02 0.03 0.01
robot_ 14 0.03 0.02 0.04 0.01

(c) Experiment 2.3

Table 5.6: Experiment 2 - Position and orientation accuracy metrics

76

Experiments and Results

Robot trajectories

—— Measured trajectory - robot_13
4 Ground truth trajectory - robot_13
Missing ground truth - robot_13
3
2
1
E
>
0
-1
-2
-3
-4 -2 0 2 4 6
X [m]

Figure 5.18: Experiment 2.1 - Localization trajectory with Vicon ground truth

Robot trajectories

—— Measured trajectory - robot_12

4 Ground truth trajectory - robot_12
Missing ground truth - robot_12
—— Measured trajectory - robot_13
~ =~ Ground truth trajectory - robot_13
Missing ground truth - robot_13
3
2
1
E
0

-4 -2 0 2 4 6
X[m]

Figure 5.19: Experiment 2.2 - Localization trajectories with Vicon ground truth

7

Experiments and Results

Robot trajectories

—— Measured trajectory - robot_12
Ground truth trajectory - robot_12
Missing ground truth - robot_12

—— Measured trajectory - robot_13

—~ Ground truth trajectory - robot_13
Missing ground truth - robot_13

—— Measured trajectory - robot_14
Ground truth trajectory - robot_14
Missing ground truth - robot_14

-4 -2 0 2 4 6
X [m]

Figure 5.20: Experiment 2.3 - Localization trajectories with Vicon ground truth

78

Experiments and Results

Mapping evaluation
The mapping spatial resolution of the grid maps is 0.05 m/pixel, spanning an
area of 40m x 40m (800 x 800 cells).

Robots Area [m?] Rate [%]
robot 13 63.71 100.00%

(a) Experiment 2.1

Robots Area [m?] Rate [%)]
robot 12 51.63 80.72%
robot 13 51.14 79.95%
robot 12, robot_ 13 63.96 100.00%

(b) Experiment 2.2

Robots Area [m?] Rate [%]
robot_ 12 53.02 82.50%
robot 13 47.56 74.01%
robot 14 49.06 76.33%
robot__ 12, robot 13 60.42 94.01%
robot__ 12, robot_ 1} 62.95 97.95%
robot 13, robot_ 1} 53.54 83.31%
robot 12, robot__ 13, robot_ 1/ 64.70 100.00%

(c) Experiment 2.3

Table 5.7: Experiment 2 - Exploration coverage for each robots combination

Metric Exp 2.1 Exp 2.2 Exp 2.3
Accuracy 93.9% 94.4% 94.7%
True Positive Rate (TPR) 40.5% 47.9% 53.7%
True Negative Rate (TNR) 97.3% 97.5% 97.4%
False Positive Rate (FPR) 2.7% 2.5% 2.5%
False Negative Rate (FNR) 59.5% 52.1% 46.3%

Table 5.8: Experiment 2 - Mapping accuracy confusion-based rate metrics

79

Experiments and Results

(a) Experiment 2.1 (b) Experiment 2.2 (c) Experiment 2.3

Figure 5.22: Experiment 2 - Mapping results

(a) Experiment 2.1 (b) Experiment 2.2 (c) Experiment 2.3

Figure 5.23: Experiment 2 - Confusion error metric (Green — TP, White — TN,
Blue — FP, Red — FN)

80

Experiments and Results

Figure 5.24: Experiment 2.1 - Robot exploration and trajectory

81

Experiments and Results

(a) robot_ 12 map (b) robot 13 map

Figure 5.25: Experiment 2.2 - Single robots exploration maps

Figure 5.26: Experiment 2.2 - Robots exploration and trajectories

82

Experiments and Results

(a) robot_ 12 map (b) robot 13 map (c) robot_ 14 map

Figure 5.27: Experiment 2.3 - Single robots exploration maps

Figure 5.28: Experiment 2.3 - Robots exploration and trajectories

83

Experiments and Results

5.5.3 Experiment 3

In the following description of results, the sub-experiments and their respective
robot configurations are indicated as follows:

o Experiment 3.1: (robot_13)
« Experiment 3.2: (robot 12, robot_13)
« Experiment 3.3: (robot_12, robot_13, robot_1/)

