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Abstract

Free-text crash narratives recorded in real-world crash databases have been shown
to play a significant role in improving traffic safety. But they remain challenging to
analyze at scale due to unstructured writing, heterogeneous terminology, and uneven
detail. The development of Large Language Models (LLMs) offers a promising
way to automatically extract information from narratives by asking questions.
However, crash narratives remain hard for LLMs to analyze because of a lack of
traffic safety domain knowledge. Moreover, relying on closed-source LLMs through
external APIs poses privacy risks for crash data and often underperforms due to
limited traffic knowledge. Motivated by these concerns, we study whether smaller
open-source LLMs can support reasoning-intensive extraction from crash narratives,
targeting three challenging objectives: the travel direction of the vehicles involved
in the crash, identifying the manner of collision, and classifying crash type in multi-
vehicle scenarios that require accurate per-vehicle prediction. In the first phase of
the experiments, we focused on extracting vehicle travel directions by comparing
small LLMs with 8 billion parameters (Mistral, DeepSeek, and Qwen) under
different prompting strategies against fine-tuned transformers (BERT, RoBERTa,
and SciBERT) on a manually labeled subset of the Crash Investigation Sampling
System (CISS) dataset. The goal was to assess whether models trained on a generic
corpus could approach or surpass the performance of domain-adapted baselines.
Results confirmed that fine-tuned transformers achieved the best accuracy; however,
advanced prompting strategies, particularly Chain of Thought, enabled some
LLMs to reach about 90% accuracy, showing that they can serve as competitive
alternatives. For the second and third tasks, to bridge domain gaps, we apply Low-
Rank Adaption (LoRA) fine-tuning to inject traffic-specific knowledge. Experiments
on the CISS dataset show that our fine-tuned 3B models can outperform GPT-4o
while requiring minimal training resources. Further analysis of LLM-annotated
data shows that LLMs can both compensate for and correct limitations in manual
annotations while preserving key distributional characteristics. The results indicate
that advanced prompting techniques and fine-tuned open-source models prove
effective in large-scale traffic safety studies.
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Chapter 1

Introduction

1.1 Background and motivation

Today, traffic crashes remain one of the leading causes of death worldwide, with an
estimated 1.19 million fatalities annually [1]. Improving road safety is therefore
a critical global challenge. A key approach to addressing this issue is through
analyzing real-world data recorded in crash databases. These databases contain
information about the crash, people involved, injuries and crash narratives, docu-
mented by crash investigators as part of official reports. Among these records, crash
narratives are especially valuable, as they include detailed crash scenarios that go
beyond structured variables, such as vehicle travel directions, impact points, and
other contextual factors. Despite their value, crash narratives present significant
challenges for direct analysis. They are typically written in unstructured text with
highly diverse styles, inconsistent terminology, and varying levels of detail. As a
result, these narratives cannot be readily analyzed using conventional statistical
techniques. Researchers or transport authorities have traditionally addressed this
by manually preprocessing the text into structured formats such as tables for
statistical analysis. This process is not only labor-intensive but also error-prone,
especially when working with large datasets.

However, advances in Large Language Models (LLMs) offer a promising alter-
native: by efficiently extracting key information and identifying implicit crash
patterns, LLMs can automate and scale up the analysis of crash reports.

While LLMs show great potential in automating information extraction, their
performance in specialized domains such as traffic safety remains limited. Most
publicly available LLMs are trained on general-purpose web-scale corpora, which
lack the domain-specific vocabulary and knowledge found in crash reports. Con-
sequently, these models may struggle to understand the nuances of safety-critical
narratives and fail to generate accurate or reliable responses to domain-specific
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queries. This limitation raises several important research questions. First, for
straightforward extraction tasks where information is often explicitly stated in
crash narratives, can zero-shot or prompting-based LLMs compete with or even
outperform traditional approaches such as fine-tuned BERT transformers? Sec-
ond, for more complex reasoning-intensive tasks, where critical information must
be inferred rather than directly extracted, can fine-tuning open-source LLMs on
domain-specific crash data significantly improve their ability to capture implicit
details and enhance their reliability for real-world deployment?

To explore this, our study uses crash report summaries from the Crash Investiga-
tion Sampling System (CISS) dataset [2], provided by the National Highway Traffic
Safety Administration (NHTSA). We evaluate whether prompting techniques, as
well as fine-tuning open-source LLMs on this dataset, can improve their ability to
extract crash details and pattern and enhance their reliability in accident-related
information extraction tasks. We evaluate the effectiveness of prompting techniques
alone for simpler tasks and of fine-tuning open-source LLMs on this dataset in
improving their capacity to extract missing information and to increase reliability
in accident-related information extraction tasks.

1.2 Introduction to large language models

1.2.1 Development of large language model
A Large Language Model is a type of artificial intelligence model designed to com-
prehend and generate human language. These models are trained on vast corpora of
text data, enabling them to learn the intricate patterns and structures inherent in
language. ChatGPT [3], a prominent example of an LLM, is specifically trained to
facilitate engaging conversations and respond to a wide range of queries. LLMs are
distinguished by their massive scale, often comprising billions of parameters, which
enable them to capture complex linguistic patterns. Typically, these models are
built upon deep learning architectures, particularly transformers, which empower
them to achieve state-of-the-art performance across various Natural Language
Processing (NLP) tasks.

1.2.2 How to train a large language model
The training process of LLMs is usually divided into two main stages: pre-training [3]
and fine-tuning [4]. Each stage has different goals and methods, aiming to enable
the model to have strong natural language understanding and generation capabili-
ties. In addition, as the application of LLMs continues to expand, new training
strategies such as Instruct Tuning [5], Model Distillation [6], Few-shot learning [7],
reinforcement learning are also applied.
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Pre-training: The goal of pre-training is to let the model learn the basics
of language, such as grammar, semantics, contextual relationships, etc., from a
large amount of unlabeled text data. This is a complex and resource-intensive
process that usually requires a lot of computing resources, storage space, and
data. The data source can be web page content, books, news articles, Wikipedia,
conversation records, etc. There are usually two main ways to pre-train tasks:
autoregressive Language Modeling [3]: the model predicts the next token given
the context. It outputs each token in turn until the complete text is generated.
Masked Language Modeling [4] involves randomly masking certain words in the
input text and training the model to predict these masked words. This method is
mainly used for understanding tasks.

Fine-tuning: The purpose of fine-tuning is to enable large language models
to implement domain knowledge applications. First, select a model that has been
pre-trained with a large amount of data, such as BERT [4], GPT-2 [8], T5 [9],
etc. These models already have strong language understanding and generation
capabilities. Then, as needed, prepare a small-scale, annotated dataset of domain
knowledge. Then perform fine-tuning training. During the training process, the
model updates its parameters through back-propagation. Usually, fine-tuning only
involves the last few layers of the model [4].

Different training strategies: With the continuous expansion of LLM appli-
cation areas, new training strategies such as Instruct Tuning [10], Model Distillation
[6], Few-shot Learning [11], and Reinforcement Learning [12] are also being actively
explored and adopted. Instruct Tuning focuses on aligning the model’s behavior
with human instructions by fine-tuning it on instruction-response pairs, thereby
making the model more useful and controllable for practical downstream tasks.
Model Distillation compresses knowledge from larger teacher models into smaller
student models, significantly reducing computational costs while retaining high
performance, which is crucial for deployment in resource-constrained environments.
Moreover, Reinforcement Learning (e.g., RLHF) is increasingly used to optimize
model outputs based on human preferences or task-specific reward signals, further
enhancing alignment, safety, and task success rates in real-world applications.
These training strategies not only boost the performance and usability of LLMs but
also address emerging challenges related to scalability, alignment, and efficiency in
industrial and academic settings.

1.3 LLMs for traffic safety
In recent years, with the successful application of LLMs in more and more fields,
researchers have begun to explore their potential in the field of traffic safety [13].

Some studies [14, 15, 16, 17] have applied LLMs to traffic accident severity
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prediction or risk level identification, which can be later on used for decision-making.
Zhen et al. [15] fine-tuned the LLM by introducing a CoT reasoning mechanism and
domain-knowledge-based prompt engineering, improving the model’s accuracy and
interpretability in accident severity classification. Table-to-text method [16, 17] are
also widely used to effectively integrates structured data and text descriptions to
identify high-risk traffic violations. These studies have demonstrated the potential
of LLMs for complex tasks in the traffic safety sector, offering promising directions
for future research.

Meanwhile, several recent studies have begun to explore the use of language
models to address the challenge of limited or costly data annotation in traffic safety
analysis. Seo et al. [18] proposed a BERT-based method that successfully extracts
information on impact points and pre-collision vehicle maneuvers from unstructured
traffic accident descriptions recorded by police. To further evaluate the potential
of language models of different sizes in extracting unstructured traffic information,
Mumtarin et al.[19] assessed ChatGPT, Bard, and GPT-4 on crash narratives,
focusing on their ability to answer common safety-related questions. Across such
studies, techniques such as prompt engineering, CoT reasoning, and few-shot
learning are widely adopted to improve the performance. For instance, Arteaga
and Park [20] applied prompt engineering to detect unreported alcohol involvement
in 500 crash reports from Massachusetts, a relatively simple binary classification
task. Overall, the tasks designed in these studies are relatively simple, often limited
to direct fact extraction, and the resulting performance is only moderate, leaving
substantial room for improvement in more challenging, inference-driven scenarios.

An important challenge is the limited adaptability of pre-trained LLMs to
specialized domains, as their training corpora often lack sufficient coverage of
domain-specific knowledge. Full fine-tuning can effectively bridge this gap; for
example, Golshan et al. [21] fine-tuned the LLaMA 3.1 model for a QA task
focused on extracting crash locations and casualty counts, achieving 97% accuracy
in identifying fatalities and injuries. Jaradat et al.[22] used 26 226 traffic-related
tweets from Australia to develop a multi-task learning (MTL) framework based on
an LLM. With the introduction of LoRa technology [23], the cost of fine-tuning
LLMs has been significantly reduced. As a result, fine-tuning has become a highly
effective approach to improving the performance of LLMs in extracting traffic
domain information. However, existing studies have largely focused on extracting
information that is explicitly present in the text, while their effectiveness in handling
tasks requiring deep reasoning remains limited and needs further improvement.

This study discusses the use of LLMs for traffic safety information extraction
across tasks of varying difficulty. On the one hand, some tasks involve extracting
information that is explicitly stated in the text, such as vehicle travelling direction,
which mainly require accurate recognition and parsing. On the other hand, more
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challenging tasks demand deeper reasoning, such as inferring the manner of col-
lision or assigning the correct crash type to each vehicle when multiple vehicles
are described within the same narrative. By comparing these different levels of
information extraction, we aim to evaluate both the strengths and the limitations
of LLMs in handling straightforward versus reasoning-intensive tasks.

1.4 Research Objectives and contributions
This thesis investigates the capability of LLMs to understand and extract structured
information from crash narratives in the field of traffic safety. Specifically, we focus
on evaluating LLMs’ ability to answer domain-specific categorical questions such
as:

• What is the vehicle’s direction of travel?

• What is the manner of collision?

• What is the crash type of the vehicle?

The thesis uses the published dataset CISS, which contains both free-text ac-
cident summaries and corresponding structured annotations. This dual modality
enables direct comparison between LLMs’ predictions and ground truth labels. To
comprehensively assess LLMs’ performance, we compare different prompt engi-
neering methods and fine-tuned models across multiple tasks. We examine the
consistency, accuracy, and limitations of different open-source LLMs (e.g., Qwen,
LLaMA) when applied to structured information extraction from crash narratives.

The intended contributions of this thesis can be outlined as follows:
Prompt engineering for crash information extraction. We propose to

formulate crash classification tasks as structured question-answering problems
and design a domain-specific prompting strategy. This method is intended to
supports zero-shot and few-shot inference and enables the extraction of categorical
information (e.g., crash type, manner of collision, direction of travel) directly from
unstructured crash narratives.

Automated extraction of implicit crash information. We aim to investi-
gate whether large language models can deduce complex crash characteristics that
are not directly stated in narratives, drawing upon domain knowledge and reasoning
about vehicle interaction patterns and collision dynamics. This direction seeks to
reduce the necessity of manual examination of crash summaries and to facilitate
automated information processing that traditionally required expert analysis.

Parameter-efficient fine-tuning of LLMs for traffic domain adaption.
We plan to apply LoRA-based fine-tuning to open-source LLMs on a small annotated
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crash dataset. This approach is intended to allow effective domain adaptation while
significantly reducing the number of trainable parameters.

Empirical validation and performance analysis. We intend to conduct
comparative evaluations to determine whether smaller fine-tuned LLMs can outper-
form much larger models in accuracy and macro F1-score. We also aim to analyze
model overfitting behaviour and practical deployment considerations using the
CISS dataset, toward developing a scalable LLM-based framework for structured
information extraction in traffic safety applications.

1.5 Related Works

1.5.1 LLM applications in traffic safety analysis
The application of Large Language Models to crash narrative analysis has emerged
as a promising research direction. Mumtarin et al. conducted a comparative
evaluation of ChatGPT, BARD, and GPT-4 on 100 crash narratives, investigating
their ability to answer safety-related questions including at-fault determination,
manner of collision, and work-zone identification [19]. Their findings revealed
varying performance across different types of questions, with higher similarity
among LLMs for binary responses (96% and 89%) compared to complex reasoning
tasks (35% for manner of collision).

Recent approaches have leveraged advanced prompting strategies for improved
performance. CrashSage introduced tabular-to-text transformation strategies paired
with relational data integration, demonstrating superior performance when fine-
tuning LLaMA3-8B for crash severity inference [17].

Beyond classification, LLMs have also been applied to detect underreported
or miscoded crash factors. Arteaga and Park introduced a large language model
framework to uncover underreporting in traffic crash narratives, extending beyond
specific factors to a broader range of inconsistently coded attributes [20]. This
work highlights the potential of LLM-based approaches to enhance data quality by
systematically detecting information that is missing or inaccurately recorded in
structured crash databases.

1.5.2 Information extraction techniques and prompting
strategies

Earlier studies on crash narratives used traditional machine learning classifiers,
including multinomial naive Bayes, logistic regression, support vector machines,
and recurrent neural networks [24]. More recently, transformer-based encoders
such as BERT have been used to classify severity or contributing factors from
narratives, establishing strong baselines for narrative-driven crash analysis [25].
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This line of research created the groundwork for leveraging instruction-tuned LLMs,
which extend narrative analysis beyond classification to more detailed information
extraction.

Advanced prompting techniques have shown significant improvements over
baseline approaches. Zero-shot and few-shot prompting provide direct baselines,
while Chain-of-Thought prompting has demonstrated effectiveness in reasoning-
intensive tasks by encouraging step-by-step problem decomposition [26]. Self-
consistency techniques extend CoT prompting by generating multiple reasoning
paths and selecting the most consistent answer through majority voting [27]. These
methods are particularly relevant for crash reports, where reasoning often involves
multiple vehicles and ambiguous references.

Parameter-efficient fine-tuning techniques, particularly Low-Rank Adaptation
(LoRA), have gained prominence for domain adaptation while significantly reducing
trainable parameters [23]. Extensions that target all linear layers, rather than
just attention blocks, have shown improved adaptation quality and are directly
applicable when adapting open-source LLMs to traffic safety domains.

1.5.3 Gap analysis and contributions
While existing work has demonstrated the potential of LLMs for crash narrative
analysis, several gaps remain. Most studies have focused on closed-source mod-
els with limited evaluation of open-source alternatives that offer greater privacy
protection [19]. Additionally, few works have systematically compared advanced
prompting techniques and parameter-efficient fine-tuning approaches on the same
dataset.

Moreover, limited research has addressed the structured extraction of directional
attributes, crash configuration, and manner of collision, despite their critical
importance for accurate crash reconstruction.

The present work addresses these gaps by: (1) systematically comparing open-
source LLMs using controlled prompting strategies, (2) evaluating both prompting
approaches and parameter-efficient fine-tuning on the same dataset and (3) pro-
viding detailed performance analysis across different crash complexity levels. This
approach contributes to understanding the trade-offs between different modelling
strategies for safety-critical information extraction tasks.
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Chapter 2

Methods

2.1 CISS dataset
This project utilizes crash data from the Crash Investigation Sampling System
(CISS), gathered by the U.S. National Highway Traffic Safety Administration
(NHTSA) from 2016 to 2023 [2]. The CISS is a probability-based, nationally
representative sampling technique that concentrates on police-reported collisions
involving a minimum of one towed passenger vehicle, including automobiles, light
trucks, SUVs, and vans.

CISS comprises traffic accident records collected from 2017 to 2023, with ap-
proximately 3,700 cases per year and collects crash data from 32 geographically
diverse investigation sites (main sampling units), chosen to reflect variations in
geography, population, traffic exposure, and crash characteristics. Certified crash
technicians perform detailed investigations, collecting scene evidence (such as skid
marks and vehicle damage), conducting vehicle inspections, interviewing occupants
and witnesses, and reviewing medical records. Identifiable information, such as
names, addresses, or specific crash locations, is excluded to maintain confidentiality.

The CISS database comprises about 39 relational tables1, each describing a
specific aspect of a crash, for example, CRASH, VEHICLE, PERSON, and AIRBAG, which
contain structured variables such as crash severity, environmental conditions, and
injury outcomes, together with the SUMMARY field in the COLLISION table that
provides free-text narratives detailing the sequence of events, vehicle movements,
and contextual factors, and which serves as the primary source for our NLP tasks.

This research examines the subset of CISS cases from 2017 to 2022, consisting

1The number and columns of tables in CISS are changing as the data-collection process is
continuously updated. For instance, the dataset of year 2017 did not include the VPICDECODE
table.
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of 17,459 crash investigations. Each year comprises around 2,900 cases, with
SUMMARY texts ranging from short single-sentence comments to complex multi-
sentence narratives.

This dataset poses both problems and opportunities: the relational schema
guarantees consistency and statistical representativeness; however, the SUMMARY
text is unstructured but richly informative. This is particularly appropriate for
investigating how LLMs (LLMs) and deep learning methodologies may derive
structured crash details, such as vehicle initial movement direction, manner of
collision, or crash configurations from narrative descriptions.

