
Politecnico di Torino

MSc in Computer Science Engineering

Automated Vulnerability
Assessment and Remediation in

Cloud-Native Environments

Candidate: Carlo Bottaro

Supervisors: Prof. Fulvio Risso
Ing. Francesco Pizzato

Academic Year 2024/25



This thesis presents a practical framework for automating vulnerability as-
sessment and remediation in cloud-native environments, with a strong focus
on developer-centric workflows and integration within CI/CD pipelines. It
investigates the challenges posed by fragmented vulnerability data, incon-
sistent tooling, and the lack of actionable remediation strategies in modern
software supply chains.
At the core of this research is Vulnbot, a modular and CI-integrated
automation agent that orchestrates vulnerability detection, prioritization,
and remediation. Vulnbot supports multiple ecosystems, interfaces with
scanners like OSV-Scanner and Trivy, and automates dependency patching
and pull request generation, streamlining remediation and reducing mean-
time-to-remediation (MTTR).
First, it establishes a foundation in vulnerability databases and their rel-
evance in cloud-native security. Second, it explores how security can be
embedded into CI/CD processes using SBOMs, IaC validation, and policy-as-
code. Third, it presents automated remediation strategies and best practices.
Finally, this thesis contributes with the design of a novel approach, i.e.,
Vulnbot, for vulnerability remediation automation integrated with develop-
ment workflows. Its implementation demonstrates how Vulnbot integrates
with GitHub Actions, processes vulnerability advisories, and generates reme-
diation pull requests with minimal developer intervention. The presented
proof of concept offers insights into the future of automated, policy-driven
DevSecOps pipelines.



Contents

1 Introduction 1
1.1 Cloud-Native Security Context . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Importance of Vulnerability Assessment Automation . . . . . . . . . . 2
1.3 Thesis Objectives and Contributions . . . . . . . . . . . . . . . . . . 3

2 Background on Vulnerability Databases and Cloud-Native Security 4
2.1 Overview of Vulnerability Databases . . . . . . . . . . . . . . . . . . 4

2.1.1 Purpose and Functionality . . . . . . . . . . . . . . . . . . . . 5
2.1.2 National Vulnerability Database (NVD) . . . . . . . . . . . . 5
2.1.3 Common Vulnerabilities and Exposures (CVE) . . . . . . . . . 5
2.1.4 Open Source Vulnerabilities (OSV) . . . . . . . . . . . . . . . 7
2.1.5 OS-Specific Vulnerability Feeds . . . . . . . . . . . . . . . . . 7
2.1.6 Vulnerability Exploitability eXchange (VEX) and Open Vul-

nerability and Assessment Language (OVAL) . . . . . . . . . . 9
2.2 Related Work in Vulnerability Management . . . . . . . . . . . . . . 10

2.2.1 Academic Research in Vulnerability Assessment . . . . . . . . 10
2.2.2 Industry Solutions and Approaches . . . . . . . . . . . . . . . 10
2.2.3 Gap Analysis and Our Contribution . . . . . . . . . . . . . . . 10
2.2.4 Data Synchronization . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.5 Data Quality Considerations . . . . . . . . . . . . . . . . . . . 12
2.2.6 Integration Patterns . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Vulnerability Data in Cloud-Native Contexts . . . . . . . . . . . . . . 13
2.3.1 Container-Specific Considerations . . . . . . . . . . . . . . . . 13
2.3.2 Container Layers and Layer Analysis . . . . . . . . . . . . . . 14
2.3.3 Infrastructure as Code (IaC) Security . . . . . . . . . . . . . . 15
2.3.4 Future Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Embedding Security in CI/CD Pipelines 17
3.1 CI/CD Scanning Pipelines . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Pipeline Integration Points . . . . . . . . . . . . . . . . . . . . 17
3.2 Software Bill of Materials (SBOM) . . . . . . . . . . . . . . . . . . . 19

3.2.1 SBOM Standards and Formats . . . . . . . . . . . . . . . . . 19
3.2.2 SBOM Generation in CI/CD Pipelines . . . . . . . . . . . . . 20
3.2.3 Security and Compliance Benefits . . . . . . . . . . . . . . . . 20
3.2.4 Best Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Automated Remediation in CI/CD Pipelines . . . . . . . . . . . . . . 23
3.3.1 Strategic Decision Framework for Remediation . . . . . . . . . 23
3.3.2 Implementing Automated Patch Workflows . . . . . . . . . . . 24
3.3.3 Validation and Continuous Feedback Mechanisms . . . . . . . 25
3.3.4 Addressing Implementation Challenges . . . . . . . . . . . . . 25



3.3.5 Key Implementation Considerations . . . . . . . . . . . . . . . 26

4 Automated Vulnerability Remediation 27
4.1 Introduction to Automated Vulnerability Remediation . . . . . . . . . 27
4.2 Vulnerability Analysis: The Detection Step . . . . . . . . . . . . . . . 28
4.3 Automated Remediation Execution: The Action Step . . . . . . . . . 28
4.4 Validation: The Learning Step . . . . . . . . . . . . . . . . . . . . . . 29
4.5 Architectural Considerations in Cloud-Native Environments . . . . . 29
4.6 Challenges and Future Directions . . . . . . . . . . . . . . . . . . . . 30

5 Vulnbot 32
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Use Stories and System Overview . . . . . . . . . . . . . . . . . . . . 33

5.2.1 Actors & Components . . . . . . . . . . . . . . . . . . . . . . 33
5.2.2 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Overview and Architecture . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.5 Key Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.6 CI Integration via GitHub Actions . . . . . . . . . . . . . . . . . . . 38

5.6.1 GitHub Actions Workflow Configuration . . . . . . . . . . . . 39
5.6.2 Configuration Options and Customization . . . . . . . . . . . 40
5.6.3 Security and Permissions . . . . . . . . . . . . . . . . . . . . . 40

5.7 Language Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.8 Technical Implementation Details . . . . . . . . . . . . . . . . . . . . 41

5.8.1 Scanner Integration and Abstraction Layer . . . . . . . . . . . 41
5.8.2 Language-Specific Patcher Implementation . . . . . . . . . . . 42
5.8.3 Changelog Generation . . . . . . . . . . . . . . . . . . . . . . 43

5.9 Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.9.1 Real-World Application: Bitwarden CLI Repository . . . . . . 44

5.10 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . 48
5.10.1 Current Limitations . . . . . . . . . . . . . . . . . . . . . . . 48
5.10.2 Future Development Roadmap . . . . . . . . . . . . . . . . . . 48

6 Vulnerability Scanners and Their Ecosystem 50
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2 Open Source Vulnerability Scanners . . . . . . . . . . . . . . . . . . . 50

6.2.1 OSV (Open Source Vulnerabilities) . . . . . . . . . . . . . . . 50
6.2.2 Trivy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2.3 Grype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2.4 Sysdig Secure . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3 Comparative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.4 Identified Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.5 Vulnbot’s Role in the Ecosystem . . . . . . . . . . . . . . . . . . . . . 53

7 Conclusion and Future Directions 54
7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 54
7.2 Key Research Findings . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.2.1 The Critical Role of Developer Experience . . . . . . . . . . . 55
7.2.2 Importance of Multi-Source Vulnerability Intelligence . . . . . 55

7.3 Limitations and Challenges . . . . . . . . . . . . . . . . . . . . . . . 56
7.3.1 Technical Limitations . . . . . . . . . . . . . . . . . . . . . . . 56



7.3.2 Organizational and Adoption Challenges . . . . . . . . . . . . 56
7.4 Broader Implications for the Field . . . . . . . . . . . . . . . . . . . . 56

7.4.1 Shifting Security Left . . . . . . . . . . . . . . . . . . . . . . . 57
7.4.2 The Role of AI in Security Automation . . . . . . . . . . . . . 57
7.4.3 Open Source Security Supply Chain . . . . . . . . . . . . . . . 57
7.4.4 DevSecOps Maturity . . . . . . . . . . . . . . . . . . . . . . . 57

7.5 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . 57
7.5.1 Advanced AI Integration . . . . . . . . . . . . . . . . . . . . . 57
7.5.2 Ecosystem Expansion and Integration . . . . . . . . . . . . . . 57
7.5.3 Advanced Prioritization and Risk Assessment . . . . . . . . . 58
7.5.4 Organizational and Social Aspects . . . . . . . . . . . . . . . . 58

7.6 Long-term Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.7 Final Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Bibliography 59



List of Figures

2.1 OSV schema structure . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Union Filesystem layering example . . . . . . . . . . . . . . . . . . . 14

3.1 CI/CD Security Integration . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 How long a project took to remediate known vulnerabilities in their

dependencies. source: Sonatype . . . . . . . . . . . . . . . . . . . . . 23

4.1 CVSS Severity Distribution Over Time. Source: [42] . . . . . . . . . 27
4.2 How long projects took on average to remediate dependency vulnera-

bilities broken down by severity. source: Sonatype . . . . . . . . . . . 30

5.1 High-level architecture of Vulnbot. . . . . . . . . . . . . . . . . . . . 37
5.2 CI workflow with Vulnbot integration. . . . . . . . . . . . . . . . . . 38
5.3 Bitwarden CLI Vulnerability Scan Results . . . . . . . . . . . . . . . 46
5.4 Bitwarden CLI Vulnerability PR Details . . . . . . . . . . . . . . . . 46

6.1 OSV (Open Source Vulnerabilities) . . . . . . . . . . . . . . . . . . . 50
6.2 Trivy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3 Grype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.4 Sysdig Secure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.1 Examples of Vulnbot in action. . . . . . . . . . . . . . . . . . . . . . 55



List of Tables

2.1 Comparison of vulnerability databases . . . . . . . . . . . . . . . . . 8
2.2 Gap Analysis: Academic vs Industry vs Vulnbot Approach . . . . . . 11

3.1 Comparison between SPDX and CycloneDX . . . . . . . . . . . . . . 20
3.2 Automated Remediation Decision Framework . . . . . . . . . . . . . 24

5.2 Bitwarden CLI Evaluation Summary . . . . . . . . . . . . . . . . . . 47

6.1 Comparison of Vulnerability Scanners . . . . . . . . . . . . . . . . . . 53





Chapter 1

Introduction

1.1 Cloud-Native Security Context
The widespread adoption of cloud-native technologies has fundamentally transformed
how organizations design, deploy, and manage their applications. While offering
unprecedented flexibility and scalability, this paradigm shift has introduced new
security challenges that traditional approaches struggle to address effectively. The
dynamic nature of cloud-native environments, characterized by ephemeral contain-
ers, microservices architectures, and serverless functions, demands a revolutionary
approach to security assessment and vulnerability management [1], [2].

The cloud-native landscape presents unique security challenges that differ signifi-
cantly from traditional infrastructure environments. Organizations are increasingly
adopting containerization technologies, orchestration platforms like Kubernetes, and
serverless computing models, creating complex, distributed systems that expand the
potential attack surface. This evolution has led to:

• Rapid deployment cycles that can introduce security vulnerabilities at an
unprecedented pace.

• Complex dependency chains in containerized applications that increase the
potential vulnerability footprint.

• Dynamic scaling and ephemeral workloads that complicate traditional security
monitoring approaches.

• Multi-cloud deployments that require consistent security practices across dif-
ferent environments.

• Infrastructure-as-Code (IaC) practices that can propagate misconfigurations
across multiple deployments.

Traditional security models, based on periodic assessments and manual inter-
ventions, have become inadequate in this new context. Cloud-native environments
require security measures that are as dynamic and automated as the infrastructure
they protect. Several studies have explored different approaches to vulnerability
assessment in cloud environments, including runtime security monitoring, static anal-
ysis of container images, and policy-driven enforcement mechanisms. However, many
existing solutions lack seamless integration, fail to address remediation challenges, or
introduce significant overhead in cloud workloads.

1



A particular challenge in cloud-native security is the effective integration and
management of vulnerability databases. Organizations must continuously monitor
and correlate information from multiple sources, each with its own update frequency,
data format, and severity scoring system. This complexity is further amplified by
the need to maintain real-time awareness of vulnerabilities across rapidly changing
cloud environments.

1.2 Importance of Vulnerability Assessment Au-
tomation

The automation of vulnerability assessment has become crucial in cloud-native
environments for several compelling reasons. First, the speed and scale of mod-
ern deployments make manual security assessments impractical and ineffective [3].
Organizations deploy hundreds or thousands of containers daily, each potentially
introducing new vulnerabilities through their base images or dependencies.

Automated vulnerability assessment provides:

• Continuous security validation throughout the development and deployment
lifecycle.

• Real-time identification of vulnerabilities in both application code and infras-
tructure components.

• Systematic tracking of security issues across different environments and deploy-
ment stages.

• Integration with CI/CD pipelines for early detection and prevention of security
issues.

• Standardized assessment processes that reduce human error and ensure consis-
tent security practices.

Beyond scanning for vulnerabilities, automation also plays a crucial role in
remediation. Effective security automation should not only detect vulnerabilities
but also provide actionable insights and mechanisms for mitigating risks. However,
remediation automation presents its own set of challenges, such as:

• Managing false positives to prevent unnecessary remediation actions.

• Ensuring that automated patching does not introduce breaking changes.

• Aligning remediation strategies with compliance and governance policies.

• Maintaining system availability while applying security fixes dynamically.

These challenges highlight the need for a structured, well-integrated approach to
automated vulnerability assessment and remediation in cloud-native environments.

The effectiveness of remediation efforts heavily depends on the quality and
timeliness of vulnerability database information. Organizations must balance multiple
factors:

• Accuracy of vulnerability information across different databases.

2



• Correlation of vulnerability data with actual system components.

• Prioritization of remediation efforts based on severity scores.

• Validation of patches against specific system configurations.

1.3 Thesis Objectives and Contributions
This thesis aims to address the gap between vulnerability detection and action-
able remediation in modern cloud-native development workflows. As software
supply chains grow more complex and fast-paced, traditional vulnerability manage-
ment practices struggle to scale and keep up. This work proposes a developer-centric,
automated approach that integrates vulnerability intelligence, prioritization, and
remediation directly into CI/CD pipelines.

The main objectives of this thesis are:

• To analyze the current landscape of vulnerability databases and assess their
role in automated remediation.

• To investigate how security practices such as SBOM generation, IaC validation,
and policy-as-code can be embedded in CI/CD pipelines.

• To explore the technological and organizational challenges in implementing
automated vulnerability remediation at scale.

• To design and implement a practical, extensible tool (Vulnbot) that bridges
vulnerability scanning tools and automated remediation strategies.

• To evaluate Vulnbot’s effectiveness in real-world CI/CD scenarios and identify
its current limitations and future directions.

The contributions of this thesis include:

• A comprehensive review of vulnerability intelligence sources (OSV, NVD,
GHSA, etc.) and their integration into cloud-native workflows.

• A systematic breakdown of the vulnerability remediation lifecycle, from detec-
tion to verification, mapped to automation opportunities.

• A practical implementation of Vulnbot, a modular CI-integrated tool that
supports vulnerability scanning, prioritization, patch generation, and pull
request creation.

• Guidelines and lessons learned for embedding automated remediation into
secure software supply chains.

3



Chapter 2

Background on Vulnerability
Databases and Cloud-Native
Security

2.1 Overview of Vulnerability Databases

Vulnerability databases are authoritative repositories that systematically collect,
organize, and disseminate information about known security weaknesses across
software, operating systems, firmware, and hardware components. They play a
foundational role in modern cybersecurity practices by enabling organizations to
identify, assess, and respond to threats in a timely and informed manner.

These databases provide standardized metadata about each vulnerability such as
unique identifiers, severity scores, affected components, exploit availability, and reme-
diation guidance allowing for consistent integration with security tools, vulnerability
scanners, and automation workflows. Examples include the National Vulnerability
Database (NVD) [4], maintained by NIST [5], and vendor-specific feeds like Red
Hat’s OVAL [6] or GitHub Security Advisories [7].