Timing evaluation

Robot Exp 3.1 Exp 3.2 Exp 3.3
robot_ 12 - 66.002 s 86.699 s
robot_ 13 114.411 s 68.999 s 70.359 s
robot 14 - - 66.339 s
Total time 114.411 s 68.999 s 86.699 s
Gap time - 2.997 s 20.360 s

Table 5.9: Experiment 3 - Timing evaluation

With four initial frontiers to be explored, the environment shown in Figure 5.4
challenges the robots to select frontiers coherently in order to maximize exploration
efficiency. Interestingly, despite the increased number of frontiers with respect
to the last experiment, the optimal performance is achieved with the (robot_ 12,
robot__13) configuration, which demonstrates a highly balanced exploration pattern.
Each robot covers a distinct zone of the map, navigating around the obstacle on
its side and efficiently exploring the entire area. In this case as well, the time gap
between the two robots is remarkably small.

84

Experiments and Results

Localization Evaluation

Robot Final dist. error [m] | MAE [m] | RMSE [m] | STD [m]
robot 13 0.09 0.12 0.13 0.06
Robot Final yaw error [rad] | MAE [rad] | RMSE [rad] | STD [rad]
robot__13 0.02 0.03 0.03 0.02
(a) Experiment 3.1
Robot Final dist. error [m] | MAE [m] | RMSE [m] | STD [m]
robot__12 0.13 0.08 0.09 0.04
robot__13 0.08 0.11 0.12 0.05
Robot | Final yaw error [rad] | MAE [rad] | RMSE [rad] | STD [rad]
robot__12 0.06 0.03 0.04 0.02
robot__13 0.03 0.03 0.03 0.02
(b) Experiment 3.2
Robot Final dist. error [m] | MAE [m] | RMSE [m] | STD [m]
robot__12 0.12 0.09 0.10 0.04
robot__13 0.11 0.09 0.11 0.05
robot_ 14 0.12 0.09 0.10 0.04
Robot | Final yaw error [rad] | MAE [rad] | RMSE [rad] | STD [rad]
robot__12 0.06 0.02 0.03 0.02
robot__13 0.05 0.04 0.05 0.02
robot__14 0.05 0.03 0.04 0.02

(c) Experiment 3.3

Table 5.10: Experiment 3 - Position and orientation accuracy metrics

85

Experiments and Results

Robot trajectories

—— Measured trajectory - robot_13
Ground truth trajectory - robot_13
Missing ground truth - robot_13
3
2
1
E
>
0
-1
-2
-3
-4 -2 0 2 4
X [m]

Figure 5.29: Experiment 3.1 - Localization trajectory with Vicon ground truth

Robot trajectories

—— Measured trajectory - robot_12
4 Ground truth trajectory - robot_12
Missing ground truth - robot_12
—— Measured trajectory - robot_13
~ =~ Ground truth trajectory - robot_13
Missing ground truth - robot_13
3
2
1
E
>
0
-1
-2
-3

-4 -2 0 2 4 6

Figure 5.30: Experiment 3.2 - Localization trajectories with Vicon ground truth

86

Experiments and Results

Robot trajectories

—— Measured trajectory - robot_12
Ground truth trajectory - robot_12
Missing ground truth - robot_12

—— Measured trajectory - robot_13

~~ Ground truth trajectory - robot_13
Missing ground truth - robot 13

—— Measured trajectory - robot_14
Ground truth trajectory - robot_14
Missing ground truth - robot_14

-4 -2 0 2 4 6
X [m]

Figure 5.31: Experiment 3.3 - Localization trajectories with Vicon ground truth

87

Experiments and Results

Mapping evaluation
The mapping spatial resolution of the grid maps is 0.05 m/pixel, spanning an
area of 40m x 40m (800 x 800 cells).

