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Abstract

The growing popularity of neuromorphic computing in edge and robotic applica-
tions leads to new necessities in terms of hardware solutions that can encode real
measurements into spike trains compatible with the execution of biologically plau-
sible Spiking Neural Networks (SNNs).

This thesis presents a complete Field-Programmable Gate Array (FPGA) imple-
mentation of the Izhikevich neuron model, which is specifically designed to be used
for signal-to-spike encoding purposes. Unlike existing resource-optimized imple-
mentations that sacrifice biological fidelity through mathematical approximations,
this work demonstrates a complete, flexible, modular Izhikevich model that can be
implemented on an FPGA through a novel pipeline architecture design.

The hardware implementation of the Izhikevich model on PYNQ-Z2 reconfig-
urable board has a 4-stage pipelined architecture with circular buffer management.
It uses Q5.11 fixed-point arithmetic with a biologically-accurate time step of 0.25
ms. The single-core neuron module consumes moderate resources while maintain-
ing suitable computational efficiency. The FPGA as a whole links the neuron
core with the ZYNQ processing system architecture through AXI4-Lite interfaces
that facilitate the real-time control capabilities of the parameters through Jupyter
notebooks. Dual BRAM controllers make data retrieval and logging easier. The
implementation demonstrates consistent behavioral accuracy through comprehen-
sive verification across Python simulation, Vivado behavioral simulation, and hard-
ware execution levels. The adopted model is capable of replicating all 20 original
Izhikevich spiking patterns, such as tonic spiking, bursting behavior, and more
complex dynamics like bistability and inhibition-induced spiking that warrant the
biological validation of the model. The modular architecture supports both parallel
multi-neuron implementations and time-multiplexed techniques when resources are
limited.

To demonstrate the practicality, a subset of real-world inertial measurement
unit (IMU) sensor data from the WISDM dataset is used as input for both single
and multi-neuron spiking encoders. These encoders are tasked with encoding six-
channel sensor streams into activity-specific spike patterns. This validation relates
laboratory neuron models to real-world applications, showing that sensor data can
be processed in real time by the implementation in neuromorphic IoT systems.
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The performance analysis indicates that the implementation easily achieves a
4kHz processing rate per neuron for accurate biological neuron modeling. Also,
frequency scaling analysis establishes the maximum processing speed that various
neuron configurations can achieve. This is essential for understanding the perfor-
mance limits of the design and optimizing multi-neuron implementations for var-
ious application requirements. The resource consumption analysis demonstrates
that the resource has the proper scaling, i.e., 10 parallel neurons can be effectively
integrated with an FPGA resource utilization of around 50%.

This study develops a complete signal-to-spike encoding system with biologi-
cally accurate Izhikevich neurons on an FPGA to mainly emphasize research-grade
systems capable of practical deployment. The transition from biological validation
to hardware implementation and then to real-world signal encoding is a significant
step in the research of neuromorphic computing, which creates a foundation for the
high-level applications of spiking neural networks in diverse signal processing.
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Chapter 1

Introduction

The rapid increase in the number of Internet of Things (IoT) devices and edge com-
puting applications has resulted in a critical need to develop energy-efficient and
real-time signal processing systems that can operate on a limited amount of power
and provide high computational accuracy at the same time [1]. Current computing
systems are mainly based on the von Neumann architecture, where processing and
memory components are physically separated. This physical isolation causes the so-
called "von Neumann bottleneck"', in which data must be continuously transferred
between memory and processor, resulting in limited computational performance
with massive energy consumption [2]. On the contrary, biological neural systems
have demonstrated impressive computational efficiency through distributed pro-
cessing in which memory and computation co-exist in the same physical medium.
The human brain carries out complicated cognitive functions using just 20 watts of
power, whereas similar artificial intelligence systems use megawatts. The resulting
sharp efficiency disparity has inspired the design of neuromorphic computing — an
engineering framework that aspires to the architecture and operational principles
of biological nervous systems [3][4].

Neuromorphic computing systems use Spiking Neural Networks (SNNs) as their
basic model of computation [5]. In contrast to traditional artificial neural networks
that receive continuous-valued activations, SNNs receive discrete time events known
as spikes, which resemble the transmission of information via action potentials by
biological neurons [6]. This paradigm of computation as an event-driven process
has several benefits. First, spike communication is sparse, thus lowering power
consumption because inactive neurons use little power [7]. Second, rich information
is represented by temporal encoding, where spike timing carries meaning beyond
simple firing rates [8]. Third, SNNs are inherently connected to neuromorphic
sensors, including dynamic vision sensors and silicon cochleas, and directly provide
event-based data [9].

Nevertheless, deploying SNNs for real-world applications requires converting
analog sensor signals into spike trains. The signal-to-spike encoding transfers
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continuous-valued time-series sensor data (e.g., accelerometers, gyroscopes, and
temperature sensors) into temporal spike patterns that can be processed by SNNs
[10]. There are two major encoding strategies. First, the rate-based encoding
algorithms encode signal amplitude into firing rate, while ignoring the temporal
structure, which is relatively simple to implement [11]. Second, the temporal en-
coding schemes maintain accurate timing information, as the features of signals are
represented by spike intervals, delays, or burst patterns [12]. However, the neuron
model-based encoding is a potential intermediate candidate, in which biologically
motivated neuron dynamics naturally convert signals into spike trains while pre-
serving temporal structure [13].

From the basic integrate-and-fire model to the advanced Hodgkin-Huxley model,
the Izhikevich neuron model offers the optimal balance for hardware implementa-
tion [14]. This model, developed by Eugene Izhikevich in 2003, utilizes only two
coupled differential equations to capture the diverse firing patterns observed in bio-
logical cortical neurons [15]. This model is capable of producing 20 different spiking
behaviors, including tonic spiking, bursting, adaptation, and resonance, with only
simple parameter adjustments [15], [16]. This simplicity in computation, coupled
with its biological richness, makes it the best choice for implementation in hard-
ware, where the complexity of a circuit directly influences resource consumption
and power efficiency.

There are key architectural choices that must be made when implementing
neuron models in physical hardware. These options encompass analog, digital, and
mixed-signal approaches [17]. Analog implementations use CMOS circuits that can
achieve exceptional power efficiency by directly mapping the equations of neurons
to circuit dynamics. However, they face problems with parameter variability due to
variations in the manufacturing process, limited configurability as parameters are
hardwired into circuit designs, and scalability issues since analog neurons occupy
large areas on the die [18]. Digital implementations provide accurate control of
parameters, high scalability due to the sharing of resources, and are immune to
analog noise; however, they conventionally demand more power, as they must run
continuously on a clock [19]. The mixed-signal methods strive to have the benefits
of both paradigms, but add complexity to analog-digital interfacing and calibration
[20].

In digital implementation, there are three fundamental choices, namely cus-
tom neuromorphic chips, Application-Specific Integrated Circuits (ASICs), and
Field-Programmable Gate Arrays (FPGAs). Neuromorphic chips, such as IBM
TrueNorth and Intel Loihi, offer optimized spiking neural network architectures
with in-built learning features [21], [22]. They are, however, restricted to predefined
neuron models and are costly for small-scale research [23]. ASIC implementations
outperform FPGAs in terms of maximum performance and energy efficiency when
used in high-volume production; however, they are expensive to set up and offer
no reconfigurability after fabrication. FPGAs are a compelling option, offering
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a reconfigurable fabric that enables refinement of the design through an iterative
process, moderate development costs, accessible development tools, and adequate
performance to run real-time neural simulations [24].

Several studies in the literature have implemented different neuron models on
FPGA hardware. The Morris-Lecar, Izhikevich, and Hodgkin-Huxley models have
been realized on FPGAs in work [25]. Grassia et al. [26] implemented a silicon
neuron based on the Quartic model using an FPGA. Moreover, several studies [27],
(28], [29], [30], [31], [32], [33], [34], [35], [36] have implemented the Izhikevich neuron
model on various FPGA platforms. In many of these works, the original Izhike-
vich model was modified to make the model simpler to implement on hardware,
typically by eliminating the quadratic term. Some studies employed power-of-two
methods, while others used the CORDIC algorithm, piecewise linear approxima-
tions, or stochastic logic. The primary goal of these modifications was to lower
the hardware cost. However, such simplifications often compromise the dynamic
behavior of the original model, limiting the ability to reproduce all 20 spiking pat-
terns in hardware. Although some studies report a maximum number of spiking
patterns, their results are mainly based on simulation. None of the hardware im-
plementations has demonstrated all 20 spiking patterns with a perfect match with
the simulation results. Furthermore, some modified models also exhibit reduced
accuracy in some instances.

In this research, we implement the Izhikevich neuron model, maintaining its
originality, using the PYNQ Z2 development board with a Zynq SoC. The Xil-
inx Zynq SoC family combines ARM processors with FPGA fabric, allowing for
hardware-software co-design. This enables the implementation of complex control
and data logging on processors, while computationally expensive neural dynamics
are implemented in parallel on the hardware [37]. The fundamental objectives of
this thesis are as follows:

o The first objective is to design, implement, and validate an FPGA realization
of the original Izhikevich neuron model. This involves developing a Ver-
ilog hardware description that maintains a balance between computational
accuracy and resource consumption. Specific goals include: selecting an ap-
propriate fixed-point representation that minimizes bit width while maintain-
ing sub-millivolt accuracy in membrane potential computation; implement-
ing numerical integration using forward Euler discretization with appropriate
timestep selection to ensure stability and accuracy; validating implementa-
tion correctness through three-tier comparison: Python floating-point soft-
ware simulation, Vivado behavioral simulation, and physical FPGA hard-
ware deployment; characterizing resource utilization (LUTs, flip-flops, DSP
blocks, BRAM), timing performance (maximum operating frequency), and
power consumption (static, dynamic, total on-chip power).
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o The second objective extends the single-neuron design to scalable multi-
neuron systems through two complementary approaches. Firstly, a time-
multiplexing approach enables the implementation of large virtual neuron
populations by sequentially reusing a single hardware neuron module across
multiple timesteps. This approach maximizes neuron count within fixed re-
sources but introduces latency, as not all neurons can update simultaneously.
Second approach, parallel implementation that instantiates multiple indepen-
dent neuron cores operating simultaneously, enabling true real-time process-
ing where all neurons evolve concurrently. This approach sacrifices maximum
neuron count for reduced latency and simplified control.

o The third objective demonstrates practical applicability by encoding realistic
Inertial Measurement Unit (IMU) sensor data into spike trains using neuron
model-based encoding. Using the WISDM (Wireless Sensor Data Mining)
dataset [38], [39] containing 6-axis IMU data (3-axis accelerometer, 3-axis
gyroscope) recorded during human activities, to implement: multi-channel
encoding utilizing parallel neuron cores for simultaneous processing of all six
sensor axes; temporal interpolation to bridge the mismatch between sensor
sampling rates (20 Hz typical) and neural timesteps (4 kHz implementation
frequency).

o The overall objective establishes a complete development and validation frame-
work integrating FPGA hardware acceleration with software control and inter-
facing. Leveraging the Xilinx Zynq SoC architecture, combining ARM proces-
sors with FPGA fabric, to implement: AXI communication protocols for bidi-
rectional data transfer between Processing System (PS) and Programmable
Logic (PL); Python-based control software using the PYNQ framework for
high-level experiment management, parameter configuration, and results vi-
sualization; create pathways to enable sensor signal dataset input and spike
train output.

This thesis is divided into five chapters that outline the entire research process,
from foundational concepts to implementation validation. The rest of the parts are
organised as follows:

Chapter 2 provides the necessary theoretical backgrounds of both biological neu-
roscience and hardware implementation platforms. The basics of neurons (structure
and the formation of action potentials) are presented in Section 2.1. Section 2.2
systematically compares neuron models (such as Hodgkin-Huxley, integrate-and-fire
variants, FitzHugh-Nagumo, Morris-Lecar, Hindmarsh-Rose, Adaptive exponential
integrate-and-fire, and Izhikevich) and provides mathematical formulations as well
as analysis of hardware implementation complexity, which justifies the use of Izhike-
vich models. The biological significance of 20 most important neurocomputational
features of spiking neuron is discussed in Section 2.3. Section 2.4 presents FPGA
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technology, Xilinx Zynq SoC architecture and the PYNQ Z2 development board
that was used in this work.

Chapter 3 explains the experimental platform and implementation methodology.
It involves the discretization of the Izhikevich neuron model (with the forward
Euler method of time stepping, a time step of 0.25ms), the choice of a fixed-point
arithmetic representation (Q5.11 format), the architecture of a four-stage pipeline
hardware implementation, and the block diagram and co-design architecture of the
overall design.

Chapter 4 delivers detailed implementation and experimental findings. Section
4.1 justifies the single-neuron implementation through an analysis of resource uti-
lization, timing aspects, power consumption, fixed-point accuracy, and systematic
reproduction of all 20 spiking patterns. Section 4.2 describes multi-neuron scala-
bility using the time-multiplexed virtual neuron architecture, which illustrates the
scalability of resources by implementing multiple virtual neurons on a single core
of physical hardware. Section 4.3 discusses parallel multi-neuron implementations
designed for high throughput. Section 4.4 presents a comparison of resource con-
sumption across all implemented architectures. Section 4.5 of the paper presents
a frequency-dependent performance analysis of single-neuron and 4-neuron cores
operating at frequencies ranging from 5MHz to 60 MHz. Section 4.6 illustrates
the encoding of IMU signals with the WISDM dataset and demonstrates that the
temporal patterns of acceleration and gyroscopes spike trains are maintained across
different physical activities.

Chapter 5 summarizes the research contributions, discusses the limitations of
the current implementation, and suggests future research directions.
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Chapter 2

Background

2.1 Neuron Fundamentals

The nervous system processes information through neuron networks. These are
specialized cells that receive input signals, change their internal electrical state, and
send out the output signals to other neurons through action potentials (spikes).
Although the number of various types of neurons is very large, the majority of
them have a similar structure: the cell body (soma) houses the nucleus; dendrites
receive input signals; and an axon transmits electrical impulses to other neurons.
Synapses act as a connector between neurons and transform incoming spikes into
electrical currents that alter the voltage of the receiving neuron [16], [40], [41], [42].
This simple neuronal topology is depicted in Fig. 2.1, where two interconnected
pyramidal neurons are represented with their typical dendritic trees, cell bodies,
and axonal projections.

When a neuron is at rest, the cell membrane maintains an electrical charge
difference between inside and outside of the cell, producing a membrane potential
that typically ranges from —80mV to —60mV, as illustrated by the resting state
(=70mV) in Fig. 2.2. The membrane acts as a leaky capacitor: the capacitance is
provided by the cell membrane, whereas the ion channels serve as a voltage-gated
switch that can permit current inflow and outflow. When a neuron is stimulated
by injected current, either from internal synaptic inputs (as shown in Fig. 2.1)
or externally, the voltage across the membrane varies. A positive current increases
the voltage (depolarization), whereas a negative current decreases it (repolarization,
hyperpolarization) [14], [41], [42].
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Figure 2.1: Two interconnected cortical pyramidal neurons showing basic neuronal
anatomy, including soma, dendrites, axon, and synapses. The inset shows a typical
recorded action potential with characteristic spike shape reaching +35mV [16].
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Figure 2.2: Action potential waveform showing the complete spike cycle, including
stimulus, threshold crossing, depolarization phase, repolarization, refractory period,
and return to resting state. Failed sub-threshold responses are also shown [43].
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As the voltage becomes large enough to open the voltage-gated sodium channels,
the neuron discharges an action potential (spike). This process occurs at a highly
rapid rate: sodium enters rapidly, and the voltage surges to (+40mV). The potas-
sium channels are then opened, bringing the voltage back down, usually dropping
below the resting level for a short time. This creates the typical spike shape shown
in the inset of Fig. 2.1 and detailed in Fig. 2.2. After firing, there is a refractory
period during which the neuron cannot fire again immediately, which actually limits
the rate at which spikes can occur. The firing threshold does not remain constant
and varies according to the recent activity of the neuron and its current condition
[15], [41], [44], [45]. These phases of the action potential are clearly shown in Fig.
2.2, including the stimulus that causes the firing, the rapid depolarization phase,
repolarization, and the refractory period.

The balance of current governs the basic electrical behavior of a neuron. If C
is the membrane capacitance and V(t) is the voltage across the membrane, with
currents from ion channels [, (V, ), synaptic inputs I, (¢), and external stimulus
Ioxt(t), then Kirchhoff’s current law gives:

av
o= —Lion(V, 1) — Isyn(t) + Lext(2) (2.1)

Different neuron models define ionic currents (/i) and spike-generation rules differ-
ently, including how the membrane voltage resets after a spike. This combination of
gradual voltage dynamics with sudden spike events forms the basis for many neuron
models and is particularly useful for converting continuous signals into spike trains.
In signal encoding, two factors are most important: (i) how input signals influence
output, in terms of spike rate and timing, and (ii) how precisely spike timing is
controlled by membrane properties, adaptation, and refractory mechanisms. These
properties determine how accurately a neuron’s spikes can represent features of an
input signal, such as amplitude, frequency, or envelope [14], [41], [42].

The neurons use short spikes to communicate, but the time of the spikes may
contain various pieces of information. In rate coding, the mean rate of spikes per
second is used to describe the strength of the input signal. In temporal coding,
the timing of spikes (when they occur, gaps between spikes, phase relative to other
signals) contains more information. In population coding, groups of neurons work
together with coordinated spike patterns to represent complex signals. A combi-
nation of these methods is used in real neural circuits [46], [47]. With hardware
signal-to-spike encoders, we typically excite the neuron model with the injected
input signal as a current and utilize the natural behavior of the neuron to encode

signal features into spikes with the desired rate, timing, or phase relationships [6],
[41], [42].
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2.2 Neuron Models

Various mathematical models have been formulated to explain the workings of
neurons, ranging from complex biophysical models to the simplest computational
models. In this case, we are interested in models capable of simulating realistic
spiking behavior and serving as signal-to-spike encoders, which can be executed on
FPGA hardware. Some notable models, along with their mathematical equations
and effectiveness as encoders, are described in the following subsections.

2.2.1 Hodgkin-Huxley (HH) model

The Hodgkin-Huxley model is the most detailed descriptive model of action poten-
tial generation. It was first developed to describe the electrical behavior of the giant
axon in squid. The model explains the membrane current between voltage-gated
sodium channels and potassium channels, as well as a leak current [44].

The voltage equation is:

C—— = —gnamh(V — Exa) — gxn* (V — Bx) — g (V — Br) + 1(t) (2.2)

where C' is the membrane capacitance (typically 1 pF cm™2), V represents the mem-
brane voltage, gna, 9k, g1, are the maximum conductances for sodium, potassium,
and leak channels, respectively, Ena., Fx, Er, are the reversal potentials (typically
50mV, —77mV, and —54.4 mV, respectively), m, h, n are gating variables (between
0 and 1), and I(¢) is the injected current.

The gating variables control how the ion channels open and close:

dm

E = Ozm(V)(l - m) - Bm(v)m (2'3)
W = (V)1 1) = BV (24)
dn V(1 v 2.5
— = an(V)(1=n) = B, (V)n (25)

The rate functions a and [ depend on voltage in a complex way and are given by
the complete set of equations:

2
Q= 0.1(V +25)/ (exp V2 1)

10

Bm = 4exp(V/18) (2.7)
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an, = 0.07 exp(V/20) (2.8)

By =1/ (exp v 1+030 + 1) (2.9)

an = 0.01(V + 10)/ <exp 4 1+010 _ 1) (2.10)
B, = 0.125 exp(V/80) (2.11)

The HH model is capable of simulating extremely realistic spike shapes and many
detailed behaviors of actual neurons. Being an encoder, it provides an exact repre-
sentation of biological behavior and may support complex timing codes. It, how-
ever, requires solving four differential equations with complex exponential func-
tions, which are computationally expensive and challenging to execute effectively
on FPGA hardware [41], [42], [44], [45].

2.2.2 Leaky integrate-and-fire (LIF) model

The LIF model treats the membrane as a simple RC circuit with a spike threshold
and reset mechanism. This is much simpler than HH but still captures the basic
integrate-and-fire behavior. The voltage equation is [6], [48]:

av

CE = —gL(V - EL) + ](t) (212)

with the spike condition:
if V"> Vi, then spike occurs, V <= V., and t < ¢ + t, (2.13)

The parameters include the membrane capacitance C', the leak conductance gy,
and the leak reversal potential E, which acts as the resting potential. The spike
threshold Vi, is typically —55mV, while the reset potential V, is usually —70 mV.
The refractory period t..f normally lasts 1 ms to 2 ms.

The membrane time constant is:

¢

o (2.14)

T =

which determines how quickly the voltage responds to input current. For a constant
input Iy, the steady-state voltage is:

I
Ve = Ep + 2 (2.15)
gr
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The firing rate for constant current follows:

1
f= (2.16)
bs T In (Y500

where R,, = iL is the membrane resistance.

LIF has the ability to encode rate and timing information despite its simplicity.
It is highly suitable to hardware since it needs only simple arithmetic operations
and can be easily implemented using fixed-point numbers. But as an encoder, it
has limitations: the frequency-current relationship is too rigid without adaptation,
and it cannot generate the range of firing patterns (such as bursting) that occur in
real neurons [6], [14], [41], [42], [48].

The quadratic integrate-and-fire (QIF) variant replaces the linear leak with a
quadratic term [6]:

av
dt
This provides a more realistic spike initiation while remaining computationally
efficient.

