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Abstract

The study of Near-Earth asteroids (NEAs) and potential interplanetary transfers to them is crucial
for exploration, the extraction of resources useful to humanity and planetary defence. Indeed, their
proximity to Earth, in addition to making them accessible via relatively simple trajectories, turning
them into a potential resource for humanity, can also pose a threat due to potential collisions with
the planet. Regarding this latter aspect, asteroid 2024 YR4, discovered in December 2024, has
attracted particular interest in recent months due to its orbit and initial probability of collision
with Earth. To date, the possibility of an impact between the planet and the asteroid has been
ruled out, although a minimal possibility of collision with the Moon remains.
The purpose of this thesis is to research and analyse trajectories toward asteroid 2024 YR4 using
indirect methods, with the goal of identifying solutions that allow for a transfer with minimal
propellant consumption. The spacecraft under consideration has an initial mass of 1000 kg and is
equipped with a low-thrust electric propulsion system. Specifically, the thesis focuses on the study
of both direct trajectories and those involving Earth flyby. As the results show, flyby solutions are
those that allow for the greatest fuel savings, since they effectively exploit the Earth’s gravitational
field. Among the solutions analysed, which envisage a mission duration of between 3 and 4.5 years,
those with an arrival date prior to the possible impact with the Moon on December 22, 2032,
are of particular interest. The optimization was performed using a Fortran code provided by the
Polytechnic of Turin.
After introducing the basic concepts related to asteroids, orbital mechanics and space propulsion,
the thesis presents the optimal control theory and the mathematical model adopted. In the final
part, the solutions obtained are illustrated, analysed and compared in detail.
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Chapter 1

Introduction

Studying space trajectories toward Near-Earth Asteroids is essential for both exploration and plan-
etary defence. NEAs are a potential resource, both for the materials they yield and because they
can be used as intermediate body for long-duration missions into deep space. Beyond being a re-
source, however, due to their close proximity to Earth, these asteroids can be a threat to planetary
security. It is therefore useful to study these objects to assess and mitigate potential impacts with
both Earth and its natural satellite, the Moon.

In the past decades, interest in NEAs has grown considerably among the scientific community,
driven by technological development and the need to discover adequate prevention and defence
strategies. To date, numerous missions to near-Earth objects have been conducted. Among these
are OSIRIS-REx, which was commissioned to obtain a sample from 101955 Bennu, and its suc-
cessor, OSIRIS-APEX, which will study the physical changes of the asteroid Apophis after its
close pass by Earth in 2029. Other missions of particular interest are DART, which was designed
to test a method of planetary defence against near-Earth objects, and DAWN, a retired probe
that was launched to explore the protoplanets Vesta and Ceres. Together with other missions and
studies, these expeditions represent the growing interest in asteroid exploration.

In recent months, the asteroid 2024 YR4 has attracted particular attention. It was discovered on
December 27, 2024, following a close approach to Earth. Initially, due to the limited precision with
which its orbital parameters were known, a minimal probability of impact with the planet was
predicted. Today, following numerous observations, it has been concluded that the risk of collision
with Earth has been ruled out, while a minimal probability of impact with the Moon remains.

1.1 Thesis objective
The objective of this thesis was to investigate possible space trajectories toward asteroid 2024 YR4
with a satellite of initial mass 1000 kg using electric propulsion. The solutions were found using an
indirect optimization method implemented in a Fortran code. Initially, the focus was on studying
direct trajectories without considering constraints on the arrival date. Following the analysis and
observation of the direct solutions, trajectories exploiting an Earth flyby were studied to conserve
propellant, thereby reducing costs in terms of ∆V . Finally, solutions with earlier departure dates
were sought so that, for a similar duration, the arrival date at asteroid 2024 YR4 would be prior
to the potential impact date, namely December 22, 2032. For both direct and flyby cases, mission
durations were constrained to between 3 and 4.5 years.

1.2 Thesis overview
This first chapter provides a brief introduction explaining why NEAs are studied and outlining the
objective of this thesis. Chapter 2 provides a description of asteroids, focusing specifically on near-

2
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Earth asteroids and the characteristics of 2024 YR4. Chapters 3 and 4 then outline the theoretical
foundations of orbital mechanics and space propulsion, focusing in particular on electric propulsion.
Chapters 5 and 6 discuss optimal control theory and the mathematical model underlying space
trajectories optimization. Chapter 7 introduces the assumptions and data used to find the solutions
reported in Chapter 8. Finally, Chapter 9 presents the conclusions.
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Chapter 2

Asteroids

Asteroids are rocky, metallic, or icy minor planets that orbit within the inner Solar System or
share the same orbit as Jupiter. Most asteroids are concentrated in the region between Mars and
Jupiter, or at a distance of 2 to 4 AU from the Sun. Instead, those that share the same orbit
as Jupiter are called Trojan asteroids, which are celestial bodies that remain in stable positions
near the planet’s Lagrangian points L4 and L5. For the three-body problem, the Lagrangian point
is defined as the point in space where the less massive body is in equilibrium with the two main
bodies, that is, where the gravitational forces acting on the smaller body are balanced.

Figure 2.1: Main asteroid belt and Trojan asteroids [27]

The sizes of these celestial bodies vary greatly: from the largest asteroid, Ceres, which is also
identified as a dwarf planet, with a diameter of almost 1000 km, to smaller bodies measuring less
than a kilometre, many times in the order of tens of meters.

D (km) 0.1 0.3 0.5 1 3 5 10 30 50 100 200 300 500 900
N 25, 000,000 4,000,000 2,000,000 750,000 200,000 90,000 10,000 1,100 600 200 30 5 3 1

Table 2.1: Approximate number of asteroids (N) larger than a certain diameter (D)

To date, asteroids, as soon as they are discovered, are identified with a provisional designation
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consisting of the year of discovery and an alphanumeric code indicating the half-month of discovery
and the sequence within that half-month. Once the orbit is confirmed, a number is associated with
them and in the future maybe even a name.

2.1 Classification
There are several classifications into which asteroids can be divided. In particular asteroids are
mainly classified based on their orbital characteristics (orbital classification) and based on their
colour, albedo and spectral shape (spectral classification).

The orbital classification refers to the asteroid group (or family) to which the celestial body
belongs. An asteroid group (or minor-planet group) refers to a population of minor planets that
share similar orbits. An asteroid family, on the other hand, refers to a population of asteroids that
share certain orbital parameters, such as semi-major axis, eccentricity and inclination. This latter
classification is much more specific than an asteroid group. Indeed, despite sharing some orbital
characteristics, the various members of an asteroid group may not be related to each other.

For spectral classification, a taxonomic system is used to divide asteroids by assigning them
an asteroid spectral type based on their reflectance spectrum, colour and sometimes albedo. It is
believed that these parameters are useful to understand the composition of a celestial body. For
smaller bodies, the surface and internal compositions coincide in most cases. For larger bodies,
however, it is known that an internal composition exists that is different from the external one.
The most widely used classification is the Tholen classification, according to which asteroids
are divided into 14 types:

• C-group

– C-type (e.g., 10 Hygiea): they represent 75% of the asteroids discovered to date. Since
they are composed of a large amount of carbon (in addition to rocks and minerals),
these objects have a low albedo. Furthermore they are volatile-rich and have an average
density of about 1.7 g/cm3.

– B-type (e.g., 2 Pallas): spectrally blue objects whit an ultraviolet absorption below 0.5
µm small or absent. They can be found in the outer asteroid belt and dominate the
high-inclination Pallas family.

– F-type (e.g., 704 Interamnia): uncommon type of carbonaceous asteroids which have
spectral characteristics similar to B-type asteroids but differ in the short wavelength
portion of the ultraviolet spectrum below 0.4 µm and lack the "water" absorption feature
around 3 µm indicative of hydrated minerals.

– G-type (e.g., 1 Ceres): uncommon type of carbonaceous asteroids which are similar to
C-type objects but contain a strong ultraviolet absorption feature below 0.5 µm and that
can present an absorption feature around 0.7 µm which is indicative of phyllosilicate
minerals such as clays or mica.

– D-type (e.g., 624 Hektor): objects with very low albedo and featureless reddish spec-
trum. They have a composition of organic-rich silicates, carbon and anhydrous silicates,
possibly with water ice in their interiors and they are found in the outer asteroid belt
and beyond.

– T-type (e.g., 96 Aegle): inner-belt asteroids of unknown composition with dark, fea-
tureless and moderately red spectra, and a moderate absorption feature at wavelengths
shorter than 0.85 µm.

• S-group

– S-type (e.g., 15 Eunomia, 3 Juno): objects with a high density and a siliceous (i.e.,
stony) mineralogical composition. They represent 17% of all asteroids known to date.
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– V-type (e.g., 4 Vesta): asteroids also known as Vestoids which have a spectral type
that is the one of 4 Vesta. Approximately 6% of main-belt asteroids are Vestoids. They
are bright and, compared to the S-types, they contain more pyroxene.

– A-type (e.g., 246 Asporina): relatively uncommon inner-belt asteroids that have a
strong, broad 1 µm olivine feature and a very reddish spectrum shortwards of 0.7 µm.

– Q-type (e.g., 1862 Apollo): relatively uncommon inner-belt asteroids with a strong,
broad 1 µm olivine and pyroxene feature, and a spectral slope that indicates the presence
of metal.

– R-type (e.g., 349 Dembowska): moderately bright, relatively uncommon inner-belt
asteroids with a spectrum that shows distinct olivine and pyroxene features at 1 and 2
µm, with a possibility of plagioclase.

• X-group

– M-type (e.g., 16 Psyche): objects that contain metal phases within them and are the
main source from which iron meteorites arise. This type is the third most numerous.

– E-type (e.g., 44 Nysa): asteroids thought to have enstatite (MgSiO3) achondrite sur-
faces and with a high albedo. Their spectrum is featureless flat to reddish and they are
small (only three have diameters above 50 kilometres and no others above 25 kilometres).

– P-type (e.g., 259 Aletheia, 190 Ismene): asteroids with low albedo, a featureless reddish
spectrum and a composition of organic-rich silicates, carbon and anhydrous silicates,
possibly with water ice in their interior. These asteroids are found in the outer asteroid
belt and beyond.

Another classification based on spectral characteristics is the SMASS (Small Main-Belt As-
teroid Spectroscopic Survey) classification, which divides asteroids into 24 different types.
The Tholen classification, however, remains the most widely used.

Among these asteroids, a subcategory known as Near-Earth asteroids (NEAs) can be identified.
These celestial bodies are asteroids with orbits close to Earth’s and they will be discussed in the
next section.

2.2 Near-Earth asteroids
Near-Earth Asteroids (NEAs) are asteroids with an orbit close to Earth’s. To date, several
tens of thousands have been identified, and some of them may pose a risk, albeit low, of impacting
our planet. To assess the possibility of a collision, asteroid impact prediction is used, a set of
methods and systems that allow the estimation of the probability of an impact and the prediction,
with some advance notice, of where and when such an event might occur.

Based on their orbital elements, NEAs can be divided into four types (q = perihelion distance, Q
= aphelion distance, a = semi-major axis):

• Atens: asteroids with a semi-major axis less than 1 AU;

Figure 2.2: Aten asteroids [23]
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• Apollos: asteroids with a semi-major axis greater than 1 AU and a perihelion radius less
than 1.017 AU;

Figure 2.3: Apollo asteroids [23]

• Amors: asteroids with a mean orbital radius between that of Earth and Mars and a perihe-
lion slightly outside Earth’s orbit (about 1.017–1.3 AU).

Figure 2.4: Amor asteroids [23]

• Atiras: asteroids with orbits contained entirely within that of the Earth.

Figure 2.5: Atira asteroids [23]

NEAs represent both a potential resource for future space exploration and a threat to the planet.
Their proximity to Earth makes them relatively easy to reach.

Rather than NEAs, a more general term Near-Earth Objects (NEOs) is used. This term also
includes comets, which, however, represent only 1% of the total population (most NEOs are aster-
oids).

There are various classification methods that can be used to assess the impact risk of a near-Earth
object, including two main ones:

• Torino scale;

• Palermo scale.