Robots Area [m?] Rate [%]
robot 13 64.46 100.00%

(a) Experiment 3.1

Robots Area [m?] Rate [%)]
robot 12 53.37 82.73%
robot 13 50.19 77.80%
robot 12, robot_ 13 64.90 100.00%

(b) Experiment 3.2

Robots Area [m?] Rate [%]
robot__ 12 50.67 79.43%
robot 13 46.79 73.35%
robot_ 14 49.42 T7.47%
robot__ 12, robot_13 57.02 89.38%
robot__ 12, robot 14 63.11 98.93%
robot__13, robot_ 1/ 55.82 87.50%
robot 12, robot__ 13, robot_ 1/ 64.28 100.00%

(c) Experiment 3.3

Table 5.11: Experiment 3 - Exploration coverage for each robots combination

Metric Exp 3.1 Exp 3.2 Exp 3.3
Accuracy 93.2% 93.6% 93.4%
True Positive Rate (TPR) 42.5% 40.6% 43.8%
True Negative Rate (TNR) 96.5% 97.3% 96.6%
False Positive Rate (FPR) 3.5% 2.7% 3.3%
False Negative Rate (FNR) 57.5% 59.4% 56.2%

Table 5.12: Experiment 3 - Mapping accuracy confusion-based rate metrics

38

Experiments and Results

(a) Experiment 3.1 (b) Experiment 3.2 (c) Experiment 3.3

Figure 5.33: Experiment 3 - Mapping results

(a) Experiment 3.1 (b) Experiment 3.2 (c) Experiment 3.3

Figure 5.34: Experiment 3 - Confusion error metric (Green — TP, White — TN,
Blue — FP, Red — FN)

89

Experiments and Results

Figure 5.35: Experiment 3.1 - Robot exploration and trajectory

90

Experiments and Results

(a) robot_ 12 map (b) robot 13 map

Figure 5.36: Experiment 3.2 - Single robots exploration maps

Figure 5.37: Experiment 3.2 - Robots exploration and trajectories

91

Experiments and Results

(a) robot_ 12 map (b) robot 13 map (c) robot_ 14 map

Figure 5.38: Experiment 3.3 - Single robots exploration maps

Figure 5.39: Experiment 3.3 - Robots exploration and trajectories

92

Experiments and Results

5.5.4 Experiment 4

In the following description of results, the sub-experiments and their respective
robot configurations are indicated as follows:

o Experiment 4.1: (robot_13)
o Experiment 4.2: (robot_ 12, robot_13)
» Experiment 4.3: (robot_ 12, robot_13, robot_1/)

Timing evaluation

Robot Exp 4.1 Exp 4.2 Exp 4.3
robot_ 12 - 102.321 s 106.500 s
robot_ 13 220.707 s 113.801 s 99.906 s
robot 14 - - 96.816 s
Total time 220.707 s 113.801 s 106.500 s
Gap time - 11.480 s 9.684 s

Table 5.13: Experiment 4 - Timing evaluation

The environment shown in Figure 5.5 is designed to evaluate the behavior of
the multi-robot system in a more complex scenario, characterized by a labyrinth-
style map, numerous frontiers to be discovered, and several blind spots. This
configuration presents a significant challenge for coordination and task allocation
among the robots, as it requires efficient frontier selection and path planning to
avoid redundant exploration and ensure full area coverage, while avoiding collisions
between robots in strict areas.

In this experiment, the (robot_ 12, robot 13, robot_14) configuration proved to
be noticeably more efficient, exhibiting a well-balanced distribution of the robots
across distinct regions of the environment.