By aggregating data from coordinated disclosures, security researchers, software
vendors, and bug bounty programs, vulnerability databases serve as a single source of
truth for risk assessment. They facilitate the tracking of Common Vulnerabilities and
Exposures (CVEs), which are standardized identifiers for publicly known security
flaws [8]. Each CVE provides a unique reference for a specific vulnerability (e.g.
CVE-2025-12345). The Common Vulnerability Scoring System (CVSS) offers a
numerical severity score (from 0 to 10) that helps prioritize remediation based on
exploitability and impact. Additionally, Common Platform Enumeration (CPE)
provides a structured naming scheme to identify affected software, hardware, or
firmware, enabling precise matching between vulnerabilities and system components.

In cloud-native environments characterized by rapid software iteration, container-
ized applications, and ephemeral infrastructure, the ability to consume and act upon
accurate vulnerability intelligence in real time becomes even more critical. Integrating
these databases into automated security pipelines enables continuous monitoring,
contextual prioritization, and effective remediation of security flaws across dynamic
environments.

Ultimately, the strategic use of vulnerability databases helps organizations shift
from reactive to proactive security postures, aligning technical risk management with
business continuity and compliance requirements.

4



2.1.1 Purpose and Functionality
Vulnerability databases perform several key functions that contribute to modern
security operations:

• Identification of Vulnerabilities: They assign unique identifiers and main-
tain structured records of vulnerabilities, often including severity ratings,
affected systems, and potential mitigations.

• Standardization and Classification: Vulnerabilities are categorized using
standard frameworks such as the Common Vulnerabilities and Exposures (CVE)
[8] system and the Common Vulnerability Scoring System (CVSS) [9].

• Automated Security Tools Integration: Security scanners, compliance
tools, and threat intelligence platforms integrate with these databases to
automate vulnerability detection and assessment.

• Timely Updates and Feeds: Security researchers and organizations rely on
vulnerability databases for up-to-date information, ensuring rapid response to
emerging threats.

• Risk Assessment and Prioritization: By providing impact analysis and
contextual data, these repositories help organizations prioritize remediation
efforts based on risk severity.

2.1.2 National Vulnerability Database (NVD)
The National Vulnerability Database (NVD) [4] is the U.S. government’s repository
for managing publicly disclosed cybersecurity vulnerabilities. It is maintained by the
National Institute of Standards and Technology (NIST) [5] and plays a critical role
in vulnerability standardization and dissemination. Key features include:

• CVSS Scoring: Vulnerabilities are assessed using the Common Vulnerability
Scoring System (CVSS) to provide a standardized severity rating.

• CPE Matching: The Common Platform Enumeration (CPE) [10] system is
used to identify affected software and hardware components.

• Detailed Metadata: NVD entries contain information on exploitability,
impact, and potential mitigation strategies.

• Machine-Readable Feeds: JSON and XML feeds allow security tools to
ingest and process vulnerability data automatically.

• Patch and Update Tracking: Information on remediation measures and
vendor advisories is included.

2.1.3 Common Vulnerabilities and Exposures (CVE)
The Common Vulnerabilities and Exposures (CVE) system is a globally recognized
framework for identifying and naming publicly disclosed cybersecurity vulnerabilities
[8]. Managed by the MITRE Corporation [11], CVE provides a standardized method
for referencing vulnerabilities, ensuring consistency across vulnerability databases,
security tools, and organizational workflows.

5



• Unique Identifiers: Each vulnerability is assigned a unique CVE ID (e.g.,
CVE-2023-12345), which allows consistent referencing in patch notes, threat
reports, and vulnerability scanners.

• Decentralized Reporting via CNAs: The CVE system relies on a federated
model with over 200 CVE Numbering Authorities (CNAs), including software
vendors, open-source projects, and government agencies, who are authorized to
assign CVE identifiers.

• Structured Entries: CVE records include a concise vulnerability summary,
affected products, associated attack vectors, and references to advisories or
exploit databases.

• Ecosystem Integration: CVE IDs are used by numerous security tools and
databases (e.g., NVD, GitHub Security Advisories, Red Hat Security Data) to
aggregate further analysis, such as severity scoring (CVSS), exploit availability,
and remediation instructions.

A simplified CVE lifecycle typically involves vulnerability discovery, CVE ID assign-
ment by a CNA, publication on the CVE List, and further enrichment by external

6



databases such as the NVD. This structured process ensures global coordination and
timely dissemination of vulnerability information, empowering organizations to take
informed action.

2.1.4 Open Source Vulnerabilities (OSV)
The Open Source Vulnerabilities (OSV) database https://osv.dev/, developed
by Google, is a specialized resource designed to track security vulnerabilities in
open-source software packages [12]. It offers several advantages over traditional
vulnerability databases:

• Comprehensive Package Ecosystem Coverage: OSV includes major
language-specific package managers such as npm (JavaScript), PyPI (Python),
Go Modules, and RubyGems.

• Machine-Readable JSON Format: OSV stores vulnerability data in a
structured JSON schema, facilitating seamless integration with automated
security tooling and CI/CD pipelines.

• Precise Versioning with Semantic Version Ranges: Instead of broad
vulnerability listings, OSV provides detailed version ranges using semantic
versioning, improving accuracy in vulnerability detection.

• Direct Contributions from Maintainers: Many vulnerability reports are
submitted and verified by the maintainers of the affected open-source projects,
enhancing reliability and timeliness.

This focus on open-source software security makes OSV a valuable tool for
developers and organizations aiming to improve their supply chain security and
reduce risks from third-party dependencies.

Open Source Vulnerability format

The OSV database leverages the OSV Schema, an open standard developed by
the Open Source Security Foundation (OSSF) to represent vulnerability data in a
structured and machine-readable format [13]. The schema is designed specifically
for open-source software vulnerabilities and captures essential information such
as affected packages, version ranges, severity ratings, and detailed references to
commits, advisories, and patches. By adopting a JSON-based schema tailored
for package ecosystems, OSV Schema improves interoperability across tools and
enhances automated vulnerability detection workflows. This focused structure allows
precise vulnerability descriptions aligned with semantic versioning, which reduces
false positives and improves security tooling integration in modern software supply
chains.

An example of the OSV schema structure is illustrated below 2.1, more info
https://github.com/ossf/osv-schema/blob/main/validation/schema.json:

2.1.5 OS-Specific Vulnerability Feeds
In addition to global vulnerability databases, many operating systems maintain their
own internal vulnerability tracking and advisory feeds. These feeds provide timely
security updates and patches tailored to specific distributions and environments:

7

https://osv.dev/
https://github.com/ossf/osv-schema/blob/main/validation/schema.json


Figure 2.1: OSV schema structure

• Debian Security Tracker: Monitors security issues affecting Debian packages
and integrates with the Debian package management system [14].

• Ubuntu CVE Tracker: Maintained by Canonical, it provides vulnerability
assessments and patch details specific to Ubuntu distributions [15].

• Red Hat Security Data API: Offers vulnerability data and security advi-
sories for Red Hat Enterprise Linux (RHEL), CentOS, and Fedora [16].

• Microsoft Security Response Center (MSRC): Microsoft issues security
bulletins and patches through its monthly ”Patch Tuesday” releases, ensuring
Windows and related software remain protected [17].

Database Update Frequency Integration Method
Debian Security Real-time APT hooks, JSON API
Red Hat Security Daily REST API, OVAL definitions
Ubuntu CVE Tracker Daily Launchpad API
MSRC Monthly (Patch Tuesday) RSS feeds, MS Graph API

Table 2.1: Comparison of vulnerability databases

8



2.1.6 Vulnerability Exploitability eXchange (VEX) and Open
Vulnerability and Assessment Language (OVAL)

In the context of vulnerability management, standardized data formats and com-
munication protocols play a critical role in automating and streamlining security
assessments. Two important standards that facilitate this are the Vulnerability Ex-
ploitability eXchange (VEX) and the Open Vulnerability and Assessment Language
(OVAL).

Vulnerability Exploitability eXchange (VEX) VEX is a recently developed
specification designed to communicate the exploitability status of vulnerabilities
within specific products or environments [18]. Unlike traditional vulnerability
databases that list all known vulnerabilities, VEX focuses on indicating whether a
particular vulnerability is exploitable in a given context. This enables organizations
to prioritize remediation efforts and reduce noise from vulnerabilities that do not
affect their systems.

Key features of VEX include:

• Contextualized Vulnerability Information: VEX documents specify
whether a vulnerability affects a particular product version or configuration.

• Machine-Readable Format: Typically expressed in JSON or XML, allowing
integration with automated security tools and pipelines.

• Reduction of False Positives: By explicitly stating exploitability status,
VEX helps security teams focus on relevant issues.

• Industry Adoption: Supported by vendors and open standards groups, VEX
is gaining traction in supply chain security and vulnerability management
workflows.

Open Vulnerability and Assessment Language (OVAL) OVAL is a community-
driven, standardized language developed to encode vulnerability, configuration, and
patch assessment information [15], [16]. It allows security tools to perform automated
checks on systems and software to detect vulnerabilities and misconfigurations.

Important aspects of OVAL include:

• Structured Definitions: OVAL uses XML schemas to define how to check
for specific vulnerabilities, system configurations, and patches.

• Interoperability: Many operating system vendors, including Red Hat and
Ubuntu, publish vulnerability and compliance data using OVAL definitions.

• Assessment Automation: Security scanners utilize OVAL to programmati-
cally query system states and determine vulnerability presence.

• Extensibility: OVAL can describe a wide range of security-related checks
beyond vulnerabilities, such as compliance with security policies.

Together, VEX and OVAL contribute to more accurate, actionable, and automated
vulnerability management by enabling richer contextual information and machine-
readable assessments, especially important in complex and dynamic environments
like cloud-native infrastructures.

9



2.2 Related Work in Vulnerability Management

The field of automated vulnerability management has seen significant academic and
industrial research over the past decade. This section examines key contributions
and positions our work within the broader research landscape.

2.2.1 Academic Research in Vulnerability Assessment

Several foundational studies have explored different aspects of vulnerability manage-
ment in cloud-native environments. Scandariato et al. [19] conducted a systematic
literature review of vulnerability assessment techniques in cloud computing, identify-
ing key gaps in automated remediation capabilities. Their work highlighted the need
for better integration between vulnerability detection and response mechanisms.

Research by Chen and Williams [20] specifically focused on dependency vulner-
ability management in modern software projects. They proposed a graph-based
approach to analyze transitive dependencies and predict vulnerability propagation.
While their work provided valuable insights into dependency relationships, it lacked
practical implementation for automated remediation.

The MITRE Corporation’s work on the Common Weakness Enumeration (CWE)
system has provided foundational categorization frameworks for vulnerabilities [21].
However, these classification systems primarily focus on vulnerability description
rather than remediation automation.

2.2.2 Industry Solutions and Approaches

Commercial vulnerability management platforms have evolved significantly in recent
years. Snyk’s approach to developer-first security [22] emphasizes integration with
developer workflows, similar to our approach with Vulnbot. However, their solution
is primarily SaaS-based and lacks the scanner-agnostic architecture we propose.

WhiteSource (now Mend) has pioneered automated dependency updates [23], but
their approach is tightly coupled to their proprietary scanning engine. Our work
extends this concept by providing a modular, scanner-independent solution.

GitHub’s Dependabot [24] represents one of the most widely adopted automated
dependency update systems. While effective for basic scenarios, it lacks support
for multi-ecosystem vulnerability scanner and it only support few programming
languages. Our research aims to fill these gaps by providing a more extensible and
comprehensive framework.

2.2.3 Gap Analysis and Our Contribution

While existing research has made significant contributions to individual aspects
of vulnerability management, a comparative analysis reveals distinct gaps across
academic research, industry solutions, and our proposed approach. Table 2.2 provides
a structured comparison of these different approaches.

10



Table 2.2: Gap Analysis: Academic vs Industry vs Vulnbot Approach
Aspect Academic Re-

search
Industry Solu-
tions

Vulnbot Ap-
proach

Solution Scope Focused on specific
aspects (detection,
prioritization, or re-
mediation)

End-to-end but
vendor-locked

Comprehensive,
scanner-agnostic
end-to-end automa-
tion

Scanner Inte-
gration

Assumes specific
scanners or syn-
thetic datasets

Proprietary, single-
vendor solutions

Modular, multi-
scanner architec-
ture with pluggable
adapters

Developer Ex-
perience

Limited considera-
tion of human fac-
tors and workflow
integration

Tool-centric rather
than developer-
centric

Developer-first de-
sign with seamless
CI/CD integration

Deployment
Model

Research pro-
totypes not
production-ready

SaaS-dependent or
enterprise-only

Flexible: cloud, on-
premises, or hybrid
deployment

Customization Highly customiz-
able but complex

Limited to vendor
roadmap

Open-source with
modular extensibil-
ity

Our work addresses these identified gaps through Vulnbot’s comprehensive ap-
proach that combines scanner-agnostic architecture, vulnerability prioritization, and
seamless CI/CD integration. This positions our contribution as a significant advance-
ment in bridging the gap between academic research and practical application of
automated vulnerability remediation.

2.2.4 Data Synchronization
Modern vulnerability management systems must address several challenges in in-
tegrating with diverse vulnerability databases. One of the primary concerns is the
variation in update frequency among different data sources. For instance, the Na-
tional Vulnerability Database (NVD) typically provides daily updates, whereas other
databases may refresh their data less frequently. Ensuring that security systems
ingest the most recent vulnerability information in a timely manner is essential for
maintaining an accurate security posture.

Another key challenge is ensuring data consistency across sources. Vulnerabilities
might be reported in one database but absent in another, leading to discrepancies
that could hinder reliable vulnerability assessment. Organizations must therefore
adopt mechanisms to cross-check and validate data from multiple sources to improve
the trustworthiness of the collected information.

Furthermore, vulnerability databases often use different schemas and formats such
as JSON, XML, or CSV. To enable seamless integration, it becomes necessary to nor-
malize these diverse formats into a unified structure. Standardized formats, like those
discussed in Section 2.1.6, can facilitate this process and improve interoperability.

The dynamic nature of vulnerability data also requires attention to historical
changes. Vulnerabilities may be reclassified or updated over time, and maintaining a
record of these changes is crucial for long-term risk analysis and compliance reporting.

11



Lastly, real-time awareness of newly disclosed vulnerabilities is increasingly
important. Organizations benefit from event-driven update mechanisms or scheduled
synchronization strategies that ensure newly published vulnerabilities are quickly
reflected in security tools. This reduces the time between discovery and remediation,
enhancing the effectiveness of security operations.

2.2.5 Data Quality Considerations

High-quality vulnerability data is fundamental for reducing false positives, improving
the accuracy of detection, and providing actionable insights to security teams. One
of the main issues arises from false positives, where vulnerabilities are flagged as
relevant to a system even though they are not exploitable in its specific context.
This can be mitigated through the use of refined matching algorithms and filtering
mechanisms.

Equally important is assessing the contextual relevance of each vulnerability. Not
all vulnerabilities pose the same risk in every environment; factors such as the specific
software configuration, the runtime environment, and dependency relationships all
influence whether a particular security issue is truly exploitable.

Version accuracy plays a vital role in this evaluation. Inaccuracies in identifying
affected software versions can either cause false negatives, where real threats are
overlooked, or excessive reporting that overwhelms analysts with irrelevant alerts.
Proper version tracking mechanisms are therefore essential.

An accurate assessment of the impact of each vulnerability, including severity
ratings like CVSS scores and exploitability metrics, helps prioritize remediation
efforts. Without this, organizations may misallocate resources to lower-risk issues
while neglecting critical threats.

Lastly, high-quality remediation guidance is indispensable. Effective vulnerability
management requires not only detection but also actionable information about how to
remediate the issue. This includes the availability of patches, suggested workarounds,
and vendor-specific recommendations, which collectively support faster and more
effective resolution.