The Torino scale is an indicator of the danger posed by a NEO impact with Earth. This classifi-
cation allows an object to be assigned an integer (no fractions or decimals are used) ranging from
0 to 10 based on the statistical probability of collision with Earth and the kinetic energy released
by the impact itself in megatons. A number of 0 identifies asteroids with a zero probability of
collision or whose impact with Earth would have effects comparable to those of normal space dust.
A number of 10 indicates a certain collision, with potentially disastrous consequences.

The following figure shows a graph that, based on the kinetic energy released upon impact and
the probability of impact, enables the determination of a specific level of danger for the NEO.
Specifically:

• in white ⇒ zero risk;

• in green ⇒ extremely low probability of collision;
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• in yellow ⇒ worthy of astronomers’ attention;

• in orange ⇒ events of concern;

• in red ⇒ certain collision.

Figure 2.6: Torino scale [15]

The Palermo scale is similar but more technical and complex. Here too, both the probability
of impact and the kinetic energy released by such a collision are combined into a single value. A
risk value of 0 indicates a risk equal to the background risk, which is the average risk that another
object of the same or greater size might impact Earth within the same time frame, i.e., up to the
possible impact date. A reading of +2 implies a risk that is 100 times greater than the background
risk. Scores under -2 on the Palermo scale indicate situations for which no severe consequences are
expected, and scores ranging from -2 to 0 indicate situations to be watched with caution.
The P-value of the Palermo scale is defined as follows:

P = log10
pi
fBT

(2.1)

where pi is the probability of impact and the denominator represents the background risk over
time (in T years) that elapses before the possible impact. The annual background risk, i.e., the
annual frequency of an impact, is calculated as follows:

fB = 0.03E−0.8 (2.2)

where E represents the energy released by the impact in megatons.
Obviously, the more observations of an asteroid are made, the more precise the trajectory prediction
will be, and consequently the risk value may vary.

2.2.1 Asteroid impact prediction and avoidance
Predicting the impact of a near-Earth object with the Earth consists of 3 main phases:

1. Discovery of the asteroid and preliminary definition of its orbit through an observation typ-
ically lasting less than two weeks.

2. Further observations to improve orbit determination.

3. Calculate if, where, and when the asteroid’s orbit may intersect Earth’s in the future.

8



Chapter 2 Asteroids

In most cases, a new asteroid is discovered using a telescope with a large Field of View (FoV),
taking images and using software to compare them with other observations of the same portion of
the sky obtained in previous days. Calculations relating to the intersection of the various orbits
are then carried out by two independent systems: one managed by NASA (Sentry) and one by
ESA (NEODyS).

To predict a future impact, it is important to define the minimum orbital intersection distance
(MOID). This parameter corresponds to the minimum distance between the two closest points
of the two orbits. If this value is less than 0.05 AU and the asteroid has an absolute magnitude
brighter than 22, which implies that the object is large enough and may be dangerous, then it can
be considered a potentially hazardous asteroid.
It is obviously useful to run simulations after determining the initial orbit to assess the likelihood
of an impact. If the distance between the asteroid and the centre of the Earth is calculated to be
less than the planet’s radius, then a potential future impact is predicted.

The following figure shows an elliptical view of the possible predicted positions of an asteroid
relative to Earth as observations are made.

Figure 2.7: Asteroid impact probability [12]

Over time, and hence with an increasing number of observations, the orbit and future positions
are increasingly more precise, and consequently the ellipse shrinks. If, as the ellipse shrinks, the
Earth or body in question remains within the ellipse, the probability of collision increases. On the
other hand, if, as observations are made, the ellipse becomes narrower until it excludes the Earth,
the danger of impact drops sharply until it is negligible. This is why the probability of collision
will initially rise with increasing observations and then, in certain situations, plummet.

Countermeasures can be implemented to prevent a possible asteroid impact with Earth in the
future. The two major asteroid impact avoidance methods are fragmentation and delay. The goal
of the first method is to render the asteroid harmless by breaking it in such a manner that either
its fragments miss Earth or burn up in the atmosphere. The other strategy seeks to delay (or
advance) the arrival of the asteroid at the impact location in order to avoid the collision between
the two bodies.
In general, methods differ based on the type of mitigation (deflection or fragmentation), the source
of energy and the approach strategy to the NEO.

One of the test missions in planetary defence was the Double Asteroid Redirection Test
(DART). The target of the mission was Dimorphos, a minor-planet moon of the asteroid Didy-
mos. The mission was successful, and by momentum transfer from the probe to the asteroid, the
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Dimorphos orbit was shortened by 32 minutes, well beyond the pre-defined success metric of 73
seconds.

2.2.2 2024 YR4
Asteroid 2024 YR4 is a Near-Earth asteroid with dimensions ranging from 40 to 100 meters in
diameter. NASA’s estimated average diameter is 58.42 meters. Specifically, it is classified as an
Apollo asteroid, meaning, as previously mentioned, an asteroid with a semi-major axis greater
than 1 AU and a perihelion radius less than 1.017 AU. 2024 YR4 was discovered on December 27,
2024, by the Asteroid Terrestrial-impact Last Alert System (ATLAS) program.

From preliminary observations carried out using the Gran Telescopio Canarias and the Lowell Dis-
covery Telescope, it has been concluded that 2024 YR4 is a rocky asteroid of the S or L type of the
SMASS classification, types of asteroids that correspond to the S group of the Tholen classification.

Using the Very Large Telescope (VLT) and the 1.54-meter Danish telescope at the La Silla Obser-
vatory, the rotation period of this asteroid was observed to be 19.5 minutes. The revolution period
can be calculated using the semi-major axis of the orbit of 2024 YR4 as follows:

T = 2π

√
a3

µ⊙
(2.3)

where:

• semimajor axis: a = 2.5158704AU = 3.7637 · 108 km

• solar standard gravitational parameter: µ⊙ = 1.32712440018 · 1011 km3

s2

It is thus obtained a revolution period equal to T = 1457.574 days = 3.9934 years.

Below are orbital parameters and other characteristics related to 2024 YR4.

Parameter Value
Semimajor axis a 2.5158704 AU
Eccentricity e 0.66154859
Inclination i 3.40818°
Argument of perihelion ω 134.36136°
Longitude of ascending node Ω 271.36562°
Mean anomaly M 40.4025104°
Absolute magnitude H 23.96
Slope parameter G 0.15

Table 2.2: Orbital elements of 2024 YR4

As can be immediately noted from the orbital parameters, the type of orbit is slightly inclined but
very eccentric, with a semi-major axis such that the value of the apogee radius almost reaches that
of Jupiter, as can be seen from the figure 2.8. In particular, the apogee and perigee radii are:{

ra = a(1 + e) = 4.17AU
rp = a(1− e) = 0.85AU

(2.4)
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Figure 2.8: 2024 YR4 orbit. Credit: ESA/PDO [2]

Regarding its mass, considering a density of 2.6 g/cm3, NASA estimates it to be 2.2 · 108 kg.
Considering the approximate values of mass, density and size together with an impact velocity
of 17.32 km/s, a collision between this asteroid and the Earth would release energy equal to 8
megatons of TNT equivalent, enough energy to generate an explosion that would cause localized
destruction up to 50 km from the impact site.

To date, however, after having reached a hazard index of 3 on the Torino scale on January 25,
2025, and a value of -0.32 on the Palermo scale on February 6, 2025, the risk of collision with the
Earth has almost disappeared on February 25, 2025, reaching an impact probability of 0.001%,
which corresponds to a value of 0 on the Torino scale.

Figure 2.9: Graphic of the possible locations - represented by yellow points - of asteroid 2024 YR4
on Dec. 22, 2032, as of Apr. 2, 2025 [18]
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Although the possibility of the asteroid impacting Earth has practically dropped to zero, there
remains a minimal probability that it could impact the Moon. The latest update available on the
NASA website (data provided by the Jet Propulsion Laboratory) is dated June 3, 2025. Compared
to the previous update, dated April 2, 2025, the probability of impact with the natural satellite has
increased from 3.8% to 4.3%. Figure 2.9 shows the predicted position of 2024 YR4 as of December
22, 2032.

An impact of this asteroid with the Moon would create a crater between 500 and 2,000 meters in
diameter, releasing an energy equivalent to 5.2 megatons. However, the collision would not cause
any change in the Moon’s orbit.

In Chapter 8, the orbital trajectories optimized to reach the asteroid will be analysed, considering
both direct transfers and Earth flybys.
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Chapter 3

Fundamentals of orbital mechanics

This chapter introduces the fundamental principles of orbital mechanics, from Kepler’s laws to
interplanetary missions. In short, astrodynamics, another name for orbital mechanics, involves the
application of the laws of ballistics and celestial mechanics to rockets, satellites and spacecrafts.
It is therefore useful to understand these concepts in order to design trajectories toward NEAs.

3.1 Kepler’s laws
Around the early 1600s, Kepler formulated three laws concerning the motion of the planets. Be-
fore him, several theories of celestial mechanics already existed, including those of Aristotle and
Ptolemaeus, who believed in geocentrism, and that of Kopernik, the first astronomer to formulate
a scientific-based heliocentric cosmology.
Kepler, on the other hand, believed in a sort of "celestial harmony" and, like Copernicus, thought
that the planets were bright spots on a concentric sphere with the Sun at the centre. He was the
first to introduce the idea that planetary orbits could be elliptical. The first two laws he formu-
lated were presented in his Astronomia Nova in 1609, while the third law was announced in the
Harmonices Mundi in 1619:

• First Law
The orbit of each planet is an ellipse with the Sun at one focus.

Figure 3.1: Visualization of Kepler’s first law [26]
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• Second Law
The line from the Sun to a planet sweeps out equal areas in equal time.

Figure 3.2: Visualization of Kepler’s second law [26]

• Third Law
The squares of the orbital periods of the planets are proportional to the cubes of their mean
distances from the Sun.
This law can be written by symbol as follows:

T 2 ∝ a3 (3.1)

where T is the orbital period and a is the semimajor axis. Figure 3.3 shows a log-log graph
with the orbit’s semi-major axis on the x-axis and the orbital period of some celestial bodies
in the solar system on the y-axis. Note how the value a3/T 2, represented by the green line,
remains constant.

Figure 3.3: Visualization of Kepler’s third law [5]

3.2 Newton’s laws of motion and gravitational law
In 1687, in his work Philosophiae Naturalis Principia Mathematica, Isaac Newton formulated the
three laws of motion and the law of universal gravitation. While Kepler’s laws are useful only for
describing orbits, Newton’s laws are used to explain planetary motion.
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The three laws of motion are as follows:

• Newton’s First Law
Every body maintains its state of rest or uniform rectilinear motion if the sum of the forces
acting on it is zero.

• Newton’s Second Law
The resultant force acting on a body is directly proportional to the product of its mass and
its acceleration, with which it shares direction and orientation.

F⃗ = ma⃗ (3.2)

• Newton’s Third Law
If a body A exerts a force on a body B, then body B exerts an equal and opposite force on
A.

The law of universal gravitation states that two bodies, whose masses are denoted by M and
m, respectively, attract each other along the line joining them with a force proportional to the
product of their masses and inversely proportional to the square of the distance between them.

F = −GMm

r3
r⃗ (3.3)

where r is the distance between the two bodies and G is the universal gravitational constant, which
is equal to G = 6.673 · 10−11 m3

kg s2 .

3.3 N-body problem
It is possible to extend Newton’s gravitational law to a system of n-bodies, each of which is subject
to the gravitational attraction of the others.