93

Experiments and Results

Localization Evaluation

Robot Final dist. error [m] | MAE [m] | RMSE [m] | STD [m]
robot 13 0.03 0.11 0.13 0.06
Robot Final yaw error [rad] | MAE [rad] | RMSE [rad] | STD [rad]
robot__13 0.01 0.03 0.04 0.02
(a) Experiment 4.1
Robot Final dist. error [m] | MAE [m] | RMSE [m] | STD [m]
robot__12 0.01 0.07 0.09 0.06
robot 13 0.17 0.13 0.14 0.06
Robot | Final yaw error [rad] | MAE [rad] | RMSE [rad] | STD [rad]
robot__12 0.06 0.04 0.05 0.02
robot__13 0.09 0.09 0.09 0.03
(b) Experiment 4.2
Robot Final dist. error [m] | MAE [m] | RMSE [m] | STD [m]
robot__12 0.16 0.09 0.11 0.05
robot__13 0.05 0.10 0.11 0.05
robot__ 14 0.01 0.07 0.09 0.04
Robot | Final yaw error [rad] | MAE [rad] | RMSE [rad] | STD [rad]
robot__12 0.07 0.04 0.04 0.02
robot__13 0.05 0.05 0.05 0.01
robot__14 0.04 0.03 0.03 0.01

(c) Experiment 4.3

Table 5.14: Experiment 4 - Position and orientation accuracy metrics

94

Experiments and Results

Robot trajectories

—— Measured trajectory - robot_13
Ground truth trajectory - robot 13
Missing ground truth - rabot_13

-1

X [m]

Figure 5.40: Experiment 4.1 - Localization trajectory with Vicon ground truth

Robot trajectories

—— Measured trajectory - robot_12

4 Ground truth trajectory - robot_12
Missing ground truth - robot_12
—— Measured trajectory - robot_13
—~ Ground truth trajectory - robot_13
Missing ground truth - robot_13
3
2
1
E
>

-4 -2 0 2 4 6
X[m]

Figure 5.41: Experiment 4.2 - Localization trajectories with Vicon ground truth

95

Experiments and Results

Robot trajectories

—— Measured trajectory - robot_12
Ground truth trajectory - robot_12
4 Missing ground truth - robot_12
—— Measured trajectory - robot_13
~~ Ground truth trajectory - robot_13
Missing ground truth - robot 13
—— Measured trajectory - robot_14
3 Ground truth trajectory - robot_14
Missing ground truth - robot_14
2
1
E
>
o
-1
-2
-3
-4
-4 -2 0 2 4 6
X [m:

Figure 5.42: Experiment 4.3 - Localization trajectories with Vicon ground truth

96

Experiments and Results

Mapping evaluation
The mapping spatial resolution of the grid maps is 0.05 m/pixel, spanning an
area of 40m x 40m (800 x 800 cells).

Robots Area [m?] Rate [%]
robot 13 64.65 100.00%

(a) Experiment 4.1

Robots Area [m?] Rate [%)]
robot 12 47.59 73.21%
robot 13 52.89 81.37%
robot 12, robot_ 13 65.00 100.00%

(b) Experiment 4.2

Robots Area [m?] Rate [%]
robot__ 12 40.88 65.29%
robot 13 46.97 75.02%
robot 14 48.67 77.74%
robot__ 12, robot 13 57.75 92.24%
robot__ 12, robot_ 1} 60.01 95.84%
robot 13, robot_ 1} 54.74 87.42%
robot 12, robot__ 13, robot_ 1/ 63.16 100.00%

(c) Experiment 4.3

Table 5.15: Experiment 4 - Exploration coverage for each robots combination

Metric Exp 4.1 Exp 4.2 Exp 4.3
Accuracy 92.0% 91.9% 92.5%
True Positive Rate (TPR) 32.1% 33.3% 44.8%
True Negative Rate (TNR) 96.8% 96.7% 96.2%
False Positive Rate (FPR) 3.2% 3.2% 3.8%
False Negative Rate (FNR) 67.9% 66.7% 55.2%

Table 5.16: Experiment 4 - Mapping accuracy confusion-based rate metrics

97

Experiments and Results

Figure 5.43: Experiment 4 - RTAB-Map ground truth

(a) Experiment 4.1 (b) Experiment 4.2 (c) Experiment 4.3

Figure 5.44: Experiment 4 - Mapping results

(a) Experiment 4.1 (b) Experiment 4.2 (c) Experiment 4.3

Figure 5.45: Experiment 4 - Confusion error metric (Green — TP, White — TN,
Blue — FP, Red — FN)

