
POLITECNICO DI TORINO
MASTER’s Degree in AEROSPACE ENGINEERING

MASTER’s Degree Thesis

SOFTWARE TOOL DEVELOPMENT
FOR TRAJECTORY OPTIMIZATION

OF VERTICAL LANDING SPACE
VEHICLES

Supervisors

Prof. LORENZO CASALINO

Ing. MARTINS SUDARS

Ing. ANDREA MUSACCHIO

Candidate

VALERIO MARTONI

OCTOBER 2025

A Mamma e Papà.
A Francesco.

Acknowledgements

This thesis is the result of work carried out during my internship at Thales Alenia
Space Italia in Turin. I would like to thank those who gave me this opportunity,
allowing me to enjoy an educational experience enriched by the people with whom

I shared it.

Abstract

Since the birth of the space industry, the topic of re-usability has been taken into
consideration without ever being able to be truly systematically applied to the
development of fully reusable spacecrafts. Maintaining an efficient mass ratio for
reusable vehicles is a very hard engineering challenge. In fact, launching relative
small payload into orbit requires a big quantity of mass propellant, making it
inefficient and expensive: re-usability requirements worsen it by adding further
subsystems inert mass. However, today, the space industry is witnessing a renewed
interest in the development of fully reusable space systems thanks to the economic
advantages and the increase in safety and environmental sustainability. In this
context, this thesis aims to contribute to the technological research in this field,
investigating the current state of the art of reusable spacecrafts. The subject
matter covering reusable vehicles, from their design to their use, is quite broad:
this thesis focuses on vertical landing first stage launchers, that fall into the
category of low mechanical energy re-entry spacecrafts. The re-entry problem
into the atmosphere of a non-reusable spacecraft is already well known and has
been widely addressed over the decades and this knowledge can also be applied
to the re-entry of reusable spacecraft. On the contrary, the final descent into the
lower atmosphere and the vertical landing differ from typical recovery strategies
adopted for non-reusable vehicles. In fact, this phase is critical because it requires
active, continuous and precise control of the vehicle to achieve specific position
and velocity conditions to complete the landing. These trajectory requirements
translate directly into performance requirements for the vehicle, which must be
equipped with appropriate control systems such as fins, thrust throttling and thrust
vector control. For this reasons this thesis work developed a MATLAB software
tool able to compute offline trajectory optimization for final descent and vertical
landing. This tool, given specific set of input design parameters of the vehicle, can
optimize trajectories respecting the bounds and the constraints imposed by the
mission scenario. The software tool is conceived for preliminary mission analysis
applications. By studying the trajectory optimization results, vehicle performance
requirements can be analyzed to validate the set of input design parameters allowing
to preliminary size a reusable first stage launcher and reach the main objective of
this thesis work.

Table of Contents

List of Tables iii

List of Figures iv

Acronyms vii

1 The Research Problem 1
1.1 Introduction: The New Space Industry of Reusable Spacecrafts . . . 1
1.2 Mission Context: Recovery and Landing

Strategy for a First Stage Vehicle 3
1.3 Objective: Vertical Landing Trajectory

Optimization . 6

2 Engineering Modeling for Vertical Landing Vehicle 7
2.1 Vehicle Geometry Model . 9

2.1.1 Aerodynamics control surfaces: the planar fins 11
2.1.2 Thrust Vector Control system 12

2.2 Vehicle Aerodynamics Model . 12
2.3 Equations of Motion . 18

3 Trajectory Optimization 24
3.1 The Optimal Control Problem . 24
3.2 The Direct Collocation Method . 27
3.3 Trajectory Optimization for Vertical Landing First Stage Vehicle . . 33

4 Software Tool Development 39
4.1 Aerodynamics Submodule . 40
4.2 Dynamics Submodule . 41
4.3 Optimization Submodule . 42

i

5 Software Tool Testing 52
5.1 Case study . 52
5.2 Results . 57

5.2.1 Solution A . 60
5.2.2 Solution B . 68
5.2.3 Error analysis . 76

6 Conclusion 78

Bibliography 79

List of Tables

2.1 High-level design variables . 9

3.1 Setup for aerodynamic descent trajectory optimization. 36
3.2 Setup for powered landing trajectory optimization. 38

5.1 Design parameters input set for software tool testing 54
5.2 Landing target coordinates in ECEF 54
5.3 Path constraints and constant bounds definition for control systems 57
5.4 System states constant bounds . 58
5.5 Solution A . 58
5.6 Solution B . 59

iii

List of Figures

1.1 Falcon 9 and Starship by Space X, New Shepard by Blue Origin . . 1
1.2 Forecast of Launch Costs by 2040 ($ per kg). See [1] 2
1.3 Reentry corridor profile examples for high and low energy vehicles.

See [2] . 3
1.4 Recovery concepts. See [2] . 5

2.1 Disciplines correlations in launch vehicle design. See [4] 8
2.2 Design process logic for vertical landing vehicle. See [5] 8
2.3 Geometry model (non-propotional) for the vehicle first stage. 10
2.4 3D model of Falcon 9-class vehicle. See [6] 10
2.5 Elements of Falcon 9-class vehicles. See [6] 11
2.6 Planar fin model. See [9] . 12
2.7 Different TVCs strategies. See [10] 13
2.8 Static stability of a descending VLV. 14
2.9 System representation for aerodynamics analysis. 16
2.10 System representation for translational equations of motion. 20
2.11 System representation for rotational equations of motion. 20

3.1 Example of local and global optima of a non-linear function. See [17] 26
3.2 OCPs resolution strategies. See [18] 27
3.3 Example of function approximation using linear spline. See [21] . . 29
3.4 Collocation nodes evaluation process. See [22] 30
3.5 Quadratic spline interpolation for system control and dynamics when

using Hermite-Simpson DCM. See [23] 31
3.6 Example of error for system dynamics 33
3.7 Flight phases of VLV. See [25] . 34

4.1 SNOPT Call Interface. 43

5.1 Sketches of investigated reusable first stages. See [30] 53
5.2 Cross-range in AD phase . 60
5.3 Altitude in AD phase . 60

iv

5.4 Horizontal velocity in AD phase . 60
5.5 Vertical velocity in AD phase . 60
5.6 Pitch angle in AD phase . 61
5.7 Pitch rate in AD phase . 61
5.8 Angle of attack in AD phase . 61
5.9 Flight path angle in AD phase . 61
5.10 Single fin deflection for aerodynamic control 62
5.11 Cross-range in PL phase . 62
5.12 Altitude in PL phase . 62
5.13 Horizontal velocity in PL phase . 63
5.14 Vertical velocity in PL phase . 63
5.15 Pitch angle in PL phase . 63
5.16 Pitch rate in PL phase . 63
5.17 Angle of attack in PL phase . 63
5.18 Flight path angle in PL phase . 63
5.19 Thrust magnitude as % of total thrust 64
5.20 Thrust deflection angle by TVC . 64
5.21 Velocity time profile for solution A 64
5.22 Pitch angle and pitch rate time profile for solution A 65
5.23 AoA and FPA time profile for solution A 66
5.24 Total vehicle mass profile for solution A 67
5.25 Trajectory position visualization for solution A 67
5.26 Cross-range in AD phase . 68
5.27 Altitude in AD phase . 68
5.28 Horizontal velocity in AD phase . 68
5.29 Vertical velocity in AD phase . 68
5.30 Pitch angle in AD phase . 69
5.31 Pitch rate in AD phase . 69
5.32 Angle of attack in AD phase . 69
5.33 Flight path angle in AD phase . 69
5.34 Single fin deflection for aerodynamic control 70
5.35 Cross-range in PL phase . 70
5.36 Altitude in PL phase . 70
5.37 Horizontal velocity in PL phase . 71
5.38 Vertical velocity in PL phase . 71
5.39 Pitch angle in PL phase . 71
5.40 Pitch rate in PL phase . 71
5.41 Angle of attack in PL phase . 71
5.42 Flight path angle in PL phase . 71
5.43 Thrust magnitude as % of total thrust 72
5.44 Thrust deflection angle by TVC . 72

5.45 Velocity time profile for solution B 72
5.46 Pitch angle and pitch rate time profile for solution B 73
5.47 AoA and FPA time profile for solution B 74
5.48 Total vehicle mass profile for solution B 75
5.49 Trajectory position visualization for solution B 75
5.50 Error for horizontal velocity . 76
5.51 Error for horizontal acceleration . 76
5.52 Error for pitch angular rate . 77
5.53 Error for pitch acceleration rate . 77

Acronyms

AD
Aerodynamic Descent

AoA
Angle of Attack

BRF
Body Reference Frame

CoG
Centre of Gravity

CP
Center of Pressure

DoF
Deegres of Freedom

DCM
Direct Collocation Method

DR
Down Range

ENU
East North Up

HL
Horizontal Landing

vii

NLP
Non Linear Program

OCP
Optimal Control Problem

PL
Powered Landing

RTLS
Return To Landing Site

TVC
Thrust Vector Control

VL
Vertical Landing

VLV
Vertical Landing Vehicle

WRF
Wind Reference Frame

Chapter 1

The Research Problem

1.1 Introduction: The New Space Industry of
Reusable Spacecrafts

Since the birth of the space industry, the topic of re-usability has been taken into
consideration without ever being able to be truly systematically applied to the
development of fully reusable spacecrafts. The recovery of the re-entry but not
reusable Apollo capsule and the missions of Space Shuttle, designed as a partially
reusable system, marked the main stages of the reusable space vehicles history.
After that, technological research for reusable spacecrafts was mainly abandoned,
for reasons primarily due to technological limitations.

Figure 1.1: Falcon 9 and Starship by Space X, New Shepard by Blue Origin

The main challenge in spacecraft design has always been to ensure an efficient
payload ratio, which is to say, maximizing the mass of the payload carried relative to
the total remaining mass of all other subsystems and propellant. In fact, launching
relative small payload into orbit requires a big quantity of mass propellant, making
it inefficient and expensive: reusability requirements worsen it by adding further

1

The Research Problem

subsystems inert mass and in some cases ulterior propellant mass.

Figure 1.2: Forecast of Launch Costs by 2040 ($ per kg). See [1]

However,today, the space industry is witnessing a renewed interest in the devel-
opment of fully reusable space systems thanks to the technological advancements
made in space engineering. In particular, innovations in material science, propulsion
systems and guidance and control techniques have already fully demonstrated the
possibility of building partially but systematically reusable rockets, aiming at fully
reusable spacecrafts in the near future. The technical advancements in reusable
rockets include vertical landing systems and grid fins that enhance precision during
descent allowing rockets to land safely on designated platforms or ships, ensuring
they can be reused multiple times. These technologies have improved reliability
and efficiency, making space missions more sustainable. Thus, the main reasons for
this re-discovered trend is based on two main considerations [2]: reusability can
provide an economic advantage lowering the launch cost up to 30 % [3], with a
continuously projected decline as shown in Figure 1.2, depending on the launch
rate, the recovery and refurbishment cost and the extension of reusability to the
entire spacecraft; reuse of stages can avoid fallout in sea or lands, with more or
less important consequences depending on parameters like the population density
in fallout zones and the potential pollution of stages components in these areas.
Among the pioneers of reusable launch vehicles, the private companies Space X
and New Glenn stand out, which, in addition to marking a decisive advancement

2

The Research Problem

in the space industry, have also revolutionized the space economy. In fact, the
affordability due to cost reduction is democratizing space exploration, allowing
private smaller companies and research institutions to participate in LEO missions
that were previously cost-prohibitive and, furthermore, it has been possible to
consider new frontiers for human research and exploration in space, toward the
Moon and beyond.

1.2 Mission Context: Recovery and Landing
Strategy for a First Stage Vehicle

Reusable vehicles cover a wide range of re-entry mission scenarios mainly according
to the energy associated to them when re-entry mission starts, i.e. the corresponding
sum of kinetics and potential energies. Two main categories can be identified.

Figure 1.3: Reentry corridor profile examples for high and low energy vehicles.
See [2]

The first one refers to the high-energy vehicles which are the orbital vehicles
such as launcher second stages or capsules. Instead, the second one refers to
the low-energy vehicles which are the suborbital vehicles such as launcher first
stages. Reusable vehicles of both categories have to be designed to face the re-entry
mission which involves entering in the Earth atmosphere and slowing down the
vehicle using the brake action provided by drag atmosphere in order to reduce
their mechanical energy before reaching the ground in safety conditions and be
recovered or, in the case of reusable vehicles, perform a soft landing. Re-entry

3

The Research Problem

missions are highly demanding in terms of system resilience across various aspects,
with thermo-structural integrity being the foremost. Figure 1.3 shows an example
of re-entry corridor for three different space vehicles in the altitude-velocity plane.
The re-entry corridor is the narrow, three-dimensional flight domain defined by
the minimum and maximum values allowed for specific parameters that allow a
safety recovery of the vehicle. The critical area in the reentry corridor is identified
in relation to the maximum heat flux and dynamic pressure. As can be expected, a
low-energy vehicle re-entry corridor is subjected to less stringent conditions because
of the lower Mach.

Instead, what particularly characterizes the specific case of the return of a
launch vehicle’s first stage is the multitude of scenarios and recovery strategies
that have been hypothesized to achieve a soft landing that guarantees the reuse of
the vehicle. In fact, by definition, the same reusable vehicle is used several times
in different launch missions, so each mission is a specific case in which MECO
(Main Engine Cut-Off), that marks the start of the re-entry mission for the first
stage, can occur under can occur under different Mach and altitude conditions.
This is directly linked to the first distinction in recovery strategies between RTLS
(Return To Landing Site) strategy and DR (Down Range) strategy. The second
distinction is linked to the geometry of the vehicle and how it is controlled in the
atmosphere, and consists of winged vehicles or no-winged vehicles. Finally, there
is the distinction between VL (Vertical Landing) and HL (Horizontal Landing).
Figure 1.4 shows different re-entry and recovery trajectories primarily designed
for the first stage of a launch vehicle but applicable to any type of vehicle, even
high-energy orbital vehicles, after they have been appropriately re-entered into
the atmosphere. Green and purple lines are the ascending trajectories, the blue
and orange ones are the descending trajectories and the red segments identify the
trajectory segments where engine are re-ignited.