Figure 3.4: N-body problem [5]

Considering an inertial system of n-masses, the force acting on the i-th body can be written as
follows:

F⃗ = F⃗ ∗ +

n∑
j=1, j ̸=i

F⃗gj (3.4)

where F⃗ indicates the non-gravitational resultant force (such as forces due to imperfect symmetry
of a body, the thrust generated by a spacecraft or atmospheric drag), while F⃗gj is the force that
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the j-th body exerts on the i-th mass.
Substituting the formula 3.3 for this last term, it is obtained:

F⃗ = F⃗ ∗ −Gmi

n∑
j=1, j ̸=i

mj

r3ij
r⃗ij (3.5)

Now introducing Newton’s second law:

F⃗ =
d

dt
(miv⃗i) (3.6)

and neglecting the term related to non-gravitational forces, it is possible to derive the formula of
the n-body problem:

¨⃗ri = −G
n∑

j=1, j ̸=i

mj

r3ij
r⃗ij (3.7)

3.4 Two body problem
The two-body problem is a simplification of the n-body case. Before deriving the corresponding
formulas, some assumptions must be made:

• the system is composed of two masses m1 and m2 with m1 > m2;

• other than gravitational forces, no other forces act on the system;

• the bodies are spherically symmetric.

Figure 3.5: Two body problem [5]

By writing the law of universal gravitation for each mass and also using Newton’s second law, the
following formulation can be derived:

¨⃗r = −Gm1 +m2

r3
r⃗ (3.8)

Considering that the cases of interest mainly concern a satellite of mass m orbiting a celestial body
of mass M , with M >> m, the formula becomes:

¨⃗r +
µ

r3
r⃗ = 0 (3.9)
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where µ is the gravitational parameter and is defined as:

µ ≜ GM (3.10)

The value of µ varies from one celestial body to another:

Body Symbol µ (m3 s−2)
Sun µ⊙ 1.32712440018× 1020

Mercury µ' 2.2032× 1013

Venus µ♀ 3.24859× 1014

Earth µ⊕ 3.986004418× 1014

Moon µ$ 4.9048695× 1012

Mars µ♂ 4.282837× 1013

Jupiter µX 1.26686534× 1017

Saturn µY 3.7931187× 1016

Uranus µZ 5.793939× 1015

Neptune µ[ 6.836529× 1015

Pluto µ\ 8.71× 1011

Table 3.1: Gravitational parameters of the main solar system bodies

Before integrating the equation of motion to obtain the trajectory equation, it’s possible to consider
some constants of motion. In particular, the gravitational field is conservative, so an object moving
under the influence of gravity neither gains nor loses mechanical energy. This is therefore a constant
of motion and is obtained from the sum of kinetic and potential energy. In orbital mechanics, it is
common to refer to the specific energy ϵ:

ϵ =
v2

2
− µ

r
= − µ

2a
= constant (3.11)

This means that at points in the orbit where potential energy is low, kinetic energy will be high,
and vice versa. For example, at perigee, where the velocities involved are highest, there will be
a greater contribution of kinetic energy and a smaller contribution of potential energy than at
apogee, where the opposite occurs.
From the equation 3.11, it’s possible to derive the vis-viva equation:

v2 = µ

(
2

r
− 1

a

)
(3.12)

In addition to mechanical energy, another quantity that remains constant throughout the orbit is
the specific angular momentum:

h⃗ = r⃗ × v⃗ = constant (3.13)

From the above equation, it can be observed that the angular momentum vector is perpendicular
to the plane containing r⃗ and v⃗. The conservation of this quantity therefore implies that the
trajectory of the satellite remains confined in a plane called the orbital plane.

3.5 Trajectory equation
Rewriting the equation of motion as follows:

¨⃗r = − µ

r3
r⃗ (3.14)

and multiplying both terms by h⃗ and then integrating, the following equation is obtained:

r =

h2

µ

1 + B
µ cos ν

(3.15)
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where B⃗ is a constant of integration and ν, the true anomaly, is the angle between B⃗ and r⃗.
Considering that the radius assumes its minimum value when the denominator is maximum, i.e.
for cos ν = 1 or ν = 0, it follows that that B⃗ is a vector pointing to the periastron.
The equation 3.15, which is expressed in polar coordinates, can be compared to that of a conic
section:

r =
p

1 + e cos ν
=

a(1− e2)

1 + e cos ν
(3.16)

where e is the eccentricity, which is useful to identify the type of curve followed by the spacecraft,
and p is the semilatus rectum, defined as the ratio between the square of the specific angular
momentum and the gravitational parameter:

p =
h2

µ
(3.17)

More precisely, the trajectory travelled by the spacecraft can be of four types: circular, elliptical,
parabolic or hyperbolic.

Figure 3.6: Conic sections [30]

The value of the eccentricity allows an immediate identification of the corresponding case.

Conic Type Eccentricity e Specific Energy ε Semi-major Axis a
Circle 0 ε < 0 a = r
Ellipse 0 < e < 1 ε < 0 a > 0

Parabola e = 1 ε = 0 a→ ∞
Hyperbola e > 1 ε > 0 a < 0

Table 3.2: Conic sections with eccentricity, energy and semi-major axis

In particular, the conic section of greatest interest is the ellipse, since, as already seen from Kepler’s
laws, the planets (and more generally the celestial bodies) are characterized by an elliptical orbit
with the Sun positioned at one focus.
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Figure 3.7: Ellipse [24]

The main parameters characterizing a conic section are derived below.

• Eccentricity
e =

ra − rp
ra + rp

(3.18)

• Semimajor axis
a =

ra + rp
2

(3.19)

• Periapsis
rp = a(1− e) (3.20)

• Apoapsis
rp = a(1 + e) (3.21)

• Semilatus rectum
p = a(1− e2) (3.22)

3.6 Characteristic speeds
From the conservation of mechanical energy, it is possible to derive some characteristic velocities.

Circular speed
Circular speed is the velocity required to maintain a satellite in a circular orbit of radius r = a.

vc =

√
µ

r
(3.23)

From the formula 3.23, it can be observed that larger values of the radius correspond to lower
circular velocities and vice versa. This means that the further away one is from the main body,
the lower the velocity required to maintain a satellite in a circular orbit.
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Escape speed
Escape speed is the minimum velocity a satellite must have to be able to move indefinitely away
from a force field to which it is subjected. It is therefore the speed at which it is possible to
"escape" from a body’s gravitational field.

ve =

√
2µ

r
=

√
2vc (3.24)

Starting from this velocity, at a distance r → ∞ the velocity will be v∞ → 0

Hyperbolic excess velocity
Hyperbolic excess velocity is the residual velocity of a spacecraft upon exiting the sphere of influence
of the main body, i.e., the velocity at r∞.

ve =

√
−µ
a

(3.25)

It is interesting to note that the minus sign appears under the root since, if there is a residual
velocity upon exiting the sphere of influence, the satellite will move along a hyperbolic trajectory
characterized by a < 0.

3.7 Coordinate systems
This section describes the main coordinate systems used in orbital mechanics. Depending on the
type of mission considered, it may be more convenient to refer to one system rather than another.

3.7.1 Heliocentric ecliptic coordinate system

Figure 3.8: Heliocentric ecliptic coordinate system [4]

The heliocentric ecliptic coordinate system is used primarily to describe the motion of bodies within
the solar system and is therefore a useful reference system for studying and analysing interplanetary
transfers. The origin of the coordinate system is the Sun and the fundamental plane is the ecliptic
plane (the plane defined by the Earth’s orbit around the Sun), spanned by X̂ and Ŷ . The X̂
axis is identified by the intersection of the ecliptic plane with the equatorial plane during the
autumnal equinox (or vernal equinox). This direction is the one in which the Earth, during the
vernal equinox, views the Sun in the Aries constellation. The Ẑ axis is perpendicular to the ecliptic
plane and directed toward the hemisphere containing Polaris. Finally, the Ŷ axis completes the
right-hand triad.
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3.7.2 Geocentric equatorial coordinate system

Figure 3.9: Geocentric equatorial coordinate system [5]

The equatorial geocentric reference system, also called Earth-Centred Inertial (ECI) system, is
used primarily to describe the motion of objects around the Earth (for example, the position of
Earth’s satellites) or to determine the position of celestial bodies relative to the Earth (in this case,
it refers mainly to astronomical studies). The origin of this coordinate system is the centre of the
Earth and the fundamental plane is the equatorial plane, defined by Î and Ĵ . The Î axis is always
parallel to the X̂ axis of the heliocentric elliptic coordinate system, the K̂ axis is perpendicular to
the equatorial plane, pointing toward the hemisphere containing Polaris, and the Ĵ axis completes
the right-hand triad.

3.7.3 Topocentric coordinate system

Figure 3.10: Topocentric coordinate system [5]

The topocentric coordinate system is used mainly for the Earth satellite observation. The origin of
this reference system is the observation point (topos) on the Earth’s surface and the fundamental
plane is that of the local horizon, identified by Ŝ and Ê. The Ẑ axis is directed toward the zenith
(radially) outward from the site, the Ŝ axis is identified by the intersection of the local horizon
with the local meridian and is directed South, and the Ê axis is defined by the intersection of the
local horizon with the plane passing through the local parallel and is directed East.
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3.7.4 Perifocal coordinate system

Figure 3.11: Perifocal coordinate system [4]

The perifocal coordinate system is used to describe the motion of a body along its orbit. The
origin of this system is the centre of the Earth and the fundamental plane is the orbital plane,
defined by p̂ and q̂. The p̂ axis is directed toward the perigee, the q̂ axis is offset 90° from the p̂
axis in the direction of the satellite’s motion (identifying the semilatus rectum) and the ŵ axis is
normal to the orbit.

3.8 Classical orbital elements

Figure 3.12: Classical orbital elements [3]

Classical orbital elements are used in a two-body system to describe a Keplerian orbit. There are
six parameters in total to describe an orbit:

• eccentricity (e): defines the shape of the orbit, describing how much it deviates from a
perfect circle. The values this parameter can assume are listed in Table 3.2;

• semi-major axis (a): defines the size of the orbit and is positive for elliptical orbits, infinite
for parabolic trajectories and negative for hyperbolic ones;
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• inclination (i): defines the inclination of the orbital plane and is the angle measured between
the unit vector K̂ and the angular momentum vector ĥ;

• right ascension of the ascending node (Ω): is the angle measured eastward between the
Î axis of the non-rotating reference frame and the ascending node, i.e., the point where the
spacecraft crosses the fundamental plane while moving in the northerly direction;

• argument of periapsis (ω): is the angle measured in the direction of the satellite in the
orbital plane between the ascending node and the periapsis;

• true anomaly (ν): is the angle measured in the orbital plane between the periapsis and
the position of the satellite at "epoch", or at t0.

The eccentricity and the semi-major axis determine the conic section. The inclination and the right
ascension of the ascending node determine the orbital plane. The argument of periapsis defines the
orientation of the orbit within that plane, and the true anomaly is used to identify the position of
the satellite.

3.9 Orbital manoeuvres
To study interplanetary missions, it is useful to analyse the main space manoeuvres, distinguishing
between impulsive ones, typical of chemical propulsion, and low-thrust ones, typical of electric
propulsion.

3.9.1 Impulsive manoeuvres
Impulsive manoeuvres are those in which finite variations in velocity occur in a very short time
interval. For calculation purposes, in fact, an infinitesimal ∆t is typically considered necessary for
the manoeuvre, and consequently the position of the spacecraft is fixed (r⃗ = constant).

Adjustment of apogee and perigee height

Figure 3.13: Adjustment of apogee and perigee height [5]

Figure 3.13 shows the manoeuvres useful for raising apogee and perigee. In general, ∆V is applied
when the spacecraft is on the line of apses: near perigee to raise apogee and vice versa.
The cost in terms of ∆V for this manoeuvre is as follows:

∆V = V2 − V1 =

√
2

(
µ

rP
− µ

rP + rA2

)
−

√
2

(
µ

rP
− µ

rP + rA1

)
(3.26)

The same reasoning and formula apply to lowering perigee and apogee, which require ∆V in the
opposite direction to the motion, i.e., braking.
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Simple rotation of the line of apses

Figure 3.14: Simple rotation of the line of apses [5]

In order to rotate the line of apses by a certain angle ∆ω without altering the shape and size of
the orbit, it is necessary to perform the manoeuvre at the point where the initial and final ellipses
intersect on the bisector of the angle ∆ω, that is:

ν =
∆ω

2
or ν =

∆ω

2
+
π

2
(3.27)

The cost in terms of ∆V to perform this manoeuvre is as follows:

∆V = 2
µ

h
e

∣∣∣∣sin(∆ω

2

)∣∣∣∣ (3.28)

Simple plane change

Figure 3.15: Simple plane change [5]

The plane-change manoeuvre is typically performed on the line of nodes and consists of changing
the inclination of the orbital plane without changing velocity and flight-path angle. The cost in
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terms of ∆V is equal to:

∆V = 2Vt sin
∆i

2
(3.29)

where Vt indicates the tangential velocity. The minimum ∆V is therefore obtained at the point
where this quantity is minimum, that is, along the line of nodes. If the manoeuvre is performed
at any point in the orbit other than this, the formula 3.29 is no longer valid: the cost required to
achieve the same ∆i will be greater, since the cost is also in terms of ∆ψ and the line of nodes ∆Ω
will also rotate.