2.1.1 Dataset analysis

Number of vehicles per case

The number of vehicles implicated in a collision ranges significantly, indicating that
the predominant majority of police-reported accidents consist of either single-vehicle
occurrences or two-vehicle collisions. Table 2.1 presents the distribution identified
in the dataset. As anticipated, the majority of collisions involve either a single
vehicle (6,078 cases) or two cars (9,607 cases), whereas multi-vehicle collisions
involving three or more vehicles are rather few. Only a small number of extreme
cases, involving up to fourteen vehicles, are present in the dataset. This distribution
aligns with traffic safety study findings, indicating that single and particularly two-
vehicle collisions [28] compose the predominant portion of national crash statistics
[29]. Although infrequent, multi-vehicle collisions remain crucial because they are
linked to complex crash dynamics and more severe injuries.

Table 2.1: Distribution of crashes by number of vehicles involved.

Vehicles per crash Number of cases

1 6078
2 9607
3 1422
4 263
5 55
6 22
7 7
8 4
14 1
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Summary length statistics

The length of the SUMMARY narratives varies considerably, from concise one sentence
descriptions to detailed multi-sentence accounts. Table 2.2 reports descriptive
statistics (in characters) computed over all 17,459 summaries. The average narrative
length is 356 characters, with a minimum of 60 and a maximum of 1,601 characters.
This variability reflects the diversity of crash scenarios and the discretion of crash
investigators in recording details.

The observed skewed distribution is typical of free-text crash reports and aligns
with prior studies showing that narrative length often correlates with crash com-
plexity: shorter notes are more common in simple rear-end or single-vehicle crashes,
while longer narratives are used for multi-vehicle crashes or those requiring detailed
contextual explanation. From a natural language processing perspective, this
variation implies that models must handle both very short and relatively long
narratives without losing contextual meaning [30, 31].

Table 2.2: Descriptive statistics of SUMMARY field lengths (characters).

Statistic Value

Count 17459
Minimum 60
Maximum 1601
Mean 356.62

Implications for NLP analysis

The descriptive characteristics of the dataset have direct implications for subse-
quent modeling. In particular, the predominance of single and two-vehicle crashes
highlights the need to design evaluation subsets that are balanced, in order to avoid
biasing results toward simpler cases. At the same time, the variability in narrative
length highlights the importance of identify appropriate context windows for LLMs
and of designing prompts capable of capturing essential insights even from sparse
descriptions. In addition, since longer narratives often involve more vehicles, they
are more likely to contain ambiguities and overlapping references, highlighting the
need for structured extraction methods [32].
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2.2 Manual subset annotation

2.2.1 Motivation
To obtain a reliable gold standard for evaluation, we constructed a manually
annotated subset of 1 000 crash narratives from CISS. Manual labeling is necessary
for the first task of identifying the travel direction of the vehicles involved in the
crash because these data are not available as structured fields in CISS and require
contextual interpretation of the SUMMARY text. This annotated subset provides the
ground truth against which different NLP models and LLMs are evaluated. The
decision to annotate 1 000 cases balances two constraints: ensuring a sufficiently
large sample to enable meaningful model evaluation and comparison, while keeping
the manual effort manageable for a single annotator [33].

2.2.2 Sampling design
Reasons

Since the number of vehicles per crash varies widely (see Table 2.1), a simple
random sample would have overrepresented common one- and two-vehicle cases
and underrepresented rare multi-vehicle scenarios. To address this, we adopted a
stratified sampling design, where cases were grouped by the number of vehicles
mentioned in the narrative and sampled proportionally within each group. Stratified
sampling is a widely recommended technique in traffic crash data analysis to ensure
representative and unbiased samples, as supported by recent studies emphasizing
careful sampling to improve model training and evaluation [33].

Threshold for rare cases

From the observed distribution (Section 2.1.1), categories with ≤ 55 cases (cor-
responding to crashes involving five or more vehicles) were considered rare. This
threshold corresponds to approximately 0.5% of the dataset. All rare cases were
included entirely in the sample to guarantee representation of high-order crashes.
Previous research [34] has shown that, although infrequent, accidents involving mul-
tiple vehicles are often associated with more serious injuries and complex dynamics,
making their inclusion methodologically important.

Proportional allocation

For the more frequent categories (one- to four-vehicle crashes), cases were sampled
in proportion to their relative frequency in the dataset. Before computing the
allocation, the vehicle-count distribution was verified to sum to the full dataset size
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(17 459 cases), ensuring complete coverage of all records. The sampling proportion
was then defined as

proportion = 1000 − Nrare

Ncommon
,

where Nrare is the total number of cases in rare strata (i.e., categories with
≤ 55 cases) and Ncommon is the total number of cases in common strata. Using
the observed counts (Ntot = 17 459, Nrare = 89, Ncommon = 17 370), this yields
p ≈ 0.0524 (5.24%). This proportionality ensured that the annotated subset
preserved the same relative distribution of common crash types as in the full
dataset.

After applying this allocation, small discrepancies caused by integer rounding
were corrected by distributing the remaining cases across the largest categories
in a round-robin manner (i.e., assigning them one by one in a cyclic sequence
across categories) until the final sample size reached exactly 1 000. This procedure
ensured both the coverage of rare categories and the statistical representativeness
of common ones. A fixed random seed (42) guaranteed reproducibility.

Ntot = 17 459
Verify: distribution sums to Ntot

Nrare = 89
(all included)

Ncommon = 17 370
(1–4 vehicles)

Target sample = 1 000 Remaining quota
= 1 000 − 89 = 911

p = 1000 − Nrare

Ncommon

= 911
17 370 ≈ 0.0524 (5.24%)
Apply proportionally

within common categories

Round to integers Round-robin adjustment
distribute residuals cyclically

Final stratified sample
= 1 000 cases

Figure 2.1: Computation of the sampling proportion and adjustment to obtain a
stratified sample of 1 000 cases.
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Implementation

The entire sampling pipeline was scripted in Python. A simplified excerpt of the
logic is shown below:

# Compute proportional fraction
proportion = (1000 - sum_rare_cases) / sum_common_cases

def calc_sample(row):
if row["cases_count"] <= rare_threshold:

return row["cases_count"] # include all rare cases
else:

return max(1, int(row["cases_count"] * proportion))

# Distribute remaining quota in round-robin among frequent categories
while difference > 0 and len(big_cats_idx) > 0:

vc_counts.at[big_cats_idx[i], "sample_to_take"] += 1
difference -= 1
i = (i + 1) % len(big_cats_idx)

The final sample of 1,000 cases was exported in both CSV and XLSX formats,
chosen for their compatibility with standard data processing libraries (e.g., pandas
DataFrames).

2.2.3 From narrative to vehicle-count categories
Because the SUMMARY field is written in natural language, the number of vehicles
per case was estimated using a set of robust, case-insensitive regular expression
patterns. These included:

• explicit identifiers (vehicle 1, vehicle #2, v1, unit 3);

• coordinated mentions (vehicles 1 and 2, v1 and v2, or lists such as v1,
v2, v3);

• number words (vehicle one/two/three, up to ten).

Mentions were normalized to numeric identifiers and deduplicated at the case level,
yielding the variable vehicle_count_extracted. As a conservative fallback, if no
explicit identifier was found but the narrative contained the token “vehicle,” a
single-vehicle count was assigned.
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2.2.4 Annotation guidelines
All labels in this subset were produced manually by the authors, following explicit
task-specific guidelines:

1. Focus exclusively on the initial travel direction of each vehicle.

2. Prefer explicit textual cues (e.g., “northbound”) over inferred information.

3. When only orientation is described (e.g., “facing north” while parked), assign
unknown.

4. If the description is ambiguous or inconsistent, assign unknown.

5. In collisions involving parked vehicles without explicit direction, assign
unknown.

These guidelines emphasize explicitness and reproducibility, consistent with best
practices in crash data annotation [35]. 2

2.2.5 Auxiliary regex baseline
For a lightweight, interpretable point of comparison, we implemented a rule-based
extractor. For each detected vehicle ID (V1, V2, ...), the algorithm searched a small
token window around its mention for direction keywords (north, south, east, west,
and their “-bound” variants). Bound forms were normalized to cardinal directions
by stripping suffixes. The function returned a JSON-style map (e.g., {V1: east,
V2: unknown, ...}). This baseline is not a substitute for human annotations
and is expected to miss paraphrases or non-canonical phrasing. Its role was limited
to serving as an auxiliary [33].

The implementation defined a set of 16 canonical direction terms, covering both
cardinal points and their “-bound” variants:

direction_words = [
"north", "south", "east", "west",
"northeast", "northwest", "southeast", "southwest",
"northbound", "southbound", "eastbound", "westbound",
"northeastbound", "northwestbound",
"southeastbound", "southwestbound"

]

2If multiple annotators were involved in future work, inter-annotator agreement measures (e.g.,
Cohen’s κ) would be recommended to quantify consistency.
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For each vehicle mention, the algorithm searched for a direction word within a
context window of five tokens following or preceding the vehicle identifier. Matches
were then normalized (e.g., “northbound” → “north”). The core matching logic
can be summarized as:

# Search after vehicle mention
rf"\b{vehicle_id}\b((?:\W+\w+){0,5})\W+{direction_pattern}"

# Search before vehicle mention
rf"{direction_pattern}((?:\W+\w+){0,5})\W+\b{vehicle_id}\b"

This heuristic approach allowed attaching an automatically derived direction to
each detected vehicle, which was stored in auxiliary columns of the exported subset.
While not intended as a substitute for manual annotation, this baseline provides
a transparent rule-based benchmark for evaluating the added value of LLMs and
supervised models.

2.2.6 Reproducibility
The entire process of vehicle extraction, stratified sampling, annotation, and export
was automated through reproducible scripts:

• All random operations were seeded (random_state=42);

• Outputs were stored in open formats (CSV, XLSX) for direct integration with
analysis pipelines;

• Regex-derived directions were stored as auxiliary columns for optional com-
parison, but were not used as gold annotations.

2.2.7 Role of the annotated subset
The manually annotated dataset of 1 000 cases serves as the gold standard for
evaluation in this work [31]. It allows for consistent comparisons across approaches:
(i) Large Language Models (LLMs) under various prompting techniques and (ii) a
fine-tuned BERT model. For the latter, the same 1 000 annotated cases were also
used for training: the dataset was split into training, validation, and test subsets
to support fine-tuning and evaluation. Since all methods are tested on the same
cases, their performance can be directly compared, giving clear insights into the
strengths and weaknesses of each approach.

Recent research shows that accuracy alone does not always match expert judg-
ment [31]. Bhagat et al. found that some models with high accuracy had lower
agreement with expert labels, while LLMs aligned better with expert opinions even
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if their accuracy was lower. This demonstrates how important manually annotated
expert datasets are as reference standards. They ensure model results capture
subtle details and context that experts consider when studying crash reports.

Inter-rater reliability metrics

Metrics like Cohen’s Kappa are well-known tools to measure agreement between
annotators or between an annotator and a model. However, since this study used
a single annotator, we did not apply these metrics.

Still, Cohen’s Kappa plays an important role in assessing annotation consistency,
especially when multiple annotators are involved or when checking how well models
match expert views [36]. Future work could use such metrics to better measure
annotation quality and model agreement, improving how NLP models for crash
reports can be trusted and understood.

2.3 Approaches to vehicle direction extraction
The first objective of this work is to extract, from free-text crash narratives in the
CISS dataset, (i) the set of vehicles explicitly mentioned in each case and (ii) the
corresponding initial travel direction of each vehicle. This task is challenging
because the information is not provided as structured fields in CISS but must
instead be inferred from investigator-authored descriptions, which often include
heterogeneous linguistic styles, varying levels of detail, and occasional ambiguity.

To address this challenge, we designed a comprehensive evaluation framework
that combines Large Language Models (LLMs) with three fine-tuned NLP models.
These supervised models provide a controlled point of comparison against general-
purpose LLMs, allowing us to assess the trade-offs between compact, task-specific
architectures and larger, instruction-tuned models.

The subsequent subsections describe the methodology in detail, covering: the
selection and deployment of LLMs, inference configuration, prompt engineering
strategies, robustness mechanisms for structured output, and the supervised fine-
tuning of smaller NLP models for comparison. This structured approach allows us
to investigate both the capabilities and the limitations of general-purpose LLMs
relative to more traditional, task-specific models.

2.3.1 Overview of the LLM evaluation framework
To systematically evaluate the ability of LLMs to extract structured information
from crash narratives, we developed a modular and reproducible evaluation frame-
work. The system was implemented in Python and organized into four main
components: (i) configuration management, to control experimental parameters
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and ensure consistency across runs; (ii) input/output utilities, to standardize data
ingestion and export; (iii) LLM interaction handlers, to interface with different
models under controlled inference settings; and (iv) execution orchestration, which
coordinates the end-to-end workflow and enables scalability to large datasets. This
modular design facilitates maintainability, reproducibility, and transparent experi-
mentation, aligning with established best practices for reproducible NLP research
[37].

2.3.2 Model selection and justification
In designing the LLM evaluation framework, an important methodological decision
concerned whether to rely on closed-source commercial models or open-source
alternatives. We deliberately selected open-source models, as they provide full
control over inference parameters, ensure data privacy by avoiding external API
calls, support reproducibility through versioned local deployments, and reduce costs.
These aspects are essential in a research setting, where consistent experimental
conditions and methodological transparency must be guaranteed [38, 39].

For this task, three state-of-the-art open models were chosen to represent comple-
mentary strengths: Mistral 7B-Instruct [40], an instruction-tuned model optimized
for efficiency and robust task adherence; DeepSeek-R1 8B [41], a reasoning-oriented
architecture designed to handle analytical tasks with improved step-by-step con-
sistency; and Qwen3 8B [42], a multilingual model with strong contextual under-
standing. Together, these models capture different design philosophies and allow
us to evaluate the extraction task under varied inductive biases.

We restricted the selection to models in the 7–8B parameter range. This
choice was motivated by methodological considerations. The extraction of vehicle
mentions and initial travel directions from crash summaries constitutes a focused
information retrieval problem: although the narratives are human-written, the
linguistic variability is bounded and does not require the full capacity of very
large models such as GPT-4 or others with 70B parameters or more. By selecting
models in this intermediate range, we balance efficiency with sufficient expressive
power, while also enabling a controlled comparison against smaller fine-tuned
transformer baselines (BERT, RoBERTa, SciBERT). This design makes it possible
to systematically assess the trade-offs between compact, task-specific architectures
and larger, general-purpose LLMs.

2.3.3 Overview of selected LLMs
The three selected models represent distinct architectural philosophies and training
approaches.

Mistral 7B-Instruct [40] is a 7-billion-parameter language model designed for
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efficiency and strong instruction-following behavior. The suffix Instruct indicates
that the base model has been fine-tuned with supervised and preference-based
datasets to follow natural language instructions, making it better aligned with
downstream tasks such as information extraction. Architecturally, Mistral intro-
duces two key innovations: grouped-query attention (GQA), which accelerates
inference by reducing redundant key-value computations, and sliding window at-
tention (SWA), which enables handling sequences of arbitrary length with linear
complexity relative to context size. These innovations allow Mistral 7B to outper-
form LLaMA 2 13B across all evaluated benchmarks, and even LLaMA 1 34B in
reasoning, mathematics, and code generation tasks. Released under the Apache
2.0 license, Mistral represents the efficiency-oriented end of the design spectrum.

Qwen3 8B [42] introduces a unified framework that integrates both thinking
mode (for complex, multi-step reasoning) and non-thinking mode (for rapid, context-
driven responses), thereby eliminating the need to switch between specialized models
depending on task type. A central novelty is the thinking budget mechanism, which
adaptively allocates computational resources during inference, balancing latency
and performance based on task complexity. Compared to its predecessor, Qwen3
significantly expands multilingual support, covering 119 languages (versus 29 in
Qwen2), and demonstrates strong performance in both reasoning-heavy and general-
purpose tasks.

DeepSeek-R1 8B [41] represents a novel approach to reasoning-focused lan-
guage modeling. Unlike conventional LLMs that rely heavily on supervised fine-
tuning or instruction data, DeepSeek-R1 is trained primarily through large-scale
reinforcement learning (RL) without initial supervised pre-training. This paradigm
allows reasoning skills to emerge naturally, yielding strong step-by-step reasoning
capabilities. Empirical results reported in the release show performance comparable
to OpenAI’s o1-1217 on reasoning benchmarks. However, the authors highlight
that the RL-based development introduces challenges such as variability in output
formatting and language consistency, requiring careful handling in downstream
applications.

Together, these models highlight three complementary philosophies: efficiency-
focused instruction tuning (Mistral), unified multilingual reasoning with adaptive
inference (Qwen3), and reinforcement learning–driven reasoning specialization
(DeepSeek-R1) providing a diverse testbed for the vehicle direction extraction task.

2.3.4 Inference configuration
In this study, inference denotes the process of producing structured predictions
(vehicle identifiers and initial travel directions) from unstructured crash narratives,
conditioned on a fixed prompt and a controlled decoding configuration. Since
generation parameters strongly affect model behavior, inference was carried out
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Table 2.3: Technical specifications of selected LLMs

Specification Mistral 7B-Instruct Qwen3 8B DeepSeek-R1 8B

Parameters 7.3B 8B 8B
Architecture GQA + SWA Dense/MoE hybrid RL-optimized
Context Window Standard 128K Standard
Training Method SFT + Instruct Multi-stage + Budget Pure RL
Reasoning Capability General Adaptive Specialized
Inference Speed Optimized Adaptive Standard
Multilingual Yes 119 languages Yes
Primary Use Case Efficiency Versatility Complex reasoning
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under standardized decoding settings tailored to each model while ensuring cross-
model comparability. The chosen configurations are summarized in Table 2.4.

Table 2.4: Decoding parameters used during inference for each selected LLM.

Model Temperature Top-p Top-k Repeat
Penalty

Mistral 7B-Instruct 0.7 Default Default Default
Qwen3 8B (thinking mode) 0.6 0.9 20 1.05
DeepSeek-R1 8B 0.6 Default Default Default

Note: In this table, Default refers to Ollama’s standard parameters. For our experiments, when
not specified, we used: temperature = 0.3 (standard inference) and 0.7 (self-consistency),
top_p = 0.8, top_k = 20, repeat_penalty = 1.05.