• Concepts A, C. These are both RTLS concepts. in concept A a non-winged
vehicle performs VL while in concept C a winged vehicle performs HL. The
main difference is that the dashed ascending trajectory for concept A must be
verticalized in order to not increase the cross range distance, while concept C
allow a certain cross range distance which is canceled thanks to a final gliding
descent. Both concepts start the re-entry mission with a boostback burn: in
concept A, the main objective of the boostback burn is to change the direction
of the velocity and insert the vehicle on a ballistic trajectory to correctly
target the desired landing site, while in concept C it is performed to cancel
the horizontal trajectory in order to have vertical free fall of the vehicle to
the lower atmosphere. Concept A requires a second burn before entering the
atmosphere, called re-entry burn, to decrease the velocity of the vehicle making
use of the propulsion system and thus maintain the aero-thermo-mechanical
loads under control during the following aerodynamic phase. The objective

4

The Research Problem

Figure 1.4: Recovery concepts. See [2]

of the aerodynamic entry phase is to successfully slow the vehicle down from
hypersonic to subsonic Mach. Finally, a third burn, the landing burn, is
performed during landing phase to successfully land the vehicle reaching zero
velocity at touchdown.

• Concepts B, D These are both DR concepts similar to concept A but with
low propellant consumed to perform re-entry. In fact, concept B still requires
three burns but the first boostback is less expensive because it is not necessary
to invert velocity direction. Concept D requires only two burns because the
velocity at MECO conditions is directly used to insert the vehicle into an
un-constrained ballistic trajectory.

• Concepts E,F These are both RTLS concepts for winged vehicles performing
HL. After an un-constrained ballistic trajectory is performed as in concept
D, the vehicle uses wings to perform an aerodynamic U-turn. In concept E a
boostback burn is performed to target the landing site and then a gliding phase
completes the reentry trajectory in atmosphere. Concept F does not require
boostback burn but after an aerodynamic U-turn to face the landing site, the
trajectory is completed by cruising up to the landing site using secondary
propulsion.

5

The Research Problem

1.3 Objective: Vertical Landing Trajectory
Optimization

In the context of renewed interest in the design and development of spacecraft
presented above, and in light of the new technological and competitive challenges
that this entails, this thesis aims to address the subject of reusable spacecraft in
order to contribute to technological research in this field. As already described,
the subject of reusable vehicles is very broad, both in terms of vehicle type and in
terms of the design of the vehicle itself, which must be capable of handling a reentry
and landing mission. Considering that this thesis represents an ex-novo approach
to this topic, it had to be scaled down to cover a specific class of vehicles among
those presented, namely the vertical landing first stage of a reusable launcher. This
choice was dictated by the current state of the art, where the only example of a
systematically reusable vehicle in use is Space X’s Falcon 9 booster. Therefore,
this type of vehicle is the subject of more extensive literature and more frequent
research, facilitating the retrieval of information useful for the development of
this work. The re-entry problem into the atmosphere of a non-reusable spacecraft
is already well known and has been widely addressed over the decades and this
knowledge can also be applied to manage the less demanding re-entry of reusable
spacecraft. On the contrary, the final subsonic phase of the re-entry mission of a
reusable vehicle comprehends the final descent into the lower atmosphere and the
soft landing that differ from typical recovery strategy of non re-usable vehicles: this
phase is critical because it requires active, continuous and precise control of the
vehicle to achieve specific position and speed conditions to complete the soft landing.
These trajectory requirements translate directly into performance requirements
for the vehicle, which must be equipped with appropriate control systems such
as fins, thrust throttling and thrust vector control. For this reasons the main
objective of this thesis is developing a MATLAB software tool able to compute
offline trajectory optimization for final subsonic descent and vertical landing. This
tool, given specific high-level input design parameter of the vehicle, can optimize
trajectories respecting the bounds and the constraints imposed by the mission
scenario allowing to analyze the control performances required and to validate the
input design parameters. The software tool is conceived as a design tool for mission
analysis to compute nominal reference trajectory.

6

Chapter 2

Engineering Modeling for
Vertical Landing Vehicle

This chapter describes the assumptions, choices, and methods used to model the
first stage of a vertical landing space launcher and its position and attitude dy-
namics. It should be noted that the engineering modeling of the vehicle system
was not the main objective of this thesis but was conducted with the primary
aim of obtaining a sufficiently accurate preliminary model, to be used for testing
the trajectory optimization software tool in order to address mission analysis and
preliminary sizing of a VLV, with reference to the final aerodynamic descent and
powered landing scenario as explained in chapter 1.

Therefore, this part of the thesis work was conducted by making assumptions,
presented below, which simplified an activity that would otherwise have been very
time-consuming and resource-intensive. The design of a complex system such as a
VLV requires an iterative design process in which mission requirements influence
system requirements and vice versa, resulting in complex multidisciplinary work as
shown in 2.1. In fact, to approach the modeling of the vehicle system to be used
in trajectory optimization, reference was made to the basic methodology used to
develop a generic space system. The approach used in these cases is to build an
iterative process. Figure 2.2 shows a possible logical flow of the iterative process.
The set of design variables constitute the starting point as well as the final objective
of the design process, as their values will only be fixed once the iterations have been
interrupted upon satisfaction of the mission and system requirements. The various
vehicle subsystems are modeled according to the design variables, attempting to
follow a “cascade” logic in which the correlations and interdependencies between the
various subsystems are exploited to use the model of a more "external" subsystem
in the modeling of a more internal "subsystem". It is important to note the red

7

Engineering Modeling for Vertical Landing Vehicle

Figure 2.1: Disciplines correlations in launch vehicle design. See [4]

Figure 2.2: Design process logic for vertical landing vehicle. See [5]

8

Engineering Modeling for Vertical Landing Vehicle

box, which is the design phase in which the software tool is applied to perform the
mission analysis optimizing the nominal trajectory in order to study the vehicle’s
performance and then verify the entire iteration, making the necessary changes to
the set of design variables to start a new iteration aiming at obtaining convergence.
As regards this thesis, this design logic has been simplified by overriding some
systems modeling and directly using high-level design variables as input variables.
Thus, the software tool at its initial development state can be tested against an
input set of design parameters that can be easily estimated or found by consulting
the literature, shown in table 2.1; alternatively, if future developments of software
tool will be used for complete iterative design processes, more precise and detailed
models for evaluating design parameters can be integrated upstream of the software
tool in an iterative process.

Table 2.1: High-level design variables

High-level design variables legend with ref. to Figure 2.3

M0 First stage dry mass + fuel mass estimated for powered landing
L First stage length
d First stage diameter

cfin Fin aerodynamic mean chord
bfin Fin span

XLEfin
Fin leading edge longitudinal position w.r.t the base

CoG Centre of gravity longitudinal position w.r.t. the base
Ae Exit nozzle area
Isp Single engine specific impulse in vacuum
Tsl Single engine thrust at sea level

2.1 Vehicle Geometry Model
The geometric model for the first stage of a launch vehicle was created using
SpaceX’s Falcon 9 vehicle as a reference, as it is currently the only space launch
vehicle regularly used to launch payloads into orbit and return to Earth with a
powered vertical landing. Consequently, it was possible to find information and data
in the literature with which to estimate and model the vehicle. From the material
found in the literature, Figure 2.4 shows a 3D model of a Falcon 9-type vehicle from
which the simplified 2D model adopted in this thesis problem was derived, shown
in Figure 2.3. The planar 2D model is used to study the DoFs-reduced system
dynamics described below. It is constituted by a cylinder that represents the main
body of the vehicle, that is shell of the booster, and only two aerodynamic surfaces,

9

Engineering Modeling for Vertical Landing Vehicle

Figure 2.3: Geometry model (non-propotional) for the vehicle first stage.

the fins, mounted with their rotation axis perpendicular to the plane. They are
symmetrically positioned and actuated together with the same deflection angle, in
order to not generate roll moments, but only pitch moments. Furthermore, the
absence of a second couple of fins rotated by 90 ° with respect to the first ones does
not allow to generate yaw moments. As already shown in Table 2.1, fins position

Figure 2.4: 3D model of Falcon 9-class vehicle. See [6]

and center of mass calculation are fixed input design parameter for the simplified
vehicle model. In particular, the latter assumption for CoG ignores that during
powered landing CoG shifts due to propellant mass expulsion. This choice has been

10

Engineering Modeling for Vertical Landing Vehicle

made considering that the propellant mass used to perform powered landing is very
small compared to the dry mass of the booster. Specifically, it depends on burning
time and mission scenarios but it has been demonstrated that for typical powered
landing scenarios propellant mass used is around 20% of total mass M0 [7], [8] thus
the change of CoG position due propellant mass expulsion is small. Concerning
the estimation of these two parameters, the fins are required to be located in the
higher part of the booster opposite to the engines due to aerodynamic control
reasons explained in the next section, while CoG is expected to be located in the
lower part of the booster. In fact, as shown in Figure 2.5 the main elements that
make up the first stage vehicle mass are the set of engines, the landing legs, the
shell, the two tanks for fuel and oxidizer, the propellant mass and the fins. For the
initial configuration of Falcon 9-class vehicle at lift-off, CoG is located at 29.3 m
from the base for a total length of the first stage of 70 m [6]. This consideration,
united to the fact that, when AD phase and PL phase start, the vehicle consists
only in its first stage and in a little percentage of the initial total propellant mass,
allows to say that mass is concentrated in the lower part of the booster. Thus, it is
reasonable to assume that for the landing configuration the CoG is located around
the lower quarter of the booster total length.

Figure 2.5: Elements of Falcon 9-class vehicles. See [6]

2.1.1 Aerodynamics control surfaces: the planar fins
Fins are one of the two control systems modeled to maneuver the vehicle. Controlling
their deflection angle, and therefore their angle of attack, they are used during AD
phase to modify the aerodynamic resultant force and pitch moment on the vehicle
in order to control its translational and attitude dynamics. During PL phase, fins
are modeled to be deployed and fixed perpendicular to the longitudinal direction of
the vehicle in order to maximize the surface exposed to air flow and use air friction
to produce drag and slow down the vehicle. Two main fins design exist: planar
fins and grid fins. The first one is a simpler design that makes easier to model
the aerodynamics of the fins as shown in next section. Planar fins design must be
allow to use them, not only during flight in lower atmosphere, but also during the
first phase of aerodynamic descent at higher altitude at hypersonic speed. Thus,
classical wing profile can not be used, instead a valid solution can be a rectangular

11

Engineering Modeling for Vertical Landing Vehicle

shaped fin with an hexagon profile [9], as shown in Figure 5.10. Design parameters
bfin and cfin define the rectangular surface dimensions.

Figure 2.6: Planar fin model. See [9]

2.1.2 Thrust Vector Control system
The second control system used to maneuver the vehicle is the thrust control
vector (TVC). This system allows to control the thrust vector deflection angle with
respect to the longitudinal direction of the vehicle and, therefore, it can control
the thrust vector components in the body reference frame creating a resulting
moment to modify the attitude; it can also deviate the thrust vector in order to
steer the vehicle. TVC system is used together with the throttling control system
that allows to modulate the magnitude of thrust vector disbursed by the engines
that is evaluated as a percentage of the maximum deliverable thrust in vacuum.
This control method is used during PL phase when only one of the engines is
reignited. As already mentioned for the fins, the only attitude control required for
the DoFs-reduced system dynamics is the one on the pitch moment. This means
that TVC is used to only control the deflection angle of thrust in the 2D plane of
vehicle as shown in Figure 2.7. The TVC is modeled in this thesis following the
gimbaled thrust strategy.

2.2 Vehicle Aerodynamics Model
The problem of optimizing the trajectory for the VLV in the lower atmosphere
performing a powered landing made it necessary to have a sufficiently accurate
model of the aircraft’s aerodynamic characteristics, as this was closely linked to the
modeling of the control of the system through the fins. In particular, this required
the aerodynamics of the vehicle to be represented as a function of the instantaneous
state variables of the vehicle in order to ensure active control at every point of the
trajectory evolution. This problem could have been easily solved by disposing of an
aerodynamic database but given the preliminary approach adopted in this thesis

12

Engineering Modeling for Vertical Landing Vehicle

Figure 2.7: Different TVCs strategies. See [10]

and the fact that the vehicle model has been developed ex-novo, a more empirical
and fast method has been used to reach the final objective of having relations to
estimate aerodynamic coefficients.
In order to better understand how to develop the aerodynamics model, statics
stability of a generic space launcher booster during descent was explored. When
flying in atmosphere, the vehicle is in air flow and its interaction with it generates
aerodynamic forces applied on a specific point of the body called center of pressure
CP. If the air flow is parallel to the longitudinal direction of the vehicle, only
axial aerodynamic force is produced, that is aerodynamic drag that slows down the
vehicle, but if an angle of attack exists the resultant aerodynamic force has both
an axial component and a normal component with respect to the longitudinal body
axis. The second one generates a moment with respect to the center of mass when
an off-set between CoG and center of pressure exists, that is the moment arm. The
vehicle is said to be statically stable if the aerodynamic moment that is generated
by the angle of attack tends to rotate the vehicle to cancel the angle of attack
itself, restoring the initial longitudinal air flow conditions. This is fundamental
to assure that if an external perturbation disturbs the vehicle flying in a generic
trim condition, the vehicle itself tends to restore and keep its initial equilibrium
instead of moving away from it increasing the perturbation until losing control.
The static stability or instability of a vehicle depends on the static margin defined
as the off-set between the CoG and the CP. As shown in Figure 2.8, for a VLV that
is descending in the atmosphere, the static stability exists only if the CP is located
behind the CoG with respect to the base of the vehicle. This condition is intrinsic
in the cylindrical body of the booster due to the fact that it has a low CoG so it
always tends to zero angle of attack. Furthermore, depending on where the fins are
located, the CP position can be shifted forwards or backwards: in order to increase
the static margin and making the complete vehicle more static stable, the fins are

13

Engineering Modeling for Vertical Landing Vehicle

located in the higher part of the vehicle, opposite to the engines. It is important to
observe that for nominal orientation of the fins, i.e. longitudinally aligned with the
booster body, the only trimmed flight condition is the one at zero angle of attack
(AoA). Instead, when flying at a non-zero AoA, movable fins can be deflected in
order to produce an aerodynamic resultant force with the desired normal component
needed to provide an equal and opposite moment to the restoring one generated
by the body of the vehicle, thus the resulting moment of the vehicle is zero and
AoA is not nullified. Once that it was clarified how the basic aerodynamics of the

Figure 2.8: Static stability of a descending VLV.

vehicle works, relations to evaluate aerodynamics characteristics were explored.
Considering that the trajectory optimization problem of this thesis deals with the
final subsonic flight of the vehicle in lower atmosphere, reference was made to
the sounding rocket aerodynamics. Sounding rockets are rockets used to collect
scientific data and conduct experiments in a microgravity environment or in the
upper atmosphere or near space, so their flight profile is similar to the one of first
stage launchers when performing final descent and landing. In the sounding rockets
aerodynamics field, Barrowman equations represent a reference point. Barrowman
has applied the potential flow theory to the common design of model rockets,
developing a fast and immediate method able to predict the position of the center