= (V = Viest)(V = Vi) + R I (1) (2.17)

Tm

2.2.3 FitzHugh-Nagumo (FHN) model

The FHN model simplifies the complex HH model into a two-dimensional system
that still captures the essential excitable behavior. It uses a fast variable v (like
voltage) and a slow recovery variable w [49], [50]:

dv v3

— =1 - — — I 2.1

=V 3 w+ 1(t) (2.18)
ch;):v—i-a—bw (2.19)

where v and w are the fast variable (similar to membrane voltage) and the slow
recovery variable, 7 represents the time constant ratio (typically 10-20), and a, b
are parameters that control excitability and oscillations.

The cubic term v— ? creates the characteristic N-shaped nullcline that produces
excitable behavior. The parameter a controls the resting state, while b affects the
recovery dynamics. For different parameter values, the model can show stable rest
(no oscillations), oscillatory behavior (repetitive firing) and bistable behavior (two
stable states).

The FHN model can reproduce basic excitable behavior including threshold
effects, refractory periods, and repetitive firing. As an encoder, it provides richer
dynamics than LIF while being much simpler than HH. However, implementing the
cubic nonlinearity % on FPGA requires careful design, and the parameter values
need to be chosen carefully to ensure stable behavior with fixed-point.
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2.2.4 Morris-Lecar (ML) model

The Morris—Lecar model is a two-dimensional conductance-based model originally
developed for muscle fibers but widely used for neurons. It combines biological
realism with computational efficiency [51]:

¢ Uii‘t/ = —gca Moo (V)(V = Eca) — g w(V = Ex) — go(V = EL) + I(t)  (2:20)

do  We(V)—w

— = 2.21
dt ¢ Tw(V) (2:21)
The steady-state functions are:

17 V —Vi\]
M = — |1 + tanh 2.22
(V) 5 |1+ tan ( 7 ) (2.22)

1 B ]
Wee(V) = 5 1+ tanh (V Vi”) (2.23)

I 4
(V)= — o (224
Tw = )
cosh (Vz}}f’)

The parameters include the maximum conductances gca., gk, and g, for calcium,
potassium, and leak channels, respectively, along with their corresponding reversal
potentials Fc,, Fk, and Ep. The calcium channel properties are controlled by V;
and V5, which represent the half-activation voltage and slope, respectively. Simi-
larly, the potassium channel is characterized by V3 and V; for half-activation voltage
and slope. The time constant parameter ¢ affects the overall dynamics, while w
represents the potassium channel activation variable.

The ML model can exhibit different types of excitability. In Type I excitabil-
ity, oscillations start smoothly, whereas in Type II excitability, oscillations occur
abruptly and with a fixed frequency. This is regulated by the values of the param-
eters, especially V3 and V. Resonance behavior can also be observed in the model,
where it responds most strongly to inputs at specific frequencies.

Being an encoder, the Morris-Lecar (ML) model is capable of supporting phase
coding and frequency locking, which is why it can be applied in the process of en-
coding oscillatory signals. Nonlinear functions, however, M., W, and 7,,, contain
hyperbolic functions that are difficult to execute efficiently on an FPGA, which
may require either look-up tables or polynomial approximation [25].
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2.2.5 Hindmarsh—Rose (HR) model

The Hindmarsh-Rose model extends the dimensionality to three variables to cap-
ture bursting behavior, which is common in many real neurons [52]:

dx

E:y—a:pg%—bxz%—l(t)—z (2.25)
flgtJ —c—dx’ -y (2.26)

dz
priakd (s(x —xpg) — 2) (2.27)

The parameters include x as the fast variable representing membrane potential, y as
the fast recovery variable, and z as the slow adaptation current. The fast subsystem
parameters a, b, ¢, and d typically take values of 1, 3, 1, and 5, respectively. The
slow-fast time scale ratio r usually ranges from 0.001 to 0.01, while s represents the
coupling strength between fast and slow variables. The reference level for the slow
variable is denoted as zp.

The dynamics operate on two separate time scales. The fast subsystem with
the variables x and y generates individual spikes with a period of approximately 1—
10 ms. Meanwhile, the slow variable z couples with bursting behavior with very long
periods of nearly 100-1000 ms. The model is able to generate various firing patterns
with different parameter values and input conditions. Tonic spiking occurs when
z is small, characterized by regular spikes at regular intervals. Bursting behavior
creates groups of spikes separated by quiet periods. The model can also exhibit
chaotic behavior with irregular spike patterns.

As an encoder, HR is excellent for capturing envelope information and rhyth-
mic structure through burst timing. The burst frequency can encode slow signal
components while spike timing within bursts can encode faster features. However,
the cubic and quadratic terms pose difficulties for fixed-point arithmetic in FPGA
implementations, and the model is also parameter-sensitive. The piecewise-linear
approximations might assist in decreasing the complexity of the computations and
maintaining the necessary bursting behavior [52].

2.2.6 Adaptive exponential integrate-and-fire (AdEx) model

The AdEx model improves upon LIF by adding an exponential spike-generating
current and an adaptation variable w [53]:

%
CE = —gL(V — EL) + gLATexp<

V—-Vr
Ar

) —w e I(t) (2.28)
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— =a(V—-FEp)—w (2.29)
with reset condition:

V<V,

(2.30)
w<+—w+b

V 2 ‘/spike = {

The parameters include the membrane capacitance C, leak conductance gy, and
leak reversal potential . The spike threshold V7 acts as a soft threshold, while the
spike slope factor At typically ranges from 2-5 mV. The spike detection threshold
Vipike 18 usually set to 0 mV, and V, represents the reset potential. The adaptation
time constant 7, typically ranges from 100-500 ms, while parameter a controls
sub-threshold adaptation coupling and b determines the spike-triggered adaptation
increment.

The exponential term gy Ar exp(vg;/’f) provides realistic spike initiation. Un-

like the LIF model’s hard threshold, this creates a soft threshold where spikes
develop gradually, similar to real neurons.

Adaptation current w introduces several important features that render the
model biologically more realistic. Spike-frequency adaptation causes the firing rate
to decrease when there is a constant input, a behavior similar to that of real neu-
rons. Post-spike hyperpolarization causes the neuron to become temporarily less
excitable. Bursting and irregular firing patterns can also be made by the model,
depending on the parameter values. The various combinations of parameters give
various firing patterns that can be adapted to particular applications. When b is
small and a is positive, regular spiking occurs. Bursting behavior is experienced
when a is negative and b is large. The values of intermediate parameters can pro-
duce irregular or chaotic firing patterns.

AdEx has a number of notable benefits in the case of encoding applications. The
adaptive rate coding automatically adjusts to the signal statistics and is thus robust
to different input conditions. Spike-frequency adaptation improves the encoding of
non-stationary signals by preventing saturation during sustained inputs. The more
realistic spike shapes are more precise in time than the simple ones. Additionally,
AdEX offers a relatively easy implementation compared to full conductance-based
models, along with rich dynamics. FPGA implementations of the exponential func-
tion can be done either via lookup tables or a set of polynomials. Thus, AdEx is
more feasible than full HH models, while offering far richer dynamics than simple
LIF model.
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2.2.7 Izhikevich model

The Izhikevich model achieves an optimal balance between biological realism and
computational efficiency. It couples a quadratic voltage equation to a recovery
variable v with simple reset condition [14]:

d

d%’ = 0.040% + 5v + 140 — u + I(¢) (2.31)
d
ditl = a(bv — u) (2.32)

with the reset condition:

v < c,

(2.33)
u+—u-+d

if v > 30 mV, then {

«—— peak 30 mV

+——— reset ¢

vit)
reset d | <Y with rate g
Uty ——
sensitivity b

Figure 2.3: The Izhikevich model reset dynamics illustrate the interaction between
the membrane potential v(t) and the recovery variable u(t). The figure highlights
key model parameters: spike peak at 30 mV, reset value ¢ for voltage, reset in-
crement d for the recovery variable, decay rate controlled by parameter a, and
sensitivity parameter b [14].

The parameters have clear biological meanings that make the model intuitive
to use. The variable v represents the membrane potential in millivolts, while u is
the recovery variable that represents the combined effects of potassium and sodium
channel recovery. After the spike reaches its apex (+30mV), the membrane voltage
and the recovery variable are reset according to the equation (2.33). Synaptic
currents or injected dc-currents are delivered via the variable I. The parameter a
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controls the recovery time constant and typically ranges from 0.01 to 0.1, where
smaller values of a lead to slower recovery. Parameter b determines the sensitivity of
u to v and usually takes values between 0.2 and 0.25, with larger b values creating
stronger coupling between the variables. The reset value ¢ sets the membrane
potential after a spike and typically ranges from —65mV to —50mV. Finally,
parameter d controls the reset increment for u after each spike, typically ranging
from 2 to 8, where larger d values produce more substantial adaptation effects.
Figure 2.3 illustrates the Izhikevich model’s reset dynamics, showing the impact of
different parameters.

From a mathematical perspective, the model’s behavior can be understood
through the analysis of nullclines. The v-nullcline is defined by u = 0.04v% +
5v+ 140+ I(t), while the u-nullcline follows the simpler linear relationship u = bv.
The model exhibits a saddle-node bifurcation for spike initiation, similar to Type I
neurons in the Morris-Lecar (ML) classification.

The Izhikevich model has a number of important benefits as an encoder. It
is computationally inexpensive, with a single quadratic operation and straightfor-
ward arithmetic operations. The model is very dynamic and can reproduce more
than 20 firing behaviors of a real neuron. Minor changes in parameter values may
lead to qualitatively different behavior, providing a finer control over the encoding
properties. The u variable offers automatic gain control through adaptation and
is used to prevent saturation and dynamic range expansion. Above all, the model
is most suitable for a fixed-point implementation on FPGA platforms in terms of
hardware implementation.

In comparison to LIF, Izhikevich provides far richer dynamics, including adap-
tation, bursting, and resonance. Compared to HH/ML/HR, it is computationally
lighter while still capturing the necessary neuron behaviors, making it ideal for
high-throughput FPGA implementations [14], [15].

2.3 Features of Biological Spiking Neuron

Biological neurons display significant variability in firing patterns. These patterns
arise from specific combinations of ion channel types and densities that create dis-
tinct dynamical behaviors. It’s important to understand the biological significance
of this diversity of spiking patterns. Izhikevich [14], [15] systemically categorized
the 20 most prominent neurocomputational properties observed in cortical neurons
through electrophysiological recordings, which are as follows:
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Tonic Spiking: This is the regular and repeated firing of neurons resulting from
a persistent input as shown in Fig. 2.4. It implements rate coding in which the
strength of the stimulus is reflected in the firing rate. Tonic spiking is found bio-
logically in three types of primary cortical neurons: regular spiking (RS) excitatory
pyramidal cells, fast-spiking (F'S) inhibitory interneurons, and low-threshold spik-
ing (LTS) interneurons [54], [55]. The continuous firing encodes the magnitude
of persistent inputs, which actually play an important role in representing steady
stimuli and motor commands. Step current is frequently injected as a stimulus
in neurophysiological experiments to investigate neuronal excitability and classify
neurons based on their firing rate and adaptation properties [14], [15], [16].

—— Membrane potential (V)
— Input current (1)

o 25 50 75 100 125 150 175 200
Time (ms)

Figure 2.4: Tonic spiking neurocomputational property of biological spiking neu-
rons.

—— Membrane potential (V)
—— Input current (1)

Time (ms)

Figure 2.5: Phasic spiking neurocomputational property of biological spiking neu-
rons.

Phasic Spiking: This pattern simply generates a single spike in response to a step
stimulus as illustrated in Fig. 2.5. After the first spike, it follows a period of silence.
It acts as a temporal edge detector, responding to the beginning of stimulation
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rather than its continuous presence. The phasic behavior of a neuron plays a vital
role in detecting novelty, identifying changes in sensory input, and segmenting
signals over time. The adaptation mechanism involved in this pattern rapidly
increases the recovery variable (u), which suppresses further spike generation. This
behavior acts like a high-pass filter for a step-persistent input stimulus [14], [15],
[16].

Tonic Bursting: This pattern exhibits a rhythmic cluster of rapid spikes that
represents important information about the applied stimulus, as shown in Fig.
2.6. It is typically observed in chattering neurons of the cat neocortex [56], which
contribute to gamma-frequency oscillations (30-80 Hz) associated with attention,
sensory integration, and consciousness. The modified reset potential (¢ = —50mV,
compared to the typical ¢ = —65mV) enables faster recovery after depolarization.
As a result of this, multiple spikes can be observed within a burst before the recovery
variable accumulates and terminates the activity. Tonic bursting supports temporal
segmentation in neural encoding and helps to maintain network synchronization

[14], [15], [16].

—— Membrane potential (V)
—— Input current (1)

]

[} 50 100 150 200
Time (ms)

Figure 2.6: Tonic bursting neurocomputational property of biological spiking neu-
rons.

Phasic Bursting: Here, a single burst of rapid spikes is exhibited at the begin-
ning of a stimulus and then follows the same silence period as in the case of phasic
behavior shown in Fig. 2.7. This phenomenon offers several computational ad-
vantages, such as (1) reliability enhancement: bursts reduce the effects of synaptic
transmission failures and neuronal noise that ensure stable communication in unre-
liable networks [57], (2) salience encoding: bursts have a more substantial influence
on postsynaptic neurons than single spikes that effectively highlights important
events, and (3) selective communication: the frequency of spikes within a burst
enables specific routing of information between neurons that allow multiplexed sig-
naling pathways [58]. For cortical network models to achieve biological realism,
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bursting mechanisms are essential for accurate functional representation [14], [15],
[16].

—— Membrane potential (V)
—— Input current (1)

[ 25 50 75 100 125 150 175 200
Time (ms)

Figure 2.7: Phasic bursting neurocomputational property of biological spiking neu-
rons.

Mixed Mode: This pattern consists of an initial burst of spikes succeeding reg-
ular tonic spiking as shown in Fig. 2.8. This mixed behavior enables neurons
to encode both temporal and rate information. It is commonly observed in the
intrinsically bursting (IB) excitatory neurons of mammalian neocortex [54]. The
computational role of this pattern includes: (1) Onset detection — the initial burst
signals the onset of the stimulus with high salience, and (2) Magnitude encoding —
the subsequent tonic firing rate reflects input strength. This dual-mode operation
provides two pieces of information from a single neuron: when an event occurs
(through burst timing) and how strong the stimulus is (through firing rate) [14],
[15], [16].

—— Membrane potential (V)
—— Input current (1)

[ 20 40 60 80 100 120 140 160
Time (ms)

Figure 2.8: Mixed-mode neurocomputational property of biological spiking neurons.

Spike Frequency Adaptation: In this pattern, a gradual decrease of firing rate
is observed during sustained input as illustrated in Fig. 2.9. This behavior helps to
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normalize neuronal responses. This spiking phenomenon is typically associated with
one of the most common cortical neurons, regular spiking (RS) excitatory neurons,
and also with low-threshold spiking (LTS) inhibitory interneurons. Functionally,
spike frequency adaptation enhances temporal contrast and encodes elapsed time.
This pattern allows neurons to act as an intrinsic timer, as the instantaneous inter-
spike interval (ISI) carries exact time information. The calcium-activated potassium
currents and synaptic depression, as an adaptation mechanism, can provide gain
control that enables cortical networks to respond preferentially to novel or changing
stimuli rather than static background signals [14], [15], [16].

—— Membrane potential (V)
—— Input current (1)

]

[ 20 40 60 80
Time (ms)

Figure 2.9: Spike frequency adaptation neurocomputational property of biological
spiking neurons.

—— Membrane potential (V)
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Figure 2.10: Class 1 excitability neurocomputational property of biological spiking
neurons.

Class 1 Excitability: Due to a saddle-node bifurcation, the neurons that hold
this excitability property can fire at arbitrarily low frequencies near threshold as
indicated in Fig. 2.10. It is an important feature of neocortical regular spiking
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(RS) excitatory neurons [59], [60]. It allows them to respond to weak suprathresh-
old inputs. Unlike Class 2 neurons, which exhibit a minimum jump in firing fre-
quency, Class 1 neurons support continuous rate coding that enables encoding
input strength across a broad range (2-200+ Hz) without dead zones. This per-
mits graded analog-to-digital conversion and smooth control of firing rates. The
excitability arises from saddle-node bifurcation dynamics, where the stable equi-
librium and limit cycle merge. Class 1 excitability is important for population
coding, where stimulus intensity is represented by distributed firing rates across
neural ensembles, maximizing information transfer through linear frequency—input
(f-I) relationships [14], [15], [16].

Class 2 Excitability: Neurons with this property fire at a relatively high mini-
mum frequency at onset as shown in Fig. 2.11. They exhibit a binary threshold be-
havior. They are either quiescent or fire above a set frequency (typically > 40 Hz),
with no low-frequency states [59], [60]. This behavior arises from Hopf bifurcation
dynamics, where oscillatory limit cycles appear at a finite frequency rather than
gradually from equilibrium. Class 2 neurons act as threshold detectors or binary
switches that signal the presence or absence of a stimulus rather than its mag-
nitude, which is different from the Class 1 case. This makes them well-suited for
decision-making circuits, winner-take-all competitions, and bistable memory states,
where discrete state transitions are preferred over graded analog coding [14], [15],
[16].

—— Membrane potential (V)
— Input current (1)

S

Figure 2.11: Class 2 excitability neurocomputational property of biological spiking
neurons.

Spike Latency: This pattern encodes input strength through the delay to the
first spike, enabling rapid temporal coding as exhibited in Fig. 2.12. It is a key
mechanism in cortical neurons, especially regular spiking (RS) cells, where response
latency can vary by tens of milliseconds depending on input intensity. The main
computational advantage is time-to-first spike encoding, which characterizes that
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stronger inputs elicit faster spikes, while weaker inputs produce longer delays. This
allows neurons to represent stimulus magnitude through latency rather than firing
rate, supporting rapid single-spike communication without the need for long ob-
servation windows. Spike latency also enables temporal multiplexing, where the
timing of population responses generates spatiotemporal patterns that encode mul-
tidimensional stimuli [14], [15], [16].

—— Membrane potential (V)
—— Input current (1)
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Time (ms)

Figure 2.12: Spike latency neurocomputational property of biological spiking neu-
rons.
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Figure 2.13: Subthreshold oscillations neurocomputational property of biological
spiking neurons.

Subthreshold Oscillations: This pattern shows small and damped fluctuations
of membrane potential as illustrated in Fig. 2.13. The subthreshold oscillations are
common in the brain and have significant roles in neural information processing.
They arise from the interaction of voltage-gated conductances, producing intrin-
sic membrane resonance at characteristic frequencies (e.g., theta: 4-8 Hz, alpha:
8-12 Hz, gamma: 30-100 Hz, depending on neuron type). They typically amplify
inputs that match the neuron’s resonant frequency and attenuate the inputs that
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are off-frequency signals. Due to these behaviors, computationally, these oscilla-
tions act as bandpass filters. This allows neurons to perform frequency-selective
integration, supporting: (1) temporal feature detection of rhythmic patterns, (2)
selective communication within oscillatory networks, and (3) enhanced coincidence
detection by amplifying synchronized inputs. Reducing the recovery reset param-
eter value to d = 0 prevents damping and enables sustained oscillatory dynamics,
which are critical for network synchronization [14], [15], [16].

Resonator: Resonator neurons only respond to the inputs that match their in-
trinsic frequency perfectly as displayed in Fig. 2.14. They implement frequency-
selective integration by aligning input timing with intrinsic subthreshold oscilla-
tions, enabling advanced temporal filtering [58], [61]. Their computational functions
include: (1) Frequency-modulation (FM) detection — neurons best react to inputs
with a frequency that equals their resonance frequency and rejects out off-frequency
inputs, (2) Temporal multiplexing — several channels of information can be repre-
sented at the same time, with resonant cells selectively attuning to a channel, and
(3) Enhanced coincidence detection — the resonant responses are maximized by
constructive interference, and the signal-to-noise ratio is improved. The negative
recovery increment (d = —1) reverses typical adaptation, creating anti-recovery
that sustains oscillations and sharpens frequency selectivity. This process favors
communication using coherence in oscillatory neural networks [14], [15], [16].
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Figure 2.14: Resonator neurocomputational property of biological spiking neurons.

Integrator: Integrator neurons primarily detect coincident inputs and sum in-
coming signals over time as shown in Fig. 2.15. They are not of an oscillatory
nature as resonators, but rather function as temporal integrators, responding pref-
erentially to high-frequency or closely timed inputs. The membrane potential pas-
sively integrates synaptic inputs, and therefore, firing likelihood rises with the fre-
quency of synaptic inputs because closely spaced inputs add up before decaying.
Integrators play key roles in: (1) spike-timing-dependent detection of correlated
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presynaptic activity, (2) implementing AND-gate logic requiring convergent input
synchrony, and (3) high-pass temporal filtering, where only rapid input sequences
produce spikes. Compared to resonators, which are sensitive to certain frequencies,
integrators generally favor high-frequency input and are widely used as coincidence
detectors [14], [15], [16].
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Figure 2.15: Integrator neurocomputational property of biological spiking neurons.
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Figure 2.16: Rebound spiking neurocomputational property of biological spiking
neurons.