The main decoding parameters are briefly defined as follows. The temperature
regulates sampling randomness: lower values promote deterministic, conservative
outputs, whereas higher values increase diversity. The top-k parameter limits
sampling to the k most probable tokens at each step, reducing the likelihood of
generating nonsensical outputs. The top-p parameter (nucleus sampling) restricts
sampling to the smallest set of tokens whose cumulative probability mass exceeds
p, balancing diversity and coherence [43]. Finally, the repeat penalty controls
how strongly repeated tokens are penalized: higher values discourage repetition,
while lower values make the model more permissive.

All three models considered in this study are instruction-tuned variants, meaning
that they have been optimized to better follow natural language prompts and
produce task-oriented outputs. Instruction tuning has been shown to improve
reliability in user-defined tasks, particularly in scenarios requiring structured
information extraction [5]. This property is especially relevant here, as the objective
is to transform free-text crash narratives into consistent JSON representations of
vehicle travel directions.3

Overview of selected NLP models

In addition to evaluating general-purpose Large Language Models (LLMs), this work
employed three transformer-based baselines that were fine-tuned specifically for the

3Although all models are released in an instruction-tuned form, their approaches differ: Mistral
7B-Instruct applies supervised fine-tuning and preference optimization; Qwen3 8B adopts a
multi-stage framework that integrates “thinking” and “non-thinking” modes; and DeepSeek-R1
relies primarily on reinforcement learning, where instruction-following behavior emerges from the
training dynamics.
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vehicle direction extraction task: BERT, RoBERTa, and SciBERT. These models
represent compact yet widely adopted architectures in natural language processing,
offering strong performance in supervised settings while being computationally
efficient compared to large instruction-tuned LLMs. The selection of these particular
models enables a comprehensive evaluation across different pretraining paradigms
and domain specializations within the transformer family.

BERT (Bidirectional Encoder Representations from Transformers)
introduced a paradigm shift in language representation learning through its bidi-
rectional training approach [4]. Unlike previous models that processed text in a
left-to-right or combined left-to-right and right-to-left manner, BERT employs a
masked language model (MLM) objective that enables deep bidirectional repre-
sentations by randomly masking tokens and predicting them based on both left
and right context. The model architecture consists of a multi-layer bidirectional
Transformer encoder, with the base version (BERT-Base) containing 12 transformer
blocks, 768 hidden dimensions, 12 attention heads, and approximately 110 million
parameters. BERT was pretrained on BooksCorpus (800M words) and English
Wikipedia (2.5B words), providing broad coverage of general English language
patterns [4]. The model’s bidirectional nature is particularly relevant for crash
narrative analysis, where directional information may be distributed throughout a
sentence and require comprehensive contextual understanding.

RoBERTa (Robustly Optimized BERT Pretraining Approach) builds
upon BERT’s architecture while addressing several pretraining limitations through
systematic optimization [44]. Key improvements include: (i) removing the Next
Sentence Prediction (NSP) task, which was found to be unnecessary and potentially
harmful; (ii) training on longer sequences and larger batches; (iii) using dynamic
masking rather than static masking during pretraining; and (iv) employing a
substantially larger and more diverse training corpus. RoBERTa was trained on
over 160GB of text data, including the original BERT corpus plus CC-NEWS,
OPENWEBTEXT, and STORIES datasets, totaling approximately 160GB of
uncompressed text. These optimizations resulted in consistent improvements
over BERT across various downstream tasks, with particular gains in reading
comprehension and natural language inference [44]. For crash narrative analysis,
RoBERTa’s more robust pretraining may provide better generalization to the
diverse linguistic styles encountered in investigator-authored reports.

SciBERT addresses the domain gap between general language corpora and
scientific text by pretraining specifically on scientific publications [45]. The model
maintains the same architecture as BERT-Base but was trained from scratch on a
corpus of 1.14 million full-text scientific papers from Semantic Scholar, spanning
computer science and biomedical domains. This specialized pretraining resulted in
a scientific vocabulary that better covers technical terminology and domain-specific
linguistic patterns. Importantly, SciBERT uses a custom WordPiece vocabulary
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derived from the scientific corpus rather than the general-domain vocabulary used
by BERT, enabling more effective tokenization of scientific terms. Experimental
results demonstrated SciBERT’s superiority over BERT on various scientific text
processing tasks, including named entity recognition, relation classification, and
dependency parsing in biomedical and computer science texts [45]. Although crash
narratives differ from typical scientific literature, they share certain characteristics
with technical writing, including specialized terminology, abbreviated forms, and
structured reporting patterns that may benefit from SciBERT’s domain-adapted
representations.

There are many reasons for including these three models. First, they provide
controlled benchmarks for assessing the trade-offs between task-specific fine-tuning
on limited labeled data versus zero-/few-shot prompting (Section 2.4.2) with large
instruction-tuned models. This comparison is crucial for understanding when
domain-specific adaptation outweighs the benefits of general-purpose reasoning
capabilities. Second, their different pretraining corpora enable investigation into
how domain coverage and vocabulary specialization influence extraction accuracy in
crash narrative analysis. The progression from general English (BERT) to optimized
general training (RoBERTa) to domain-specific scientific text (SciBERT) provides
insights into the importance of training data composition for specialized tasks.
Third, these models represent different points on the accuracy-efficiency trade-
off curve, with their compact size (110M parameters each) offering significantly
faster inference compared to billion-parameter LLMs while maintaining competitive
performance in supervised settings.

By fine-tuning each model on the manually annotated subset of 1,000 crash
narratives using identical training procedures, we establish controlled supervised
baselines that complement the LLM evaluation. This design enables quantification
of the advantages and limitations of instruction-tuned, general-purpose models
compared to smaller, domain-adapted transformers, providing insights relevant
to both research and practical deployment considerations in safety-critical text
analysis applications.

2.4 Prompt engineering strategies

Prompt engineering represents a critical component for effectively aligning Large
Language Models (LLMs) with domain-specific tasks [46]. For this study, we imple-
mented a template-based system that enables dynamic prompt generation, ensuring
that accident narratives are processed consistently within the same structural
framework, taking into account the specific contextual variations of each case. The
prompting strategies adopted in this work are grounded in established paradigms
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documented in the literature, particularly drawing from recent comprehensive sur-
veys that systematize the current state of prompt engineering methodologies [46].
This section details the specific approaches employed to optimize LLM performance
for crash narrative analysis and structured information extraction.

SUMMARY Input

Prompt Engineering

Instruction

Context
LLM

Pre-trained model
Structured Output

Figure 2.2: Overview of the prompt engineering pipeline. The prompt is composed
of two parts: an Instruction (task specification) and a Context (e.g., few-shot
demonstrations or schema hints); the LLM then produces a structured output.

2.4.1 Dynamic prompt generation
To maintain consistency, all prompts were generated from predefined templates.
Each template contained placeholders for case-specific information (e.g., the crash
SUMMARY), which were dynamically injected during runtime. This approach reduces
formatting errors and ensures reproducibility across different models and prompting
techniques.

2.4.2 Prompting techniques
In this study, we employed three representative prompting strategies: zero-shot,
few-shot, and chain-of-thought, selected because they capture the most influential
approaches reported in recent work [7, 26, 27]. In addition, we briefly explored
self-consistency with one model as an extension of CoT prompting.

Zero-shot prompting

Zero-shot prompting represents the most direct application of pretrained LLMs
and has been described as a paradigm shift in how these models are leveraged
[8]. In this approach, the model is given only a natural language task description
without any labeled examples or task-specific fine-tuning and must rely entirely on
its pre-existing knowledge acquired during large-scale pretraining. The technique
gained prominence with GPT-3, which demonstrated that sufficiently large models
can generalize to novel tasks through carefully crafted instructions alone [7].

In the context of crash narrative analysis, zero-shot prompting consists of directly
instructing the model to identify vehicles and extract their initial travel directions
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from unstructured investigator-authored text. This setting provides a baseline to
assess the model’s inherent ability to generalize to specialized information extraction
tasks without any domain-specific demonstrations. While the approach is simple
and avoids prompt-length overhead, it is also more sensitive to ambiguous phrasing
compared to prompting strategies that incorporate illustrative examples.

1 You are a precise traffic accident analyst . Extract the initial
travel directions of vehicles mentioned in the crash summary .

2
3 IMPORTANT : Only include vehicles that are explicitly mentioned in

the text. Do NOT add vehicles that are not present .
4
5 DIRECTIONS : Use only these values :
6 - "north", "south", "east", "west", " northeast ", " northwest ", "

southeast ", " southwest ", " unknown "
7
8 RULES:
9 - If direction is explicitly stated , use it

10 - If direction can be inferred from context , infer it
11 - If completely unclear , use " unknown "
12 - If only one vehicle is mentioned , output only V1
13 - If no vehicles are found , return empty JSON: {}
14 - Return ONLY valid JSON , no explanations
15
16 REQUIRED OUTPUT FORMAT :
17 {
18 "V1": " direction "
19 }
20
21 OR (if multiple vehicles exist):
22 {
23 "V1": " direction ",
24 "V2": " direction "
25 }
26
27 CRASH SUMMARY : V1 traveling west on highway departed roadway right

, drove through ditch and contacted its frontal plane on the
ditchs culvert .

Note: This template was kept consistent across models to ensure comparability.
The zero-shot setting is particularly important in this study because it evaluates
whether a model is capable of generalizing the extraction task without relying on
contextualized examples, thus reflecting its intrinsic abilities to follow instructions
and reason.
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Few-shot prompting

Few-shot prompting enhances model performance by leveraging in-context learning:
a small number of labeled input–output examples are embedded directly into the
prompt, enabling the model to imitate patterns without parameter updates [7,
47]. This technique addresses the limitations of zero-shot prompting by offering
concrete demonstrations, which previous studies show can substantially improve
accuracy on complex reasoning and classification tasks.

In our implementation, representative crash summaries with annotated vehicle
directions were inserted before the target case. To ensure coverage, we manually
selected four examples spanning different levels of complexity: (i) a single vehicle
with explicit direction, (ii) two vehicles interacting at an intersection, (iii) a case
where no explicit direction was provided (annotated as unknown), and (iv) a multi-
vehicle case mixing explicit and unknown directions.4

Despite its effectiveness, few-shot prompting introduces certain challenges: the
inclusion of examples increases prompt length, which can consume valuable context
window space; model behavior may be sensitive to the specific examples chosen; and
biases toward frequently occurring patterns may persist. In our case, the relatively
short length of CISS crash summaries makes this approach computationally feasible
while still benefiting from the added structure that demonstrations provide.

The examples were included in the prompt exactly as shown below:

1 Example 1
2 Summary : "V1 was traveling in an easterly direction on a

designated
3 north/south divided trafficway ( median strip without positive

barrier )
4 in lane 2 (of two lanes), when it departed the road on the left

and was
5 then returned to the road from the left. Control over V1 was lost ,

and V1
6 rotated clockwise as it departed the road on the right , where it

then
7 overturned 4 quarter turns , leading left. V1 came to rest on its

wheels
8 facing a southwesterly direction on the roadside ."
9 Output : {"V1": "east"}

10
11 Example 2
12 Summary : "V1 was traveling east approaching an intersection . V2

was

4Examples were manually curated to capture typical narrative patterns rather than chosen at
random, balancing representativeness with clarity.
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13 traveling south toward the same intersection . Both vehicles
entered the

14 intersection and the front of V1 impacted the right side of V2."
15 Output : {"V1": "east", "V2": "south"}
16
17 Example 3
18 Summary : "V1 drove off the right side of the roadway and impacted

2
19 trees with the front plane and then a tree impacted the

undercarriage ."
20 Output : {"V1": " unknown "}
21
22 Example 4
23 Summary : " Vehicle #1 was traveling south. Vehicle #2 was traveling

east.
24 Both vehicles entered an intersection and the front plane of V2

contacted
25 the right plane of V1. An unknown plane of either V1 or V2

contacted an
26 unknown plane of V3 , which was traveling in an unknown direction ,

and
27 left the scene."
28 Output : {"V1": "south", "V2": "east", "V3": " unknown "}

These demonstrations were concatenated with the task instruction and followed
by the new unseen summary, ensuring that the model could infer the correct JSON
output format by analogy with the provided examples.

Chain-of-thought prompting

Chain-of-thought (CoT) prompting addresses the reasoning limitations of large
language models by encouraging the generation of intermediate reasoning steps
before producing final answers [26]. This technique facilitates coherent and step-
by-step reasoning processes, guiding models through logical reasoning chains that
result in more structured and thoughtful responses compared to direct answer
generation. CoT prompting has demonstrated particular effectiveness in multi-
step reasoning tasks and scenarios requiring disambiguation, where the explicit
reasoning process helps maintain logical consistency [46]. Applied to crash narrative
analysis, Chain of Thought prompts instruct the model to decompose the extraction
task into sequential steps: first identifying all vehicles explicitly mentioned in the
narrative, then analyzing movement patterns and directional indicators for each
vehicle, and finally outputting the normalized directions in the required JSON
format. This structured approach mirrors human analytical processes and ensures
transparency in the model’s decision-making process, which is particularly valuable
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in safety-critical applications where interpretability is essential.
1 TASK:
2 1. Read the crash summary carefully .
3 2. Identify all vehicles mentioned .
4 3. For each vehicle , reason step by step about its initial

movement .
5 4. Write down clues from the text , perform the inference , and only

then output the final JSON.
6
7 Crash summary :
8 "V1 traveling west on highway departed roadway right , drove

through ditch
9 and contacted its frontal plane on the ditch ’s culvert ."

10
11 Step -by -step reasoning :
12 Vehicles found: V1
13 Direction clues: "V1 traveling west"
14 Inference : V1 initial direction is west
15
16 Final JSON output :
17 {
18 "V1": "west"
19 }

Note: The general schema (allowed directions, JSON format, and rules for explic-
it/implicit extraction) was the same as in the zero-shot and few-shot settings. The
only difference was the explicit request for step-by-step reasoning before the final
structured output. The reasoning steps shown here illustrate the expected model
behavior, but were not included as part of the actual prompt input.

Self-consistency

Self-consistency extends CoT prompting by leveraging multiple reasoning paths
to improve the reliability and robustness of model predictions [27]. Instead of
relying on a single reasoning chain, the model generates diverse outputs under
stochastic decoding (e.g., higher temperature), and the most frequent final answer
is selected through majority voting. This approach exploits the observation that
correct solutions to reasoning tasks often emerge consistently across multiple paths,
whereas incorrect reasoning tends to diverge. As a result, self-consistency has been
shown to substantially improve accuracy on reasoning benchmarks compared to
single-path generation [46].

In this study, self-consistency was explored only with the Mistral 7B-Instruct
model. Multiple responses were sampled at elevated temperature, normalized into
valid JSON format, and aggregated using a frequency-based consensus rule. The
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final prediction corresponded to the most common structured output, with the
consensus ratio serving as a confidence indicator.

In practice, we generated SELF_CONSISTENCY_SAMPLES = 5 independent out-
puts at an elevated decoding temperature (SELF_CONSISTENCY_TEMPERATURE =
0.7). This configuration was chosen as a balance between computational efficiency
and sufficient diversity of reasoning paths: five samples provided enough variation
to identify stable consensus patterns while keeping runtime overhead manageable.
Although applied in a limited setting, this technique proved particularly valuable
for handling ambiguous crash narratives, where relying on a single reasoning chain
could otherwise lead to inconsistent extractions.

Example prompt The snippet below illustrates the self-consistency prompt
template used in our experiments. The task formulation explicitly requests repeated
reasoning, internal verification, and strict JSON-formatted output:

1 [INST]
2 Extract vehicle initial travel directions from the crash

summary below by carefully analyzing to ensure consistent
and accurate results .

3
4 IMPORTANT : Only include vehicles explicitly mentioned in the

text. DO NOT add vehicles that are not present .
5
6 TASK:
7 1. Read the crash summary multiple times ...
8 ...
9 After careful multiple reviews and consistency checks , my

confident final output is:
10 [/ INST]

Implementation Self-consistency was implemented in Python. Multiple outputs
were sampled for each case and aggregated through a frequency-based consensus
rule. A simplified excerpt is shown below:

1 def query_model_self_consistency (summary , n_samples =5):
2 responses = []
3 for i in range( n_samples ):
4 raw_response = ollama .chat(
5 model=MODEL_NAME ,
6 messages =[{"role": "user", " content ": get_prompt

( summary )}],
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7 options ={" temperature ":
SELF_CONSISTENCY_TEMPERATURE , "top_p": 0.9}

8 )[" message "][" content "]
9 parsed = parse_json_response ( raw_response )

10 if parsed :
11 responses . append (json.dumps(parsed , sort_keys =

True))
12 # Majority voting
13 counter = Counter ( responses )
14 most_common , count = counter . most_common (1) [0]
15 confidence = count / len( responses )
16 return json.loads( most_common ), confidence

This procedure outputs both the consensus prediction and a confidence score
defined as the proportion of samples agreeing on the final result.

Prompt + Summary

Sample #1 (temp ↑)

Sample #2 (temp ↑)

Sample #3 (temp ↑)

Sample #4 (temp ↑)

Sample #5 (temp ↑)

Parse & Normalize
(valid JSON?)

Parse & Normalize
(valid JSON?)

Parse & Normalize
(valid JSON?)

Parse & Normalize
(valid JSON?)

Parse & Normalize
(valid JSON?)

Majority Vote
(frequency over identical JSONs)

Final JSON + Confidence
c = consensus

samples

Figure 2.3: Self-consistency decoding. Five stochastic samples are parsed and
normalized into JSON,
aggregated by majority vote, and returned as a final structured output with a
confidence ratio.

Model-specific prompt syntax

While the logical structure of prompts was kept consistent across models, minor
syntax adaptations were required to conform to model-specific instruction formats.
For instance, Mistral requires prompts to be wrapped with [INST] ... [/INST],
DeepSeek-R1 uses the special <think>...</think> tokens to elicit reasoning, and
Qwen3 supports a dual-mode prompting strategy (“thinking” vs. “non-thinking”).
These adjustments ensured compatibility with each model’s expected input format,
while preserving task comparability.

2.4.3 Reasons for strategy selection
The combination of zero-shot, few-shot, and CoT covers the most prominent
paradigms in prompt engineering [46]. Together, they span a spectrum from direct
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task specification to structured reasoning with uncertainty reduction, providing
a comprehensive evaluation of how prompting techniques affect extraction perfor-
mance in safety-critical text analysis tasks since these techniques are particularly
suited for crash narrative analysis, where linguistic variability, domain-specific
terminology, and ambiguous descriptions require different levels of guidance and
reasoning support.