14

Engineering Modeling for Vertical Landing Vehicle

of pressure from the knowledge of the geometry of the aerodynamics only [11].
Equation 2.1 gives the longitudinal position coordinate of fin center of pressure
with respect to the base of the cylindrical body:

XCPfin
= XLEfin

+ XR

3
(CR + 2CT)
(CR + CT) + 1

6

C
(CR + CT) − (CRCT)

(CR + CT)

D
(2.1)

where XR = 0 for rectangular shaped fin because it is the distance between fin root
leading edge and fin tip leading edge parallel to body and CR = CT = cfin is the
fin aerodynamic mean chord, so it results that

XCPfin
= XLEfin

+ 1
4c

i.e. fin center of pressure is located on the front quarter of the fin. In his method
Barrowman neglected the normal force developed by the cylindrical body when
flying at an AoA because it seems negligible with respect to the normal components
developed by the other aerodynamic parts of the rocket, such as fins. Anyway,
further research works stated that the normal force is proportional to the AoA and
considering that the rocket is oscillating at small range of AoA during the final
descent, it is not clear when a component can be neglect with respect to another,
thus a corrective term in the Barrowman equations is needed to account for the
presence of the body normal force [12]. This force is applied in the center of the
planform area, i.e. the surface area of the body cut along its vertical axis that for
a 2D cylindrical body is the center of the rectangular surface so the longitudinal
position coordinate center of pressure for the cylindrical body is assumed to be:

XCPcyl
= L/2 (2.2)

Note that these simplified relations for center of pressures assume that their position
does not change with AoA. Before proceeding with the aerodynamic coefficients
evaluation, the definitions of reference systems and notations used in Figure 2.9
are described. The assumptions made are listed here:

• The flight happens in calm atmosphere with no wind so relative air velocity is
equal to vehicle inertial velocity;

• The vehicle is flipped i.e. it flies with its engines towards the relative air flow;

• Body reference frame (BRF) is the total body fixed frame centered on the
vehicle CoG, with XB parallel to the longitudinal direction of the vehicle
pointing towards the engines, ZB perpendicular to XB pointing towards up
and YB completing the right-handed system;

15

Engineering Modeling for Vertical Landing Vehicle

• Wind reference frame (WRF) is the reference frame centered on the vehicle
CoG, with XW fixed on the relative air velocity vector, ZW perpendicular to
XW pointing towards down and YW completing the right-handed system;

• Angle of attack is positive when the relative air velocity has a positive Z
component with respect to the local body frames fixed on fins or on cylindrical
body (the second one coincides with the total BRF). AoA α is the angle of
attack for the booster aerodynamics referred to the longitudinal direction of
the cylindrical body and computed as α = θ − FPA where θ is the pitch angle
and FPA is the flight path angle. AoA αfin is the angle of attack for the fins
aerodynamics;

• Fin deflection angle δ is positive when fin is pitched up.

The aerodynamic coefficients are evaluated with respect to the WRF, so they are
referred to as lift and drag coefficients, respectively CL and CD, with lift being
the aerodynamic force along Zw and drag being the one along XW . Note that
lift is not intended in the classical way as the force used to sustain the weight
but as a steering force to control the vehicle. Furthermore, the problem is 2D
and velocity is always in the longitudinal body plane, so there is not a sideslip
angle and lateral-directional aerodynamics is not considered but only longitudinal
aerodynamic exists.

Figure 2.9: System representation for aerodynamics analysis.

16

Engineering Modeling for Vertical Landing Vehicle

For the cylindrical body aerodynamics, the relations reported below are
analytical equations empirically obtained from sounding rockets aerodynamics
studies [11] valid for subsonic flight conditions and small range of AoA that in this
thesis work is assumed to be α ∈ [−10◦, +10◦]:

Kbody =
1 + 60

A
Dref

Lbody

B3

+ 0.0025Lbody

Dref

 Sw

Aref

(2.3)

(2.4)

CDbody
= 0.074

Re
1
5
y

(2.5)

(2.6)

CDbase
=
A

Dbase

Dref

B3 0.029ñ
CDbody

(2.7)

(2.8)
CD = CDbody

Kbody + CDbase
(2.9)

(2.10)

CL = kbody
Ap

Aref

α2 (2.11)

where Dref = Dbase = d, Lbody = L, Sw is the wet surface of the cylindrical body,
Aref is the reference area equal to the base area of the cylindrical body and Ap is
the cylindrical body plan area. The equation 2.9 shows that the total drag is a
sum of two contributions, which are the viscous drag and the pressure drag.

• The viscous or frictional drag CDbody
derives from the flow viscosity inside the

boundary layer developed as the air flows around the vehicle. It depends from
the Reynolds number and its formulation differs for laminar and turbulent
flows. The one used here is valid for turbulent flow with Re > 5 · 105 over
a flat plate and it is multiplied by a corrective factor Kbody that takes into
account the 3D effect on real-body.

• The pressure drag comes from the projection along the velocity direction of
the outer air pressure. Its main contribute is the base drag that derives from
the boundary layer separation which occurs at the rear of the rocket.

The equation 2.11 is the correction proposed by Galejs [12] for accounting the body
lift. kbody is a coefficient to be empirically determined that in this thesis is assumed
equal to 1.1 to align the results obtained with the literature.

17

Engineering Modeling for Vertical Landing Vehicle

For the fins aerodynamics, the lift and drag coefficients of a single fin are:

CL = 2π
AR

AR + 2αfin (2.12)

CD = CL
2

π · AR · e
(2.13)

where αfin = δfin + α, AR is the aspect ratio of the fin and e is the Oswald
factor fixed at 0.8. The equation 2.12 evaluates the lift coefficient using the lifting-
line theory [13] and equation 2.13 computes the drag coefficient accounting for
induced drag and neglecting the pressure drag that is smaller with respect to the
pressure drag on the cylindrical body. A variation in the definition of aerodynamic
coefficients for fins is made for the PL phase: during this phase the active control
system is the TVC system combined with the thrust magnitude throttling system,
so, considering that fins are modeled to be fixed and perpendicularly oriented to
the longitudinal direction of the body vehicle in order to help slowing down the
rocket thanks to their pressure drag. Thus, during this phase:

CL = 0 (2.14)
CD = 1.28 · cos α (2.15)

where CD is the pressure drag coefficient of a flat plate in cross-wise subsonic air
flow with a correction that accounts for the misalignment between the fin normal
direction and the air flow velocity [14].

2.3 Equations of Motion
Trajectory optimization requires to lastly model the dynamics of the vehicle, i.e.
writing the equations of motions in order to be able to propagate the system state
and implementing the trajectory optimization method chosen, as explained in 3.
As already anticipated, the dynamics problem has been simplified reducing the
total DoFs: instead of having a 3D problem with three DoFs for translational
and rotational dynamics, a 2D problem has been modeled with three DoFs, two
for vertical and horizontal translational dynamics and one for pitching rotational
dynamics. Before proceeding with writing the equations of motion, the reference
systems used and the assumptions made are listed here and illustrated in Figure
2.10 and Figure 2.11 :

• ECEF: Earth Centered Earth Fixed reference frame. It is used to define the
initial state of the vehicle through latitude and longitude coordinates at the
initial time to be converted in the local reference frame;

18

Engineering Modeling for Vertical Landing Vehicle

• ENU: East North Up reference frame. It is a local reference frame with its
origin centered on the landing target. XE and YN axis define the local horizon
plane, XE points towards the East and YN points towards the North. ZU is
perpendicular to the local horizon plane. it points towards up and it defines
the local vertical direction. This local reference frame is not actually inertial
but it is assumed to be inertial because the trajectory evolution studied with
reference to it lasts for a short enough time to ignore the Coriolis acceleration
and the centrifugal acceleration;

• The g gravitational acceleration is assumed to be constant and always parallel
to the local vertical direction;

• Given the 2D problem assumption, at the initial time the vehicle is assumed to
be already positioned on the YN = 0 target landing position coordinate, thus
the trajectory evolves only in the local horizontal-vertical plane XEZU ;

• Altitude refers to the distance of the vehicle with respect to the landing
target along ZU axis, while down-range is the distance of the vehicle with
respect to the landing target along XE axis;

• The pitch angle θ is the angle between XB and the local horizon. It is
zero when XB is aligned with the local horizon and it is negative when XB is
pitching down, so the desired vertical attitude to reach at landing is represented
by θ = −π

2 and pitch angle is defined in the range θ ∈ [0◦, −180◦];

• The thrust deflection angle β is defined as the angle between the thrust
direction and XB axis. It is positive when TVC system pitches the engine’s
nozzle down;

• Translational dynamics equations are written in ENU reference frame
assumed to be inertial and the vehicle is modeled as a point mass: in Figure
2.10 the resultant aerodynamic forces, thrust and weight are applied on the
CoG;

• Rotational dynamics equations are written in BODY reference frame. To
do so, reference is made to Figure 2.11 where all the forces acting on the vehicle
are showed on their actual application point from which pitching moment
arms can be computed. In rotational dynamics, the body is assumed to be
rigid and mass is assumed to be uniformly distributed.

19

Engineering Modeling for Vertical Landing Vehicle

Figure 2.10: System representation for translational equations of motion.

Figure 2.11: System representation for rotational equations of motion.

In the previous section, aerodynamic coefficients for the cylindrical body and for
the fins are defined in the WRF:

CAEROcyl
=

−CDcyl

0
CLcyl

 (2.16)

20

Engineering Modeling for Vertical Landing Vehicle

CAEROfin
=

−CDfin

0
CLfin

 (2.17)

Using the AoA it is possible to define the rotation matrix RW 2B that allows to
compute the aerodynamic coefficients expressed with respect to the BRF, starting
from their values expressed with respect to the WRF:

RW 2B =

 cos α 0 sin α
0 1 0

− sin α 0 cos α

 (2.18)

Cbody
AEROcyl

=

CAcyl

0
CNcyl

 = RW 2B · CAEROcyl
(2.19)

Cbody
AEROfin

=

CAfin

0
CNfin

 = RW 2B · CAEROfin
(2.20)

Finally, using the quaternion to avoid gimbal lock singularity for rotation matrix,
qB2ENU is defined using the pitch angle θ and it allows to compute the aerodynamic
coefficients expressed with respect to the ENU frame starting from the ones in the
BRF:

qB2ENU =


cos θ/2

0
sin θ/2

0

 (2.21)

Cenu
AEROcyl

=

CXEcyl

0
CZUcyl

 = qB2ENU · Cbody
AEROcyl

· q−1
B2ENU (2.22)

Cenu
AEROfin

=

CXEfin

0
CZUfin

 = qB2ENU · Cbody
AEROfin

· q−1
B2ENU (2.23)

To express thrust vector components in BRF and in ENU reference frame the
process is similar to the one followed for the aerodynamic coefficients. Given the
magnitude of the thrust vector ||T|| = %Tsl , its components with respect to the
BRF are:

Tbody = ||T|| ·

− cos β
0

sin β

 (2.24)

21

Engineering Modeling for Vertical Landing Vehicle

and in ENU reference frame:

TENU = qB2ENU · Tbody · q−1
B2ENU (2.25)

The translational dynamics equations in ENU reference frame are:

ṙ(t) = v(t) (2.26)
v̇(t) = a(t) (2.27)

a(t) =
FAEROfin

(t) + FAEROcyl
(t) + TENU(t)

m(t) + g0 (2.28)

ṁ(t) = −||T(t)||
Ispg0

− Aepatm(t)
Ispg0

(2.29)

where
r(t) =

è
rx(t), rz(t)

é
v(t) =

è
vx(t), vz(t)

é
FAEROcyl

(t) = 1
2ρ(t)||v(t)||2Aref

C
CXEcyl

(t)
CZUcyl

(t)

D
aero

FAEROfin
(t) = 2 · 1

2ρ(t)||v(t)||2Aref

C
CXEfin

(t)
CZUfin

(t)

D
aero

The rotational dynamics equations written with respect to the CoG in BRF
are:

θ̇(t) = θ̈(t) (2.30)

θ̈(t) =
NT (t) · xCoG − N cyl

AERO(t) · (xCPcyl
− xCoG) − N fin

AERO(t) · (xCPfin
− xCoG)

Iyy(t)
(2.31)

Since the only DoF for the rotational dynamics is the pitch moment, the scalar
form of the equation is directly written, where pitch moments contributions are
given by the normal components of the forces acting on the vehicle:

NT (t) = ||T(t)|| · sin β(t)

N cyl
AERO(t) = 1

2ρ(t)||v(t)||2ArefCNcyl
(t)

N fin
AERO(t) = 2 · 1

2ρ(t)||v(t)||2ArefCNfin
(t)

22

Engineering Modeling for Vertical Landing Vehicle

The pitch inertia moment Iyy with respect to the YB axis is computed assuming
uniform distribution of mass around the longitudinal axis of the body:

Iyy(t) = 1
12m(t)

3
A

d

2

B2

+ L2


This rotational dynamics equation, in the case of ||T(t)|| = 0 when engines are
off, is used to also study aerodynamic trim conditions during aerodynamic descent.
In fact, the resultant aerodynamic moment around the CoG can be imposed to
be zero, in order to solve the equation with respect the fin deflections δfin that
assure no-pitch moment while flying at different values of angle of attacks. This
dynamics equations are valid both for the AD phase and the PL phase with the only
difference that during AD phase the thrust relative terms must not be accounted
because engines are off. In the same way, the total mass variable m(t) is a state
variable only during PL phase because it varies during trajectory evolution due to
propellant mass expulsion. The propellant mass flow rate is equal and opposite to
the total vehicle mass decrease rate as described by equation 2.29 where the second
term accounts for the back-pressure losses due to non-negligible ambient pressure;
this term adds to the first one which accounts for the propellant mass consumed
proportionally to the commanded thrust magnitude.

23

Chapter 3

Trajectory Optimization

This chapter provides the basic knowledge to do Trajectory Optimization for a
generic dynamic system. First, the Optimal Control Problem theory is described
and how it should be formulated. Then, Direct Collocation Method is analyzed
in order to finally set up the resolution of the aerodynamic descent and powered
landing problem in the software tool.

3.1 The Optimal Control Problem
Trajectory optimization problem is an Optimal Control Problem (OCP) that arises
from the combination of Optimization theory and Control theory. According to
Optimization theory, given any system and any number of conditions on it, a
feasible system configuration must be determined that can not be improved with
respect to a specified criterion. At the same time, Control theory aims at governing
the application of system inputs to obtain a desired system state. Thus, OCP
results in the finding of a control for a dynamical system over a period of time to
optimize a given criterion. The system state and its control are time functions
to be determined [15]. To better understand how to solve an OCP and, more
specifically, the vertical landing trajectory optimization problem of a reusable first
stage launcher, it is necessary to know how an OCP is formulated.

