
Politecnico di Torino

Master’s Degree in COMPUTER ENGINEERING
A.a. 2024/2025

Graduation Session October 2025

GenAI-NewsScraper
Automated News Scraping, Summarization, Enrichment, and

Multimodal Content Generation

Supervisors:
Riccardo Coppola
Edoardo Morucci
Christian Cabrera

Candidate:
Luca Bergamini

Abstract

The rapid growth of digital media has created a need for automated systems capable
of efficiently retrieving, processing, and delivering news content. This thesis presents
the design and implementation of a generative AI (GenAI) system for automated
news scraping, content enrichment and summarization, and multimodal output
generation, aimed to support a scalable media workflows and interactive user
experiences.

The main objective is to develop an agent-based architecture that autonomously
collects news from different sources, enriches it with related material, summarizes
key information, and delivers results via text and audio formats. The system relies
on a Model Context Protocol (MCP) server for orchestration, with modular tools
for vector-based data storage, LLM-driven web search, and Text-to-Speech (TTS)
synthesis. Structured web scraping, multi-document summarization, and vector
embeddings (using PostgreSQL with pgvector) enable efficient data processing,
while TTS supports automated podcast generation and interactive newsletters.

The prototype demonstrates the system’s ability to handle end-to-end news
workflows with minimal human intervention. Cost and usage analysis indicates
that, for a single user on the system, the daily operation—including scraping,
summarization, embeddings, and podcast generation—amounts to approximately
$0.85, or $25.5 per month. For 100 users, the daily per-user cost drops to about
$0.22 ($6.6 per month), and for 1000 users, it further reduces to $0.157 ($4.71 per
month), due to the shared baseline scraping and content generation cost
of $0.70√

n
per day. Typical usage (for 1000 users) with one access per day incurs

$0.157–$0.25 daily per user, while high-activity scenarios with multiple accesses and
queries increase costs to $0.30–$0.50 per day ($9–$15 per month). This analysis
highlights the linear scaling of per-user operational costs versus the shared scraping
baseline, providing insights for accurate budgeting and resource planning.

In conclusion, this thesis contributes a practical framework for integrating
LLMs, modular tools, and MCP-based orchestration into automated news pipelines.
The system demonstrates scalability, multimodal capabilities, and cost efficiency,
illustrating the potential of agent-based architectures for smart, interactive media
platforms.

Acknowledgements

First of all, I would like to thank my academic supervisor, Professor Riccardo
Coppola, for his availability, valuable advice, and constant support throughout
the process of this work. His experience and feedbacks have been fondamental in
shaping this project.

I would also like to express my appreciation to Data Reply, for providing me
the opportunity to develop this project within a stimulating and professional
environment. I would also like to express my gratitude to my company supervisors,
Edoardo Morucci and Christian Cabrera, for their constant support and advice.

I would like to express my gratitude to Martina, for her continuous support, to
believe in me, and for being part of my every day life.

Finally, a special thought goes to my whole family and friends, for being by my
side all these years, and to those who will continue to be.

i

Table of Contents

List of Figures v

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Goals . 2
1.3 Thesis structure . 2

2 State of the art 4
2.1 Large Language Models (LLMs) and Natural Language Processing

(NLP) . 4
2.1.1 From Sequential Models to the Transformer Architecture . . 5
2.1.2 Architecture of the Transformer Model 7

2.2 Agents and Tool-Oriented Architectures 12
2.2.1 Definition and Evolution of LLM-Based Agents 12
2.2.2 Advanced Architectures for LLM-Based Agents 16
2.2.3 Agent Frameworks: LangChain and LangGraph 20

2.3 Model Context Protocol (MCP) for Agent-Based Systems 22
2.3.1 Motivation and Role in Agent Architectures 22
2.3.2 Protocol Structure and Components 23
2.3.3 MCP Server Lifecycle . 24
2.3.4 Security and Context Isolation 25
2.3.5 Implications for Agent-Based Systems 25

2.4 Web Scraping and Data Extraction 25
2.4.1 Visual and DOM-Based Extraction 26
2.4.2 Headless Browsers and Page Interaction 26
2.4.3 LLM-Augmented Scraping Agents 27
2.4.4 Structured vs. Unstructured Content 27

2.5 Content Enrichment and Summarization 28
2.5.1 Extractive vs. Abstractive Summarization 28
2.5.2 Multi-Document and Long-Context Summarization 29
2.5.3 LLM-Based Summarization Agents 29

iii

2.6 Multimodal Output and Podcast Generation 29
2.6.1 Multimodal LLMs and Real-Time Generation 30
2.6.2 Voice Cloning and Podcast Narration 30
2.6.3 Text-to-Speech and Multilingual Support 31
2.6.4 Opportunities and Limitations 31

2.7 Vector Databases . 32
2.7.1 Utility of Vector Databases 32
2.7.2 Embeddings and Vector Representations 33
2.7.3 PostgreSQL + pgvector . 35

3 Methodology 36
3.1 System Overview and Design Principles 36
3.2 Agent Architecture and Data Flow 37

3.2.1 Component Breakdown . 38
3.2.2 Workflow: From User Input to Final Output 39

3.3 Selected Instruments . 40
3.3.1 Model Context Protocol (MCP) 40
3.3.2 Scraping Process . 41
3.3.3 Database and Vector Storage with pgvector 42
3.3.4 LLMs and Summarization Models 46
3.3.5 Text-to-Speech with OpenAI Voice Engine 46
3.3.6 Frontend and Integration Infrastructure 47

4 Prototype and Use Case Demonstration 50
4.1 Website Homepage . 50
4.2 Newsletter Subscription & Delivery 51
4.3 News Scraping & Podcast Generation 53
4.4 Interactive Chat . 54
4.5 Usage and Cost Analysis . 55

4.5.1 Single-Day Usage . 55
4.5.2 Five-Day Usage . 55
4.5.3 Cost Estimations for Multiple Users 56

5 Conclusion and Future Work 60
5.1 Conclusion . 60
5.2 Future Work . 61

Bibliography 62

iv

List of Figures

2.1 Structure of a basic RNN. Each timestep processes an input token
and propagates a hidden state to the next. 5

2.2 Comparison of RNN (sequential) and Transformer (Self-Attention)
architectures. RNNs process input sequentially; Transformers pro-
cess the entire sequence simultaneously through self-attention. . . . 6

2.3 Simplified version of the Transformer architecture as proposed by
Vaswani et al. [3], featuring stacked encoder and decoder blocks
composed of multi-head attention and feed-forward sublayers. . . . 8

2.4 Multi-head attention mechanism: parallel attention heads allow the
model to focus on different semantic relationships simultaneously. . 9

2.5 Example of sinusoidal positional encodings for different embedding
dimensions. The pattern of each dimension varies across positions,
helping the model infer token order. 10

2.6 Typical decision loop of an LLM-based agent: perception, planning,
memory, reflection, and action (adapted from Xu et al. [5]). 13

2.7 Illustration of an LLM-based agent architecture showing the inter-
action between core components, memory systems, and planning
submodules. 14

2.8 Overview of the memory architecture in LLM-based agents. The
memory system consists of storage, retrieval, and reflection. 16

2.9 Illustration of interaction schemes in multi-agent systems, coopera-
tive and adversarial. 19

2.10 Illustration of parallel and hierarchical interaction schemes in multi-
agent mixed systems. 19

2.11 Comparison of tool integration before and after the introduction of
the Model Context Protocol (MCP). 23

2.12 Illustration of MCP server components and lifecycle. 24
2.13 Illustration of how embedding works with embedding models. . . . 33

3.1 High-level architecture of the agent-based system. 38

v

4.1 Initial interface of the website upon first access. 51
4.2 Subscription panel for the weekly newsletter. 52
4.3 Weekly newsletter received by the user, including summaries and a

podcast. 53
4.4 User selects preferences (Mercati) and the system retrieves matching

articles. 54
4.5 The chatbot answers user queries by using database similarity search

or web search. 55
4.6 Model costs on a typical day. 56
4.7 Costs over five days, broken down by input, output, cached input,

and high-cost calls. 57
4.8 Costs per user for different number of users. 58

vi

Chapter 1

Introduction

1.1 Background and Motivation
Today, professionals and companies are overwhelmed by the sheer volume of online
content, especially in fast-paced sectors like finance and technology. Hundreds
of articles, reports, and updates are published daily across multiple platforms.
Manually monitoring, reading, and analyzing all this information is time-consuming
and often impractical. As a result, there is a growing need for automated systems
that can collect and summarize the most relevant content, helping users stay
informed without investing excessive time or effort.

At the same time, progress in Natural Language Processing (NLP) and in large
language models (LLMs) has made it possible to automate complex linguistic tasks,
such as summarization, sentiment analysis, and question answering. Combined with
modern scraping techniques and APIs, these models can have powerful information
synthesis and delivery tools.

The purpose of the thesis is to design and implement a system that collects
news articles from reliable sources through web scraping automatically, processes
the content using a series of language model-based tools, and produces concise
summaries. Additionally, the system converts these summaries into audio using
Text-to-Speech (TTS) technology, creating automated newsletters and podcasts.

To orchestrate these processes in a dynamic way, the system relies on an agent-
based architecture capable of invoking different tools depending on the context and
the user’s query. The tools, exposed through an MCP (Model Context Protocol)
server, enable a scalable and extensible solution, following the user’s needs and
adaptable to multiple domains.

The motivation of this work is to reduce the cognitive and operational overhead
associated with continuous information tracking, enhance user engagement through
multimodal content delivery, and explore the capabilities of language models working

1

Introduction

with real-world information. By combining automation, scraping, summarization,
and audio generation, the proposed system offers a scalable and accessible solution
for modern content consumption.

1.2 Goals
The implemented solution consists of four key components: an automated web
scraping pipeline, an MCP server that provides all the needed tools, the integration
with Large Language Models (LLMs), and a modular agent-based architecture.
Each of these plays a central role in addressing the core challenges related to
information overload, content accessibility, and process automation.

The main objectives of this thesis are to design and implement a system that
automatically collects news articles from multiple online sources, generates concise
and precise summaries of collected articles using LLMs, transforms the scraped
articles into audio content using Text-to-Speech technology, facilitates dynamic
interaction through an agent that can select and execute tools based on user
input, and finally offers a scalable and extensible architecture adaptable to various
domains.

1.3 Thesis structure
The thesis is organized into five main chapters, each addressing a key aspect of the
work.

• Chapter 1 – Introduction: This chapter presents the motivation for the
work, the challenges, and the objectives of the proposed system. It introduces
the overall goals of developing an automated, agent-based framework for news
scraping, summarization, enrichment, and multimodal delivery.

• Chapter 2 – State of the art: This chapter provides the theoretical and
technological background of the thesis. It discusses the evolution of Large
Language Models (LLMs) and their role in Natural Language Processing, the
birth of tool-oriented agent-based architectures, and the introduction of the
Model Context Protocol (MCP). It also discusses web scraping techniques,
summarization approaches, multimodal generation, and the use of vector
databases for semantic retrieval.

• Chapter 3 – Methodology: Describes the design and implementation of
the system. The chapter details the agent architecture, workflow from user
input to final output, and the selected instruments such as MCP, Firecrawl

2

Introduction

for scraping, PostgreSQL with pgvector for storage, OpenAI models for
summarization and TTS, and the frontend infrastructure.

• Chapter 4 – Prototype and Use Case Demonstration: This chapter
shows the functioning of the implemented prototype through concrete use
cases. It presents the website interface, newsletter subscription and delivery
pipeline, podcast generation, and interactive chat system. The chapter also
includes analyses of usage and cost, evaluating daily and multi-user scenarios.

• Chapter 5 – Conclusion and Future Work: Summarizes the contributions
of the thesis, highlighting the effectiveness of MCP-based orchestration for
building modular and scalable news delivery systems. It also outlines possible
extensions, including multilingual support, advanced personalization, cloud-
native deployment, and integration with third-party MCP servers.

3

Chapter 2

State of the art

The purpose of this chapter is to provide an overview of the main concepts, models,
and frameworks that form the foundation of this thesis. Starting from the evolution
of language models and their role in Natural Language Processing (NLP), we discuss
how these systems have progressively advanced from sequential architectures to
transformer-based approaches, setting the stage for modern Large Language Models
(LLMs). The chapter then explores agent-based systems and their tool-oriented
architectures, with a focus on the Model Context Protocol (MCP), followed by
techniques for web scraping, data enrichment, summarization, and multimodal
content generation. Together, these topics present the current landscape of research
and development, highlighting practical implementations that inspire the design of
our system.