2.5 LLMs’ output postprocessing

2.5.1 Motivation

When prompted to generate JSON, Large Language Models (LLMs) often produce
outputs that are partially malformed (e.g., unbalanced braces, duplicate keys,
trailing commas) or include explanatory text. Simply discarding these cases would
reduce the dataset size, introduce bias into the evaluation sample, and waste
computational effort. To mitigate these issues, we implemented two complementary
normalization strategies:

1. Strategy A (valid-only): a conservative baseline that retains only well-
formed JSON objects;

2. Strategy B (raw-response recovery): a more inclusive pipeline that
attempts to repair or reconstruct outputs from malformed responses.

Both tracks impose a standardized key and schema format, enabling direct compa-
rability across models and prompting strategies.

2.5.2 Common step: ingestion and inspection

All input files were stored as JSON lists with one entry per crash case, including
a unique identifier (case_id), the model’s predicted directions, the raw textual
response, and a Boolean flag (valid) marking whether the output could be parsed
as JSON. Table 2.5 summarizes the fraction of valid versus invalid responses across
models and prompting strategies, while Listings 2.5.2 and 2.5.2 illustrate typical
examples of valid and invalid records. This diagnostic stage is common to both
strategies and provides the baseline statistics used to guide subsequent processing.
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Table 2.5: Validity of LLM outputs after initial parsing. The table reports the
number of valid JSON responses retained and the resulting success rate.

Model Prompting strat-
egy

Valid count Success rate

Qwen3 8B Few-shot 1000 100.0%
Qwen3 8B Zero-shot 999 99.9%
Qwen3 8B Chain-of-thought 1000 100.0%
DeepSeek-R1 8B Chain-of-thought 1000 100.0%
DeepSeek-R1 8B Zero-shot 914 91.4%
DeepSeek-R1 8B Few-shot 916 91.6%
Mistral 7B-Instruct Zero-shot 996 99.6%
Mistral 7B-Instruct Few-shot 997 99.7%
Mistral 7B-Instruct Chain-of-thought 991 99.1%

Note. Each model was evaluated on 1,000 cases; the valid count indicates how many predictions
could be parsed directly as JSON.

Example of a valid JSON record

1 {
2 " case_id ": 26987,
3 " directions ": {
4 "V1": "north",
5 "V2": " unknown "
6 },
7 " raw_response ": " {\n \"V1\":\" north \",\n \"V2\":\" unknown

\"\n }",
8 "valid": true
9 }

Example of an invalid JSON record

1 {
2 " case_id ": 24415,
3 " directions ": {},
4 " raw_response ": " {\n \"V1\":\" southwest \",\n \"V1\":\"

unknown \" // since it rotated counterclockwise , but direction
after rotation is unknown \n }",

5 "valid": false
6 }
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2.5.3 Strategy A: valid-only records
This conservative baseline discards all invalid entries and retains only those flagged
with valid=true. Essential fields (case_id, directions, and raw_response) are
extracted, and vehicle identifiers are normalized to a canonical format (V1, V2,
. . . ). This ensures consistency across models and comparability with transformer
baselines.

The main advantage of this approach is transparency: the evaluation parameters
reflect only well-formulated predictions without any intervention. The trade-off
is a reduced sample size, as results containing even minor formatting errors are
excluded.

2.5.4 Strategy B: raw-response recovery
This more inclusive approach attempts to repair malformed results, thereby in-
creasing the number of usable cases. Recovery is performed on records marked as
invalid, using a cascade of progressively more tolerant parsers:

1. try to extract the largest valid JSON block from the text;

2. fix simple format errors such as extra commas or brackets;

3. if that fails, attempt parsing with more permissive decoders
(e.g., ast.literal_eval);

4. as a last resort, rebuild a minimal JSON object from detected key–value pairs.

JSON extraction from raw responses

1 def extract_json_from_raw_response ( raw_response ):
2 """ Recover JSON from raw LLM output ."""
3 if not raw_response or not isinstance ( raw_response , str):
4 return None
5
6 text = raw_response .strip ()
7
8 # 1. Extract after </think > if present
9 match = re. search (r" </think >\s*(.+)$", text , re. DOTALL )

10 json_candidate = match.group (1).strip () if match else text
11
12 # 2. Regex to find JSON -like blocks
13 patterns = [r" \{[^{}]*(?:\{[^{}]*\}[^{}]*) *\}", r" \{[^}]+\} "]
14 potential = []
15 for p in patterns :
16 potential . extend (re. findall (p, json_candidate , re. DOTALL ))
17
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18 for js in reversed ( potential ):
19 try:
20 return json.loads(js)
21 except :
22 pass
23 try:
24 return ast. literal_eval (js)
25 except :
26 pass
27 try:
28 fixed = re.sub(r" ,\s*}", "}", js)
29 fixed = re.sub(r" ,\s*]", "]", fixed)
30 fixed = fixed. replace ("’", ’"’)
31 return json.loads(fixed)
32 except :
33 pass
34
35 # 3. Fallback : extract key -value pairs
36 matches = re. findall (r’"([^"]+) ":\s *"([^"]+) "’, json_candidate

)
37 if matches :
38 return dict( matches )
39 return None

Normalization of vehicle keys

Recovered objects are normalized according to the same scheme as Strategy A (e.g.,
#1, vehicle 1, or plain numbers) to a consistent format (V1, V2, . . . ).

1 def normalize_vehicle_keys ( directions_dict ):
2 """ Standardize vehicle identifiers to V1 , V2 , ... """
3 if not isinstance ( directions_dict , dict):
4 return directions_dict
5
6 normalized = {}
7 for key , direction in directions_dict .items ():
8 key_str = str(key).strip ()
9 patterns = [

10 r"^#(\d+)$", r"^V(\d+)$",
11 r"^ vehicle \s*(\d+)$", r"^(\d+)$"
12 ]
13 number = None
14 for p in patterns :
15 match = re.match(p, key_str , re. IGNORECASE )
16 if match:
17 number = match.group (1)
18 break
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19 if number :
20 normalized [f"V{ number }"] = direction
21 else:
22 normalized [key] = direction
23 return normalized

2.5.5 Final datasets for evaluation
Both strategies produce standardized datasets that serve as direct input to the
evaluation framework. In the valid-only version, malformed outputs are treated
as errors, so evaluation is conducted over all 1 000 cases with invalid responses
counted as incorrect predictions. In contrast, the clean+recovered version integrates
successfully repaired outputs into a unified dataset, thereby increasing effective
coverage while preserving schema consistency.

In the following chapter, we evaluate the performance of both versions of the
model systematically, highlighting how the choice of post-processing strategy affects
accuracy estimates and model comparisons.

2.6 Fine-tuning of transformer-based models
To provide a supervised benchmark against which to evaluate Large Language Mod-
els (LLMs), we fine-tuned three transformer-based architectures BERT, RoBERTa,
and SciBERT on the manually annotated corpus. The models were selected to
cover complementary pretraining regimes: general English corpora (BERT), an
optimized large-scale variant (RoBERTa), and scientific-domain text (SciBERT).
Fine-tuning adapts each backbone to the task of vehicle direction analysis, offering
a point of comparison with zero-/few-shot LLM prompting.

2.6.1 Architecture and task approach
We adopted a dual-model design that separates incident understanding into two
specialized classifiers:

1. Vehicle Count Model: multi-class sequence classifier predicting how many
vehicles are involved in the incident summary. For the Vehicle Count Model,
crash-level annotations were aggregated so that each incident corresponded to
a single training example labeled with the total number of vehicles involved.
To avoid sparsity from rare extreme cases, incidents with more than eight
vehicles were grouped into a single category labeled “8+”.
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2. Vehicle Direction Model: per-vehicle sequence classifier predicting the
initial travel direction; the label set comprises nine classes: {north, south,
east, west, northeast, northwest, southeast, southwest, unknown}.

Decomposing the problem reduces label-space complexity, allows task-specific
optimization (hyperparameters, loss emphasis), and improves interpretability by
decoupling crash-level and vehicle-level predictions.

2.6.2 Base models

We instantiated three pretrained backbones:

• BERT-base-uncased [4] (general-domain baseline).

• RoBERTa-base [44] (optimized training dynamics, larger corpora).

• SciBERT (allenai/scibert_scivocab_uncased) [45] (scientific-domain
pretraining with domain-specific vocabulary).

We initially fine-tuned BERT as the baseline backbone model for vehicle direc-
tion extraction. Building on this starting point, we extended the analysis by
incorporating RoBERTa and SciBERT, enabling ablation studies and comparative
evaluation. This progression allowed us to test whether differences in pretraining
corpora: general-domain (BERT), optimized large-scale training (RoBERTa), and
scientific-domain (SciBERT) would translate into performance differences on crash
narratives.

2.6.3 Dataset preparation

Data preprocessing: per-vehicle expansion

Before fine-tuning transformer baselines, the manually annotated crash dataset was
transformed into a vehicle-level representation through a dedicated preprocessing
pipeline. This step was essential to align the data format with sequence classification
tasks, where each training instance corresponds to a single input–output pair.

Input data structure The manually annotated corpus comprised 1 000 crash
cases and 2 106 vehicle-level records. Each case included a free-text SUMMARY, the
case identifier (CASEID), and ground-truth annotations encoded as a dictionary
mapping vehicles (e.g., V1, V2) to their initial travel directions.
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Parsing and normalization Since manual annotations contained occasional
inconsistencies, a fault-tolerant two-stage parsing mechanism was developed:

• Primary parsing: standard ast.literal_eval() for well-formed dictionar-
ies.

• Fallback parsing: regex-based correction for missing quotation marks or
minor syntax errors.

• Normalization: all labels converted to lowercase, with special cases (e.g.,
none) mapped to unknown.

Vehicle-level expansion Each crash case was expanded into multiple rows,
one per vehicle–direction pair, while preserving the complete narrative. The
transformation produced a dataset with the following schema:

• case_id: original crash identifier (traceability).

• vehicle_summary: full crash description (BERT input).

• vehicle_id: vehicle identifier (e.g., V1, V2).

• direction_label: normalized ground-truth direction (classification target).

• vehicles_involved: total vehicle count in the crash (contextual metadata).

Advantages This design offered three key benefits:

1. Context preservation: each vehicle record retains the full crash narrative,
enabling the model to leverage inter-vehicle relationships.

2. Balanced representation: every vehicle contributes equally to training,
regardless of case size.

3. Robustness: inconsistent annotations are gracefully handled, ensuring no
case is discarded due to parsing errors.

Fine-tuning dataset split

Case vs.vehicle-level construction. For the Vehicle Count Model, records
were aggregated at the incident level (one row per CASEID); cases with more than 8
vehicles were mapped to the class 8+. The resulting distribution reflects real-world
exposure patterns, with approximately 82.3% of cases involving 1–2 vehicles.

For the Vehicle Direction Model, we maintained granularity at vehicle level : each
pair (CASEID, vehicle_id) produces a training instance with its corresponding
direction label.
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Input formatting (prompt-style templates) To make the classification ob-
jectives explicit to the backbone models, inputs were modeled minimally:

• Count task:

"How many vehicles are involved in this incident?
[SUMMARY]"

• Direction task:

"Direction of [vehicle_id]? [SUMMARY]"

This instruction-like format preserved the entire narrative while providing clear
guidance on the tasks to be performed.

Train/validation split An 85/15 stratified train–validation split was applied
with a fixed random seed (42).

• Stratification criterion: target labels (vehicle counts for the count task;
9-way direction labels for the direction task).

• Motivation: to preserve that rare cases such as crashes involving more than
four vehicles or uncommon direction categories were still represented in both
splits, reducing the tendency of the models to overfit on the frequent single
and two vehicle cases.

Tokenization The preprocessed vehicle-level data were handled using the pandas
library [48] and then converted into the input format expected by the Hugging
Face Transformers API [49]. All text inputs were tokenized with the pretrained
tokenizer of each backbone model, using padding and truncation to fixed sequence
lengths:

• Count task: max sequence length 512.

• Direction task: max sequence length 256.

2.6.4 Training configuration
Training used PyTorch [50] and Hugging Face Transformers [51]. Unless otherwise
noted, we used AdamW with linear learning-rate scheduling and weight decay [52].
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Learning rate strategy

The learning rate was selected within the standard fine-tuning range for BERT-like
models (1e-5 to 5e-5) as recommended in [4]. Distinct values were adopted for the
two tasks:

• Vehicle Count Model: 2e-5, conservative to ensure stability in the simpler
4-class problem.

• Direction Model: 3e-5, slightly higher to accelerate convergence in the more
challenging 9-class setting.

Training duration

The Vehicle Count Model was trained for 4 epochs, while the Direction Model
required 8 epochs. The latter’s extended training was motivated by its higher class
cardinality, semantic granularity (e.g., distinguishing “northeast” vs. “east”), and
the presence of imbalanced categories (particularly the unknown class).

Warmup and regularization

Linear warmup (50 steps for count; 100 steps for direction) was introduced to
prevent early divergence, covering roughly 5–10% of the training schedule. A
weight decay coefficient of 0.01 provided L2 regularization, improving validation
performance by ∼3% compared to runs without regularization.

Batch size and sequence length

Empirical testing on 16GB GPUs established batch size 16 as optimal, following
established best practices for transformer fine-tuning under memory constraints [4,
53]:

• Batch size 32: out-of-memory errors at 512 tokens

• Batch size 8: stable but 40% slower training with negligible performance gains

• Batch size 16: efficient GPU utilization (∼14GB) with stable gradient estima-
tion

For sequence length, we adopted differentiated configurations based on task-
specific requirements. The vehicle count model uses 512 tokens to capture complete
crash summaries, while the direction model employs 256 tokens, as directional cues
typically appear in shorter textual spans near vehicle mentions. This differentiation
balances computational efficiency with task-specific information needs.
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2.6.5 Model training procedure

Both tasks were trained using the Hugging Face Trainer class with training
arguments configured for epoch-based evaluation and model saving:

1 training_args = TrainingArguments (
2 output_dir =output_dir ,
3 eval_strategy ="epoch",
4 save_strategy ="epoch",
5 load_best_model_at_end =True ,
6 metric_for_best_model =" eval_accuracy ", # or " eval_f1_macro "

for direction
7 # ... other parameters
8 )

The classification head was added to the pre-trained model through
AutoModelForSequenceClassification, with explicit label mappings:

1 model = AutoModelForSequenceClassification . from_pretrained (
2 model_name ,
3 num_labels =num_labels ,
4 id2label =id2label ,
5 label2id = label2id
6 )

Metrics

Custom metrics ensured evaluation on both overall and class-balanced performance:

1 def compute_metrics ( eval_pred ):
2 logits , labels = eval_pred
3 preds = np. argmax (logits , axis =1)
4 return {
5 " accuracy ": accuracy_score (labels , preds),
6 " f1_weighted ": f1_score (labels , preds , average =" weighted ")

,
7 " f1_macro ": f1_score (labels , preds , average ="macro")
8 }

Accuracy was the selection metric for the Vehicle Count Model, while the
Direction Model used macro F1-score to avoid overfitting to dominant classes.

39



Methods

Monitoring

Logging frequency was adjusted to dataset size: every 20 steps for the count task
(850 training examples) and every 50 for the direction task (1790 examples). This
enabled early anomaly detection (e.g., gradient explosion, stagnation).

Convergence dynamics

Training curves exhibited distinct behaviors across the two models:
• Vehicle Count Model: converged rapidly within a few epochs, consistent

with the relative simplicity of the four-class prediction task.

• Direction Model: required longer training to achieve stable performance,
reflecting the higher complexity of the nine-class classification setting.

2.6.6 Combined inference pipeline
For end-to-end analysis we implemented a sequential pipeline:

1. Predict the number of vehicles with the Vehicle Count Model.

2. For each predicted vehicle (if the count equals 8+, process 8 vehicles), query
the Vehicle Direction Model using the vehicle-aware template.

3. Aggregate predictions into a JSON object and attach classifier confidence
scores for downstream use.

The modular design facilitates independent debugging and ablation studies (e.g.,
evaluating a single stage or swapping backbone architectures).

2.6.7 Model persistence and reproducibility
Models and tokenizers were saved via save_pretrained(), including weights,
tokenizer configuration, and label mappings. A JSON manifest recorded training
metadata (hyperparameters, seeds, metrics, and timestamps). Fixed seeds across
NumPy, PyTorch, and Hugging Face Transformers ensured reproducibility of all
experiments.

2.6.8 Validation
Evaluation was carried out on a held-out 15% validation split with strict case-level
separation to avoid data leakage. Performance assessment relied on both aggregate
metrics (accuracy, F1) and per-class reports (precision, recall, F1). This ensured
that validation captured overall correctness while also highlighting class-specific
behavior, particularly for minority categories.
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2.6.9 Metrics

Following established best practices in NLP evaluation, we report a comprehensive
set of metrics [54, 55].

Accuracy measures the overall correctness of the model by calculating the
proportion of correct predictions over all predictions:

Accuracy = TP + TN

TP + TN + FP + FN

This metric provides a general overview of model performance but can be
misleading in imbalanced datasets where one class significantly outnumbers others.

Recall (also known as sensitivity or true positive rate) quantifies the model’s
ability to correctly identify all positive instances within the dataset:

Recall = TP

TP + FN

High recall indicates that the model successfully captures most of the actual
positive cases, minimizing false negatives. This is particularly important in crash
analysis where missing critical events (false negatives) can have serious safety
implications.

F1-score represents the harmonic mean of precision and recall, providing a
balanced measure that accounts for both false positives and false negatives:

F1 = 2 × Precision × Recall
Precision + Recall

where Precision is defined as:

Precision = TP

TP + FP

so we can simplify F1-score as:

F1 = 2 × TP
2 × TP + FP + FN

The F1-score is especially valuable when dealing with imbalanced crash datasets,
as it provides a single metric that balances the trade-off between precision and
recall. In these formulas, TP represents true positives, TN true negatives, FP
false positives, and FN false negatives.
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2.6.10 Summary

The fine-tuning of BERT, RoBERTa, and SciBERT provided supervised base-
lines for the vehicle direction extraction task. These models establish a point of
comparison for the subsequent evaluation of larger LLMs, highlighting method-
ological trade-offs between compact, task-specific transformers and general-purpose
instruction-tuned models. Their inclusion ensures that performance differences
can be attributed not only to model scale but also to training paradigm, thereby
strengthening the comparative analysis presented later.