Transfer between coplanar circular orbits

The manoeuvres seen so far are single-impulse, while the transfer between coplanar circular orbits
requires two impulsive manoeuvres. The transfer trajectory must be a conic section that intersects
both circular orbits. In particular, considering a transfer from an internal orbit of radius r1 to an
external one of radius r2, the following conditions must be satisfied:{

rP = p
1+e ≤ r1

rA = p
1−e ≥ r2 or e ≥ 1

⇒

{
e ≥ p

r1
− 1

e ≥ 1− p
r2

(3.30)

Hohmann transfer

Among transfers between coplanar circular orbits, the least expensive is the Hohmann, where:{
rP = r1

rA = r2
(3.31)

The departure and arrival velocities are parallel and there are no losses due to misalignment. The
only losses are those due to gravity, which are minimized since there is no waste in terms of ∆V .
The trajectory followed by the spacecraft is an ellipse with a semi-major axis equal to:

aH =
r1 + r2

2
(3.32)

Figure 3.16: Hohmann transfer [28]

Starting from the conservation of mechanical energy, it is possible to derive the formulas for the
velocities on the transfer orbit at the departure and arrival:

V1 =

√
2µ
(

1
r1

− 1
r1+r2

)
V2 =

√
2µ
(

1
r2

− 1
r1+r2

) (3.33)
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from which it is possible to obtain the costs in terms of ∆V :∆V1 = |V1 − Vc1| =
∣∣∣Vc1 (√ 2r2

r1+r2
− 1
)∣∣∣

∆V2 = |V2 − Vc2| =
∣∣∣Vc2 (√ 2r1

r1+r2
− 1
)∣∣∣ (3.34)

where Vc indicates the circular velocities of the initial and final orbits.
The total cost of the mission in terms of ∆V is:

∆VH = ∆V1 +∆V2 (3.35)

The first impulse ∆V1 is used to place the spacecraft into the elliptical transfer orbit, while the
second impulse ∆V2 is used to circularize the orbit once the destination is reached.

3.9.2 Low-thrust manoeuvres
Low-thrust manoeuvres are typical of electric propulsion. Unlike chemical propulsion, which is
used to perform impulsive manoeuvres, with electric propulsion the thrust applied to the space-
craft is continuous and can last for longer periods of time.

If the mission’s orbits are nearly circular and with a low-inclination, and the thrust is relatively
low, the Edelbaum’s approximation can be applied. However, for transfers to asteroid 2024 YR4,
this approximation is not valid, given the asteroid’s highly eccentric orbit.

Edelbaum’s approximation

As previously mentioned, the Edelbaum’s approximation is valid only if the following assumptions
are satisfied:

• almost-circular orbit → r ≈ a ≈ p, V 2 ≈ µ
r , e ≈ 0, E ≈ ν ≈M, θ = Ω+ ω + ν;

• low-inclination orbit → sin i ≈ i, cos i ≈ 1;

• very-low thrust → aV = aT << µ
r2 , aR << µ

r2 , aW << µ
r2 .

where the subscripts T , R and W indicate the tangential (along V ), radial and perpendicular
directions, respectively.

By defining α as the angle between the tangential direction and the acceleration vector in the
plane, and β as the angle between the plane and the acceleration vector out of the plane, the three
components can be written as follows:

aT =
T

m
cosα cosβ (3.36)

aR =
T

m
sinα cosβ (3.37)

aW =
T

m
sinβ (3.38)

From Gauss’s planetary equations, based on the approximations made, it is possible to derive the
Edelbaum equations:

V
ȧ

a
= 2aT (3.39)

V ė = 2 cos νaT + sin νaR (3.40)

V i̇ = cos(ω + ν)aW (3.41)

iV Ω̇ = sin(ω + ν)aW (3.42)

V ω̇ = −V Ω̇ +
2 sin νaT − cos νaR

e
(3.43)

ϑ̇ = n =
√
µ/a3 (3.44)
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The most interesting changes in orbital parameters over a revolution are those involving the semi-
major axis, eccentricity and inclination. For each change, there is an optimal direction of thrust
for which a given parameter is maximized:

• to maximize ∆a, thrust must be applied at α = 0◦ and β = 0◦, that is, in the plane and in
a tangential direction;

• to maximize ∆e, the optimal thrust law is as follows:

tanα =
1

2
tan ν (3.45)

which, as a first approximation, means that thrust must be applied at α ≈ ν;

• to maximize ∆i, thrust must be applied out of the plane at an angle β = ±90◦.

When considering variations over multiple spins, the focus is on the variations of ∆a and ∆i (not so
much on ∆e, since for orbits that are too eccentric, the Edelbaum’s approximation doesn’t hold).
The idea is to maximize a linear combination of ∆a and ∆i:

ȧ+ ki (3.46)

Following simple mathematical steps, it is obtained that the linear combination is maximized for:

tanβ = k cos(ω + ν) (3.47)

The optimal β value would therefore vary continuously as ω + ν varies. Since it is practically
impossible to guarantee this continuous variation, the Edelbaum’s approximation consists in using
a constant β̄ value over half a turn, which effectively represents the ideal behaviour of β.

Limits of the Edelbaum’s approximation and adopted approach

The Edelbaum solution is a classic reference for the study of low-thrust transfers, as it provides a
compact estimate of the propulsive cost required for transitions between almost-circular and low-
inclined orbits, assuming continuous and constant thrust. However, this formulation is no longer
valid when the orbit has a high eccentricity.

In the case of asteroid 2024 YR4, characterized by a highly elliptical orbit, the Edelbaum approach
is therefore not applicable. For trajectories to this asteroid, therefore, it is necessary to resort to
an indirect optimization method, based on the formulation of the optimal control problem and
the resolution of the optimality conditions derived from the Pontryagin Maximum Principle. This
approach allows to simultaneously determine the optimal trajectory and control law, ensuring a
realistic description of rendezvous manoeuvres with a body in an elliptical orbit.

3.10 Interplanetary mission
An interplanetary mission consists of a spacecraft travelling from a celestial body to another for
exploration or demonstration purposes. This section presents the fundamental concepts related to
interplanetary missions.
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3.10.1 Patched conics method

Figure 3.17: Patched conics method [29]

The patched conics method is an approximation used to simplify calculations for interplanetary
transfers that divides the mission into three phases:

1. a hyperbolic trajectory within the sphere of influence of the departure planet in order to
escape from it;

2. an elliptical trajectory with the Sun as the main body, starting from the exit of the departure
planet’s sphere of influence and ending at the entrance of the arrival planet’s sphere of
influence;

3. a hyperbolic trajectory within the sphere of influence of the arrival planet in order to be
captured in orbit around it.

The sphere of influence is defined as the portion of space in which the planet’s gravitational
pull dominates over that of other bodies in the system, thus making the main contribution in
determining the motion of a body in that region. The radius of the sphere of influence is calculated
as follows:

rSOI = R

(
mp

ms

) 2
5

(3.48)

where R is the radius of the planet’s orbit around the Sun, mp is the mass of the celestial body,
and ms is the mass of the Sun.

3.10.2 Phasing and launch windows
A launch window is the time interval within which a launch can be conducted in order to allow the
spacecraft to be in the best conditions to intercept the target planet, minimizing the amount of
propellant required for the mission and consequently maximizing the payload. The launch window
depends on the position along the orbit and the relative motion of the departure and arrival planets
at the time of launch.

The outer planets, moving in orbits with higher radii, will move more slowly and take longer to
sweep a given angle than a inner planet. Consequently, in an interplanetary mission, the outer
planet must be further ahead the inner planet, since the spacecraft’s speed during the transfer
will be greater than the speed of the target planet. A similar but inverse reasoning can be made
regarding transfers to inner planets.
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Figure 3.18: Phasing [29]

As can be seen from the image 3.18, the target planet will have to be ahead of the starting planet
by an angle equal to γ1. To find this angle, it is necessary to first define the mean motion of the
target planet:

n2 =
2π

T
=

√
µ⊙

a3
(3.49)

Considering that the spacecraft moves along a Hohmann transfer, during which it travels an angle
equal to 180◦, it is possible to calculate the angle γ1 as follows:

γ1 + n2tH = π ⇒ γ1 = π − n2tH (3.50)

where tH indicates the time required to complete the Hohmann transfer, which is equal to half the
period required to complete the entire orbit, since the spacecraft only travels half:

tH =
1

2
2π

√
a3H
µ⊙

= π

√
a3H
µ⊙

(3.51)

If a launch opportunity is missed, it will be possible to perform the same transfer after a synodic
period, i.e., the minimum period of time required for the planets to find themselves in the same
relative position. The formula needed to calculate this value is the following:

τs =
2π

|w1 − w2|
=

T1T2
|T1 − T2|

(3.52)

where w1 and w2 are the angular velocities of the planets and T1 and T2 are their periods of revo-
lution.

3.10.3 Planetary flyby
A planetary flyby, also known as a gravity assist, is a manoeuvre used to redirect or accelerate a
spacecraft without using propellant. By entering the celestial body’s sphere of influence at an angle
different from its current direction, a change in velocity vector, both in magnitude and direction,
can be achieved solely through the effect of the planet’s gravitational field. Therefore, if used
optimally, a flyby allows for fuel savings and, consequently, increases the payload mass that can
be transported during the mission.
Flybys can be divided into two different types:

• a leading-side flyby: a gravity assist which results in a decreasing in the spacecraft heliocentric
speed;
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• a trailing-side flyby: a gravity assist which results in an increasing of the spacecraft helio-
centric speed.

During a flyby, an exchange of momentum occurs between the spacecraft and the planet. From
a physical point of view, the planet provides orbital energy to the spacecraft (or subtracts it)
through its gravitational pull. However, due to the enormous difference in masses involved, the
variations in the planet’s trajectory are practically zero and negligible, while those of the spacecraft
are significant and exploitable for the mission.
However, there are limitations associated with this type of manoeuvre:

• a flyby is only possible in correspondence with very specific orbital configurations. The
planets must be in favourable positions to be exploited during space missions to other celestial
bodies. For example, the alignment of Jupiter, Saturn, Uranus and Neptune exploited by
the Voyager probes will not be repeated until the mid-22nd century.

• for bodies without an atmosphere, the lower the flyby, the greater the effect the spacecraft
will experience in terms of velocity vector. The problem arises when the gravity assist of a
planet with an atmosphere is exploited, inside which the spacecraft would be slowed down
by the atmospheric drag. This effect must be avoided, as the energy lost could exceed the
gain obtained from the flyby.

• a further limit is given by the mass and orbital velocity of the celestial body: the larger they
are, the greater the effect of gravity assist. For this reason, flybys are particularly effective
when using massive planets with high orbital velocities, such as Jupiter.

As will be seen in Chapter 8, interplanetary transfers to asteroid 2024 YR4 can be made exploiting
an Earth flyby. This manoeuvre will save nearly 100 kg of propellant, thanks to a reduction of
approximately 4 km/s in ∆V compared to a direct transfer.
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Space propulsion

This chapter introduces the fundamental concepts of propulsion, starting with general aspects and
then moving on to analyse the various types. Electric propulsion will receive particular attention,
since the trajectories to NEAs considered are based on low-thrust systems.

4.1 Generalities of space propulsion
Propulsion is defined as the ability to generate a force, called thrust, that is used to change the
momentum of a spacecraft. Thrust is generally denoted by the letter T and is achieved through the
principle of action and reaction, more specifically through the exhaust propellant in the opposite
direction of motion.