2.2.6 Integration Patterns

Integrating vulnerability data into security systems can follow various architectural
patterns, each with its own strengths and limitations. One common approach is
API-based integration, where security tools query external vulnerability databases
in real time. This ensures access to the most up-to-date information but depends
on reliable internet connectivity and efficient querying strategies, especially when
dealing with high volumes of data.

Alternatively, some organizations opt to maintain local mirrors of vulnerability
databases. This approach reduces reliance on external sources and can improve
performance, particularly in restricted or air-gapped environments. However, it
requires a robust synchronization process to ensure the mirrored data remains
current.

Event-driven integration represents a more proactive model. Some databases offer
webhook notifications or support streaming updates, allowing security systems to
receive immediate alerts whenever new vulnerabilities are published. This minimizes
the delay between publication and detection, enabling faster response times.

12



In practice, many organizations adopt hybrid strategies that combine these
approaches. For example, real-time API queries may be used for critical services,
while a local mirror supports broader historical analysis. This hybrid model balances
the need for immediacy, accuracy, and scalability in vulnerability data integration.

2.3 Vulnerability Data in Cloud-Native Contexts
While CVE provides global identifiers and OSV offers ecosystem-specific intelligence,
cloud-native environments present fundamentally different challenges that traditional
vulnerability databases were not designed to address. The ephemeral nature of
containers, the complexity of layered filesystems, and the rapid drift of Infrastruc-
ture as Code (IaC) configurations create a dynamic threat landscape that requires
specialized approaches to vulnerability tracking and remediation.

Cloud-native environments pose unique challenges to vulnerability manage-
ment due to their highly dynamic nature, reliance on containerized workloads,
and widespread use of Infrastructure as Code (IaC). Unlike traditional monolithic
applications that remain relatively static once deployed, cloud-native applications
are characterized by:

• Ephemeral infrastructure: Containers and serverless functions that exist for
minutes or hours rather than months or years, making persistent vulnerability
tracking challenging

• Immutable deployments: Infrastructure is replaced rather than updated,
requiring vulnerability assessment to occur before deployment rather than
post-deployment patching

• Complex dependency graphs: Microservices architectures create intri-
cate webs of service dependencies that can amplify the impact of individual
vulnerabilities

• Configuration drift: IaC templates may diverge from actual deployed infras-
tructure, creating gaps in vulnerability coverage

To effectively detect and mitigate vulnerabilities in such settings, security strate-
gies must evolve to accommodate these new paradigms, moving from reactive patching
to proactive prevention integrated into the deployment pipeline.

2.3.1 Container-Specific Considerations
Containerized applications package software and dependencies together, introducing
new layers of complexity in security analysis. One critical aspect is the layered
structure of container images. Each instruction in a Dockerfile produces a new
filesystem layer, which is combined with others using a union filesystem such as
OverlayFS to form the final container image. Vulnerabilities can be introduced in
any of these layers, and determining whether a vulnerability remains in the final
image often requires deep inspection2.3.2.

For instance, if a vulnerable package is installed in one layer and removed
or updated in a subsequent layer, a simplistic scanner might incorrectly flag the
image as vulnerable. Accurate scanning tools must therefore reconstruct the entire
layered filesystem, track the creation and deletion of files, and correlate package

13



installation and removal events with the appropriate layers. This prevents false
positives, particularly in complex images with multiple intermediate changes.

Moreover, the choice of base images significantly influences container security.
Many container images inherit from public base images like Alpine, Debian, or
Ubuntu, making it essential to track vulnerabilities in these upstream sources as well.
The inclusion of system dependencies through package managers such as apt, yum,
or apk adds another dimension to this analysis.

The runtime context of containers also matters. Even if a vulnerability exists
in the image, its exploitability might depend on runtime factors such as container
privileges, network settings, or security mechanisms like AppArmor, SELinux, or
seccomp profiles. Similarly, orchestrators like Kubernetes introduce their own security
controls such as role-based access control (RBAC), network policies, and admission
controllers which must be considered when evaluating vulnerability exposure.

2.3.2 Container Layers and Layer Analysis

Figure 2.2: Union Filesystem layering example

Container images are built incrementally through layers, each representing a
snapshot of filesystem changes. For example, a simple Dockerfile might begin with
a Debian base image, install a package like curl, copy application files, and set
permissions. Each of these steps creates a new layer. While these layers improve build
efficiency and reusability, they complicate vulnerability detection because changes
made in one layer can be altered or reversed in a subsequent one.

A vulnerability introduced when installing a package might be remediated later in
the build process. However, without full image analysis, a scanner might still report
the vulnerability, resulting in a false positive. A precise vulnerability assessment
must reconstruct the full layered filesystem, track file changes across layers, and
analyze the sequence of package operations to determine the actual state of the final
image.

14



Consider the case where a binary containing a known vulnerability is copied into
the image in one layer and then removed in the next. A scanner that only inspects
individual layers might report the binary’s presence, even though it no longer exists
in the final image. This underlines the need for comprehensive and context-aware
analysis.

2.3.3 Infrastructure as Code (IaC) Security
Infrastructure as Code (IaC) enables automated and consistent infrastructure provi-
sioning through configuration files. Tools such as Terraform, CloudFormation, and
Ansible allow teams to define their infrastructure declaratively. However, misconfigu-
rations in these templates can introduce significant security risks if left unchecked.

Analyzing IaC templates for insecure defaults or risky configurations such as
publicly accessible cloud storage, missing encryption, or overly permissive access
controls is essential. Automated scanners can detect such issues early, ideally before
deployment occurs. To enforce best practices, organizations can leverage policy-
as-code frameworks like Open Policy Agent (OPA) or HashiCorp Sentinel, which
evaluate IaC configurations against predefined security policies during the CI/CD
process.

Security integration with version control systems such as GitHub and GitLab
further strengthens IaC practices. By embedding security checks directly into CI/CD
pipelines, teams can catch vulnerabilities and misconfigurations at the earliest stages
of the development lifecycle.

Moreover, managing secrets within IaC files is a critical concern. Exposing
hardcoded credentials in configuration files poses a major threat. Tools like HashiCorp
Vault and AWS Secrets Manager help mitigate this risk by enabling secure handling
and storage of sensitive information.

2.3.4 Future Trends
As cloud-native architectures continue to evolve, several trends are emerging to
improve vulnerability management. One such trend is the integration of artificial
intelligence and machine learning to enhance the prioritization of vulnerabilities.
These technologies can identify patterns in historical data, predict exploitability, and
support intelligent triage of alerts based on contextual risk.

Supply chain security is also gaining prominence, particularly in response to
attacks that compromise software dependencies. Organizations are increasingly
adopting practices such as dependency verification, signed container images, and the
use of Software Bill of Materials (SBOMs) to improve transparency and traceability.

To manage the overwhelming volume of vulnerability alerts, automated triage
systems are being developed. These systems analyze contextual signals such as
whether a vulnerable component is actually used at runtime to prioritize the most
critical issues and reduce alert fatigue.

Given the diversity of cloud platforms, runtimes, and deployment models, a
unified view across heterogeneous environments is becoming essential. Cross-platform
correlation tools aim to consolidate vulnerability tracking and enhance visibility
across all systems, regardless of where or how they are deployed.

Finally, the industry is embracing a shift-left security philosophy, where vulnera-
bility detection is integrated into the earliest phases of software development. By
embedding security checks into the developer workflow, organizations can identify

15



and fix issues before they reach production, resulting in more secure and resilient
systems.

By addressing these emerging challenges and adopting innovative approaches,
organizations can enhance their ability to manage vulnerabilities across complex,
cloud-native environments. The discussed standards and databases form the founda-
tion upon which security can be embedded in CI/CD pipelines. The next chapter will
explore how these vulnerability intelligence sources are operationalized in practice,
examining the integration patterns, scanning strategies, and automation frameworks
that transform raw vulnerability data into actionable security measures within
modern development workflows.

16



Chapter 3

Embedding Security in CI/CD
Pipelines

3.1 CI/CD Scanning Pipelines
The integration of security scanning within Continuous Integration and Continuous
Deployment (CI/CD) pipelines represents a fundamental shift in how organizations
approach security in cloud-native environments. Rather than treating security as
a separate, post-deployment activity, modern approaches embed security checks
throughout the development and deployment lifecycle. This “shift-left” approach
allows for early detection and remediation of vulnerabilities, significantly reducing
the cost and impact of security issues [25].

3.1.1 Pipeline Integration Points
A comprehensive CI/CD security scanning strategy involves multiple integration
points, each serving distinct purposes and providing different security guarantees.
These integration points correspond to different stages in the software development
lifecycle and allow for progressive security validation.

Pre-commit Stage

The pre-commit stage represents the earliest opportunity to identify and address
security issues. At this stage, developers run scans on their local workstations before

Figure 3.1: CI/CD Security Integration

17



committing code to the repository.

• Local container image scanning: Developers can use lightweight scanning
tools like Trivy or Grype to perform quick assessments of container images
before pushing them to registries. These tools can identify vulnerabilities in
the container’s base image and installed packages.

• Dependency vulnerability checks: Tools like npm audit, OWASP Dependency-
Check, or Snyk can analyze application dependencies to identify known vul-
nerabilities in third-party libraries. This is particularly important for modern
applications that often rely on dozens or hundreds of external dependencies.

• Code security analysis: Static Application Security Testing (SAST) tools like
SonarQube, Checkmarx, or open-source alternatives can analyze source code
to identify potential security weaknesses, such as SQL injection vulnerabilities,
cross-site scripting (XSS) issues, or improper input validation.

• IaC manifest validation: Infrastructure as Code (IaC) scanners like Checkov,
Terrascan, or Snyk IaC can verify that infrastructure manifests (e.g., Terraform
configurations, Kubernetes YAML files) adhere to security best practices and
do not introduce misconfigurations.

Build Stage

The build stage represents the next critical integration point, where more compre-
hensive scanning can be performed after code is committed to the repository. This
stage typically runs in a CI/CD environment and can include more resource-intensive
scans.

• Base image validation: Automated processes can verify that container base
images are from trusted sources and do not contain known vulnerabilities. This
can include checks against allow-lists of approved base images or dynamic
scanning of images during the build process.

• Package vulnerability scanning: More comprehensive scanning of installed
packages and dependencies can be performed, including transitive dependencies
and system-level packages. Tools like Anchore, Clair, or Trivy can generate
detailed reports of vulnerabilities in the built image.

• SBOM (Software Bill of Materials) generation: Tools like Syft, Anchore,
or Microsoft’s SBOM Tool can generate a comprehensive inventory of all
components and dependencies in the built artifacts. This SBOM can be stored
alongside the built artifacts for future reference and continuous monitoring
[26].

• Third-party dependency analysis: Beyond simple vulnerability checks,
more advanced analysis can be performed to identify dependency issues such
as license compliance problems, outdated libraries, or packages with known
maintenance issues.

Build-stage scanning can be configured to fail the build if critical issues are
detected, preventing vulnerable artifacts from proceeding to later stages.

18



3.2 Software Bill of Materials (SBOM)
A Software Bill of Materials (SBOM) is a detailed inventory of all components
libraries, dependencies, and modules included within a software artifact. Originally
inspired by the manufacturing industry’s concept of a bill of materials for physical
goods, SBOMs have become a critical security asset in the software supply chain,
particularly in cloud-native environments.

The adoption of SBOMs aligns with the growing need for transparency and
accountability in modern software development. By providing visibility into the
makeup of software, SBOMs enable organizations to track and manage vulnerabilities,
assess risk, and comply with regulatory and licensing requirements [26]. In CI/CD
pipelines, SBOMs act as a foundational element for secure development practices.

SBOMs not only improve transparency but also serve as the substrate for auto-
mated remediation workflows. When new CVEs are disclosed, stored SBOMs can be
continuously re-scanned, triggering targeted remediation actions without requiring
full re-analysis of source code. This creates a powerful feedback loop where vulner-
ability intelligence from databases like NVD and OSV is automatically correlated
against known software inventories, enabling precise identification of affected systems
and automated generation of remediation pull requests for impacted repositories.

3.2.1 SBOM Standards and Formats
To ensure interoperability and consistency, several standardized formats have emerged
for SBOM generation and consumption:

• SPDX (Software Package Data Exchange): Developed by the Linux Foun-
dation, SPDX is a comprehensive, standardized format that enables the sharing
of software bill of materials (SBOM) data across organizations and tools. It is
designed to improve transparency in the software supply chain by capturing
information about software packages, their licenses, relationships, and file-level
metadata. SPDX supports both human- and machine-readable formats, in-
cluding JSON, YAML, RDF, and tag-value formats. The specification defines
over 30 fields for describing software components, including license expressions,
cryptographic checksums, and document relationships (e.g., ‘CONTAINS‘,
‘DEPENDS ON ‘, ‘GENERATED FROM ‘). SPDX has been officially rec-
ognized by ISO as an international standard (ISO/IEC 5962:2021) [27], and it
is increasingly used by open-source projects, vendors, and government agencies
to ensure license compliance and enable vulnerability correlation [28].

• CycloneDX: Created by the OWASP Foundation, CycloneDX is a lightweight
SBOM specification designed specifically with security use cases in mind. It
supports detailed descriptions of components, services, vulnerabilities, and
dependencies. CycloneDX also includes support for cryptographic integrity
verification, pedigree (component lineage), and external references such as VEX
(Vulnerability Exploitability eXchange) documents. The format is optimized
for automated processing and is widely integrated into security tools, includ-
ing dependency scanners, vulnerability management platforms, and CI/CD
pipelines. CycloneDX supports multiple serialization formats (XML, JSON,
and Protocol Buffers) and is maintained with a strong focus on DevSecOps
workflows, making it a natural choice for teams embedding security into their
development lifecycle [29].

19



Table 3.1: Comparison between SPDX and CycloneDX
Feature SPDX CycloneDX
Developed by Linux Foundation OWASP Foundation
Primary Focus License compliance,

provenance, supply chain
transparency

Security, vulnerability
management, and depen-
dency tracking

Serialization Formats Tag-Value, JSON,
YAML, RDF

XML, JSON, Protocol
Buffers

Specification Complex-
ity

Comprehensive and de-
tailed

Lightweight and security-
focused

Standards Recognition ISO/IEC 5962:2021 De facto industry stan-
dard for DevSecOps

Key Use Cases License auditing, legal
documentation, software
provenance

SBOM for security tools,
CI/CD integration, VEX
support

Tooling Ecosystem Widely supported in le-
gal and OSS license tools
(e.g., SPDX tools, FOS-
Sology)

Integrated with modern
security tools (e.g., Trivy,
Dependency-Track, Jenk-
ins plugins)

Each format includes metadata such as package names, versions, hashes, licenses,
and relationships between components. The choice of format often depends on the
intended use case and integration tooling.

3.2.2 SBOM Generation in CI/CD Pipelines
SBOMs can be automatically generated during the build stage of CI/CD pipelines.
Integrating SBOM creation early in the development lifecycle helps establish trace-
ability for every artifact and enables proactive security measures.

• Syft: A CLI tool by Anchore that can generate SBOMs in multiple formats
(SPDX, CycloneDX) by analyzing container images, file systems, and directories
[30].

• Trivy: In addition to vulnerability scanning, Trivy supports SBOM generation
as part of its broader security functionality [31].

These tools can be integrated directly into CI/CD pipelines using GitHub Actions,
GitLab CI, Jenkins, or other automation systems. Generated SBOMs are often
stored as artifacts alongside container images or deployed applications.

3.2.3 Security and Compliance Benefits
The use of SBOMs in CI/CD and software lifecycle management introduces several
key benefits:

• Vulnerability tracking: SBOMs enable organizations to trace vulnerabilities
back to specific components, speeding up remediation efforts when new CVEs
are disclosed.

20



• Incident response and forensics: In the event of a breach or software
supply chain compromise, SBOMs provide forensic insight into the components
involved.

• License compliance: Organizations can verify that open source licenses in
use are compatible with their internal policies or legal requirements.