2.7 Fine-tuning based information extraction

LLMs are effective for text-to-table transformation, converting unstructured crash
narratives into structured fields [56]. While recent traffic-safety studies can extract
explicitly stated details [57], reasoning-intensive variables remain challenging due
to limited crash-specific knowledge and the prohibitive cost of full-model training.
We address this by adopting parameter-efficient fine-tuning with LoRA [23] on
open-source LLMs using an annotated crash dataset, injecting domain knowledge
at low compute/memory cost and enabling safer, more controllable deployment
than closed-source APIs. Our method targets two high-value variables that support
surveillance, risk assessment, and countermeasure design: (i) manner of collision,
a reasoning task over event sequences and interacting agents; and (ii) crash type, a
fine-grained classification with approximately 100 categories.

2.7.1 Dataset

CISS dataset includes not only SUMMARY, but also structured case coding
such as MANCOLL (manner of collision) and CRASHTYPE (crash type), which
is technician-determined [58]. In the CISS dataset, MANCOLL is not directly
annotated but rather derived through rule-based mapping from other variables,
including OBJECT CONTACTED in table EVENT as well as CRASHTYPE and
TRANSPORT in table GV. The resulting classification consists of seven categories
as shown in Table 2.6, one of which corresponds to unknown.
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Table 2.6: Class definitions for the MANCOLL task.

Label ID MANCOLL

0 Not Collision with Vehicle in Transport
1 Rear-End
2 Head-On
4 Angle
5 Sideswipe, Same Direction
6 Sideswipe, Opposite Direction
9 Unknown

The CRASHTYPE is a numeric value derived through a two-step process:
first by selecting the Crash Category (CRASHCAT) and Crash Configuration
(CRASHCONF) in the GV table (as illustrated in Figure 2.4), and then by the
crash technician’s assessment based on police reports, scene inspections, vehicle
inspections, and interviews. This two-step procedure, from crash category to crash
configuration and finally to crash type, is preferred because it provides a more
structured and interpretable way to visualize crash scenarios.
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Figure 2.4: Hierarchical mapping of CRASHTYPE classification systems.

2.7.2 Task definition
To evaluate the capability of LLMs in deriving accurate information that requires
deep inference directly from unstructured text, this project adopts the CISS dataset
as a case study. We focus on analyzing the crash narratives (the SUMMARY column
in the CRASH table) to infer structured collision-type information. Specifically,
our goal is to identify the manner of collision for each crash and the crash type for
all vehicles involved in a crash.
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For the first task, we are interested in assigning the manner of collision based
solely on the textual description of the crash (i.e., SUMMARY column in the
CRASH table), without using any structured metadata. It require deep-reasoning
beyond explicitly stated facts. We use the MANCOLL column in CRASH as ground
truth labels.

For the second task, we want to extract the crash type for each vehicle in a
crash. Unlike MANCOLL, which involves only seven classes, CRASHTYPE is
considerably more challenging, encompassing nearly 100 fine-grained categories.
To make this problem more tractable, we exploit the hierarchical taxonomy illus-
trated in Figure 2.4 and decompose the task into 13 smaller classification subtasks
based on CRASHCONF. All subtasks are addressed within a single model. Since
CRASHCAT and CRASHCONF classifications are relatively straightforward5, we
treat CRASHCONF as oracle knowledge and concentrate our analysis on the more
difficult CRASHTYPE classification.

2.7.3 Workflow

Figure 2.5: The figure illustrates the fine-tuning process.

Our overall framework is illustrated in Figure 2.5. We reformulate the informa-
tion extraction task as a classification problem by prompting the LLM to output

5The CRASHCAT classification is very similar to MANCOLL, consisting of only six categories.
After completing the first task, we found the two tasks highly overlapping and therefore did not
pursue CRASHCAT further. The CRASHCONF categories are derived from CRASHCAT, with
each CRASHCAT corresponding to only 1–3 CRASHCONF classes, making it a relatively simple
classification task as well.
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a predefined label rather than free-form text. Crash summaries and their corre-
sponding labels in CISS are used to construct prompt–answer pairs, which serve as
training samples for a LoRA adapter while keeping the base LLM frozen. During
the fine-tuning stage, we employ prompt engineering methods to construct task
introductions, present rules that incorporate task-specific knowledge, and provide
clear instructions for the expected output. To achieve domain adaptation, we
adopt parameter-efficient LoRA fine-tuning, which reduces computational overhead
and accelerates training. In the inference stage, the fine-tuned model receives
a narrative-based prompt and directly generates the corresponding classification
result.

Prompt engineering

Prompt engineering is crucial for LLM performance, as subtle changes in wording
or structure can significantly affect accuracy. In domain-specific tasks like crash
narrative analysis, prompts must effectively embed domain knowledge to achieve
reliable predictions. We designed a structured instruction-style prompt with clearly
separated components. The prompt guides the model to understand the task,
learn domain-specific category definitions, follow exception rules, and apply them
to a given crash description. The full prompt can be divided into the following
components:

(1) Task Introduction. This part contains expert-verified definitions for each
category.
You are a helpful assistant that classifies vehicle collisions
into one of the following categories based on the description
provided. ...

(2) Clarification Rules. These clarification rules are derived from domain-specific
heuristics, codified through expert consultation and data observation. Some rules
were distilled from empirical insights obtained via manual inspection and a pilot
study over some training examples. In addition to incorporating task-specific
information into the prompts, we further enhance model performance by applying
a CoT [59] strategy. Specifically, the prompts are designed to decompose complex
reasoning tasks into step-by-step subproblems, thereby guiding the LLM to follow
an explicit reasoning trajectory before arriving at the final categorical prediction.

(3) Output Instruction. Due to the generative nature and hallucination ten-
dencies of LLMs, they may produce varied outputs even when the classification is
conceptually correct. For example, in cases of angle collisions, the model may return
"4", "angle", or free-form text such as "angled side impact". While semantically
correct, such variations cannot be reliably processed in batch pipelines. Therefore,
we explicitly instruct the model to focus solely on producing a valid class index
from the predefined label space by using the prompt blew.
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Only respond with a single number from the list above.
Do not add any explanation.
\end

\subsubsection*{Prompt in use: manner of collision}
As a concrete example, we reported the structured prompt used for the classification of the manner of collision. The prompt is designed according to the three components outlined above. The task introduction specifies the role of the model and provides expert-verified category definitions; the clarification rules encode domain heuristics (e.g., intersection-based disambiguation, chain reaction handling); the input summary placeholder is filled with the free-text crash description from CISS; and the output instruction forces the model to respond only with the index of the selected class. The full prompt used in this study is shown below:

\textbf{Task Introduction}
\begin{verbatim}
You are a helpful assistant that classifies vehicle collisions into one
of the following categories based on the description provided. Please
choose the most accurate collision type based on the definitions
and clarifications below:

Category Definitions (Expert Knowledge)

{{
0: "Not Collision with Vehicle in Transport - The vehicle did not
collide with another vehicle in motion.",
1: "Rear-End - The front of one vehicle strikes the rear of another
vehicle traveling in the same direction.",
2: "Head-On - The front ends of two vehicles traveling in opposite
directions collide.",
4: "Angle - The front of one vehicle strikes the side of another
at an angle (usually near intersections or crossing paths).",
5: "Sideswipe, Same Direction - Both vehicles are moving in the same
direction and **their sides make contact**",
6: "Sideswipe, Opposite Direction - Both vehicles are moving in
**opposite directions** and their **sides make contact**",
9: "Unknown - The manner of collision cannot be determined."

}}

Clarification Rules (special prompting instructions)

Clarification:
If the collision happens at or near an intersection, classify as 4.
If it does not occur near an intersection:
and both vehicles are traveling in the same direction, classify as 5.
and vehicles are traveling in opposite directions, classify as 6.
If the collision involves only one vehicle and a non-vehicle object
(e.g., animal, fence, tree), classify it as 0.
If no collision is described or it is unclear whether any impact occurred,
classify as 9.
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If multiple collisions occur (e.g., chain reaction), classify based on
the **first** collision described in the summary.

Input Summary (classification target)

\"\"\"{summary}\"\"\"

Output Instruction (task constraint)

Only respond with a single number from the list above.
Do not add any explanation.

Prompt in use: manner of collision

As a concrete example, we reported the structured prompt used for the classification
of the manner of collision. The prompt is designed according to the three compo-
nents outlined above. The task introduction specifies the role of the model and
provides expert-verified category definitions; the clarification rules encode domain
heuristics (e.g., intersection-based disambiguation, chain reaction handling); the
input summary placeholder is filled with the free-text crash description from CISS;
and the output instruction forces the model to respond only with the index of the
selected class. The full prompt used in this study is shown below:

Task Introduction

You are a helpful assistant that classifies vehicle collisions into one
of the following categories based on the description provided. Please
choose the most accurate collision type based on the definitions
and clarifications below:

Category Definitions (Expert Knowledge)

{{
0: "Not Collision with Vehicle in Transport - The vehicle did not
collide with another vehicle in motion.",
1: "Rear-End - The front of one vehicle strikes the rear of another
vehicle traveling in the same direction.",
2: "Head-On - The front ends of two vehicles traveling in opposite
directions collide.",
4: "Angle - The front of one vehicle strikes the side of another
at an angle (usually near intersections or crossing paths).",
5: "Sideswipe, Same Direction - Both vehicles are moving in the same
direction and **their sides make contact**",
6: "Sideswipe, Opposite Direction - Both vehicles are moving in
**opposite directions** and their **sides make contact**",
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9: "Unknown - The manner of collision cannot be determined."
}}

Clarification Rules (special prompting instructions)

Clarification:
If the collision happens at or near an intersection, classify as 4.
If it does not occur near an intersection:
and both vehicles are traveling in the same direction, classify as 5.
and vehicles are traveling in opposite directions, classify as 6.
If the collision involves only one vehicle and a non-vehicle object
(e.g., animal, fence, tree), classify it as 0.
If no collision is described or it is unclear whether any impact occurred,
classify as 9.
If multiple collisions occur (e.g., chain reaction), classify based on
the **first** collision described in the summary.

Input Summary (classification target)

\"\"\"{summary}\"\"\"

Output Instruction (task constraint)

Only respond with a single number from the list above.
Do not add any explanation.

Model and training
We evaluate several open-source large language models, including variants of
LLaMA and Qwen, using instruction-style prompts. All models are integrated via
the HuggingFace Transformers interface.

For model adaptation, we employ LoRA as our fine-tuning framework to effi-
ciently specialize LLMs for the classification task.

Table 2.7: LLM Adaptation and Inference Configuration for Crash Classification

Component Configuration

Base Models Qwen-7B (training + inference), LLaMA-70B (inference only)
Adaptation Method LoRA (Low-Rank Adaptation)
Training Framework PEFT (Parameter-Efficient Fine-Tuning)
Backend Library Hugging Face Transformers
Training Resource Qwen-7B: 1×A100 GPU
Inference Resource Qwen-7B: 1×A100 GPU; LLaMA-70B: 4×A100 GPUs
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We follow a standard few-shot setting, using a small set of labeled examples to
guide the model via in-context learning or LoRA-based fine-tuning.

LoRA adapter
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Figure 2.6: Prediction processes of the original LLM (top) and the LoRA fine-
tuned LLM (bottom). For the same input, the original model fails to produce the
correct answer, whereas the fine-tuned model adapts the LLM’s original weights
W by adding the product of low-rank matrices A and B, which alters the label
prediction probabilities and enables the correct output.

The foundation of modern LLMs is the Transformer architecture, whose core
component is the self-attention mechanism [60]. By scaling up this architecture to
billions of parameters and training on massive text corpora, LLMs acquire broad
linguistic and world knowledge. However, traffic-domain narratives (e.g., crash
reports, incident logs, work-zone descriptions) are underrepresented in such corpora,
so out-of-the-box LLMs struggle to capture domain-specific entities, relations, and
causal patterns critical for crash narrative analysis. To bridge this gap efficiently,
we adopt parameter-efficient fine-tuning by keeping the pretrained backbone frozen
and learning lightweight adapters specialized for traffic narratives.

Self-Attention Primer (Where Adaptation Can Act) Given a token se-
quence represented by hidden states X ∈ RT ×d, a single attention head computes

Q = XWQ, K = XWK , V = XWV ,
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where WQ, WK , WV ∈ Rd×k. The attention output is

Attention(Q, K, V ) = softmax
(

QK⊤
√

k

)
V, (2.1)

This decomposition exposes three linear projections, WQ, WK , WV , as natural
adaptation points. For traffic narratives, adjusting them helps the model align
with transportation-specific cues, and emphasize values relevant to causality.

LoRA for parameter-efficient domain adaptation Low-Rank Adaptation
(LoRA) [23] inserts trainable low-rank matrices into selected frozen projections so
that only a small number of parameters are updated. A comparison between the
original LLM and the LoRA fine-tuned LLM is illustrated in Figure 2.6. For a
target weight W ∈ Rd×k (e.g., one of WQ, WK or WV ), LoRA learns a low-rank
update

∆W = α

r
AB, A ∈ Rd×r, B ∈ Rr×k, r ≪ min(d, k),

and uses the adapted weight

W ′ = W + ∆W (2.2)

During fine-tuning, the large pretrained W is frozen and only A, B are trained.
This reduces trainable parameters from d × k to (d + k)r and lowers memory cost,
while preserving general linguistic competence. Crucially, because attention is
factorized into Q, K, V , placing LoRA on WQ/WK directly modulates the attention
weights in Equation (2.1), enabling the model to learn traffic-specific matching
patterns; placing LoRA on WV refines content aggregation and readout, improving
how incident attributes and causal chains are represented downstream. In our
implementation, we apply LoRA to all the query, value projection layers, and key
projection layers (WQ, WK and WV ) of the transformer blocks, which are empirically
found to be effective for language modeling tasks [61].

Loss function In our classification task, each crash description is assigned a label
corresponding to one of the predefined classes. To simplify the output, we encode
all class labels as single-token numeric identifiers using a dictionary mapping, as
shown in Table 2.6. Consequently, the model is trained to generate a single token
representing the class ID for each input.

We adopt the standard cross-entropy loss for training. Cross-entropy is well-
suited for this setting because it directly measures the divergence between the
predicted probability distribution over the vocabulary and the one-hot target
distribution [62], thereby encouraging the model to assign maximal probability to
the correct class token. Although only a single token is expected as output, the
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model still computes the loss over the entire vocabulary V, which is consistent with
the standard token-level formulation of autoregressive language models.

Formally, let x denote the input sequence (i.e., the crash summary), and let
y ∈ {0, 1, ..., k} be the target class index, where k is the total number of classes. At
the final decoding step, the LLM outputs a vocabulary-sized logit vector z ∈ R|V |.
The probability of generating the target class token is computed via the softmax
function:

P (y | x) = exp(zy)∑|V |
i=1 exp(zi)

(2.3)

The training objective is to minimize the negative log-likelihood of the correct
class token, which corresponds to the standard cross-entropy loss:

LCE = − log P (y | x) = − log
(

exp(zy)∑|V |
i=1 exp(zi)

)
(2.4)
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Results

In this section, we present the results of applying our models to crash narratives
from the CISS dataset. The problem was categorized into three task types according
to whether the target information is explicitly stated in the text and whether it
involves single or multiple entities. Specifically:

• Section 3.1 reports on travel direction extraction, where summaries may
contain multiple vehicles and the relevant information is explicitly expressed.

• Section 3.2 focuses on manner of collision classification, which involves a
single entity per summary and relies primarily on implicit cues.

• Section 3.3 addresses crash type classification, which combines both chal-
lenges: multiple entities per summary and implicit target information.

3.1 Travelling direction

3.1.1 Evaluation methodology
The entire manually annotated subset of 1,000 crash instances with corresponding
ground-truth labels was used to evaluate all LLMs (see Section 2.2). In contrast,
the transformer baselines (BERT, RoBERTa and SciBERT) could not be directly
evaluated on all 1,000 cases because they were tuned on the same annotated set.
Rather, they were compared with LLMs on the annotated validation split created
for the fine-tuning. Lastly, the transformer baselines were further applied to the
entire CISS dataset of 17.459 instances, which does not have full manual labeling,
in order to evaluate generalization at scale.

Evaluation therefore covers three complementary perspectives:
1. LLMs on annotated data: performance measured on the full set of 1,000

manually labeled cases.
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2. LLMs vs. transformers: comparison limited to the validation split of the
annotated subset.

3. Transformers on entire dataset: implementation of BERT models on the entire
CISS dataset (17,459 without ground-truth labels).

As for evaluation metrics, we rely on the standard definitions of accuracy, precision,
recall, and F1-score, as detailed in Section 2.6.9.

3.1.2 LLMs evaluation

Settings

Evaluation is divide in two different versions, mirroring the post–processing strate-
gies in Section 2.5:

• Valid-only: only valid JSON predictions are used, and invalid outputs are
counted as errors on the complete set of 1,000 cases.

• Valid and recovered: in addition to valid predictions, we include results
successfully recovered from malformed responses, increasing coverage.

For both configurations, we report metrics with two levels of detail: per vehicle
(percentage of vehicles with correctly predicted direction) and per case (a case is
correct only if all vehicles are correct).

Valid-only results

Per-vehicle metrics. Table 3.1 reports total accuracy (correct over all vehicles),
valid-only accuracy (excluding invalid/missing), and response rate (vehicles with a
valid prediction).
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Table 3.1: LLM performance in the valid-only setting at the per-vehicle level.

Model–Prompt Total
accuracy

Valid-only
accuracy

Response
rate

Mistral 7B — Zero-shot 0.680 0.714 0.953
Mistral 7B — Few-shot 0.680 0.709 0.960
Mistral 7B — CoT 0.789 0.832 0.948
DeepSeek-R1 8B — Zero-shot 0.811 0.910 0.892
DeepSeek-R1 8B — Few-shot 0.772 0.898 0.859
DeepSeek-R1 8B — CoT 0.877 0.903 0.972
Qwen3 8B — Zero-shot 0.887 0.894 0.992
Qwen3 8B — Few-shot 0.856 0.877 0.976
Qwen3 8B — CoT 0.915 0.921 0.993

Per-case metric Table 3.2 reports case accuracy. A case is counted as correct
only if all vehicles are predicted correctly.

Table 3.2: LLM performance in the valid-only setting at the per-case level.