Space propulsion can be of two types based on the manoeuvres performed and the required ∆V :

• primary propulsion: propulsion used for manoeuvres generally with higher ∆V where a
change in velocity is required, such as orbit changes;

• auxiliary propulsion: propulsion used for manoeuvres with lower ∆V , such as maintaining
a satellite in a given orbit subject to perturbations or changing its attitude.

Based on how thrust is generated, propulsion can be divided into two main types:

• chemical propulsion (CP): gases are heated by a chemical reaction and expanded in a
nozzle that converts thermal energy into kinetic energy;

• electric propulsion (EP): the propellant is accelerated by converting electrical energy into
kinetic energy.

Thrust equation
A fundamental relation in propulsion analysis is the thrust equation, which can be derived by
considering an object of mass m that simulates the spacecraft from which, after a certain time
interval dt, a mass of propellant dmp is expelled.

Figure 4.1: Momentum balance - thrust equation
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The velocity c, called the effective exhaust velocity, is the speed of the propellant relative to
the system.

To derive the thrust equation, two assumptions need to be introduced:

• all velocities are aligned with each other;

• the system is isolated, therefore, other than thrust, there are no other forces acting on the
mass m.

Knowing that in an isolated system the momentum remains constant, the thrust T can be derived
by equating the values before and after the change in velocity:

mv = (m− dmp)(v + dv)− dmp(c− v) (4.1)

Simplifying the equal terms on the right and left of the equals sign, the following formulation is
obtained:

mdv = dmpc (4.2)

To move from the discrete to the continuous formulation, a propellant mass flow rate must be
defined and dv should be expressed as acceleration over time:

ṁp =
dmp

dt
(4.3)

dv =
dv

dt
dt (4.4)

Now the thrust equation can be derived:

T = m
dv

dt
= ṁpc (4.5)

From this equation, the effective exhaust velocity can be calculated as follows:

c =
T

ṁp
(4.6)

Since the goal is to save propellant mass, the thrust equation shows that achieving high thrust
values with low propellant mass flow rates requires high effective exhaust velocities. The problem
is that this quantity cannot be raised too much, since a higher c requires more power to accelerate
the gases, which is a cost to consider.

PT =
ṁpc

2

2
=
Tc

2
(4.7)

It is therefore necessary to have small propellant flow rates without excessively increasing the power
required by the propulsion system to accelerate the gases.

Propulsion system performance
Starting from the thrust, it is possible to derive the total impulse, obtained by integrating T
between the initial and final instants:

Itot =

∫ tf

t0

Tdt (4.8)

from which it is possible to derive the specific impulse, defined as follows:

Isp =
Itot
mpg0

(4.9)
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where g0 corresponds to the value of the gravitational acceleration on Earth (equal to 9.80665 m/s2)
and mp is the propellant mass, defined as the integral of the propellant mass flow rate over time:

mp =

∫ tf

t0

ṁpdt (4.10)

It can be observed that, for a given total impulse, the specific impulse increases as the propellant
mass mp decreases, which must therefore be as low as possible.

If the effective exhaust velocity is constant throughout the mission, the specific impulse can be
rewritten as follows:

Isp =
c

g0
=

T

ṁp
(4.11)

Specific impulse is one of the most important performance parameters, since it measures how effi-
ciently the propellant mass is used.

For chemical propulsion, the value of the specific impulse is limited by the energy of the internal
reaction:

ṁp
c2

2
= ṁpEch ⇒ c =

√
2Ech (4.12)

The maximum achievable specific impulse values are around 450 s.

With electric propulsion, however, the value of Isp increases by decreasing ṁ and T if the value
of PE is fixed, or by increasing the electric power (for example, using larger solar panels), which
cannot be increased infinitely as it is a cost:

ηPE = ṁp
c2

2
=
Tc

2
⇒ c =

√
2ηPE

ṁp
=

2ηPE

T
(4.13)

where:

PE =
PT

η
=
ṁpc

2

2η
=
Tc

2η
(4.14)

Therefore, for electric propulsion, in order to have high c values, it will be necessary to have small
thrust values and therefore use low-thrust propulsion. In this case, Isp can even reach values
around 10000 s.

Tsiolkowski’s equation
To relate the propellant mass and the propulsive ∆V , or the ∆V that would be obtained if only the
thrust T were considered and the thrust were parallel to the velocity (therefore without considering
losses), it is useful to derive Tsiolkowski’s equation (or rocket equation).
The propulsive ∆V is defined as follows:

∆V =

∫ tf

t0

T

m
dt (4.15)

Returning to the thrust equation and rewriting ṁp as the variation of the propellant mass over
time, it is obtained:

∆V =

∫ mf

m0

− c

m
dm (4.16)

Considering c = constant, Tsiolkowski’s equation is obtained:

∆V = −c ln
(
mf

m0

)
= c ln

(
m0

mf

)
(4.17)
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from which the propellant mass required for that ∆V can be derived as follows:
mf

m0
= e−

∆V
c ⇒ mp = m0 −mf = m0

(
1− e−

∆V
c

)
(4.18)

In order to obtain high values of mf

m0
, and therefore reduce costs in terms of propellant mass and

increase the transportable payload mass, it is necessary to have values of c comparable with ∆V .
In particular, as c increases, the term ∆V

c decreases and, consequently, fuel consumption will also
be lower.

4.2 Electric propulsion
Based on the physical principle by which particles are accelerated, three types of electric propulsion
can be distinguished:

• electrothermal propulsion: gases are heated by electrical energy and then expanded in a
nozzle;

• electrostatic propulsion: the propellant is accelerated using electrostatic forces;

• electromagnetic propulsion: the propellant is accelerated using electromagnetic forces.

The following paragraphs describe the various types of propulsion and explain the physical princi-
ples through which the main propulsion systems work.

4.2.1 Electrothermal propulsion
Electrothermal propulsion is based on the conversion of electrical energy into thermal energy and
the subsequent conversion of the latter into kinetic energy. The propellants used are hydrogen,
ammonia, hydrazine and water, and the two main propulsion systems are resistojets and arcjets.

Resistojet

Figure 4.2: Resistojet schematic [22]

The propellant is heated by the Joule effect by an electric resistance that can be in direct contact
with it or separated from it by a heat exchanger inside a sealed cavity. In the first case, heat
transfer occurs by convection, while in the second case, it occurs through radiation. Performance
is very similar for both solutions. Regarding specific impulse, high values cannot be achieved, but
values comparable to chemical propulsion can be obtained (Isp around 350 s maximum). This
occurs because the temperature the resistor can reach is limited by the materials it is constructed
from. Consequently, beyond a certain temperature the propellant can no longer be heated and a
maximum specific impulse will be achieved.
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Arcjet

Figure 4.3: Constricted arcjet schematic [8]

Arcjets are thrusters consisting of a cylindrical cathode with a conical tip and a coaxial anode that
forms the walls of the nozzle. With these engines, the problem of heating the resistor is no longer
present, since the Joule effect causes the electric current to pass directly into the propellant. Direct
heating of the fuel occurs by creating an electric arc, which, however, must be kept away from the
walls. To this end, a phenomenon called the pinch effect is exploited, forcing the arc to collapse
on itself. This effect is caused by the forces generated through the interaction of the current with
the magnetic field it induces.

In arcjets, temperatures reach up to 10000 K and specific impulses are achieved in the order of 800
s-1000 s.

4.2.2 Electrostatic propulsion
Electrostatic propulsion uses an electric field to accelerate particles, more specifically ions. The
mechanism on which these thrusters are based can be divided into three phases:

• ionization: to extract the ions, the propellant, which is initially neutral, must be ionized;

• acceleration: following ionization, the ions must be extracted and accelerated;

• neutralization: to avoid drawing the ions back, the charge at the exit must be neutral;
therefore, for every ion emitted, an electron must also be emitted.

The main thrusters are ion thrusters, FEEPs, colloidal thrusters and Hall thrusters.
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Ion thruster

Figure 4.4: Ion thruster schematic [1]

An ion thruster consists of a chamber containing xenon atoms, the typical propellant used for this
engine, which are ionized through collisions with electrons emerging from the cathode. Following
ionization, the ions pass through two grids: a screen grid, designed to allow only ions to pass
through and repel electrons, and an accelerator grid, through which the ions are accelerated and
thrust is generated. Finally, at a precise distance from the grids, there is a hollow cathode that is
used to neutralize the ion beam by creating a plasma bridge.

The problem with these thrusters is that there is a limit to the number of ions, and therefore the
amount of current, that can pass between the grids. The limiting situation arises when an ion,
attracted by the electric field, encounters enough other charged particles in front of it to create
a repelling field of equal magnitude. In this situation, no further particle can enter between the
grids until one exits. This results in a maximum current that can be calculated using Child’s law
as follows:

jmax =
4ϵ0
9

(
2q

m+

) 1
2 V

3
2

G

x2a
(4.19)

where:

• ϵ0 is the vacuum permittivity;

• q is the charge of the ion;

• m+ is the mass of the ion;

• VG is the intragrid potential, or the potential difference between the screen grid and the
accelerator grid;

• xa is the distance between the screen grid and the accelerator grid.

The current limit also translates into a limit on the thrust density:

T

A
=
ṁc

A
=
jm+

q
c (4.20)

According Child’s law, it is possible to increase the maximum current that can flow between the
grids, and therefore also the thrust density, by increasing the intragrid potential, reducing the
distance between the grids, or by combining both strategies.

Regarding performance, typical specific impulse values range from 2000 s to 5000 s. Typically,
values do not fall below 2000 s, as efficiency drops dramatically. For specific impulses around
1000 s − 2000 s Hall thrusters are used.
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FEEP and colloidal thruster

Figure 4.5: FEEP schematic [8]

Field effect electric propulsion (FEEP) involves extracting ions from a liquid propellant using a
sufficiently large electric field generated by a high potential difference. This type of thruster consists
of two plates separated by a gap and a cavity containing the propellant, which, due to capillary
action, will fill the space between them. The high potential difference generated is around 10000 V
and is achieved by charging the anode to +6000 V and the accelerator electrode to −4000 V. This
generates a strong electric field that attracts all the nuclei of the atoms and repels the electrons in
the opposite direction, forming Taylor cones at the exit of the thruster.
Typically metals such as caesium or iridium are used as propellants. The thrust values are very
low (in the order of µN) and the specific impulse is around 6000 s.

Colloidal thrusters are based on the same operating principle as FEEPs but have some differences:
the geometry is not linear but axisymmetric and they use either colloidal liquids (such as for-
mamide) to which a salt is added to make it ionizable or ionic liquids, which are salts that are
liquid at room temperature.

Hall thruster

Figure 4.6: Hall thruster schematic [25]

Unlike ion thrusters, Hall thrusters are not subject to the thrust density limitation imposed by
Child’s law. To circumvent the limitation imposed by Child’s law, the basic idea behind these
thrusters is to have both ions and electrons within the chamber. To maintain the useful effect,
since if only the electric field were present the electrostatic force would disappear and consequently
no thrust would be generated, a magnetic field is present, ensuring that the electrons are subjected
to zero force and the ions are accelerated. It is interesting to note that, by balancing the forces,
from the thruster’s perspective, they are electromagnetic thrusters, while from the propellant’s
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perspective, they are electrostatic thrusters. It can therefore be said that they are a hybrid be-
tween electrostatic and electromagnetic propulsion.

As can be seen from the image 4.6, the geometry is axial-symmetric. Specifically, they feature a
solid internal cylinder and a hollow external one.

The problem with these thrusters is that the potential difference, and consequently the specific
impulse, cannot be increased too much, since the more energetic the plasma, the more likely it is to
experience instability phenomena that cause channel erosion. Isp values are achieved in the range
of 1000 s−2000 s, complementary to ion thrusters, which have higher specific impulses. These two
thrusters cover a wide range of specific impulses, thus avoiding the need to resort to suboptimal
propulsion systems for missions requiring particular Isp values.