Rebound Spike: It is a pattern in which a neuron releases a spike as a re-
sult of anodal break excitation or hyperpolarization as illustrated in Fig. 2.16.
The recovery variable (u) decreases during hyperpolarization, which deactivates
voltage-gated channels. When inhibition ends and u remains low, the membrane
potential rebounds rapidly, which produces a transient depolarization that exceeds
threshold. Rebound spikes play several significant roles in computation, such as
inhibition paradox: brief inhibitory inputs can generate delayed excitation that
enables complex temporal coding, disinhibition amplification: release from inhibi-
tion acts as an active excitatory signal, rhythm generation — rebound properties
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support oscillatory network dynamics through reciprocal inhibition-rebound cycles,
and temporal contrast detection — neurons respond to inhibition offsets that can
detect transitions and boundaries. This mechanism shows that not solely excita-
tory or inhibitory synaptic input is important, but also timing and dynamics play
a significant role in neural computation [14], [15], [16].

Rebound Burst: This pattern is usually observed in thalamocortical relay neu-
rons when hyperpolarization triggers a burst of spikes as shown in Fig. 2.17. Imme-
diately after inhibition release, these neurons fire high-frequency bursts that play
a key role in sleep oscillations and thalamocortical rhythms. Reciprocal inhibition
between the thalamic reticular nucleus and relay cells produces oscillatory cycles of
inhibition, then a rebound burst, and then again inhibition, which generates spin-
dle waves (7-14 Hz) during non-REM sleep. The computational functions of re-
bound bursting include four processes, namely rhythmogenesis: sustaining network
oscillations without dedicated pacemaker neurons, state-dependent transmission:
bursts occur during low-vigilance states (sleep or drowsiness) and switch to tonic
firing during arousal, allowing state-dependent information gating, temporal am-
plification: brief inhibition produces prolonged high-frequency output, amplifying
inhibitory signals, and synchronization: bursts provide strong depolarizing input
to downstream neurons, enhancing network coherence [14], [15], [16].
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Figure 2.17: Rebound bursting neurocomputational property of biological spiking
neurons.

Threshold Variability: This pattern is sensitive to prior activity that reflects
history-dependent changes in neuronal excitability as shown in Fig. 2.18. Biologi-
cal neurons normally adjust their firing threshold through the recovery variable (u),
which is not the case in fixed-threshold-based artificial neurons. The recovery vari-
able u decreases during inhibition, lowering the effective threshold, and increases
when excitation occurs, raising the threshold. This produces activity-dependent
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excitability with several computational roles, such as contextual sensitivity: re-
sponses depend on recent input history, supporting short-term memory, contrast
enhancement: reduced excitability after excitation sharpens temporal selectivity
and prevents redundant firing, disinhibition gain control: inhibition can increase
subsequent excitability, amplifying post-inhibitory inputs, and adaptive filtering:
threshold modulation acts as automatic gain control, adjusting sensitivity to in-
put statistics. This dynamic threshold enables neurons to encode relative changes
rather than absolute values, performing temporal derivative operations, which are
essential for sensory adaptation and novelty detection [14], [15], [16].

—— Membrane potential (V)
—— Input current (1)

—\ I/
o 20 40 60 80 100
Time (ms)

Figure 2.18: Threshold variability neurocomputational property of biological spik-
ing neurons.

Bistability: This is a phenomenon in which the neurons sustain firing despite the
short-term termination of the stimulus, which is a way of storing information as
demonstrated in Fig. 2.19. This neuron can be in two stable states, that is, resting
or tonic spiking/bursting, which allows it to implement biological flip-flop memory.
Computationally, bistability has several properties, such as short-term memory:
neurons maintain a firing state representing recent inputs without synaptic changes,
supporting working memory, binary storage: two discrete states encode 1-bit in-
formation in networks, state-dependent processing: network computations depend
on the configuration of bistable neurons, enabling context-sensitive circuits, and
phase-sensitive control: maintaining or terminating activity requires appropriately
timed signals, emphasizing spike-timing precision. Bistability underlies persistent
activity in the prefrontal cortex during delay periods, eye position maintenance in
oculomotor integrators, and decision-making circuits such as winner-take-all net-
works [14], [15], [16].
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Figure 2.19: Bistability neurocomputational property of biological spiking neurons.

Depolarizing After-potential (DAP): This type of pattern is found when a
neuron undergoes a post-spike depolarization, which puts the neuron into a su-
perexcitable state rather than a refractory period as shown in Fig. 2.20. Biological
mechanisms include: (1) dendritic calcium influx during spikes activating plateau
potentials, (2) high-threshold inward currents (persistent sodium and calcium) that
outlast the action potential, and (3) subthreshold voltage-gated current interactions
producing regenerative depolarization. Computationally, DAPs provide the abil-
ity to shorten refractory periods and therefore increase firing rates and bursting,
increase temporal integration window to enable delayed inputs to summate, cause
spike doubling or tripling as a consequence of rapid re-firing, and provide gain state
dependence in which neurons become more responsive to later inputs. DAPs fa-
cilitate bursting in intrinsically bursting neurons, improve dendritic integration in
the pyramidal cells, and facilitate quick frequency modulation in motor neurons to
cause rapid changes in fast output [14], [15], [16].
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Figure 2.20: Depolarizing after-potential neurocomputational property of biological
spiking neurons.
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Accommodation: This is a pattern that arises when neurons are unable to pro-
duce spikes to slow depolarizing currents, despite the magnitude of the input being
large enough to trigger spiking, which is considered to be high-pass temporal filter-
ing as illustrated in Fig. 2.21. Inward currents (sodium and calcium) are inactivated
and outward currents (potassium) are activated during slow ramps and gradually
increase the threshold and decrease excitability. Computationally, accommodation
supports: (1) high-pass temporal filtering — neurons are sensitive to transient stimu-
lus and are insensitive to slow inputs, (2) coincidence detection — brief synchronous
inputs overcome accommodation while asynchronous inputs are filtered out, (3)
contrast enhancement — adaptation preserves sensitivity to transients, and (4) dy-
namic range preservation — limiting saturation in situations with gradual increases
in input. This process enables sensory mechanisms to remain sensitive across wide
input ranges; this is why motion and novel stimuli are detected more effectively
than static backgrounds [14], [15], [16].
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Figure 2.21: Accommodation neurocomputational property of biological spiking
neurons.

Inhibition-Induced Spiking: This is a type of pattern where sustained hyper-
polarization gives rise to neuronal firing, but in a paradoxical manner as displayed in
Fig. 2.22. Tt is found in thalamo-cortical relay neurons, which are capable of firing
during hyperpolarization and are silent during rest. This process is associated with
hyperpolarization-activated currents: (1) h-current (Ih) is a slow depolarizing drive
of hyperpolarization, and (2) T-type calcium currents deinactivate, which allows
calcium-mediated depolarization and the production of spikes. Inhibition-induced
spiking displays several properties: state-dependent gating — neurons switch be-
tween relay mode and burst mode, with inhibition-induced firing contributing to
rhythmic activity; sleep rhythms — hyperpolarization triggers rebound bursts that
participate in sleep spindles and slow-wave oscillations; paradoxical gain control —
inhibition generates activity rather than suppressing it; oscillatory entrainment —
periodic inhibition drives rhythmic firing, synchronizing thalamo-cortical networks
[14], [15], [16].
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Figure 2.22: Inhibition-induced spiking neurocomputational property of biological
spiking neurons.

Inhibition-Induced Bursting: In this pattern, rhythmic bursts of spikes are
triggered by sustained hyperpolarization as shown in Fig. 2.23. It plays a major
role in the oscillation of the spindle waves (7-14 Hz) in the thalamo-cortical system
during non-REM sleep. The mechanism of the underlying activity is analogous to
inhibition-induced spiking, except that an increase in the reset potential permits
bursts rather than single spikes. Functional roles include: (1) Sleep rhythm gen-
eration — rhythmic inhibition from the thalamic reticular nucleus triggers rebound
bursts in relay cells, producing spindle oscillations that support memory consoli-
dation and sleep regulation, (2) Thalamo-cortical synchronization — bursts provide
strong depolarizing drive, aligning cortical network activity, (3) State-dependent
information gating — burst mode during hyperpolarization prevents sensory relay
(sleep), while tonic mode during depolarization allows signal transmission (wake-
fulness), and (4) Network oscillations — reciprocal inhibition-burst cycles between
reticular and relay nuclei sustain self-perpetuating rhythms without external pacing
[14], [15], [16].
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Figure 2.23: Inhibition-induced bursting neurocomputational property of biological
spiking neurons.
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2.4 FPGA, PYNQ-Z2, and Zynq SoC

2.4.1 Field-Programmable Gate Arrays (FPGAs)

FPGAs are a special type of integrated circuit that combines software flexibility
with hardware performance. They enable users to design and reconfigure digital
systems after manufacturing, making them very flexible for research and proto-
typing. FPGAs can be programmed to model any digital circuits, unlike general-
purpose microprocessors, which execute instructions sequentially, or application-
specific integrated circuits (ASICs), which only perform predefined tasks. This
programmability has provided them with a great platform to develop and test new
computational models, including biologically inspired neural systems.

An FPGA is built of a large number of configurable logic blocks (CLBs) linked
together by a programmable routing network. The CLBs consist of multiplexers,
flip-flops, and lookup tables (LUTSs), which are the building blocks of digital logic.
LUTs are small memory units that store truth tables and are capable of executing
any Boolean function. Binary data is stored in flip-flops, and they can be used to
implement sequential logic by aligning the logic with a clock signal. Multiplexers
control data flow within the circuit by selecting between multiple inputs. Recent
FPGAs also have a number of dedicated hardware units to enhance performance.
Digital signal processing (DSP) slices have inbuilt multipliers, adders and accu-
mulators, which are optimized to perform rapid arithmetic operations. They are
particularly useful in the field of signal processing, control systems and the com-
putation of neuron models. Block RAM (BRAM) provides large internal memory
blocks, typically in 18 Kb or 36 Kb blocks, which can be used to store parame-
ters, intermediate results, or neural states. Input/output blocks (IOBs) deal with
communication with external devices and provide multiple voltage levels and com-
munication standards. These elements altogether enable an FPGA to form a fully
customizable computing platform [62], [63], [64].

In the case of neuron model implementation, FPGAs have a number of signif-
icant benefits. Their huge parallelism allows thousands of simulated neurons to
interact simultaneously, and each of them changes its state with each clock cycle.
This enables real-time neural network simulation, which is not easy to do on tradi-
tional processors. The predictable timing of FPGA hardware guarantees that the
computations take place within the limits of predictable and fixed time, which is
important in time-sensitive and real-time tasks in neural processing. Custom nu-
meric precision is also supported by FPGAs, where the designers are free to select
the appropriate fixed-point or reduced-precision format to achieve the right bal-
ance between accuracy, resource utilization, and power consumption. Low-latency
response of FPGA systems is another great advantage. Since processing occurs
directly within hardware, data may be read, processed, and output nearly immedi-
ately, allowing the system itself to respond to input signal changes. This is critical
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to neural encoding applications in which timing accuracy and rapid feedback are
needed. Also, with the self-reconfigurability of FPGAs, neuroscience researchers
can modify models of neurons, connection patterns, and learning rules without re-
designing the whole hardware, greatly accelerating the development of experiments.

2.4.2 Zyng-7000 SoC and PYNQ-Z2 Development Platform

The Xilinx Zyng-7000 family is a breakthrough in the embedded system design
concept by combining an entire processing system with programmable logic on a
single silicon die. This is a heterogeneous architecture that integrates the flexibility
of software processing and the performance benefits of custom hardware acceler-
ation, and is well-suited to the application of complex neuron models and signal
processing applications.

Zyng-7000 SoC
o Processing System
Peripherals Clock Reset Application Processor Unit
use I—IG"-"E“"""' FPU and NEON Engine FPU and NEON Engine |
2x USB - RM Cortex-AS
use ‘ mmy | ARM ggnex A9 vmu | ARM c'qu A9
Gige | | 2x GigE System -
Gige | | 2x SD Level 32 KB 32 KB 32 KB 32 KB
SD Control |-Cache D-Cache |-Cache D-Cache
SDIO | | 1o Regs
SD ‘ GIC | Snoop Controller, AWDT, Timer I-ln-
SDIO K L
GPIO | [ |ef DMASB ‘ 512 KB L2 Cache & Gontmllerl
Qe UART : Channel
= UART | |-
CAN ocm | 256K
CAN Interconnect | SRAM
12C
12C
P Central Memory
SPI Interconnect Interfaces
™ CoreSight DDR2/3,3L,
- nteriaces [ Compaonents (I:_PI?DIIIRZ
SRAW B ontroller
NOR
DAP
ONFI 1.0 - ‘ *
NAND DevC Programmable Logic to Memory
Q-SPI Interconnect
ol 1yt L1 1 ¥
EMIO General-Purpose DMA IRQ | Config High-Performance Ports ACP
XADC
12 bit ADC Ports Sync AES/ .
SHA Programmable Logic
Notes: SelectlO
otes: Resource:
1) Arrow direction shows control (master to slave)
2) Data flows in both directions: AXI 32bit/64bit, AXI 64bit, AXI 32bit, AHB 32bit, APB 32bit, Custom
3) Gray blocks in APU are applicable to dual core devices.

Figure 2.24: Xilinx Zyng-7000 SoC architecture showing the Processing System
(PS) with dual ARM Cortex-A9 cores, cache hierarchy, peripheral interfaces, and
the Programmable Logic (PL) section with configurable logic blocks, DSP slices,
and block RAM connected via multiple AXI interface ports [65].

The Xilinx Zyng-7000 SoC detailed architecture is depicted in Fig. 2.24. The
Processing System (PS) has two ARM Cortex-A9 processors operating at a max-
imum 1 GHz, with 32 KB instruction and data caches, floating-point units, and
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NEON engines capable of performing vector processing. The PS has large periph-
eral interfaces, memory controllers, and system-level functions that are normally
found in application processors. This enables the PS to execute complete operating
systems like Linux and perform complex software tasks such as user interfaces, net-
work communications, and high-level control algorithms.The Programmable Logic
(PL) portion includes the FPGA fabric, which comprises configurable logic blocks,
DSP48E1 slices, and block RAM. The XC7Z020 chip installed on the PYNQ-Z2
board has 53,200 logic cells, 220 DSP slices, and 630 KB block RAM. The DSP48E1
slices are of particular significance to neuron models as they can achieve 25 x 18-bit
multiplications at a rate of up to 450 MHz, which is suitable for the implementation
of quadratic terms of the Izhikevich model. The communication between PS and PL
is over several AXI4 interfaces, which offer various forms of connectivity depending
on data flow patterns. There are four AXI General Purpose (GP) ports that can be
used as master and slave connections to control and transfer low-bandwidth data,
which are usually used to configure neuron parameters and read status registers.
Four AXI High Performance (HP) ports allow high bandwidth data streaming be-
tween PL and PS memory. The AXI Accelerator Coherency Port (AXI ACP) is
designed to permit the access of PS cache-coherent memory by PL, so that shared
data structures can be efficiently used. Other connections are event notification
interrupts, various clock domains, and direct memory access (DMA) channels for
autonomous data movement [65], [66], [67].
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Figure 2.25: PYNQ-Z2 development board layout showing the Zyng-7020 SoC at
the center, surrounded by DDR4 memory, peripheral interfaces including Ethernet,
USB, HDMI, audio codec, expansion connectors (PMOD A/B, Arduino headers),
user interface elements (LEDs, buttons, switches), and power management compo-
nents [67].
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Figure 2.25 illustrates the PYNQ-Z2 development board that offers a complete
platform to develop and test neural processing systems on the FPGA platform.
The board is designed around the XC7Z020-1CLG400C Zynq and has extensive
peripheral interfaces and expansion capabilities that are intended to be used in
research and prototyping. The PYNQ (Python Productivity for Zynq) framework,
supported by the board, enables the use of high-level Python interfaces for pro-
gramming the FPGA instead of traditional hardware description languages, thereby
saving a lot of development time and complexity [67], [68].

The memory subsystem has 512 KB of DDR4-2133 SDRAM, which is linked to
the PS memory controller and offers high-speed access to both PS and PL by the
memory interconnect. This shared memory facilitates effective data transfer be-
tween computer software and hardware. It has a microSD card slot that supports
boot image and file system access, enabling easy updating and data logging. It also
has 16 MB Quad-SPI Flash memory, which is used as a configuration storage, and
256 KB on-chip memory (OCM), which both PS and PL can access with minimum
latency. The connectivity options facilitate a wide range of input/output require-
ments for neural processing applications. The Gigabit Ethernet offers network con-
nectivity for remote control, data transfer, and distributed processing applications.
USB 2.0 host and OTG ports have external devices and programming interfaces.
There are HDMI input and output ports that allow video processing applications
and can be used as a source in visual signal-to-spike encoding tests. An audio jack
with stereo line input /output and microphone input (3.5 mm) is used to support au-
dio signal processing applications (i.e., practical in testing auditory neural encoding
algorithms). Expansion interfaces give the ability to connect custom sensors and
actuators. Two PMOD connectors, each with 8 single-ended or 4 differential sig-
nals, can support many digital and analog interface modules. Arduino-compatible
headers enable connection to both digital I/O and analog inputs through an on-
board 12-bit ADC, allowing direct connection of sensors and signal sources. Such
interfaces are especially useful for linking real-world signal sources to neuron en-
coder implementations and for connecting external measurement equipment. User
interface elements facilitate development and debugging processes. There are four
user-controllable LEDs used to provide visual feedback of the system states, e.g,
neuron activity patterns. There are four push buttons and two slide switches, which
can be used as a manual input to test and manipulate the parameters. RGB lights
offer multi-color status showing various modes of operation. These features are
useful for tracking design states, debugging implementations, and managing user
interaction during the development and testing stages. The PYNQ-Z2 features
power management that supports both USB and external power sources, accom-
modating various usage scenarios. The micro-USB connector can be used to power
the board during development and light prototyping, or an external 7-15 V DC
supply can be used to power the board when operating independently and for high-
power applications. Onboard voltage regulators supply the various supply voltages
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that the Zynq device and peripheral components need, such as core logic voltages,
I/O voltages, and analog supply rails. Power selection jumpers enable the selec-
tion of power sources and power domain configuration to meet different operational
needs [65], [66], [67].

The PYNQ software platform is a game-changer in the development of FPGAs
by offering Python-based access to hardware accelerators via a high-level program-
ming interface. PYNQ overlays are pre-programmed hardware designs that can
be loaded onto the PL and accessed using Python APIs, without using low-level
hardware description language programming. The framework has detailed libraries
on common functionality like DMA transfer, interrupt processing, GPIO control,
and memory management. The integration of Jupyter notebooks offers an inter-
active development experience in which hardware experiments can be recorded
alongside code and results, enabling reproducible research and collaborative devel-
opment. The availability of robust dual-core processing, a wide range of connec-
tivity choices, flexible expansion interfaces, and an easy-to-use software framework
makes the PYNQ-Z2 platform especially well-suited for implementing and test-
ing neuron-based signal processing systems. This capability to smoothly integrate
software control with parallel hardware processing offers the flexibility required by
research applications and the performance needed for real-time neural computation
and signal-to-spike encoding applications.
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Chapter 3

Materials and Methods

3.1 Mathematical Model Implementation

The digital implementation of spiking neuron models must be computationally
tractable and biologically accurate. Specifically, the Izhikevich model, represented
by a couple of continuous-time differential equations, requires a series of transfor-
mations to be made compatible with FPGA implementation. These changes involve
the discretization of the governing equations, the choice of a suitable numerical inte-
gration method, and the careful choice of arithmetic precision based on fixed-point
representations. The design strategies adopted to guarantee a stable, accurate, and
hardware-specific implementation are described in the following subsections.

3.1.1 Izhikevich Neuron Model Discretization

Two interconnected differential equations characterize the original Izhikevich neu-
ron model as [14]:

d
%:0,04*v2+5*v+140—u+1 (3.1)
d
d—?:a*(b*v—u) (3.2)

with the after-spike reset condition:

v — c,

(3.3)
u—u+d

if v > 30 mV, then{

where v is the membrane potential in mV', u is the membrane recovery variable, [
is the external input current and a, b, ¢, d are dimensionless parameters controlling
different spiking patterns. The nonlinearity of the quadratic equation (3.1) allows
for the rapid depolarization that occurs after the spike initiation, and the linear
dynamics of the equation (3.2) model the slower recovery mechanisms.
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In order to implement these dynamics on digital hardware, the continuous sys-
tem must be discretized. Numerical discretization plays an important role in deter-
mining the accuracy of the reproduced dynamics and the stability of the simulation.
While several higher-order methods (like Runge-Kutta) could be employed for bet-
ter accuracy, the costs in terms of hardware are significantly higher. In contrast,
the forward Euler method is a simple and computationally efficient alternative that
is suitable for FPGA implementation [69].

The discretized equations using Euler integration are written as:

Av = (0.04 x v[n]® + 5 * v[n] + 140 — u[n] + I[n]) At (3.4)

Au = ax* (bxv[n] —ul[n]) At (3.5)

v[n + 1] = v[n] + Av (3.6)
uln + 1] = uln] + Au (3.7)
if v[n + 1] > 30 mV, then {Z[[Zi 1]] : Z’[n 1 (3.8)

where At is the integration time step. Considering both biological and numerical
perspectives, At is chosen as 0.25 ms. It provides an adequate resolution to capture
spiking events without distortion and also prevents instabilities that may arise with
larger time steps [15].