2.1 Large Language Models (LLMs) and Natural
Language Processing (NLP)

Large Language Models represent the keystone of recent progress in Artificial
Intelligence, especially within the domain of Natural Language Processing (NLP).
Their ability to capture long-range dependencies, generate coherent text, and adapt
across multiple tasks has redefined the boundaries of what automated systems can
achieve. In this section, we introduce the historical progression of NLP architectures,
beginning with sequential models such as Recurrent Neural Networks (RNNs) and
proceeding toward the transformer architecture. This highlights how foundational
innovations in model design have enabled the emergence of state-of-the-art LLMs,
which now power agent-based frameworks and multimodal applications.

4

State of the art

2.1.1 From Sequential Models to the Transformer Archi-
tecture

Before the emergence of transformer-based models, Recurrent Neural Networks
(RNNs) represented the foundational approach for modeling sequences in Natural
Language Processing (NLP). These networks are designed to process input sequences
one element at a time, maintaining a hidden state that propagates information from
one timestep to the next. The goal is to capture dependencies between components
in a sequence, such as words in a sentence or frames in a speech signal.

Recurrent neural networks (RNNs), particularly Long Short-Term Memory
(LSTM) networks [1] and Gated Recurrent Units (GRU) [2], have long been con-
sidered the state of the art in sequence modeling. These gated variants were
introduced to address certain weaknesses of vanilla RNNs, particularly the difficulty
of learning long-term dependencies.

As shown in their structure, an RNN receives at each timestep t the current
input xt and the hidden state from the previous timestep ht−1, and outputs both a
new hidden state ht and, optionally, a prediction yt. The same model is applied
recursively across the entire sequence.

Figure 2.1: Structure of a basic RNN. Each timestep processes an input token
and propagates a hidden state to the next.

The above Figure 2.1 illustrates an example of the sequential dependency:
suppose we are processing the sequence "you..." and require the model to correctly
capitalize. The model begins with ", and its hidden state learns that this likely
starts a dialogue, so the next character should be capitalized. It then sees y, outputs
Y, and updates its hidden state to remember this decision. The next character
depends on the current one and the hidden state, continuing one step at a time.

This inherent sequential nature of RNNs limits parallelization during training,
since the output at timestep t cannot be computed until the computation for t−1 is
complete. This bottleneck leads to inefficiencies when training on modern hardware
like GPUs, which excel at parallel computation. Furthermore, long sequences
introduce memory constraints that restrict batch sizes and slow down training
further.

5

State of the art

During training, all timesteps in the unrolled network are computed forward,
and a loss function (typically cross-entropy) is calculated based on the difference
between predicted and target outputs. Gradients are then propagated backward
across the entire sequence via Backpropagation Through Time (BPTT). Since the
weights of the network are shared across all timesteps, the gradient at each step is
computed recursively. This introduces several stability issues:

• Vanishing and exploding gradients: Gradients are computed as products
of many terms, which can shrink to near-zero or grow uncontrollably, impeding
learning.

• Long-term dependency problems: Earlier states are gradually forgotten
as new inputs arrive.

• Computational inefficiency: Training must proceed one step at a time due
to hidden state dependencies.

To address these issues, gated RNNs like LSTM and GRU were introduced.
They incorporate internal mechanisms (input, output, and forget gates) that help
preserve information over longer sequences and regulate the flow of gradients.
Nevertheless, they still do not completely solve the limitations around sequential
computation and memory retention over long contexts.

These challenges paved the way for the development of a new architecture that
could overcome the fundamental bottlenecks of RNNs. The breakthrough came
with the introduction of the Transformer by Vaswani et al. [3], in their paper titled
"Attention is All You Need". This architecture replaced recurrence with a fully
parallelizable self-attention mechanism, enabling tokens in a sequence to attend to
each other directly and simultaneously, as shown in Figure 2.2.

Figure 2.2: Comparison of RNN (sequential) and Transformer (Self-Attention)
architectures. RNNs process input sequentially; Transformers process the entire
sequence simultaneously through self-attention.

6

State of the art

The Transformer architecture computes dependencies using a scaled dot-product
attention mechanism, which calculates relevance scores between all token pairs.
These attention scores are then used to compute contextualized representations of
each token. Unlike RNNs, this method does not rely on hidden states or sequential
propagation, making the model highly efficient and scalable on modern hardware.

Furthermore, because Transformers do not encode order by design, they include
positional encodings to capture the position of tokens in a sequence. This allows
the model to reason about word order even though it processes tokens in parallel.

Thanks to these innovations, the Transformer has become the foundation for all
modern Large Language Models (LLMs), including BERT, GPT-2, GPT-3, and T5.
It enables models to learn from massive corpora and generalize effectively across
a wide range of NLP tasks, all while training efficiently and capturing long-range
dependencies.

2.1.2 Architecture of the Transformer Model

The Transformer architecture, introduced by Vaswani et al. [3], brought a funda-
mental shift in how sequence data is processed. Unlike recurrent models, which
rely on step-by-step computations and hidden states, the Transformer uses a purely
attention-based mechanism that allows for parallel computation and direct access
to all tokens in a sequence.

The model follows a classic encoder–decoder structure. The encoder receives
an input sequence and transforms it into a sequence of contextualized vector
representations. The decoder then uses these encoded representations, along
with previously generated outputs, to produce the final output sequence in an
autoregressive fashion.

7

State of the art

Figure 2.3: Simplified version of the Transformer architecture as proposed by
Vaswani et al. [3], featuring stacked encoder and decoder blocks composed of
multi-head attention and feed-forward sublayers.

As illustrated in Figure 2.3, each encoder layer consists of two primary compo-
nents:

1. Multi-Head Self-Attention: This mechanism enables each token to attend
to all other tokens in the sequence, capturing a wide range of dependencies.

2. Position-Wise Feed-Forward Network: A fully connected neural network
applied identically and independently to each position, adding non-linearity
and further transformation capacity.

Each decoder layer includes the same components as the encoder but adds a
third:

3. Masked Self-Attention: Prevents the decoder from attending to future
positions, preserving the autoregressive property.

4. Encoder–Decoder Attention: Enables each decoder token to attend to all
encoder outputs, facilitating alignment between input and output.

All sublayers are surrounded by residual connections followed by layer
normalization, ensuring better gradient flow and stable training. This results in a

8

State of the art

consistent architecture where each layer can refine representations while preserving
prior context.

Self-Attention Mechanism. The core idea of attention is to compute a weighted
sum of value vectors based on a similarity between queries and keys. Given input
vectors X ∈ Rn×d, the model learns linear projections to form:

Q = XW Q, K = XW K , V = XW V

Then computes:

Attention(Q, K, V) = softmax
A

QKT

√
dk

B
V

To allow the model to jointly attend to information from different representation
subspaces, the Transformer uses multi-head attention, as reported in Figure 2.4,
computing multiple attention distributions in parallel and concatenating their
results.

Figure 2.4: Multi-head attention mechanism: parallel attention heads allow the
model to focus on different semantic relationships simultaneously.

Feed-Forward Network. Each attention output is passed through a position-
wise feed-forward network:

FFN(x) = ReLU(xW1 + b1)W2 + b2

This is applied to each token independently, enabling non-linear transformations
while preserving position specificity.

9

State of the art

Positional Encoding. Since the Transformer does not use recurrence or convolu-
tion, it needs a way to incorporate information about token order. This is achieved
through positional encoding vectors added to input embeddings. Vaswani et al.
proposed a deterministic encoding based on sinusoidal functions:

PE(pos,2i) = sin
3

pos

10000 2i
d

4
, PE(pos,2i+1) = cos

3
pos

10000 2i
d

4

These encodings allow the model to learn relative and absolute positions of
tokens, facilitating the learning of order-sensitive tasks such as translation or
summarization.

Figure 2.5: Example of sinusoidal positional encodings for different embedding
dimensions. The pattern of each dimension varies across positions, helping the
model infer token order.

From the Original Transformer to the Current State of the Art. Since the
introduction of the original Transformer in 2017, numerous architectural variants
and scaling strategies have been developed, each addressing specific limitations such
as computational efficiency, context length, or parameter scaling. Today, state-of-
the-art (SOTA) large language models (LLMs) are still based on the Transformer
architecture, but incorporate significant modifications:

• GPT-family (GPT-2, GPT-3, GPT-4, GPT-4o, GPT-5): autoregres-
sive decoders optimized for large-scale pretraining, characterized by billions of
parameters and optimized scaling laws. These models dominate in open-ended
text generation and conversational AI.

10

State of the art

• BERT and Derivatives (RoBERTa, DistilBERT, ALBERT): encoder-
only architectures designed for bidirectional context modeling, widely used in
classification and retrieval tasks. They trade off generative ability for efficiency
in discriminative tasks.

• T5 and Encoder–Decoder Models (BART, FLAN-T5): encoder–decoder
Transformers fine-tuned for multi-task learning and instruction following, en-
abling high performance across summarization, translation, and reasoning
benchmarks.

• Efficient Transformers (Longformer, BigBird, Performer): introduce
sparse or low-rank attention mechanisms to reduce the quadratic complexity
of self-attention (O(n2)) to linear or near-linear, making it possible to process
sequences with thousands of tokens.

• Mixture-of-Experts Models (Switch Transformer, GLaM, Mixtral):
employ sparse activation of expert subnetworks, increasing model capacity
(trillions of parameters) while keeping inference cost manageable.

• Multimodal Transformers (CLIP, Flamingo, GPT-4V): extend the
Transformer to vision–language and speech–language settings, integrating
cross-modal attention for joint reasoning across text, images, and audio.

In terms of complexity, the baseline Transformer scales quadratically with
sequence length due to the self-attention mechanism. Modern approaches mitigate
this by introducing sparse attention, low-rank approximations, or state
space models (e.g., S4, Mamba), which provide linear-time alternatives while
preserving representational power. As of today, the Transformer and its derivatives
remain the backbone of all leading LLMs, with progress driven by scaling model
size, optimizing efficiency, and extending context length.

Model Type Representative Models Complexity / Features
Encoder-only BERT, RoBERTa, DeBERTa Strong for classification, NLU;

quadratic attention
Decoder-only GPT-3, GPT-4, GPT-4o, LLaMA, Mix-

tral
Generative models; large-scale pretrain-
ing; autoregressive decoding

Encoder–Decoder T5, BART, mT5, UL2 Effective for translation, summariza-
tion; bidirectional + autoregressive

Efficient Transformers Longformer, BigBird, Performer, Lin-
former

Sparse / low-rank / kernelized atten-
tion; complexity O(n log n) or O(n)

Mixture-of-Experts Switch Transformer, GLaM, Mixtral Trillions of parameters; only a subset
of experts activated per forward pass

Multimodal Transformers CLIP, Flamingo, GPT-4V, Gemini Joint text–image (and audio/video) un-
derstanding; cross-attention fusion

Table 2.1: Overview of Transformer-based model variants and their main features.

11

State of the art

2.2 Agents and Tool-Oriented Architectures
Recent advances in artificial intelligence have led to increasingly autonomous
systems capable of interacting with their environment in complex and dynamic
ways. In this context, the concept of an agent plays a central role: it represents
an entity able to perceive, reason, and act in order to achieve specific goals. At
the same time, the integration with external tools (tool-oriented architectures) has
expanded agents’ capabilities, allowing them to combine internal reasoning with the
use of external resources such as APIs, databases, or search engines. This section
explores the fundamental characteristics of agents, their historical evolution, and
their integration with tool-oriented architectures, with a particular focus on recent
implementations leveraging LLMs.

2.2.1 Definition and Evolution of LLM-Based Agents
The concept of an agent has been foundational in artificial intelligence. Tradition-
ally, agents are defined as autonomous systems that interact with an environment
by receiving inputs, processing them, and executing outputs to achieve specific
goals. These interactions occur through sensors (which receive percepts, such
as text or data) and actuators (which produce actions, such as web searches
or tool usage). Classical agents were constructed with modular components for
perception, reasoning, planning, and execution. While structured and interpretable,
these systems generally lacked adaptability and generalization capabilities beyond
predefined tasks.

The emergence of Large Language Models (LLMs) has significantly trans-
formed agent architectures. Pretrained on vast and diverse corpora of text, LLMs
like GPT-3 and its successors embed broad linguistic knowledge, commonsense
reasoning, and factual understanding. This obviates the need for task-specific rules
or programming. As a result, a new class of LLM-based agents has emerged,
where the LLM functions as an “augmented” reasoning core—capable of in-
terpreting percepts, planning, and dynamically executing actions in open-ended,
evolving environments.

In this paradigm, the LLM-based agent is not a static predictor but an inter-
active system. As illustrated in Figure 2.6, the agent continuously engages its
environment, receiving percepts through sensors, performing planning through
reasoning, and influencing the external world through actuators. The agent may
utilize external tools (e.g., search engines, APIs) and internal memory to store and
retrieve context or historical information. According to the taxonomy proposed by
Xu et al. [4], such agents operate in iterative cycles composed of five key processes:

• Perception: Interpreting inputs received via sensors, including natural lan-
guage instructions, search results, or API responses.

12

State of the art

• Planning: Decomposing tasks into actionable steps and identifying interme-
diate goals.