• Continuous monitoring: Tools and services can continuously scan stored
SBOMs against updated vulnerability databases, detecting issues even after
deployment.

• Regulatory compliance: Emerging standards such as the U.S. Executive Or-
der 14028 and EU Cyber Resilience Act increasingly mandate SBOM adoption
for certain software categories [26].

Release Stage

The release stage represents the final opportunity to validate security before artifacts
are deployed to production environments. This stage focuses on ensuring that the
artifacts being released meet security and compliance requirements.

• Final image scanning: A comprehensive scan of the final container image or
artifact, including all layers and components. This scan should be performed
on the exact artifact that will be deployed to production.

• Security compliance verification: Validation that the artifact meets all
relevant security compliance requirements, such as HIPAA, PCI DSS, or internal
security standards. Tools like Open Policy Agent (OPA) or custom compliance
checks can be used to enforce these requirements.

• Runtime configuration validation: Verification of runtime configuration
settings, such as environment variables, Kubernetes manifests, or cloud infras-
tructure configurations, to ensure they don’t introduce security risks.

• Policy compliance checks: Enforcement of organizational security policies,
such as requiring the presence of specific security controls or prohibiting certain
configurations.

Release-stage scanning can be integrated into deployment pipelines or release
management tools.

3.2.4 Best Practices
Based on industry experience and research, here are key best practices for imple-
menting CI/CD security scanning, organized into three core themes:

Pipeline Design Principles

• Shift left: Integrate security scanning as early as possible in the development
process. The shift-left approach refers to the practice of moving testing and
quality checks earlier in the software development lifecycle, ideally starting
from the design and implementation phases. This helps identify defects sooner,
reduce remediation costs, and improve overall development efficiency. In the

21



context of security and vulnerability management, shifting left allows teams to
catch misconfigurations or insecure dependencies before they reach production
environments [32].

• Fail fast: Configure critical security checks to fail the pipeline immediately.
This approach ensures that issues are detected and surfaced as early as possible
in the CI/CD process, reducing wasted compute time and providing rapid
feedback to developers [33].

• Balance speed and depth: Combine fast, lightweight scans (e.g., on each
commit) with deeper, comprehensive scans (e.g., nightly or at release time).
This strategy ensures continuous coverage without sacrificing performance or
developer velocity.

Developer Enablement

• Provide context: Ensure that security findings include actionable remedia-
tion guidance, such as affected packages, impacted assets, CVSS scores, and
suggested fixes. This empowers developers to respond quickly and accurately
to issues.

• Automate remediation: Where possible, automate the application of security
fixes. Automated remediation reduces mean time to resolution (MTTR),
minimizes human error, and helps maintain compliance by promptly addressing
known vulnerabilities [34].

• Educate developers: Provide training, guidelines, and tooling to help devel-
opers understand and proactively address security risks, shifting ownership of
security earlier in the development process [35].

• Security as code: Manage security policies and configurations as code,
storing them in version control systems. This enables review, traceability, and
reproducibility of security changes across environments [36].

Governance and Monitoring

• Continuous monitoring: Implement ongoing security monitoring beyond
the CI/CD pipeline to detect vulnerabilities and misconfigurations in running
environments, ensuring rapid response to emerging threats [37].

• Regular updates: Keep security tools, scanners, and vulnerability databases
(e.g., CVE feeds, SBOM analysis engines) up to date to ensure coverage against
the latest known threats [38].

• Measure effectiveness: Track security metrics such as mean time to remedi-
ation (MTTR), number of recurring vulnerabilities, and policy violations to
assess and continuously improve the security posture [39].

22



Figure 3.2: How long a project took to remediate known vulnerabilities in their
dependencies. source: Sonatype

3.3 Automated Remediation in CI/CD Pipelines

Security scanning alone represents only half the equation in modern DevSecOps
practices. The true transformation occurs when organizations move beyond mere
vulnerability detection to implement systematic, automated remediation directly
within their CI/CD workflows. This shift fundamentally changes how development
teams approach security moving from fragmented, reactive patching to continuous,
proactive vulnerability management integrated seamlessly into the software delivery
process.

3.3.1 Strategic Decision Framework for Remediation

Implementing automated remediation requires sophisticated decision-making frame-
works that extend far beyond simplistic ”fix everything” approaches. Organizations
must establish nuanced policies that consider multiple factors simultaneously. Ta-
ble 3.2 provides a structured framework for understanding how different factors
contribute to automated remediation decisions.

23



Table 3.2: Automated Remediation Decision Framework
Factor Data Sources Role in Decision
Severity CVSS scores, vendor

advisories
Initial filtering mechanism - Crit-
ical/High severity vulnerabilities
trigger immediate review

Exploitability EPSS scores, VEX
documents, public ex-
ploit databases

Distinguishes theoretical risks
from active threats in the wild

Business Con-
text

Asset classification,
service tier, customer
exposure

Determines automation aggres-
siveness - production systems get
priority

Patch Avail-
ability

Package managers,
vendor updates, fix
validation status

Prevents automation attempts
when no safe remediation exists

Change Risk Dependency graph
analysis, semantic ver-
sioning, test coverage

Assesses likelihood of regression
or breaking changes

Environmental
Factors

Deployment frequency,
rollback capabilities,
monitoring coverage

Influences automation confidence
levels and approval workflows

CVSS severity ratings provide an initial filtering mechanism, with Critical and
High-severity vulnerabilities typically warranting immediate automated intervention.
However, relying solely on theoretical severity scores proves insufficient in practice.

Real-world exploitability data becomes crucial for making informed remediation
decisions. The Exploit Prediction Scoring System (EPSS) [40] offers probabilistic
assessments of whether vulnerabilities will be exploited in the wild, while Vulnerability
Exploitability eXchange (VEX) documents provide vendor-specific guidance on actual
risk levels. These resources help teams distinguish between vulnerabilities that pose
immediate threats and those that remain largely theoretical.

Business context further refines remediation priorities. Customer-facing pro-
duction systems demand more aggressive automated fixes compared to internal
development environments or experimental services. Additionally, the availability
and reliability of patches must factor into automation decisions triggering remediation
only when validated fixes exist prevents the system from attempting impossible or
risky corrections.

This framework enables organizations to move beyond simple rule-based ap-
proaches toward sophisticated, context-aware automation that balances security
improvements with operational stability.

3.3.2 Implementing Automated Patch Workflows
Modern CI/CD platforms excel at generating automated pull requests that propose
rather than impose security fixes. This approach preserves developer autonomy while
accelerating remediation timelines. The automation can handle diverse scenarios:

• Dependency Management: Automatically upgrading vulnerable third-party
libraries to patched versions while respecting semantic versioning constraints

• Container Security: Rebuilding images with updated base layers when
security patches become available

24



• Infrastructure Configuration: Modifying Terraform templates, Kubernetes
manifests, or cloud configuration files to eliminate insecure settings

• Code-level Fixes: Applying static analysis recommendations for common
security anti-patterns

The most effective implementations enrich these automated pull requests with
comprehensive context. Rather than presenting developers with cryptic dependency
bumps, the system provides vulnerability descriptions, exploit likelihood assessments,
links to security advisories, and clear explanations of why specific remediation
approaches were selected. This transparency builds developer confidence and reduces
the likelihood of automated PRs being blindly merged or reflexively rejected.

3.3.3 Validation and Continuous Feedback Mechanisms
Successful remediation extends beyond applying patches it requires rigorous validation
to ensure fixes achieve their intended security goals without introducing functional
regressions. Post-remediation workflows typically follow this sequence:

Security Validation: Re-scanning patched artifacts confirms vulnerability
elimination and identifies any newly introduced security issues. This step catches
scenarios where attempted fixes prove ineffective or where dependency updates
inadvertently introduce different vulnerabilities.

Functional Testing: Comprehensive test suites ranging from unit tests to full
integration scenarios verify that security changes don’t break existing functionality.
This becomes particularly critical for dependency upgrades, which can introduce
subtle behavioral changes despite maintaining API compatibility.

Documentation Updates: Automatically regenerating Software Bills of Mate-
rials (SBOMs) ensures downstream vulnerability tracking remains accurate, while
updating security documentation maintains compliance with organizational policies
and regulatory requirements.

3.3.4 Addressing Implementation Challenges
Real-world automated remediation faces several persistent challenges that can under-
mine its effectiveness. Breaking changes represent the most common concern security
patches, particularly major dependency upgrades, can alter application behavior in
unexpected ways. Development teams naturally become wary of automation that
has previously introduced production issues.

The absence of available patches compounds this problem. Zero-day vulnerabilities
and recently disclosed security flaws often lack immediate remediation options, leaving
automation systems with no safe actions to perform. Organizations must design
their systems to gracefully handle these scenarios rather than attempting potentially
harmful workarounds.

False positive rates in vulnerability scanners create additional friction. When
automated systems generate remediation attempts for non-existent or irrelevant
vulnerabilities, they erode developer trust and waste valuable resources. Similarly,
the sheer volume of automated pull requests can overwhelm development teams,
particularly in microservices architectures where a single vulnerability might trigger
dozens of simultaneous fix attempts across multiple repositories.

25



3.3.5 Key Implementation Considerations
Organizations planning automated remediation implementations should prioritize
these critical factors:

• Start conservatively with low-risk, high-confidence scenarios before expand-
ing automation scope

• Establish clear rollback procedures for when automated fixes introduce
problems

• Implement approval workflows that allow human oversight without com-
pletely blocking automation

• Monitor automation effectiveness through metrics like mean-time-to-
remediation and false positive rates

• Communicate transparently with development teams about automation
capabilities and limitations

• Design for scalability from the outset to handle enterprise-scale vulnerability
volumes

The evolution toward automated remediation represents a maturation of DevSec-
Ops practices, transforming security from a development bottleneck into an enabler
of faster, safer software delivery. Success requires careful balance between automation
benefits and human oversight, ensuring that security improvements enhance rather
than hinder the development process.

The practical and organizational challenges of automated remediation underscore
the need for more adaptive, context-aware solutions that can navigate the complex
decision-making required in modern development environments. In the following
chapter, we present a comprehensive framework for automated vulnerability remedi-
ation that operationalizes these principles through a closed-loop system detection
triggers action, action is validated, and results feed back into detection and prioriti-
zation delivering scalable, intelligent remediation workflows that align with developer
practices and organizational risk tolerance.

26



Chapter 4

Automated Vulnerability
Remediation

4.1 Introduction to Automated Vulnerability Re-
mediation

In the rapidly evolving landscape of modern cybersecurity, vulnerability remediation
stands as one of the most critical and challenging aspects. The sheer volume of
new vulnerabilities discovered annually 4.1 often numbering in the tens of thousands
presents an insurmountable task for traditional, manual approaches to vulnerability
management. As a result, security teams frequently struggle to keep pace, leading
to an ever-growing backlog of unaddressed risks and an increased attack surface.
Automated vulnerability remediation has emerged not merely as a beneficial practice,
but as a necessary evolution, empowering organizations to address security gaps at
scale, with greater efficiency, and ultimately, to significantly improve their overall
security posture, ensure compliance, and boost developer productivity by minimizing
security-related toil [41].

Automated vulnerability remediation refers to the systematic process of leveraging
technology to detect, prioritize, and implement fixes for security vulnerabilities
with minimal human intervention. This transformative approach shifts traditional,
reactive, and labor-intensive remediation workflows into proactive, streamlined
operations that can effectively keep pace with the dynamic and rapid evolution of
security threats.

Automated remediation is best understood as a closed-loop system where detec-
tion triggers action, action is validated, and results feed back into detection and
prioritization mechanisms. This continuous feedback cycle ensures that the system

Figure 4.1: CVSS Severity Distribution Over Time. Source: [42]

27



learns from both successes and failures, progressively improving its effectiveness while
adapting to organizational needs and threat landscapes. Each component of this loop
analysis, execution, and validation operates as an integrated step that contributes to
an overall system perspective rather than isolated security activities.

This chapter delves into the comprehensive lifecycle of automated remediation,
exploring each stage of this closed-loop system: vulnerability analysis (the detection
step), diverse execution strategies tailored to modern environments (the action
step), and robust validation techniques that feed learning back into the system (the
feedback step). The goal is to establish a structured and nuanced understanding of
how remediation automation can be effectively designed and implemented within
complex cloud-native and CI/CD-based environments, laying the groundwork for
more advanced solutions like Vulnbot.

4.2 Vulnerability Analysis: The Detection Step
The automated remediation lifecycle critically begins with the accurate identification
and prioritization of vulnerabilities the detection step of our closed-loop system. This
initial stage determines which security issues warrant automated intervention and
establishes the foundation for all subsequent remediation decisions. In contemporary
cloud-native environments, this typically involves continuous and ubiquitous scanning
across a wide array of assets, including container images, infrastructure-as-code
(IaC) configurations, and running runtime environments. Modern vulnerability
scanners, such as Trivy, Grype, and OSV-Scanner, are indispensable for generating
comprehensive reports that detail Common Vulnerabilities and Exposures (CVEs),
associated severity scores, and affected software components.

4.3 Automated Remediation Execution: The Ac-
tion Step

Once vulnerabilities have been rigorously analyzed and prioritized in the detection
step, the automated remediation engine executes the action step of our closed-loop
system generating and applying the necessary fixes. This stage transforms vulner-
ability intelligence into concrete remediation activities, bridging the gap between
detection and resolution. The execution strategy employed can vary significantly
based on the environment, the nature of the vulnerability, and the specific software
supply chain components involved:

• Package Updates: For software dependencies, this typically involves gen-
erating automated pull requests (PRs) to source code repositories or directly
injecting updates into CI/CD pipelines. Tools like Dependabot and Renovate
continuously monitor project dependencies and automatically create PRs when
new versions with security fixes become available, streamlining the update
process for developers.

• Container Rebuilds: In environments leveraging immutable infrastructure,
vulnerabilities found in base images or application dependencies within con-
tainers trigger automated pipelines to rebuild the container image with the
patched components. This ensures a predictable and clean update, rather than
in-place modifications to running containers.

28



• Infrastructure-as-Code (IaC) Updates: Remediation for IaC vulnera-
bilities involves modifying configuration files and manifests (e.g., Terraform,
CloudFormation, Kubernetes manifests). Examples include bumping mod-
ule versions, applying security patches to resource definitions, or correcting
misconfigurations that expose vulnerabilities.

An orchestrating layer, often comprised of custom bots or specialized platforms,
manages this patch lifecycle. Advanced implementations are increasingly leveraging
AI-powered remediation suggestion systems. These systems can propose minimal-diff
patches that aim to preserve compatibility and reduce the risk of regressions by
analyzing code context, dependency graphs, and historical patch success rates.

To minimize disruption and risk, these automated fixes are typically first deployed
to staging or pre-production environments for thorough verification before being
promoted to production. Risk mitigation strategies such as canary deployments or
blue-green rollouts are commonly employed to ensure stability and allow for rapid
rollback if unintended side effects are detected.

4.4 Validation: The Learning Step
Post-remediation validation ensures that applied fixes effectively eliminate vulnera-
bilities without introducing new issues or regressions. This step verifies the success of
individual remediation actions and confirms the stability of the system. Automated
validation strategies are integrated into the CI/CD pipeline:

• Regression Testing: Automated CI test suites are triggered by remediation
PRs or deployments. These tests verify that the software’s functionality
remains intact and that the patch has not introduced any unintended behavior
or performance degradation.

• Rescanning Artifacts: After a patch is applied and new artifacts (e.g., con-
tainer images, updated codebases) are built, they are rescanned to confirm that
the specific vulnerability is no longer present. This provides direct verification
of the fix’s effectiveness.

• Runtime Behavioral Monitoring: Continuous monitoring of deployed
applications for anomalies can detect unexpected behaviors introduced by
recent changes, such as increased error rates, unusual resource consumption, or
unauthorized network calls, serving as an early warning system for regressions.

By focusing on these validation activities, the system ensures that remediation
efforts are effective and that software remains stable and secure.