The most general formulation for the system dynamics is a first order system
of non-linear time-varying differential equations

ẋ(t) = f(x(t), u(t), t) (3.1)

where x(t) ∈ Rn is the vector of the state variables of the system and u(t) ∈ Rm is
the vector of control parameters. Since x(t) and u(t) are vectors of time continuous
functions defined on functional spaces, the OCPs are infinite-dimensional problems.

24

Trajectory Optimization

xopt(t) and uopt(t) are the OCP solutions that minimize or maximize the performance
index identified also as objective or cost. It is described by the following functional:

JB = ϕ(x(t0), t0, x(tf), tf) +
Ú tf

t0
Φ(x(t), u(t), t)dt (3.2)

t0 and tf are independent variables, respectively the initial and final time instants
of trajectory evolution. This formulation is identified as Bolza’s form. If Φ = 0,
the performance index formulation is said Mayer’s form and it is

JM = ϕ(x(t0), t0, x(tf), tf) (3.3)
while if ϕ = 0, it is identified as Lagrange’s formulation and it is

JL =
Ú tf

t0
Φ(x(t), u(t), t)dt (3.4)

According to Mayer’s form, the performance index is a boundary objective and it
is penalized based only on the initial and final system states. Instead, Lagrange’s
form states that the performance index is a path integral along the trajectory
covered in the time interval so that it is penalized based on the accumulation of a
cost during the trajectory evolution. Bolza’s form is a combination of both.
The performance index formulations in 3.3, 3.4 and 3.2 are valid for single-phase
trajectory optimization problems. In fact, there are many trajectory optimization
problems that have a sequence of continuous-motion phases separated by discrete
jumps. One common example is the trajectory of a multistage rocket. For these
problems JL performance index term must be formulated as a sum of integral terms
defined on each trajectory arc. The aerodynamic descent and powered landing
problem of this thesis work could be formulated as a multi-phase problem but in
order to not make it too difficult to implement the problem as first approaching to
it, it has been decided to solve two single-phase problems separately.
Defining a performance index for the OPC is a necessary but not sufficient condition:
constraints have to be defined in order to have a solution to the OPC that is not
just mathematically, but also physically, possible. The solutions that satisfy the
constraints are said feasible. The solutions that satisfy the constraints and provide
also the minimum or maximum value of the objective function are said optimal.

• The first and also the most important type of constraints are the dynam-
ics constraints already formulated in equation 3.1: they assure that the
optimal solution computed for the controls vector u_opt(t) and the state vari-
ables vector x_opt(t) provide a trajectory evolution that satisfies the system
dynamics.

• Path constraints define restrictions on state variables and control parameters
along the trajectory. They are defined as equalities or inequalities respect to
0.

h(t, x(t), u(t)) ≤ 0 (3.5)

25

Trajectory Optimization

• Boundary constraints define restrictions on the initial and final states
variables. They are defined as equalities or inequalities respect to 0.

g(t0, x(t0), tf , x(tf)) ≤ 0 (3.6)

To complete the OCP formulation, constant bounds on the state variables and the
control parameters can be set:

xlow ≤ x(t) ≤ xupp (3.7)

ulow ≤ u(t) ≤ uupp (3.8)

Finally, local and global optimality are important concepts to know in order to
proceed with solving OPC. A globally optimal solution is a feasible solution with
the best possible objective value. In general, the global optimum for a problem is
not unique. By contrast, a locally optimal solution has the best possible objective
value within an open neighbourhood around it. For a convex problem, every local
optimum is a global optimum. A problem is said to be convex when it includes
only linear or convex quadratic objective function subjected to convex quadratic
constraints. When a problem is of a more general nonlinear type, there will typically
be many local optima, which are potentially widely spaced, or even in parts of the
feasible region which are not connected [16]. The trajectory optimization addressed
in this thesis is a non-linear problem that is solved using local optimal software
solver, so the solutions found are optimal for a certain region of the input space

Figure 3.1: Example of local and global optima of a non-linear function. See [17]

26

Trajectory Optimization

targeted by the initial guesses as described in 4. Figure 3.1 shows an example of a
non-linear function with local and global minima. Given point A as initial guess,
it can be observed that a locally optimal solver finds an optimal solution in the
proximity space region that is a local optimal. Starting from a different point could
allow the local solver to find a global optimal.

3.2 The Direct Collocation Method
Solving an OCP is a big challenge and since the birth of optimization theory
different strategies have been proposed. Figure 3.2 shows how the main strategies
to solve an OCP can be categorized. At the highest level there is the distinction

Figure 3.2: OCPs resolution strategies. See [18]

between analytical and numerical approaches. Analytical approach consists in using
Pontryagin’s minimum principle that leads to definition and resolution of complex
ODEs system. Analytical solutions exist only for linear-quadratic OCPs. Being the
trajectory optimization problem a non-linear OCP, the detailed examination of this
approach is beyond the objective of this thesis while numerical approach is further
examined. Numerical approach leverages computational algorithms to numerically
solve the OPCs so the solution obtained is not anymore a set of time-continuous
functions but a set of time-discrete numerical values. In fact, every numerical
method requires the problem to be discretized but according to how discretization
is used different methods can be identifed. The indirect methods use calculus
of variations and Lagrange multipliers to determine the necessary and sufficient
optimality conditions which are then discretized and solved numerically. Thus,
indirect methods do not deal directly with the objective function, but rather with
the numerical resolution of the equations that describe the optimality conditions
obtained with the analytical approach. On the other hand, direct methods attempt
to find a minimum of the objective function by discretizing the states and controls

27

Trajectory Optimization

and then transcribing the optimal control problem to a nonlinear programming
(NLP) problem that is solved using optimization techniques. In short, the direct
method constructs a sequence of potential solutions x(t), u(t) so that each of them is
an improvement on the last one, resulting in J(x1(t), u1(t)) > J(x2(t), u2(t)) > ... >
J(xopt(t), uopt(t)) [19]. As far as concerns for techniques, differential inclusion is an
exclusive technique for direct methods that is numerically instable and problem
specific [20] so it has not been further examined. Shooting is a very simple technique
that consists of choosing an initial guess for boundary conditions at initial time
and then propagating the system dynamics until final time is reached. Once it
is reached, an error between the system trajectory and the boundary conditions
exists so the initial guess is adjusted and the process is repeated in order to reduce
this error. Multiple shooting is a variant of it where the problem is broken down
in shorter steps between initial and final time in order to reduce the sensitivity
of the problem. Although this technique is simple, it can handle only problems
with a small quantity of variables due to its high sensitivity to initial guess so it
is not suitable for this thesis work where the vehicle system needs to be actively
controlled at each time instant during the all trajectory evolution, resulting in a
great amount of state and control variables problem. Finally, direct collocation
method (DCM) has been chosen to solve the trajectory optimization problem
for this thesis work. As already mentioned, DCM requires to transcript the time-
continuous functions for state variables and control parameters in time-discrete
numerical values in order to have a finite-dimensional problem called NLP which is
a constrained parameter optimization problem that has non-linear terms in either
its objective or its constraint function. The discretization of the time, states and
controls is done by representing the continuous states and controls by values in
specific points in time called collocation nodes. The values of the state and control
variables in collocation nodes are the decision variables that must be computed by
a numerical optimizer. The functions of states and controls can be approximated
on each interval between two collocation points using splines. Figure 3.3 shows how
a generic time-continuous function, that could represent a state variable, a state
dynamics function or a control parameter, appears once it has been discretized on
the collocation points and interpolated between them using a spline, specifically a
linear one. The discretized variables are defined as below:

t → t0 · · · tk · · · tN (3.9)

x(t) → x0 · · · xk · · · xN (3.10)

u(t) → u0 · · · uk · · · uN (3.11)

where N is the total number of collocation nodes. The system dynamics equation
formulated in 3.1 for time-continuous problem can be reformulated in integral form

28

Trajectory Optimization

Figure 3.3: Example of function approximation using linear spline. See [21]

between two generic instants of time:

x(tf) − x(t0) =
Ú tf

t0
f(x(t), u(t), t)dt (3.12)

The integral form allows to define dynamics constraints for discretized state vari-
ables but in order to do so the continuous integral

s tf

t0 f(x(t), u(t), t)dt must be
approximated with a summation qk=N

k=1 ckfk with fk being the discrete system
dynamics evaluated at node xk. When using direct collocation method, integral
dynamics constraints are meant to be used as collocation constraints:

ζk = xk+1 − xk −
k+1Ø

k

ckfk ∀k ∈ {1, . . . , N − 1} (3.13)

i.e. the numerical optimizer must compute the discrete states and controls to
obtain the optimal solution assuring that the defect value of ζk is zero ∀k ∈
{1, . . . , N − 1}. In order to better understanding the functioning of the direct
collocation method, Figure 3.4 contains a blue sphere that represents a collocation
node of a discretized state xk at time tk. The straight line s is pertinent to the
numerical derivative between the points xk+1 and xk and the straight line r is
relative to the system dynamics at points xk and xk+1, that is fk = f(xk, uk, tk) and
fk+1 = f(xk+1, uk+1, tk+1). The integral difference ζk can be imagined to graphically
represent the angle between the derivatives slopes. With the direct collocation
method, the collocation node is moved up and down according to the purple arrows
(i.e. the state xk has its value increased and decreased) in order to produce ζk = 0,
making the straight lines r and s coincide. There can be several positions for the
collocation point that satisfy the condition ζk = 0, such positions are considered
admissible. The point is then fixed at an admissible position that best contributes
to the minimization of the cost function. This process is performed for each of the
N collocation points in order to obtain a vector with the optimal discrete states

29

Trajectory Optimization

Figure 3.4: Collocation nodes evaluation process. See [22]

and controls that are the solution of the nonlinear programming problem and
consequently of the OCP.
Splines of different orders can be used to approximate discrete system dynamics
on collocation nodes and based on the spline order used, different transcription
methods can be formulated. Here two main examples are presented.

• Trapezoidal DCM
Trapezoidal collocation works by approximating the control trajectory and
the system dynamics as a linear spline. Consequently, the trajectory, i.e. the
discrete state variables approximation, is represented by a quadratic spline.
For trapezoidal DCM, the collocations constraints are met when

xk+1 = xk + 1
2hk(fk + fk+1) ∀k ∈ {1, . . . , N − 1} (3.14)

where hk = tk+1 − tk and the summation qk+1
k ckfk to approximate the

continuous integral is computed using trapezoidal quadrature. Interpolated
values of system dynamics and control variables on a generic instant between
two consequential collocation nodes are,respectively:

f̄(t̄) = fk + τ

hk

(fk+1 − fk) (3.15)

ū(t̄) = uk + τ

hk

(uk+1 − uk) (3.16)

where ¯ symbol indicates the approximation made by interpolating and
τ = t̄ − tk.
Interpolated values of system state variables are:

x̄(t̄) = xk + fkτ + τ 2

2hk

(fk+1 − fk) (3.17)

30

Trajectory Optimization

• Hermite-Simpson DCM
The Hermite–Simpson collocation is similar to trapezoidal collocation, but it
provides a solution that is higher-order accurate. This is because trapezoidal
collocation approximates the control trajectory and the system dynamics as
piecewise linear functions, while Hermite–Simpson collocation approximates
them as piecewise quadratic functions, as shown in Figure 3.5. Consequently,
the trajectory, i.e. the discrete state variables approximation, is represented
by a cubic spline. For Hermite-Simpson DCM, the collocations constraints

Figure 3.5: Quadratic spline interpolation for system control and dynamics when
using Hermite-Simpson DCM. See [23]

are met when

xk+1 = xk + 1
6hk(fk + 4fk+ 1

2
+ fk+1) ∀k ∈ {1, . . . , N − 1} (3.18)

where hk = tk+1 − tk and the summation qk+1
k ckfk to approximate the contin-

uous integral is computed using Simpson quadrature. For Hermite–Simpson
collocation a second collocation equation is needed to enforce the dynamics.
This is because the dynamics at the midpoint of the segment fk+ 1

2
are a

function of the state xk+ 1
2

which is not known a priori. It can be computed
by constructing an interpolant for the state trajectory and then evaluating it
at the midpoint of the interval:

xk+ 1
2

= 1
2(xk + xk+1) + hk

8 (fk − fk+1) (3.19)

This second collocation equation is special in that it can be computed explicitly
in terms of the state at the collocation nodes.
Interpolated values of system dynamics and control variables on a generic
instant between two consequential collocation nodes are,respectively:

f̄(t̄) = 2
h2

k

A
τ − hk

2

B
(τ −hk)fk − 4

h2
k

(τ −hk)fk+ 1
2
+ 2

h2
k

τ

A
τ − hk

2

B
fk+1 (3.20)

31

Trajectory Optimization

ū(t̄) = 2
h2

k

A
τ − hk

2

B
(τ −hk)uk − 4

h2
k

(τ −hk)uk+ 1
2
+ 2

h2
k

τ

A
τ − hk

2

B
uk+1 (3.21)

where ¯ symbol indicates the approximation made by interpolating and
τ = t̄ − tk.
Interpolated values of system state variables are:

x̄(t̄) =xk + fk

3
τ

hk

4
+ 1

2
1
−3fk + 4fk+ 1

2
− fk+1

2 3 τ

hk

42
+

1
3
1
2fk − 4fk+ 1

2
+ 2fk+1

23 τ

hk

43 (3.22)

In addition to these two transcription methods, there are others that can be more or
less accurate depending on the order of the spline used to approximate the dynamics
and control of the system. Among these, the Euler method is the simplest but also
the least accurate because it uses the rectangle quadrature method. In contrast, the
fourth-order Runge Kutta method uses a cubic polynomial for dynamics and control,
resulting in even greater accuracy than the Hermite-Simpson method. However, it
is also clear that as the accuracy of the method increases, so do the steps required
to implement it, making it more complex and computationally expensive. Given
these considerations, the trapezoidal method was chosen to implement the NLP of
this thesis because it ensures an average level of accuracy while remaining easy to
implement and therefore suitable for initial software development. Evaluating the
accuracy of a specific DCM refers to quantifying the error that was introduced by
the choice of discretization. There are many possible error metrics for trajectory
optimization. One of them is the error estimation based on how well the candidate
trajectory satisfies the system dynamics between the collocation points. The logic
is that if the system dynamics are accurately satisfied between the collocation
points, i.e. the error is little relatively to the specific problem, then the polynomial
spline is an accurate representation of the system, which would then imply that
the nonlinear program is an accurate representation of the original trajectory
optimization problem [24]. An expression for the error in the solution to the system
dynamics along the candidate trajectory can be constructed as follows:

ε(t̄) = | ˙̄x(t̄) − f̄(t̄, x̄(t̄), ū(t̄))| (3.23)

where ˙̄x(t̄) is the system dynamics evaluation in the interpolation points x̄(t̄) that
approximate the state variables between two collocation nodes and f̄(t̄, x̄(t̄), ū(t̄))
is the system dynamics interpolated values. This error ε(t̄) will be, by definition,
zero at each collocation point and nonzero elsewhere as shown by the example in
figure 3.6.