• Memory: Storing and recalling relevant information from prior observations,
plans, or interactions.

• Reflection: Evaluating past reasoning and actions to identify errors and
improve future strategies.

• Action: Executing outputs via actuators—such as generating text, invoking
tools, or performing actions that affect the environment.

Figure 2.6: Typical decision loop of an LLM-based agent: perception, planning,
memory, reflection, and action (adapted from Xu et al. [5]).

This architecture fundamentally departs from traditional single-pass LLM usage.
Rather than generating static outputs from a fixed input, LLM-based agents
function as dynamic, goal-driven entities capable of reasoning, remembering,
adapting, and acting through continuous interaction with their environment.

Having introduced the five foundational processes -Perception, Planning, Mem-
ory, Reflection, and Action—that compose the interactive loop of LLM-based agents,
we now provide a deeper examination. This section outlines their roles, implemen-
tation challenges, and examples based on recent developments in tool-augmented
reasoning, as surveyed by Zhou et al. [5].

13

State of the art

Figure 2.7: Illustration of an LLM-based agent architecture showing the interac-
tion between core components, memory systems, and planning submodules.

The architecture in the above Figure 2.7 illustrates how an LLM-based agent
is structured around modular and interactive components. Let’s now break down
each key module based on the design elements described in Zhou et al. [5] and the
conceptual layout shown in the figure.

The Agent

At the center of the architecture lies the Agent, the core decision-making unit
responsible for interpreting tasks, orchestrating components, and selecting suitable
reasoning or tool-use strategies. The agent evaluates task complexity and determines
whether to engage tools, access memory, decompose subgoals, or reflect on past
decisions. It serves as the dynamic controller of all downstream processes.

Tools

Tools extend the agent’s native capabilities by providing interfaces to specialized
operations. Examples include:

• Calculator – for arithmetic and numerical reasoning,

• Code Interpreter – for executing and debugging code,

• Calendar – for time-related planning and scheduling,

• Search – for retrieving real-time or external knowledge.

These tools are invoked when the agent recognizes that a subtask exceeds its
intrinsic reasoning ability and requires external functionality. Their integration
transforms LLMs into versatile, interactive problem-solvers.

14

State of the art

Memory

The agent uses both short-term and long-term memory:

• Short-term memory retains transient information like recent interactions or
intermediate tool outputs.

• Long-term memory stores persistent information, such as user preferences or
previously learned knowledge.

This memory separation allows the agent to maintain context within a session
while also personalizing responses across sessions.

Planning

Planning enables the agent to organize complex tasks into structured procedures.
The agent can choose among different strategies:

• Implicit planning through chain-of-thought reasoning,

• Explicit planning by generating structured action plans,

• Mixed approaches involving dynamic replanning.

Planning also involves selecting tool sequences and managing dependencies between
subtasks. It supports coherent behavior across multiple steps.

In contemporary LLM-based agent systems, planning is not a singular process
but a composition of complementary reasoning and control mechanisms. As shown
in Figure 2.7, several techniques are frequently employed as subcomponents of
planning:

Reflection Reflection introduces a meta-cognitive dimension to planning. After
executing a reasoning or action step, the agent evaluates whether its decision was
effective. If not, it may revise earlier steps, try alternative tools, or replan from
a different perspective. Reflection increases the agent’s resilience and learning
capacity in uncertain or iterative settings.

Self-Critics Self-Critics builds on reflection by allowing the agent to proactively
critique its own outputs before finalizing them. This internal feedback loop functions
as a quality-control mechanism, helping identify flawed logic, suboptimal plans,
or misused tools. It is especially useful in domains requiring high accuracy and
minimal human intervention.

15

State of the art

Chain-of-Thought Chain-of-Thought (CoT) is a reasoning strategy where the
agent articulates intermediate steps in natural language before arriving at a con-
clusion. This promotes transparency, improves logical consistency, and reduces
hallucination. CoT is particularly effective for arithmetic, multi-hop question
answering, and tasks requiring logical deduction.

Subgoal Decomposition Subgoal decomposition complements CoT by providing
structural scaffolding. Instead of solving an entire task in one go, the agent first
splits it into smaller subgoals or milestones. Each subgoal can then be tackled
with its own plan, tool usage, and reasoning process. This modularity enhances
robustness and allows dynamic adaptation in case of failures.

2.2.2 Advanced Architectures for LLM-Based Agents
As LLM-based agents evolve beyond single-shot prompting paradigms, recent
architectural surveys, such as Zhou et al. [5], highlight the emergence of sophisticated
modules that underpin agentic behavior. These include memory systems, external
knowledge integration, planning strategies, and interaction schemes—each designed
to enhance decision-making, adaptability, and multi-agent coordination. This
section draws upon the structural and conceptual breakdown presented in the
architectural summary (Figure 2.8) and extended in the technical framework
outlined in [5], providing a comprehensive view of how modern LLM agents operate.

Figure 2.8: Overview of the memory architecture in LLM-based agents. The
memory system consists of storage, retrieval, and reflection.

The Memory Model

Memory in LLM-based agents is no longer limited to the input context window.
Instead, it is structured across multiple layers:

16

State of the art

Memory Retrieval allows agents to extract contextually relevant data from
either short-term or long-term storage. In short-term cases, this often involves
appending recent tool outputs or user queries. Long-term memory, by contrast, re-
quires filtering and relevance-based retrieval, often implemented through embedding-
based semantic search in vector databases. These mechanisms mirror techniques
explored in retrieval-augmented generation (RAG) models [6] and agent platforms
such as LangChain.

Memory Reflection refers to the process by which agents consolidate experiences
from past interactions to refine future performance. This can involve summarizing
recent sessions, generalizing patterns of error or success, and updating internal
representations. In multi-agent contexts, Zhou et al. [5] describe centralized memory
reflection, where a master agent integrates knowledge from subordinate agents.
Memory reflection is typically achieved through mechanisms such as episodic
memory storage, which records past interactions; pattern extraction or clustering,
which identifies recurring trends or mistakes; and representation updates, where
learned knowledge modifies the agent’s internal models or decision policies. These
processes enable agents to adapt over time, improving both efficiency and accuracy
in subsequent tasks.

Memory Storage and Modification involves determining how to encode and
persist information. Depending on the task, this may involve natural language,
structured data, or multimodal content (e.g., image features or audio embeddings).
Modification strategies include appending new data, merging with similar entries,
or replacing outdated or incorrect knowledge. Such dynamics align with continual
learning frameworks and emphasize the shift toward lifelong learning in agent
systems.

Utilization of Knowledge

LLM-based agents enhance their performance by combining internal, multimodal,
and external knowledge sources:

• Internal Textual Knowledge:

– Learned during pretraining on large-scale corpora.
– Supports language understanding, generation, translation, etc.
– Limitation: Static and potentially outdated [5].
– Best used for: Tasks relying on general language understanding, common-

sense reasoning, or knowledge that does not require real-time updates.

17

State of the art

• Multimodal Knowledge:

– Visual: Represented through embeddings (e.g., visual transformers) and
integrated via self-attention.

– Audio: Processed through spectrograms or speech encoders embedded in
shared vector spaces.

– Enables tasks like VQA, image captioning, and speech interaction [7].
– Best used for: Tasks requiring perception and interpretation of non-textual

information, such as images, videos, or speech.

• External Knowledge Integration:

– Web Scraping & API Calls: Fetch real-time data for dynamic tasks
(e.g., news, stock prices) [8].

– Database/Knowledge Base Queries: Access structured repositories
(e.g., PubMed, ChatDB).

– Retrieval-Augmented Generation (RAG): Combines retrieval with
generation to improve factuality [6].

– Best used for: Tasks requiring up-to-date information, domain-specific
data, or high factual accuracy beyond the agent’s pretrained knowledge.

Reasoning and Planning Strategies

LLM agents can plan and reason using different approaches:

• One-Step Planning:

– Single-pass decomposition of tasks into subgoals.
– Fast but less adaptive to changes or feedback.

• Multi-Step Planning:

– Iterative refinement over multiple reasoning cycles.
– Supports feedback, reflection, and dynamic task adjustment [9].

Having this two strategies, we can note that One-step planning is best suited
for straightforward or time-critical tasks where speed is more important than
adaptability. In contrast, multi-step planning is preferred for complex, long-
horizon tasks that require iterative reasoning, the ability to handle uncertainty,
and the incorporation of feedback.

18

State of the art

Agent Interaction Schemes

Multi-agent systems (MAS) follow different coordination models:

Figure 2.9: Illustration of interaction schemes in multi-agent systems, cooperative
and adversarial.

Figure 2.10: Illustration of parallel and hierarchical interaction schemes in multi-
agent mixed systems.

• Cooperative:

– As shown in the (Figure 2.9), agents share goals, decompose tasks, and
collaborate through communication.

• Adversarial:

– As shown in the (Figure 2.9), agents pursue competing objectives with
strategic behavior (e.g., negotiation, game theory).

• Mixed:

19

State of the art

– As shown in the (Figure 2.10), combines cooperative and competitive
elements; can be parallel or hierarchical. Commonly used in complex
systems with partial alignment between agents.

Considering these interaction schemes, cooperative models are best suited for
scenarios where agents share common goals and benefit from collaboration, while
adversarial models are appropriate when agents have competing objectives and
strategic behavior is required. Mixed interaction schemes are particularly useful
in complex systems where agents may partially align, combining both cooperative
and competitive elements.

Prompting Techniques Prompting serves as a primary method for guiding
the behavior of LLM-based agents and structuring their reasoning processes. By
providing carefully designed instructions or examples, agents can be directed to
produce desired outputs without altering their internal parameters. The main
prompting strategies include:

• Zero-shot prompting: Used when no examples are available and the agent
must generalize from the instruction alone; ideal for novel or exploratory tasks.

• Few-shot prompting: Provides a small set of exemplars to demonstrate the
expected behavior, improving performance on tasks with moderate complexity
or ambiguous instructions.

• Chain-of-thought prompting: Encourages the model to generate inter-
mediate reasoning steps, effective for multi-step or logical tasks requiring
transparency and interpretability.

• Instruction-tuned prompting: Leverages pre-trained models fine-tuned on
large instruction datasets, yielding higher reliability on standard benchmarks
and repetitive tasks.

Prompting is typically performed through natural language instructions, op-
tionally augmented with structured formats, templates, or retrieval-augmented
context to enhance factual accuracy and domain specificity. Effective prompting
allows agents to dynamically adapt their reasoning, planning, and decision-making
behaviors without explicit retraining, complementing the modular architectures
and memory systems described in this chapter.

2.2.3 Agent Frameworks: LangChain and LangGraph
The rapid adoption of LLM-based agents has been accompanied by the emergence
of specialized frameworks that simplify their construction, orchestration, and

20

State of the art

deployment. Two of the most widely used open-source frameworks are LangChain
and LangGraph, each offering complementary approaches to agent design and
execution.

LangChain

LangChain provides a high-level framework for building applications powered by
LLMs. Its architecture centers on the composition of chains, which are modu-
lar sequences of prompts, models, and tools. It also integrates mechanisms for
retrieval-augmented generation (RAG), memory management, and exter-
nal API interaction. The main strengths of LangChain lie in its flexibility and
ecosystem support, making it suitable for a wide variety of use cases, from simple
chatbots to enterprise-grade knowledge assistants. However, its general-purpose
nature can lead to higher complexity and overhead in agent-specific workflows [10].

LangGraph

LangGraph extends the agent paradigm by modeling agentic workflows as graphs,
where nodes represent steps such as reasoning, tool invocation, or memory retrieval,
and edges define the flow of execution. This design allows agents to operate as state
machines with deterministic control over transitions, while still leveraging the
generative capabilities of LLMs. Compared to LangChain, LangGraph emphasizes
determinism, reproducibility, and control, making it particularly suited
for research and production systems where predictable behavior is essential. As
highlighted in recent surveys [5], graph-based orchestration is emerging as a key
direction for agent reliability and safety.

Comparison and Role in Agent Architectures

While LangChain focuses on composability and ecosystem integration, LangGraph
provides a more structured and transparent execution model. In practice, they can
be seen as complementary: LangChain for rapid prototyping and integration of
diverse components, LangGraph for precise control over agent reasoning and repro-
ducibility. Together, these frameworks exemplify the trend of moving from ad-hoc
LLM wrappers toward systematic, modular, and controllable agent infrastructures.

In our methodology (see Section ??), we adopt LangGraph as the foundation for
the scraping agent, leveraging its graph-based design to manage tool orchestration
and ensure coherent, context-aware responses.