3.1.2 Fixed-Point Arithmetic Design and Precision Analy-
sis

Floating-point arithmetic is highly flexible, but it is too costly in terms of FPGA
system resources. To address these constraints, fixed-point arithmetic is employed,
and a subtle balance is required between dynamic range, resolution, and hardware
efficiency. The fixed-point architecture must be tailored to the statistical properties
of the model variables in a manner that prevents overflow, underflow, or loss of pre-
cision in computations. A simulation of the Izhikevich model on its full parameter
space reveals that the membrane potential typically ranges between —80 mV and
+40 mV, with momentary deviations to the reset value as negative as —70 mV.
The recovery variable u usually stays within roughly 420, although its exact range
depends on the membrane potential, the applied input current, and the parameter
b. The input currents used in the experiment are in the range [0, 30], though neg-
ative values are also possible to represent inhibitory synaptic input. Collectively,
these ranges determine the required precision, dynamic range, and scaling of the
arithmetic units in hardware implementations to ensure accurate neuron behavior.

To meet these requirements, the Q5.11 fixed-point format with five integer bits,
eleven fractional bits, and one sign bit is chosen. This representation gives a dy-
namic range of +32, which is enough to represent all relevant values with a margin
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of safety, and resolution of about 27! a 0.0004882. Such resolution permits sub-
millivolt accuracy of membrane potentials, which is important for maintaining the
fine temporal structure of spikes. Furthermore, the total word length of 16 bits
is compatible with FPGA DSP slices, which enables efficient utilization of on-chip
arithmetic resources.

Another point to consider in fixed-point implementation is the scaling of model
coefficients. In the Q5.11 representation, constants are pre-scaled into integer val-
ues, which can be directly used in multiplication operations. For example, the
coefficient 0.04 in equation (3.2) is converted to 82 (0.04 % 2'1), the linear coefficient
5 becomes 10240, and the constant 140 is converted to 286720. By pre-calculating
and storing these scaled constants in special registers, the conversion overhead can
be removed at runtime. Multiplication results are stored in extended 64-bit reg-
isters in order to prevent overflow and are then converted back to Q5.11 format
using arithmetic right shifts (>>). This strategy ensures both numerical accuracy
and hardware efficiency.

The other possible resource optimization factor is bit-width allocation [70]. The
state variables (v, u), state parameters (a, b, ¢, d) and input current (1) are all in-
ternally represented using 32-bit registers. Such an allocation provides enough
headroom beyond the Q5.11 representation to accommodate intermediate values
without saturation. The intermediate multiplication values are stored in 64-bit reg-
isters, such that high-precision computations, like quadratic terms, are performed
with no error propagation. Registers with 32 bits are used to control the data flows
between stages of computational pipelines and memory. It enables an effective
communication linkage between BRAMs and external communication links.

This discretization, combined with scaling of the coefficients and optimizing
the bit-width, results in a digitally realized computationally reasonable efficient
version of the neurons that is biologically faithful. Through extended precision
representation of Q5.11, the model prevents numeric instability problems, and it
provides real-time performance on hardware.

3.2 Four-Stage Pipeline Architecture Design

3.2.1 Pipeline Design Rationale

A pipelined computational structure implementation is critical to the achievement
of biological fidelity and real-time computation of neuromorphic systems on FPGA.
The Izhikevich neuron model, which integrates quadratic nonlinear dynamics with
threshold-based resets presents specific difficulties to digital hardware realization,
since both high arithmetic accuracy and strong time coherence between the mem-
brane potential and the recovery variable are required. These requirements can
be met efficiently by a pipeline structure, and can also be scaled to large neural

51



Materials and Methods

populations.

In FPGA-based design, the selection of pipeline depth requires a trade-off be-
tween throughput, latency, resource utilization, and timing closure [71]. Shallow
pipelines have low register utilization, resulting in long combinational paths and low
clock frequencies, while deeper pipelines are more complex and delayed. By explor-
ing different configurations, a four-stage pipeline was found to balance a trade-off
between performance and resource usage. As a result of this multi-stage arrange-
ment, arithmetic-intensive functions can be distributed across stages to improve
clock stability, and single-cycle throughput can be achieved once the pipeline is

fully filled.
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Figure 3.1: Pipeline stage allocation of four-stage pipeline architecture.

The stage partitioning is shown in Fig. 3.1, which follows the intrinsic structure
of the model equations. At a high level, the four stages are organized as follows:

o Stage 1: Input Processing and Quadratic Calculation
The first stage gets input current and model parameters, buffers the state
variables, and evaluates the quadratic term of the membrane potential. This
stage takes the computationally costly multiplication operation and maps it

directly onto the DSP resources of the FPGA.

o Stage 2: Derivative Computation

The second stage involves implementing the coupled derivatives of the mem-
brane potential and recovery variable. Scaled coefficients and parameters are
used here. This stage represents the mathematical core of the model.
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3.2 — Four-Stage Pipeline Architecture Design

o Stage 3: State Integration
The third stage updates both state variables in parallel using the Euler inte-
gration method, so that the temporal evolution of both v and wu is synchro-
nized. This ensures biological coupling between the two state variables v and
u without any latency mismatch.

o Stage 4: Threshold and Reset Logic
The last stage carries out the spike detection and the reset operation, which
results in the specific dynamics of the spiking behavior. When the firing
threshold is met, the reset conditions are used, and analog membrane poten-
tial and digital spike outputs are generated. The new states are then rewritten
to memory for use in the next iteration.

This partitioning facilitates the distribution of computations among each of the
pipeline stages, eliminates bottlenecks, and stabilizes timing closure. After filling
up the pipeline with an initial four-clock-cycle latency, the architecture can continue
with one neuron update per clock cycle.

3.2.2 Detailed Pipeline Implementation
Hardware Scheduling

The hardware scheduling diagram presented in Fig. 3.2 demonstrates how the entire
dynamics of the Izhikevich neuron is mapped to the proposed four-stage pipeline.
This representation not only describes the computational dependencies of the equa-
tions, but also the temporal distribution of arithmetic operations over the pipeline
depth. The figure highlights the parallelism of the model and illustrates the break-
down of mathematical expressions into hardware primitives, such as multipliers,
adders, comparators, and multiplexers.

The scheduling diagram shows two significant computational paths. The left
path corresponds to the membrane potential (v) update, in which the quadratic
term v[n] x v[n] is computed simultaneously with the linear term 5v[n] and the
constant offset (140). These results are carefully synchronised such that they con-
verge at the adder network without causing any timing hazards. This decomposi-
tion is important because the quadratic term is the dominant nonlinear contributor
to neuronal dynamics and thus must be computed both accurately and with low
latency.

The right path corresponds to the recovery variable (u) computation. In this
case, the product bw[n| is calculated and coupled with the presently existing recov-
ery variable u[n] and parameter a to create the derivative 24, The diagram also
encodes the discretization of time through the left-shift operation << 22¢, which
effectively applies the integration step in fixed-point arithmetic. This method does
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not need expensive floating-point multipliers and uses the FPGA shift operation to
scale effectively.

v [n] 17 [n]

v[n + 1] u[n + 1]

Figure 3.2: Scheduling diagram of hardware implementation of the Izhikevich neu-
ron model.

The threshold detection and reset mechanism is shown at the bottom of Fig.
3.2. The updated membrane potential v[n + 1] is compared to the spike threshold
of 30 mV. When it crosses the threshold, a control signal is produced and, it
triggers the multiplexers to set the membrane potential to ¢ and recovery variable
to u[n + 1] + d. This sudden update reflects the event-driven nature of spiking
neurons and is done with minimal hardware to prevent possible pipeline delays.

Timing Relationships and Stage Balancing

The four stages of the pipeline, as presented in Fig. 3.2, are reflected by the hori-
zontal boundaries, which explicitly define the temporal progression of intermediate
results. There are three key design insights in this analysis:

o Computational Balance: FEach stage is designed to maintain approxi-
mately a similar amount of arithmetic complexity, where Stage 2 is the most
resource-demanding because of the accumulation of quadratic, linear, and
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3.2 — Four-Stage Pipeline Architecture Design

constant terms. The balance in computational weight avoids bottlenecks and
guarantees high-frequency operation.

o Data Dependency Management: The explicit scheduling ensures that
dependent variables (e.g., v[n|?, bv) are generated at the appropriate cycle
boundary to be used by the next stage, eliminating read-after-write hazards.

« Resource Sharing: Where possible, arithmetic resources are reused without
violating throughput requirements. This reduces the usage of DSP slices while
maintaining real-time functionality.

Control and Data Flow Graph

While the scheduling diagram emphasizes arithmetic synchronization, the control
and data flow graph (CDFG) in Fig. 3.3 provides a holistic view of the system. Tt
captures not only datapath operations but also control logic, memory management,
and I/O interactions.

Head
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& Shifters (8)

<> Comparators (3)
@D Multiplexers (2)
[ Pipeline Registers
@8 Memory Elements
=p Data Flow
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82 = v[n]?
10240 = v[n]
b *v[n]
a*(...)

CMF (3)
vln+1]
= thr

Figure 3.3: Control and data flow graph of hardware implementation of the Izhike-
vich neuron model.

On the left side of the diagram, the circular buffer subsystem is shown, which
manages the neuron state variables and input currents with constant memory us-
age. The parameters (a, b, ¢, d) are fed into the pipeline via a special parameter
interface. The head pointer logic controls the cyclic address of the buffer to pro-
vide deterministic timing, while the valid flags maintain synchronization during
initialization and offer a hazard-free shutdown.
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The central part of Fig. 3.3 elaborates the four stages of the pipeline, with
specific hardware allocation:

Stage 1 uses a DSP48E1 slice for v[n]? computation, fixed-point alignment
via right shifts, and internal register REG__S1 for temporal isolation.

Stage 2 holds the most computationally intensive operations, contains four
multipliers, five adders, eight shifters, and pre-scaled coefficients (e.g., 82 for
0.04 20480, 10240 for 5%20485). This pre-scaling not only avoids multiplica-
tions of floating-point constants at runtime, but also exploits the fixed-point
efficiency.

Stage 3 performs the Euler integration of membrane potential and recovery
variable simultaneously with the strict temporal alignment through internal
register REG__S3.

Stage 4 performs a threshold comparison, reset logic, and conditional selec-
tion of spike-driven updates, which is implemented by multiplexers. Outputs
include both continuous-valued membrane potential (v_ out) and binary spike
(spike_out).

The right side of Fig. 3.3 illustrates the memory interface and data logging subsys-
tems. Concurrent read/write of membrane potentials and spike events is done using
dual-port BRAM. Automatic address allocation eliminates bus conflicts, and care-
ful packing of 32-bit membrane potential values and 1-bit spikes ensures compact
storage.

Resource Utilization and Performance Analysis

The control-data flow architecture ensures reasonably maximum efficiency with
minimum redundancy:

There are five multipliers that are spread over stages, which are strategically
positioned to minimize critical path delays.

Eight adders offer an adequate parallel accumulation without too much over-
head.

The nine shift operations perform scaling of fixed-point operations, which are
used in place of floating-point multiplications.

It only needs three comparators: a threshold detector and two conditional
memory write logic comparators.

Two multiplexers are used to implement conditional resets to ensure compact
conditional logic.
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3.2 — Four-Stage Pipeline Architecture Design

This architecture produces a single neuron update per clock cycle and has an initial
latency. The pipeline depth is selected to meet a reasonably minimum response
time without timing closure of the FPGA. This ensures not only throughput that
is suitable to large-scale neuromorphic systems but also full biological fidelity of
the Izhikevich model.

3.2.3 Circular Buffer Memory Management

The circular buffer memory subsystem is an important architectural component
that allows the effective synchronization of stages in a pipeline with a low memory
overhead. The circular buffer provides a deterministic and constant-footprint mem-
ory scheme, unlike traditional memory allocation methods that utilize dynamically
managed memory, which can lead to fragmentation or timing uncertainty (and thus
are not ideally suitable for real-time simulation of neural systems) [72], [73].

Head Pointer

‘ slot[i] = v_buf[i], u_buf[i], |_buf[i] ‘

Head = (head+1) & (DEPTH-11) ‘

Clock 1: head=0 -» Stagel: slot[@]; Stage2: - , Stage3: - , Stage4: -
Clock 2: head=1 -» Stagel: slot[1]; Stage2: slot[@], Stage3: - , Staged: -
Clock 3: head=2 » Stagel: slot[2]; Stage2: slot[1l], Stage3: slot[@], Stage4: -
Clock 4: head=3 » Stagel: slot[3]; Stage2: slot[2], Stage3: slot[1], Stage4: slot[®]
Clock 5: head=0 -» Stagel: slot[@]; Stage2: slot[3], Stage3: slot[2], Stage4: slot[1]
...... REPEATS (circular wrap-around)

Figure 3.4: Circular buffer memory management structure (Depth = 4) of hardware
implementation of the Izhikevich neuron model.

Buffer Architecture and Organization

The circular buffer has a fixed-depth architecture with DEPTH = 4 slots, each slot
has a full set of neuron state variables. This depth is directly proportional to the
four-stage pipeline architecture, with each stage of the pipeline acting on a different
temporal instance without conflict or data hazard. Every buffer slot holds three
data items: the membrane potential state variable v_buf[i] in Q5.11 fixed-point
format, the recovery variable state u_ buf[i] in Q5.11 fixed-point format, and the
input current value I _buf[i] for the corresponding simulation time step. The buffer
slots are addressed sequentially between 0 and 3, forming a circular addressing
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space that effectively utilizes hardware resources and achieves the required temporal
isolation to run the pipeline.

Head Pointer Mechanism

The head pointer system provides the basic timing control for the circular buffer
operation. The head pointer implements a modulo-4 counter, which steps forward
every clock cycle, producing the circular addressing pattern required for continuous
operation. The head pointer progresses as Head = (head + 1) & (DEPTH — 1),
where this bitwise AND operation with (DEPTH — 1) = 3 results in an efficient
modulo-4 counter that wraps around through addresses 0 - 1 — 2 — 3 — 0, thus
achieving the desired circular behavior without costly division operations.

Stage-to-Buffer Mapping

The operands of each pipeline stage are stored at an offset in the buffer, thus
maintaining temporal alignment:

« Stage 1 reads the stage variables of current state (idxsl = head).

o Stage 2 accesses idxs2 = (head + 3) & 3, corresponding to the previous time
step.

» Stage 3 retrieves idxs3 = (head + 2) & 3.
 Stage 4 completes the updates based on idxs4 = (head 4+ 1) & 3.

This type of indexing is offset-based and thus avoids pipeline hazards since every
stage works on temporally consistent data.

The timing diagram of buffer operation is shown in Fig. 3.4. The initial four
cycles represents pipeline filling, where later stages remain idle. From cycle 5
onwards, steady-state operation is reached: every cycle generates a neuron update,
and all stages remain active and time-synchronized.
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3.3 — Hardware Architecture and Co-design Framework

3.3 Hardware Architecture and Co-design Frame-
work

The mathematical model of the Izhikevich neuron is implemented as a hardware
instance through a carefully structured architecture, where computational, mem-
ory, and control subsystems are combined into a single FPGA-based platform. The
block diagram of the entire hardware architecture is shown in Fig. 3.5. It illus-
trates the interconnection between the Zyng-7000 SoC processing system (PS), the
programmable logic (PL) that implements the neural computation core, and the
memory subsystem. This architecture forms the basis of a real-time neuromorphic
computing framework that is capable of providing high-performance neural updates
and flexible experimental control.
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Figure 3.5: Hardware implementation of Izhikevich neuron model: (a) Complete
hardware architecture block diagram of a single core, (b) Mapping PS and PL of
Zyng-7000 SoC with hardware architecture block diagram.
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3.3.1 Hardware Architecture Block Diagram

The proposed system architecture uses a heterogeneous computing approach that
fully utilizes the dual-nature of the Zyng-7020 device, consisting of a high-level
ARM Cortex-A9 Processing System (PS) and a Programmable Logic (PL) fabric.
The system partitioning ensures flexibility and computational efficiency by dividing
tasks based on what each part does best. The PS typically handles parameter
management, data transfer, and experimental control, while the PL fabric manages
the precise neural computations [65].

System Architecture Overview

The entire hardware architecture is a combination of four large and interconnected
subsystems. The Zynq Processing System (PS) uses the Linux operating system to
provide high-level software control, parameter setup, and experimental data man-
agement. The Izhikevich Neural Computation Core is a custom IP block that uses
the four-stage pipelined neuron model, specifically designed to run in Q5.11 fixed-
point arithmetic and real-time at biological frequencies. AXI4-Lite Communication
Interface is an implementation of a standardized memory-mapped structure of reg-
isters, which allows an efficient update of parameters and two-way data exchange
between the PS and PL space. The Block RAM Subsystem allows storing mem-
brane potential and spike events by using a dual-port memory architecture that
supports read and write operations simultaneously.

This modular partitioning strategy enables individual subsystems to be op-
timized independently while ensuring smooth integration across the entire plat-
form. The architecture is based on best practices in System-on-Chip (SoC)-based
hardware-software co-design methodology, which guarantees both performance effi-
ciency and development flexibility. The architecture offers a scalable platform that
can be further extended to take on multi-neuron implementations.

Neural Computation Core Architecture

The neural computation core is the main processing unit of the architecture, which
includes the four-stage pipelined architecture implementation described in Subsec-
tion 3.2. The core is packaged as a reusable IP module with 32-bit interfaces.
The module takes all the necessary parameters of neurons, such as the four Izhike-
vich coefficients (a, b, ¢, d), initial membrane potential value, and input currents
that change with time, and produces both continuous membrane potential outputs
and discrete binary spike events. The core also has some critical architectural fea-
tures, which improve its performance and functionality. The circular buffer memory
management ensures the pipeline always runs by maintaining four parallel state in-
stances corresponding to the four stages of the pipeline, removing pipeline stalls,
and providing data flow into the pipeline. The Q5.11 fixed-point arithmetic is used

60



3.3 — Hardware Architecture and Co-design Framework

to maintain biological accuracy while using fewer hardware resources than floating-
point designs. Introduced BRAM interfaces allow neural activity data to be logged
directly without additional computational load on the central processor, supporting
high-performance real-time processing without slowing down long-duration exper-
iments.

Its neural computation core runs at a very precisely maintained simulation fre-
quency of 4kHz, matching the integration timestep of many biological systems,
which is 0.25ms. This frequency selection is also a tradeoff point that balances
computation accuracy with hardware efficiency. It ensures that all twenty canon-
ical Izhikevich neuron behaviors are implemented accurately in hardware. The
core maintains consistent timing that supports both single-neuron and extended
multi-neuron network implementations.

Communication Infrastructure and Protocol Implementation

The neural computation core communicates with the ARM processor by means of
an extensive AXI4-Lite slave interface wrapper that offers standardized commu-
nication protocols. This wrapper introduces a well-structured collection of eleven
32-bit slave registers, which are mapped directly into the PS address space to al-
low software applications to conduct easy memory-mapped input/output activities.
The register organization offers a systematic interface to all necessary system el-
ements, such as model parameters and initial conditions, control signals to reset
operations, and control of simulation duration, dynamic input capabilities of real-
time external current updates, and read-only status reports of updated membrane
potential values and spike detection flags.

The register-mapped interface architecture allows advanced memory-mapped
access to /O by software applications with strict compliance to the ARM AMBA
AXI protocols. The interface design allows for updating parameters individu-
ally with fine-grained control and batched operations with high-throughput con-
figuration, providing an optimal balance between system configurability and data
throughput. This architecture offers interactive experimental situations with real-
time responsiveness and protocol compliance, which is required to integrate with
the standard Xilinx development tools and IP ecosystem.

Clock Domain Management and Synchronization

A major architectural issue in the hardware design was bridging the gap between
the high-frequency 100 MHz system clock domain and the significantly slower 4 kHz
simulation frequency needed to match the dynamics of biological neurons. This
bridging in the frequency domain is achieved by a clock division scheme, which
is implemented in hardware and directly in the AXI wrapper module. An accu-
rately programmed 16-bit counter produces the neural simulation clock based on
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the mathematical expression f_neural = f_system/(2x(12499 + 1)) which gives
a stable 4 kHz neural clock signal with a low jitter in timing and good frequency
fidelity.

To ensure fully reliable signal interactions among the disparate clock domains,
the architecture uses robust two-stage flip-flop synchronizers on all critical control
and data signals that must cross domain boundaries. This synchronization method
helps avoid metastability conditions that may jeopardize the system’s reliability
without affecting signal integrity across all cross-domain communications. The
clock domain management system provides a firm basis for deterministic timing
behavior, which is critical for the proper simulation of biological neural processes
and experimental reproducibility.

Memory Subsystem and Data Logging Architecture

The data logging and data storage are provided by the advanced dual Block RAM
(BRAM) system, which offers the complete tracking of continuous and discrete
neural signals. BRAMI is specifically used to store 32-bit traces of membrane
potential in the fixed-point format Q5.11, ensuring full temporal resolution of the
analog neural dynamics. BRAM2 is efficient in storing small 1-bit spike events with
associated high-precision timing data, providing the opportunity to study discrete
neural firing patterns in detail.

The two BRAM modules are both in True Dual Port (TDP) mode, that is,
they can be written to and read independently by the neural computation core
and the processing system, respectively. This two-port design does not cause mem-
ory bandwidth contention and ensures continuous logging at the maximum 4 kHz
update rate over long experimental periods. The memory subsystem includes au-
tomatic address incrementing features, programmed by configurable parameters,
to allow fine and coarse-grained memory organization strategies that suit various
experimental data acquisition needs.

3.3.2 Co-design Framework

The hardware-software co-design framework is an essential architectural element
that fills the gap between high-performance FPGA acceleration and the software-
based experimental control. This framework uses the PYNQ platform to provide
simple Python interfaces while keeping full access to the hardware’s capabilities.