4.2.3 Electromagnetic propulsion
Electromagnetic propulsion is based on three fundamental principles:

• the electron stream gains energy and is accelerated by the electric field;

• the electrons’ velocity is curved by the magnetic field, which can be self or applied;

• the electrons collide with atoms and collectively transfer momentum to the propellant. The
entire propellant is accelerated by the magnetic field as if it were a single block, thus gener-
ating thrust.

This type of propulsion therefore exploits collisions, without which thrust could not be generated.

Two types of electromagnetic thrusters can be distinguished:

• steady, whose geometry is typically axial-symmetric;

• unsteady, whose geometry can be either one-dimensional or axial-symmetric.

The operation of three propulsion systems is described below: MPD, PPT and VASIMR, a hybrid
electromagnetic–electrothermal thruster.

Self-field and applied-field MPD thruster

Figure 4.7: MPD schematic [21]

MPD thrusters are steady devices and are essentially arcjets, but differ in their operating princi-
ple. While arcjets rely on low currents and high flow rates, resulting in a low magnetic interaction
parameter, the opposite occurs in MPDs. In these thrusters, the high magnetic interaction pa-
rameter values allow the effects of the magnetic field to prevail over the electrothermal ones, and
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acceleration occurs through electromagnetic forces.

They are divided into self-field and applied field thrusters:

• in self-field thrusters the current generates an induced magnetic field that has a predominantly
tangential direction;

• in applied field thrusters, in addition to the magnetic field induced by the currents, there is
an axial magnetic field (with a small component also in the radial direction) generated by
coils surrounding the thruster.

Thrust is generated by exploiting two contributions:

• blowing: thrust contribution in the axial direction arising from the interaction between the
radial current and the tangential magnetic field. This effect generates a direct thrust;

• pumping: thrust contribution in the radial direction arising from the interaction between
the axial current and the tangential magnetic field. In this case, the thrust derives from the
increased pressure on the cathode surface.

In applied field thrusters, since other magnetic field components are present in addition to the
tangential one, a swirling thrust contribution arises from the interaction between the currents and
the magnetic field in the axial and radial directions.

The specific impulses achievable with these thrusters range from 2000 s to 5000 s, values similar
to those of ion thrusters. They are mainly used for large masses and high ∆V missions, such as
human missions where durations must be reasonable. The problem with these thrusters, however,
is the high power required and the challenges associated with its management.

PPT

Figure 4.8: PPT schematic [17]

Pulsed plasma thrusters are based on an unsteady operating principle and consist of a block of
solid propellant, typically Teflon, held in place by a spring at the entrance to a conduit where a
discharge is generated. Within the channel, a potential difference is generated between the walls by
an energy-storing capacitor, and the discharge is set in motion by magnetic body force. The suc-
cession of pulses, alternating at a certain frequency called the discharge frequency, produces thrust.

For the thruster to function properly, in addition to storing energy within capacitors, it is also
necessary to synchronize the propellant with the discharge and its ionization at the right time. For
this purpose, two measures are adopted: the solid propellant, which thanks to the spring always
exposes its surface to the conduit, and an igniter plug placed at the entrance, which supplies the
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electrons needed to ionize the Teflon.

The performances of these thrusters are similar to that of MPDs. Compared to the latter, however,
they have lower efficiency and not very high output velocities, in addition to being very heavy
thrusters. Values of Isp are reached in the order of 500 s − 1000 s. These thrusters, although
not having such promising performance, are very useful for performing precision manoeuvres (such
as pointing manoeuvres) since it is possible to adjust the average thrust through the discharge
frequency.

VASIMR

Figure 4.9: VASIMR schematic [16]

The VAriable Specific Impulse Magnetoplasma Rocket is a hybrid between an electromagnetic and
an electrothermal thruster. This engine operates on three key points:

1. propellant ionization;

2. ion cyclotron-resonance heating, which heats the propellant;

3. expansion in a magnetic nozzle.

At the initial stage of the thruster, there is a quartz tube surrounded by a helicon antenna, which
ionizes the propellant through collisions.
The propellant then passes into the heating chamber, where a constant axial magnetic field gener-
ated by solenoids induces rotation in the ions at a certain angular velocity. The chamber contains
an ICRF antenna that produces an electromagnetic wave with a frequency corresponding to the
cyclotron frequency of the ions’ Larmor motion. The resulting electric field continuously acceler-
ates the ions, while the electrons are unaffected by the resonance effect.
Finally, the propellant passes through the magnetic nozzle, where the magnetic field decreases.
Due to conservation of energy and angular momentum, the Larmor radius increases, the tangential
velocity decreases and the axial velocity increases, thus accelerating the ions and generating thrust.

A challenge with this thruster is that the solenoids require superconductors, which must be cooled
to very low temperatures to function.

The VASIMR allows for efficient power distribution between ionization and heating, achieving
specific impulses ranging from 2000 s to 5000 s. Thanks to these characteristics, it is an ideal
thruster for manned Martian missions, where short travel times are required.
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Indirect optimization of space
trajectories

Optimization means finding the control law that maximizes or minimizes a given performance
index. For space trajectories, it is crucial to maximize the final mass at the end of the mission
or, equivalently, minimize the propellant mass required for the transfer. In general, therefore,
the optimization problem consists of maximizing the final mass of the spacecraft at the end of
the mission, but one can also choose to maximize other parameters. For example, if the weight of
the propulsion system is known, it may be useful to find the control law that maximizes the payload.

Among the various numerical methods, a distinction can be made between direct and indirect
methods:

• direct methods require a large number of parameters and are based on the "discretization"
of the trajectory;

• indirect methods exploit the principles of variational calculus, converge even with a small
number of parameters and have limited computation times, generating solutions with high
numerical precision.

The latter, however, present poor robustness and greater difficulty in convergence, since the solution
search depends heavily on the initial guesses.

5.1 Optimal control theory
Optimal control theory is based on the principles of variational calculus. Specifically, the goal is
to find a curve such that a certain quantity J is maximized (or minimized) while simultaneously
satisfying the differential equations and algebraic conditions at the endpoints. Having defined
a vector of state variables x⃗, it is possible to describe its evolution over time using differential
equations written as follows:

dx⃗

dt
= f⃗(x⃗, u⃗, t) (5.1)

where u⃗ is the control vector and t is the independent variable time.

It is useful to divide the trajectory into n subintervals. By doing so, it is possible to identify the
start and end of the j-th subinterval using the times t(j−1)+

and tj− , which correspond to the
values of the variables x⃗(j−1)+

and x⃗j− , respectively. This is useful in order to account for any
discontinuities such as impulsive manoeuvres, flybys and stage separations.

After having divided the trajectory in this way, it is necessary to introduce boundary conditions
of the form:

χ⃗
(
x⃗(j−1)+

, x⃗j− , t(j−1)+
, tj−

)
= 0 j = 1, . . . , n (5.2)
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As can be seen, the boundary conditions concern both the state variables and the independent time
variable at both the external and internal boundaries. Constraints may also be imposed regarding
controls u⃗.

In order to solve the optimization problem, it is necessary to maximize a functional J , which in its
general form is expressed as follows:

J = φ(x⃗(j−1)+
, x⃗j− , t(j−1)+

, tj−) +
∑
j

∫ tj−

t(j−1)+

Φ(x⃗(t), u⃗(t), t) dt j = 1, . . . , n (5.3)

The J functional is therefore composed of two terms:

• the φ function, which depends on the values assumed by the state variable and the indepen-
dent variable time at the internal and external boundaries;

• the integral extended over the entire interval of the Φ function, which depends on time and
the values assumed at each point of the state variable and the controls.

In particular, it is interesting to note that there can be two formulations such that one of the two
functions is nullified:

• Lagrange formulation ⇒ φ = 0

• Mayer formulation ⇒ Φ = 0

For the indirect optimization of space trajectories, Mayer’s formulation is preferred.

It is useful to rewrite the functional J by introducing the Lagrange multipliers µ⃗ and the adjoint
variables λ⃗:

J∗ = φ+ µ⃗T χ⃗+
∑
j

∫ tj−

t(j−1)+

(
Φ+ λ⃗T (f⃗ − ˙⃗x)

)
dt j = 1, . . . , n (5.4)

The two functionals depend on time t, on the state variables x⃗ and their derivatives ˙⃗x, and on the
controls u⃗. If boundary conditions and state equations are satisfied, then the functionals J and
J∗ coincide, and consequently the extremal values are also the same. In order to eliminate the
dependence on ˙⃗x, it is useful to integrate by parts, thus obtaining:

J∗ = φ+ µ⃗T χ⃗+
∑
j

(
λ⃗T(j−1)+

x⃗(j−1)+ − λ⃗Tj− x⃗j−

)
+

+
∑
j

∫ tj−

t(j−1)+

(
Φ+ λ⃗T f⃗ − ˙⃗

λT x⃗
)
dt j = 1, . . . , n

(5.5)

Introducing the Hamiltonian H as follows:

H = Φ+ λ⃗T f⃗ (5.6)

and differentiating, it is obtained (square brackets indicate a matrix):

δJ∗ =

(
−H(j−1)+ +

∂φ

∂t(j−1)+

+ µ⃗T ∂χ⃗

∂t(j−1)+

)
δt(j−1)++

+

(
Hj− +

∂φ

∂tj−
+ µ⃗T ∂χ⃗

∂tj−

)
δtj−+
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+

(
λ⃗T(j−1)+

+
∂φ

∂x⃗(j−1)+

+ µ⃗T

[
∂χ⃗

∂x⃗(j−1)+

])
δx⃗(j−1)++

+

(
− λ⃗Tj− +

∂φ

∂x⃗j−
+ µ⃗T

[
∂χ⃗

∂x⃗j−

])
δx⃗j−+

+
∑
j

∫ tj−

t(j−1)+

((
∂H

∂x⃗
+

˙⃗
λT
)
δx⃗+

∂H

∂u⃗
δu⃗

)
dt j = 1, . . . , n

(5.7)

At a maximum or a minimum the functional δJ∗ must vanish for any variation of δx⃗, δu⃗, δx⃗(j−1)+
,

δx⃗j− , δt(j−1)+
and δtj− compatible with the differential and boundary equations. An appropriate

choice of constants and adjoint variables is useful to cancel the coefficient of each of the variations
of the equation above, thus ensuring the stationarity of the functional expressed as δJ∗ = 0.
By cancelling the coefficients δx⃗ and δu⃗ inside the integral for each point of the trajectory, it is
obtained:

• Euler-Lagrange differential equations for the adjoint variables

dλ⃗

dt
= −

(
∂H

∂x⃗

)T

(5.8)

• the algebraic equations for the controls(
∂H

∂u⃗

)T

= 0 (5.9)

It is interesting to note how the control laws (and also the boundary conditions) are independent
of the search for maxima and minima of J .

Care must be taken when applying a constraint to one of the controls. In this case, the latter
must belong to a feasible domain. Only cases in which the constraint is explicit and constant
are considered, not those in which it depends on time and state variables. By the Pontryagin
Maximum Principle, when a constraint is present on the control, the optimal value at each
point of the trajectory is the one that, belonging to the feasible domain, maximizes or minimizes
(depending on whether maxima or minima of J are sought) the Hamiltonian at that point. Two
cases can be distinguished:

• locally "unconstrained" control → the equation 5.9 provides the optimal value of the control
if it falls within the feasible domain and therefore the constraint does not apply at that point;

• "constrained" control → if the equation 5.9 does not provide a value within the feasible
domain, then the control assumes the maximum or minimum value. The optimal value is
therefore at the extremes of the domain.