21

State of the art

2.3 Model Context Protocol (MCP) for Agent-
Based Systems

As LLM-based agents become more capable and integrated into complex environ-
ments, the need for robust context management and standardized interactions
grows. Agents frequently rely on multiple tools, APIs, and knowledge sources to
perform tasks that require both reasoning and real-time information retrieval. The
Model Context Protocol (MCP) provides a framework to address these challenges,
offering a consistent interface for managing contextual information, coordinating
tool usage all in one place, and ensuring coherent multi-step execution. This section
introduces the motivation behind MCP, its role in agent architectures, and the
mechanisms through which it enables scalable and reliable agent-based systems.

2.3.1 Motivation and Role in Agent Architectures

Modern LLM-based agents must interact with a variety of tools, APIs, and external
data sources while maintaining coherent, persistent context. The Model Context
Protocol (MCP) addresses this need by defining a structured interface that
mediates between models and their operational environments. MCP was first
introduced by Anthropic, the organization behind the Claude AI models, in late
2023. Its primary purpose is to provide a standardized method for AI models to
communicate with external tools such as calendars, task managers, CRMs, Notion,
or Slack in a structured and consistent manner.

Before MCP, AI models were often connected to external services through ad
hoc, tool-specific APIs, leading to fragile integrations, inconsistent data handling,
and difficulties in scaling agent architectures. MCP was designed to solve these
challenges by providing a unified communication protocol that abstracts the under-
lying tool interfaces. This allows developers to integrate a wide variety of resources
while maintaining persistent model context, improving both interoperability and
maintainability.

22

State of the art

Figure 2.11: Comparison of tool integration before and after the introduction of
the Model Context Protocol (MCP).

Figure 2.11 illustrates the fundamental motivation behind MCP. In the tradi-
tional setup (left), large language models interact with external services through
multiple tool-specific APIs, each requiring custom integration logic. This results
in increased development complexity, inconsistent data handling, and poor scal-
ability. By contrast, the MCP-based architecture (right) introduces a unified
communication layer between LLMs and external resources. Through the MCP
server, agents can access a wide variety of tools and services without being tightly
coupled to their individual interfaces. This abstraction simplifies system design,
improves maintainability, and enables more flexible and interoperable agent-based
applications.

2.3.2 Protocol Structure and Components
MCP follows a client-server model, where clients act as intermediaries embedded in
model-hosting applications (e.g., IDEs, desktop agents, applications) and servers
expose tool functionalities or contextual resources. The interaction between model,
client, and server occurs through structured messages and lifecycle phases that
ensure stability and traceability.

Key elements of the protocol include:

• Hosts: Applications that the user interacts with. They contain the model
and the MCP client, responsible for initiating and routing requests.

23

State of the art

• MCP Clients: Embedded components that format, serialize, and dispatch
model-generated requests to the appropriate server endpoints.

• MCP Servers: External programs or services that expose tools, memory
access, or resources through the MCP interface.

This structure allows for clean separation of concerns: the model focuses on
reasoning, the client on mediation, and the server on executing actions or returning
results.

2.3.3 MCP Server Lifecycle
As Figure 2.12 illustrates, the MCP is organized around a three-phase server
lifecycle, each with distinct technical implications:

1. Creation: An MCP server is instantiated with a schema that defines available
tools and data modalities. This allows the agent to discover and index callable
functions.

2. Operation: The server processes structured requests sent via the MCP client,
executes the corresponding action, and returns a standardized response (often
JSON).

3. Update: The toolset or state of the server may evolve, and this phase governs
the communication and synchronization of such changes.

This lifecycle ensures that models interact with a consistent view of tool capa-
bilities and responses, improving robustness and facilitating auditability.

Figure 2.12: Illustration of MCP server components and lifecycle.

24

State of the art

2.3.4 Security and Context Isolation
Hou et al. [11] emphasize the importance of security and context management
in MCP. Since the protocol enables access to potentially sensitive tools (e.g., file
systems, code interpreters), strong guarantees are required regarding access control,
input sanitization, and data isolation.

Each MCP session operates within a defined scope, which can be aligned with user
identity, task context, or memory segments. This scoped interaction model supports
granular permissioning and reduces the risk of accidental cross-contamination of
state or intent.

2.3.5 Implications for Agent-Based Systems
From an agent architecture perspective, MCP offers several advantages:

• Modularity: Tools and capabilities can be added or removed without retrain-
ing the model or rewriting prompts.

• Traceability: Every interaction is structured and serializable, enabling better
debugging, logging, and reflection.

• Multi-agent support: MCP’s structured communication enables multiple
agents to share tools and operate over a shared memory or state space.

• Composability: Complex workflows involving multiple tools or agents can
be composed from discrete, well-defined actions governed by the protocol.

These properties make MCP especially well-suited for advanced LLM applications
such as IDE assistants, research agents, and collaborative agent ecosystems.

2.4 Web Scraping and Data Extraction
Access to real-time, structured, or semi-structured web content is crucial for LLM-
based agents tasked with open-domain reasoning, data-driven decision-making,
or dynamic workflows. Web scraping and data extraction have thus become
foundational components in enabling agents to interact with the web as an external
source of truth or memory.

This section outlines the current state of the art in data extraction, spanning
from low-level browser automation to high-level agentic reasoning frameworks that
parse and interpret web content.

25

State of the art

2.4.1 Visual and DOM-Based Extraction
State-of-the-art extraction systems combine visual rendering with DOM structural
analysis to generalize across diverse web layouts. The Document Object Model
(DOM) is a tree-structured representation of an HTML or XML document, where
each element (such as headings, paragraphs, images, or links) is represented as a
node in a hierarchical structure. This model provides both the syntactic organization
of the page and the relationships between elements, making it the standard way
for programs and scripts to dynamically access and manipulate web content.

Traditional extraction approaches often relied on brittle selectors (e.g., XPath
or CSS paths) tied to specific DOM positions. However, small layout changes could
easily break such rules. To address this, modern systems analyze the DOM in
combination with visual cues such as spatial layout, rendering order, or saliency.
By segmenting the page into meaningful regions and clustering elements with
similar visual or structural features, these systems can robustly identify and extract
relevant content across heterogeneous websites.

This combination of visual and DOM-based techniques is particularly effective
for extracting:

• Product listings or result pages,

• Articles, posts, and reviews,

• Navigation menus and metadata.

Recent research has also extended transformer architectures to operate directly
on DOM structures. Approaches like WebFormer and TreeBERT model the
DOM tree as a sequence enriched with layout and semantic signals, enabling more
accurate recognition of key content blocks across dynamic or complex web pages.

2.4.2 Headless Browsers and Page Interaction
Modern websites increasingly render content dynamically through JavaScript,
making traditional HTTP-based scraping insufficient. To handle these complexities,
contemporary extraction pipelines rely on headless browser engines such as
Playwright, Puppeteer, and Selenium.

These tools simulate full browser environments, enabling automated agents to:

• Wait for asynchronous content to fully render in the DOM,

• Interact with elements such as dropdowns, modals, or login forms,

• Traverse complex navigation flows and multi-step user interactions,

• Extract information directly from rendered views (e.g., tables, popups).

26

State of the art

Headless browsers expose granular control over the browser context, allowing
the automation of nearly any interaction a human user could perform. They serve
as the foundational execution layer for higher-level scraping agents.
While headless browsers handle the rendering and interaction, they lack the capacity
for semantic reasoning or strategic content selection. This gap is filled by the next
generation of systems: LLM-augmented scraping agents.

2.4.3 LLM-Augmented Scraping Agents
Building on top of browser automation, recent research has introduced language
model-based agents capable of reasoning about web pages. These agents do
not merely execute scripted actions—they interpret content, make decisions, and
extract structured data with minimal supervision.

In tool-augmented paradigms like ReAct [8], LLM agents can:

• Read and understand raw HTML or DOM fragments,

• Decide which elements to click or follow based on task objectives,

• Parse unstructured content into structured outputs (e.g., JSON or key-value
pairs).

A state-of-the-art example is FireCrawl, an end-to-end framework that inte-
grates:

• A headless browser for robust page rendering,

• DOM segmentation and heuristic clustering for content organization,

• An LLM-based extraction module that semantically labels and structures
content.

Unlike rule-based scrapers, LLM-augmented agents adapt to varied layouts and
noisy content, making them ideal for dynamic and heterogeneous web environments.
They are particularly well-suited for use in research agents, retrieval-augmented
generation systems, and general-purpose web-based assistants.

2.4.4 Structured vs. Unstructured Content
Agents often need to extract both:

• Structured data — e.g., tables, lists, metadata (JSON-LD, RDFa),

• Unstructured text — e.g., articles, comments, or freeform inputs.

27

State of the art

While structured data can often be directly parsed, unstructured content benefits
from summarization, named entity recognition, and LLM-based transformation
into knowledge graphs or intermediate representations.

2.5 Content Enrichment and Summarization
Web scraping will almost always return content in a noisy, verbose, or inconsistent
format, because websites are primarily designed for human consumption rather
than machine processing. A typical web page intermixes the main text with
advertisements, navigation menus, user comments, pop-ups, and stylistic elements
that carry little or no semantic value. Moreover, the same type of content (e.g.,
news articles, product pages) can be presented in highly heterogeneous layouts
across different domains, with variations in HTML structure, embedded scripts,
and dynamically generated elements. As a result, the raw output of a scraper often
contains redundant or irrelevant information, formatting artifacts, or incomplete
fragments of the target content.

Automated agents therefore need to perform content enrichment to transform
these rough inputs into well-structured data suitable for downstream tasks. Con-
tent enrichment involves a combination of processes such as summarization, fact
extraction, entity tagging, and adaptation for decision-making or dialogue systems.

Summarization plays a foundational role, as it allows agents to distill essential
insights from verbose inputs, reducing cognitive workload for both the system
and the end user. The evolving landscape of research in extractive and abstrac-
tive summarization, as well as more specialized applications such as real-time,
user-adaptive, and multi-document summarization (both synchronous and asyn-
chronous), demonstrates the central importance of this capability in modern agent
architectures.

This section surveys the main approaches, contrasting extractive and abstractive
summarization methods, exploring techniques for multi-document and long-context
scenarios, and highlighting the role of LLM-based agents in advancing the field.

2.5.1 Extractive vs. Abstractive Summarization
Traditional summarization methods fall into two broad categories:

• Extractive summarization selects and concatenates salient spans directly
from the source. Classical models include TextRank, LexRank, and more
recently BERTSum [12]. These methods are robust but often lack fluency or
semantic coherence.

• Abstractive summarization generates new text that paraphrases or com-
presses the source content. Transformer-based models such as BART [13],

28

State of the art

PEGASUS [14], and T5 [15] have achieved strong performance in this setting.
These are especially effective for news, reviews, and dialogue summarization.

Abstractive models require more data and supervision but yield higher-quality
outputs in terms of fluency and informativeness.

2.5.2 Multi-Document and Long-Context Summarization
Agents often encounter scenarios where information is spread across multiple pages
or sources. Recent work addresses this through:

• Multi-document summarization models like Hierarchical Transformers
and GSum [16], which condition on multiple passages and generate unified
outputs.

• Long-context models such as Longformer [17], BigBird [18], and Gemini [19],
which can attend to entire documents or multi-page corpora efficiently.

These systems enable context-aware reasoning and summarization over large
or distributed inputs—crucial in academic search, legal documents, or technical
pipelines.

2.5.3 LLM-Based Summarization Agents
Large language models (LLMs) like GPT-4, Claude now enable agents to perform
summarization as a multi-step reasoning task. These agents can:

• Adapt summaries based on user intent or style,

• Generate query-focused or comparative summaries,

• Reflect and revise outputs based on quality signals [9].

Few-shot prompting and tool-augmented reasoning (e.g., ReAct [8]) allow flexible
adaptation to unseen domains without retraining. Such agents are increasingly
used in search assistants, research tools, and report generation pipelines.

2.6 Multimodal Output and Podcast Generation
Modern agents are expected to communicate with users across different modali-
ties—text, image, audio, and video. This has driven the development of multi-
modal output capabilities that allow agents not only to understand but also to
produce expressive, human-aligned content in various formats.

29

State of the art

One of the most practical and fast-evolving applications is podcast generation,
where language models automatically transform written content into rich, engaging
audio experiences. This involves both linguistic planning (e.g., summarization,
script generation) and high-fidelity voice synthesis. OpenAI and other leaders in
the field have released models that tightly integrate these capabilities.

The following subsections explore the foundations and applications of these
technologies, focusing on multimodal LLMs and real-time voice cloning for podcast
narration, advances in text-to-speech and multilingual support, and a discussion of
the opportunities and current limitations of multimodal output systems.

2.6.1 Multimodal LLMs and Real-Time Generation
With the release of GPT-4o [20], OpenAI introduced a unified model capable
of processing and generating across text, audio, and vision—in real time.
Unlike previous architectures with separately trained modules, GPT-4o handles all
modalities natively, enabling seamless tasks like:

• Spoken dialogue with emotional nuance,

• On-the-fly image explanation and voice narration,

• Real-time feedback for tutoring or accessibility.