PYNQ Platform Integration and Software Architecture

The implementation of the co-design framework is based on the PYNQ (Python
Productivity for Zynq) platform that offers extensive Python APIs and integrated
Jupyter notebooks that allow a user to configure experimental parameters, control
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neural simulations, and analyze the results without the need to make any low-level
hardware programming adjustments or Register Transfer Level (RTL) understand-
ing. The PYNQ integration provides a smooth interface to the complexity of the
FPGA programming and maintains full access to hardware performance and func-
tionality.

The software architecture offers advanced parameter control features with Memory-
Mapped 1/O (MMIO) interfaces, which enable automatic register updates. Data
acquisition subsystems use BRAM interfaces to transfer continuous neural data at
a full 4kHz sampling rate, and automatic hardware-to-software conversion of data
types between the fixed-point representation, Q5.11, and the IEEE-754 floating-
point representation commonly used in standard scientific computing libraries. The
integration of the experiment’s workflow using Jupyter-based notebooks provides
a comprehensive set of tools that facilitate the integration of parameter setting,
simulation execution, real-time data recording, and post-processing analysis into a
fully reproducible experimental framework.

Vivado Integration and IP Development Methodology

The entire hardware architecture is implemented in Xilinx Vivado IP Integrator
that allows easy packaging of custom computation cores and AXI wrapper mod-
ules into reusable Intellectual Property (IP) blocks that can be incorporated into
more complex system designs. Vivado block design methodology also has several
key elements, such as the Zynq PS configuration with DDR3 memory interface,
Ethernet connection, USB connection, and numerous AXI master ports to connect
the system together. The AXI SmartConnect offers an optimized interconnect fab-
ric that handles data routing and protocol translation between the various system
components. The Izhikevich IP Core, with a built-in AXI4-Lite wrapper, serves as
the central computing unit. At the same time, the data storage infrastructure is
represented by two Block Memory Generators with independent BRAM controllers.

This holistic integration approach enables the reuse of IP blocks in other projects,
supports modular testing and verification methods, and facilitates advanced version
control techniques that guarantee design reproducibility and collaborative develop-
ment. The process offers excellent scalability properties, which can be extended to
bigger and more intricate neuromorphic computing systems without compromising
development efficiency and design quality.

Design Flow and Deployment Methodology

The hardware-software co-design approach is based on the well-designed develop-
ment and implementation cycle that provides a high quality of system integration
and stable performance features. It starts with thorough functional verification on
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the Register Transfer Level (RTL) with detailed pipeline verification and exten-
sive memory interface testing to verify that the system is acting correctly under
all possible operating conditions. Both the high-frequency 100 MHz system do-
main and the lower-frequency 4 kHz neural simulation domain are synthesized and
placed with timing closure validation, and all timing constraints are satisfied with
sufficient safety margins.

Bitstream generation and deployment is done using the mechanism of PYNQ
overlay which enables dynamic reconfiguration and easier hardware deployment
processes. The overlay discovery process automatically exposes all hardware blocks
as Python objects which implement runtime control interfaces, which means that
no low-level hardware access programming or driver development is required. The
workflow provides a strong system integration and deterministic performance prop-
erties as well as allowing a seamless migration of the Vivado design space to real-
time experimental execution platforms.

Experimental Control and Analysis Framework

The entire co-design system offers a comprehensive experimental platform that can
facilitate the advanced neuromorphic computing research and development process.
The capability of real-time monitoring can be used to track membrane dynamics
and spike train generation with full temporal resolution and biological accuracy.
The framework facilitates adjustable experimentation parameters, such as experi-
ment runtime, arbitrary input current profiles, and systematic exploration of the
parameter space with automated sweep functionalities.

Data management and analysis integration automatically formats experimental
results into standard NumPy and Pandas data structures. These provide direct
compatibility with modern Python scientific computing libraries. High-resolution
temporal logging can record continuous membrane potential data and discrete spike
event data with accurate timing information at the entire 4 kHz sampling rate. The
framework supports both interactive experimental exploration of research and de-
velopment activities and automated experimental protocols for systematic charac-
terization and validation studies.
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Chapter 4

Implementation, Results and
Discussion

This chapter presents comprehensive experimental validation of the FPGA-based
Izhikevich neuron implementation through systematic analysis of hardware per-
formance, numerical accuracy, and practical applicability. The investigation pro-
gresses from fundamental single-neuron characterization to advanced multi-neuron
architectures, culminating in real-world signal processing demonstrations.

The experimental methodology begins with single-neuron implementation anal-
ysis in Section 4.1, where we establish baseline performance metrics and validate
biological accuracy. Subsection 4.1.1 examines FPGA resource utilization, timing
characteristics, and power consumption. Subsection 4.1.2 investigates the precision
of Q5.11 fixed-point arithmetic through comparative analysis between floating-point
and fixed-point Python simulations. Subsection 4.1.3 demonstrates the capability
of our implementation to reproduce all 20 characteristic Izhikevich spiking patterns,
validating complete biological functionality. Building upon the single-neuron foun-
dation, Section 4.2 explores time-multiplexed virtual neuron architectures, demon-
strating resource-efficient scaling by implementing multiple virtual neurons using a
single physical hardware core. Section 4.3 investigates parallel multi-neuron imple-
mentations designed for high-throughput operation. Section 4.4 presents a compar-
ative analysis of resource utilization across all implemented architectures. Section
4.5 conducts a comprehensive frequency analysis for single-neuron and 4-neuron
cores. Finally, Section 4.6 demonstrates the practical applicability of the approach
by processing real-world IMU sensor data from the WISDM dataset.
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4.1 Single Neuron Implementation

The single-neuron implementation serves as the fundamental building block for
all subsequent multi-neuron architectures. Following the design methodology de-
scribed in Section 3.3, we implemented the Izhikevich neuron core using Vivado’s
comprehensive hardware-software co-design workflow, which encompasses RTL ver-
ification, synthesis, implementation, and bitstream generation. The generated bit-
stream establishes the hardware-software interface between the FPGA fabric and
the PYNQ Jupyter notebook environment.

The experimental framework leverages the AXI4-Lite memory-mapped inter-
face with fixed addressing to control and monitor neural behavior. We configured
neural parameters (a, b, ¢, d) and the input current (I_in) by writing to dedi-
cated slave registers defined in the AXI4-Lite wrapper module. The dual-BRAM
architecture enables continuous data acquisition: BRAMI stores membrane poten-
tial values (v_out) at a 4kHz sampling rate, while BRAM?2 captures binary spike
events (spike out) with precise timing information.

Data retrieval and analysis are performed through Python-based Jupyter note-
books, where we read the BRAM contents and conduct real-time visualization and
post-processing analysis. Systematic parameter tuning across the four-dimensional
parameter space (a, b, ¢, d) enabled exploration of all 20 characteristic Izhikevich
spiking patterns, validating the biological completeness of our hardware implemen-
tation.

The following subsections present a detailed analysis of resource utilization
(4.1.1), fixed-point arithmetic precision (4.1.2), and comprehensive spiking pat-
tern reproduction (4.1.3), establishing quantitative benchmarks for single-neuron
performance.

4.1.1 Resource Utilization, Timing and Power

We characterized the hardware implementation using Vivado’s post-implementation
reports, analyzing resource consumption, timing constraints, and power dissipation
for a single Izhikevich neuron core configured for tonic spiking behavior.

FPGA Resource Utilization

Figure 4.1 presents the overall resource utilization on the Zynq-7020 device. The
complete system consumes 13.95% of available LUTs (7,422/53,200), 4.38% of LU-
TRAM (762/17,400), 7.75% of flip-flops (8,241/106,400), 5.71% of BRAM (8/140),
and 7.27% of DSP slices (16/220). These modest utilization percentages indicate
significant headroom for multi-neuron scaling while maintaining efficient resource
usage.
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Resource Utilization Available Utilization %
LuT 7422 53200 1395
LUTRAM 762 17400 438
FF 8241 106400 775
BRAM 8 140 571
DSP 16 220 7.27

Lut 14%

LUTRAM 4%
FF 8%
BRAM 6%
DSP 7%
0 25 50 75 100

Utilization (%)

Figure 4.1: Overall FPGA resource utilization for single Izhikevich neuron core
implementation on Zyng-7020.

- Slice LUT as LUT as Bonded

Name e e G lgc  Memoy STRUS Gy omos TGE
izh_single_wrapper 7422 8241 3066 6660 762 8 16 130 2
izh_single_i (izh_single 7422 8241 3066 6660 762 8 16 0 2
axi_bram_ctrl_0 (izh_single_axi_bram 170 184 70 170 0 0 0 0 0
axi_bram_ctrl_1 (izh_single_axi_bram_ct 170 184 79 170 0 0 0 0 0
axi_smc (izh_single_axi_s 4636 4924 1629 3879 757 0 0 0 0
blk_mem_gen_0 (izh_single_blk_mem_ger 7 10 7 5 2 4 0 0 0
blk_mem_gen_1 (izh_single_blk_mem_ger 7 10 6 5 2 4 0 0 0
izh_axi_0 (izh_single_izh_ax 2422 2896 1330 2422 0 0 16 0 1
inst (izh_single_izh_ax zh_a 2422 2896 1330 2422 0 ] 16 0 1
izh_axi_slave_lite_v1_0_SO0_AXI_inst 2422 2896 1330 2422 0 0 16 0 1

uut (izh_single_izh_axi_0_0_izh) 1810 2286 1216 1810 0 0 16 0 0
processing_system7_0 (izh_single_process 0 0 0 0 0 0 0 0 1
rst_ps7_0_100M (izh_single_rst_ps7_0_100} 17 33 12 16 1 0 0 0 0

Figure 4.2: Hierarchical resource utilization breakdown of a single Izhikevich neuron
core implementation on Zyng-7020, showing component-level consumption within
the complete design.

Figure 4.2 provides a hierarchical resource breakdown, revealing that the core
Izhikevich computation module (‘uut’) consumes only 1,810 LUTSs, 2,286 FFs, and
16 DSP slices with zero BRAM usage. The dual-BRAM blocks (‘blk _mem_gen 07)
and (‘blk_mem_gen 1’) each utilize 4 BRAM tiles for data logging. Notably, the
AXI SmartConnect (‘axi_smc’) infrastructure accounts for the majority of inter-
connect resources (4,636 LUTs, 4,924 FFs), highlighting the overhead of processor-
FPGA communication while demonstrating the lightweight nature of the neural
computation core itself.

67



Implementation, Results and Discussion

Timing Analysis

Figure 4.3 shows the static timing analysis results demonstrating successful timing
closure. The Worst Negative Slack (WNS) of 1.361 ns and Worst Hold Slack (WHS)
of 0.018 ns indicate positive timing margins with zero failing endpoints across all
20,348 timing paths. The Worst Pulse Width Slack (WPWS) of 3.750 ns confirms
robust clock signal integrity. These positive slack values confirm that the design op-
erates reliably at the 100 MHz system clock frequency, with sufficient safety margins
for process, voltage, and temperature variations.

Setup Hold Pulse Width
Worst Negative Slack (WNS): 1.361 ns Worst Hold Slack (WHS): 0.018 ns Worst Pulse Width Slack (WPWS): 3.750 ns
Total Negative Slack (TNS):  0.000 ns Total Hold Slack (THS): 0.000 ns Total Pulse Width Negative Slack (TPWS): 0.000 ns
Number of Failing Endpoints: 0 Number of Failing Endpoints: 0 Number of Failing Endpoints: 0
Total Number of Endpoints: 20348 Total Number of Endpoints: 20348 Total Number of Endpoints: 7130

Figure 4.3: Static timing analysis report of a single Izhikevich neuron core imple-
mentation on Zyng-7020.
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Figure 4.4: On-chip power consumption breakdown of a single Izhikevich neuron
core implementation on Zyng-7020.

Power Consumption

Figure 4.4 presents an on-chip power analysis, revealing a total consumption of
1.53 W, partitioned into 1.392W of dynamic power (91%) and 0.138 W of static
power (9%). The Zynq Processing System (PS7) consumes the most power at 89%
(1.256 W), primarily due to the ARM Cortex-A9 cores and their associated pe-
ripherals. The programmable logic components contribute minimally: DSP blocks
(0.012W, 1%), BRAM (0.013 W, 1%), logic (0.037 W, 3%), signals (0.051 W, 4%),
and clocks (0.023 W, 2%). This power breakdown indicates that the neural com-
putation fabric itself is highly power-efficient, with the majority of power budget
consumed by the control and interface infrastructure.
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4.1.2 Fixed-Point Arithmetic Precision Analysis

The Q5.11 fixed-point representation provides hardware efficiency at the cost of
quantization error compared to IEEE 754 floating-point arithmetic. We conducted
comprehensive precision analysis by comparing Python-based floating-point and
fixed-point simulations of the Izhikevich neuron model, quantifying numerical de-
viations through multiple error metrics.
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Figure 4.5: Comprehensive time-domain comparison of floating-point versus Q5.11
fixed-point implementations for tonic spiking pattern using Python simulation plat-
form.
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Comparative Simulation Analysis

Figure 4.5 presents a time-domain comparison for tonic spiking behavior under
constant input current. The six-panel visualization reveals: (1) input current stim-
ulus, (2) membrane potential trajectories for both implementations, (3) absolute
voltage error, (4) recovery variable dynamics, (5) absolute recovery variable error,
and (6) spike timing comparison. The overlapping traces demonstrate excellent
agreement during the initial 30 ms, with deviations gradually accumulating over
extended simulation periods due to finite precision effects and error propagation
through iterative computations.

Error Quantification Metrics

We employed five standard error metrics to quantify numerical accuracy for both
membrane potential (v) and recovery variable (u) over two simulation durations:
30ms (short-term) and 200 ms (long-term).

Root Mean Square Error (RMSE) measures the standard deviation of prediction
errors [29]:

1 X , .
RMSE = J i > (Zfoat]t] — Thixeal])? (4.1)
i=1
where N is the number of samples, xgeat[i] represents floating-point values, and
Tfixed|?] denotes fixed-point values.
Normalized Root Mean Square Error (NRMSE) provides scale-independent er-
ror assessment [29]:

NRMSE(%) — RMSE X 100 (4.2)

max(xﬂoat) — min (ZEﬂoat)

This normalization enables comparison across signals with different amplitude ranges.
Mean Absolute Error (MAE) quantifies average absolute deviation [29]:

1 & , .
MAE = N Z ‘xﬂoat [Z] — Tfixed [Z” (43)
=1

MAE is less sensitive to outliers compared to RMSE, providing complementary
error characterization.
Correlation Coefficient (Corr) assesses linear relationship strength [53]:

Ziil (xﬁoat [2] - jﬁoat)(xﬁxed [Z] - iﬁxed)

VEN L (@h0at 1] — Trioas) 2\ SN (Thneali] — Zivea)?

Corr =

(4.4)

where Z denotes the mean value. Perfect correlation yields Corr = 1.0.
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4.1 — Single Neuron Implementation

Table 4.1: Quantitative precision analysis comparing Q5.11 fixed-point and IEEE
754 floating-point implementations in Python using RMSE, NRMSE, MAE, and
Corr error metrics.

Error Metric 30 ms Simulation Time 200 ms Simulation Time
(v) (u) (v) (u)
RMSE 0.845 0.015 16.278 1.303
NRMSE (%) 0.845 0.122 16.062 8.140
MAE 0.464 0.014 5.474 0.459
Corr (%) 0.001 - 1.125 -

Quantitative Results

Table 4.1 summarizes error metrics for 30ms and 200 ms simulation durations.
For the 30 ms short-term case, membrane potential achieves RMSE = 0.845mV,
NRMSE = 0.845%, MAE = 0.464mV, and negligible correlation error (0.001%).
Recovery variable shows even superior accuracy with RMSE = 0.015, NRMSE =
0.122%, and MAE = 0.014. These results demonstrate that Q5.11 fixed-point
arithmetic maintains biological accuracy for short-duration neural simulations.

For the 200 ms extended simulation, accumulated quantization errors become
apparent: membrane potential RMSE increases to 16.278 mV (NRMSE = 16.062%,
MAE = 5.474mV, Corr = 1.125%), while recovery variable exhibits RMSE = 1.303
(NRMSE = 8.140%, MAE = 0.459).

Despite the accumulation of errors over time, the Q5.11 representation main-
tains sufficient accuracy for typical neuromorphic computing applications, including
burst detection, rate coding, and short-term temporal patterns, thereby validating
our fixed-point design choice for hardware efficiency without compromising func-
tional correctness.

4.1.3 Complete Spiking Pattern Reproduction

The comprehensive validation of our FPGA implementation requires demonstrat-
ing biological completeness by reproducing all 20 characteristic Izhikevich spiking
patterns. This subsection presents a systematic comparison across three implemen-
tation platforms: floating-point Python simulation, fixed-point Verilog simulation,
and physical FPGA hardware implementation, establishing functional equivalence
while quantifying temporal deviations introduced by fixed-point arithmetic and
pipeline delays.
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Pattern 1: Tonic Spiking
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Figure 4.6: Tonic spiking pattern comparison across three platforms. A three-panel
visualization shows (from top to bottom): Python floating-point simulation, Vivado
fixed-point simulation, and FPGA hardware implementation.

Parameters: a = 0.02, b = 0.2, ¢ = —65, d = 6 | Stimulus: Step DC current

Tonic spiking represents the most fundamental excitable behavior in corti-
cal neurons, characterized by sustained periodic firing in response to constant
suprathreshold stimulation [15], [16]. Figure 4.6 demonstrates successful repro-
duction across all three platforms (Python, Vivado, FPGA), with membrane po-
tential trajectories exhibiting consistent spike amplitude (~30mV peak), after-
hyperpolarization to —65mV, and regular inter-spike intervals of approximately
25ms (40 Hz firing rate). The Python and Vivado simulations show near-perfect
temporal alignment during the initial 50 ms, with spike events occurring at iden-
tical time points. The FPGA hardware implementation maintains precise pattern
fidelity with observable time shifts of 1-2 ms emerging after 100 ms due to accu-
mulated quantization errors. Despite this temporal drift, spike frequency remains
constant at ~40Hz across all implementations, confirming rate-coding accuracy
essential for neuromorphic applications.
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Pattern 2: Phasic Spiking
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Figure 4.7: Phasic spiking pattern showing a single spike at stimulus onset across
three platforms: Python, Vivado, and FPGA implementations.

Parameters: a = 0.02, b = 0.247, ¢ = —65, d = 6 | Stimulus: Step DC current
Phasic spiking demonstrates transient excitability where the neuron fires a sin-
gle spike at stimulus onset and returns to quiescence despite sustained input [15],
[16]. Figure 4.7 shows precise reproduction across all three platforms, with spike
generation occurring at ~45ms post-stimulus and subsequent membrane potential
stabilization near —60 mV without further spiking activity throughout the 200 ms
observation period. All three implementations exhibit identical spike timing at
45 ms with matching spike amplitude and post-spike hyperpolarization dynamics.
The FPGA hardware maintains perfect fidelity to the quiescent state after the ini-
tial spike, demonstrating accurate threshold detection and sustained subthreshold
stability. No temporal drift is observable in this pattern due to the single-spike
nature, eliminating accumulated quantization errors from iterative spiking.
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Pattern 3: Tonic Bursting
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Figure 4.8: Tonic bursting pattern showing periodic spike clusters across Python,
Vivado, and FPGA implementations.

Parameters: a = 0.02, b = 0.2, ¢ = =50, d = 2 | Stimulus: Step DC current

Tonic bursting exhibits sustained rhythmic clusters of rapid spikes separated by
quiescent interburst intervals, representing a fundamental oscillatory firing mode
observed in cortical networks [15], [16]. Figure 4.8 demonstrates four complete
burst cycles over 200 ms, each burst containing 6-11 spikes at ~100 Hz intraburst
frequency, followed by hyperpolarized silent periods. The interburst frequency of
~25Hz matches typical gamma-band oscillation generators. All three platforms
reproduce burst structure with high fidelity: 810 spikes per burst, consistent in-
traburst frequency (~100Hz), and regular burst periodicity (~40ms interburst
interval). The FPGA implementation shows minor temporal shifts accumulating
to 2-3 ms by 200ms, with slight variations in spike count at the first burst (10
vs. 11 spikes) due to threshold crossing sensitivity under fixed-point quantization.
Critically, burst frequency and overall pattern structure are preserved, validating
the reproduction of oscillatory dynamics.
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Pattern 4: Phasic Bursting
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Figure 4.9: Phasic bursting pattern showing single transient spike cluster at stim-
ulus onset across Python, Vivado, and FPGA platforms.

Parameters: a = 0.02, b = 0.247, ¢ = =55, d = 0.05 | Stimulus: Step DC current

Phasic bursting combines transient response characteristics with burst-mode
signaling, producing a single cluster of 5-6 rapid spikes at stimulus onset followed
by sustained quiescence [15], [16]. Figure 4.9 demonstrates the burst occurring
at ~35-60 ms with intraburst spike frequency of ~100 Hz, after which the mem-
brane potential stabilizes near —65mV without further activity despite continued
stimulation. All three platforms reproduce the single-burst transient response with
matching spike count (5-6 spikes), consistent burst duration (~25 ms), and identical
quiescent behavior post-burst. The FPGA implementation shows perfect tempo-
ral alignment with Vivado simulation, with <1 ms deviation from Python results.
The small recovery parameter (d = 0.05, significantly reduced from typical values)
prevents burst repetition by minimizing recovery variable reset, enabling the pha-
sic characteristic. Spike timing within the burst maintains high precision across
platforms, validating event-based communication fidelity.
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Pattern 5: Mixed Mode
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Figure 4.10: Mixed-mode pattern combining phasic burst onset with sustained tonic
spiking across Python, Vivado, and FPGA platforms.