A special case is when the Hamiltonian is linear with respect to the control to which a constraint
is applied. Since the control does not appear within the equation 5.9 and, consequently, cannot be
determined, two further cases can be distinguished:

• bang-bang control → if the control coefficient in the 5.6 equation is non-zero, according to
the Pontryagin Maximum Principle, H is maximized for the maximum value of the control
if the coefficient is positive and minimum if it is negative;

• singular arc → if the control coefficient in the 5.6 equation is identically zero for a certain
time interval, then all successive derivatives of the coefficient with respect to time must be
cancelled until one is encountered in which the control is explicitly present. Setting this
derivative equal to zero yields the optimal value of the control.
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The missing boundary conditions concern the j-th contour and are written by considering the final
endpoint of the (j − 1)-th interval or the initial endpoint of the j-th interval. By cancelling the
coefficients δx⃗j− , δx⃗j+ , δtj− and δtj+ in the equation 5.7, it is obtained:

−λ⃗Tj− +
∂φ

∂x⃗j−
+ µ⃗T

[
∂χ⃗

∂x⃗j−

]
= 0, j = 1, . . . , n (5.10)

λ⃗Tj+ +
∂φ

∂x⃗j+
+ µ⃗T

[
∂χ⃗

∂x⃗j+

]
= 0, j = 0, . . . , n− 1 (5.11)

Hj− +
∂φ

∂tj−
+ µ⃗T ∂χ⃗

∂tj−
= 0, j = 1, . . . , n (5.12)

−Hj+ +
∂φ

∂tj+
+ µ⃗T ∂χ⃗

∂tj+
= 0, j = 0, . . . , n− 1 (5.13)

As can be seen from the values assumed by j in the above expressions, the equations 5.10 and 5.12
have no meaning at the beginning of the trajectory, while the equations 5.11 and 5.13 have none
at the end. The optimal boundary conditions are obtained by eliminating the adjoint constants µ⃗
from the equations 5.10, 5.11, 5.12 and 5.13:

σ⃗
(
x⃗(j−1)+

, x⃗j− , λ⃗(j−1)+
, λ⃗j− , t(j−1)+

, tj−

)
= 0 (5.14)

Together with the given conditions 5.2, these equations complete the differential system given by
the expressions 5.1 and 5.8.

Equations 5.10 and 5.11 provide particular optimality conditions for an adjoint variable λx corre-
sponding to a generic state variable x subject to particular boundary conditions:

• if the state variable x is explicitly assigned at the initial time (χ⃗ contains the equation
x0 − a = 0 with an assigned value), there are no constraints on the corresponding adjoint
variable λx0

and it is defined as "free" (the same argument can be made at the final time);

• if the initial value of the state variable x0 does not appear either in the function φ or in the
boundary conditions, then the corresponding adjoint variable is zero at the initial time (the
same argument can be made at the final time);

• if a state variable is continuous and not assigned to the interior point i (χ⃗ contains the
equation xj+ = xj−), the corresponding adjoint variable is also continuous λxj+

= λxj−
;

• if a state variable is continuous and is explicitly assigned to an interior boundary (χ⃗ contains
the equation xj+ = xj− = a), the corresponding adjoint variable has a "free" discontinuity.
The value of λxj+

is independent of λxj−
and is determined by the optimization process.

Similarly, equations 5.12 and 5.13 also provide special boundary conditions in some cases if the
Hamiltonian does not explicitly depend on time:

• if the initial time t0 does not appear either in the function φ or in the boundary conditions,
the Hamiltonian at the initial instant is zero (the same reasoning applies to the final time if
it does not explicitly appear in χ⃗ and φ);

• if the intermediate time tj does not appear in φ (the only condition in χ⃗ that involves it is
the continuity of the time tj+ = tj−), the Hamiltonian is continuous at j (Hj+ = Hj−);

• if the time tj is explicitly assigned (in χ⃗ the equations tj+ = tj− = a appear), the Hamiltonian
presents a "free" discontinuity at that point.
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5.2 Boundary Value Problem (BVP)
The indirect method for orbital transfer optimization applies optimal control theory to system 5.1,
with boundary conditions set by the orbits involved. The problem is reformulated as a boundary
value problem (BVP), where some initial values are unknown. Its solution consists in identifying the
initial conditions that, through numerical integration, satisfy both imposed and optimal boundary
constraints.
The optimal control problem is thus expressed as a set of differential equations 5.1 and 5.8, coupled
with algebraic conditions 5.6, subject to boundary constraints 5.2 and optimal conditions 5.14. The
problem also exhibits specific features discussed below:

• The integration interval is divided into subintervals, in each of which the differential equations
can take on different expressions;

• The duration of a subinterval is generally unknown;

• Boundary conditions can be non-linear and can involve the values of the variables at both
the external and internal boundaries;

• Variables can be discontinuous at the internal boundaries and their values after the discon-
tinuity can be unknown.

The main challenge of indirect optimization methods lies in solving the boundary value problem
(BVP) arising from their application. A suitable solution method is therefore essential and must
be consistent with the specific characteristics of the problem. In this work, the BVP is solved by
reducing it to a sequence of initial value problems, iteratively converged through Newton’s method.
For the sole purpose of integration, the independent variable t is replaced with a new variable ϵ to
resolve the uncertainty associated with the duration of each subinterval. This parameter is defined
as follows:

ϵ = j − 1 +
t− tj−1

tj − tj−1
= j − 1 +

t− tj−1

τj
(5.15)

where τj is the duration of the subinterval, which is generally unknown. Therefore, thanks to
the introduction of the unknown parameters τj , the external and internal contours are fixed and
correspond to consecutive integer values of the new independent variable ϵ.
Referring to the generic system of equations 5.1 and 5.8 in which the controls have been replaced
by 5.9, a differential problem in the variables, both state and adjoint, now no longer distinct,
y⃗ = (x⃗, λ⃗), is obtained:

dy⃗

dt
= f⃗∗(y⃗, ϵ) (5.16)

However, it must also be taken into account the presence of constant parameters such as τj or the
value of a variable following a discontinuity. For this purpose, a new vector z = (y, c) is introduced,
containing the state variables, the additional variables and the new vector c of constant parameters.
Applying the change of independent variable, the system of differential equations becomes:

dz⃗

dϵ
= f⃗(z⃗, ϵ) (5.17)

Expressing explicitly the second member of this equation, for the state and adjoint variables it is
obtained:

dy⃗

dϵ
= τj

dy⃗

dt
(5.18)

while for constant parameters it obviously holds that:

dc⃗

dϵ
= 0 (5.19)

Boundary conditions are expressed without distinguishing between optimal and imposed conditions
as follows:

Ψ⃗( s⃗ ) = 0 (5.20)
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where s is a vector containing the values that the variables assume on the internal and external
contours and the unknown parameters:

s⃗ = ( y⃗0, y⃗1, . . . , y⃗n, c⃗ ) (5.21)

Some of the variables are unknown. Their values must be determined through an iterative process
so that they satisfy the boundary conditions above. It is assumed initially that all variables are
unknown and the r-th iteration begins by integrating the differential equations 5.17 with the p⃗ r

values obtained from the previous iteration. Accordingly, the following is defined:

z⃗(0) = p⃗ r (5.22)

Obviously, in order to begin the iterative procedure, it is necessary to choose initial trial values
p⃗ 1. When integrating the equations, any discontinuities present at the internal boundaries are also
taken into account. At the end of the r-th integration, after calculating the values of the state
variables at each of the boundaries, the error on the boundary conditions Ψ⃗r is calculated.

If there is a variation ∆p⃗, then, considering only the first-order terms, the error on the boundary
conditions varies by an amount equal to:

∆Ψ⃗ =

[
∂Ψ⃗

∂p⃗

]
∆p⃗ (5.23)

Cancelling the error on the boundary conditions means obtaining a ∆Ψ⃗ equal to −Ψ⃗r. Therefore,
at each iteration, the initial values are corrected by an amount:

∆p⃗ = p⃗ r+1 − p⃗ r = −

[
∂Ψ⃗

∂p⃗

]−1

Ψ⃗r (5.24)

until the boundary conditions are satisfied with the desired precision. The matrix appearing in
the equation above is obtained by multiplying two matrices:[

∂Ψ⃗

∂p⃗

]
=

[
∂Ψ⃗

∂s⃗

] [
∂s⃗

∂p⃗

]
(5.25)

The first matrix is obtained by deriving the boundary conditions with respect to the variables
contained in the vector s⃗, while the second matrix, which contains the derivatives of the values
assumed by the variables at the boundaries with respect to the initial values, or rather the values
assumed at the boundaries by the matrix [

∂z⃗

∂p⃗

]
= [⃗g(ϵ)] (5.26)

is obtained by integrating the system of differential equations that results from differentiating the
main system 5.17 with respect to each initial value:[

˙⃗g
]
=

d

dϵ

[
∂z⃗

∂p⃗

]
=

[
∂

∂p⃗

(
dz⃗

dϵ

)]
=

[
∂f⃗

∂p⃗

]
(5.27)

where the dot above the letter now indicates the first derivative with respect to the independent
variable ϵ. By making explicit the Jacobian of the main system 5.17, the equation 5.27 takes the
following form: [

˙⃗g
]
=

[
∂f⃗

∂z⃗

] [
∂z⃗

∂p⃗

]
=

[
∂f⃗

∂z⃗

]
[⃗g] (5.28)

The initial values for the homogeneous system above are obtained by deriving the relation 5.22,
thus obtaining the identical matrix:

[⃗g(0)] =

[
∂z⃗(0)

∂p⃗

]
=
[
I⃗
]

(5.29)
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This method also allows to take into account discontinuities in the variables since, for a discontinuity
in the point i, it is sufficient to update both the vector of variables z⃗ and the matrix g⃗ using the
relation h⃗ which links the values of the variables before and after the variation:

z⃗i+ = h⃗(z⃗i−) (5.30)

[
g⃗i+
]
=

[
∂h⃗

∂z⃗

] [
g⃗i−
]

(5.31)

Obviously, if some initial values of the variables are known, the problem simplifies since the vector
p⃗ reduces to only the unknown components of z⃗(0) and the vector Ψ⃗ to the non-explicit boundary
conditions at the initial time.
The matrix of equation 5.24 can be calculated numerically: its i-th row is obtained by perturbing
the i-th component of p⃗ by a small amount ∆p (keeping the others fixed) and integrating equations
5.17. In this way, the variation ∆Ψ⃗(∆p) is evaluated and, by linearizing, the corresponding row is
obtained as ∆Ψ⃗T /∆p. This procedure can lead to a simpler and faster solution of the BVP (with
∆p ≈ 10−6 ÷ 10−7), but it does not always guarantee convergence, since the matrix obtained in
the equation 5.24 is less accurate than the calculation using system 5.27. Given the sensitivity of
the problem, numerical approximations can compromise its stability.
A similar approach can be used to calculate the Jacobian and the matrix

[
∂Ψ⃗/∂s⃗

]
, but it is

preferred to maintain their analytical evaluation, using the numerical values only for verification
purposes.
The integration of the differential equations, both of the main system 5.17 and the homogeneous
system 5.27, is performed with a variable-step and variable-order method based on the Adams
formulas.

The linearization used to calculate the correction ∆p⃗ using equation 5.24, to be applied to the initial
trial values, inevitably introduces errors that can compromise convergence, increasing rather than
reducing the error on the boundary conditions. For this reason, some measures have been adopted:

• Reducing the correction: to avoid deviating too far from the solution, the applied cor-
rection is actually only a fraction of the calculated one:

p⃗ r+1 = p⃗ r +K1∆p⃗ (5.32)

with K1 between 0.1 and 1. The value is chosen empirically based on the distance of the
initial solution from the desired one.

• Error check: after updating p⃗ r+1 using formula 5.32 and integrating the equations of
motion, the maximum error on the boundary conditions Er+1

max is compared with that of the
previous iteration Er

max. The next iteration is accepted only if:

Er+1
max < K2E

r
max (5.33)

with K2 > 1 (typically between 2 and 3), so as to tolerate a possible increase in the error in
the first iterations without compromising convergence.

• Bisection of the correction: if, however, the error is too large compared to the previous
one, the correction applied is halved:

p⃗ r+1 = p⃗ r +
K1∆p⃗

2
(5.34)

and the comparison is repeated. If necessary, the bisection can be repeated up to a maximum
of 5 times. Beyond this limit, the process stops, indicating that the chosen tentative solution
does not allow convergence.
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Mathematical model

This section describes the mathematical model used for the optimization problem. Specifically, for
the optimization of space trajectories, an inertial and heliocentric reference frame is considered so
as to avoid drag and Coriolis accelerations, which would complicate the evaluation of the Jacobian
of the system required for the BVP solution.
The transfer from Earth to the asteroid is studied using the patched conics method, which assumes
that, outside the sphere of influence of a planet, the spacecraft follows an unperturbed Keplerian
orbit around the Sun. The forces acting on the spacecraft are therefore solely the solar gravitational
attraction and the thrust generated by the propulsion system.