98

Experiments and Results

Figure 5.46: Experiment 4.1 - Robot exploration and trajectory

99

Experiments and Results

(a) robot_ 12 map (b) robot 13 map

Figure 5.47: Experiment 4.2 - Single robots exploration maps

Figure 5.48: Experiment 4.2 - Robots exploration and trajectories

100

Experiments and Results

(a) robot_ 12 map (b) robot 13 map (c) robot_ 14 map

Figure 5.49: Experiment 4.3 - Single robots exploration maps

Figure 5.50: Experiment 4.3 - Robots exploration and trajectories

101

Experiments and Results

5.5.5 Experiment 5

In the following description of results, a single experiment was performed with the
robot configuration:(robot_ 12, robot 13, robot_14).

This experiment aims to highlight the efficiency of the multi-robot system in
simultaneously mapping different sections of a large environment. The objective
is to assess the system’s ability to autonomously identify multiple exploration
frontiers and assign them to different robots in a coordinated and efficient manner.

The results demonstrate that the system is capable of recognizing the main
distinct frontiers and effectively directing each robot toward separate unexplored
regions, thereby maximizing overall coverage while minimizing redundant paths.
This coordinated behavior leads to a significant reduction in the individual coverage
required from each robot, confirming the scalability and robustness of the proposed
multi-robot exploration strategy in large environments.

Timing evaluation
The execution time for this mapping experiment is 223.219 s.

Mapping evaluation

Robots Area [m?] Rate [%]
robot 12 67.26 67.52%
robot 13 60.80 61.04%
robot 1/ 50.88 51.06%
robot_ 12, robot_ 13 86.02 86.35%
robot__12, robot_ 1} 87.29 87.63%
robot_ 13, robot_ 1} 75.78 76.08%
robot_ 12, robot_13, robot_ 14 99.61 100.00%

Table 5.17: Experiment 5 - Exploration coverage for each robots combination

Metric Value
Accuracy 90.2%
True Positive Rate (TPR) 21.9%
True Negative Rate (TNR) 95.3%
False Positive Rate (FPR) 4.7%
False Negative Rate (FNR) 78.1%

Table 5.18: Experiment 5 - Mapping accuracy confusion-based rate metrics

102

Experiments and Results

Figure 5.52: Experiment 5 - Mapping results

Figure 5.53: Experiment 5 - Confusion error metric (Green — TP, White — TN,
Blue - FP, Red — FN)

103

Experiments and Results

(a) robot_12 map (b) robot 13 map

(c) robot__14 map

Figure 5.54: Experiment 5 - Single robots exploration maps

Figure 5.55: Experiment 5 - Robots exploration and trajectories

104

Chapter 6

Conclusions and Future Works

This thesis has focused on the development of a centralized multi-robot Active
Collaborative SLAM (AC-SLAM) framework, with the primary objective of estab-
lishing a solid baseline for future research and improvement in multi-robot mapping,
localization, decision-making, and planning. The framework also emphasizes the
use of factor-graph formulations as the core optimization tool for representing and
solving complex estimation and coordination problems in a structured and modular
way.

Factor graphs provide a clear and flexible representation of the relationships
between robot states, sensor measurements, and control inputs. Their modularity
allows new constraints or measurement types to be seamlessly integrated without
reformulating the entire problem. Moreover, the ease of interpretation and imple-
mentation of factor-graph-based methods makes them well suited for large-scale
multi-robot systems, where the same mathematical structure can be applied to
localization, mapping, and trajectory optimization within a unified framework.

The centralized AC-SLAM approach developed in this work enables multiple
ground rovers to share information and collaboratively build a globally consistent
map while maintaining accurate localization. Through centralized inference, the
system ensures coherence among all agents, facilitating coordinated exploration and
efficient coverage of large or complex environments. The framework also optimizes
robot trajectories to prevent collisions and redundant exploration, leading to
smoother motion and improved efficiency across the team.