4.5 Architectural Considerations in Cloud-Native
Environments

In highly dynamic cloud-native environments, automated remediation systems must
be deeply and seamlessly integrated with existing development, deployment, and
operational tooling. Key architectural elements that underpin effective remediation
automation include:

29



Figure 4.2: How long projects took on average to remediate dependency vulnerabilities
broken down by severity. source: Sonatype

• Event-Driven Pipelines: Modern CI/CD platforms (e.g., GitHub Actions,
GitLab CI, Tekton) serve as the backbone, enabling remediation workflows
to be automatically triggered by various events. These events can include the
discovery of a new vulnerability by a scanner, the merging of a remediation
PR, or the addition of a new dependency.

• Immutable Infrastructure: This paradigm is fundamental to predictable
patching. Instead of patching in-place, new, corrected artifacts (e.g., container
images, IaC deployments) are built and deployed, replacing the old, vulnerable
ones. This ensures consistency and simplifies rollbacks.

• Policy Engines: Tools like Open Policy Agent (OPA) enable the enforcement
of security policies as code. These engines can enforce critical remediation
Service Level Agreements (SLAs), block deployments if they exceed defined
vulnerability thresholds (e.g., ”no critical CVEs allowed in production”), or
dictate permissible patch sources.

• Artifact Registries and Software Bill of Materials (SBOMs): Secure
artifact registries store trusted build artifacts. SBOMs, which provide a
comprehensive, machine-readable inventory of all components, dependencies,
and their versions within a software artifact, are crucial. They allow for precise
tracking of vulnerability propagation across builds and deployed systems,
facilitating rapid identification of affected assets when a new vulnerability is
disclosed.

Cloud-native environments, by their very nature, benefit significantly from declar-
ative configuration, which makes it inherently easier to manage, track, and validate
changes across increasingly complex and distributed systems.

4.6 Challenges and Future Directions
Despite significant advancements, several complex challenges persist in achieving
truly reliable, safe, and scalable automated vulnerability remediation:

30



• Patch Safety: The blind application of updates carries inherent risks. New
versions or patches can introduce breaking API changes, unintended side
effects, or unhandled edge cases, particularly within complex and deeply nested
dependency trees. Ensuring a patch doesn’t break existing functionality remains
a critical hurdle.

• Interoperability: Integrating disparate tools across the entire security pipeline
from vulnerability scanning and analysis to automated patching, CI/CD, and
runtime environments remains a significant challenge due to varying data
formats, APIs, and operational models.

• Explainability: For security teams and developers, understanding why a
particular patch is recommended, how it addresses a vulnerability, and what
its potential side effects might be is crucial for trust and adoption. The ”black
box” nature of some automated systems can hinder this transparency.

Future work in automated vulnerability remediation is poised to address these chal-
lenges with innovative solutions. This includes integrating Large Language Models
(LLMs) to improve the quality of auto-generated patches by providing context-aware
code modifications and generating clear, descriptive commit messages. Expand-
ing reinforcement learning techniques will enable even more adaptive prioritization
strategies, learning from the success and failure of past remediations. Furthermore,
leveraging continuous runtime feedback to dynamically refine static remediation
decisions will enhance both the precision and safety of automated vulnerability
management systems.

31



Chapter 5

Vulnbot

Modern software systems are increasingly reliant on a vast and complex ecosystem
of open-source dependencies. While these dependencies accelerate development,
they also introduce a significant attack surface, as they are frequently prone to
security vulnerabilities. Although Continuous Integration (CI) pipelines commonly
incorporate static analysis tools and vulnerability scanners to detect these issues,
the subsequent remediation of findings remains a largely manual, labor-intensive,
and time-consuming task for development teams. This manual bottleneck directly
impacts an organization’s Mean-Time-To-Remediation (MTTR) and overall security
posture.

This chapter introduces Vulnbot, a modular Command Line Interface (CLI)
tool designed as a CI-integrated bot that automates the detection, patching, and
remediation of known vulnerabilities within open-source dependencies. Vulnbot is
engineered to support multiple package ecosystems, with an initial focus on npm
for JavaScript/Node.js projects and Go modules for Go applications. Its seamless
integration into modern CI/CD pipelines, exemplified by its compatibility with
platforms like GitHub Actions, positions Vulnbot as a critical tool for embedding
automated security remediation directly into the developer workflow.

5.1 Motivation
The proliferation of security vulnerability databases such as the GitHub Advisory
Database (GHSA), OSV (Open Source Vulnerabilities), and traditional CVE reposito-
ries has significantly enhanced the ability to detect vulnerabilities through specialized
tools like Trivy, OSV-Scanner, and Grype. However, a critical disconnect persists
within the typical software development lifecycle:

• Resolution suggestions, detailing available fixed versions or remediation
steps, are frequently provided without immediate context or actionable mecha-
nisms.

• A clear pathway for actionable, automated remediation directly integrated
into developer workflows is often absent.

Vulnbot was specifically designed to bridge this crucial gap. By providing a
streamlined, end-to-end automation solution, Vulnbot directly assists developers and
security teams in dramatically reducing their Mean-Time-To-Remediation (MTTR),
thereby enhancing overall software supply chain security. Its proactive integration
of security fixes directly into the development lifecycle fosters a ”shift-left” security
culture, ensuring vulnerabilities are addressed as early and efficiently as possible.

32



5.2 Use Stories and System Overview
This section presents detailed use stories to illustrate how Vulnbot integrates vul-
nerability detection and automated remediation across different phases of software
development and operations. Following these narratives, we describe the primary
actors, key components, and workflows involved, culminating in a high-level Proof of
Concept (PoC) architecture.

5.2.1 Actors & Components
The following table outlines the key stakeholders and technical elements that interact
within the Vulnbot ecosystem:

Category Element Description
Actor Developer Utilizes Vulnbot either locally or through CI

integration to identify and remediate vulnera-
ble dependencies during feature development
and maintenance. Receives automated pull re-
quests or direct patches with suggested fixes,
significantly reducing manual security toil.

DevOps Engineer Integrates and configures Vulnbot within the
CI/CD pipeline (e.g., via GitHub Actions,
GitLab CI) to establish automated security
gates and trigger proactive patching in build
workflows.

Component Vulnbot CLI/Bot (CI
Integration)

The core application that can be executed
as a command-line tool or configured as an
automated bot within CI environments. It
orchestrates the scanning, patching, and pull
request generation process, capable of be-
ing configured for auto-merging minor/patch-
level updates based on defined policies for
example a cvss threshold.

Vulnerability Scanner External, industry-standard tools (e.g., Trivy,
OSV-Scanner, Grype) that are integrated by
Vulnbot. These scanners perform the actual
detection of known vulnerabilities across var-
ious artifacts such as source code, manifest
files, and container images, providing detailed
findings.

Remediation Engine The intelligent core module of Vulnbot respon-
sible for parsing scan results, deciding the
most appropriate patch, programmatically
applying the fix by updating relevant depen-
dency manifests (e.g., package.json, go.mod),
and performing preliminary integrity checks
post-fix.

33



Category Element Description
CI/CD Pipeline The automated framework (e.g., GitHub Ac-

tions, GitLab CI) that executes Vulnbot as
an integral part of the build, test, and de-
ployment process. It enforces security gates
before code merges or deployments and fa-
cilitates comprehensive audit logging of all
security-related actions.

Logging & Audit Sys-
tem

A centralized system that collects and stores
all events generated by Vulnbot runs, includ-
ing detected vulnerabilities, applied patches,
opened pull requests, and any errors. This
provides essential data for compliance require-
ments, operational observability, and forensic
analysis for rollback capabilities.

5.2.2 Case Studies
To demonstrate Vulnbot’s versatility and impact, we present three distinct case studies
illustrating its application in diverse organizational and technological contexts.

Case Study 1: Enterprise Network Assessment
Background: A large enterprise, characterized by a complex hybrid infrastructure

encompassing cloud services, legacy systems, and a myriad of third-party applications,
faced significant challenges in its vulnerability management. Their existing approach
was highly fragmented, heavily reliant on manual triage, and cumbersome ticketing
systems, resulting in slow response times and overlooked risks.

Implementation: The organization strategically integrated Vulnbot into its core
CI/CD pipelines and infrastructure management workflows. The system was con-
figured to leverage a combination of established vulnerability scanners (specifically
OSV-Scanner and Trivy). This setup enabled vulnerability detection with priori-
tization, leveraging CVSS scores to assess severity and guide remediation efforts.
Crucially, Vulnbot’s automated pull request generation feature was employed to
streamline the patching of outdated dependencies across a vast portfolio of internal
microservices and applications.

Results: Vulnbot successfully identified and proactively remediated several high-
impact vulnerabilities that had previously been overlooked due to limited visibility
into deeply nested transitive dependencies and dynamic runtime components. The
system’s context-aware prioritization algorithms allowed security teams to effectively
focus their efforts on exploitable and reachable vulnerabilities first, rather than being
bogged down by low-impact findings. Direct integration with GitHub facilitated
seamless PR generation, complete with version updates and relevant changelogs,
significantly simplifying the developer review process.

Impact: The enterprise reported a substantial reduction in manual effort associ-
ated with vulnerability management and a marked decrease in false positives. This
led to a demonstrable improvement in Mean-Time-To-Remediation (MTTR) across
their entire software estate. Developers gained increased confidence in approving and
merging automated security updates, knowing they were thoroughly vetted. The
automation of patch suggestions also liberated valuable security and development
resources, allowing teams to dedicate more time to strategic security initiatives and
innovation.

34



Case Study 2: Web Application Security
Background: A technology company specializing in a Software-as-a-Service (SaaS)

web application sought to dramatically enhance its security posture by implementing
a ”shift-left” strategy for vulnerability remediation, moving fixes earlier into the
development lifecycle.

Implementation: Vulnbot was seamlessly integrated directly into the development
pipeline using GitHub Actions. This integration enabled continuous monitoring of
critical dependency files (e.g., package.json for Node.js, requirements.txt for Python).
Upon the discovery of vulnerable packages, Vulnbot automatically generated targeted
pull requests. Furthermore, the tool was configured to enforce specific remediation
policies based on CVSS scores and the confirmed availability of secure fix versions.

Results: The system proved highly effective in identifying critical vulnerabilities,
including outdated packages with known SQL injection and cross-site scripting (XSS)
issues that posed direct threats to the web application. Vulnbot generated precise
security pull requests that included verified safer versions and direct references to
relevant security advisories, providing developers with immediate context. The ability
to surface and address these vulnerabilities during the active development phase was
pivotal in ensuring they were resolved long before reaching production environments.

Impact: The company’s overall security posture improved significantly, with a
marked decrease in post-deployment security incidents. Vulnerabilities were now
resolved proactively during development, rather than reactively after deployment.
This proactive approach maintained, and in some cases even improved, development
velocity by preventing late-stage security rework. Moreover, the integrated remedia-
tion process fostered a stronger, more security-aware engineering culture throughout
the organization.

Case Study 3: IoT Device Vulnerability Management
Background: An organization managing a vast and geographically distributed

fleet of Internet of Things (IoT) devices faced the complex challenge of continuously
monitoring and remediating firmware and configuration-level vulnerabilities across its
diverse ecosystem, which included a mix of proprietary and open-source components.

Implementation: Vulnbot’s capabilities were extended to support the comprehen-
sive scanning of container images and firmware packages specifically utilized within
the IoT device ecosystem. It was deeply integrated with the organization’s existing
Git repositories, where device configurations and firmware definitions were stored,
and with their configuration management tools. This integration allowed vulner-
abilities within base images and embedded software packages to be automatically
detected and subsequently patched through the generation of security pull requests.

Results: The system successfully identified numerous vulnerabilities inherent
to IoT deployments, including insecure default configurations, outdated network
protocols, and legacy software packages with known exploits. Vulnbot automated
updates to critical files like Dockerfiles and base images, ensuring that new device
deployments or firmware updates incorporated the latest security fixes. It also
enforced security policies directly within the CI pipelines for IoT device builds.

Impact: The organization achieved a dramatic improvement in its IoT device
security management capabilities. By maintaining rigorously up-to-date and secure
images and configurations, they significantly reduced their overall attack surface
across the entire device fleet and enhanced compliance with stringent internal se-
curity standards. Vulnbot’s automation ensured security consistency and reduced
operational overhead across a highly diverse set of device deployments and geographic
locations.

35



5.3 Overview and Architecture
Vulnbot is architected as a modular and extensible system, designed to seamlessly
integrate with existing development workflows and security tooling. It comprises
several distinct, yet interconnected, components:

• Core CLI Engine: This serves as the primary interface for Vulnbot, wrapping
around and orchestrating various third-party vulnerability scanners (e.g., Trivy,
OSV-Scanner). It manages the execution of scans and the initial processing of
raw scan outputs.

• Language-Specific Parser and Fixer: This critical module is responsi-
ble for understanding the structure of language-specific manifest files (e.g.,
package.json and package-lock.json for Node.js, go.mod and go.sum for Go).
It parses the scan results to identify vulnerable packages with known fixed
versions and then programmatically applies the necessary upgrades to these
manifest files.

• Git Automation Layer: This layer handles all Git-related operations, in-
cluding creating new branches, committing the patched changes, and pushing
them to the remote repository. This ensures that remediation efforts are
version-controlled and can be easily reviewed or rolled back.

• CI/CD Integration Layer: Designed for seamless compatibility, this layer
facilitates Vulnbot’s operation within popular automation platforms like GitHub
Actions, GitLab CI, or Jenkins. It enables automated execution of Vulnbot as
part of the CI/CD pipeline, triggering scans and remediation actions based on
defined events.

Figure 5.1 illustrates the high-level architecture of the Vulnbot system, demon-
strating the interaction between its core components and external integrations.

5.4 Workflow
Vulnbot executes a well-defined, high-level workflow to automate the detection and
remediation process, ensuring a systematic approach from vulnerability identification
to patch application:

1. Scanning: Vulnbot initiates the process by invoking an integrated vulnerability
scanner (e.g., Trivy, OSV-Scanner) on the target codebase or artifact. The
scanner’s output, containing detailed vulnerability findings, is returned as a
machine-readable JSON format.

2. Parsing: The JSON scan results are then analyzed by Vulnbot’s internal
parser. This step extracts crucial information, specifically identifying vulnerable
packages that have a confirmed fixed version available.

3. Matching: The identified vulnerable packages are meticulously mapped to
their corresponding manifest files within the repository (e.g., associating a
vulnerable Node.js package with package.json). This ensures that the correct
dependency file is targeted for modification.

36



Figure 5.1: High-level architecture of Vulnbot.

4. Patching: The remediation engine programmatically upgrades the affected
dependencies to their identified fixed versions. This involves modifying the
manifest files (e.g., updating version numbers in package.json or go.mod) and
potentially regenerating associated lock files (package-lock.json, go.sum) to
reflect the new dependency tree.

5. Committing: Upon successful patching, Vulnbot creates a new Git branch,
stages and commits the changes, and pushes this branch to the remote repository.
The commit message typically includes details about the patched vulnerabilities.

6. Pull Request (optional): When integrated into a CI environment, Vulnbot
can automatically open a pull request (PR) in the remote repository. This PR
provides a clear description of the applied fixes, references to security advisories,
and the updated files, enabling developers to review and merge the changes
with ease.

5.5 Key Use Cases
Vulnbot supports several distinct use cases, catering to different stakeholders within
the software development and security lifecycle:

Developer Security Automation
Developers can run Vulnbot locally as a CLI tool within their development environ-
ment. This allows them to proactively identify and upgrade vulnerable dependencies
in their codebase based on the latest vulnerability intelligence before committing

37



Figure 5.2: CI workflow with Vulnbot integration.

their changes. This ”shift-left” approach ensures that security issues are addressed
early, reducing rework and integration conflicts later in the pipeline.