Similar trends are visible in Gemini [19] and Meta’s ImageBind [21], with
increasing attention on cross-modal alignment and reasoning. These models are
setting a new standard for how agents perceive and respond within multimodal
environments.

2.6.2 Voice Cloning and Podcast Narration
Text-to-speech (TTS) systems have seen massive improvement in the quality and
controllability of generated audio. OpenAI’s Voice Engine [22] can produce
highly expressive speech that maintains clarity, natural rhythm, and speaker
consistency—even with limited training samples.

State-of-the-art capabilities in this area include:

• Zero- or few-shot voice cloning, which replicates speaker identity from
short audio clips.

• Emotion and tone control, enabling varied narrations for news, fiction, or
education.

• Integration with summarizers, allowing content transformation pipelines
for podcast production.

30

State of the art

This allows agents to automate end-to-end workflows: ingesting large content
volumes (e.g., news articles), summarizing key insights, and narrating them with
natural prosody.

2.6.3 Text-to-Speech and Multilingual Support
Text-to-speech (TTS) capabilities are increasingly central to LLM-based agents,
enabling them to communicate in natural spoken language and operate in audio-first
contexts such as podcast narration, virtual assistants, and accessibility tools. The
current state of the art in TTS emphasizes expressiveness, language coverage,
and integration with conversational agents.

OpenAI has developed a proprietary TTS system known as the Voice En-
gine [22], which underpins voice interactions in ChatGPT and the GPT-4o frame-
work [20]. Unlike traditional TTS pipelines, the Voice Engine produces speech
that is not only intelligible and fluent, but also expressive, natural-sounding, and
context-aware.

The system supports speech synthesis in over 35 languages, including:

• European languages: English, Spanish, French, German, Italian, Dutch,
Portuguese, Swedish, Polish, Russian;

• Asian languages: Chinese (Mandarin), Japanese, Korean, Hindi, Thai,
Vietnamese, Indonesian;

• Others: Turkish, Arabic, Hebrew, and more.

Support for these languages varies in quality and expressiveness. English remains
the most expressive, with nuanced intonation, named voice personas, and emotional
modulation. Other languages are typically rendered with clear pronunciation and
fluent cadence, but may lack advanced prosodic features or stylistic variation.

The integration of TTS into fully multimodal agents—such as those built
with GPT-4o—allows for seamless real-time dialogue, storytelling, and audio-
first applications. These agents can listen, process, and respond with speech
in a conversational loop, opening up new use cases in education, accessibility,
entertainment, and beyond.

2.6.4 Opportunities and Limitations
Multimodal generation introduces significant opportunities for LLM-based agents,
including:

• Immersive experiences: Real-time outputs improve context understanding
and human-like communication.

31

State of the art

• Personalization and accessibility: Voice cloning, expressive TTS, and
multilingual support enable scalable content creation, such as podcasts and
narrated summaries.

• User engagement and flexibility: Agents can adapt across tasks and
deliver interactive tutorials or content pipelines.

However, multimodal agents also face notable limitations:

• Latency and coordination: Real-time generation across modalities requires
low-latency decoding, modality synchronization, and efficient resources.

• Dialogue memory and modality awareness: Agents must reason over
content, prosody, visual cues, and intonation.

• Agent identity and continuity: Maintaining a consistent persona across
voices, contexts, and modalities is critical for user trust.

These opportunities and limitations are particularly relevant for podcast gen-
eration, where agents must seamlessly combine summarization, voice synthesis,
emotional expression, and multilingual support while maintaining a coherent and
engaging narrative for listeners.

2.7 Vector Databases
As LLM-based agents increasingly rely on semantic representations of text, tradi-
tional relational databases are often insufficient for efficient retrieval of contextually
relevant information. Vector databases are designed to store high-dimensional em-
beddings, enabling similarity-based queries that go beyond exact keyword matching.
This capability is particularly important for applications such as news summariza-
tion, semantic search, recommendation systems, and any scenario where LLMs
must reason over related content rather than literal matches.

This section examine the utility of vector databases in modern AI systems,
discuss embeddings and their role in vector representations, and highlight practical
implementations such as PostgreSQL with the pgvector extension.

2.7.1 Utility of Vector Databases
Vector databases allow agents to perform similarity searches in embedding space,
which captures semantic meaning rather than surface-level text features. This
enables:

32

State of the art

• Semantic retrieval: Quickly finding articles, documents, or other content
that is conceptually related to a query, even if no exact keywords match.

• Context-aware summarization: Aggregating information from multiple
related sources to create coherent summaries or multi-document synthesis.

• Scalability: Efficiently handling large collections of embeddings while main-
taining fast query performance.

• Integration with LLMs: Supporting retrieval-augmented generation (RAG)
pipelines where retrieved vectors can be fed into LLMs for improved factuality
and context.

2.7.2 Embeddings and Vector Representations
LLM-based agents rely on transforming textual or multimodal content into numeri-
cal representations known as embeddings, as shown in Figure 2.13. An embedding
is a high-dimensional vector that captures the semantic meaning of the input, such
that similar concepts are represented by vectors that are close in space. This
transformation allows agents to reason about content based on meaning rather
than exact wording.

Figure 2.13: Illustration of how embedding works with embedding models.

Vector Space Representation

Embeddings are organized within a vector space, where each dimension encodes
latent semantic features learned by the model. In this space:

• Each document, sentence, or token corresponds to a point (vector) in high-
dimensional space.

33

State of the art

• Semantic similarity between items is reflected in geometric closeness: vectors
representing similar concepts have smaller distances between them.

• Vector spaces allow LLM-based agents to perform operations like clustering,
nearest-neighbor search, and semantic reasoning.

The choice of vector dimensionality depends on the embedding model and
the complexity of the semantic information it needs to capture. Typical LLM
embeddings have hundreds or thousands of dimensions.

Similarity Search in Vector Databases

Similarity search is the process of retrieving vectors that are most semantically
similar to a given query vector. In practice, this is performed using distance
metrics such as:

• Cosine similarity: Measures the cosine of the angle between two vectors,
capturing orientation similarity regardless of magnitude.

• Euclidean distance: Measures straight-line distance in the vector space,
suitable when magnitude encodes meaningful information.

• Manhattan distance: Sum of absolute differences across dimensions, occa-
sionally used for sparse embeddings.

Vector databases like pgvector allow efficient indexing and retrieval of near-
est neighbors for a given query vector, often using optimized structures such as
approximate nearest neighbor (ANN) algorithms. This enables agents to:

• Retrieve semantically relevant articles, even when keywords differ from the
query.

• Aggregate information from multiple sources for summarization or reasoning.

• Provide context-aware answers in real-time applications.

By combining embeddings, vector space representation, and similarity search,
LLM-based agents gain the ability to operate over content semantically rather than
literally, greatly enhancing the accuracy and utility of information retrieval.

34

State of the art

2.7.3 PostgreSQL + pgvector
As mentioned earlier, one popular approach combines the reliability of relational
databases with vector search capabilities. PostgreSQL, a mature and widely-
used relational database, can be extended with the pgvector extension to store
embeddings as vectors. This setup offers several advantages:

• Familiar interface: Developers can continue using SQL while leveraging
vector similarity search.

• Hybrid queries: Combine traditional filters (e.g., by date, category, or
author) with semantic similarity search in a single query.

• Open-source and flexible: free, well-supported, and integrates easily with
Python-based agent pipelines.

• Efficient storage and retrieval: High-dimensional embeddings are indexed
to allow fast nearest-neighbor searches, critical for real-time applications.

By integrating vector databases into LLM-based agent architectures, systems can
perform more accurate, context-aware retrieval, which enhances downstream tasks
such as summarization, recommendation, and multimodal content generation.

35

Chapter 3

Methodology

This chapter presents the design and implementation of the automated NewsS-
craper system developed in this project. It provides a detailed overview of the
system architecture, describing how modular agents interact with tools and external
services to collect, process, and generate content. We discuss the design principles
guiding the system, including modularity, multimodal output, personalization, and
agent autonomy. The chapter then examines the agent architecture, data flow, and
the specific roles of each component, including the MCP server, scraping service,
and email distribution module. Finally, we describe the selected instruments and
technologies, such as LLMs, text-to-speech models, vector databases, and the
Streamlit interface, highlighting how they are integrated to enable robust, scalable,
and user-centered functionality. This chapter lays the foundation for the system’s
prototype demonstration and use-case evaluation presented in the following chapter.

3.1 System Overview and Design Principles
The goal of this project is to develop an automated system capable of scraping
online news, summarizing relevant content, and generating a podcast based on it.
The resulting pipeline enables efficient, accessible, and personalized information
consumption, particularly useful for users with time constraints or those who prefer
auditory content.

The system is structured as a modular and agent-based architecture, which
promotes reusability, scalability, and robustness. Agents operate as autonomous
entities that interact with modular tools—such as scrapers, summarizers, and
speech generators, thanks to a unified communication interface provided by the
Model Context Protocol (MCP). This abstraction allows developers to focus
on high-level workflows, finding already done MCP servers ready for use.

From a design perspective, the system has the following principles:

36

Methodology

• Modularity: Each component (scraping, summarization, TTS) operates as
an independent tool, allowing for easy replacement or improvement without
disrupting the overall pipeline.

• Multimodal Output: The final output is not just textual but vocal, lever-
aging advanced text-to-speech models to create natural-sounding podcast-like
results.

• Personalization: The system adapts to user preferences by filtering and
selecting news based on pre-defined topic categories (e.g., Economy, Politics,
AI, Cybersecurity).

• Agent Autonomy: Agents operate in a goal-directed manner, orchestrating
tool execution through the MCP without requiring hardcoded task flows.

• Cloud-First and API-Centric: The system integrates cloud-based LLMs
and TTS models (via OpenAI APIs), ensuring state-of-the-art capabilities
without the need for self-hosted models.

This chapter provides a detailed description of the system’s architecture, data
flow, and implementation decisions, laying the foundation for the prototype and
use-case demonstration in the next chapter.

3.2 Agent Architecture and Data Flow

As illustrated in Figure 3.1, the system is designed around a modular agent-based
architecture powered by the Model Context Protocol (MCP). The MCP agent
acts as the central coordinator, mediating between the user and the set of tools
provided by the MCP server. This setup promotes separation of concerns,
scalability, and extensibility, as new components can be integrated without
major structural changes.

The architecture at a high level integrates several services: an MCP server that
facilitates summarization, storage, and text-to-speech functionalities; a specialized
scraping service responsible for acquiring news content; and an email service
designated for newsletter distribution. These services collaboratively function to
deliver personalized news summaries and podcasts.

Figure 3.1 illustrates the overall design of the system, showing how the different
modules interact with each other and with external APIs.

37

Methodology

Figure 3.1: High-level architecture of the agent-based system.

3.2.1 Component Breakdown
The architecture relies on a set of modular Python scripts, each responsible for a
specific functionality. Figure 3.1 already introduced the overall integration; here,
we detail the role of each module.

• mcp_server.py: This script is the backbone of the system. It runs the MCP
server, exposing the tools required for the agent, including:

– Summarization tool, which communicates with the OpenAI API.
– Vector storage tool, powered by PostgreSQL + pgvector, for storing

articles, embeddings, and metadata.
– Text-to-Speech tool, connected to the OpenAI Voice Engine for podcast

generation.

38

Methodology

– Web search tool, for retrieving updated content if required.

• scraping_server.py: This script is responsible for news extraction. It
uses Firecrawl, a web crawling framework, to retrieve clean article content
from predefined trusted sources. The content is then optionally processed
with the OpenAI API for cleaning and summarization before being stored in
the database.

• email_service.py: This script manages the weekly newsletter service.
It collects relevant articles and podcasts generated during the week, assembles
them into a digest, and sends them to subscribed users. It integrates both:

– The SMTP protocol, and
– The Gmail API,

to deliver messages reliably and securely.

Each component could be hosted on an Amazon EC2 instance, ensuring
scalability and remote accessibility.

The technologies and frameworks selected for these components were chosen
to balance performance, scalability, and ease of integration. OpenAI’s models
were selected for summarization and text generation due to their state-of-the-art
capabilities, reliability, and strong support for multimodal content. The OpenAI
Voice Engine provides high-quality text-to-speech, which is essential for producing
engaging podcast output, even if it has some difficulties with the Italian language.
PostgreSQL + pgvector was chosen to enable semantic similarity search and
efficient storage of vectorized article embeddings, allowing fast and context-aware
retrieval, with its ease and simplicity too. Firecrawl was selected as the web
scraping framework for its robustness, flexibility, and ability to extract clean article
content from multiple sources, having the possibiliy to extract content with ad-hoc
schemas done for the project. For email distribution, the SMTP protocol and
Gmail API were used to ensure secure, reliable, and scalable newsletter delivery.
Finally, hosting components on Amazon EC2 instances provides the system
with flexible cloud-based infrastructure, ensuring availability, remote access, and
the ability to scale resources according to workload demands.