Parameters: a = 0.02, b = 0.2, ¢ = =55, d = 4 | Stimulus: Step DC current

Mixed mode demonstrates hybrid temporal coding where an initial phasic burst
(~3spikes at 25-35 ms) signals stimulus onset, followed by transition to tonic
spiking (~30Hz) that encodes sustained input magnitude [15], [16]. Figure 4.10
shows the characteristic biphasic response: high-frequency burst onset detection
followed by rate-coded sustained activity, combining both transient edge detec-
tion and steady-state magnitude representation in a single neuron. All three plat-
forms accurately reproduce the mode transition: initial 3-spike burst at 25-35 ms
followed by regular spiking at ~30-35 ms intervals. The FPGA implementation
maintains burst structure fidelity and correctly transitions to periodic firing with
consistent interspike intervals. Minor temporal drift of 1-2 ms accumulates during
the tonic phase (100-200 ms), while the critical burst-to-spike transition timing
shows <0.5 ms deviation, validating accurate parameter-dependent mode switching
dynamics.
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Pattern 6: Spike Frequency Adaptation
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Figure 4.11: Spike frequency adaptation pattern showing progressive ISI lengthen-
ing across Python, Vivado, and FPGA platforms.

Parameters: a = 0.01, b = 0.2, ¢ = —65, d = 8 | Stimulus: Step DC current

Spike frequency adaptation exhibits progressive interspike interval (ISI) length-
ening over sustained stimulation, transitioning from an initial high-frequency burst
(~4 spikes at 15-30 ms) to gradually slowing periodic firing (ISI increasing from
~20ms to ~30ms by 200ms) [15], [16]. Figure 4.11 illustrates the characteristic
power-law-like frequency decay, where the firing rate adaptively decreases despite
a constant input, encoding temporal history through activity-dependent spike tim-
ing modulation. All three platforms accurately reproduce the adaptation dynamics
with progressive ISI lengthening from ~20ms (early phase) to ~30 ms (late phase).
The FPGA implementation maintains faithful burst structure (4 spikes at 15-30
ms) and correctly implements the activity-dependent frequency decay throughout
the 200 ms simulation. Temporal deviations remain <1 ms for the initial burst, with
cumulative drift reaching 2-3 ms in late adaptation phase due to compounded ISI
approximations.
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Pattern 7: Class 1 Excitability
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Figure 4.12: Class 1 excitability pattern showing continuous frequency modulation
with linearly increasing ramp current across Python, Vivado, and FPGA platforms.

Parameters: Python: a = 0.05, b = 0.22, ¢ = —62, d = 6 | FPGA: a = 0.09,
b=0.257, ¢ = —62, d = 6 | Stimulus: Ramp current

Class 1 excitability demonstrates continuous frequency modulation from arbi-
trarily low frequencies (~8 Hz at threshold onset, ~60ms) to progressively higher
rates (~60 Hz by ~200 ms) as ramp current increases linearly [15], [16]. Figure 4.12
illustrates a firing rate that is proportional to input strength, exhibiting a smooth
frequency-current (f-I) relationship characteristic of integrator neurons. Platform-
specific parameter adjustments were required: the FPGA parameters (a = 0.09,
b = 0.257) differ from the Python reference (a = 0.05, b = 0.22) to compensate for
quantization effects on bifurcation boundaries. Despite parameter variation, both
implementations exhibit the defining Class 1 characteristic: firing onset at low
frequency (~8Hz) followed by smooth frequency increase to ~60 Hz. The FPGA
maintains accurate spike timing with <1ms deviation during initial firing (50-80
ms) and 1-2 ms drift in late ramp phase (150-200 ms), demonstrating preserved
integrator neuron dynamics.
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Pattern 8: Class 2 Excitability
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Figure 4.13: Class 2 excitability pattern showing discontinuous threshold with
abrupt transition to constant-frequency firing under ramp current across Python,
Vivado, and FPGA platforms.

Parameters: Python: a = 0.03, b = 0.267, ¢ = —62, d = 6 | FPGA: a = 0.05,
b=0.273, c = —62, d = 6 | Stimulus: Ramp current

Class 2 excitability exhibits discontinuous firing threshold with abrupt transi-
tion from quiescence to sustained ~35 Hz spiking at ~70 ms, maintaining relatively
constant frequency (~15-20 ms ISI) despite continued current increase [15], [16].
Figure 4.13 illustrates the characteristic minimum frequency constraint: neurons
cannot produce low-frequency spike trains; instead, they exhibit binary behavior
(silent or ~50 Hz) with a firing rate weakly coupled to input strength. Platform-
specific parameter tuning was necessary: the FPGA implementation uses a = 0.05,
b = 0.273, whereas Python’s a = 0.03, b = 0.267 are used to maintain the Class
2 bifurcation structure under fixed-point quantization. Both platforms success-
fully reproduce the defining characteristic: an abrupt firing onset at approximately
70ms, followed by the immediate establishment of a ~50 Hz rhythm. The FPGA
maintains remarkably stable ISI (~15-20 ms) with <1ms spike timing deviation
throughout the 70-200 ms active period, demonstrating preserved frequency con-
stancy.
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Pattern 9: Spike Latency
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Figure 4.14: Spike latency pattern showing temporal encoding through delayed
single-spike response across Python, Vivado, and FPGA platforms.

Parameters: a = 0.02, b = 0.2, ¢ = —65, d = 6 | Stimulus: DC impulse current
Spike latency demonstrates an inverse relationship between input strength and
response delay, producing a single spike at ~30 ms following the termination of a
brief 10ms current pulse [15], [16]. Figure 4.14 illustrates the characteristic de-
layed response, where weak suprathreshold inputs result in long latencies, enabling
temporal coding in which spike timing relative to stimulus onset encodes input mag-
nitude. All three platforms accurately reproduce the latency-current relationship
with single spike generation at ~30ms, approximately 20 ms after the 10 ms im-
pulse termination. The FPGA implementation demonstrates <0.5 ms spike timing
deviation from the Python reference, validating precise temporal encoding capabil-
ity. The brief impulse creates subthreshold depolarization visible in the membrane
potential trajectory (elevated baseline after pulse), followed by delayed threshold
crossing as recovery dynamics slowly evolve. The absence of subsequent spikes
(single-spike response) validates correct reset dynamics and demonstrates faithful
implementation of phasic response characteristics under transient stimulation.
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Pattern 10: Subthreshold Oscillation
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Figure 4.15: Subthreshold oscillation pattern showing damped membrane poten-
tial fluctuations following impulse-evoked spike across Python, Vivado, and FPGA
platforms.

Parameters: a = 0.05, b = 0.25, ¢ = —60, d = 0 | Stimulus: DC impulse current

Subthreshold oscillations exhibit damped membrane potential fluctuations fol-
lowing a single spike at ~28 ms, with visible oscillatory decay (~10-15 mV ampli-
tude) continuing for ~50-100 ms post-spike before stabilizing to resting potential
[15], [16]. Figure 4.15 demonstrates intrinsic resonance properties where membrane
dynamics naturally oscillate at preferred frequencies, enabling neurons to function
as bandpass filters that selectively respond to temporally structured inputs. All
three platforms accurately reproduce damped subthreshold oscillations following
the impulse-evoked spike at ~28 ms. The FPGA implementation preserves the os-
cillatory waveform morphology, with a peak-to-peak amplitude of ~10-15 mV visi-
ble for 50-100 ms, demonstrating a faithful representation of complex subthreshold
dynamics despite fixed-point quantization. Spike timing shows <0.5 ms deviation,
while oscillation phase and frequency match closely across platforms, validating
preservation of resonant properties. Minor amplitude quantization (£1-2 mV) ap-
pears in FPGA oscillation peaks due to 5.11 resolution limits.
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Pattern 11: Resonator
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Figure 4.16: Resonator pattern demonstrating frequency-selective spiking across
Python, Vivado, and FPGA platforms.

Parameters: Python: a = 0.1, b = 0.26, ¢ = —60, d = —1 | FPGA: a = 0.01,
b=10.2571, c = —60, d = —1 | Stimulus: Four DC impulse doublets

Resonator dynamics show frequency-selective spiking, where the neuron re-
sponds only to input doublets at ~170-180 ms, whose interspike interval matches
the intrinsic subthreshold oscillation frequency, while ignoring non-resonant dou-
blets at ~15-25 ms and 115-125 ms [15], [16]. Figure 4.16 shows selective ampli-
fication of temporally matched inputs through constructive interference between
stimulus timing and membrane resonance, enabling biological bandpass filtering.
Significant parameter adaptation was required for FPGA implementation: a = 0.01
versus Python’s a = 0.1 (10x difference) while maintaining b = 0.2571 close to
Python’s b = 0.26 and critical d = —1 constant. Despite parameter differences,
both platforms successfully reproduce the defining resonator property: selective
response to the ~170-180 ms doublet while remaining quiescent for earlier non-
resonant doublets. The FPGA generates a single spike at ~185ms with <2-3 ms
timing deviation from the Python reference, validating preservation of frequency-
selective dynamics.
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Pattern 12: Integrator
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Figure 4.17: Integrator pattern demonstrating temporal summation and coinci-
dence detection across Python, Vivado, and FPGA platforms.

Parameters: Python: a = 0.02, b = 0.21, ¢ = =55, d = 6 | FPGA: a = 0.01,
b=0.21, ¢c= —55,d =6 | Stimulus: Two impulse doublets

Integrator dynamics show temporal summation, where the neuron fires a single
spike at ~30ms only in response to a high-frequency doublet (with an interval of
~15-20 ms), while remaining subthreshold for identical but temporally separated
inputs at ~130-150 ms [15], [16]. Figure 4.17 shows the absence of subthresh-
old oscillations (smooth membrane trajectory), enabling pure integration where
closely-timed inputs summate to reach threshold, implementing coincidence de-
tection through temporal integration. Minor parameter adjustment between plat-
forms: Python uses ¢ = 0.02 while FPGA uses a = 0.01 (halved) to maintain
integration dynamics. Both platforms successfully demonstrate integrator behav-
ior: a single spike at ~30 ms for the high-frequency doublet with visible membrane
summation. In comparison, the low-frequency doublet at ~130-150 ms produces
only subthreshold depolarization (~5-10 mV transients) that decays before reach-
ing threshold. The FPGA shows <0.5ms spike timing deviation and accurately
reproduces the smooth, non-oscillatory membrane trajectory characteristic of inte-
grators.
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Pattern 13: Rebound Spike
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Figure 4.18: Rebound spike pattern demonstrating post-inhibitory excitation across
Python, Vivado, and FPGA platforms.

Parameters: Python: a = 0.03, b = 0.25, ¢ = —60, d = 4 | FPGA: a = 0.03,
b=0.247, ¢ = —60, d = 4 | Stimulus: Negative impulse current

The rebound spike demonstrates post-inhibitory excitation, where a hyperpolar-
izing input at 20-25 ms paradoxically triggers a spike at approximately 60 ms upon
inhibition release, accompanied by visible membrane hyperpolarization (—65mV)
followed by rebound depolarization that exceeds the threshold [15], [16]. Figure
4.18 illustrates counterintuitive dynamics where brief inhibition can produce exci-
tation through anodal break excitation mechanisms. Minimal parameter adjust-
ment required between platforms: only b differs slightly (Python: b = 0.25, FPGA:
b = 0.247) while a, ¢, d remain identical, indicating robust rebound dynamics. All
three platforms accurately reproduce the complete rebound sequence, including ini-
tial hyperpolarization to ~—60mV during negative current (20-25 ms), a smooth
rebound trajectory post-inhibition, and spike generation at 65ms, with a timing
deviation of ~1-5 ms across platforms. The FPGA implementation faithfully pre-
serves the critical nonlinear dynamics required for anodal break excitation.
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Pattern 14: Rebound Bursting
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Figure 4.19: Rebound bursting pattern demonstrating post-inhibitory burst gener-
ation across Python, Vivado, and FPGA platforms.

Parameters: Python: a = 0.03, b = 0.25, ¢ = =52, d = 0 | FPGA: a = 0.03,
b=0.247, ¢ = =52, d = 0.2 | Stimulus: Negative impulse current

Rebound bursting demonstrates post-inhibitory burst generation where hyper-
polarizing input (at 20-25 ms) triggers high-frequency spike bursts (~7-8 spikes at
50-95 ms, ~25Hz intraburst frequency) upon inhibition release [15], [16]. Figure
4.19 shows amplified rebound response compared to single rebound spike (Pattern
13), combining anodal break excitation with intrinsic burst dynamics through el-
evated reset potential (¢ = —52 mV) and minimal recovery (d = 0). Platform
parameters show minimal variation: @ = 0.03 and b =~ 0.25 identical, ¢ = —52 mV
constant (elevated reset enabling bursts), while d differs slightly (Python: d = 0,
FPGA: d = 0.2). Despite a small recovery increment difference, all platforms repro-
duce the complete rebound burst: hyperpolarization to ~—65mV during inhibition
(2025 ms), followed by a 7-8 spike burst at 50-95 ms. The FPGA maintains a
burst structure with ~2-5 ms deviation for individual spike timings and accurate
interspike intervals throughout the burst.
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Pattern 15: Threshold Variability
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Figure 4.20: Threshold variability pattern demonstrating activity-dependent ex-
citability across Python, Vivado, and FPGA platforms.

Parameters: a = 0.03, b = 0.248, ¢ = —60, d = 4 | Stimulus: Positive and negative
impulses

Threshold variability demonstrates activity-dependent excitability where iden-
tical 10 mV depolarizing inputs (~20-25 ms and ~16-165 ms) produce opposite
outcomes: the first pulse remains subthreshold (no spike), while the second iden-
tical pulse triggers spike at ~175ms because preceding inhibition (at 150-155 ms)
lowered the effective threshold [15], [16]. Figure 4.20 illustrates that biological
neurons exhibit dynamic thresholds modulated by the recovery variable u: inhibi-
tion decreases u (lowering the threshold), while excitation increases u (raising the
threshold). Identical parameters across platforms (¢ = 0.03, b = 0.248, ¢ = —60,
d = 4) demonstrate robust threshold variability dynamics. All three platforms
accurately reproduce the defining characteristic: first positive pulse (20-25 ms)
produces ~10mV depolarization without spiking, while the second identical pulse
(160-165 ms) triggers a spike at ~175ms with <0.5ms timing deviation. The
FPGA faithfully captures the subtle u dynamics governing dynamic threshold mod-
ulation.
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Pattern 16: Bistability
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Figure 4.21: Bistability pattern demonstrating stable state switching between rest-
ing and tonic spiking modes across Python, Vivado, and FPGA platforms.

Parameters: a = 0.1, b = 0.257, ¢ = —60, d = 0 | Stimulus: Two positive impulses

Bistability demonstrates stable state switching where brief excitatory pulses
toggle between two persistent modes: first impulse (20-25 ms) transitions the neu-
ron from resting to sustained tonic spiking (~25 Hz, 30-155 ms), while the second
impulse (160-165 ms) terminates spiking and restores resting state [15], [16]. Figure
4.21 shows phase-dependent switching, where termination requires an appropriately
timed input during the oscillation cycle, thereby creating binary memory states en-
coded in ongoing activity patterns without the need for sustained input. Identical
parameters across platforms (¢ = 0.1, b = 0.257, ¢ = —60, d = 0) with an ele-
vated recovery rate and zero recovery increment, creating a bistable regime. All
three platforms accurately reproduce the complete bistable sequence: initial resting
state (0-20 ms), transition to tonic spiking after first impulse (sustained firing 30—
155 ms at 25 Hz, 4 spikes), and return to resting after second impulse (1604 ms).
The FPGA maintains precise spike timing with <1 ms deviation throughout the
sustained firing period.
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Pattern 17: Depolarizing after-potential (DAP)
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Figure 4.22: Depolarizing after-potential (DAP) pattern showing post-spike su-
perexcitability across Python, Vivado, and FPGA platforms.

Parameters: a = 1, b = 0.18, ¢ = —60, d = —21 | Stimulus: Positive impulse
current

Depolarizing after-potential (DAP) demonstrates post-spike superexcitability
where membrane potential exhibits prolonged depolarization (~—45mV to —50 mV
plateau for ~10 ms) following spike at 25 ms, rather than typical after-hyperpolarization
(AHP) [15], [16]. Figure 4.22 shows an elevated baseline creating a shortened refrac-
tory period and an increased excitability window. The extreme negative recovery
increment (d = —21) produces anti-recovery dynamics, where u decreases after the
spike, sustaining depolarization. Identical extreme parameters across platforms:
a = 1 (speedy recovery rate) and d = —21 (massive negative recovery increment,
strongest anti-recovery seen). All three platforms accurately reproduce the DAP
waveform, which consists of a spike at 25 ms followed by a sustained elevated mem-
brane potential (~—45mV to —50 mV) that lasts for more than 10 ms before gradu-
ally returning to resting levels. The FPGA exhibits a <1 ms spike timing deviation
and faithfully preserves the prolonged depolarized plateau, demonstrating the ac-
curate implementation of the counterintuitive recovery dynamics.
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Pattern 18: Accommodation
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Figure 4.23: Accommodation pattern demonstrating rate-dependent excitability
across Python, Vivado, and FPGA platforms.

Parameters: a = 0.02, b = 0.204, ¢ = =55, d = 4 | Stimulus: Two ramp currents

Accommodation demonstrates rate-dependent excitability, where a slow current
increase (over 100 ms) fails to trigger spikes despite its substantial magnitude, while
a smaller but sharper ramp (at 150-160 ms) elicits a spike at 160 ms [15], [16]. Fig-
ure 4.23 illustrates counterintuitive dynamics: gradual stimulation enables neuronal
adaptation, thereby preventing firing, whereas a rapid onset exceeds the accom-
modation rate. Visible membrane depolarization during slow ramp (~—60mV to
—50mV at 100-110 ms) remains subthreshold as recovery variable u tracks input,
elevating threshold. Identical parameters across platforms (a = 0.02, b = 0.204,
¢ = =55, d = 4) demonstrate robust accommodation dynamics. All three plat-
forms accurately reproduce the critical accommodation characteristic: slow ramp
(0-100 ms) produces visible membrane depolarization (~10-15 mV elevation) with-
out spiking, and fast ramp (150-160 ms) triggers a spike at 160 ms. The FPGA
exhibits a <1 ms spike timing deviation and accurately captures the subthreshold
membrane trajectory during the slow accommodation phase.
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Pattern 19: Inhibition-Induced Spiking
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Figure 4.24: Inhibition-induced spiking pattern demonstrating paradoxical excita-
tion by hyperpolarization across Python, Vivado, and FPGA platforms.

Parameters: a = —0.03, b = —1, ¢ = —60, d = 8 | Stimulus: Step hyperpolarizing
current

Inhibition-induced spiking demonstrates paradoxical excitation by inhibition,
where sustained hyperpolarizing current (from 20ms) triggers periodic spiking
(~60ms, ~110ms, ~155ms intervals) while the absence of input produces qui-
escence [15], [16]. Figure 4.24 shows counterintuitive dynamics where inhibition
activates firing through hyperpolarization-activated mechanisms. The negative re-
covery parameters (a = —0.03, b = —1) reverse typical adaptation, implementing
inverted excitability. Unique negative recovery parameters distinguish this pattern:
a = —0.03 (negative recovery rate, anti-recovery) and b = —1 (negative coupling,
inverted relationship between v and u). All three platforms accurately reproduce
inhibition-induced spiking: quiescence during the initial period (0-20 ms), followed
by periodic firing at ~60ms, ~110ms, ~155ms (~50ms ISI) during sustained
hyperpolarization. The FPGA maintains <2-5 ms spike timing deviation across
three spikes and faithfully preserves the ~50 ms interspike intervals, demonstrating
accurate implementation through negative parameter interactions.

90



4.1 — Single Neuron Implementation

Pattern 20: Inhibition-Induced Bursting
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Figure 4.25: Inhibition-induced bursting pattern demonstrating paradoxical burst
generation by hyperpolarization across Python, Vivado, and FPGA platforms.

Parameters: a = —0.03, b = —1, ¢ = —45, d = 0.1 | Stimulus: Step hyperpolarizing

Inhibition-induced bursting demonstrates paradoxical burst generation by hy-
perpolarization, where sustained inhibitory current (from 20 ms) triggers rhythmic
high-frequency bursts (~5-6 spikes per burst at 50-70 ms and 140-155 ms, ~25 Hz
intraburst frequency, ~80ms interburst interval) while quiescence persists without
input [15], [16]. Figure 4.25 shows an amplified version of Pattern 19, where an ele-
vated reset potential (¢ = —45 mV vs. —60mV) converts inhibition-induced spiking
to bursting. Parameters closely match Pattern 19 with a critical difference in reset
potential: ¢ = —45 mV (elevated by 15mV) converts spiking to bursting, while
d = 0.1 (near-zero) enables rapid intraburst firing. Negative recovery parameters
(a = —0.03, b = —1), identical to Pattern 19, maintain inverted dynamics. All
three platforms accurately reproduce inhibition-induced bursting, characterized by
initial quiescence (0-20 ms), followed by two complete bursts, each containing 5-6
spikes with an intraburst frequency of ~25 Hz and an interburst interval of ~90 ms.
The FPGA maintains <1ms spike timing deviation within bursts and accurately
preserves burst structure.
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4.2 Time-multiplexed Multiple Virtual Neuron
Implementation

Having validated single-neuron dynamics across all 20 characteristic spiking pat-
terns, we now demonstrate scalability through the implementation of time-multiplexed
virtual neurons. This resource-efficient technique enables a single physical hardware
neuron to emulate multiple independent virtual neurons with distinct behavioral
configurations. This approach addresses the fundamental challenge of resource-
limited FPGA platforms: achieving large-scale neural network emulation without
proportional hardware replication.