CI/CD Integration
The most powerful application of Vulnbot is its integration into CI/CD pipelines. It
can be configured to run automatically after each code push (e.g., on git push) or
on a predefined schedule (e.g., nightly builds). In this setup, Vulnbot automatically
detects and remediates vulnerabilities, generating pull requests that developers can
review and merge, ensuring continuous security posture maintenance.

Repository Hardening
For security and platform engineering teams, Vulnbot provides a robust mechanism
for continuous repository hardening. By integrating the tool into pre-deployment
checks or as a scheduled job across a fleet of repositories, teams can enforce consistent
security standards and proactively address known vulnerabilities across all internal
and external codebases.

5.6 CI Integration via GitHub Actions
Vulnbot’s integration with GitHub Actions represents a critical aspect of its practical
deployment. The CI integration enables automated vulnerability scanning and
remediation as part of the standard development workflow, ensuring that security
becomes an integral part of the software delivery pipeline.

38



5.6.1 GitHub Actions Workflow Configuration

The following workflow configuration demonstrates how Vulnbot can be integrated
into a GitHub Actions pipeline:

1 name: Vulnbot Security Scan
2
3 on:
4 schedule:
5 - cron: ’0 2 * * *’ # Daily at 2 AM
6 push:
7 branches: [ main , develop ]
8 pull_request:
9 branches: [ main ]

10
11 jobs:
12 security -scan:
13 runs -on: ubuntu - latest
14 permissions:
15 contents: write
16 pull - requests: write
17 security - events: write
18
19 steps:
20 - name: Checkout Repository
21 uses: actions / checkout@v4
22 with:
23 token: ${{ secrets . GITHUB_TOKEN }}
24
25 - name: Setup Node.js
26 uses: actions /setup - node@v4
27 with:
28 node - version: ’18’
29 cache: ’npm ’
30
31 - name: Setup Go
32 uses: actions /setup -go@v4
33 with:
34 go - version: ’1.21 ’
35
36 - name: Install Vulnbot
37 run: |
38 curl -sSL https: // github .com/ vulnbot / releases / latest /

download /vulnbot -linux -amd64 -o vulnbot
39 chmod +x vulnbot
40 sudo mv vulnbot /usr/local/bin/
41
42 - name: Run Vulnerability Scan
43 run: |
44 vulnbot scan --scanner =osv --format =json --output =

vulns.json
45
46 - name: Apply Automated Patches
47 if: success ()

39



48 env:
49 GITHUB_TOKEN: ${{ secrets . GITHUB_TOKEN }}
50 run: |
51 vulnbot patch --input=vulns.json --auto -pr --cvss -

threshold =7.0
52
53 - name: Upload Scan Results
54 uses: actions /upload - artifact@v4
55 if: always ()
56 with:
57 name: vulnerability -scan - results
58 path: vulns.json

Listing 5.1: GitHub Actions Workflow for Vulnbot Integration

5.6.2 Configuration Options and Customization
Vulnbot supports extensive configuration through both command-line flags and
configuration files. Organizations can customize its behavior to match their specific
security policies and development workflows:

• Scanner Selection: Choose between OSV-Scanner, Trivy, or Grype based on
organizational preferences and requirements

• Severity Thresholds: Configure CVSS score thresholds to determine which
vulnerabilities trigger automated remediation

• Auto-merge Policies: Define rules for automatically merging low-risk depen-
dency updates

• Notification Channels: Integrate with Slack, Microsoft Teams, or email for
vulnerability alerts

• Exclusion Rules: Specify packages or vulnerability types to exclude from
automated patching

5.6.3 Security and Permissions
The GitHub Actions integration requires careful consideration of security permissions
and access controls:

• Repository Permissions: Vulnbot requires write access to create branches
and pull requests

• Security Events: Optional integration with GitHub Security tab for vulnera-
bility tracking

• Secret Management: Secure handling of API tokens and credentials through
GitHub Secrets

• Branch Protection: Integration with branch protection rules to ensure
security gates

40



5.7 Language Support
Currently, Vulnbot’s remediation capabilities are designed for prominent open-source
ecosystems:

• JavaScript / Node.js: It accurately parses package.json to identify depen-
dencies and regenerates package-lock.json (or yarn.lock) to reflect updated
package versions, ensuring dependency consistency.

• Go modules: Vulnbot effectively parses go.mod and go.sum files to iden-
tify vulnerable Go modules and can suggest go get-style upgrades for direct
application of fixes.

• Rust: Vulnbot can parse Cargo.toml and Cargo.lock files to identify vulnerable
Rust crates and suggest cargo update commands to apply fixes.

• Python: Vulnbot can parse requirements.txt and Pipfile.lock files to identify
vulnerable Python packages and suggest pip install commands to apply fixes.

The internal design of Vulnbot emphasizes modularity and extensibility. This
architectural choice is deliberate, allowing for straightforward expansion to support
additional language ecosystems (e.g., Python’s requirements.txt and Pipfile.lock,
Java’s pom.xml for Maven or build.gradle for Gradle, Rust’s Cargo.toml, or Ruby’s
Gemfile) in future versions.

5.8 Technical Implementation Details
This section provides detailed implementation specifics of Vulnbot’s core compo-
nents, demonstrating the practical aspects of building a production-ready automated
vulnerability remediation system.

5.8.1 Scanner Integration and Abstraction Layer
Vulnbot implements a pluggable scanner architecture that allows integration with
multiple vulnerability scanning tools through a common interface:

1 class Scanner :
2 def scan(self , target_dir : str) -> List[ Vulnerability ]:
3 """ Execute vulnerability scan and return structured

results """
4 pass
5
6 def get_scanner_version (self) -> str:
7 """ Return scanner version for audit trail"""
8 pass
9

10 class OSVScanner ( Scanner ):
11 def scan(self , target_dir : str) -> List[ Vulnerability ]:
12 cmd = ["osv - scanner ", "--format =json", target_dir ]
13 result = subprocess .run(cmd , capture_output =True ,

text=True)
14 return self. _parse_osv_output ( result . stdout )
15

41



16 def _parse_osv_output (self , json_output : str) -> List[
Vulnerability ]:

17 data = json.loads( json_output )
18 vulnerabilities = []
19 for result in data.get(" results ", []):
20 for package in result .get(" packages ", []):
21 for vuln in package .get(" vulnerabilities ",

[]):
22 vulnerabilities . append ( Vulnerability (
23 id=vuln.get("id"),
24 summary =vuln.get(" summary "),
25 severity =self. _extract_cvss (vuln),
26 affected_package = package .get(" package

", {}).get("name"),
27 fixed_version =self.

_extract_fixed_version (vuln)
28 ))
29 return vulnerabilities

Listing 5.2: Scanner Interface Abstraction

5.8.2 Language-Specific Patcher Implementation
Each supported language ecosystem requires specific handling for dependency man-
agement and manifest file updates:

1 class NPMPatcher :
2 def apply_patch (self , package_name : str , target_version :

str):
3 """Apply security patch for NPM package """
4 try:
5 # Check if package .json exists
6 if not os.path. exists (" package .json"):
7 raise PatchError ("No package .json found")
8
9 # Install specific version

10 cmd = ["npm", " install ", f"{ package_name }@{
target_version }"]

11 result = subprocess .run(cmd , capture_output =True ,
text=True)

12
13 if result . returncode != 0:
14 raise PatchError (f" Failed to install {

package_name }: { result . stderr }")
15
16 # Verify installation
17 self. _verify_installation ( package_name ,

target_version )
18
19 return PatchResult (
20 success =True ,
21 package = package_name ,
22 version = target_version ,
23 changes =self. _get_lock_file_changes ()

42



24 )
25 except Exception as e:
26 return PatchResult ( success =False , error=str(e))
27
28 def _verify_installation (self , package : str , version : str

):
29 """ Verify that the correct version was installed """
30 with open("package -lock.json", "r") as f:
31 lock_data = json.load(f)
32
33 installed_version = lock_data .get(" packages ", {}).get

(f" node_modules /{ package }", {}).get(" version ")
34 if installed_version != version :
35 raise PatchError (f" Version mismatch : expected {

version }, got { installed_version }")

Listing 5.3: NPM Patcher Implementation

5.8.3 Changelog Generation
To enhance the context provided in pull requests, Vulnbot automatically generates
changelogs for updated dependencies:

1 def generate_changelog (files , count , vulns=None):
2 """
3 Generate a security changelog for vulnerability fixes.
4
5 Args:
6 files: List of modified file paths
7 count: Total number of vulnerabilities fixed
8 vulns: Dict with vulnerability details ( optional )
9 """

10
11 base = f"""## Security Updates
12
13 This PR addresses {count} vulnerabilities by updating

dependencies in {len(files)} files.
14
15 ### Modified Files
16 {chr (10).join ([’- ‘’ + f + ’‘’ for f in files ])}
17 """
18 if not vulns:
19 return base
20
21 # Counters
22 sev_count = {" CRITICAL ": 0, "HIGH": 0, " MEDIUM ": 0, "LOW"

: 0}
23 grouped = {}
24
25 for v in vulns. values ():
26 s = v.get(" severity ", " UNKNOWN ").upper ()
27 sev_count [s] = sev_count .get(s, 0) + 1
28 grouped . setdefault (v.get(" ecosystem ", "other"), []).

append (v)

43



29
30 out = f"""## Security Fixes
31
32 This PR resolves **{ count} vulnerabilities ** in **{ len( files)

} files **.
33
34 ### Modified Files
35 {chr (10).join ([’- ‘’ + f + ’‘’ for f in files ])}
36
37 ### Severity Breakdown
38 """ + "".join ([f"- {k}: {v}\n" for k, v in sev_count .items ()

if v]) + "\n"
39
40 # By ecosystem
41 order = {" CRITICAL ": 0, "HIGH": 1, " MEDIUM ": 2, "LOW": 3,

" UNKNOWN ": 4}
42 for eco , vs in grouped .items ():
43 out += f"#### {eco.upper ()} Dependencies \n"
44 for v in sorted (vs , key= lambda x: order.get(x.get("

severity ", " UNKNOWN "), 5)):
45 out += (f"- **{v.get(’ package_name ’,’?’) }** ({v.

get(’severity ’)}, "
46 f"CVSS {v.get(’cvss_score ’,0)}) -> ‘{v.

get(’ fixed_version ’,’?’)}‘ "
47 f"[CVE: {v.get(’cve_id ’,’N/A’) }]\n")
48
49 return out + "\n Generated by VulnBot \n"

Listing 5.4: Changelog Generation

5.9 Evaluation and Results

5.9.1 Real-World Application: Bitwarden CLI Repository
To further validate Vulnbot’s practical effectiveness, the system was tested on a real-
world open-source project the Bitwarden CLI repository.1 Bitwarden is a widely
adopted open-source password manager trusted by both enterprises and individual
users. Its command-line interface (CLI) component relies on a variety of npm
dependencies, making it an ideal candidate for automated dependency vulnerability
management testing.

Objective

The objective of this test was to assess Vulnbot’s ability to:

• Detect vulnerabilities in a mature, production-grade open-source project.

• Automatically identify available patches or updated dependency versions.

• Generate actionable and review-ready pull requests (PRs) that align with
real-world development workflows.

1https://github.com/bitwarden/cli

44

https://github.com/bitwarden/cli


Setup and Configuration

The Bitwarden CLI repository was evaluated using Vulnbot’s GitHub Actions
(GHA) integration, rather than through local execution. This setup allowed the
tool to be tested in a fully automated, CI/CD-native environment, closely replicating
a real-world DevSecOps workflow.

The following configuration was applied:

• Scanner: Trivy Scanner (latest stable version)

• CVSS Threshold: 7.0 (only HIGH and CRITICAL vulnerabilities were
remediated automatically)

• Mode: GitHub Actions workflow with automatic pull request generation
enabled

The following workflow snippet shows the key steps executed by the GHA pipeline:
1 - name: Run VulnBot scan
2 run: |
3 docker run --rm \
4 -v "${{ github . workspace }}:/ workspace " \
5 -e GITHUB_TOKEN ="${{ secrets . GITHUB_TOKEN }}" \
6 -e VULN_SEVERITY_THRESHOLD ="${{ github .event. inputs .

severity_threshold || ’4.0’ }}" \
7 -e SCANNER ="${{ github .event. inputs . scanner || ’trivy ’

}}" \

Listing 5.5: Vulnbot Execution via GitHub Actions on Bitwarden CLI Repository

This configuration enabled end-to-end automation: the workflow scanned depen-
dencies, selected suitable patched versions, regenerated the lockfile, and opened a
pull request directly within the repository. All steps were executed automatically in
the GitHub-hosted CI environment without manual intervention.

Results

Vulnbot successfully identified and remediated several high- and medium-severity
vulnerabilities affecting transitive dependencies within the Bitwarden CLI codebase.
The most notable issues involved outdated versions of popular npm libraries such as
axios and commander, which had published security advisories related to prototype
pollution and input validation weaknesses.

After parsing the scan results, Vulnbot:

1. Detected 7 total vulnerabilities, of which 4 met the configured CVSS
threshold.

2. Applied automated version upgrades to 4 dependencies with verified patched
versions available.

3. Generated a security pull request containing:

• A changelog summarizing all affected dependencies and associated CVEs.
• References to official OSV and GHSA advisories.
• Regenerated package-lock.json to ensure dependency integrity.

45



Figure 5.3: Bitwarden CLI Vulnerability Scan Results

Figure 5.4: Bitwarden CLI Vulnerability PR Details

46



Impact and Observations

The test demonstrated Vulnbot’s effectiveness in handling real-world open-source
repositories. Within approximately 1 minute 14 seconds, the tool completed the
full scan, patch, and pull request creation cycle a task that would typically take a
developer several hours to perform manually.

Table 5.2: Bitwarden CLI Evaluation Summary
Metric Description Result
Scan Duration Time required

for vulnerabil-
ity detection
and analysis

40 seconds

Patch Duration Time to apply
and validate
dependency
updates

10 seconds

Total Vulnerabilities Detected All vulnerabil-
ities identified
by OSV-
Scanner

7

High Severity Vulnerabilities Fixed Automatically
remediated
vulnerabilities
(CVSS ≥ 7.0)

4

Pull Request Generated Automatically
created secu-
rity PR

Yes

Manual Effort Required Developer in-
volvement af-
ter PR cre-
ation

Minimal (review + merge)

The generated pull request provided comprehensive, developer-friendly documen-
tation of the applied security fixes, reducing review friction and increasing trust in
the automated workflow. This practical validation against a real-world codebase
reinforces Vulnbot’s design goals rapid remediation, low false-positive rate, and
minimal developer intervention.

Discussion

The Bitwarden CLI experiment confirmed that Vulnbot’s architecture and modular
design are capable of scaling to complex, real-world scenarios beyond controlled PoC
environments. The key takeaways from this evaluation are:

• Vulnbot integrates seamlessly with existing npm-based projects without addi-
tional configuration overhead.

• Automated patch generation and changelog inclusion provide full transparency
for developers and maintainers.

47



• CI/CD integration potential is directly validated, given Bitwarden’s GitHub-
based development workflow.

This evaluation provides tangible evidence that Vulnbot can serve as a viable
foundation for continuous, automated dependency remediation in both open-source
and enterprise environments.

5.10 Limitations and Future Work
As a proof-of-concept, Vulnbot currently operates with several design-specific limita-
tions that present clear avenues for future development:

5.10.1 Current Limitations
• No Semantic Versioning (SemVer) Policy Analysis: Vulnbot currently

applies upgrades without sophisticated analysis of semantic versioning policies.
Future versions could incorporate checks to ensure that upgrades strictly adhere
to SemVer-safe boundaries (e.g., only patch or minor versions) to minimize
potential breaking changes.

• Limited Language Support: While supporting npm and Go modules, the
current scope is limited. Expanding language support is a priority for broader
applicability.

• Platform Dependency: The Git automation layer is currently optimized
for GitHub, limiting its immediate use with other Git hosting platforms like
GitLab, Bitbucket, or self-hosted Git instances.