3.2.2 Workflow: From User Input to Final Output
Once the components are integrated, the data flows through the system in a
sequential yet modular pipeline. The workflow can be summarized as follows:

1. User Interaction: The user selects categories of interest (e.g., Economy,
Politics, AI). This input is sent to the mcp_server.py.

39

Methodology

2. News Retrieval: The scraping_server.py is invoked, which runs Firecrawl
to scrape new articles. Content is checked against the database to avoid
duplicates.

3. Summarization and Storage: Articles are passed to the OpenAI summa-
rization model. Both the raw and summarized content are stored in pgvector,
enabling similarity search and reusability.

4. Podcast Generation: Summarized articles are converted into speech using
the OpenAI Voice Engine. Audio files are stored and indexed for later access.

5. Newsletter Assembly: The email_service.py gathers weekly summaries
and podcasts, builds the digest, and sends it to users via Gmail SMTP.

6. Output Delivery: Users can then access the news through two modalities:

• Web platform, where users can browse articles, read summaries, listen to
audio, and ask questions directly about the news content.

• Email newsletters with both summaries and embedded audio links.

This modular workflow ensures robustness and scalability, while also facilitating
easy extension of the system with additional tools (e.g., multilingual support or
advanced analytics).

3.3 Selected Instruments
This section presents the technologies and frameworks that underpin the system’s
implementation. While Section 2.3 discussed these tools in a theoretical context and
from a state-of-the-art perspective, here we describe their concrete use within the ar-
chitecture. Each component was selected to balance scalability, interoperability,
and extensibility.

3.3.1 Model Context Protocol (MCP)
The Model Context Protocol (MCP) offers a standardized architecture for presenting
modular tools that an agent can dynamically invoke, as covered in Section 2.3.
Here, we describe the specific implementation of MCP in our system, whereas the
previous part concentrated on its philosophical underpinnings and use in agent
systems.

The MCP server is implemented using the FastMCP library. Each tool encap-
sulates a specific functionality, and the MCP agent orchestrates their invocation
depending on user preferences or queries.

The main tools exposed by the MCP server are:

40

Methodology

• Database Retrieval (get_articles_from_db): Allows the agent to query
the pgvector database using semantic similarity search. This provides
fast access to previously scraped and summarized articles without redundant
computation, giving the news that is closest to the given query.

• Preference Expansion (expand_article): Retrieves news from the sys-
tem’s database, filtered by the user’s selected categories or subcategories. This
tool not only returns structured article data (title, link, publication date,
summary). After the article expantion, the podcast generation module is
invoked to produce audio content, using the expanded articles, from the user
preferences.

• Web Search (web_search): When local data or stored articles are insufficient,
the agent can query the web in real time. This is implemented using the
gpt-4o-mini-search-preview model, which integrates search capabilities
with natural language summarization. The tool takes a query as input,
triggers a web search, and returns a concise summary of the most relevant
information retrieved.

Finally, the server runs with a lightweight SSE transport, ensuring efficient
communication between the MCP agent and the tools.

This implementation highlights how MCP supports modularity and extensibility:
additional functionalities (e.g., translation, sentiment analysis, or advanced filtering)
could be integrated by simply adding new tools, without requiring changes to the
agent logic.

3.3.2 Scraping Process
The scraping pipeline is responsible for acquiring raw news data from online sources,
transforming it into structured representations, and preparing it for subsequent
enrichment and storage. This process is implemented using the Firecrawl API,
which provides robust extraction capabilities while respecting the dynamic and
heterogeneous structures of modern news websites.

The pipeline is organized into distinct stages:

• Metadata Extraction. Given a user-selected source (e.g., a news website
corresponding to a category or subcategory), the system extracts the list of
available articles. For each item, structured metadata is retrieved, including
title, description, link, and source. This information is represented in a stan-
dardized schema, ensuring interoperability across heterogeneous publishers.

• Article Content Retrieval. Once candidate links are collected, the system
scrapes the full text of each article, including the main content, publication

41

Methodology

date, and, if available, the author. Non-relevant sections (advertisements,
navigation menus, footers, etc.) are discarded. To increase robustness, the
scraping functions implement a retry mechanism, mitigating the impact of
temporary failures or network instability.

• Duplicate Detection. To avoid storing duplicates, a newly scraped article
is compared with the database. The system applies a two-level filtering: (i)
comparison of title, and (ii) comparison of semantic content, where a language
model determines textual similarity for the candidate article and those already
saved. This ensures that the database remains clean and non-redundant even
when many sources are reporting the same story.

• Expansion and Summarization. Articles are expanded upon in more detail
text data acquired from searching on the web. This allows the system to
expand the original content by adding explanations of key terms, background
context, and potential impacts (e.g., market consequences of an economic
event). Summarization modules condense the elaborated text into short
summaries, which are later reused for newsletter and podcast generation.

• Embedding and Storage. Finally, each processed article is embedded into a
high-dimensional vector representation and stored in the PostgreSQL database
with pgvector. The embeddings combine the article’s title, content, category,
and subcategory, allowing efficient semantic retrieval during user queries. We
employ the text-embedding-3-small model from OpenAI, offering a short
but highly comprehensive representation of text data. This choice ensures a
balanced trade-off between computational efficiency and retrieval accuracy,
making it suitable for real-time interaction with the news assistant.

This modular design allows the scraping process to remain extensible. New data
sources can be integrated by simply defining their metadata schema, while additional
enrichment steps (e.g., translation or sentiment analysis) can be incorporated
without altering the core pipeline. By leveraging Firecrawl’s structured extraction,
semantic embeddings, and GPT-based contextualization, the system ensures both
reliability and adaptability in processing heterogeneous news streams.

3.3.3 Database and Vector Storage with pgvector

A central component of the system is the database, which stores both raw and
processed content. Each news article is saved together with its metadata (title,
source, publication date, link, and summary), ensuring persistence and efficient
access to past results while avoiding redundant scraping.

To enable semantic retrieval, the system integrates the pgvector extension for
PostgreSQL, which allows storing high-dimensional embeddings and performing

42

Methodology

similarity search directly within the database. As discussed in Section 2.7, embed-
dings map text into a vector space where semantically related items are positioned
closer together. This makes it possible to retrieve conceptually relevant articles
even when no exact keywords overlap with the query.

The adoption of pgvector was motivated by three main considerations:

• Hybrid queries: Combine semantic similarity search with classical SQL
filters (e.g., by date, category, or source).

• Scalability and efficiency: Store and retrieve large volumes of embeddings
with low latency, supported by optimized nearest-neighbor indexing.

• Seamless integration: Extend PostgreSQL’s reliability and familiarity with
vector search without introducing a separate database system.

With this setup, user interactions—whether through direct questions, semantic
lookups, or preference-based searches—return results that are both accurate and
context-aware. By bridging traditional relational queries with vector similarity
search, the system achieves a flexible and robust database layer, aligning with the
principles outlined in Section 2.7.

Database Schema and Columns

The database schema is centered around the articles table, which stores both
metadata and content. The main columns are:

• title, author, link, source: Identifying information and provenance of
the article.

• publication_date: Timestamp associated with the news item.

• description, summary: Concise versions of the content for quick access and
filtering.

• category, subcategory: Used to match articles to user preferences.

• text, expanded_article: Raw article text and a processed and enriched
version.

• embedding: High-dimensional vector representation of the article text, stored
via pgvector.

This schema balances relational querying (on metadata) with semantic search (on
embeddings).

43

Methodology

Embedding Integration

As presented in Section 3.3.2, the embedding pipeline transforms each article into
a semantic vector using the text-embedding-3-small model from OpenAI.

• The embedding input concatenates the title, article text, category, and sub-
category.

• The computed vector is stored in the embedding column using pgvector.

• This enables direct similarity queries inside PostgreSQL by leveraging vector
operators (e.g., cosine distance).

The use of a compact embedding model ensures computational efficiency while
maintaining semantic richness. The design can be scaled to larger models (e.g.,
text-embedding-3-large) when higher precision is needed.

Saving Articles to the Database

The function save_articles_to_db handles the ingestion of new articles:

• Computes the semantic embedding and inserts all article fields into the
database.

• Uses safe database transactions with error handling and rollback in case of
failure.

This ensures articles are persistently stored along with their semantic vectors.

Retrieving All Articles

The function get_all_db_articles retrieves all entries from the articles table:

• Maps each row back into an Article object.

• Preserves both text and metadata for full downstream processing.

• Returns an empty list if no entries are available.

This provides a direct bridge between the database and the higher-level application
logic.

44

Methodology

Semantic Search with Similarity Queries

The function search_similar_articles performs semantic retrieval. It firstly
takes the user query and embeds it into the same vector space as the articles, then
executes a SQL query, ranking articles by cosine similarity with the query vector,
and finally applies a threshold to retain only the most relevant articles.

As discussed before, to measure how close two embeddings are in the vector
space, the system relies on cosine similarity. This metric computes the cosine of
the angle between two vectors, providing a score in the range [-1, 1]. A value close
to 1 indicates that the vectors point in nearly the same direction (high semantic
similarity), while a value close to 0 suggests little or no relation. Unlike Euclidean
distance, cosine similarity focuses on the orientation of the vectors rather than
their magnitude, making it particularly suited for text embeddings where semantic
meaning is captured by direction in the vector space.

Preference-Based Retrieval

The function get_articles_preferences filters articles by user-specified cate-
gories or subcategories:

• If all categories are selected, it retrieves the three most recent articles per
category.

• Otherwise, it filters by the provided categories or subcategories.

• Only considers articles published in the last seven days, ensuring recency.

This mechanism supports personalized news delivery with minimal latency.

Updating Existing Articles

The function update_articles allows partial updates:

• Modifies only the summary and expanded_article fields of existing rows.

• Uses batch updates for efficiency.

• Ensures atomicity with transaction management.

This function is crucial for workflows where article summaries and article text are
refined or enriched after the initial ingestion.

45

Methodology

3.3.4 LLMs and Summarization Models
The system makes use of two main models from OpenAI’s family:

• gpt-4o-mini: employed for text summarization, multi-article synthesis, and
article expansion.

• gpt-4o-mini-search-preview: a specialized variant capable of performing
web-augmented queries, used to retrieve contextual information beyond
the scraped articles.

Together, these models allow the system to provide a differentiated approach
which is adapted to the different use cases as follows. The choice of these specific
variants was motivated by two main considerations: they ensure minimum oper-
ational cost, making the pipeline scalable and sustainable, while at the same time
providing sufficient precision and reliability in tasks such as summarization,
synthesis, and web-augmented retrieval. This balance makes them particularly well
suited for applications where frequent queries and high responsiveness are required.

Single-Article Summarization. Each article that is scraped is processed with
gpt-4o-mini to create a summary. The created outputs are clear, informative, and
easy to understand, keeping the key facts from the original text. The summaries
are short, usually three to four paragraphs long, and serve as the foundation for
both text presentation and podcast narration.

Multi-Article Synthesis. When several related articles are retrieved, like mul-
tiple sources reporting on the same event, the system produces a joint summary.
This avoids repetition, emphasizes shared points among sources, and ensures that
numerical details like percentages or figures are maintained.

Web-Context Expansion. In cases where articles lack context, an external
model is used to perform web queries.
Specifically, the gpt-4o-mini-search-preview model is used. Retrieved informa-
tion is structured into thematic sections such as Introduction, Context, Impact,
and Synthesis. This structured output is then integrated into the original text by
another gpt-4o-mini call, creating an enriched version that includes background
explanations and a clearer understanding of the event.

3.3.5 Text-to-Speech with OpenAI Voice Engine
A central feature of the system is the ability to transform textual news summaries
into high-quality spoken output, enabling podcast-style delivery. This is achieved

46

Methodology

through the integration of OpenAI’s gpt-4o-mini and gpt-4o-mini-tts. First,
the system generates a podcast-ready script by aggregating the selected and
expanded articles. The summarization model is instructed to rewrite the content
in a spoken-friendly style, ensuring smooth transitions between articles, concise yet
informative coverage, and a total length adapted to the number of items (ranging
from one to five minutes). The result is a coherent script that reads naturally,
making the narration engaging and easy to follow.

Once the script is created, the text is converted into audio using OpenAI’s
gpt-4o-mini-tts model. The chosen configuration employs the voice Sage, which
delivers a clear and professional narration in Italian. Specific instructions guide
the voice to maintain an authoritative tone, with careful handling of percentages,
dates, and numerical values, as well as intonation to improve comprehension. The
output is exported as an .mp3 file and stored with a structured naming. These
audio files are then distributed through weekly email newsletters with embedded
audio links or accessed directly on the website.

3.3.6 Frontend and Integration Infrastructure
The backend of the system plays a central role in connecting the user-facing interface
with the underlying agentic logic and the MCP-based tool ecosystem. It ensures
that user interactions, such as selecting preferences, subscribing to newsletters, or
querying the system for specific financial information, are seamlessly translated
into tool invocations and data processing workflows.