Model–Prompt Case accuracy Correct cases

Mistral 7B — Zero-shot 0.576 576 / 1000
Mistral 7B — Few-shot 0.601 601 / 1000
Mistral 7B — CoT 0.743 743 / 1000
DeepSeek-R1 8B — Zero-shot 0.777 777 / 1000
DeepSeek-R1 8B — Few-shot 0.742 742 / 1000
DeepSeek-R1 8B — CoT 0.846 846 / 1000
Qwen3 8B — Zero-shot 0.844 844 / 1000
Qwen3 8B — Few-shot 0.829 829 / 1000
Qwen3 8B — CoT 0.895 895 / 1000

Accuracy vs. response rate Figure 3.1 illustrates how the accuracy of a vehicle
and the response rate are related for each model and prompt configuration. The
graph shows that there is a trade-off: models that are stricter about generating
valid JSON may be more accurate but cover fewer cases, while models that are
more consistent in their responses may be less accurate. For instance, DeepSeek-R1
(few-shot) demonstrates notable accuracy with valid outputs but exhibits a lower
response rate. Conversely, Qwen3 8B (CoT) achieves both elevated accuracy and
nearly full coverage, signifying enhanced robustness. This implies that evaluation
should take into account both dimensions, as a model with high accuracy but
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frequent invalid outputs is less practical in application.

Figure 3.1: Valid-only setting: vehicle-level accuracy versus response rate across
models and prompting strategies.

Interpretation of valid-only results The valid-only version represents a strin-
gent evaluation criterion, wherein incorrect JSON outputs are rejected and classified
as errors. In this context, three distinct patterns become evident.

Initially, prompting techniques significantly influence performance. In all models,
CoT prompting consistently increases both per-vehicle and per-case accuracy when
compared to zero-shot and few-shot prompting. Mistral 7B demonstrates an
improvement from 0.576–0.601 case accuracy under zero-/few-shot prompting
to 0.743 when applying CoT, signifying that sequential reasoning mitigates the
misinterpretation of narrative crash descriptions.

The architecture of the model affects its robustness. Both DeepSeek-R1 8B and
Qwen3 8B attain optimal results, with the latter demonstrating a vehicle accuracy
of up to 0.915 and a case accuracy of 0.895, alongside a response rate of 0.99.

Third, a trade-off exists between precision and coverage. As shown in Figure 3.1,
models exhibiting lower response rates (e.g., DeepSeek-R1 few-shot) attain ele-
vated valid-only accuracy when outputs are generated; however, total accuracy is
compromised due to the prevalence of invalid outputs.

Valid and recovered results

For completeness, we present the aggregate (per-vehicle / per-case) metrics for the
valid and recovered version. This method demonstrates performance after repair

55



Results

and incorporates recoverable faulty outputs, thus enhancing effective coverage and
preserving schema consistency.

Per-vehicle metrics Table 3.3 presents the per-vehicle outcomes in the
valid+recovered methodology. In the valid-only context, we provide (i) total
accuracy across all vehicles, (ii) valid-only accuracy limited to records with appli-
cable predictions, and (iii) response rate, which denotes the proportion of vehicles
for whom a prediction was retrievable.

Table 3.3: LLM performance in the valid+recovered approach at the per-vehicle
level.

Model–Prompt Total
Accuracy

Valid-only
Accuracy

Response
Rate

Mistral 7B — Zero-shot 0.682 0.714 0.955
Mistral 7B — Few-shot 0.681 0.708 0.961
Mistral 7B — CoT 0.793 0.829 0.957
DeepSeek-R1 8B — Zero-shot 0.881 0.914 0.964
DeepSeek-R1 8B — Few-shot 0.839 0.896 0.936
DeepSeek-R1 8B — CoT 0.877 0.903 0.972
Qwen3 8B — Zero-shot 0.887 0.894 0.992
Qwen3 8B — Few-shot 0.856 0.877 0.976
Qwen3 8B — CoT 0.915 0.921 0.993

Per-case metric Table 3.4 presents the case-level accuracy within the
valid+recovered context. A case is considered correct only if every vehicle is
predicted accurately, incorporating repaired predictions when recovery has been
successful.

3.1.3 LLMs vs. fine-tuned transformers
Context

This section compares the large language models with the fine-tuned transformer
baselines (BERT, RoBERTa, SciBERT; refer to Methods, Section 2.6) using the
manually annotated subset. The evaluation was conducted solely on the validation
split due to a limitation in our setup, as a portion of the 1,000 manually labeled
cases had already been utilized for training and testing during fine-tuning. All
fine-tuned models utilized a consistent train/validation/test partition, thereby
ensuring a fair comparison.
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Table 3.4: LLM performance in the valid and recovered setting at the per-case
level.

Model–Prompt Case Accuracy Correct Cases

Mistral 7B — Zero-shot 0.579 579 / 1000
Mistral 7B — Few-shot 0.602 602 / 1000
Mistral 7B — CoT 0.744 744 / 1000
DeepSeek-R1 8B — Zero-shot 0.856 856 / 1000
DeepSeek-R1 8B — Few-shot 0.809 809 / 1000
DeepSeek-R1 8B — CoT 0.846 846 / 1000
Qwen3 8B — Zero-shot 0.844 844 / 1000
Qwen3 8B — Few-shot 0.829 829 / 1000
Qwen3 8B — CoT 0.895 895 / 1000
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Fine-tuned transformers are expected to demonstrate superior performance
within their respective domains due to optimization on task-specific data. Large
language models can achieve comparable results even in the absence of supervised
training. This contrast underscores the trade-off between domain-specific models
and those with enhanced generalization capabilities.

BERT-family models setup

We initially imported the CSV files produced by the BERT models into dataframes
for preliminary analysis. Each output file initially comprised one row per case,
including a JSON-formatted field containing all vehicle-level predictions. This
structure was then modified to ensure that each vehicle and its associated expected
direction were represented as independent rows. Subsequent to this transformation,
we validated that all models included predictions for the identical 388 unique case
identifiers (those related to the validation set). This reorganization generated a
uniform, vehicle-level dataset for all models, facilitating further comparisons and
metric computations.

Table 3.5: Validation split over three BERT-family models. The table shows the
number of cases, JSON-parsed vehicle-level predictions, and vehicle distribution
per case.

Model Cases Vehicle-level records Vehicle distribution

BERT 388 990 1v: 88, 2v: 192, 3v: 34, 5v: 47,
6v: 17, 7v: 6, 8v: 3, 14v: 1

RoBERTa 388 955 1v: 88, 2v: 192, 3v: 29, 5v: 78,
7v: 1

SciBERT 388 943 1v: 88, 2v: 192, 3v: 35, 5v: 72,
7v: 1

The consolidated dataframe, resulting from the alignment of model predictions,
had a total of 1005 vehicle-level records, providing a uniform baseline for later
comparisons.

LLMs setup

In the LLMs dataframe, we included exclusively the outputs derived from the
processed raw JSON results, as delineated in Section 2.5.4. This guaranteed that
all predictions maintained to a uniform format, facilitating direct comparison with
the outputs of the BERT family.
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Data merging and preprocessing

To facilitate a direct comparison between the BERT family models and LLMs, the
two prediction dataframes were consolidated into a single unified dataset. Each row
represents a vehicle within a case, incorporating both the BERT-based prediction
and the LLM prediction for the vehicle’s driving direction. This was executed using
an inner join on case_id and vehicle_id, as illustrated below:

1 # Merge on common cases and vehicles
2 merged_df = pd.merge(
3 bert_dataframe ,
4 llm_dataframe ,
5 on=[" case_id ", " vehicle_id "],
6 how="inner",
7 )

Overall comparison of models

Table 3.6 indicates that the fine-tuned transformers established themselves as
highly effective supervised baselines, achieving accuracies ranging from 95% to
96%.RoBERTa achieved the highest performance at 95.9%, closely followed by
SciBERT at 95.8% and BERT at 94.9%. In LLMs, performance varied significantly
based on both the model employed and the prompting approach adopted.The
optimal configuration is Qwen3 8B utilizing CoT prompting (90.0% accuracy,
99.4% coverage), succeeded by the DeepSeek-R1 configurations (88-90%).Mistral
7B demonstrated accuracies between 67% and 80%, depending on the prompt
chosen.

Two observations can be made:

• Prompting strategy matters Chain-of-thought prompting showed greater
results across all LLMs, surpassing both zero-shot and few-shot techniques.
Specifically, few-shot prompting yielded inferior accuracy compared to zero-
shot prompting, both in this evaluation and in the prior assessment of the 1,000
manually labeled examples (Section 3.1.2). This outcome is likely associated
with the selection of examples: if the chosen “shots“ are unrepresentative,
overly complicated, or add ambiguity, they may confuse the model instead of
providing helpful guidance.

• LLMs remain competitive Despite the absence of fine-tuning, the highest-
performing LLMs neared the efficacy of transformers, with Qwen3 8B (CoT)
achieving 90.0%. The comparison exclusively included small LLMs, around 8
billion parameters. Larger variants of the same families (e.g., 30B, 70B, or

59



Results

higher) are available and may possibly produce even more significant results.
This highlights the efficacy of comprehensive pre-training for domain transfer,
especially in specialized activities such as incident narrative analysis.

Table 3.6: Accuracy and coverage for fine-tuned transformers and LLM variants.

Model–Prompt Accuracy Coverage

BERT 94.9% 95.0%
RoBERTa 95.9% 94.8%
SciBERT 95.8% 95.2%
Mistral 7B—Zero-shot 69.9% 93.1%
Mistral 7B—Few-shot 67.1% 94.6%
Mistral 7B—CoT 80.3% 93.8%
DeepSeek-R1 8B—Zero-shot 89.9% 94.7%
DeepSeek-R1 8B—Few-shot 87.8% 91.3%
DeepSeek-R1 8B—CoT 88.6% 96.1%
Qwen3 8B—Zero-shot 89.6% 98.3%
Qwen3 8B—Few-shot 85.7% 97.1%
Qwen3 8B—CoT 90.0% 99.4%

Table 3.7: F1-scores, precision, and recall (macro-averaged and weighted) for
fine-tuned transformers and LLM variants.

Model–Prompt Macro F1 Weighted F1 Macro Precision Macro Recall

BERT 89.2% 94.7% 92.6% 87.2%
RoBERTa 89.0% 95.9% 91.5% 87.0%
SciBERT 88.6% 95.7% 91.3% 86.5%
Mistral 7B—Zero-shot 14.8% 76.5% 15.4% 15.5%
Mistral 7B—Few-shot 34.9% 74.9% 38.3% 36.8%
Mistral 7B—CoT 15.4% 85.3% 16.2% 15.1%
DeepSeek-R1 8B—Zero-shot 52.3% 92.6% 53.9% 53.8%
DeepSeek-R1 8B—Few-shot 84.3% 91.0% 88.1% 86.2%
DeepSeek-R1 8B—CoT 77.1% 91.5% 79.8% 79.3%
Qwen3 8B—Zero-shot 80.1% 91.7% 80.7% 83.5%
Qwen3 8B—Few-shot 84.9% 89.2% 89.1% 86.8%
Qwen3 8B—CoT 78.9% 92.3% 81.1% 81.0%

Impact of prompting techniques

The efficacy of LLMs varies according to prompting methodologies. Figure 3.2
provides a performance heatmap that groups techniques and models together. This
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shows that some techniques work better than others in certain situations. As
previously stated, few-shot prompting achieved suboptimal results compared to
analogous zero-shot configurations across the majority of models.

Figure 3.2: LLM performance by prompting strategy across models.

Specific behavior based on direction

Figure 3.3 illustrates that basic cardinal directions are typically easier to identify,
whereas inter-cardinal classes and the category labeled “unknown“ present more
difficulties across various systems. This aligns with prior findings (Section 3.1.2)
and indicates that ambiguous or inadequately specified narratives are the primary
source of disagreement. Cases involving parked vehicles may have introduced
additional inconsistencies. In certain cases, the parking direction was explicitly
indicated; however, these cases were still labeled as “unknown” due to the vehicle’s
stationary status.
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Figure 3.3: Per-direction accuracy heatmap across models.

Statistical significance

Figure 3.4 presents the outcomes of McNemar’s test, which evaluated Qwen3 8B
(CoT) against the three fine-tuned BERT models. The left panel illustrates the
differences in accuracy, which are slight and consistently negative. This indicates
that Qwen3 8B (CoT) underperformed BERT, RoBERTa, and SciBERT by approx-
imately 1–5 percentage points. The right panel displays the p-values corresponding
to the logarithmic scale. All comparisons fall below the significance threshold
(p > 0.05), indicating that these differences lack statistical significance, although
being observed in all three comparisons [63]. This indicates that while fine-tuned
transformers provide numerically better results, the observed differences cannot be
conclusively distinguished from random variation attributable to our sample size.
The lack of statistical significance, combined with moderate effect sizes, indicates
that both techniques, specialised fine-tuning and general-purpose prompting, pro-
duce comparable performance in vehicle direction extraction. This finding aligns
with recent studies suggesting that the choice between fine-tuning and prompting
often depends on pragmatic considerations, such as computational resources and
deployment constraints, rather than substantial performance differences [64].
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Figure 3.4: Statistical comparison of Qwen3 8B (CoT) against fine-tuned BERT
models.

3.1.4 Analysis of BERT-family models on the full dataset
Dataset overview

This part of the evaluation covers the entirety of the 17.459 crash cases within
the CISS dataset, surpassing the manually annotated subset.Here, the focus is on
assessing the stability and consistency of model predictions at scale, in contrast to
the earlier evaluations that relied on ground-truth labels.

The three transformer-based models that were previously introduced (BERT,
RoBERTa, and SciBERT) are examined in terms of their agreement patterns, pre-
diction distributions, and confidence levels. In total, the merged dataset comprises
29.962 vehicle-level predictions, reflecting cases with one or more vehicles described
in the narrative.1

Data merging and preprocessing

The outcomes from the three models were consolidated into a single data set
by merging on case_id and vehicle_id. This stage involved a function that
consolidates the results of BERT, RoBERTa, and SciBERT into a singular dataframe.
During the pre-processing phase, nested JSON fields were analyzed, and the
standardization of vehicle identifiers was performed to ensure that results from
various models could be compared under identical circumstances.

1The total number of predictions exceeds the number of crashes because each case may involve
multiple vehicles, and the three models sometimes differed in the number of vehicles extracted
from the same narrative.
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Model agreement analysis

The degree of agreement across the three models was quantified using the function
analyze_bert_model_agreement(). Results revealed a high level of consistency:

• Complete agreement: in 93.5% of cases, all three models produced identical
directional predictions.

• Partial agreement: in 6.1% of cases, two models agreed while the third
differed.

• No agreement: only 0.4% of cases showed three different predictions.

Pairwise evaluations validated this robustness: the concordance rate among
model pairs varied from 94.6% to 96.8%, indicating significant alignment despite
the lack of complete agreement. The results indicate that, despite being trained on
different datasets, BERT, RoBERTa, and SciBERT typically converge on similar
decision models when addressing this particular domain task.

Prediction distribution

The distribution of predictions across the three models indicates that the majority
of instances were allocated to the four primary directions: north, south, east, and
west.The intermediate directions (northeast, northwest, southeast, and southwest)
were less prevalent; however, they manifested with very similar rates across all
models.The prediction for the label unknown was limited, consistently remaining
below 15%. This suggests that the models often attempted to provide a direc-
tional prediction instead of leaving the question unresolved. The three models
demonstrated quite analogous patterns in their predictions.

Visual summary To complete this analysis, Figure 3.5a shows the pairwise
agreement rates between the models. The Figure 3.5b shows the distribution of
predicted directions for the main directions. Together, these visualizations reinforce
the observation that the three models not only agree in most cases, but also
maintain stable prediction patterns across the entire set of directions.

High-confidence predictions We set a confidence threshold of 0.8 to identify
any predictions with confidence scores over this value, thus improving our under-
standing of the model’s reliability. Out of 28,004 cases where all three models
agreed, 24,159 (86.3%) were categorized inside this high-confidence group. This
indicates a significant correlation between agreement and reliability.

This evaluation demonstrates that the fine-tuned BERT-family models exhibit
outstanding consistency when utilized on extensive crash narratives, achieving total
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(a) Pairwise agreements (b) Prediction distributions

Figure 3.5: Visualization of BERT, RoBERTa, and SciBERT results on the full
dataset.
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agreement in 93.5% of cases. This level of agreement is noteworthy given that
the models were trained separately, and it can be considered a form of indirect
validation in the absence of full ground truth labels.

The strong agreement suggests that the directions described in crash reports
follow linguistic patterns that can be reliably learned, regardless of the specific
model variant. RoBERTa was the most confident and reliable of the group.

3.2 Manner of collision

3.2.1 Experimental setting
Backbones and baselines We evaluated multiple LLMs on the classification
task under different fine-tuning configurations. The backbone models include
several open-source families: LLaMA3 series [65] (LLaMA3.2-1B, LLaMA3.2-3B,
LLaMA3.1-8B, LLaMA3.3-70B), Qwen series [66] (Qwen2.5-7B-Instruct), and
Mistral series (Mistral-7B-Instruct-v0.3 [40]). We also evaluated the closed-source
GPT-4o [67]. Parameter size and deployment resources of these models are shown
in table 3.82. To ensure a fair comparison, all experiments were conducted on a
single NVIDIA A100 GPU, except for LLaMA3-70B, which required 4 A100 GPUs
due to its larger size.

Table 3.8: Overview of backbone models: parameter size and deployment re-
sources.

Model Parameters GPU Memory Required

Open-source models
LLaMA3.2-1B ≈ 1.23 B ≈ 3 GB
LLaMA3.2-3B ≈ 3.21 B ≈ 6 GB
Qwen2.5-7B-Instruct ≈ 7 B ≈ 14 GB
Mistral-7B-Instruct-v0.3 ≈ 7.3 B ≈ 14 GB
LLaMA3.1-8B ≈ 8 B ≈ 15 GB
LLaMA3.3-70B-Instruct ≈ 70 B ≈ 131 GB
Closed-source models
GPT-4o — —

Dataset To assess the generalizability of our approach to future police reports,
model training was performed on crash data of year 2020, consisting of 300 annotated

2Model sizes and deployment requirements are referenced from the official NVIDIA NIM docu-
mentation: https://docs.nvidia.com/nim/large-language-models/latest/introduction.
html.
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examples for prompt design and adjustment and about 3,000 examples for fine-
tuning the LLM with LoRA. We evaluated on 2,000 test cases from 2021 to measure
inference performance.