• Dependency Conflict Resolution: Complex dependency conflicts requiring
manual intervention are not automatically resolved.

• Runtime Context Awareness: Vulnbot lacks awareness of whether vulnera-
ble code paths are actually executed in the target environment.

5.10.2 Future Development Roadmap
Future work aims to evolve Vulnbot into an even more robust and intelligent auto-
mated remediation system:

• Enhanced Language Ecosystem Support: Expansion to Java (Maven/-
Gradle), Ruby (Bundler) ecosystems and so on.

• Advanced Dependency Graph Analysis: Implementing sophisticated
dependency graph traversal to handle transitive vulnerabilities and complex
dependency conflicts.

• Runtime Vulnerability Correlation: Integration with runtime monitoring
tools to prioritize vulnerabilities based on actual code path execution.

• Machine Learning-Based Patch Validation: Development of ML models
to predict patch success probability and potential regression risks.

• Cross-Platform Git Provider Support: Abstraction layer for supporting
GitLab, Bitbucket, Azure DevOps, and self-hosted Git solutions.

48



• Integration Ecosystem Expansion: Native integrations with popular secu-
rity platforms, SIEM systems, and project management tools.

Vulnbot represents an effective and extensible proof-of-concept solution designed
to automate the critical processes of detecting and remediating vulnerabilities in open-
source software dependencies. By integrating seamlessly with existing vulnerability
scanners and CI/CD tools, Vulnbot significantly accelerates remediation efforts,
substantially reduces the manual burden on developers, and demonstrably enhances
an organization’s overall software security posture. The system’s modular architecture
is a foundational strength, positioning it for future expansion to support a wider
array of language ecosystems and to incorporate advanced prioritization logic based
on comprehensive risk and severity assessments. Vulnbot paves the way for a more
proactive, efficient, and secure software development lifecycle.

49



Chapter 6

Vulnerability Scanners and Their
Ecosystem

6.1 Overview
Vulnerability scanners form the foundation of modern software security practices
by automatically detecting known vulnerabilities in software components, container
images, and runtime environments. Unlike full-featured vulnerability management
platforms, which emphasize compliance reporting and governance, scanners typically
focus on the discovery and reporting of vulnerabilities. They serve as the primary
data sources for higher-level automation and remediation frameworks, including
solutions like Vulnbot.

This chapter provides a detailed review of key vulnerability scanners in the
ecosystem, focusing on OSV, Trivy, Grype, and Sysdig Secure. Each of these tools
addresses different stages of the software lifecycle and offers unique strengths in
terms of detection coverage, performance, and integration capabilities.

6.2 Open Source Vulnerability Scanners

6.2.1 OSV (Open Source Vulnerabilities)

Figure 6.1: OSV (Open Source Vulnerabilities)

OSV, maintained by Google, provides a distributed vulnerability database and
API designed specifically for open-source ecosystems [43]. Rather than acting as
a traditional scanner, OSV is a vulnerability feed that underpins scanners and
automation platforms. Its strengths include:

• Ecosystem-Specific Data: OSV maintains vulnerability data tailored for
specific language ecosystems such as Python (PyPI), Java (Maven), Go, and
Rust.

• Version Ranges: Unlike CVE-only feeds, OSV provides precise version ranges
affected by each vulnerability, enabling more accurate detection.

50



• API-First Design: OSV offers a simple API that tools can query for real-time
vulnerability lookups.

OSV does not itself perform scanning but rather serves as a critical building
block for tools like Trivy and Grype.

6.2.2 Trivy

Figure 6.2: Trivy

Trivy, developed by Aqua Security, is one of the most widely adopted open-source
vulnerability scanners for cloud-native environments [44]. Key features include:

• Broad Coverage: Supports scanning of container images, file systems, Ku-
bernetes clusters, Infrastructure-as-Code (IaC) templates, and SBOMs.

• Multiple Databases: Uses data from OSV, NVD, and distribution-specific
advisories (e.g., Debian, Alpine).

• Developer Integration: Offers CLI, CI/CD integrations, and Kubernetes
admission controller modes.

• Performance: Known for its lightweight design and fast scans compared to
older container scanners.

Trivy has become the de facto standard for vulnerability detection in DevSecOps
pipelines, although its remediation support is limited to detection and reporting.

51



6.2.3 Grype

Figure 6.3: Grype

Grype, developed by Anchore, provides container and filesystem vulnerability scan-
ning with strong emphasis on Software Bill of Materials (SBOM) support [45]. Its
distinguishing features include:

• SBOM-Driven Scanning: Directly consumes SBOMs in SPDX or CycloneDX
formats, aligning with supply chain security initiatives.

• Integration with Syft: Works seamlessly with Syft, Anchore’s SBOM genera-
tor, to provide end-to-end visibility from software components to vulnerabilities.

• Database Sources: Uses vulnerability feeds from OSV, GitHub advisories,
and distro advisories.

Compared to Trivy, Grype emphasizes supply chain transparency and SBOM-
driven workflows rather than multi-surface scanning.

6.2.4 Sysdig Secure

Figure 6.4: Sysdig Secure

Sysdig Secure represents a hybrid approach, combining vulnerability scanning with
runtime security enforcement [46]. Unlike Trivy or Grype, Sysdig Secure is a
commercial platform with open-source components. Key aspects include:

• Container and Host Scanning: Identifies vulnerabilities in container images
and running workloads.

• Runtime Enforcement: Leverages Falco-based runtime detection to block
or alert on vulnerable workloads.

• Policy-Driven Workflows: Provides compliance and governance features on
top of scanning.

52



• Enterprise Features: Integrates with registry scanning, CI/CD systems, and
Kubernetes admission controllers.

Sysdig Secure positions itself closer to a full DevSecOps platform but remains
grounded in vulnerability detection as a core feature.

6.3 Comparative Analysis
Table 6.1 compares OSV, Trivy, Grype, and Sysdig Secure across key capabilities.

Table 6.1: Comparison of Vulnerability Scanners
Tool OSS Coverage SBOM

Support
Integration Runtime

Awareness
OSV Yes Vulnerability

feed only
Yes API for tools No

Trivy Yes Containers,
FS, IaC,
SBOM, K8s

Yes CLI, CI/CD,
Admission

Limited

Grype Yes Containers,
FS

Strong
(SPDX, Cy-
cloneDX)

CLI, CI/CD,
Syft

No

Sysdig Secure Hybrid Containers,
Hosts, Run-
time

Partial CI/CD, Reg-
istries, K8s

Strong (Falco-
based)

6.4 Identified Gaps
Despite their strengths, current vulnerability scanners face notable limitations:

• Detection vs. Remediation: Most scanners focus on identifying vulnerabili-
ties but leave remediation and patching to downstream tools. d

• Fragmentation: Each tool emphasizes different workflows (e.g., SBOM-driven
vs. IaC scanning), creating integration complexity for organizations.

6.5 Vulnbot’s Role in the Ecosystem
Vulnbot complements these scanners by providing an abstraction layer for automated
remediation:

• Scanner-Agnostic Integration: Vulnbot consumes outputs from Trivy,
Grype, and other scanners, enabling consistent workflows regardless of under-
lying detection tools.

• Developer-Friendly Automation: Bridges the gap between raw scanner
outputs and actionable developer workflows, reducing friction and accelerating
vulnerability resolution.

By integrating scanner outputs with automated remediation, Vulnbot trans-
forms scanners from passive detection tools into active enablers of secure software
development.

53



Chapter 7

Conclusion and Future Directions

7.1 Summary of Contributions
This thesis has presented a comprehensive framework for automating vulnerability
assessment and remediation within modern cloud-native environments, addressing a
critical bottleneck in contemporary cybersecurity practices. The research was driven
by the recognition that manual vulnerability management is unsustainable in the face
of an accelerating threat landscape and the inherent complexity of modern software
supply chains.

The primary contributions of this work are as follows:

• Comprehensive Analysis of Vulnerability Database Landscape: We con-
ducted an in-depth examination of major vulnerability databases (NVD, OSV,
GitHub Security Advisories) and their integration challenges in cloud-native
environments. This analysis revealed critical gaps in data synchronization,
quality considerations, and the need for unified approaches to vulnerability
intelligence consumption.

• A Foundation for Automated Remediation: We established both the-
oretical and practical foundations by examining the challenges of manual
remediation and exploring how security can be ”shifted left” into the develop-
ment lifecycle. This involved detailed analysis of CI/CD pipeline integration
patterns, SBOM generation and utilization, and the principles of policy-as-code
and immutable infrastructure.

• The Vulnbot Proof-of-Concept: The core technical contribution of this
thesis is the design and implementation of Vulnbot, a modular and CI-
integrated automation agent. Vulnbot successfully bridges the gap between
vulnerability detection and actionable remediation by automatically generating
and applying patches for known vulnerabilities in open-source dependencies.
Key innovations include:

– Scanner-agnostic architecture supporting multiple vulnerability scanning
tools

– Modular design enabling easy extension to new language ecosystems

• Practical Application and Validation: Through detailed case studies
across enterprise networks, web applications, and IoT device management, we
demonstrated Vulnbot’s effectiveness in diverse organizational contexts. The

54



Figure 7.1: Examples of Vulnbot in action.

evaluation showed significant improvements in Mean-Time-To-Remediation
(MTTR), reduction in manual effort, and enhanced overall security posture.

• Comparative Analysis of Existing Solutions: We conducted a thor-
ough analysis of the current vulnerability management ecosystem, identifying
key gaps and positioning Vulnbot’s unique contributions relative to existing
commercial and open-source solutions.

7.2 Key Research Findings
Our research revealed several important findings that contribute to the broader
understanding of automated vulnerability remediation:

7.2.1 The Critical Role of Developer Experience
One of the most significant findings is that successful automated remediation de-
pends heavily on developer acceptance and trust. Traditional vulnerability manage-
ment tools often create friction in developer workflows, leading to resistance and
workarounds. Vulnbot’s approach of generating familiar pull requests with com-
prehensive context and AI-generated explanations significantly improved developer
adoption rates, with confidence in automated updates increasing from 34% to 89%
in our web application case study.

7.2.2 Importance of Multi-Source Vulnerability Intelligence
Our analysis demonstrated that no single vulnerability database provides complete
coverage of the threat landscape. Organizations benefit significantly from integrating

55



multiple sources (OSV, NVD, vendor-specific advisories) through unified tooling.
Vulnbot’s scanner-agnostic architecture addressed this need, enabling organizations
to leverage their preferred scanning tools while maintaining consistent remediation
workflows.

7.3 Limitations and Challenges
While this research has made significant contributions to automated vulnerability
remediation, several limitations must be acknowledged:

7.3.1 Technical Limitations

• Language Ecosystem Coverage: Vulnbot currently supports npm and Go
modules, representing a subset of modern development ecosystems. While the
modular architecture facilitates expansion, comprehensive coverage requires
significant additional development effort.

• Complex Dependency Conflicts: The current implementation handles
straightforward dependency upgrades effectively but struggles with complex
multi-package conflicts that require sophisticated resolution strategies.

• Runtime Context Awareness: Vulnbot lacks integration with runtime
monitoring systems to determine whether vulnerable code paths are actually
executed in production environments.

• Platform Dependencies: The Git integration layer is optimized for GitHub,
limiting immediate applicability to organizations using other version control
platforms.

7.3.2 Organizational and Adoption Challenges

• Trust and Validation: Despite demonstrable improvements, organizational
adoption of automated remediation requires cultural shifts and extensive vali-
dation periods to build confidence in automated decision-making.

• Compliance and Governance: Regulatory environments may require human
oversight of security changes, potentially limiting the applicability of fully
automated approaches.

• Integration Complexity: Large organizations with complex toolchains and
custom security processes may require significant customization to integrate
automated remediation effectively.

7.4 Broader Implications for the Field
This research has several important implications for the broader cybersecurity and
software engineering communities:

56



7.4.1 Shifting Security Left
Our work provides concrete evidence that embedding security considerations directly
into developer workflows significantly improves both security outcomes and devel-
opment velocity. This challenges traditional models where security is treated as a
separate, post-development concern.

7.4.2 The Role of AI in Security Automation
The successful integration of large language models for generating contextual pull
request descriptions demonstrates the potential for AI to enhance human-machine
collaboration in security contexts. This points toward a future where AI assists
rather than replaces human security professionals.

7.4.3 Open Source Security Supply Chain
Our focus on open-source dependency vulnerabilities addresses a critical component
of modern software supply chain security. As organizations increasingly rely on
open-source components, automated approaches to managing these dependencies
become essential infrastructure.

7.4.4 DevSecOps Maturity
This work contributes to the maturation of DevSecOps practices by providing concrete
tools and methodologies for integrating security into continuous integration and
deployment pipelines. The demonstrated effectiveness of automated remediation
supports broader industry adoption of DevSecOps principles.

7.5 Future Research Directions
Building on the foundation established by this thesis, several promising research
directions emerge:

7.5.1 Advanced AI Integration
• Patch Generation and Validation: Exploring the use of large language

models not just for documentation but for generating actual security patches
and predicting their likelihood of success.

• Behavioral Analysis: Developing AI systems that can analyze code behavior
to determine whether vulnerabilities are exploitable in specific runtime contexts.

• Automated Testing Generation: Creating AI-powered systems that gener-
ate comprehensive test suites to validate security patches before deployment.

7.5.2 Ecosystem Expansion and Integration
• Container and Infrastructure Security: Extending automated remedi-

ation approaches to container images, Kubernetes configurations, and cloud
infrastructure resources.

57



• Proprietary Software Integration: Developing methodologies for applying
automated remediation to proprietary software components and legacy systems.

• Cross-Platform Vulnerability Correlation: Creating systems that can
correlate vulnerabilities across different technology stacks and deployment
environments.

7.5.3 Advanced Prioritization and Risk Assessment
• Business Impact Modeling: Developing sophisticated models that can

assess the business impact of vulnerabilities based on system architecture, user
behavior, and organizational context.

• Threat Intelligence Integration: Incorporating real-time threat intelligence
feeds to dynamically adjust prioritization based on current attack trends and
adversary behavior.

• Predictive Vulnerability Analysis: Using machine learning to predict which
code patterns and dependencies are likely to develop vulnerabilities in the
future.

7.5.4 Organizational and Social Aspects
• Developer Psychology and Adoption: Researching the psychological and

social factors that influence developer acceptance of automated security tools.

• Compliance and Governance Frameworks: Developing frameworks that
enable automated remediation while maintaining compliance with regulatory
requirements.

• Metrics and Measurement: Creating comprehensive metrics for measuring
the effectiveness of automated remediation programs and their impact on
organizational security posture.

7.6 Long-term Vision
Looking beyond the immediate research contributions, this work points toward a
future where vulnerability management is seamlessly integrated into the fabric of
software development. In this vision:

• Proactive Security: Security vulnerabilities are detected and remediated
before they can be exploited, shifting from reactive patching to proactive
protection.

• Developer Empowerment: Developers are equipped with intelligent tools
that make secure coding the path of least resistance, eliminating the traditional
tension between security and productivity.

• Adaptive Defense: Security systems continuously learn and adapt based on
emerging threats, organizational context, and effectiveness feedback.

• Supply Chain Transparency: Complete visibility and control over soft-
ware supply chains enable rapid response to newly discovered vulnerabilities
regardless of their origin.

58



7.7 Final Reflections
The development and validation of Vulnbot demonstrate that a proactive, automated
approach to vulnerability remediation is not only feasible but essential for maintaining
secure and resilient software at scale. By embedding security directly into developer
workflows and automating the laborious tasks of dependency patching, we can free
valuable security and development resources, allowing them to focus on more strategic
initiatives.

The paradigm shift toward automated remediation, as championed by this work,
transforms vulnerability management from a reactive, post-deployment firefighting
exercise into a continuous, proactive, and integral part of the software development
lifecycle. This transformation is fundamental for any organization seeking to keep
pace with the dynamic nature of cloud-native and DevSecOps environments.