This component integrates three main layers:

1. The Streamlit interface, which provides an interactive and accessible web
application where users can customize preferences, trigger scraping tasks,
listen to generated podcasts, and subscribe to the newsletter.

2. The scraping Agent, which acts as the reasoning engine, deciding which tool
to call based on user queries and conversation history, ensuring coherence and
contextuality.

3. The integration with MCP tools, which manages the execution of opera-
tions such as database similarity search, article expansion, and web search,
returning structured results to the user.

The user-facing side remains simple and intuitive, while the internal orchestration
performs complex reasoning and content generation. Both the frontend and backend
can be executed locally during development or deployed on an Amazon EC2 instance
for scalability, remote accessibility, and production readiness.

47

Methodology

Streamlit Frontend and User Interface

Streamlit is an open-source Python framework designed for the rapid development
of interactive data applications and dashboards. It enables developers to build
web-based interfaces directly in Python without requiring extensive knowledge of
frontend technologies such as HTML, CSS, or JavaScript. Its declarative, high-level
API is particularly suited for research prototypes and production-ready applications
where fast iteration and clear visualization are priorities.

The adoption of Streamlit in this system is motivated by its ability to provide
a seamless bridge between backend logic and user-facing components. Compared
to traditional web frameworks, Streamlit reduces development complexity and
accelerates deployment, making it a practical choice for agent-based applications
where iterative design and frequent updates are expected.

The main advantages of Streamlit include:

• Ease of use: Applications can be built entirely in Python, without the need
for frontend code.

• Rapid prototyping: Ideal for quickly iterating on user interfaces and vali-
dating system features.

• Native integration with Python libraries: Easily integrates with pandas,
matplotlib, machine learning models, and APIs.

• Interactive widgets: Provides out-of-the-box components such as sliders,
buttons, checkboxes, and forms for building dynamic interfaces.

On the other hand, Streamlit also presents some limitations:

• Customization constraints: Less flexibility for advanced UI/UX design
compared to fully-fledged frontend frameworks.

• Scalability: While suitable for medium-scale applications, very high-traffic
scenarios may require additional optimization or integration with external
services.

• State management: Though improved in recent releases, handling complex
application states can be less intuitive than in dedicated web frameworks.

Within this system, Streamlit acts as the main entry point for user interaction,
allowing users to select their news preferences across categories and subcategories.
The interface dynamically manages the state of user selections, validates that
at least one preference is active, and generates the corresponding query prompt.
A dedicated sidebar also enables users to subscribe to the weekly newsletter by

48

Methodology

providing their personal information, such as name, surname, email, and chosen
preferences, which are then stored in the database.

Streamlit additionally integrates the podcast player, retrieving available audio
files from the backend via a REST API and displaying them in descending chrono-
logical order. This design ensures that users can either listen to the latest generated
podcast directly from the interface. The system maintains a conversational inter-
face through a chat window, where scraped results and summaries are returned,
and where users can further interact by asking additional questions. Overall, this
module represents the bridge between the user and the MCP agent, enabling an
accessible and customizable experience.

Scraping Agent and Tool Orchestration

At the core of the backend logic lies the scraping agent, which manages the
interaction between user queries and the available MCP tools. The agent is
implemented using langgraph and the MultiServerMCPClient adapter, enabling
it to connect to the MCP server and dynamically determine which tool to invoke
based on the query content and chat history. A set of rules guides this decision-
making process: if the query relates to specific financial events or entities, the
agent uses the get_articles_from_db tool to retrieve the related articles from the
internal database; if it corresponds to broader categories or subcategories selected
by the user, the expand_article tool is invoked to expand the articles in the
database with the selected category or subcategory; and if the query is of a general
or definitional nature, the web_search tool is selected to search about the query
on the web.

As discussed in Section 2.2.3, both LangChain and LangGraph are widely
adopted frameworks for building LLM-based agents. While LangChain offers a
broad ecosystem of integrations and rapid prototyping capabilities, we opted for
LangGraph due to its emphasis on reproducibility, and graph-based control of
agent workflows. These properties are particularly advantageous in our setting,
where tool orchestration must follow explicit rules and ensure consistent behavior
across user sessions.

The scraping agent also integrates contextual reasoning by analyzing the history
of the conversation, ensuring continuity when handling short or ambiguous user
inputs. When the expand_article tool is invoked, the agent returns a structured
output containing titles, publication dates, links, and summaries of each retrieved
article, maintaining full coherence with the database content. This orchestration
mechanism ensures that the system provides the most relevant and contextually
appropriate response while avoiding redundant tool calls. In this way, the scraping
agent constitutes the reasoning layer of the backend, coordinating user interactions,
database access, and external information retrieval in a unified workflow.

49

Chapter 4

Prototype and Use Case
Demonstration

To illustrate the functionality of the prototype, we describe a representative use case
where a new user interacts with the system from the first access to the reception of
the weekly newsletter. This narrative highlights how the different components of
the architecture integrate seamlessly to provide a coherent user experience.

4.1 Website Homepage

When the user first accesses the website, they are welcomed by the interface of the
news assistant. The homepage serves as the central hub of the application, present-
ing a clear and minimal design to guide user interaction. From this entry point,
users can explore the available categories and subcategories, which represent
the thematic organization of the scraped content. Each category corresponds to a
macro-topic like Mercati, Economia, or Tecnologia, while subcategories allow for
more personalization.

The homepage also provides a direct entry to the newsletter subscription
panel, where users can personalize the system to their own interests. In addition,
a section is dedicated to the archive of generated podcasts, allowing users to
browse previously created audio summaries. This combination ensures that the
homepage functions as both a dashboard and a starting point for deeper interaction
with the assistant.

50

Prototype and Use Case Demonstration

Figure 4.1: Initial interface of the website upon first access.

4.2 Newsletter Subscription & Delivery

The user can subscribe to the newsletter directly from the left sidebar of the interface.
The subscription process is simple: by entering their name, surname, email,
and selecting their preferences, users enable the system to build a personalized
information flow tailored to their interests. These preferences are stored in the
database and used to filter relevant content during the scraping and summarization
processes.

Once subscribed, users receive weekly emails automatically generated by the
backend. These newsletters are not simple collections of articles, but curated
digests, enriched with AI-generated summaries and contextual insights. Further-
more, each newsletter includes the link to the latest generated podcast, ensuring
multimodal access to information: users can either read the summaries or listen
to them on the go. This design choice addresses different consumption habits,
reinforcing engagement.

51

Prototype and Use Case Demonstration

Figure 4.2: Subscription panel for the weekly newsletter.

Finally, at the end of the week, the system sends the newsletter via email. This
message contains a summary of all relevant articles published during the week
according to user preferences, together with the podcast that covers the same topics
in spoken format. This provides users with a seamless cross-channel experience,
allowing them to stay informed in the way that best suits their context.

52

Prototype and Use Case Demonstration

Figure 4.3: Weekly newsletter received by the user, including summaries and a
podcast.

4.3 News Scraping & Podcast Generation

On the left sidebar, the user specifies their interests. For example, in Figure 4.4,
the category Mercati is selected. This action triggers the scraping pipeline,
which is responsible for collecting fresh articles from predefined news sources. Once
retrieved, the content undergoes summarization and, if necessary, expansion
via the MCP tools (see Section 3.3.1). The results are then displayed in the chat
interface, structured with title, publication date, source, and a concise summary.

At the same time, the system launches the podcast generation pipeline, which
transforms the textual summaries into audio narration. The generated podcast is
automatically stored and made available in the sidebar, organized chronologically.
This multimodal approach ensures that users are not limited to textual summaries
but can consume content in auditory form, increasing accessibility and engagement.

53

Prototype and Use Case Demonstration

Figure 4.4: User selects preferences (Mercati) and the system retrieves matching
articles.

4.4 Interactive Chat

In addition to static subscription and category-based retrieval, the user can also
interact dynamically with the assistant through the chat interface. This conver-
sational component enables open-ended queries, where the agent decides the best
strategy to respond. For example, if the query refers to specific financial entities or
events, the agent performs a similarity search in the internal database. Conversely,
if the query is general or definitional, the system relies on the web_search tool to
retrieve external information.

The chat interface thus acts as a flexible exploration tool, where results are
returned in natural language and grounded on structured evidence. Importantly,
the agent maintains conversation history, allowing it to disambiguate short or
implicit user inputs (e.g., “sì”, “dimmi di più”). This feature ensures continuity
and provides a more human-like interaction experience.

54

Prototype and Use Case Demonstration

Figure 4.5: The chatbot answers user queries by using database similarity search
or web search.

4.5 Usage and Cost Analysis
In this section, we analyze the usage and costs associated with the OpenAI API
during the daily execution of the project. Two main experiments were tracked:
the daily cost of scraping new articles, generating website output, and producing
one podcast episode; and the costs over five-days. Figures 4.6 and 4.7 present the
results.

4.5.1 Single-Day Usage
Figure 4.6 shows the distribution of costs across different models for a typical day.
The main cost drivers are the high-usage calls to web-search tool gpt-4o-high
and the audio output of gpt-4o-mini-ts, which dominate the expenses. Minor
contributions come from embedding generation (text-embedding-3-small) and
cached inputs, which help reduce overall cost. This reflects the computationally
expensive nature of generating structured long-form outputs such as podcasts,
while lighter tasks like embeddings and small queries contribute only marginally.

4.5.2 Five-Day Usage
Figure 4.7 aggregates costs over a five-day period. The stacked bars differentiate
between input, output, cached input, and high-complexity calls. The data highlight

55

Prototype and Use Case Demonstration

Figure 4.6: Model costs on a typical day.

two key observations:

1. Output tokens (pink) and high-complexity calls (orange) represent the majority
of expenses across all days.

2. Cached input (light green) and input costs (purple) are relatively smaller, but
consistently present.

The variation across days reflects the different workloads: some days are domi-
nated by content generation (higher output costs, like on the day 5/9/2025 where
only scraping phase was done), while others are lighter, relying mainly on cached
results or simpler queries, with a podcast generation (like on the day 5/8/2025).
This pattern illustrates the efficiency gains from reusing cached inputs while also
showing the unavoidable high cost of large-scale text and audio generation.

4.5.3 Cost Estimations for Multiple Users
Based on the results shown in Figures 4.6 and 4.7, the total daily cost for running
the system—including scraping, summarization, embeddings, podcast generation,
and website updates—is approximately $0.85 for a single user platform. However,
the $0.70√

n
daily scraping cost is a shared baseline, regardless of the number of users

(where
√

n represents how equal preferences are grouped). This cost should be
divided among all users when estimating the per-user cost.

56

Prototype and Use Case Demonstration

Figure 4.7: Costs over five days, broken down by input, output, cached input,
and high-cost calls.

Let us denote:

• The per-user variable cost (email delivery, customization, etc.) as $0.15.

• The shared daily scraping, and content generation cost as $0.70√
n

.

• The number of users as n.

Then, the daily cost per user can be expressed as:

Cost per user = 0.15 + 0.70√
n

.

Using this formula, we can estimate costs under different user scenarios:

• For a single user (n = 1), the daily cost is 0.15+0.70/1 = $0.85, corresponding
to about $25.5 per month.

• For 100 users (n = 100), the daily cost per user is 0.15 + 0.70/10 ≈ $0.22,
corresponding to approximately $6.6 per month.

• For 1000 users (n = 1000), the daily cost per user is 0.15+0.70/100 ≈ $0.157,
corresponding to about $4.71 per month.

57

Prototype and Use Case Demonstration

Figure 4.8: Costs per user for different number of users.

Those results are shown in Figure 4.8.
The total daily cost for all users can be calculated by multiplying the per-user

cost by n:

• 100 users: 100 × 0.22 ≈ $22 per day, or approximately $660 per month.

• 1000 users: 1000 × 0.157 ≈ $157 per day, or about $4,710 per month.

Additional usage, such as multiple chatbot queries, article retrievals, summa-
rization, or podcast generation, increases the per-user variable cost. For example:

• Typical usage: One access per day with one or two questions results in a
daily cost per user of approximately $0.157–$0.25, corresponding to $4.71–
$7.5 per month depending on the number of users sharing the scraping and
generation cost.

• High usage: If a user accesses the system three times per day and asks three
questions each time, the daily cost per user can increase to approximately
$0.30–$0.50, corresponding to $9–$15 per month.

This approach clarifies that the baseline scraping cost is dependent of the user
activity, while other operational costs scale linearly with user activity. Properly
distinguishing shared and per-user costs is essential for accurate budgeting and
operational planning.

Summary. Reviewing the results, the usage and cost analysis highlights that the
main contributors to daily expenses are high-complexity operations such as news
summarization, embeddings computation, and podcast generation, while cached
inputs and shared scraping costs account for minor, but consistent, cost reductions.
The mail delivery and customization cost of approximately $0.15 is personal for

58

Prototype and Use Case Demonstration

each user, whereas other operations, like scraping and content generation, scale
with individuals.