32

Trajectory Optimization

Figure 3.6: Example of error for system dynamics

3.3 Trajectory Optimization for Vertical Landing
First Stage Vehicle

Once the dynamic model of the system, the theory for formulating the OCP, and
the method for solving it using direct collocation have been established, it is possi-
ble to set up the trajectory optimization for the specific case of the aerodynamic
descent and powered landing of the first stage of a launch vehicle. As mentioned
above, this problem was handled by solving the two flight phases separately as
single-phase optimization problems as shown in Figure 3.7. This choice was mainly
due to the fact that it simplified the implementation of the overall problem. In
fact, even though the method for solving the individual phases is the same, there
are differences in the modeling of the system dynamics and control and in the
calculation of the objective function.
The two tables below contain the equations and inequalities used to set up the
trajectory optimization in the two distinct phases. The information necessary
for a complete description of the choices made to formulate the objectives and
constraints is provided below.

Table 3.1 refers to the Aerodynamic Descent phase. The objective of tra-
jectory optimization in this phase is to slow down the vehicle bringing it closer to
the landing target by reducing the downrange distance with reference to the target
position coordinate XT , without descending below a certain altitude, using the
control provided by the fins that modulate the aerodynamic force on the vehicle,

33

Trajectory Optimization

Figure 3.7: Flight phases of VLV. See [25]

allowing both its position dynamics and its attitude dynamics around the pitch
rotation axis to be controlled. This phase aims at reaching a final state that allows
to successfully perform powered landing.
Using DCM, the total time interval and trajectory arc are divided into N − 1
intervals using N equidistant collocation nodes, each identified by the k-th value.
Each interval has a duration of hk = tk+1 − tk.
The state vector variables are imposed to respect minimum and maximum constant
bounds:

[Xmin, Zmin, VXmin
, VZmin

, Θmin, Θ̇min]

[Xmax, Zmax, VXmax , VZmax , Θmax, Θ̇max]

These bounds can be fixed for each collocation node or be specific for certain nodes.
The angle of attack is identified by α and its range is always fixed between −10◦

and 10◦ as explained in Chapter 2.
The fins deflection angle δ is the actual control parameter to be computed in order
to modify the vehicle aerodynamics. In order to guarantee a feasible control actua-
tion of the fins, their rotational velocity is bound to not exceed a maximum value
ωmax. Considering that for trapezoidal DCM, control function is approximated
with a linear spline, fins rotational velocity is a constant value defined for each
time interval as δfin(k + 1) − δfin(k)

hk

. Furthermore, fins deflection δ is bound to

34

Trajectory Optimization

not exceed a range of values identified by δmax and determined using the trim
conditions described in Chapter 2. Finally, the total time for trajectory duration is
bound to minimum and maximum values tmin and tmax.

Table 3.2 refers to the Powered Landing phase. The objective of trajectory
optimization in this phase is minimizing the fuel mass consumed to land the vehicle
with a specific state condition: the vehicle must reach the landing target at zero
velocity with a vertical attitude. In order to facilitate the optimization process,
these final conditions for system state are provided with small tolerance ranges.
Using DCM, the total time interval and trajectory arc are divided into N − 1
intervals using N equidistant collocation nodes, each identified by the k-th value.
Each interval has a duration of hk = tk+1 − tk.
The state vector variables are imposed to respect minimum and maximum constant
bounds:

[Xmin, Zmin, VXmin
, VZmin

, Θmin, Θ̇min]

[Xmax, Zmax, VXmax , VZmax , Θmax, Θ̇max]

. These bounds can be fixed for each collocation node or be specific for certain
nodes. The angle of attack is identified by α and its range is always fixed between
−10◦ and 10◦ as explained in Chapter 2.
The actual control is realized thanks to thrust vector deflection and magnitude
regulation so the control parameters are the βT V C , which is the deflection angle of
thrust actuated by the TVC, and the T%, which is the percentage of the maximum
thrust Tsl at sea level conditions of a single engine. In order to guarantee a feasible
control actuation, TVC system rotational velocity and thrust magnitude changing
rate are bound to not exceed a maximum value Ωβ,max and Ṫ%. Furthermore, TVC
deflection and thrust percentage are bound to not exceed a range of minimum
and maximum values. Finally, the total time for trajectory duration is bound to
minimum and maximum values tmin and tmax.

35

Trajectory Optimization

Aerodynamic Descent
Objective function

min rx(k) − XT , k = N (3.24)

Collocation constraints:

rx(k + 1) = rx(k) + 0.5 · hk · (ṙx(k) + ṙx(k + 1)) (3.25)
rz(k + 1) = rz(k) + 0.5 · hk · (ṙz(k) + ṙz(k + 1)) (3.26)
vx(k + 1) = vx(k) + 0.5 · hk · (v̇x(k) + v̇x(k + 1)) (3.27)
vz(k + 1) = vz(k) + 0.5 · hk · (v̇z(k) + v̇z(k + 1)) (3.28)
θ(k + 1) = θ(k) + 0.5 · hk · (θ̇(k) + θ̇(k + 1)) (3.29)
θ̇(k + 1) = θ̇(k) + 0.5 · hk · (θ̈(k) + θ̈(k + 1)) (3.30)

∀k ∈ {1, . . . , N − 1}

Path constraints:
|δfin(k + 1) − δfin(k)|

hk

≤ ωact ∀k ∈ {1, . . . , N − 1} (3.31)

|α(k)| ≤ 10◦ ∀k ∈ {1, . . . , N} (3.32)

Constant bounds:

Xmin ≤ rx(k) ≤ Xmax (3.33)
Zmin ≤ rz(k) ≤ Zmax (3.34)

VXmin
≤ vx(k) ≤ VXmax (3.35)

VZmin
≤ vz(k) ≤ VZmax (3.36)

Θmin ≤ θ(k) ≤ Θmax (3.37)
−Θ̇max ≤ θ̇(k) ≤ Θ̇max (3.38)
−δmax ≤ δ(k) ≤ δmax (3.39)

∀k ∈ {1, . . . , N}

tmin ≤ ttot ≤ tmax (3.40)

Table 3.1: Setup for aerodynamic descent trajectory optimization.

36

Trajectory Optimization

Powered Landing
Objective function

min mfuel =
Ø

k

0.5 · hk · (−ṁ(k) − ṁ(k + 1)), ∀k ∈ {1, . . . , N − 1}

(3.41)

Collocation constraints:

rx(k + 1) = rx(k) + 0.5 · hk · (ṙx(k) + ṙx(k + 1)) (3.42)
rz(k + 1) = rz(k) + 0.5 · hk · (ṙz(k) + ṙz(k + 1)) (3.43)
vx(k + 1) = vx(k) + 0.5 · hk · (v̇x(k) + v̇x(k + 1)) (3.44)
vz(k + 1) = vz(k) + 0.5 · hk · (v̇z(k) + v̇z(k + 1)) (3.45)
θ(k + 1) = θ(k) + 0.5 · hk · (θ̇(k) + θ̇(k + 1)) (3.46)
θ̇(k + 1) = θ̇(k) + 0.5 · hk · (θ̈(k) + θ̈(k + 1)) (3.47)
m(k + 1) = m(k) + 0.5 · hk · (ṁ(k) + ṁ(k + 1)) (3.48)

∀k ∈ {1, . . . , N − 1}

Path constraints:

|βT V C(k + 1) − βT V C(k)|
hk

≤ Ωβ,act ∀k ∈ {1, . . . , N − 1} (3.49)

|T%(k + 1) − T%(k)|
hk

≤ Ṫ% ∀k ∈ {1, . . . , N − 1} (3.50)

|α(k)| ≤ 10◦ ∀k ∈ {1, . . . , N} (3.51)

Constant bounds:

Xmin ≤ rx(k) ≤ Xmax (3.52)
Zmin ≤ rz(k) ≤ Zmax (3.53)

VXmin
≤ vx(k) ≤ VXmax (3.54)

VZmin
≤ vz(k) ≤ VZmax (3.55)

Θmin ≤ θ(k) ≤ Θmax (3.56)
−Θ̇max ≤ θ̇(k) ≤ Θ̇max (3.57)

(3.58)

37

Trajectory Optimization

−βT V Cmax ≤ βT V C(k) ≤ βT V Cmax (3.59)
T%min

≤ T%(k) ≤ T%max (3.60)
(3.61)

∀k ∈ {1, . . . , N}

tmin ≤ ttot ≤ tmax (3.62)

Table 3.2: Setup for powered landing trajectory optimization.

38

Chapter 4

Software Tool Development

This chapter presents the software tool developed in MATLAB to model the VLV
and optimize its trajectory for vertical landing solving the OCP. In particular, it
describes the structure of the tool, the choices and methodologies adopted to write
the codes, how they interface, and the operating algorithm.

The software tool is written entirely in MATLAB code and it is saved in the
VerticalLandingTrajOpt folder. The structure of the tool mirrors the struc-
ture adopted to model the problem of vertical landing of a first stage of a launcher,
as described and explored in detail in the previous chapters. Therefore, the software
tool consists of two main modules that deal, respectively, with the modeling and
optimization of the trajectory in the two distinct phases of flight: the first phase
in which the vehicle is aerodynamically controlled as it approaches the landing
target and the second in which it is controlled by the main propulsion system to
achieve vertical landing on the landing target. Each of the two modules consists of
several .m and .mat files, which are illustrated below and saved separately in the
AerodynamicDescent and PoweredLanding folders. Both software modules are
structured in the same way given the similarity in the modeling of the two phases of
the problem, so the files that constitute them have the same nomenclature, except
for differences in the code due to the implementation of problems and procedures
that vary according to the phase of the trajectory being analyzed. The ways in
which the modules and files interface with each others and with the user and how
the codes are built are described in the following subsections, going through each
file and describing their main features.

Each module has a main submodule called Optimization Submodule which
contains the files that allow to run trajectory optimization using previous results
and outputs obtained from the other MATLAB files and functions in the other sub-
modules; thus the Optimization Submodule will be the last one to be presented

39

Software Tool Development

in the subsections below.

4.1 Aerodynamics Submodule
• AeroCyl.m

This function computes the aerodynamics features of the vehicle cylindri-
cal body w.r.t. the wind axis using the equations illustrated in Chapter 2.

Inputs: Mach number, Altitude, Angle of attack, Cylinder Geometry data of
the vehicle.

Outputs: Lift and Drag coefficients of the cylindrical body of the vehicle,
Center of pressure longitudinal coordinate w.r.t. the base of the cylinder.

• AeroFin.m

This function computes the aerodynamics features of the vehicle single fin
w.r.t. the wind axis using the equations illustrated in Chapter 2.

Inputs: Fin Geometry data, Angle of attack, Fin position longitudinal coordi-
nate w.r.t. the base of the cylinder.

Outputs: Lift and Drag coefficients of a single fin of the vehicle, Center
of pressure longitudinal coordinate w.r.t. the base of the cylinder.

• AeroAnalysis.m

This file allows to study the aerodynamics of a specific cylindrical body
and of a specific single fins implementing the equations described in Chapter
2.

The first part of the code can be especially modified with data of the cylindrical
body one wants to study. First, an evaluation of Reynolds number on the
cylindrical body can be run for a range of altitude and Mach number in order
to establish whether the flow is laminar or turbulent. Then aerodynamic
coefficients can be computed and plotted. The second part of the code needs
geometry data for the specific fin to be studied computing its aerodynamic
coefficients and plot.

40

Software Tool Development

• TrimAnalysis.m

This file allows to evaluate the range of angle deflection requested to fins
to trim the vehicle at different angle of attacks as described in Chapter 2.

The code can be especially modified to set the flight conditions - Mach
number and altitude- in order to have deflection angle trim range for different
conditions. Once set the flight conditions, the code solves a non linear equation
to compute fin deflection angle that gives zero pitch moment around the center
of mass of the vehicle for different angles of attack.

4.2 Dynamics Submodule
• DynAero.m and DynPwd.m

These functions compute the system dynamics of the vehicle: DynAero.m
is used when the vehicle is controlled by the aerodynamic resultant produced
by the fins deflection while DynPwd.m is used when the vehicle is controlled
by regulating the thrust magnitude and its direction during powered landing.
These functions shall be used during optimization routine to compute discrete
system dynamics in each collocation point. Each function can be also be im-
plemented in algorithms using MATLAB Symbolic Toolbox. System dynamics
is computed using equations of motions in Chapter 2.

Inputs: Data vector, Control value.

Data vector collects the system design parameters which are fixed and given
as inputs of the entire Trajectory Optimization problem.
Control value is the value of fin deflection, thrust magnitude or thrust direction
computed for each single collocation point given by optimizer software during
optimization routine.

Outputs: System dynamics.

• DynAeroVariableControl.m and DynPwdVariableControl.m

These functions have been coded as the previous system dynamics functions

41

Software Tool Development

described above but they shall be used for trajectory propagation when control
time profile is known a priori. The system dynamics output of these functions
is then given as input to the MATLAB function ode45 with the function handle
for time and state vector and the timespan vector and the initial state vector
to propagate the trajectory.