Hyper-Parameters Inference was conducted with a fixed temperature of 0.2
to ensure output stability, which is important in industrial application scenarios.
Moreover, through multiple pilot experiments we observed that a temperature
of 0.2 achieved the best trade-off between accuracy and robustness for the tasks
considered in this study. Fine-tuning was performed with LoRA-based supervised
fine-tuning for up to four checkpoints, using the same configurations to ensure
fair comparisons. Following [68], we set r = 8 and LoRAα = 16, which balances
training efficiency and performance for the classification task, providing sufficient
task-specific adaptation without excessive computational cost. The original LLM’s
weights remained frozen during training.

3.2.2 Experimental results
To evaluate both the overall correctness of predictions and the balance of perfor-
mance across different classes, we assessed model performance using accuracy and
macro F1-score. In addition, deploying, training, and running inference with LLMs
require substantial computational resources. To better understand the trade-offs,
we compare models of different sizes and from different providers, reporting both
training and inference times. These results are then analyzed in conjunction with
accuracy and macro F1-score to provide a comprehensive evaluation.

During manual inspection, we found that Unknown (label ID: 9) in the original
dataset could reasonably be reassigned to other valid categories. Therefore, in
addition to reporting results on the original dataset, we also present evaluations
with this label Unknown excluded to provide a more precise assessment of model
performance.

Main results

The overall results of MANCOLL classification are summarized in Table 3.9. Fine-
tuning brings significant improvements to closed-source models. For example, the
3B model improves from an initial accuracy of 50.2% to over 95.1% after fine-tuning.
At the same time, the performance of fine-tuned LLaMA3-3B model is comparable
to that of 7B and 8B models and outperforms GPT-4o, despite being significantly
smaller in model size and computational requirements. This indicate that a 3B
model is sufficient to address this task with similar performance.

Training efficiency is also notable: convergence is achieved in less than 1,700
steps, requiring only 890 seconds for the 3B model and 1,615 seconds for the 8B
model. latency also remains low, with all models below 8B requiring less than
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Table 3.9: Accuracy and Macro F1 scores of various LLMs on the Manner of
Collision (MANCOLL) classification task.

Backbones Tr_step Tr_time
(s)

Inf_time
(ms)

Accuracy(%) Macro F1
Raw -Unknown Raw -Unknown

Open source models

LLaMA3-1b

Original 25.6 1.6 0.0 0.005 0.000
417 112.9 20.1 45.4 46.2 0.151 0.178
834 226.7 21.1 81.9 83.3 0.359 0.423
1251 339.8 20.4 85.8 87.2 0.407 0.479
1668 452.4 20.0 87.5 88.9 0.491 0.496

LLaMA3-3b

Original 33.8 50.2 23.3 0.184 0.124
417 222.1 33.5 92.8 94.4 0.690 0.815
834 443.4 35.3 94.0 95.4 0.754 0.745
1251 668.9 33.7 95.0 96.4 0.762 0.753
1668 890.5 33.3 95.1 96.4 0.779 0.753

Qwen2.5-7B

Original 48.2 76.2 77.0 0.562 0.559
417 396.2 49.7 92.7 94.1 0.680 0.679
834 795.3 49.9 94.0 95.5 0.745 0.746
1251 1192.7 49.5 94.4 95.7 0.774 0.755
1668 1583.9 49.7 94.4 95.7 0.772 0.753

Mistral-7b

Original 49.7 81.7 83.1 0.553 0.561
417 377.63 48.8 90.1 91.5 0.680 0.679
834 756.12 49.8 92.4 93.3 0.765 0.729
1251 1149.84 49.5 91.2 92.2 0.740 0.701
1668 1512.86 49.7 94.4 95.7 0.772 0.753

LLaMA3-8b

Original 54.9 34.3 34.9 0.214 0.251
417 406.6 56.8 94.4 96.0 0.749 0.886
834 803.6 56.8 95.2 96.5 0.803 0.773
1251 1209.8 56.6 95.9 97.1 0.833 0.789
1668 1615.4 57.1 96.1 97.1 0.848 0.788

LLaMA3-70b Original 508.3 91.4 92.7 0.692 0.704

Closed source models
GPT-4o 90.9 92.3 0.674 0.805

60 ms per instance, and the 3B model achieving as little as 33 ms. The fast and
training speeds are largely attributed by our problem formulation, where the task
is cast as a classification problem and the LLM only needs to generate a single
token as output.

Another important observation arises from the presence of an Unknown class in
the raw dataset, representing unknown categories. Throughout our sample analysis,
we found that many instances labeled as Unknown could in fact be reasonably
mapped to known categories, and the employed LLMs were often able to classify
them correctly. As shown in Table 3.9, removing the Unknown class yields a
noticeable improvement in both accuracy and Marco F1 score, confirming the
existence of potential noise in the original labels.

Overall, these findings demonstrate that with only a small number of fine-tuning
steps, even relatively small-scale LLMs can be effectively adapted for the manner
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of collision classification task.

Consistency analysis

To evaluate the stability of the models, we designed a set of consistency experiments,
which include self-consistency, measuring the stability of repeated outputs from
the same model, and cross-model consistency, measuring the agreement between
outputs produced by different models.

Results are presented in Figure 3.6. The seven smaller subplots show the self-
consistency results. The horizontal and vertical axes of each sub-figure represent
predictions from different runs of the same model, while the values in the grid cells
indicate the corresponding consistency scores. As observed, with the exception of
LLaMA3-1B, most models achieve very high self-consistency, indicating that their
outputs are stable across repeated predictions. The relatively low performance of
LLaMA3-1B also explains its weaker consistency.

(a) LLaMA3-1B (b) LLaMA3-3B

(f) Qwen2.5-7B

(e) LLaMA3-1B(c) LLaMA3-8B (d) Mistral-7B

(g) LLaMA3-70B (h) GPT-4o

Overall consistency:

• Models only: 0.9443

• Models with GT: 0.9438

• Excl. 9 & Models only: 0.9502

• Excl. 9 & Models with GT: 0.9508

Figure 3.6: Heatmap results of consistency in the MANCOLL classification
task. Each of the seven small heatmaps (left) illustrates the self-consistency of
an individual model, while the large heatmap (top-right) shows the cross-model
consistency among them and ground truth labels (GT) in CISS.

69



Results

The larger plot in the upper-right corner illustrates the cross-model consistency
results. Here, we find that consistency scores between most model pairs exceed
0.9, with the notable exception of LLaMA3-1B, whose weaker performance leads
to lower agreement with other models. Furthermore, when comparing model
predictions against the ground truth labels, fine-tuned models including LLaMA3-
3B, LLaMA3-8B, and Qwen2.5-7B achieve significantly higher consistency than
non fine-tuned GPT-4o and LLaMA3-70B. This finding is consistent with the
improvements reported earlier in Table 3.9.

Overall, although cross-model consistency scores are slightly lower than those
of self-consistency, they remain consistently high across models. These results
demonstrate the robustness of our fine-tuning approach.

Data analysis

In the original database, the proportion of samples labeled as Unknown is about
1.6%. Previous experiments demonstrated that LLMs achieve strong overall per-
formance on the MANCOLL classification task, with some models reaching up to
97% accuracy. Notably, the models were also able to reassign many of the samples
originally labeled as Unknown into more specific categories. To further investigate
this behavior, we conducted a detailed analysis focusing on the predictions for the
Unknown subset.

As shown in Figure 3.7, categories 2 (Head-On) and 6 (Sideswipe, Opposite
Direction) consistently appear with very low proportions across all models. This is
partly because these categories are rare in the original ground-truth annotations,
and also because narrative descriptions often provide limited clues for such cases. In
contrast, models (c)–(f) maintain a relatively stable distribution pattern, showing
that LLMs not only resolve the ambiguity in Unknown cases but also exhibit strong
cross-model consistency, which enhances the reliability of the results.

3.3 Crash type
Compared with manner of collision, the extraction of crash type extraction is
more challenging. There are 97 categories in total, and due to the hierarchical
structure 2.4, the set of candidate CRASHTYPE is determined by the associated
CRASHCONF. This decomposes the task into 13 smaller classification subtasks
(one for each CRASHCONF), with the largest subtask containing up to 14 classes.
Another source of difficulty is that a single crash may involve multiple vehicles.
When classifying the CRASHTYPE for one vehicle, the narrative often contains
descriptions of other vehicles, which can interfere with or complicate the judgment
for the target vehicle.
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(a) Models fine-tuned on query projection matrix. (b)

(c) (d) (e)

(f) (g) (h)

Figure 3.7: Distributional analysis of MANCOLL cases originally labeled as
Unknown. (a) The original distribution of MANCOLL in database, where Unknown
accounts for about 1.6%. (b–h) LLM-based reclassification results across different
models. The models not only resolve many of the originally Unknown cases into
specific categories, but also show consistent distribution patterns.

Considering above, it remains challenging for LLMs even though all are within the
traffic safety domain. To better understand how model performance can be improved
when encountering such complex task, we further experiment with different LoRA
projection configurations and examine their impact on fine-tuning results. As
described earlier in the database section, CRASHCONF classification is relatively
easy to achieve high accuracy. Therefore, in this part we treat CRASHCONF as
oracle knowledge and focus only on the classification of CRASHTYPE.
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Main results on crash type

In reality, one crash may involve multiple vehicles and other vehicle descriptions
can affect the prediction for the target vehicle. To account for this factor, we
evaluate model performance by analyzing classification accuracy under different
vehicle-count settings, grouping crashes into four categories: 1, 2, 3, and more than
3 vehicles.

Table 3.10 reports the performance of different LLMs on CRASHTYPE classi-
fication under varying numbers of vehicles per crash. The results show that this
is a highly challenging task: without fine-tuning, most models achieve very low
accuracy, typically in the range of 1%∼25%. However, after parameter-efficient
fine-tuning, all models see substantial improvements. In particular, LLaMA3-3B,
LLaMA3-8B, and Qwen2.5-7B consistently reach close to ∼ 80% accuracy across
different vehicle settings. Even the smallest 1B model, once adapted to the traffic
safety domain, can surpass GPT-4o and the much larger LLaMA3-70B. Moreover,
these smaller models achieve such performance with significantly lower training
costs (less than 1 GPU hour) and inference requirements, striking an effective
balance between efficiency and accuracy.

When analyzing results across different vehicle counts, we observe that collisions
involving exactly two vehicles yield the lowest accuracy for all models. This is
expected. Single-vehicle cases are the easiest, as the crash narrative only describes
one vehicle, no textual interference from other vehicles. Multi-vehicle crashes
involving three or more vehicles often correspond to chain collisions (e.g., multi-car
rear-end crashes), where multiple vehicles share the same crash type. This homo-
geneity reduces ambiguity and makes classification more straightforward, despite
the larger number of vehicles. The most challenging setting is crashes involving
exactly two vehicles. In these cases, the narrative usually interweaves descriptions
of both vehicles, and their crash types are often different. Consequently, two-vehicle
crashes represent the most difficult scenario, demanding stronger reasoning and
disambiguation capabilities from the models.

Effect of LoRA Training Strategies

Given the complexity of the Crush Type task, we further explore how the choice
of LoRA-adapted parameters impacts performance. Specifically, we vary which
attention projection matrices are trainable under LoRA, selecting from the query,
key, and value projections WQ, WK , WV ∈ Rd×k. We consider three configurations:
(i) LoRA on WQ only; (ii) LoRA on WQ and WV ; and (iii) LoRA on all three, WQ,
WK , and WV . For each setting, we measure the model’s self-consistency, and report
results in Figure 3.8.

Results show that tuning more projection matrices consistently improves ac-
curacy, with self-consistency increasing monotonically as more attention matrices
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Table 3.10: Performance of different LLMs for CRASHTYPE classification under
different settings. The best results are highlighted in bold.

Backbones Tr_step Tr_time (s) No. Veh/Crash
=1 =2 =3 >3

Open source models

LLaMA3-1b

Original 7.1 3.6 3.7 1.3
721 198.4 49.1 26.7 43.3 45.1
1442 397.2 43.7 42.7 64.1 75.2
2163 594.7 52.6 49.4 64.5 73.4
2884 780.3 62.2 51.4 64.7 75.4

LLaMA3-3b

Original 50.2 23.3 18.4 12.4
721 430.1 73.9 53.7 67.1 77.4
1442 842,9 74.0 69.5 78.9 81.9
2163 1249.8 73.6 71.5 82.6 83.9
2884 1683.7 76.0 73.7 81.8 83.6

Qwen2.5-7B

Original 25.3 21.7 14.8 6.2
721 659.3 77.2 57.6 68.9 70.3
1442 1308.5 78.3 68.9 72.8 79.4
2163 1965.2 79.1 70.3 80.6 80.9
2884 2605.5 77.2 72.9 80.1 81.5

LLaMA3-8b

Original 40.4 18.9 19.0 15.1
721 694.3 73.9 53.7 67.1 75.2
1442 1387.5 76.6 77.0 83.3 83.6
2163 2088.5 77.1 77.3 82.0 84.8
2884 2780.7 77.6 77.3 81.9 81.2

LLaMA3-70b Original 72.7 41.8 44.3 55.0

Closed source models
GPT-4o 45.3 64.3 58.8 70.3

(a) Models fine-tuned on
query projection matrix.

(b) Models fine-tuned on
query and value projection
matrices

(c) Models fine-tuned on query,
key and value projection matri-
ces.

Figure 3.8: Accuracy (%) across different numbers of vehicles for various fine-
tuning strategies. (a) Fine-tuning only the query projection, (b) fine-tuning both
query and value projections, and (c) fine-tuning query, key, and value projections.
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are adapted: updating WQ alone yields the weakest performance; adapting both
WQ and WV performs better; and jointly adapting WQ, WK , and WV achieves the
best results. We attribute this to the task’s requirement for token interactions:
restricting adaptation to queries constrains the model’s ability to reshape attention
patterns; co-adapting keys improves query–key alignment for retrieval, while adapt-
ing values allows the model to better propagate matched evidence through the
representation. In short, enabling LoRA on multiple attention projections provides
the necessary degrees of freedom to fit the crash type task more effectively.

Consistency analysis

By statistics, crashes involving one or two vehicles account for nearly the same
amount, and together they represent over 93% of all cases. Since such crashes are
also of primary interest to researchers, our consistency analysis focuses on these
two settings.

For single-vehicle setting, as shown in Figure 3.9, we observe that LLaMA3-3B,
LLaMA3-8B and Qwen2.5-7B show near-perfect run-to-run agreement (∼ 0.98),
while smaller models LLaMA3-1B maintain a consistency (∼ 0.87). This indicates
that fine-tuned models yield stable outputs across different inference runs on
crash type classification. The agreements between LLaMA3-3B, LLaMA3-8B and
Qwen2.5-7B are also high (∼ 0.91), suggesting that different LLMs converge to
similar predictions despite variations in size and architecture. When compared
with CISS ground-truth labels (GT), the average consistency is slightly lower
(∼ 0.78), reflecting the possible presence of annotation noise and labeling errors in
the dataset, which LLMs may help to mitigate.

For the two-vehicle setting, as shown in Figure 3.10, we observe a similar trend
as in the single-vehicle case: larger models such as LLaMA3-3B, LLaMA3-8B, and
Qwen2.5-7B maintain high run-to-run agreement (≥ 0.97), while smaller models
like LLaMA3-1B achieve a reasonable level of consistency (∼ 0.90). However,
cross-model agreements among LLaMA3-3B, LLaMA3-8B, and Qwen2.5-7B drop
noticeably (to around 0.79), indicating that when multiple vehicles are involved,
textual descriptions of other vehicles interfere with the prediction of the current
vehicle, thus reducing model accuracy. Compared with CISS ground-truth labels
(GT), the average consistency (∼ 0.78) is also lower than in the single-vehicle setting,
reflecting the added complexity and ambiguity of multi-vehicle crash narratives.

Data analysis

To further verify that the labels generated by the LLM do not substantially alter
the intrinsic characteristics of the data, we compared some statistics between
LLM-generated labels and ground-truth. Here we primarily focus on accidents
involving one or two vehicles, which together account for approximately 93% of
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(a) LLaMA3-1B (b) LLaMA3-3B

(e) Qwen2.5-7B(d) LLaMA3-8B

Overall consistency:

• Models only: 0.8093 

• Models with GT: 0.7458

(c) Cross-Model Consistency

Figure 3.9: Single-vehicle setting: self-consistency of four models (left) and their
cross-model consistency (right).

the dataset. For single-vehicle crashes, we conduct distributional analysis of crash
types, while for two-vehicle crashes, we perform correlation analysis to assess the
association between the crash types of the two vehicles. Single-vehicle setting.
To characterize single-vehicle crashes, we analyze the distribution of their crash
types. Specifically, we compute the frequency distribution of the most common
crash categories (1-16), and the overall Divergence of the distribution. Since
some crash types in the distribution may have zero or near-zero frequencies, we
adopt Jensen–Shannon (JS) divergence to measure the difference between the two
distributions, as it is symmetric, bounded, and robust to zero-probability events,
thereby avoiding the divergence issues inherent in Kullback–Leibler divergence.

Table 3.11: Examples of single-vehicle CRASHTYPE categories related to road
departure

Code Description Departure Direction

1 Roadside departure under a controlled situation. Right
2 Roadside departure because of lost traction or control. Right
6 Roadside departure under a controlled situation. Left
7 Roadside departure because of lost traction or control. Left
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(a) LLaMA3-1B (b) LLaMA3-3B

(e) Qwen2.5-7B(d) LLaMA3-8B

(c) Cross-Model Consistency

Overall consistency:

• Models only: 0.6665

• Models with GT: 0.6786

Figure 3.10: Two-vehicle setting: self-consistency of four models (left) and their
cross-model consistency (right).

Figure 3.11 presents the predicted distribution of single-vehicle CRASHTYPE
across different models, where only the first 16 crash categories are included since
single-vehicle data is restricted to this subset. Overall, the fine-tuned models
successfully preserve the distributional characteristics of the ground-truth data: the
relative frequency and ranking of each class are largely consistent with the ground
truth labels. Moreover, except for the 1B model, all fine-tuned models achieve
closer alignment with the ground-truth distribution compared to much larger
non-fine-tuned models such as LLaMA3-70B and GPT-4o. Besides, noticeable
discrepancies remain for certain categories, particularly CRASHTYPE 1, 2, 6, and
73. Through manual inspection of the CISS dataset, we found that part of this
mismatch arises from inconsistencies in the recorded ground truth in CISS, where
some cases were not assigned correctly.