Over a five-day period, total costs fluctuate according to workload: days dom-
inated by content generation and multiple queries incur higher expenses, while
lighter days benefit from cached results and fewer active requests. The average daily
cost per user is approximately $0.157–$0.25, corresponding to about $4.71–$7.5
per month for typical usage, assuming one access per day with one or two bot
queries, with linear scaling for multiple users. In high-activity scenarios, such as
three accesses per day with three queries each, daily expenses per user can rise to
roughly $0.30–$0.50, corresponding to about $9–$15 per month.

This analysis underscores the importance of distinguishing between the shared
baseline costs and per-user variable costs when planning operational budgets, as
both the number of users and their usage patterns significantly influence overall
system expenses.

59

Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis presented the design and development of an agent-based system for
news (financial in this case) aggregation, summarization, and personalized delivery.
Leveraging the Model Context Protocol (MCP) as a backbone, the system integrated
multiple tools for scraping, summarization with LLMs, storage with pgvector
database, and multimodal output through text-to-speech and email newsletters.

The prototype demonstrated how a user can access the platform, select pref-
erences, receive personalized summaries in both textual and audio form, and
interact with the agent through natural language queries. This pipeline shows
the feasibility of combining LLM-based summarization with personalized delivery
channels, bridging the gap between unstructured news streams and user-centered
consumption.

The main contribution of this work is the demonstration of how the Model
Context Protocol (MCP) can act as a backbone for building an AI-driven news
extraction and conversational system. The project shows how a custom MCP
server, equipped with purpose-built tools for scraping, summarization, and database
querying, can be orchestrated to meet the concrete goal of delivering personalized
news experiences. At the same time, the design highlights the broader potential of
MCP: since the protocol allows a client to connect to multiple independent servers,
the architecture can easily integrate external tools developed by other systems,
without additional engineering effort. This dual capability—combining tailored
in-house tools with reusable third-party MCP servers—illustrates the strength of
MCP as a modular and extensible framework.

The project also demonstrates how this approach supports adaptability, interop-
erability, and the creation of agents that can evolve with new functionalities over
time.

60

Conclusion and Future Work

5.2 Future Work
While the system is functional as a prototype, several areas remain open for further
research and development:

• Scalability and Deployment. The current prototype is designed for a
controlled environment. Future work should investigate deployment at scale,
ensuring robustness under higher user loads and broader data sources, poten-
tially through containerization and cloud-native architectures.

• Multilingual and Cross-Domain Support. Extending the platform be-
yond Italian would enable comparative analysis across international financial
markets. Similarly, adapting the architecture to new domains (like healthcare,
cybersecurity, ..) would demonstrate its generality.

• Advanced Personalization. User experience could be improved by incorpo-
rating adaptive recommendation mechanisms, where preferences are refined
over time based on feedback, reading patterns, or engagement with newsletters
and podcasts.

• Real-Time Market Alerts. An extension of the system could focus on
immediacy, providing users with push notifications or urgent newsletters
when significant financial events occur (e.g., market crashes, central bank
announcements). This would shift the system from being purely aggregative
to proactive, transforming it into an intelligent assistant for decision-making.

• Security and Privacy. Handling sensitive user information such as email
addresses and preferences necessitates stricter privacy-preserving mechanisms
and compliance with data protection regulations (e.g., GDPR).

• Integration of Existing MCP Servers. A natural extension of this work lies
in exploiting the interoperability offered by the Model Context Protocol. By
connecting to already available MCP servers developed by other systems, the
prototype could quickly expand its functionalities without requiring additional
ad-hoc implementations. For example, integrating calendar-based MCP servers
would allow the assistant to automatically remind users of key events (such as
central bank meetings, earnings reports, or regulatory deadlines). Similarly,
messaging-related MCP servers (e.g., for Telegram) could enable delivery of
summaries and podcasts directly within chat platforms. This approach would
turn the news assistant into part of a broader ecosystem of interoperable
agents, offering richer services and more personalized use cases.

61

Bibliography

[1] Sepp Hochreiter and Jürgen Schmidhuber. «Long short-term memory». In:
Neural computation 9.8 (1997), pp. 1735–1780. url: 10.1162/neco.1997.9.
8.1735 (cit. on p. 5).

[2] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. «Learning phrase rep-
resentations using RNN encoder-decoder for statistical machine translation».
In: arXiv preprint arXiv:1406.1078 (2014). arXiv: 1406.1078 [cs.CL]. url:
https://arxiv.org/abs/1406.1078 (cit. on p. 5).

[3] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. «Attention is all you
need». In: Advances in Neural Information Processing Systems. Vol. 30. 2017,
pp. 5998–6008. url: https://arxiv.org/abs/1706.03762 (cit. on pp. 6–8).

[4] Meng Xu et al. «LLM Agents: A Survey». In: arXiv preprint arXiv:2309.07864
(2023). url: https://arxiv.org/abs/2309.07864 (cit. on p. 12).

[5] Minghao Xu, Yuzhuo Huang, Xiaojian Zheng, and Minlie Huang. «Exploring
Large Language Model-Based Intelligent Agents: Definitions, Methods, and
Prospects». In: arXiv preprint arXiv:2401.03428 (2024). url: https://
arxiv.org/abs/2401.03428 (cit. on pp. 13, 14, 16, 17, 21).

[6] Patrick Lewis et al. «Retrieval-augmented generation for knowledge-intensive
NLP tasks». In: Advances in neural information processing systems 33 (2020),
pp. 9459–9474. url: https://proceedings.neurips.cc/paper/2020/
file/6b493230205f780e1bc26945df7481e5-Paper.pdf (cit. on pp. 17, 18).

[7] Jean-Baptiste Alayrac, Jeff Donahue, Paul Luc, Antoine Miech, Serkan Cabi,
Yee Whye Teh, et al. «Flamingo: a Visual Language Model for Few-Shot
Learning». In: arXiv preprint arXiv:2204.14198 (2022). url: https://arxiv.
org/abs/2204.14198 (cit. on p. 18).

62

10.1162/neco.1997.9.8.1735
10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2309.07864
https://arxiv.org/abs/2401.03428
https://arxiv.org/abs/2401.03428
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://arxiv.org/abs/2204.14198
https://arxiv.org/abs/2204.14198

BIBLIOGRAPHY

[8] Shinn Yao, Juncheng Zhao, Dian Yu, Nan Wang, Zhou Yu, et al. «ReAct:
Synergizing reasoning and acting in language models». In: Advances in Neural
Information Processing Systems (2023). url: https://arxiv.org/abs/2210.
03629 (cit. on pp. 18, 27, 29).

[9] Noah Shinn, Lizi Liu, Will Tam, and Edward Lee. «Reflexion: Language agents
with verbal reinforcement learning». In: arXiv preprint arXiv:2303.11366
(2023). url: https://arxiv.org/abs/2303.11366 (cit. on pp. 18, 29).

[10] LangChain contributors. LangChain: Building applications with large language
models. https://github.com/langchain-ai/langchain. Accessed on 2025-
09-03. 2023 (cit. on p. 21).

[11] Haixuan Hou et al. «Model Context Protocol (MCP): Landscape, Security
Threats, and Future Research Directions». In: arXiv preprint arXiv:2503.23278
(2025). url: https://arxiv.org/abs/2503.23278 (cit. on p. 25).

[12] Yang Liu and Mirella Lapata. «Text Summarization with Pretrained En-
coders». In: arXiv preprint arXiv:1908.08345 (2019). url: https://arxiv.
org/abs/1908.08345 (cit. on p. 28).

[13] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. «BART:
Denoising Sequence-to-Sequence Pre-training for Natural Language Genera-
tion, Translation, and Comprehension». In: arXiv preprint arXiv:1910.13461
(2020). url: https://arxiv.org/abs/1910.13461 (cit. on p. 28).

[14] Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter J Liu. «PEGASUS:
Pre-training with Extracted Gap-sentences for Abstractive Summarization».
In: arXiv preprint arXiv:1912.08777 (2020). url: https://arxiv.org/abs/
1912.08777 (cit. on p. 29).

[15] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. «Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer». In:
Journal of Machine Learning Research 21.140 (2020), pp. 1–67. url: https:
//arxiv.org/abs/1910.10683 (cit. on p. 29).

[16] Zi-Yi Dou, Demian Gholipour Ghalandari, Mina Neysiani, Pengfei Liu, Gra-
ham Neubig, and Alexander M Rush. «GSum: A General Framework for
Guided Abstractive Summarization». In: arXiv preprint arXiv:2104.02112
(2021). url: https://arxiv.org/abs/2104.02112 (cit. on p. 29).

[17] Iz Beltagy, Matthew E Peters, and Arman Cohan. «Longformer: The Long-
Document Transformer». In: arXiv preprint arXiv:2004.05150 (2020). url:
https://arxiv.org/abs/2004.05150 (cit. on p. 29).

63

https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2303.11366
https://github.com/langchain-ai/langchain
https://arxiv.org/abs/2503.23278
https://arxiv.org/abs/1908.08345
https://arxiv.org/abs/1908.08345
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1912.08777
https://arxiv.org/abs/1912.08777
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2104.02112
https://arxiv.org/abs/2004.05150

BIBLIOGRAPHY

[18] Manzil Zaheer et al. «Big Bird: Transformers for Longer Sequences». In:
arXiv preprint arXiv:2007.14062 (2020). url: https://arxiv.org/abs/
2007.14062 (cit. on p. 29).

[19] Rohan Anil, Yen-Chun Chen, Aakanksha Chowdhery, et al. «Gemini: A Family
of Highly Capable Multimodal Models». In: arXiv preprint arXiv:2312.11805
(2023). url: https://arxiv.org/abs/2312.11805 (cit. on pp. 29, 30).

[20] OpenAI. «GPT-4o: OpenAI’s Omni Model». In: OpenAI Blog (2024). url:
https://openai.com/index/gpt-4o (cit. on pp. 30, 31).

[21] Rohit Girdhar, A Girish, A Payne, Carl Vondrick, Andrew Zisserman, and
Joao Carreira. «ImageBind: One Embedding Space to Bind Them All». In:
arXiv preprint arXiv:2305.05665 (2023). url: https://arxiv.org/abs/
2305.05665 (cit. on p. 30).

[22] OpenAI. «Voice Engine: High-Quality Text-to-Speech from OpenAI». In:
OpenAI Blog (2024). url: https://openai.com/blog/voice-engine (cit.
on pp. 30, 31).

64

https://arxiv.org/abs/2007.14062
https://arxiv.org/abs/2007.14062
https://arxiv.org/abs/2312.11805
https://openai.com/index/gpt-4o
https://arxiv.org/abs/2305.05665
https://arxiv.org/abs/2305.05665
https://openai.com/blog/voice-engine

	List of Figures
	Introduction
	Background and Motivation
	Goals
	Thesis structure

	State of the art
	Large Language Models (LLMs) and Natural Language Processing (NLP)
	From Sequential Models to the Transformer Architecture
	Architecture of the Transformer Model

	Agents and Tool-Oriented Architectures
	Definition and Evolution of LLM-Based Agents
	Advanced Architectures for LLM-Based Agents
	Agent Frameworks: LangChain and LangGraph

	Model Context Protocol (MCP) for Agent-Based Systems
	Motivation and Role in Agent Architectures
	Protocol Structure and Components
	MCP Server Lifecycle
	Security and Context Isolation
	Implications for Agent-Based Systems

	Web Scraping and Data Extraction
	Visual and DOM-Based Extraction
	Headless Browsers and Page Interaction
	LLM-Augmented Scraping Agents
	Structured vs. Unstructured Content

	Content Enrichment and Summarization
	Extractive vs. Abstractive Summarization
	Multi-Document and Long-Context Summarization
	LLM-Based Summarization Agents

	Multimodal Output and Podcast Generation
	Multimodal LLMs and Real-Time Generation
	Voice Cloning and Podcast Narration
	Text-to-Speech and Multilingual Support
	Opportunities and Limitations

	Vector Databases
	Utility of Vector Databases
	Embeddings and Vector Representations
	PostgreSQL + pgvector

	Methodology
	System Overview and Design Principles
	Agent Architecture and Data Flow
	Component Breakdown
	Workflow: From User Input to Final Output

	Selected Instruments
	Model Context Protocol (MCP)
	Scraping Process
	Database and Vector Storage with pgvector
	LLMs and Summarization Models
	Text-to-Speech with OpenAI Voice Engine
	Frontend and Integration Infrastructure

	Prototype and Use Case Demonstration
	Website Homepage
	Newsletter Subscription & Delivery
	News Scraping & Podcast Generation
	Interactive Chat
	Usage and Cost Analysis
	Single-Day Usage
	Five-Day Usage
	Cost Estimations for Multiple Users

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