4.3 Optimization Submodule
Chapter 3 illustrates the theory behind the formulation of an OCP applied to a
vehicle’s trajectory and how this problem is modeled to be solved using numeri-
cal methods combined with computational algorithms that exploit transcription
methods such as the Direct Collocation method. This leads to the definition of
an NLP, i.e. a constrained parametric non-linear optimization problem. The files
that make up this submodule contain the most important codes of the entire
software tool, as they allow the NLP defined for the optimization of the descent
and landing trajectory of the VLV to be solved. The strategy and methodology
used to write the necessary codes to solve the OCP depended on the initial choice
of implementing in the tool either a complete software package capable of directly
solving the optimization problem by transcribing the continuous problem into a
discrete problem, or integrating one that would only solve the NLP obtained after
the transcription had been performed independently by the tool. The choice fell
on the latter. In this way, the tool can be integrated with different transcription
methods so as to be as open and adaptable as possible.
The software chosen to solve the NLP is snOpt. SNOPT is a general-purpose
system for constrained optimization. It minimizes a linear or nonlinear function
subject to bounds and sparse linear or nonlinear constraints on the variables. It is
suitable for large-scale general nonlinear programs [26] like the one faced in this
thesis, of the form

min
x

f0(x) subject to l ≤

 x
f(x)
ALx

 ≤ u (4.1)

where x is the vector of the optimization variables the solver has to compute in
order to have the minimum value of the smooth scalar objective function f0(x)
without violating the vector of smooth non-linear constraints functions {fi(x)},
the sparse matrix AL of linear constraints and the lower and upper bounds fixed
by scalar vectors l and u. SNOPT has several interfaces that allow to formulate
problems in different formats. The interface A allows one to define in one user
routine the non-linear constraints functions and objective functions and to enter

42

Software Tool Development

arbitrary the linear and non-linear variables and functions. The B and C interfaces
are better from an efficiency point of view, but the snOptA interface is simpler to
integrate into the code and it makes it easier to modify the tool coding with a view
of future developments and improvements [27]. Below, it is shown the code where
SNOPT interface A is called to launch the optimization routine and a description
of the main data structures is provided.

1 [x_opt , F_result] = snopt (x0 , xlow , xupp , xmul , xstate , . . .
2 Flow , Fupp , Fmul , Fstate , . . .
3 user fun , . . .
4 ObjAdd , ObjRow , . . .
5 A, G, opt ions) ;

Figure 4.1: SNOPT Call Interface.

• Vector of the optimization variables x

This vector is made by the concatenation of the following data structures.

– The i-th state vector

x_state(i) =



rx(i)
rz(i)
vx(i)
vz(i)
θ(i)
θ̇(i)

mtot(i)


∀i ∈ {1, . . . , N} (4.2)

where N is the total number of collocation nodes. Note that mtot is a
state vector component only for the vertical landing phase of trajectory,
during aerodynamic descent it is constant because engines are off.

– The i-th control vector

x_control(i) =


uk(i)

...
un(i)

 ∀k ∈ {1, . . . , n}, ∀i ∈ {1, . . . , N} (4.3)

where N is the total number of collocation nodes and n is the total
number of control system parameters on the i-th collocation nodes. For

43

Software Tool Development

aerodynamic descent phase is n = 1 (fin deflection angle) and during
powered landing phase is n = 2 (thrust direction deflection and thrust
magnitude regulation).

– The variable
tcontrol = ttot (4.4)

where ttot is a control parameter for the total duration of the trajectory
and for the definition of timespan ∆t = tcontrol

N
of each segment between

two consequent collocation nodes.

Finally, the vector of the optimization variables is

x =



x_state(i)
...

x_state(N)
x_control(i)

...
x_control(N)

t_control


(4.5)

It is observed that the total length of this vector varies basing on which
trajectory phase is optimized. The initial guess for the vector of optimization
variables is x0. It is built rearranging the result from the trajectory propagation
made using guess starting point and control parameters time profile.
xlow,xupp are two distinct vectors that collects, respectively, the lower and
upper bounds for the vector of optimization variables x.

• Vector of objective and constraints functions F

This vector is made by the concatenation of the following data structures.

– The scalar objective function
f0(x) (4.6)

where x is the vector of optimization variables.

– The i-th dynamics constraints vector

ceq_dyn(i) =



rx(i + 1) − rx(i) − 0.5 · ∆t · (ṙx(i) + ṙx(i + 1))
rz(i + 1) − rz(i) − 0.5 · ∆t · (ṙz(i) + ṙz(i + 1))
vx(i + 1) − vx(i) − 0.5 · ∆t · (v̇x(i) + v̇x(i + 1))
vz(i + 1) − vz(i) − 0.5 · ∆t · (v̇z(i) + v̇z(i + 1))

θ(i + 1) − θ(i) − 0.5 · ∆t · (θ̇(i) + θ̇(i + 1))
θ̇(i + 1) − θ̇(i) − 0.5 · ∆t · (θ̈(i) + θ̈(i + 1))


(4.7)

44

Software Tool Development

∀i ∈ {1, . . . , N − 1}

Note that for powered landing phase there is an ulterior constraint function
defined for mtot. The label eq indicates that dynamics constraints are
defined as equality constraints. Each dynamics constraint is defined
between a couple of consequential collocation nodes.

– The i-th constraints vector on system control parameters

cineq_control_k(i) =
5(uk(i + 1) − uk(i)

∆t
− C

6
(4.8)

∀k ∈ {1, . . . , n}, ∀i ∈ {1, . . . , N − 1}

where C is a constant. For each k-th system control parameter, a con-
straints vector is defined between each couple of consequential collocation
nodes. The label ineq indicates that dynamics constraints are defined as
inequality constraints.

– The i-th constraints vector on general system parameters

cineq_system_j(i) =
5(sk(i + 1) − sk(i)

∆t
− C

6
(4.9)

∀j ∈ {1, . . . , S}, ∀i ∈ {1, . . . , N}

where s is a general system parameter for whom a constraint function
is defined on each collocation node, S is the total system parameters for
whom a constraint function is defined and C is a constant. The label ineq
indicates that dynamics constraints are defined as inequality constraints.
In this thesis work this kind of constraints is defined for the angle of
attack.

45

Software Tool Development

Finally, the vector of objective and constraints function is

F =



è
f0(x)

é
ceq_dyn(i)

...
ceq_dyn(N − 1)




cineq_control_k(i)
...

cineq_control_k(N − 1)
...

cineq_control_n(i)
...

cineq_control_n(N − 1)




cineq_system_j(i)
...

cineq_system_j(N − 1)
...

cineq_system_S(i)
...

cineq_system_S(N)





(4.10)

Flow,Fupp are two distinct vectors that collects, respectively, the lower and up-
per bounds for the vector of optimization variables F. For equalities constraints,
Flow and Fupp must both be set at 0, while for inequalities constraints, upper
bounds is set to 0 and lower is a function of the constant C.

• userfun

This function is assigned with the ObjCons.m function (presented below)
with the function handle for the vector of optimization variables x, in order to
compute the vector F and the Jacobian matrix of F with respect to x during
optimization routines.

• G

This is a structure made of two columns vectors that collect, respectively,
the rows and columns indexes of non-zero elements of the Jacobian matrix
of F with respect to the vector x, that is to say the sparsity structure of the
Jacobian matrix.

46

Software Tool Development

• xmul,xstate,Fmul,Fstate

These optional vectors are not provided as inputs to the optimization routine.
The mul vectors collect an estimation of Lagrangian multipliers„ while the
state vectors collect a set of initial state for x and F that give information
about a bound or a constraint being active or not.

• ObjAdd,ObjRow

The first one is a scalar that can be add to objective expression if it de-
pends from a fixed value. It is set to 0 in this thesis work. The second one
is a scalar to specify the objective function position in F vector. It is 1 by
default so this means that the first value of F is the objective function value.

• A

This is a sparse matrix that can be used to define linear constraints as a
sum to the non-linear ones. It is not used in this thesis work.

• xopt

The resulting vector from optimization routine. It collects the state vec-
tors and the control parameters of the optimized trajectory.

• Fresult

This vector collects the final objective scalar and the constraints functions
evaluation once the optimization routine is concluded.

The files MATLAB presented below constitute the Optimization submodule.

• ProblemStructure.m

The user should ideally provide SNOPT with all the gradients of vector
F with respect to the vector of optimization variables x because this makes
SNOPT faster and more efficient [28]. This was observed during the first
development stages of the software tool when the Jacobian matrix was not
provided to SNOPT, resulting in very slow and inefficient optimization rou-
tines due to the large scale of the problem. Thus, it resulted necessary to
analytically compute the Jacobian matrix instead of letting SNOPT numeri-
cally estimate it. To do so, MATLAB Symbolic Toolbox was used in order to
use computational capabilities to automatize the process. In fact, the entire
constraints functions vector F was written using symbolic variables and then

47

Software Tool Development

MATLAB command jacobian computed its Jacobian matrix with respect to the
vector of optimization variables x. The vector F and its Jacobian matrix
obtained with the MATLAB Symbolic Toolbox needed to be converted and
saved as a MATLAB function in order to be then numerically evaluated but, due
to their large scale, this operation required too much time. Time required was
in the order of units of hours which was considered too long. The solution to
this problem was to leverage the direct collocation method formulation. In
particular, two considerations were made:

– Each collocation node is independent from the others. This means that the
first derivative of a constraint expression defined on a certain collocation
node or on a certain couple of consequential collocation nodes is non-zero
only when computed with respect to those specific collocation nodes.

– Constraints of the same type have the same expression independently
from which collocation node they are defined on.

This allowed to:

– compute only one symbolic expression for each type of constraint function
and only one Jacobian matrix for each of them;

– save two MATLAB functions for each type of constraint function: one for
its expression and one for their Jacobian matrix;

– build the total symbolic Jacobian matrix in order to save its sparsity
structure.

This strategy produces more MATLAB functions but significantly smaller, in-
stead of only two but large scaled. This allows to reduce the time to save
them to units of minutes for total numbers of collocation points in the range
of 300 to 500 collocation nodes.

Note that for the aerodynamic descent phase module, in ProblemStructure.m
a MATLAB function for the objective function is not saved. Instead, it is
directly defined in ObjCons.m. On the contrary, for the powered landing
phase module, the MATLAB function for the objective function is provided by
ProblemStructure.m.

In conclusion, this file produces as output the MATLAB functions that need to
be numerically evaluated to create F and its Jacobian matrix and the sparsity
matrix, as showed in ObjCons.m. It is important to know that this file has to
be run only one time once the input design parameters, number of collocation
points and constraints formulations are fixed. They can be set at the beginning

48

Software Tool Development

of the file. Then different optimization routines can ben run several times
varying the initial guess and the the bounds of the problem in Optimizator.m.

• ObjCons.m

This function is recalled during optimization routines by SNOPT and it
is evaluated on the current vector of optimization variables x in order to com-
pute F, that contains the scalar objective function and the vector of constraints
functions, and its Jacobian matrix. To do so, MATLAB functions provided by
ProblemStructure.m are used in for routines with specific indexing strate-
gies that allow to build F respecting the structure described in 4.10 and its
Jacobian matrix.

• Optimizator.m

This file is the main file of each module and it is articulated in several
sections.

– SECTION 1: Mission data setting
Having a good initial guess to start the optimization routine for a non-
linear programming is very important because it really influences the
optimization results. Depending on the initial guess, an optimization
problem can be solved identifying the globally optimal solution in the
best case or fail in the worst one. Constraints make it all more difficult
because without the correct initial guess an optimization problem can
result infeasible even if it is correctly defined [29]. Furthermore, SNOPT
is a locally optimal solver which means that when it is used to solve
non-convex problems like the one of this thesis, it is able to find more than
one locally optimal solution depending on the initial guess from whom it
starts the optimization routines.
The strategy adopted is to compute different initial guesses in order to
launch different optimization routines and analyze different solutions for
the same problem. The best initializations for trajectory optimization
usually require some problemspecific knowledge, but there are a few
general approaches that can be useful. In this way, initialization is more of
an art than a science. Considering how the descent and landing problem
has been modeled in this thesis, first aerodynamic descent trajectory is
optimized and its final condition is fixed as the initial condition for the
powered landing trajectory. The initial guesses for aerodynamic descent
are computed propagating the vehicles dynamics on the collocation nodes
from different initial positions, for the same total time and under the
same time profile of the control parameters randomly generated a priori.

49

Software Tool Development

It is assumed that the vehicle is flying at a fixed value of Mach = 0.8
when it starts the lower atmosphere aerodynamic descent at a maximum
altitude of 20 km. The user shall provide:

∗ Total number N of collocation nodes to use.
∗ Total number n of initial guesses to be randomly generated.
∗ Fixed target landing coordinates.
∗ Range for initial flight conditions and position values.
∗ Range for total time propagation and for control parameters values.
∗ Fixed set of input design parameters.

The initial guesses for the powered landing are computed propagating the
vehicle dynamics on the collocation points from the fixed initial condition
under different time profiles of the control parameters generated a priori.
The user shall provide:

∗ Total number N of collocation nodes to use.
∗ Total number n of initial guesses to be randomly generated.
∗ Fixed initial conditions saved form previous aerodynamic descent

optimization.
∗ Range for total time propagation and for control parameters values.
∗ Fixed set of input design parameters.

– SECTION 2: Iterative guess propagation and Optimization
routine
In this section two nested for routines are coded. For each initial altitude
and flight path angle of the vehicle, different initial guesses propagation
are ran varying the other parameters such as downrange distance from the
landing target and initial state conditions of the vehicle. Then, for each
different initial guess, the optimization routine is performed and all the
resulting optimal solutions x_opt are stored to be subsequently analyzed.
In this section SNOPT routine is called as showed in figure 4.1 and user
can set SNOPT options and F and x lower and upper bounds.

– SECTION 3: Optimization Result Analysis
In this section, optimization routines results are analyzed. After exam-
ining SNOPT exit conditions in term of feasibility and optimality, the
trajectory time profile of vehicle state variables and control parameters
can be plot to further analyze it.

50

Software Tool Development

– SECTION 4: Post Processing
In this section, the best trajectory optimization result selected from section
3 is post processed. Post processing comprehends interpolation of the
discrete optimization results in order to have continuous time profiles,
according to the interpolation order used to model direct collocation
transcription. It also comprehends error analysis due to the accuracy of
transcription process as described in 3.

51

Chapter 5

Software Tool Testing

This chapter describes the testing of the software tool conducted to verify its
operation and potential. First, the choices and procedures followed to define the
vehicle model to be used and the trajectory optimization settings are described.
It should be noted, as already explained in this document, that the software was
developed from scratch and separately from any mission design program. Therefore,
every quantitative or qualitative choice regarding the vehicle or mission scenario
was made based on knowledge derived by the literature referred to the missions
already completed by operational vehicles such as Falcon 9.

5.1 Case study
In the context of the new Space Economy, the race to develop reusable vehicles has
led to numerous research projects in this field. Among these, one that stands out is
the project launched in 2016 by German Aerospace Centre DLR called ENTRAIN
(European Next Reusable Ariane) which has the aim of investigating recovery
methods on a system level for two-stage-to-orbit launch vehicles with a reusable
winged or no-winged first stage and an expendable upper stage to be operated
within a European context. One of the outputs produced during this research
project is a comparative analysis of different first stages of launchers developed
using MDO (Multidisciplinary Optimization Process) with high-level mission and
design requirements and parameters as input [30]:

• 7000 kg + 500 kg margin payload to Geostationary Transfer Orbit (GTO) of
250 km × 35786 km × 6° (standard Ariane 5 GTO) via a LEO parking orbit
of 140 km × 330 km × 6°;

• Launch from Centre Spatial Guyanais (CSG), Kourou;

• Two Stage to Orbit (TSTO) configurations;

52

Software Tool Testing

• Same propellant combination in both stages;

• Same engines in both stages with exception of different nozzle expansion ratios.