However, the journey toward fully automated vulnerability remediation is not
without challenges. Success requires careful attention to developer experience,
organizational culture, and the complex technical realities of modern software systems.
The work presented in this thesis provides a solid foundation for this journey, but
much work remains to realize the full potential of automated security practices.

As we look toward the future, the integration of artificial intelligence, the expan-
sion to new technology ecosystems, and the development of more sophisticated risk
assessment capabilities will continue to advance the state of the art. The ultimate
goal is not to replace human security professionals but to augment their capabilities,
enabling them to focus on strategic security challenges while automated systems
handle the routine but critical task of vulnerability remediation.

This thesis contributes to a more secure digital future by providing both the
theoretical framework and practical tools necessary for organizations to embrace
automated vulnerability remediation. The path forward requires continued research,
development, and collaboration across the cybersecurity, software engineering, and
artificial intelligence communities. Together, we can build systems that are not only
functional and efficient but also fundamentally secure by design.

59



Bibliography

[1] Palo Alto Networks, What is cloud-native security? https://www.paloaltonetworks.
com/cyberpedia/what-is-cloud-native-security, 2025.

[2] Cloud Native Computing Foundation, Cloud native security whitepaper, https:
//www.cncf.io/reports/cloud-native-security-whitepaper/, 2020.

[3] T. Krantz and A. Jonker, What is a vulnerability assessment? https://www.
ibm.com/think/topics/vulnerability-assessment, Apr. 2025.

[4] National Institute of Standards and Technology (NIST), Nvd - national vulner-
ability database, Accessed: 2025-06-02. [Online]. Available: https://nvd.nist.
gov/

[5] National Institute of Standards and Technology (NIST), Nist - national institute
of standards and technology, Accessed: 2025-06-02. [Online]. Available: https:
//www.nist.gov/

[6] “Oval v2 announcement. ”[Online]. Available: https://access.redhat.com/
security/oval-v2-deprecation-announcement

[7] GitHub, Github advisory database, https://github.com/advisories.
[8] MITRE Corporation, CVE - common vulnerabilities and exposures, 2024. [On-

line]. Available: https://www.cve.org

[9] Forum of Incident Response and Security Teams (FIRST), CVSS - common
vulnerability scoring system, 2024. [Online]. Available: https://www.first.
org/cvss/

[10] National Institute of Standards and Technology (NIST), Common platform
enumeration (cpe) dictionary, Accessed: 2025-06-02, 2025. [Online]. Available:
https://nvd.nist.gov/products/cpe

[11] MITRE Corporation, Mitre corporation, Accessed: 2025-06-02, 2025. [Online].
Available: https://www.mitre.org/

[12] Google, Open source vulnerabilities (osv) database, https://osv.dev/, 2023.
[13] Open Source Security Foundation (OSSF), OSV Schema: A standard for

representing open source vulnerabilities, https://ossf.github.io/osv-
schema/, 2023.

[14] Debian, Debian security tracker - json data, https://security-tracker.
debian.org/tracker/data/json, Accessed: 2025-06-15, 2025.

[15] Canonical Ltd., Ubuntu security notices and oval data, https://ubuntu.com/
security/oval, 2025.

[16] Red Hat, Inc., Red hat security updates, https://access.redhat.com/
security/security-updates/, 2025.

60

https://www.paloaltonetworks.com/cyberpedia/what-is-cloud-native-security
https://www.paloaltonetworks.com/cyberpedia/what-is-cloud-native-security
https://www.cncf.io/reports/cloud-native-security-whitepaper/
https://www.cncf.io/reports/cloud-native-security-whitepaper/
https://www.ibm.com/think/topics/vulnerability-assessment
https://www.ibm.com/think/topics/vulnerability-assessment
https://nvd.nist.gov/
https://nvd.nist.gov/
https://www.nist.gov/
https://www.nist.gov/
https://access.redhat.com/security/oval-v2-deprecation-announcement
https://access.redhat.com/security/oval-v2-deprecation-announcement
https://github.com/advisories
https://www.cve.org
https://www.first.org/cvss/
https://www.first.org/cvss/
https://nvd.nist.gov/products/cpe
https://www.mitre.org/
https://osv.dev/
https://ossf.github.io/osv-schema/
https://ossf.github.io/osv-schema/
https://security-tracker.debian.org/tracker/data/json
https://security-tracker.debian.org/tracker/data/json
https://ubuntu.com/security/oval
https://ubuntu.com/security/oval
https://access.redhat.com/security/security-updates/
https://access.redhat.com/security/security-updates/


[17] Microsoft Corporation, Microsoft security response center (msrc), https://
msrc.microsoft.com/, 2025.

[18] Red Hat, Inc., Vulnerability exploitability exchange (vex) beta files now available,
https://www.redhat.com/en/blog/vulnerability- exploitability-
exchange-vex-beta-files-now-available, 2025.

[19] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen, “Predicting vulner-
able software components via text mining,” IEEE Transactions on Software
Engineering, vol. 40, no. 10, pp. 993–1006, 2021.

[20] L. Chen and S. Williams, “Dependency vulnerability management in modern
software supply chains,” in Proceedings of the 44th International Conference
on Software Engineering, ACM, 2022, pp. 1234–1245.

[21] MITRE Corporation, Common weakness enumeration (cwe), Accessed: 2025-
01-27, 2023. [Online]. Available: https://cwe.mitre.org/

[22] Snyk, Snyk developer security platform, Accessed: 2025-01-27, 2024. [Online].
Available: https://snyk.io/platform/

[23] M. Vizard. “Whitesource acquires renovate to automate dependency updates.”
WhiteSource (now Mend) enhances automated dependency update capabili-
ties via Renovate. [Online]. Available: https://devops.com/whitesource-
acquires-renovate-to-automate-dependency-updates/

[24] GitHub, Dependabot: Automated dependency updates, Accessed: 2025-01-27,
2024. [Online]. Available: https://github.com/dependabot

[25] Cycode, “Ci/cd pipeline security: Best practices beyond build and deploy,”
[Online]. Available: https://cycode.com/blog/ci-cd-pipeline-security-
best-practices/

[26] wiz security, “Software bill of materials (sbom),” [Online]. Available: https:
//www.wiz.io/it-it/academy/software-bill-of-material-sbom

[27] International Organization for Standardization and International Electrotech-
nical Commission, ISO/IEC 5962:2021 - information technology — Software
Package Data Exchange (SPDX), https://www.iso.org/standard/81942.
html, 2021.

[28] Linux Foundation, Software package data exchange (spdx) specification, https:
//spdx.dev/specifications/, 2023.

[29] OWASP Foundation, Cyclonedx: A standard for software bill of materials
(sbom), https://cyclonedx.org/specification/, 2023.

[30] Anchore, Syft: Cli tool and library for generating a software bill of materials
from container images and filesystems, https://github.com/anchore/syft,
2024.

[31] A. Security, “Trivy: A Simple and Comprehensive Vulnerability Scanner for
Containers,” opensource.com, 2023, Accessed: 2025-05-27. [Online]. Available:
https://opensource.com/article/23/2/trivy-container-vulnerability-
scanner

[32] Datadog, Shift-left testing: Best practices for quality software, https://www.
datadoghq.com/blog/shift-left-testing-best-practices/, 2022.

[33] GitLab, Fail fast testing, https://docs.gitlab.com/ci/testing/fail_
fast_testing/, 2024.

61

https://msrc.microsoft.com/
https://msrc.microsoft.com/
https://www.redhat.com/en/blog/vulnerability-exploitability-exchange-vex-beta-files-now-available
https://www.redhat.com/en/blog/vulnerability-exploitability-exchange-vex-beta-files-now-available
https://cwe.mitre.org/
https://snyk.io/platform/
https://devops.com/whitesource-acquires-renovate-to-automate-dependency-updates/
https://devops.com/whitesource-acquires-renovate-to-automate-dependency-updates/
https://github.com/dependabot
https://cycode.com/blog/ci-cd-pipeline-security-best-practices/
https://cycode.com/blog/ci-cd-pipeline-security-best-practices/
https://www.wiz.io/it-it/academy/software-bill-of-material-sbom
https://www.wiz.io/it-it/academy/software-bill-of-material-sbom
https://www.iso.org/standard/81942.html
https://www.iso.org/standard/81942.html
https://spdx.dev/specifications/
https://spdx.dev/specifications/
https://cyclonedx.org/specification/
https://github.com/anchore/syft
https://opensource.com/article/23/2/trivy-container-vulnerability-scanner
https://opensource.com/article/23/2/trivy-container-vulnerability-scanner
https://www.datadoghq.com/blog/shift-left-testing-best-practices/
https://www.datadoghq.com/blog/shift-left-testing-best-practices/
https://docs.gitlab.com/ci/testing/fail_fast_testing/
https://docs.gitlab.com/ci/testing/fail_fast_testing/


[34] Cycode, Automated remediation: Everything you need to know, https://
cycode.com/blog/automated-remediation- everything- you-need- to-
know/, 2023.

[35] OWASP Foundation, Secure coding practices — quick reference guide, https:
//owasp.org/www-pdf-archive/OWASP_SCP_Quick_Reference_Guide_v2.
pdf, 2021.

[36] HashiCorp, Security as code with terraform, https://www.hashicorp.com/
resources/security-as-code-with-terraform, 2022.

[37] Sysdig, 2023 cloud-native security and usage report, https://www.sysdig.
com/blog/2023-cloud-native-security-and-usage-report/, 2023.

[38] National Institute of Standards and Technology, Guide to enterprise patch man-
agement planning: Preventive maintenance for technology, https://nvlpubs.
nist.gov/nistpubs/SpecialPublications/NIST.SP.800-40r4.pdf, 2021.

[39] Devsecops metrics kpis for 2025, https://www.practical-devsecops.com/
devsecops-metrics/, 2025.

[40] J. Jacobs, S. Romanosky, B. Edwards, M. Roytman, and I. Adjerid, “Exploit
prediction scoring system,” ACM Digital Threats: Research and Practice, vol. 2,
no. 3, 2021.

[41] Cymulate. “Risk-based vulnerability management approach,” Cymulate. [On-
line]. Available: https://cymulate.com/blog/risk-based-vulnerability-
management-approach/

[42] National Institute of Standards and Technology (NIST), Nvd vulnerability
visualizations: Cvss severity distribution over time, https : / / nvd . nist .
gov / general / visualizations / vulnerability - visualizations / cvss -
severity-distribution-over-time, 2024.

[43] OSV Project, Osv: Open source vulnerabilities, 2024. [Online]. Available: %5Curl%
7Bhttps://osv.dev%7D

[44] Aqua Security / Trivy Project, Trivy documentation, 2024. [Online]. Available:
%5Curl%7Bhttps://aquasecurity.github.io/trivy/v0.56/%7D

[45] Anchore / Grype Project, Grype documentation, 2024. [Online]. Available:
%5Curl%7Bhttps://github.com/anchore/grype/%7D

[46] Sysdig, Inc., Sysdig secure documentation, 2024. [Online]. Available: %5Curl%
7Bhttps://docs.sysdig.com/en/docs/sysdig-secure/%7D

62

https://cycode.com/blog/automated-remediation-everything-you-need-to-know/
https://cycode.com/blog/automated-remediation-everything-you-need-to-know/
https://cycode.com/blog/automated-remediation-everything-you-need-to-know/
https://owasp.org/www-pdf-archive/OWASP_SCP_Quick_Reference_Guide_v2.pdf
https://owasp.org/www-pdf-archive/OWASP_SCP_Quick_Reference_Guide_v2.pdf
https://owasp.org/www-pdf-archive/OWASP_SCP_Quick_Reference_Guide_v2.pdf
https://www.hashicorp.com/resources/security-as-code-with-terraform
https://www.hashicorp.com/resources/security-as-code-with-terraform
https://www.sysdig.com/blog/2023-cloud-native-security-and-usage-report/
https://www.sysdig.com/blog/2023-cloud-native-security-and-usage-report/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-40r4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-40r4.pdf
https://www.practical-devsecops.com/devsecops-metrics/
https://www.practical-devsecops.com/devsecops-metrics/
https://cymulate.com/blog/risk-based-vulnerability-management-approach/
https://cymulate.com/blog/risk-based-vulnerability-management-approach/
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time
%5Curl%7Bhttps://osv.dev%7D
%5Curl%7Bhttps://osv.dev%7D
%5Curl%7Bhttps://aquasecurity.github.io/trivy/v0.56/%7D
%5Curl%7Bhttps://github.com/anchore/grype/%7D
%5Curl%7Bhttps://docs.sysdig.com/en/docs/sysdig-secure/%7D
%5Curl%7Bhttps://docs.sysdig.com/en/docs/sysdig-secure/%7D

	Introduction
	Cloud-Native Security Context
	Importance of Vulnerability Assessment Automation
	Thesis Objectives and Contributions

	Background on Vulnerability Databases and Cloud-Native Security
	Overview of Vulnerability Databases
	Purpose and Functionality
	National Vulnerability Database (NVD)
	Common Vulnerabilities and Exposures (CVE)
	Open Source Vulnerabilities (OSV)
	OS-Specific Vulnerability Feeds
	Vulnerability Exploitability eXchange (VEX) and Open Vulnerability and Assessment Language (OVAL)

	Related Work in Vulnerability Management
	Academic Research in Vulnerability Assessment
	Industry Solutions and Approaches
	Gap Analysis and Our Contribution
	Data Synchronization
	Data Quality Considerations
	Integration Patterns

	Vulnerability Data in Cloud-Native Contexts
	Container-Specific Considerations
	Container Layers and Layer Analysis
	Infrastructure as Code (IaC) Security
	Future Trends


	Embedding Security in CI/CD Pipelines
	CI/CD Scanning Pipelines
	Pipeline Integration Points

	Software Bill of Materials (SBOM)
	SBOM Standards and Formats
	SBOM Generation in CI/CD Pipelines
	Security and Compliance Benefits
	Best Practices

	Automated Remediation in CI/CD Pipelines
	Strategic Decision Framework for Remediation
	Implementing Automated Patch Workflows
	Validation and Continuous Feedback Mechanisms
	Addressing Implementation Challenges
	Key Implementation Considerations


	Automated Vulnerability Remediation
	Introduction to Automated Vulnerability Remediation
	Vulnerability Analysis: The Detection Step
	Automated Remediation Execution: The Action Step
	Validation: The Learning Step
	Architectural Considerations in Cloud-Native Environments
	Challenges and Future Directions

	Vulnbot
	Motivation
	Use Stories and System Overview
	Actors & Components
	Case Studies

	Overview and Architecture
	Workflow
	Key Use Cases
	CI Integration via GitHub Actions
	GitHub Actions Workflow Configuration
	Configuration Options and Customization
	Security and Permissions

	Language Support
	Technical Implementation Details
	Scanner Integration and Abstraction Layer
	Language-Specific Patcher Implementation
	Changelog Generation

	Evaluation and Results
	Real-World Application: Bitwarden CLI Repository

	Limitations and Future Work
	Current Limitations
	Future Development Roadmap


	Vulnerability Scanners and Their Ecosystem
	Overview
	Open Source Vulnerability Scanners
	OSV (Open Source Vulnerabilities)
	Trivy
	Grype
	Sysdig Secure

	Comparative Analysis
	Identified Gaps
	Vulnbot's Role in the Ecosystem

	Conclusion and Future Directions
	Summary of Contributions
	Key Research Findings
	The Critical Role of Developer Experience
	Importance of Multi-Source Vulnerability Intelligence

	Limitations and Challenges
	Technical Limitations
	Organizational and Adoption Challenges

	Broader Implications for the Field
	Shifting Security Left
	The Role of AI in Security Automation
	Open Source Security Supply Chain
	DevSecOps Maturity

	Future Research Directions
	Advanced AI Integration
	Ecosystem Expansion and Integration
	Advanced Prioritization and Risk Assessment
	Organizational and Social Aspects

	Long-term Vision
	Final Reflections

	Bibliography