Two-vehicle setting. The crash types of vehicles in a single accident are
naturally related to each other. To examine the extent to which the crash types
of two involved vehicles are related, we quantify this relationship by computing
correlation coefficients. We employ Kendall’s Tau as the measure of association.
Since the crash type values are discrete identifiers rather than continuous quantities,

3The detailed definitions of these crash types are provided in Table 3.11
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(a) LLaMA3-1B (b) LLaMA3-3B (c) LLaMA3-8B

(d) Qwen2.5-7B (e) LLaMA3-70B (f) GPT-4o

Figure 3.11: Comparison of CRASHTYPE distributions between the CISS ground
truth (blue) and LLM-predicted results (red) for crashes involving a single vehicle.
Each subplot corresponds to a different model, with the JS divergence reported as
a measure of distributional similarity. Overall, the fine-tuned LLMs preserve the
ground-truth distribution more closely than GPT-4o.

Kendall’s Tau is more appropriate than Pearson or Spearman correlation [69]. It is
important to note that in this task, a higher correlation is not necessarily better;
instead, what matters is whether the correlation obtained from the predicted labels
is closely aligned with the ground-truth correlation.

Figure 3.12 illustrates the correlation between the crash types of two vehicles
involved in the same crash. Fine-tuned models generally achieve correlations very
close to the ground truth (GT Corr = 0.888), and we observe that models with
higher overall classification accuracy tend to produce predicted correlations that are
closer to the ground-truth correlation. Importantly, across all fine-tuned models,
the predicted correlations remain very close to the ground-truth value, with only
minor deviations. This indicates that the fine-tuned models not only achieve high
prediction accuracy at the individual crash type level but also successfully preserve
the intrinsic inter-vehicle dependency patterns present in the CISS dataset.
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(a) LLaMA3-1B (b) LLaMA3-3B (c) LLaMA3-8B

(d) Qwen2.5-7B (e) LLaMA3-70B (f) GPT-4o

Figure 3.12: Correlation analysis of CRASHTYPE combinations between two
vehicles in the same crash. Blue markers represent CISS ground truth (GT) and
red markers represent LLM predictions, with Spearman correlation coefficients
reported for both.

78



Chapter 4

Discussion

Through the analysis of the results from the various questions, we identify several
findings.

4.1 Vehicle travel direction
The initial research question focused on the ability of various models to accurately
determine the direction of travel of vehicles involved in an collision. Comparative
analysis revealed distinct patterns between optimised transformers and LLMs when
tested with different prompting strategies.

4.1.1 LLM prompting strategies
A significant and rather surprising finding was the lower performance of few-shot
prompting relative to zero-shot across all evaluated LLMs. This is compatible with
recent research that shows how important it is to choose the right examples for
in-context learning: inadequately chosen examples can even make performance
worse than zero-shot baselines [70, 71]. Therefore, it is correct to attribute the
decline in accuracy not to intrinsic constraints of few-shot prompting, but to the
insufficient representativeness or clarity of the selected shots. This indicates that
more methodical strategies for example selection may enhance the results. In
opposite, CoT prompts significantly improved accuracy across all large language
models. By breaking down the task into sequential steps, initially detecting cars,
followed by analyzing directional clues, CoT prompts offered planned instructions
that proved particularly effective in complex narratives involving multiple vehicles
and interactions. This confirms the growing evidence that explicit reasoning
strategies substantially improve information retrieval tasks that require multi-step
inferences [26].
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To further investigate these effects, we compared performance under two com-
plementary evaluation methods. The “valid-only“ version establishes a conservative
lower limit by categorizing any formatting problems as unsuccessful predictions,
thus underscoring the importance of precise compliance with output accuracy.
Conversely, the “valid+recovered“ methodology estimates an upper limit by in-
clude predictions that can be corrected and restored following error correction,
hence representing the model’s prospective efficacy in real-world scenarios involving
post-processing.

This comparison yields two essential observations. Initially, prompting tactics,
especially CoT prompting, consistently enhance performance in both evaluation
methods, highlighting their efficacy in guiding large language models through intri-
cate narrative reasoning. The models exhibit significant differences in their ability
to adapt to formatting errors: Qwen3 8B sustains high performance regardless
of error correction, whereas DeepSeek-R1 demonstrates substantial enhancements
when recovered outputs are incorporated (an increase from 0.77 to 0.88), and
Mistral 7B reveals persistent limitations in semantic accuracy despite recovery
efforts.

From an application point of view, these findings underscore the necessity to
assess LLM models for both accuracy and comprehensiveness. High accuracy is
insufficient if accurate predictions encompass only a limited range of situations,
whereas comprehensive coverage with decreased semantic precision is also unsuitable
for reliable implementation. By examining both valid-only and valid+recovered
versions, we enhance our comprehension of each model’s strengths and weaknesses,
facilitating a more equal and informative comparison of LLM models.

4.1.2 LLMs vs. fine-tuned transformers
Fine-tuned BERT transformers achieved superior overall accuracies, ranging be-
tween 94 and 96%, establishing them as the top-performing approach for this
classification task. However, LLMs demonstrated remarkably competitive perfor-
mance, with the best configuration (Qwen3 8B with CoT prompting) reaching
approximately 90% accuracy. This result is particularly noteworthy considering
that it was achieved using a relatively compact 8B-parameter model with advanced
prompting techniques alone, without any task-specific fine-tuning.

Statistical analysis 3.1.3 revealed that the performance differences between the
two approaches were not statistically significant, suggesting comparable effectiveness
for practical applications. This finding aligns with recent studies indicating that
the gap between task-specific fine-tuning and sophisticated prompting strategies
has narrowed considerably as LLM pretraining and prompting methodologies have
evolved [64].

The solid performance of the 8B LLM indicates that larger models or additional
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optimization techniques, such fine-tuning, ensemble methods, or more sophisticated
prompting strategies may effectively match or even surpass the performance gap
with fine-tuned transformers. LLMs provide notable benefits regarding generaliza-
tion capabilities, as they do not require retraining to adjust to new scenarios and
exhibit enhanced flexibility in situations where labeled data is limited. [7].

Fine-tuned models work best when the target data is very similar to the training
distributions. This makes inference predictable, reduces the amount of computing
needed, and gives deterministic outputs, which play a key role in applications
where reliability and safety are critical [72]. Conversely, LLMs provide exceptional
adaptability and simple implementation, making them especially beneficial for
dynamic environments and exploratory research contexts.

4.1.3 Consensus analysis of BERT-family on the full dataset
The models in the BERT family showed exceptional internal consistency, with
93.5% of cases showing complete agreement between the three variants. This
demonstrates that the way traffic accident reports are written follows consistent
linguistic patterns that different systems are able to capture reliably. RoBERTa, in
particular, showed a slightly higher level of reliability. A group of 24,159 predictions
was identified in which all three models agreed and the confidence level was above
0.8. Approximately 80% of all cases of agreement fall within this high-confidence
consensus set and constitute a particularly valuable resource. It can be used as
pseudo-ground truth to train more models, to help design future NLP pipelines, or
as a reference dataset for active learning [73, 74]. The models were able to reliably
extract meaningful directional patterns from the narratives, as evidenced by the
size and reliability of the results.

Together, these findings indicate that the extraction of travel direction is a feasi-
ble and reliable task for both fine-tuned transformers and properly prompted LLMs.
Fine-tuned models are the most stable choice for domain-specific deployment;
however, LLMs utilizing advanced prompting techniques, especially CoT, demon-
strate competitive performance and enhanced adaptability. Hybrid approaches,
including ensemble methods that combine the determinism of fine-tuned models
with the flexibility of large language models, may enhance robustness by utilizing
the complementary strengths of both paradigms.

4.2 Crash manner of collision
The second research question centered on the ability of different models to accu-
rately identify the manner of collision from textual crash descriptions, a task that
requires reasoning beyond surface-level cues. Comparative analysis highlighted clear
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differences between fine-tuned models of varying sizes and families and large-scale
general-purpose LLMs.

4.2.1 Fine-tuned LLMs vs. large-scale baselines

Accuracy analysis results highlight the practicality of fine-tuning small-scale LLMs
for manner of collision detection. Fine-tuning not only yields substantial gains in
accuracy, like LLaMA3-1B and LLaMA3-3B to a performance level comparable
to or exceeding much larger models such as GPT-4o, but also achieves this with
modest training time and low inference cost. This proves that effective solutions
can be obtained without using resource-intensive large-scale LLMs. Furthermore,
the improvement observed when removing the Unknown category underscores the
presence of noise in the dataset and suggests that fine-tuned models are often
capable of resolving ambiguities overlooked in the original labels. Together, these
findings emphasize the efficiency and robustness of fine-tuned small-sized models,
offering a cost-effective alternative for large-scale deployment in safety-critical
applications.

4.2.2 Consistency analysis

The consistency experiments further demonstrate the robustness of the fine-tuning
approach. All models achieve very high self-consistency, confirming that their pre-
dictions remain stable across repeated runs. Cross-model consistency also remains
strong, with most model pairs exceeding 0.90, indicating broad agreement across
fine-tuned models. Importantly, overall consistency improves slightly when ground
truth is excluded and increases further when the Unknown class is removed, sug-
gesting that part of the observed disagreement originates from noisy or ambiguous
labels. These findings highlight not only the stability of fine-tuned models but also
their potential to surpass the quality of existing labels in noisy real-world datasets.

4.2.3 Generated data analysis

Distribution of reclassified Unknown MANCOLL cases demonstrates that LLMs can
successfully classify crashes originally labeled as Unknown in the CISS dataset to be
specific ones. Moreover, fine-tuned models often converged on a high consistent class
assignment for cases labeled as Unknown in CISS, implying that these models may
have recovered correct answers overlooked in the original annotation. Thus, fine-
tuned LLMs can complement human annotation and address existing deficiencies
in the dataset caused by limited knowledge.
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4.3 Vehicle crash type
The third research question focused on the ability of different models to accurately
classify the crash type from textual crash descriptions involving nearly one hundred
categories. This task is considerably more challenging, as information about multi-
ple vehicles is often intertwined within the same crash narrative, which can mislead
LLMs in their judgment. Comparative analysis revealed that while large-scale
general-purpose LLMs struggle with such complexity, fine-tuned models demon-
strate improved robustness in disentangling vehicle-specific details and assigning
the correct crash type.

4.3.1 Fine-tuned LLMs vs. large-scale baselines
The results on crash type classification show that fine-tuning is essential for this
challenging task. Without adaptation, LLMs perform poorly, often near random
accuracy, but parameter-efficient fine-tuning enables strong improvements across all
settings. Notably, mid-sized fine-tuned models such as LLaMA3-3B, LLaMA3-8B,
and Qwen2.5-7B reach around 80% accuracy, outperforming much larger-scale
models like GPT-4o and LLaMA3-70B. This demonstrates that smaller models,
when adapted to the traffic safety domain, can deliver competitive accuracy at a
fraction of the training and inference cost.

Our ablation on LoRA training strategies further explains these gains. We
find that adapting a larger set of attention projection matrices leads to higher
self-consistency and better overall performance. This suggests that the task requires
richer interactions between tokens than what query adaptation alone can provide.
At the same time, the analysis of different vehicle settings highlights two-vehicle
crashes as the most difficult scenario, since narratives mix information about both
vehicles with distinct outcomes. In contrast, single-vehicle crashes are easier, and
multi-vehicle chain collisions often share the same crash type, reducing ambiguity.
These observations point to the need for fine-tuned models with enhanced reasoning
and disambiguation abilities to handle the hardest cases.

4.3.2 Consistency analysis
Our consistency analysis shows that fine-tuned models achieve near-perfect run-
to-run stability and strong cross-model agreement on single-vehicle crashes. The
lower agreement with ground truth suggests that some labels may be noisy rather
than model errors. In contrast, two-vehicle crashes introduce greater complexity:
although self-consistency remains high, cross-model agreement drops noticeably.
For two-vehicle crashes, models remain stable but agree less with one another,
likely because descriptions of multiple vehicles make the task harder. This proves
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that while fine-tuned models are reliable in simpler cases, multi-vehicle crashes are
more challenging and may need better data or new modelling approaches.

4.3.3 Generated data analysis
CRASHTYPE distributions of CISS annotations vs. LLM predictions in the single-
vehicle setting reveal that several mismatches are due to errors in the recorded
ground truth, where some cases were incorrectly assigned. In these instances, LLM
predictions were found to be correct, a fact further confirmed through manual
inspection. Thus, fine-tuned LLMs can identify and correct errors in the existing
labels of crash data (even though such errors are relatively rare in the original
dataset).

In the two-vehicle setting, the comparison between CISS annotations and LLM
predictions shows that fine-tuned LLMs preserve the relational characteristics of
crash data without introducing distributional bias, underscoring their reliability
for crash data annotation.

4.4 Limitations
This study has several limitations that impacted both its scope and findings. The
most significant limitation is the time constraint, which forced us to focus on a
limited number of research questions. As a result, the analysis focused on three
key aspects of accident reconstruction: the direction of travel of the vehicles, the
manner of collision and the type of accident. These are essential aspects for road
safety, but many other factors present in accident descriptions, such as driver
behaviour, environmental conditions,or the consequences of injuries were omitted,
reducing the overall scope of the study.

Another limitation derives from the size of the manually annotated. The
relatively small number of annotated cases may have affected the robustness of
the models training and evaluation. The annotation process itself may introduce
human bias.

Finally, the pipeline was only tested on a single English-language dataset, which
limits its generalisability. It is unclear how well the approach can be transferred to
other datasets written in different languages or following different reporting styles.

This work should be considered a first step. Future research should extend
the scope by using larger annotated datasets, testing the approach in multilingual
or cross-dataset contexts, comparing it with additional methods and evaluating
its stability over time. These extensions would strengthen the reliability and
applicability of the pipeline for large-scale road safety analysis.
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Chapter 5

Conclusion

This thesis aimed to examine the ability of large language models in understanding
and extracting structured information from crash narratives within the domain of
traffic safety. We specifically aimed to see how well LLMs could answer domain-
specific categorical questions about the direction of travel of a vehicle, the type of
collision, and the vehicle crash type from unstructured text narratives.

Regarding the task of determining the vehicle’s direction of travel, where essential
information is frequently contained within the narrative, we demonstrated that
small-size LLMs, when prompted by carefully designed prompting strategies, can
achieve remarkable results. Specifically, techniques such as CoT reasoning allowed
small models to achieve accuracy levels comparable to those of fine-tuned BERT-
family transformers, showing that domain-specific fine-tuning is not necessarily
required for every task.

Our findings demonstrate the advantages of parameter-efficient fine-tuning
methods for identifying the manner of collision and crash type. Small-scale fine-
tuned models consistently outperformed larger general-purpose LLMs, achieving
accuracy levels comparable to or even exceeding models such as GPT-4o. The
consistency study validated their reliability and demonstrated that fine-tuned
models can exceed the quality of existing labels, effectively addressing ambiguities
in the original annotations.

The classification task for crash types represented the most challenging scenario
and highlighted the clear need for domain adaptation. In the absence of fine-tuning,
large language models exhibited suboptimal performance on this complex task.
Parameter-efficient fine-tuning provided significant enhancements, allowing models
to achieve around 80% accuracy while preserving computational efficiency.

This thesis demonstrates that open-source LLMs, when combined with effective
prompting and parameter-efficient fine-tuning, can consistently extract both explicit
and implicit crash aspects from unstructured narratives, demonstrating that these
methodologies may be applied to extensive datasets where labeled data is missing,
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enhance human annotations, and eventually facilitate progress in traffic safety
research.
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Chapter 6

Future work

Generalization capability analysis This study focused on extracting travel
direction, manner of collision, and crash type from crash narratives in the CISS
dataset. However, other attributes, such as impact points, roadway characteristics,
and driver behavior, are also crucial for understanding collision patterns and
improving traffic safety. In future work, our approach can be extended to cover
these additional dimensions of crash. In addition, while our experiments were
conducted on the CISS dataset, the proposed method can be generalized to other
traffic accident datasets from different countries, as well as alternative sources such
as tweets on social media platforms. Moreover, the current method still requires
a certain amount of annotated data for fine-tuning, which raises the question of
how well the model can generalize beyond the training domain. A particularly
important direction is to investigate the performance of models trained on one
dataset and applied to another, in order to better understand their robustness and
cross-dataset transferability.

Causal sequence analysis of crash narratives In this study, we assumed
that the description of a crash follows a time order. In reality, multi-vehicle
collisions are often triggered by a minor initial crash, which subsequently leads to a
chain of collisions, and the technicians need to include all of these crash segments
into the report. However, when they compile accident reports based on collected
information, the narrative style may vary. For instance, some may emphasize what
they consider the most important aspect of the accident at the beginning, and
only afterwards describe other details. Such variations in narrative structure can
mislead LLMs when identifying the first harmful event of the accident, particularly
for smaller-scale models with limited reasoning ability. We argue that enhancing
LLMs’ capability to analyze the causality is crucial not only for this project but
also for advancing research on LLMs more broadly.

Reasoning-oriented LLMs Another promising direction is to explore the use
of reasoning-oriented LLMs. In our experiments, we employed instruction-tuned
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models and prompted them to directly output results. Although we used CoT
prompting, the models did not explicitly generate intermediate reasoning steps,
nor did we adopt reasoning-specific models. But prior studies have shown that
encouraging LLMs to articulate their reasoning process can significantly improve
prediction accuracy. In addition, during fine-tuning, it is possible to introduce
guidance tokens that help the model learn to structure its reasoning. However, these
approaches may also increase the computational cost, which presents a trade-off
between performance and efficiency that warrants further investigation.
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Author’s note on the use of
AI tools

In the preparation of this thesis project, Large Language Models (LLMs) such
as ChatGPT and Claude were used as supportive tools. The English text was
originally drafted in either Italian or informal English and subsequently revised
and refined with the assistance of these models to achieve a more formal academic
style.

LLMs were also employed during the development phase of the project code.
Their contribution included improving the clarity and readability of plots, suggest-
ing code optimizations and assisting in code refactoring to ensure efficiency and
consistency.

All conceptual contributions, experimental design and analysis remain the
responsibility of the author. The use of LLMs was limited to language refinement
and technical assistance, without replacing the author’s critical reasoning or original
contributions.
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