With these inputs, various solutions were examined, as shown in Figures 5.1,
obtained by combining various design degrees of freedom such as the propellant
used, the type of engine cycle (staged combustion or gas generator), and the ∆v
deliverable by the second stage. Each of these solutions is valid depending on the

Figure 5.1: Sketches of investigated reusable first stages. See [30]

specific criterion used to evaluate it. In particular, launchers that use hydrogen
as fuel have proven to be better in terms of performance, such as specific impulse,
while those using hydrocarbons have higher thrust-to-weight ratios [31]. To test the
trajectory optimization software tool, the first of the models shown in Figures 5.1
was chosen. Table 5.1 lists all the high-level design parameters used to define the
specific model of the first stage analyzed and provided as input to the software.

In parallel with defining the input design parameters, it was also necessary to
define mission requirements that identified the mission scenario for aerodynamic
descent and powered landing. The mission requirements used are listed below:

• LANDING TARGET
The landing target has been set on a vertical landing platform, the ECEF
coordinates of which are provided to the software and shown in table 5.2.

• INITIAL FLIGHT CONDITIONS
Constant fixed values for Mach and flight path angle are defined to compute
initial velocity:

Mach0 = 0.8, FPA0 = −50o

53

Software Tool Testing

Table 5.1: Design parameters input set for software tool testing

Design parameters input set

M0 = 59,875 · 103 Kg Md + Mprop, total initial mass

Md = 47,9 · 103 Kg First stage dry mass

Mprop = 11,975 · 103 Kg Initial propellant mass, 20% of M0

L = 60 m First stage length

d = 5.4 m First stage diameter

cfin = 3 m Fin aerodynamic mean chord

bfin = 5 m Fin span

XLEfin
= 45 m Fin leading edge longitudinal position w.r.t the

base, at 3/4 of L

CoG = 15 m Centre of gravity longitudinal position w.r.t. the
base, at 1/4 of L

Ae = 2.06 m2 Exit nozzle area for expansion ratio at s.l.

Isp = 405.4 s Single engine specific impulse in vacuum

Tsl = 782 kN Single engine thrust at sea level

Table 5.2: Landing target coordinates in ECEF

Landing Target coordinates

−25.179189 deg Longitude

36.994582 deg Latitude

72 m Altitude

54

Software Tool Testing

VX0 = M0asnd · cos(FPA0), VZ0 = M0asnd · sin(FPA0)

• INITIAL POSITION FOR AD PHASE
The exact position in terms of cross-range distance and altitude is not known
a priori so a range is defined for both of them, assuming that the vehicle at the
end of the re-entry mission in high atmosphere is behind the landing target
and moving forward:

−9 ≤ X0 ≤ −3 Km

10 ≤ Z0 ≤ 20 Km

• FINAL CONDITIONS FOR PL PHASE
The primary mission requirement is the one relative to the final state vector
at landing that has to guarantee a specific attitude of the vehicle, in a specific
position (position is referred to the point mass vehicle in ENU reference frame)
and with a specific velocity:

XLand = ZLand = 0 m

VXLand
= VZLand

= 0 m/s

θLand = −π

2
θ̇Land = 0 rad/s

It is important to observe that in order to not over-constraint the system
making difficult for the optimization solver to find a solution, a little tolerance
margin is used for tolerances in the order of the unit of meter and meter per
second for position and velocity and in the order of unit of degree for attitude.

• FINAL CONDITIONS FOR AD PHASE
Knowing the final state of the state vector and having set the design parameters
for the vehicle model, tuning was performed to identify the range of position
and velocity in which the vehicle must be at the beginning of the powered
landing phase in order to be able to reach the final conditions. Considering that
the initial conditions of the vehicle at the beginning of the powered landing
and the final conditions at the end of the aerodynamic descent must coincide,
this range was used to define the constant bounds of the vehicle state variables
on the last collocation node of the aerodynamic descent phase. The critical
state variables to be controlled at the final node of aerodynamic descent are
cross-range distance, altitude and flight path angle. However, vertical velocity
tends to always reach its terminal value around 300 m/s during aerodynamic
descent and since it was observed to be always manageable by the successive

55

Software Tool Testing

powered breaking, the flight path angle bounds are instead formulated as
horizontal velocity bounds.

−300 ≤ Xf ≤ −1000 m

4000 ≤ Zf ≤ 7000 m

70 ≤ VXf
≤ 90 m/s

This last consideration on the final conditions for AD phase allowed to fix the
cross-range distance to be used in cost function evaluation for aerodynamic descent
phase at XT = −800 m.

Once the design parameters for modeling the vehicle and mission requirements
had been defined, the values necessary for evaluating the constraints were identified
in order to set up trajectory optimization as summarized in tables 3.1 and 3.2. In
a general context of software application in an iterative design flow, these values
must be decided downstream of mission and system requirements derived from
previous iterations of the mission and system design process. Alternatively, they
can be set downstream of a tuning process that guarantees an evaluation of the
constraints such that the optimization problem is defined within a field of feasible
solutions. This is the case in this thesis; this method must be adopted, ensuring
that the tuning of the constraints is as consistent as possible with the technological
capabilities of the real physical system. Table 5.3 contains the values used to define
path constraints and constant bounds during the AD phase and PL phase for
control systems and table 5.4 contains the values used to define constant bounds
for system states during the AD phase and PL phase.

Finally, it is important to make two observations. The first concerns the angle of
attack range, which is limited to ± 10 degrees. As already explained in chapter 2,
this limitation is due to the restricted validity range of the aerodynamic relationships
used. However, in addition to this, the limitation of the permissible range for
the angle of attack with respect to re-entry into the upper atmosphere was also
chosen with a view to reducing aerodynamic loads, since air density is greater in
the lower atmosphere, and finally to avoid stalling on the fins and ensure a stable
aerodynamic force that allows control of the vehicle. The second observation is
related to the first one and concerns the flight path angle. In fact, no bound or
constraint was defined for the flight path angle to control its evolution over time.
This was not considered necessary because the flight path angle is calculated as the
difference between the pitch angle and the angle of attack, and considering that
the angle of attack is restricted to the range ± 10 degrees and that the pitch angle
is constrained to tend towards -90 degrees of attitude, the flight path angle also
‘naturally’ follows the same evolution.

56

Software Tool Testing

Table 5.3: Path constraints and constant bounds definition for control systems

Control systems path constraints

ωact = 20 deg/s Max fin actuation angular velocity

Ωβ,act = 10 deg/s Max TVC actuation angular velocity

Ṫ% = 13% 1/s Max thrust magnitude regulation rate, 100 kN/s
Control systems constant bounds

δmax = 13.5 deg Max fin deflection

δmin = −13.5 deg Min fin deflection

βT V Cmax = 8 deg Max TVC deflection

βT V Cmin
= −8 deg Min TVC deflection

T%max = 0.4 Max % of total thrust magnitude

T%min
= 1 Min % of total thrust magnitude

tminAD
= 30 s Min total time for aerodynamic descent trajectory

tmaxAD
= 100 s Max total time for aerodynamic descent trajectory

tminP L
= 10 s Min total time for powered landing trajectory

tmaxP L
= 60 s Max total time for powered landing trajectory

5.2 Results
The methodology for finding solutions to the problem of optimizing the trajectory
of the first stage of a launch vehicle is described in detail in chapters 3, 4 above and
in the previous section, which illustrates the optimization setup for the specific case
study. The results presented below constitute two distinct solutions to the same
trajectory optimization problem for a first stage of a launch vehicle that performs
the final aerodynamic descent and powered landing. Both solutions were found
using a number of collocation nodes equal to N = 300.

The two proposed solutions are for two slightly different mission scenarios and
are designed to meet the need for a trajectory optimization software tool capable of
completing the soft vertical landing mission for different initial conditions resulting

57

Software Tool Testing

Table 5.4: System states constant bounds

System states constant bounds

AD phase PL phase

Min Max Min Max

X0 0 Xf 20

Zf Z0 0 Zf

0 VX0 −20 m/s VXg

−500 m/s VZ0 VZf
0

−π
2 θ0 −π θf

−5 °/s 5 °/s −15 °/s 15 °/s

from the previous phase of re-entry into the upper atmosphere. For this reason,
the two solutions presented below refer respectively to a first case in which the
vehicle in initial conditions is at a cross-range distance closer to the target and at a
lower altitude, and to a second case in which the cross-range distance and altitude
are greater. First case is shown in table 5.5, while second case is shown in table
5.6. From the analysis of the results collected and presented in the following two

Table 5.5: Solution A

Time Pos X Pos Z Vel X Vel Z Pitch Pitch rate

tAD0 -4 Km 13.9 Km 150 m/s -180 m/s -60° 0 °/s
tADf

-540 m 5.9 Km 70 m/s -306 m/s -79° -4.5 °/s
tP L0 -540 m 5.9 Km 70 m/s -306 m/s -79° -4.5 °/s
tP Lf

-1.8 m 2 m 0.01 m/s -10 m/s -90.5° 0 °/s

subsections, several conclusions can be drawn. As expected, the total time required
to complete the aerodynamic descent and perform the vertical landing is 80 s for
case A, compared to 95 s required in case B, since in the second case the distances
to be covered are greater. In terms of the division of the total mission into the two
individual phases, the time required to complete the vertical landing trajectory
is similar for both cases and equal to approximately 40 s, while the aerodynamic

58

Software Tool Testing

Table 5.6: Solution B

Time Pos X Pos Z Vel X Vel Z Pitch Pitch rate

tAD0 -6.7 Km 20 Km 150 m/s -180 m/s -56° 0 °/s
tADf

-800 m 4.7 Km 75 m/s -324 m/s -68° -4.9 °/s
tP L0 -800 m 4.7 Km 75 m/s -324 m/s -68° -4.9 °/s
tP Lf

-2 m 0 m 0.01 m/s -8 m/s -89° 0 °/s

descent phase is longer in the second case. The reason for this can be traced back
to what was previously mentioned regarding the ability to find solutions for the
vertical landing phase only for a certain range of state values at the beginning of
the powered landing phase; therefore, it follows that aerodynamic control in the
lower atmosphere can be a tool to cope with any dispersions in the state of the
vehicle coming from re-entry into the upper atmosphere that would not allow to
reach at the end of the aerodynamic phase the conditions required for a successful
powered vertical landing.

The second interesting consideration is related to the previous one and concerns
the amount of propellant mass needed to complete the vertical landing. This
value was used by the optimization software tool as a cost function, therefore the
calculated propellant masses are minimized. For solution A, the propellant mass
used is 8.1 tons, while for solution B it is 8.5 tons. As expected, the values are
practically equal given the similarity of the initial conditions for both phases of
powered landing. Furthermore, these values comply with the upper limit imposed
by the initial estimate made for the propellant mass of 11.9 tons with a surplus of
approximately 30% that can be used as a safety margin. Comparing the results
obtained for the aerodynamic and powered landing phases, it can be seen that
aerodynamic control is generally able to ensure a more stable evolution of the state
variables trajectory, unlike control via TVC and thrust magnitude regulation. This
is mainly due to the fact that control during the powered landing phase must be
much faster in order to cope with a more demanding task that requires specific final
state conditions to be achieved with a reduced margin of maneuver in terms of time
and space. Comparing the two overall solutions, however, it appears that solution
B has less stable control time profiles with oscillatory characteristics. This suggests
that there is room for improvement in solution B, which could be achieved by
investigating possible modifications to the design of the control systems themselves
to enhance them in mission scenarios where the initial cross-range distance and
altitude are greater.

59

Software Tool Testing

5.2.1 Solution A
The results for solution A are presented below. Figures 5.2 - 5.20 illustrate the
results of trajectory optimization interpolated between collocation nodes,
separately for aerodynamic descent (5.2-5.10) and powered landing (5.11-5.20).
Figures 5.21 - 5.25 illustrate the total trajectory optimization solution (blue
is aerodynamic descent and red is powered landing).

Figure 5.2: Cross-range in AD phase Figure 5.3: Altitude in AD phase

Figure 5.4: Horizontal velocity in AD
phase

Figure 5.5: Vertical velocity in AD
phase

60

Software Tool Testing

Figure 5.6: Pitch angle in AD phase Figure 5.7: Pitch rate in AD phase

Figure 5.8: Angle of attack in AD
phase

Figure 5.9: Flight path angle in AD
phase

61

Software Tool Testing

Figure 5.10: Single fin deflection for aerodynamic control

Figure 5.11: Cross-range in PL phase Figure 5.12: Altitude in PL phase

62

Software Tool Testing

Figure 5.13: Horizontal velocity in
PL phase

Figure 5.14: Vertical velocity in PL
phase

Figure 5.15: Pitch angle in PL phase Figure 5.16: Pitch rate in PL phase

Figure 5.17: Angle of attack in PL
phase

Figure 5.18: Flight path angle in PL
phase

63

Software Tool Testing

Figure 5.19: Thrust magnitude as %
of total thrust

Figure 5.20: Thrust deflection angle
by TVC

Figure 5.21: Velocity time profile for solution A

64

Software Tool Testing

Figure 5.22: Pitch angle and pitch rate time profile for solution A

65

Software Tool Testing

Figure 5.23: AoA and FPA time profile for solution A

66

Software Tool Testing

Figure 5.24: Total vehicle mass profile for solution A

Figure 5.25: Trajectory position visualization for solution A

67

Software Tool Testing

5.2.2 Solution B
The results for solution B are presented below.

Figures 5.26 - 5.44 illustrate the results of trajectory optimization interpo-
lated between collocation nodes, separately for aerodynamic descent (5.26-5.34)
and powered landing (5.35-5.44).

Figures 5.45 - 5.49 illustrate the total trajectory optimization solution (blue
is aerodynamic descent and red is powered landing).