4.2.1 Time-Multiplexing Architecture

The time-multiplexing mechanism operates by sequentially cycling through differ-
ent parameter sets within each simulation timestep, where a single neuron core
updates multiple virtual neuron states in rapid succession. We utilize the ‘config’
interface in our Jupyter notebook control framework to dynamically program all
20 validated spiking patterns, allowing for runtime selection of behavioral diver-
sity across virtual neuron populations. Each virtual neuron maintains independent
state variables (v; and u;), stored in BRAM and accessed sequentially during time-
multiplexed updates at a 100 MHz system clock frequency.

4.2.2 Homogeneous Population: Tonic Bursting Validation

Figure 4.26 presents a raster plot of 50 virtual neurons configured identically with
tonic bursting parameters (Pattern 3: a = 0.02, b = 0.2, ¢ = =50, d = 2), demon-
strating synchronized population dynamics under a homogeneous configuration. All
neurons exhibit phase-locked bursting at ~40 ms intervals (4 bursts over 200 ms sim-
ulation), with each burst containing 8-10 spikes at ~100 Hz intraburst frequency.
The perfect synchronization validates: (1) parameter consistency across virtual
neuron instances, (2) state variable isolation, preventing cross-neuron interference,
and (3) deterministic update sequencing, maintaining identical input conditions.
Figure 4.27 illustrates the detailed dynamics of a representative virtual neuron
(Neuron 1) from the population, showing input step current, membrane potential
trajectory with characteristic burst envelope, and binary spike output. The voltage
trace confirms the faithful reproduction of Pattern 3 dynamics, as validated in Sub-
section 4.1.3: burst onset at ~5ms, interburst hyperpolarization to ~—65mV, and
sustained rhythmic bursting throughout the stimulation period. This single-neuron
view provides ground-truth verification that time-multiplexed virtual neurons pre-
serve individual dynamical fidelity established during single-neuron validation.
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Figure 4.26: Raster plot of 50 time-multiplexed virtual neurons configured iden-
tically with tonic bursting parameters (Pattern 3: a = 0.02, b = 0.2, ¢ = —50,
d=2).
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Figure 4.27: Detailed dynamics of representative virtual neuron (Neuron 1) from
50-neuron tonic bursting population. Three panels show: (left) input step current,
(center) membrane potential trajectory and (right) binary spike.

4.2.3 Heterogeneous Population: Random Pattern Assign-
ment

To demonstrate the behavioral diversity achievable through time-multiplexing, we
implemented heterogeneous populations where each virtual neuron receives a ran-
domly assigned spiking pattern configuration. Figure 4.28 shows a raster plot of 50
virtual neurons with random selection from the first six validated patterns (tonic
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spiking, phasic spiking, tonic bursting, phasic bursting, mixed mode, spike fre-
quency adaptation). The resulting spatiotemporal activity exhibits rich dynam-
ics: sparse phasic responses (single spikes or bursts from phasic neurons), sus-
tained tonic activity (regular firing from tonic neurons), and adaptive modulation
(frequency-decreasing trains from adaptation neurons). This heterogeneity repli-
cates biological network diversity where cortical populations comprise multiple cell
types with distinct intrinsic properties [15], [16].

Figure 4.29 provides detailed examination of the first six virtual neurons from
this heterogeneous population, revealing pattern assignments: Neurons 1-2 display
tonic spiking (~40Hz regular firing), Neuron 3 exhibits phasic bursting (single
burst at ~25-50 ms), Neuron 4 shows tonic bursting (rhythmic burst trains), Neu-
ron 5 demonstrates phasic bursting, and Neuron 6 exhibits mixed mode (initial
burst transitioning to tonic spiking). Each neuron’s voltage trajectory and spike
train precisely match the corresponding pattern characterization from Subsection
4.1.3, confirming that time-multiplexing preserves pattern-specific dynamics with-
out degradation. The input current profiles vary across neurons, demonstrating
independent stimulus control for each virtual instance.
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Figure 4.28: Raster plot of 50 time-multiplexed virtual neurons with heterogeneous
configuration through random pattern assignment from first six validated patterns
(tonic spiking, phasic spiking, tonic bursting, phasic bursting, mixed mode, spike
frequency adaptation).
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Figure 4.29: Detailed examination of first six virtual neurons from heterogeneous
50-neuron population, revealing pattern-specific dynamics. Each row shows input
current (left), membrane voltage trajectory (center), and spike output (right) for
individual neurons.

4.2.4 Large-Scale Population: 1000 Virtual Neurons

Figure 4.30 demonstrates scalability to 1000 virtual neurons with random pattern
assignment across the first six spiking patterns. The raster plot reveals emergent
population-level structure despite individual neuron diversity: tonic neurons (Pat-
terns 1, 3, 5) create dense horizontal bands of sustained activity, phasic neurons
(Patterns 2, 4) contribute sparse vertical event markers, and adaptation neurons
(Pattern 6) produce temporally evolving firing rates. This spatiotemporal organi-
zation emerges naturally from the statistical distribution of pattern assignments
without explicit network connectivity, illustrating how intrinsic neuronal diversity
alone generates complex activity patterns.

The heterogeneous population approach demonstrated here provides a foun-
dation for biologically realistic network modeling where cortical circuits comprise
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~80% excitatory neurons (regular spiking, intrinsically bursting) and ~20% in-
hibitory interneurons (fast spiking, low-threshold spiking), each exhibiting distinct
firing patterns [14]. By statistically assigning validated Izhikevich patterns to match
biological proportions, we can emulate physiologically accurate population dynam-
ics for computational neuroscience investigations on resource-constrained FPGA
platforms.
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Figure 4.30: Large-scale raster plot of 1000 time-multiplexed virtual neurons with

random pattern assignment across first six spiking patterns (tonic spiking, phasic

spiking, tonic bursting, phasic bursting, mixed mode, spike frequency adaptation).

4.3 Mulit-Neuron Implementation for Parallel Op-
eration

While Section 4.2 demonstrated resource-efficient scalability through time-multiplexing,
we now explore the complementary approach of parallel multi-neuron implemen-
tation where multiple independent neuron cores execute simultaneously, trading
hardware resources for computational throughput. This architecture instantiates
the validated single-neuron IP core multiple times within Vivado block design,
creating physically distinct hardware instances that operate concurrently without
sequential scheduling overhead.
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4.3.1 Parallel Architecture and Design Methodology

The parallel implementation methodology instantiates /V independent neuron cores
in FPGA fabric, each comprising dedicated arithmetic units, state registers (v, u),
and control logic. Unlike time-multiplexing, where a single core sequentially pro-
cesses multiple virtual states, parallel cores execute true simultaneous computation.
All N neurons update their states within the same clock cycle, achieving N x com-
putational throughput compared to sequential time-multiplexing.

We leverage Vivado IP Integrator block design to replicate the validated single-
neuron IP core, connecting each instance to independent AXI4-Lite control inter-
faces for parameter configuration via Jupyter notebook. Each core receives individ-
ual input currents, maintains isolated state variables in dedicated registers (avoiding
BRAM contention), and generates independent spike outputs. The Jupyter control
framework addresses each neuron core through unique AXI base addresses, enabling
heterogeneous configuration where different cores implement distinct spiking pat-
terns from the validated repertoire of 20 biological dynamics.

The fundamental trade-off between time-multiplexing and parallel implementa-
tion is resource consumption versus latency: parallel implementation consumes N
times the hardware resources (LUTs, FFs, DSPs, BRAMs) but achieves real-time
biological simulation without accumulating update latency. For Zyng-7020 with
13.95% LUT utilization per neuron (Subsection 4.1.1), the theoretical maximum
parallel capacity is ~7 neurons before exhausting LUT resources (100%/13.95% ~
7.17). However, due to the optimized resource-sharing capability, more than 7
parallel neurons can be implemented, as shown in Section 4.4.

4.3.2 Systematic Scalability Validation: 2-10 Parallel Neu-
rons

We systematically validate the scalability of parallel implementation by incremen-
tally increasing the neuron count from 2 to 10 cores, demonstrating the preservation
of behavioral fidelity and resource scaling characteristics. Each configuration as-
signs heterogeneous spiking patterns to individual cores, creating diverse population
dynamics analogous to biological neural circuits comprising multiple cell types.

2-Neuron Configuration (Fig. 4.31): The minimal parallel network pairs tonic
spiking (N1, ~40 Hz regular firing) with phasic spiking (N2, single spike at ~35ms).
Individual neuron dynamics reveal that N1 exhibits sustained periodic firing with
consistent interspike intervals of ~25ms, while N2 demonstrates edge detection
with a transient response followed by silence. The raster plot confirms temporal
independence: N1 spikes occur at regular intervals regardless of N2 activity, vali-
dating computational isolation between parallel cores. This baseline configuration
establishes that dual-core instantiation preserves single-neuron fidelity, validated in
Subsection 4.1.3.
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Figure 4.31: 2 parallel neuron core implementation demonstrating a minimal het-

erogeneous network. The top panels show individual dynamics, and the bottom
panel shows a raster plot of all neurons.
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Figure 4.32: 4 parallel neuron core implementation in a heterogeneous network.

The top panels show individual dynamics, and the bottom panel shows a raster
plot of all neurons.
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4-Neuron Configuration (Fig. 4.32): Incorporating phasic bursting (N4, single
burst at ~25-50 ms with 5-6 spikes) with tonic spiking (N1), phasic spiking (N2),
and tonic bursting (N3) creates four-pattern diversity. The raster plot spatiotem-
poral structure shows: sustained activity bands from N1, sparse events from N2,
rhythmic clusters from N3, and single burst markers from N4. This configuration
replicates cortical circuit diversity where excitatory neurons exhibit mixed regular
spiking and bursting phenotypes.
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Figure 4.33: 10 parallel neuron core implementation in a heterogeneous network.
The top panels show individual dynamics, and the bottom panel shows a raster
plot of all neurons.

10 Neuron Configurations (Fig. 4.33): Scaling to 10 parallel neurons involves
pattern repetition among N1 to N10 while maintaining heterogeneity. This con-
figuration with raster plots shows 10 independent spike trains exhibiting distinct
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temporal patterns. Individual voltage trajectories preserve pattern-specific dynam-
ics despite high resource utilization, confirming that FPGA routing and timing
closure remain achievable even at near-capacity operation.

Critically, all configurations (2-10 neurons) maintain a 100 MHz system clock
without timing violations, as validated through Vivado timing analysis, which shows
a positive worst-case negative slack (WNS > 0). This confirms that parallel instan-
tiation does not degrade per-neuron computational fidelity. Each core operates at
a full 100 MHz throughput, regardless of population size, contrasting with time-
multiplexing, where the effective per-neuron update rate decreases with the number
of virtual neurons.

4.4 Resource Utilization

FPGA fabric resources impose fundamental constraints on the capacity for multi-
neuron parallel implementation. We systematically characterize resource consump-
tion scaling from a single-neuron baseline through a 10-neuron configuration on the
Zyng-7020 platform (PYNQ-Z2 board), providing quantitative data for architec-
tural design space exploration and capacity planning.

4.4.1 Absolute Resource Consumption Characterization

Table 4.2 presents comprehensive resource utilization metrics across six FPGA re-
source categories for neuron counts N = 1 to N = 10. The Zyng-7020 device
(XCT7Z020-CLG400-1) provides finite resources: 53,200 LUTs (Look-Up Tables for
combinatorial logic), 17,400 LUTRAM (distributed RAM), 106,400 flip-flops (FFs
for sequential logic), 140 block RAM tiles (BRAM, 36 Kb each), 220 DSP48E1 slices
(dedicated multiply-accumulate units), and 32 BUFG global clock buffers.

Single-Neuron Baseline (N = 1): The minimal configuration consumes 7,425
LUTs (13.95%), 761 LUTRAM (4.37%), 8,185 FFs (7.69%), 8 BRAM tiles (5.7%),
16 DSP slices (7.27%), and 2 BUFG (6.25%). This establishes the per-neuron
resource footprint serving as the baseline for scalability analysis. The relatively
balanced utilization across resource types (7-14%) indicates efficient hardware map-
ping without severe bottlenecks in any single resource category.

Linear Scaling Regime (N =2 to N =5): Neurons 2-5 exhibit approximately
linear resource growth with near-constant incremental consumption per added neu-
ron:

o« LUT increment: ~4,850 LUTs/neuron (AN, = 4,852, AN; = 4,977,
ANy = 4,400, AN5 = 4,655)

100



4.4 — Resource Utilization

Table 4.2: FPGA resource utilization (absolute values) for parallel neuron imple-
mentations N =1 to N = 10 on Zyng-7020 (PYNQ-Z2).

Neuron LUT  LUTRAM FF BRAM DSP BUFG
(53,200) (17,400) (106,400) (140)  (220) (32
1 7425 761 8185 8 16 2
2 12277 1112 13589 16 32 3
3 17254 1594 19201 24 48 4
4 21654 1797 24323 32 64 5
5 26309 2116 29654 40 80 6
6 18417 26 21813 48 96 7
7 21344 30 25144 56 112 8
8 24287 35 28544 64 128 9
9 27290 38 31837 72 144 10
10 30098 42 35219 80 160 11

o FF increment: ~5400 FFs/neuron (AN, = 5,404, AN3 = 5,612, ANy =
5,122, AN; = 5,331)

o DSP increment: 16 DSPs/neuron (perfectly linear, matching single-neuron
baseline)

« BRAM increment: 8 tiles/neuron (perfectly linear)

At N = b5, utilization reaches 26,309 LUTs (49.46%), 29,654 FFs (27.87%), 40
BRAM (28.57%), 80 DSPs (36.36%), demonstrating that DSP and BRAM resources
scale predictably while LUTs approach 50% capacity.

Optimization Discontinuity (N =5 to N =6): A significant departure from
linearity occurs between neurons 5 and 6, where LUT consumption decreases from
26,309 to 18,417 (—30.0% reduction) and FF consumption decreases from 29,654
to 21,813 (—26.4% reduction). Simultaneously, LUTRAM drops dramatically from
2,116 to 26 (—98.8% reduction). This discontinuity reflects Vivado synthesis opti-
mization thresholds: at N = 6, the tool triggers aggressive resource sharing, logic
restructuring, and BRAM-to-LUTRAM migration strategies that were sub-optimal
for smaller configurations but become beneficial at higher neuron counts. The LU-
TRAM collapse suggests a shift from distributed RAM to block RAM for state
storage, trading abundant BRAM capacity for scarce LUT resources [74].

Post-Optimization Linear Regime (N = 6 to N = 10): Following the op-
timization discontinuity, neurons 6-10 resume linear scaling with new per-neuron
increments:
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o« LUT increment: ~ 2930 LUTs/neuron (AN; = 2,927, ANy = 2,943,
ANy = 3,003, AN;g = 2,808)

o FF increment: ~ 3,330 FFs/neuron (AN; = 3,331, ANg = 3,400, ANy =
3,203, ANy = 3,382)

The reduced per-neuron footprint (2,930 vs. 4,850 LUTs) after optimization indi-
cates a 40% improvement in resource efficiency through synthesis-driven architec-
tural transformations. At N = 10, final utilization reaches 30,098 LUTs (56.57%),
35,219 FFs (33.10%), 80 BRAM (57.14%), 160 DSPs (72.73%), with LUTs and
DSPs emerging as the primary limiting resources approaching capacity constraints.

4.4.2 Percentage Utilization Scaling Analysis

Figure 4.34 visualizes percentage utilization versus neuron count, revealing resource
consumption patterns and bottleneck identification:

100 FPGA Resource Utilization vs Neuron Count

. LT
= LUTRAM
= FF

mm BRAM
801 mmm DsSP
mm BUFG

Utilization (%)

20

1 2 3 4 5 6 7 8 9 10
Neuron Core

Figure 4.34: Percentage resource utilization versus neuron count for six FPGA
resource categories on Zyng-7020.

DSP Dominance at High Neuron Counts: DSP utilization (purple bars)
exhibits the steepest growth trajectory, reaching 72.73% at N = 10, compared to
LUT (56.57%), BRAM (57.14%), FF (33.10%), LUTRAM (0.24%), and BUFG
(34.38%). The linear DSP scaling (16 slices/neuron without optimization) suggests
that DSP48E1 units will become the first resource bottleneck at approximately
N = 14 neurons (220/16 ~ 13.75), limiting the maximum parallel capacity before
LUT exhaustion (53,200/4,000 ~ 13.3 neurons, extrapolating the pre-optimization
slope).
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Optimization Impact Visualization: The discontinuity at N = 5 — 6 ap-
pears as a sharp downward deflection in LUT (blue), FF (red), and LUTRAM (or-
ange) traces, confirming synthesis-driven architectural transformation. Following
optimization, LUT and FF growth rates decrease noticeably, providing extended
scalability headroom. The LUTRAM trace collapses to near-zero after N = 6,
validating complete migration to block RAM for state storage.

BRAM and FF Headroom: BRAM (red) and FF (green) exhibit the lowest uti-
lization percentages at N = 10 (57.14% and 33.10% respectively), indicating these
resources remain abundant. BRAM’s linear 8-tile/neuron consumption suggests ca-
pacity for ~17 neurons (140/8 = 17.5) before exhaustion, while FF’s 3,330 /neuron
rate permits ~32 neurons (106,400/3,330 ~ 31.9). These resources do not constrain
scalability within practical operating ranges.

BUFG Stable Consumption: Global clock buffers (brown) show modest growth
from 6.25% (N = 1) to 34.38% (N = 10), with irregular increments (not strictly
linear). The non-critical utilization (<35%) indicates clock distribution resources
remain non-limiting for demonstrated neuron counts.

4.4.3 Capacity Projections and Design Implications

The quantitative analysis enables evidence-based capacity projections:

Maximum Parallel Capacity: DSP resources constrain theoretical maximum
to ~13-14 neurons (220 DSPs / 16 per neuron). However, at N = 10 achieving
56.57% LUT and 72.73% DSP utilization, practical capacity likely saturates at 11—
12 neurons to maintain routing feasibility and timing closure margins (WNS > 0
safety margin).

Resource Efficiency Post-Optimization: The N = 6 optimization break-
through reduces per-neuron LUT footprint by 40% (4,850 — 2,930), extending the-
oretical capacity from ~11 neurons (53,200/4,850) to ~18 neurons (53,200/2,930)
based on LUT constraints alone. However, DSP limitations supersede this, capping
realistic capacity at 13-14 neurons.

Architectural Trade-off Quantification:
o Parallel 10-neuron: 56.57% LUT, 72.73% DSP — 10 real-time neurons

o Time-multiplexed 1000-neuron: 13.95% LUT, 7.27% DSP — 1000 vir-
tual neurons
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o Resource efficiency ratio: 100x more virtual neurons per unit resource
with time-multiplexing

Design Decision Framework: For target applications requiring:

e« N < 10 neurons + real-time operation:Use parallel implementation
(proven capacity, <60% resource utilization)

e N > 50 neurons: Use time-multiplexing (demonstrated 1000-neuron capac-
ity)

o Hybrid architectures: Allocate 10 parallel neurons for latency-critical com-
putations, time-multiplex remaining population for background processing

The optimization discontinuity at N = 6 underscores the importance of synthesis-
aware design: Vivado’s optimization heuristics activate only beyond specific com-
plexity thresholds, suggesting that incremental neuron addition may trigger non-
intuitive resource transformations. Designers should validate resource consumption
empirically rather than relying solely on linear extrapolation from small-scale pro-
totypes.

4.5 Frequency Analysis and Timing Characteri-
zation

While our neuromorphic system operates at 100 MHz processing system (PS) fre-
quency with 4 kHz effective neuron update rate (selected to match biological timescales:
0.25 ms timestep for sub-millisecond neural dynamics resolution), we systematically
characterize design behavior across a wide frequency spectrum to determine maxi-
mum operating frequency (f mazx), quantify power-frequency scaling, and identify
timing closure boundaries constraining system performance. This analysis employs
Vivado Clock Wizard IP to generate synthesizable clock sources spanning 5 MHz
to 60 MHz, enabling empirical validation of timing slack margins and power con-
sumption trends.

4.5.1 Single-Neuron Frequency Characterization

Table 4.3 presents comprehensive frequency sweep results for the validated single-
neuron baseline configuration across nine clock frequencies (5-60 MHz), measuring
resource utilization, on-chip power, and timing metrics.
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Table 4.3: Single-neuron frequency sweep analysis across 5-60 MHz clock frequen-
cies.