The experimental results demonstrate that the proposed framework can success-
fully coordinate multiple robots operating in semi-structured environments. The
system achieves smooth and dynamically feasible trajectories, good localization
accuracy, and globally consistent mapping performance. The centralized optimiza-
tion balances local autonomy with global coherence, reducing uncertainty in both
individual robot poses and the shared map. These results confirm the potential
of factor-graph-based centralized approaches as a solid foundation for large-scale,

105

Conclusions and Future Works

cooperative multi-robot exploration and mapping.

Nevertheless, while the framework establishes an effective foundation, it also
reveals further research to enhance scalability, robustness, and autonomy. In
particular, scalability remains a key challenge, as the centralized architecture may
face computational and communication limitations when deployed with a very
large number of robots. Future developments should therefore explore distributed
inference and collaborative sensing strategies to overcome these limitations and
push the boundaries of fully autonomous, cooperative multi-robot systems.

6.1 Future Works

« Collaborative components in SLAM: Incorporating inter-robot measure-
ments and sharing robust landmarks between robots would reduce drift, and
improve localization accuracy. This approach enhances map consistency and
robustness, even in scenarios with limited communication, noisy sensors, or
partial observations, enabling more reliable multi-robot coordination and
cooperative exploration.

o Distributed and hybrid architectures: Transitioning from a purely
centralized to a distributed or hybrid optimization framework would improve
scalability and robustness. Techniques such as Gaussian Belief Propagation
or distributed factor graph optimization could allow robots to perform local
computations while maintaining global consistency through asynchronous
updates, thereby reducing reliance on a central node.

« Heterogeneous multi-robot systems: Adapting the framework to hetero-
geneous teams combining aerial and ground robots would improve coverage
in complex scenarios such as large-scale agriculture or search and rescue
scenarios.

 Learning-based optimization and decision-making: Integrating re-
inforcement learning could enable adaptive frontier selection, exploration
policies, and communication strategies, allowing the system to learn from
prior experiences and improve efficiency over time.

106

Bibliography

Michael Kaess, Ananth Ranganathan, and Frank Dellaert. «iSAM: Incre-
mental Smoothing and Mapping». In: IEEFE Transactions on Robotics 24.6
(2008), pp. 1365-1378. DOI: 10.1109/TRO.2008.2006706 (cit. on p. 7).

Michael Kaess, Hordur Johannsson, Richard Roberts, Viorela Ila, John
Leonard, and Frank Dellaert. «iSAM2: Incremental smoothing and map-
ping with fluid relinearization and incremental variable reordering». In: 2011
IEEE International Conference on Robotics and Automation. 2011, pp. 3281—
3288. DOI: 10.1109/ICRA.2011.5979641 (cit. on p. 7).

Yetong Zhang, Ming Hsiao, Jing Dong, Jakob Engel, and Frank Dellaert.
«MR-iSAM2: Incremental Smoothing and Mapping with Multi-Root Bayes
Tree for Multi-Robot SLAM». In: 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). 2021, pp. 8671-8678. DOI: 10.
1109/IR0S51168.2021.9636687 (cit. on p. 7).

Frank Dellaert. «Factor Graphs: Exploiting Structure in Roboticsy. In: Annual
Review of Control, Robotics, and Autonomous Systems 4 (May 2021). DOTI:
10.1146/annurev-control-061520-010504 (cit. on p. 14).

Julio A. Placed, Jared Strader, Henry Carrillo, Nikolay Atanasov, Vadim
Indelman, Luca Carlone, and José A. Castellanos. A Survey on Active Simul-
taneous Localization and Mapping: State of the Art and New Frontiers. 2023.
arXiv: 2207 .00254 [cs.RO]. URL: https://arxiv.org/abs/2207.00254
(cit. on p. 17).

B. Al-Tawil, T. Hempel, A. Abdelrahman, and A. Al-Hamadi. «A review of
visual SLAM for robotics: evolution, properties, and future applications». In:
Frontiers in Robotics and AI 11 (2024), p. 1347985. po1: 10.3389/frobt.
2024 .1347985 (cit. on p. 18).