Figure 5.26: Cross-range in AD phase Figure 5.27: Altitude in AD phase

Figure 5.28: Horizontal velocity in
AD phase

Figure 5.29: Vertical velocity in AD
phase

68

Software Tool Testing

Figure 5.30: Pitch angle in AD phase Figure 5.31: Pitch rate in AD phase

Figure 5.32: Angle of attack in AD
phase

Figure 5.33: Flight path angle in AD
phase

69

Software Tool Testing

Figure 5.34: Single fin deflection for aerodynamic control

Figure 5.35: Cross-range in PL phase Figure 5.36: Altitude in PL phase

70

Software Tool Testing

Figure 5.37: Horizontal velocity in
PL phase

Figure 5.38: Vertical velocity in PL
phase

Figure 5.39: Pitch angle in PL phase Figure 5.40: Pitch rate in PL phase

Figure 5.41: Angle of attack in PL
phase

Figure 5.42: Flight path angle in PL
phase

71

Software Tool Testing

Figure 5.43: Thrust magnitude as %
of total thrust

Figure 5.44: Thrust deflection angle
by TVC

Figure 5.45: Velocity time profile for solution B

72

Software Tool Testing

Figure 5.46: Pitch angle and pitch rate time profile for solution B

73

Software Tool Testing

Figure 5.47: AoA and FPA time profile for solution B

74

Software Tool Testing

Figure 5.48: Total vehicle mass profile for solution B

Figure 5.49: Trajectory position visualization for solution B

75

Software Tool Testing

5.2.3 Error analysis

Error analysis is referred to the error estimation based on how well the candidate
trajectory satisfies the system dynamics between the collocation points as already
explained in chapter 3. To evaluate this, the absolute value of the difference between
the system dynamics interpolated on the collocation nodes and the dynamics
evaluated as first derivative of the states interpolated on the collocation nodes
was calculated. If this error is small, then it means that the dynamics of the
system are well respected between the collocation nodes and therefore the nonlinear
program is an accurate representation of the original trajectory optimization
problem. Furthermore, the assessment of this error is also an indication of the
feasibility of the solution. For brevity, the results of the error evaluation for each
state variable are not reported, but only some examples. The first two in Figures
5.50 and 5.51 are relating to horizontal velocity and acceleration, and the last two
in Figure 5.52 and 5.53 are relating to the pitch angular rate and acceleration. The
error trend for each state variable reflects the examples shown here, confirming an
error associated with velocities and accelerations lower than 0.1 m/s and 0.1 m/s2,
respectively; and for angular pitch rates and accelerations, an error lower than
1 deg/s and 1 deg/s2, respectively. The error time profile in figure 5.53 to the
powered landing phase of solution B and is proposed here because it is the only
case found for all state variables of both solutions provided that slightly exceeds
the maximum threshold considered acceptable. However, this is limited to only a
few initial moments of the trajectory, so the solution has been retained as valid.
The problem can be solved by refining the solution, for example by increasing the
number of collocation nodes in that initial time frame to make the NLP more
accurate.

Figure 5.50: Error for horizontal ve-
locity

Figure 5.51: Error for horizontal ac-
celeration

76

Software Tool Testing

Figure 5.52: Error for pitch angular
rate

Figure 5.53: Error for pitch accelera-
tion rate

77

Chapter 6

Conclusion

The primary objective of this thesis, to develop a software tool for optimizing the
trajectory of a first stage launch vehicle capable of powered vertical landing, can
be considered achieved. To achieve this goal, several sub-goals were completed.
These include an analysis of the current state of the art in the field of reusable
vehicles and, specifically, strategies for recovering the first stages of a launch vehicle,
which then allowed for the preliminary modeling of a vehicle that simulated the
first stage of a launch vehicle in order to optimize its trajectory. The software
tool developed in MATLAB was then efficiently integrated not only with the SNOPT
solver for optimization but also with functions that allow the user to conduct
aerodynamic analyses of the vehicle and propagate its dynamics. The results
produced allow to evaluate the performance required of the control systems, fins
and TVC, respectively. Furthermore, the results can be used to assess which flight
conditions must be achieved in terms of position and speed in order to complete the
vertical landing based on the mission scenario defined in the input. Consequently,
the trajectory optimized in terms of both control and states systems constitutes a
nominal reference that can be used in a possible iterative design cycle as feedback
for verifying the system and mission designs provided as input to the optimizer.
Future developments of the software may focus on two main areas. The first relates
to the engineering modeling of the vehicle, which can be improved by integrating
aerodynamic databases, mass models, and geometries with a view to integrating the
software to perform mission analysis in a complete and iterative design flow. The
other refers to optimization and, in particular, to the optimization algorithm, which
can be improved by using more accurate methods such as the Hermite-Simpson
direct collocation method or by increasing the number of collocation nodes to refine
the grid. These changes shall be made considering that, while the accuracy of the
optimization increases, the software tool becomes more time-consuming to use.

78

Bibliography

[1] Pavan Daswani et al. Space: The Dawn of a New Age. Report. Disponibile su:
https://www.citigroup.com/global/insights/space_20220509 (o altro
URL stabile). New York: Citi Global Perspectives & Solutions (Citi GPS),
May 2022 (cit. on p. 2).

[2] Paolo Baiocco. «Overview of reusable space systems with a look to technology
aspects». In: Acta Astronautica 189 (Dec. 2021), pp. 10–25. doi: 10.1016/j.
actaastro.2021.07.039. url: https://doi.org/10.1016/j.actaastro.
2021.07.039 (cit. on pp. 2, 3, 5).

[3] Quantum News. «Space Technology & Energy: Reusable Rockets and the New
Space Race: Lowering the Barriers to Orbit – A Commercial Space Revolution».
In: Quantum Zeitgeist (Mar. 2025). url: https://quantumzeitgeist.com/
space-technology/ (cit. on p. 2).

[4] B.N. Suresh and K.Sivan. Integrated Design for Space Transportation System.
Springer, 2015 (cit. on p. 8).

[5] J. Wilken and S. Stappert. «Comparative analysis of European vertical
landing reusable first stage concepts». In: CEAS Space Journal 17.1 (2025),
pp. 113–130 (cit. on p. 8).

[6] Tamas Bykerk. «A standard model for the investigation of aerodynamic
and aerothermal loads on a re-usable launch vehicle». In: Aerospace Europe
Conference 2023 - 10th EUCASS - 9th CEAS. German Aerospace Center
(DLR). Goettingen, Germany, 2023 (cit. on pp. 10, 11).

[7] Marco Sagliano, Ansgar Heidecker, José Macés Hernández, Stefano Fari,
Markus Schlotterer, Svenja Woicke, David Seelbinder, and Etienne Dumont.
«Onboard Guidance for Reusable Rockets: Aerodynamic Descent and Powered
Landing». In: (2021) (cit. on p. 11).

[8] Michael Szmuk, Behçet Açıkmeşe, Andrew W. Jr. Berning, and Geoffrey
Huntington. «Successive Convexification for Fuel-Optimal Powered Landing
with Aerodynamic Drag and Non-Convex Constraints». In: AIAA Guidance,

79

https://www.citigroup.com/global/insights/space_20220509
https://doi.org/10.1016/j.actaastro.2021.07.039
https://doi.org/10.1016/j.actaastro.2021.07.039
https://doi.org/10.1016/j.actaastro.2021.07.039
https://doi.org/10.1016/j.actaastro.2021.07.039
https://quantumzeitgeist.com/space-technology/
https://quantumzeitgeist.com/space-technology/

BIBLIOGRAPHY

Navigation, and Control Conference. San Diego, California, USA, Jan. 2016
(cit. on p. 11).

[9] Anett Krammer, Luc Blecha, and Marc Lichtenberger. «Fin actuation, thrust
vector control and landing leg mechanisms design for the RETALT VTVL
launcher». In: CEAS Space Journal 14 (2022), pp. 577–591 (cit. on p. 12).

[10] Laura Sopegno, Patrizia Livreri, Margareta Stefanovic, and Kimon P. Valava-
nis. «Thrust Vector Controller Comparison for a Finless Rocket». In: Article
(2022) (cit. on p. 13).

[11] Lorenzo Vallini. «Static and Dynamic Analysis of the Aerodynamic Stability
and Trajectory Simulation of a Student Sounding Rocket». Relatori: Prof. Luca
D’Agostino, Ing. Christian Bach. Corso di Laurea Magistrale in Ingegneria
Aerospaziale. Pisa, Italy: Università di Pisa, Facoltà di Ingegneria, 2014 (cit.
on pp. 15, 17).

[12] R. Galejs. Wind instability | What Barrowman left out. Retrieved 14 May
2009. 2009 (cit. on pp. 15, 17).

[13] Alice De Oliveira. «Guidance and Control System Design for Reusable Launch
Vehicle Descent and Precise Landing». Doctoral Dissertation. Milano, Italia:
Politecnico di Milano, Department of Aerospace Science and Technology, 2023
(cit. on p. 18).

[14] NASA Glenn Research Center. Shape Effects on Drag. National Aeronautics
and Space Administration (NASA). url: https://www1.grc.nasa.gov/
beginners-guide-to-aeronautics/shape-effects-on-drag/ (cit. on
p. 18).

[15] G. Fasano. Modeling and Optimization in Space Engineering. Università di
Torino. Lectures slides. 2023-24 (cit. on p. 24).

[16] FICO. FICO Xpress Optimization Suite: Overview. url: https://www.fico.
com/fico-xpress-optimization/docs/dms2021-01/overview.html (cit.
on p. 26).

[17] wngaw. Linear Regression. url: https : / / wngaw . github . io / linear -
regression/ (cit. on p. 26).

[18] M. Vahidi, N. Abar, S. Farokhi, and M. Soltanpour. «Optimal control of a
class of nonlinear systems with time-varying state constraints». In: Automatica
91 (2018), pp. 235–242 (cit. on p. 27).

[19] João Luiz da Silva, Marcelo Messias, and Eduardo Jesus de Pinho. «Dynamic
Optimal Control Problem of the Nonhomogeneous Heat Equation with State
Constraint». In: Journal of Optimization in Industrial Engineering 16.2 (2023),
pp. 293–301 (cit. on p. 28).

80

https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/shape-effects-on-drag/
https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/shape-effects-on-drag/
https://www.fico.com/fico-xpress-optimization/docs/dms2021-01/overview.html
https://www.fico.com/fico-xpress-optimization/docs/dms2021-01/overview.html
https://wngaw.github.io/linear-regression/
https://wngaw.github.io/linear-regression/

BIBLIOGRAPHY

[20] J. T. Betts. «Survey of numerical methods for trajectory optimization». In:
Journal of Guidance, Control, and Dynamics 21.2 (1998), pp. 193–207 (cit. on
p. 28).

[21] Matthew Kelly. «An Introduction to Trajectory Optimization: How to Do
Your Own Direct Collocation». In: 59 (2017), p. 859 (cit. on p. 29).

[22] Lucas da Silveira Nascimento, Lídia Nayara de Souza Mota, Rômulo Cezar
da Costa, Jaiane da Silva Gomes, Ana Célia de Souza Pires, and Antônio
Lúcio Santos Pires. «Direct Collocation Method for Solving Optimal Control
Problems». In: O Cenário da Inovação Tecnológica na Sociedade Brasileira
2. Ed. by Lídia Nayara de Souza Mota, Rômulo Cezar da Costa, Antônio
Lúcio Santos Pires, Jaiane da Silva Gomes, Lucas da Silveira Nascimento,
and Ana Célia de Souza Pires. Editora Científica, 2023, pp. 257–272 (cit. on
p. 30).

[23] Matthew Kelly. «An Introduction to Trajectory Optimization: How to Do
Your Own Direct Collocation». In: 59 (2017), p. 860 (cit. on p. 31).

[24] Matthew Kelly. «An Introduction to Trajectory Optimization: How to Do
Your Own Direct Collocation». In: 59 (2017), pp. 865–866 (cit. on p. 32).

[25] Ki-Wook Jung, Sang-Don Lee, Cheol-Goo Jung, and Chang-Hun Lee. Model
Predictive Guidance for Fuel-Optimal Landing of Reusable Launch Vehicles.
arXiv preprint. May 2024. arXiv: 2405.01264 [eess.SY] (cit. on p. 34).

[26] Philip E. GILL, Elizabeth WONG, Walter MURRAY, and Michael A. SAUN-
DERS. «User’s Guide for SNOPT Version 7.7: Software for Large-Scale
Nonlinear Programming». In: (Mar. 2021), p. 4 (cit. on p. 42).

[27] Philip E. GILL, Elizabeth WONG, Walter MURRAY, and Michael A. SAUN-
DERS. «User’s Guide for SNOPT Version 7.7: Software for Large-Scale
Nonlinear Programming». In: (Mar. 2021), p. 4 (cit. on p. 43).

[28] Philip E. GILL, Elizabeth WONG, Walter MURRAY, and Michael A. SAUN-
DERS. «User’s Guide for SNOPT Version 7.7: Software for Large-Scale
Nonlinear Programming». In: (Mar. 2021), p. 16 (cit. on p. 47).

[29] Matthew Kelly. «An Introduction to Trajectory Optimization: How to Do
Your Own Direct Collocation». In: 59 (2017), pp. 849–904 (cit. on p. 49).

[30] Jascha Wilken and Sven Stappert. «Comparative analysis of European vertical
landing reusable first stage concepts». In: CEAS Space Journal 17 (1 2024).
Published online: 17 April 2024, pp. 113–130. doi: 10.1007/s12567-024-
00549-9. url: https://doi.org/10.1007/s12567-024-00549-9 (cit. on
pp. 52, 53).

81

https://arxiv.org/abs/2405.01264
https://doi.org/10.1007/s12567-024-00549-9
https://doi.org/10.1007/s12567-024-00549-9
https://doi.org/10.1007/s12567-024-00549-9

BIBLIOGRAPHY

[31] Martin Sippel and Jascha Wilken. «Selection of propulsion characteristics for
systematic assessment of future European RLV-options». In: CEAS Space
Journal 17 (1 2025). Published online: 18 September 2024, pp. 89–111. doi:
10.1007/s12567-024-00564-w. url: https://doi.org/10.1007/s12567-
024-00564-w (cit. on p. 53).

82

https://doi.org/10.1007/s12567-024-00564-w
https://doi.org/10.1007/s12567-024-00564-w
https://doi.org/10.1007/s12567-024-00564-w

	List of Tables
	List of Figures
	Acronyms
	The Research Problem
	Introduction: The New Space Industry of Reusable Spacecrafts
	Mission Context: Recovery and Landing Strategy for a First Stage Vehicle
	Objective: Vertical Landing Trajectory Optimization

	Engineering Modeling for Vertical Landing Vehicle
	Vehicle Geometry Model
	Aerodynamics control surfaces: the planar fins
	Thrust Vector Control system

	Vehicle Aerodynamics Model
	Equations of Motion

	Trajectory Optimization
	The Optimal Control Problem
	The Direct Collocation Method
	Trajectory Optimization for Vertical Landing First Stage Vehicle

	Software Tool Development
	Aerodynamics Submodule
	Dynamics Submodule
	Optimization Submodule

	Software Tool Testing
	Case study
	Results
	Solution A
	Solution B
	Error analysis

	Conclusion
	Bibliography