Clock Resource On-Chip Timing
frequency utilization (%) Power (W) (ns)
LUT FF WNS TNS

5 MHz 14.07 7.95 1.553 3.010 0
10 MHz 14.07 7.95 1.578 2.941 0
20 MHz 14.07 7.95 1.591 3.319 0
30 MHz 14.08 7.95 1.608 2.681 0
35 MHz 14.08 7.95 1.612 0.762 0
38 MHz 14.14 7.95 1.614 0.278 0
39 MHz 14.14 7.95 1.615 0.108 0
40 MHz 14.14 7.95 1.601 -0.113 -0.390
60 MHz 14.20 7.95 1.637 -8.962 -1253.869

Resource Utilization Invariance: LUT and FF utilization remain essentially
constant across the frequency range: LUT varies minimally from 14.07% (5-39 MHz)
to 14.20% (60 MHz), a negligible 0.13 percentage point drift. FF utilization holds
perfectly stable at 7.95% across all frequencies. This invariance confirms that clock
frequency does not alter synthesized logic structure—Vivado maps identical combi-
national and sequential circuits regardless of target frequency, with utilization de-
termined solely by algorithmic complexity (Izhikevich model computation) rather
than timing constraints. Minor LUT variations (£0.07%) likely reflect routing op-
timization adjustments to meet different timing targets rather than fundamental
architectural changes.

Power-Frequency Linear Scaling: On-chip power consumption shows a linear
relationship with clock frequency, following the standard CMOS power model:

Pchip(f) ~ Pstatic +a- f

where Pj.iic represents leakage and frequency-independent sources, and « is the
dynamic power coefficient. Power increases from 1.5563W at 5MHz to 1.637 W
at 60 MHz. The small 5.4% power increase over a 12x frequency range indicates
that static and frequency-independent power sources dominate. This is consistent
with Subsection 4.1.1 findings, where the PS7 processing system and device leakage
consume 89% of total power, while the neuron core contributes only 9%.
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Timing Closure Analysis — Critical Path Degradation: Worst Negative
Slack (WNS) decreases monotonically with increasing frequency, transitioning from
positive (timing met) to negative (timing violation):

e 5-35 MHz: WNS remains strongly positive (3.01 ns at 5 MHz, degrading to
0.762ns at 35 MHz), indicating ample timing margin. TNS = 0 confirms that
zero paths failed.

o 38-39 MHz: WNS approaches zero (0.278 ns at 38 MHz, 0.108 ns at 39 MHz),

entering marginal timing region with <1 ns slack.

« 40 MHz (timing failure threshold): WNS = —0.113 ns, TNS = —0.39 ns.
Negative slack indicates critical path violation — the longest combinational
path exceeds the clock period (25ns at 40 MHz). This establishes fuax =
39 MHz for single-neuron configuration.

« 60 MHz (severe violation): WNS = —8.962 ns, TNS = —1253.869 ns. Mas-
sive negative slack (8.962ns exceeds 16.67 ns clock period by 54%) and large
total negative slack indicate multiple failing paths across the design.

The critical path limiting f.. likely resides in the multiply-accumulate datapath
for quadratic voltage update at our stage 2 in the pipeline design, where 16-bit
Q5.11 fixed-point multiplications followed by multi-operand additions create long
combinational delay chains. The 39 MHz limit (25.64 ns period) suggests a critical
path delay of ~25ns, aligning with typical DSP48E1 + fabric adder cascades.

4.5.2 Multi-Neuron (4-Core) Frequency Characterization

Table 4.4 replicates the frequency sweep for 4-neuron parallel configuration, reveal-
ing how multi-core instantiation affects timing closure boundaries.

Resource Utilization Stability: Similar to single-neuron, LUT (41.11-41.58%)
and FF (23.82% perfectly constant) utilization remain frequency-independent. The
~ 3x resource increase compared to a single neuron (41.23% vs. 14.14% LUT at
comparable frequencies) confirms a linear scaling, consistent with the analysis in
Section 4.4.

Enhanced Power Consumption: On-chip power ranges 1.681-1.897 W (5-
60 MHz), representing an 8.3-15.9% increase over single-neuron (1.553-1.637 W)
at corresponding frequencies. The elevated baseline (1.681 W vs. 1.5563 W at 5 MHz)
reflects increased static power due to additional instantiated logic, while the steeper
slope suggests a higher dynamic power contribution from 4x switching activity.
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Table 4.4: 4-neuron parallel configuration frequency sweep demonstrating multi-
core timing degradation.

Clock Resource On-Chip Timing
frequency utilization (%) Power (W) (ns)
LUT FF WNS TNS

5 MHz 41.11 23.82 1.681 1.738 0
10 MHz 41.11 23.82 1.718 1.807 0
20 MHz 41.12 23.82 1.754 1.761 0
30 MHz 41.13 23.82 1.797 0.920 0
35 MHz 41.13 23.82 1.812 0.785 0
38 MHz 41.16 23.82 1.823 0.253 0
39 MHz 41.23 23.82 1.824 -0.124 -0.147
40 MHz 41.29 23.82 1.812 -0.820 -40.861
60 MHz 41.58 23.82 1.897 -9.153 -6723.73

Reduced Timing Margins—Earlier Failure: The 4-neuron configuration ex-
hibits:

e 5-35 MHz: Positive WNS (1.738ns at 5MHz degrading to 0.785ns at
35MHz), but systematically lower than single-neuron at matching frequencies
(e.g., 1.738ns vs. 3.01ns at 5 MHz, 0.785ns vs. 0.762ns at 35 MHz).

o 38 MHz:WNS = 0.253 ns (marginal timing, last passing frequency).

« 39MHz (timing failure): WNS = —0.124ns, TNS = —0.147ns. Negative
slack appears 1 MHz earlier than single-neuron (40 MHz). This establishes
f_max = 38 MHz for 4-neuron configuration.

e 60 MHz: WNS = —9.153ns, TNS = —6723.73ns. More severe violations
than single-neuron (TNS: —6723.73 ns vs. —1253.869 ns), indicating multiple
parallel datapaths failing timing simultaneously.

The 1MHz reduction in f_maz (39 MHz — 38 MHz) despite only 3x re-
source increase reveals that routing congestion and clock distribution delays degrade
timing margins in multi-core configurations. FPGA routing delays increase non-
linearly with utilization as available routing tracks saturate, lengthening critical
paths even when logic depth remains constant. Additionally, clock skew accumu-
lates across multiple parallel cores, consuming timing margin and reducing effective
slack.
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The frequency analysis confirms that our 100 MHz system clock with 4 kHz neu-
ron update rate operates well within timing margins (WNS = 1.361 ns at 100 MHz,
Subsection 4.1.1), providing robust timing closure with 35-65% slack headroom
(depending on configuration). The characterized f maz boundaries (38-39 MHz)
establish upper performance limits for accelerated simulation scenarios while con-
firming that biological real-time operation faces no timing constraints.

4.6 Real-World IMU Signal Encoding

Beyond synthetic current stimuli employed in validation (Sections 4.1-4.5), we
demonstrate the practical applicability of our approach by encoding real-world
inertial measurement unit (IMU) sensor data from human activity recognition
datasets. This investigation validates the feasibility of neuromorphic encoding for
edge computing applications, where wearable sensors generate continuous multi-
modal streams that require energy-efficient temporal pattern extraction. We em-
ploy the WISDM (Wireless Sensor Data Mining) smartphone and smartwatch ac-
tivity dataset [38], [39] as a representative real-world signal source.

4.6.1 WISDM Dataset and Signal Preprocessing

The WISDM dataset (2019) comprises synchronized accelerometer and gyroscope
recordings from 51 subjects performing 18 activities (walking, jogging, stairs, sit-
ting, standing, etc.) captured at 20 Hz sampling rate over 3-minute sessions [38],
[39]. We utilize the smartwatch subset, which provides six sensor channels: a 3-axis
gyroscope (x__gyro,y_gyro,z_gyro) measuring angular velocity in rad/s, and a
3-axis accelerometer (z_acc,y_acc, z__acc) measuring linear acceleration in m/ s2.

The native 20 Hz acquisition rate (50 ms sample period) creates step-like, piecewise-
constant signals that are incompatible with our 0.25ms neuron timestep (4 kHz
effective rate, Section 4.1). Figure 4.35 compares raw 20 Hz sensor traces (red step
functions) against smooth 4 kHz interpolated signals (blue curves) over a 4-second
representative window. The interpolation employs cubic spline reconstruction to
generate continuous trajectories matching biological neuron input timescales while
preserving signal morphology (peaks, transitions, trends).

The six channels exhibit distinct amplitude ranges and temporal dynamics. The
gyroscope axes (x,y, z) range from +20 rad/s peak angular velocities, with sharp
transients during rapid rotations, where the accelerometer axes (z,y, z) range from
+7 m/s? linear accelerations. The x-axis gyroscope exhibits maximum amplitude
variability (5 — 20 rad/s range), while the x-axis accelerometer displays minimal
fluctuations (&1 m/s?, near-constant gravitational alignment), establishing differ-
ential encoding difficulty across channels.
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Figure 4.35: Comparative visualization of six-channel IMU sensor data from
WISDM smartwatch dataset over 4-second representative window. Left column:
Gyroscope axes (x,y, z) measuring angular velocity (rad/s). Right column: Ac-
celerometer axes (z,y, z) measuring linear acceleration (m/s?). Red traces show
raw 20 Hz step-like acquisition (50 ms sample period), blue traces show smooth
4kHz interpolated signals (0.25 ms resolution matching neuron timestep).

4.6.2 Time-Multiplexed Single-Neuron Encoding (6 Virtual
Channels)

We first demonstrate resource-efficient encoding using a single physical neuron core
processing all six IMU channels via time-multiplexing (Section 4.2 architecture).
Each channel receives an independent tonic spiking configuration with the sensor
signal amplitude directly driving the input current I in(t).

Raw Step-Like Input (20 Hz, Fig. 4.36): Over the 4000 ms simulation, the
six virtual neurons show spike outputs that match their input signal strengths.
The z__gyro channel (VN1) produces the most spikes (~30-50) due to large angu-
lar velocity changes (10 — 20 rad/s peaks). The z_gyro channel (VN3) generates
moderate spiking (~6-15 spikes) from intermediate rotational activity. The y gyro
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(VN2) and z_acc (VN6) channels show sparse spiking (3-10 spikes) with only oc-
casional threshold crossings. The z_acc (VN4) and y__acc (VN5) channels remain
mostly silent because their signals stay near the resting potential with low ampli-
tudes. The raster plot shows that spikes cluster during high-activity periods (e.g.,
x__gyro bursts at 800-1000 ms, 1250-1550 ms, 1800-2600 ms and 2800-3600 ms)
while quiet periods have no spikes. The membrane potential traces (v_out, orange)
follow the input strength: x gyro frequently crosses the threshold and reaches
+30 mV spike peaks, while x_acc stays below threshold at ~—65mV baseline.
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Figure 4.36: Time-multiplexed single-neuron encoding results for raw step-like
20 Hz IMU sensor inputs over 4000 ms.

Smooth Interpolated Input (4 kHz, Fig. 4.37): The interpolated signals
produce similar encoding patterns but with some quantitative differences that re-
veal signal processing trade-offs. High-activity channels (z_ gyro,z_gyro) main-
tain comparable spike counts, showing spike count preservation. However, smooth
interpolation introduces temporal jitter with spike timing shifts of 5 — 10 ms be-
cause gradual depolarization slopes replace the sharp step transitions. The y_acc
channel (VN5) shows one fewer spike (2 vs. 1 for raw input) at ~2800ms where
the smoothed signal fails to reach the spiking threshold, demonstrating information
loss from the low-pass filtering inherent to interpolation.
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Time-Multiplexed Raster Plot: 6 Virtual Neurons with SMOOTH Interpolated Signals (4000ms)
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Figure 4.37: Time-multiplexed single-neuron encoding results for smooth interpo-
lated 4 kHz IMU sensor inputs over 4000 ms.

The comparison reveals an encoding fidelity trade-off: raw step-like inputs
preserve temporal precision (sharp threshold crossings generate deterministic spike
timing) but create artificial discontinuities; smooth interpolated inputs provide
biologically realistic continuous trajectories but sacrifice edge sharpness, potentially
missing rapid transients in low-amplitude signals.

4.6.3 Parallel Multi-Neuron Encoding (6 Independent Chan-
nels)

To eliminate time-multiplexing latency and enable true simultaneous multi-channel
processing, we deploy a 6-neuron parallel configuration (Section 4.3) where each
physical core receives one IMU channel continuously. However, unlike the time-
multiplexed implementation — where a single neuron core requires only two BRAMSs
and allows the use of larger address ranges (e.g., 256 K) to store v out and spike_out
over a 4000 ms window, the parallel architecture necessitates twelve BRAMs for six
cores. This increase in memory utilization forces a reduction in the addressable
range per BRAM, thereby limiting the storage capacity and consequently restrict-
ing the demonstration to a 500 ms simulation window. Despite this constraint, the
setup reveals duration-dependent encoding characteristics.
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Raw Step-Like Input (20 Hz, Fig. 4.38): The 500ms segment captures
limited temporal dynamics. The z_ gyro channel (N1) produces ~ 8 — 20 spikes
from sustained rotational activity (amplitude 5 — 7.5 rad/s). The z__gyro channel
(N3) generates ~11-30 spikes from elevated angular velocity (7 — 10 rad/s peaks).
The remaining four channels (y_gyro,x_acc,y_acc,z_acc: N2, N4-N6) produce
zero spikes. Within the 500 ms window, these channels have insufficient amplitude
to reach the spiking threshold. Subthreshold fluctuations of 2 — 3 mV are visible
in the membrane potential but no threshold crossings occur. The absence of spikes
in four channels highlights the sensitivity of temporal windowing. The 500 ms
segment captures a quiescent activity phase for low-amplitude sensors, contrasting
with the 4000 ms coverage that encompasses high-activity epochs. This underscores
the importance of sufficient observation duration for reliable activity recognition.
Short windows may miss sparse spiking events that are critical for classification.
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Figure 4.38: 6-core parallel multi-neuron encoding results for raw step-like 20 Hz
IMU sensor inputs over 500 ms.

Smooth Interpolated Input (4 kHz, Fig. 4.39): The interpolated signals
show nearly identical results. The x_gyro (N1) and z__gyro (N3) channels produce
comparable spike counts with slight timing shifts of £3 — 5 ms due to smoothing.
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The remaining channels (N2, N4-N6) maintain zero spikes, confirming amplitude-
limited encoding independent of temporal resolution. The raster plots reveal a par-
allel execution advantage: all six neurons update simultaneously without sequential
latency (versus 6x time-multiplexing delay), enabling real-time multi-sensor fusion
applications. However, the resource cost (6x hardware versus single core) con-
strains scalability, validating the architectural trade-offs quantified in Section 4.4.

v_out (mW)
sike_out |
- 2 &

EY

| Lin
L4
3 2 L e

v_out (mVv)

spike_out
-

)

NG (z_ace Smeoth)
N5 (y_acc Smooth)
N4 (x_acc Smooth)

N3 (z_gyro Smooth)

N2 (y_gyro Smesth)

N1 (x_gyro Smeoth)

Neuron 1 (x_gyro Smooth) Neuron 2 (y_gyro Smooth) Neuron 3 (z_gyro Smooth)

o
=
in
s
B

in

T s

v_out (mV)

&

&

=

v_out (mV)
°

!
4
=

n

=

11

-1
-
=3

spike_out

0

100 200 30
Time (ms}

Neuron 4 (x_acc

L)

[[]

Smooth) Neuron 5 (y_acc Smooth) Neuron 6 (z_acc Smooth}

[ILLCTITCIT

s00 500

o

100 200 300 400 500 0 0 200 300
Time (ms) Time {ms)

-

=

Lin

1
<
o

!

&

@
=]

v_out {mV)
4
=]

v_out (mv)

=1

-
=]
t
=1

spike_out

o

o

100 200 300 400 500
Time (ms)

o

100 200 300 400 500 0 100 200 300 400 500
Time {ms) Time {ms)

Raster Plot: 6 Tonic Neurons with SMOOTH INTERPOLATED IMU Sensor Inputs

o

100 200 300 400 00
Time {ms)

Figure 4.39: 6-core parallel multi-neuron encoding results for smooth interpolated
4kHz IMU sensor inputs over 500 ms.

4.6.4 Neuromorphic IMU Encoding Implications

The WISDM experiments establish several key findings for neuromorphic sensor

processing:

« Amplitude-Based Rate Coding: Spike frequency correlates strongly with
input signal magnitude (z__gyro: 30-50 spikes vs. z_acc: 0-3 spikes over
4000 ms), implementing natural rate coding for sensor intensity without ex-
plicit algorithmic encoding.

o Temporal Precision-Smoothness Trade-off: Raw 20 Hz signals preserve
sharp transitions (deterministic spike timing) but create artificial steps; 4 kHz
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interpolation provides biological realism but induces timing jitter and thresh-
old miss events (y_acc: 1 spike loss), requiring application-specific optimiza-
tion.

Multi-Channel Integration: Time-multiplexed architecture (1 core, 6 vir-
tual neurons) achieves resource efficiency for long-duration encoding (4000 ms
demonstrated) but introduces sequential latency; parallel architecture (6 cores)
enables simultaneous processing for real-time applications but faces resource/-
duration constraints (500 ms at 6-neuron).

Activity Recognition Feasibility: The differentiated spike patterns across
sensors (z__gyro high-rate, _acc silent) provide discriminative features for
activity classification — machine learning models could exploit spike count
histograms, interspike interval distributions, and cross-channel correlations
to distinguish walking/jogging /stairs activities, demonstrating neuromorphic
edge computing potential for wearable applications.

Duration-Dependent Encoding: The 500 ms parallel encoding reveals
temporal windowing effects — short segments may miss sparse events, requir-
ing careful window size selection (trade-off: longer windows improve event
capture but increase latency for real-time classification).

This real-world validation confirms that our FPGA Izhikevich implementation suc-
cessfully encodes complex multi-modal sensor streams, bridging the gap between
synthetic neuromorphic benchmarks and practical edge computing deployments for
human activity recognition, gesture detection, and wearable health monitoring ap-
plications.
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Chapter 5

Conclusion

This thesis successfully designs and implements the original Izhikevich neuron
model on the PYNQ Z2 development board for signal-to-spike encoding applica-
tions. No mathematical simplifications or modifications are used to preserve com-
plete biological fidelity. The primary focus is on maintaining biological accuracy
and practical applicability rather than hardware optimization.

A complete FPGA implementation is developed using the discretized Euler
method with Q5.11 fixed-point arithmetic and a 0.25ms timestep. This main-
tains sub-millivolt precision. The four-stage pipeline architecture with circular
buffer memory management ensures continuous operation without pipeline stalls.
A hardware clock division scheme bridges the 100 MHz system clock and 4 kHz
neural simulation frequency. The formula: f neural = f system/(2 x (12499 + 1))
provides stable timing with low jitter. Rigorous three-tier validation methodol-
ogy compares Python floating-point simulation, Vivado behavioral simulation, and
physical FPGA deployment. All 20 characteristic Izhikevich spiking patterns are
successfully reproduced with high precision, with slight temporal drift in some cases.
Only six patterns need platform-specific parameter adjustments to compensate for
quantization effects.

Scalability is demonstrated through two multi-neuron architectures address-
ing different requirements. Time-multiplexed implementation supports up to 1000
virtual neurons using a single physical core (13.95% LUT, 7.27% DSP), provid-
ing 100X more neurons per unit resource than parallel implementation. Parallel
implementation scales up to 10 independent cores, achieving real-time processing
without timing violations while maintaining 100 MHz throughput, though requir-
ing 56.57% LUT and 72.73% DSP resources. Analysis of performance over a 5-
60 MHz frequency range determines the highest operating frequencies of 39 MHz
(single neuron) and 38 MHz (multi-neuron). On-chip power analysis of a single neu-
ron shows that there is a total consumption of 1.53 W, with the Zynq Processing

System consuming 89% (1.256 W). Simultaneously, the neural computation fabric
itself consumes very little power: DSP blocks (0.012W), BRAM (0.013 W), logic
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(0.037 W), signals (0.051 W), and clocks (0.023 W), which proves the existence of
highly power-efficient neural computation.

The practical applicability is justified by encoding 6-axis IMU sensor data from
the WISDM dataset into real-world applications. The lack of temporal resolu-
tion between 20 Hz acquisition and 4 kHz neural timestep is resolved with cubic
spline interpolation. The time-multiplexed encoding on 4000 ms is a clear exam-
ple of amplitude-based rate coding, whereby x_ gyro generates 30-50 spikes, with
x__acc channels spike out only once. Parallel encoding using 6 independent chan-
nels removes the latency of multiplexing in real-time processing, but the resource
requirements restrict demonstration to 500 ms windows. The main trade-offs of the
experiments include: raw inputs maintain time accuracy at the expense of intro-
ducing discontinuities, and interpolated inputs are more biologically realistic but
have timing jitter and sometimes information loss.

The entire hardware-software co-design architecture is implemented, combining
FPGA acceleration with user-friendly Python-based PYNQ interfaces using AXI4-
Lite communication protocols. The framework facilitates neuromorphic compu-
tation with ease, requiring little expertise in hardware, and allows for complete
characterization of the experiment and real-time visualization.

Several platform limitations are addressed during this research. DSP resource
constraints limit parallel implementations to 10-13 cores, depending on Vivado syn-
thesis optimization. Quantization error accumulation affects long-term precision.
Duration-dependent encoding effects require careful window selection. Future work
includes scaling to higher-capacity platforms that support more parallel neurons,
implementing network-level synaptic connectivity, and developing complete real-
time sensor-to-inference pipelines in hardware.

This research makes an important contribution to neuromorphic computing. It
shows that hardware can maintain complete biological accuracy without changing
the original neuron model. The main achievement is reproducing all 20 Izhikevich
spiking patterns and proving the system works with real sensor data. The designed
modular framework from this work can enable further research and development
in neuromorphic computing, particularly for applications where biological fidelity
is essential.
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