Muhammad Farhan Ahmed, Khayyam Masood, Vincent Fremont, and Isabelle
Fantoni. «Active SLAM: A Review on Last Decade». In: Sensors 23.19 (Sept.
2023), p. 8097. 1sSN: 1424-8220. DOI: 10 . 3390/s23198097. URL: http :
//dx.doi.org/10.3390/s23198097 (cit. on p. 19).

107

https://doi.org/10.1109/TRO.2008.2006706
https://doi.org/10.1109/ICRA.2011.5979641
https://doi.org/10.1109/IROS51168.2021.9636687
https://doi.org/10.1109/IROS51168.2021.9636687
https://doi.org/10.1146/annurev-control-061520-010504
https://arxiv.org/abs/2207.00254
https://arxiv.org/abs/2207.00254
https://doi.org/10.3389/frobt.2024.1347985
https://doi.org/10.3389/frobt.2024.1347985
https://doi.org/10.3390/s23198097
http://dx.doi.org/10.3390/s23198097
http://dx.doi.org/10.3390/s23198097

BIBLIOGRAPHY

8]

[10]

Phillip Quin, Dac Nguyen, Thanh Vu, Alen Alempijevic, and Gavin Paul.
«Approaches for Efficiently Detecting Frontier Cells in Robotics Explorationy.
In: Frontiers in Robotics and AI 8 (Feb. 2021), p. 616470. poI: 10.3389/
frobt.2021.616470 (cit. on p. 20).

Aalok Patwardhan and Andrew J. Davison. «A Distributed Multi-Robot
Framework for Exploration, Information Acquisition and Consensusy. In:
2024 IEEE International Conference on Robotics and Automation (ICRA).
2024, pp. 12062-12068. DOI: 10.1109/ICRA57147.2024.10610185 (cit. on
p. 23).

Aalok Patwardhan, Riku Murai, and Andrew J. Davison. «Distributing
Collaborative Multi-Robot Planning With Gaussian Belief Propagation». In:
IEEFE Robotics and Automation Letters 8.2 (Feb. 2023), pp. 552-559. ISSN:

2377-3774. DOI: 10.1109/1ra.2022.3227858. URL: http://dx.doi.org/
10.1109/LRA.2022.3227858 (cit. on p. 48).

108

https://doi.org/10.3389/frobt.2021.616470
https://doi.org/10.3389/frobt.2021.616470
https://doi.org/10.1109/ICRA57147.2024.10610185
https://doi.org/10.1109/lra.2022.3227858
http://dx.doi.org/10.1109/LRA.2022.3227858
http://dx.doi.org/10.1109/LRA.2022.3227858

	List of Tables
	List of Figures
	Glossary
	Introduction
	Goal
	Thesis structure

	Background
	Factor Graphs and Probabilistic Inference
	Definition of Factor Graphs
	Probabilistic Inference
	Maximum a Posteriori Inference
	Nonlinear Optimization
	Incremental Inference

	Simultaneous Localization and Mapping
	Problem Formulation
	Graph-Based SLAM
	Active SLAM
	Active Collaborative SLAM
	Mapping

	Path Planning
	Global Planning
	Local Planning

	State of the Art
	Factor Graphs applications in Robotics
	Tracking
	Switching Systems
	Optimal Control
	Pose Graph Optimization (PGO)
	Simultaneous Localization and Mapping (SLAM)
	Structure from Motion (SfM)

	Simultaneous Localization and Mapping
	Evolution of SLAM techniques
	Modern Trends and Challenges

	Active SLAM
	Frontier detection
	Active Collaborative SLAM
	Network Topology
	Distributed AC-SLAM

	Methodology
	Sensor Setup
	Architectures
	Single-robot architecture
	Multi-robot architecture

	Feature extraction
	SLAM
	Localization
	Data association
	Mapping

	Frontier detection
	Decision Making
	Global Planning
	Local planning
	Simulation
	Implementation

	Experiments and Results
	Multi-robot system
	Experimental environments
	Ground Truth
	Testing Modality
	Results and discussion
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Experiment 5

	Conclusions and Future Works
	Future Works

	Bibliography