6.1 Equations of motion
The motion of the spacecraft along its orbit around the Sun is described by the equations of motion
of the two-body problem:

dr⃗

dt
= V⃗ (6.1)

dV⃗

dt
= g⃗ +

T⃗

m
(6.2)

dm

dt
= −T

c
(6.3)

where:

• r⃗ is the position vector;

• V⃗ is the velocity vector;

• g⃗ is the gravitational acceleration generated by the Sun which is equal to

g⃗ = −µ⊙r⃗

r3
(6.4)

where µ⊙ is the standard gravitational parameter of the Sun;

• T⃗ is the thrust of the spacecraft;

• m is the mass of the spacecraft;

• c is the effective exhaust velocity.

The adjoint variable vector is defined as

λ⃗ =

 λ⃗rλ⃗V
λm


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Using this definition, it is possible to write the Hamiltonian, parameter that appears in optimal
control theory, in the following way:

H = λ⃗Tr V⃗ + λ⃗TV g⃗ + SFT (6.5)

where SF is the switching function and is calculated as follows:

SF =
λ⃗TV T⃗

mT
− λm

c
(6.6)

The switching function therefore depends on the adjoint variables related to velocity and mass,
while those related to position do not appear in the expression.

6.2 Optimal controls
Since the Pontryagin Maximum Principle requires the Hamiltonian to be maximized, the scalar
product between λ⃗V and the thrust must be as high as possible in the expression for SF . Therefore,
λ⃗V ∥ T⃗ is considered, resulting in the following formulation of the switching function:

SF =
λV
m

− λm
c

(6.7)

The switching function therefore determines the optimal control law and, based on its value,
regulates the operation of the propulsion system. In particular, considering the effective exhaust
velocity constant, the switching function can assume positive, negative or zero values:

• if SF > 0, the thrust is maximum;

• if SF < 0, the thrust is minimum (typically zero);

• if SF ≡ 0 over an interval, a singular arc occurs.

Further observations can be made by considering c and T variable, given a power P = Tc
2 . The

optimal value of the effective exhaust velocity is obtained by differentiating the Hamiltonian with
respect to c and setting it equal to zero. It is obtained:

cott =
2mλm
λV

(6.8)

Based on the value obtained using the above expression, three cases can be distinguished:

• if cmin < cott < cmax, then c = cott;

• if cott < cmin, then c = cmin ;

• if cott > cmax, then c = cmax.

Returning to reasoning about the value assumed by the switching function, maximum power will
be obtained when SF > 0 and minimum when SF < 0. Since SF is minimum when the effective
exhaust velocity assumes the minimum value, the switching function is always positive if cmin = 0,
that is, if c is not bounded.

If c = cott then:

T =
PλV
mλm

(6.9)

and therefore:
T

m
=

PλV
m2λm

(6.10)

If there are no constraints on c, then m2λm is constant and, consequently, T
m ∝ λV
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6.3 Equations in spherical coordinates
This section introduces the vector form of the equations underlying the optimization problem.
These equations must be projected into a suitable reference system, which, as previously mentioned,
is an inertial and heliocentric reference frame.

Figure 6.1: Topocentric and inertial coordinate system [20]

Therefore, spherical coordinates are used:

• r is the spacecraft’s distance from the Sun;

• θ is the longitude;

• ϕ is the latitude;

• u is the radial component of the velocity (the component directed toward the Zenith);

• v is the eastward component of the velocity;

• w is the northward component of the velocity.

The velocity is projected into a local North-East-Zenith reference system so as to have a simpler
relationship between relative and absolute velocity.
The state variables vector can therefore be written as follows:

x⃗ =



r
θ
ϕ
u
v
w
m


Before listing the differential equations, it is necessary to introduce two more angles:

• flight path angle (γ): measured from the horizontal plane with positive angles upward;

• heading angle (ψ): measured counter-clockwise from the parallel with positive angles
towards the north.
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Projecting the state equations into the reference system, it is obtained:

dr

dt
= u (6.11)

dθ

dt
=

v

r cosϕ
(6.12)

dϕ

dt
=
w

r
(6.13)

du

dt
= − 1

r2
+
v2

r
+
w2

r
+
T

m
sin γT (6.14)

dv

dt
= −uv

r
+
vw

r
tanϕ+

T

m
cos γT cosψT (6.15)

dw

dt
= −uw

r
− v2

r
tanϕ+

T

m
cos γT sinψT (6.16)

dm

dt
= −T

c
(6.17)

The flight path angle and the heading angle depend only on the state variables:

sin γ =
u

Vr
(6.18)

cos γ cosψ =
v − ωr cosϕ

Vr
(6.19)

cos γ sinψ =
w

Vr
(6.20)

where the modulus of the relative velocity is equal to:

Vr =
√
u2 + (v − ωr cosϕ)2 + w2 (6.21)

The control vector is defined as follows:

u⃗ =

[
γT
ψT

]
The thrust direction is determined by the γT and ψT controls. Optimal thrust angles can be
obtained by explicitly writing the Hamiltonian and setting its partial derivatives with respect to
γT and ψT to zero:

sin γT =
λu
λV

(6.22)

cos γT cosψT =
λv
λV

(6.23)

cos γT sinψT =
λw
λV

(6.24)

(6.25)

where λ⃗V is the primer vector and, as previously mentioned, is parallel to the thrust. Its
magnitude is defined as follows:

λV =
√
λ2u + λ2v + λ2w (6.26)

After defining the vector of adjoint variables:

λ⃗ =



λr
λθ
λϕ
λu
λv
λw
λm


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it is possible to write the differential equations through the Euler-Lagrange equations for the adjoint
variables:

λ̇r =
1

r2

(
λθ

v

cosϕ
+ λϕw + λu

(
−2

r
+ v2 + w2

)
+λv(−uw + vw tanϕ) + λw(−uv − v2 tanϕ)

)
+

2qS

mVr
λvω cosϕ (6.27)

λ̇θ = 0 (6.28)

λ̇ϕ =
1

r cos2 ϕ

(
−λθw sinϕ− λϕvw + λuw

2
)
+

2qS

mVr
λvωr sinϕ (6.29)

λ̇u =
1

r
(−λr + λθv + λϕw)−

2qS

mVr
λv (6.30)

λ̇v =
1

r

(
−λθ

1

cosϕ
− 2λuv + λw(u− w tanϕ)

)
+

+ 2λvw tanϕ− 2qS

mVr
λv (6.31)

λ̇w =
1

r
(−λϕv − 2λuw − λvu tanϕ+ λwu)−

2qS

mVr
λv (6.32)

λ̇m =
T

m2
λv (6.33)

6.4 Initial conditions
In order to solve the optimality problem, it is necessary to define the initial conditions of the
problem that the code uses as input to start the iteration. More precisely, the initial values are
contained in a vector p⃗:

p⃗ = [t0, tf , r0, θ0, ϕ0, u0, v0, w0, λr0 , λθ0 , λϕ0
, λu0

, λv0
, λw0

]
T (6.34)

where:

• t0 identifies the departure date;

• tf identifies the arrival date;

• r0, θ0 and ϕ0 identify the initial position of the spacecraft;

• u0, v0 and w0 are the components of the spacecraft’s initial velocity;

• λr0 , λθ0 , λϕ0 , λu0 , λv0 and λw0 are the initial adjoint variables.

Starting from the initial values, the code begins the iterative process. Following the integration of
the differential equations, the solutions are compared with the boundary conditions discussed in
Section 6.5, by evaluating the resulting errors. If the values assumed by these errors fall within
the required tolerance, then the code converges. Otherwise, the initial values must be adjusted in
order to obtain the optimal solution.

6.5 Boundary and optimal conditions
The mission under consideration involves departure from Earth and a possible intermediate flyby
before reaching the target asteroid. Specifically, the trajectory can be divided into N sub-intervals,
where N corresponds to the number of celestial bodies visited, excluding the departure body. For
each sub-interval, it is necessary to outline the boundary conditions of the problem, which are
therefore defined not only at the endpoints of the trajectory, but also at the intermediate points
where the flyby occurs. More precisely, it is required to impose continuity on the interface of each
interval for both state and adjoint variables.
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Departure and arrival
The boundary conditions at departure are as follows:

r⃗ (t0) = r⃗Earth (t0)

V⃗ (t0) = V⃗Earth (t0)

m0 = 1000 kg

It is therefore assumed that the spacecraft’s position and velocity are equal to those of Earth,
although the initial phase within the sphere of influence is not considered in this case study. This
assumption can be made since the size of the sphere of influence is small compared to the dimen-
sions involved during the transfer.

Upon arrival, similar boundary conditions apply:

r⃗ (tf ) = r⃗asteroid (tf )

V⃗ (tf ) = V⃗asteroid (tf )

In this case, the spacecraft’s radius and velocity must be the same as the target asteroid. The final
mass, however, is determined at the end of the optimization process.

The values of t0 and tf are set as initial values by providing the departure date and mission
duration to the code, but they can also be optimized.

Intermediate flyby
Among the various solutions found, some involve an intermediate flyby before reaching the as-
teroid. It is therefore necessary to impose boundary conditions also at the intermediate points
corresponding to the j-th flyby. In particular, it is necessary to ensure the continuity of the state
variables before and after the flyby, setting them equal to those of the intermediate body. In the
case study, the celestial body encountered during the flyby is the Earth. Therefore, in the instant
immediately before and after this manoeuvre, the following conditions apply:

r⃗
(
tj−
)
= r⃗Earth

(
tj−
)

V⃗
(
tj−
)
= V⃗Earth

(
tj−
)

r⃗
(
tj+
)
= r⃗Earth

(
tj+
)

V⃗
(
tj+
)
= V⃗Earth

(
tj+
)

where the value of tj+ is obtained by adding the residence time near the main body to tj− :

tj+ = tj− + tstay

For simplicity, as also reported further on in the assumptions made in Section 7.1, the residence
time is assumed to be zero. It is therefore possible to rewrite the conditions as follows:

r⃗
(
tj−
)
= r⃗

(
tj+
)
= r⃗Earth (tj)

V⃗
(
tj−
)
= V⃗

(
tj+
)
= V⃗Earth (tj)

m
(
tj−
)
= m

(
tj+
)

While searching for solutions, it was observed that in most cases, considering a free flyby of the
planet led to trajectories that were too low. Therefore, in some analyses, a constrained flyby model
was adopted, which requires introducing an additional condition related to the rotation angle δ,
which is:

sin δj =

∥∥∥V⃗∞(tj+)× V⃗∞
(
tj−
)∥∥∥∥∥∥V⃗∞(tj+)∥∥∥ ∥∥∥V⃗∞(tj−)∥∥∥
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The optimal conditions are instead obtained by guaranteeing the continuity between the adjoint
variables for the speed:

λu
(
tj−
)
= λu

(
tj+
)

λv
(
tj−
)
= λv

(
tj+
)

λw
(
tj−
)
= λw

(
tj+
)
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Mission analysis and numerical
implementation

Trajectories toward NEAs were studied using an optimization code written in Fortran provided
by the Polytechnic of Turin. The code, through an iterative process, allows to derive the optimal
thrust law that achieves the maximum final mass (and therefore the minimum ∆V ) at the end of
the mission. This chapter presents some aspects related to the mission analysis, before moving on
to explain how the code works.

7.1 Simplifying assumptions
In order to simplify the calculations related to the analysis of space trajectories, the following
assumptions are made:

• for the calculations, only the heliocentric phase of the patched conics method is considered,
while the departure and arrival phases within the spheres of influence are not considered;

• the asteroid’s orbital parameters are considered correct, even though they may change with
further observations;

• even though this is not the case in reality, the time spent near a celestial body during a flyby
is taken to be zero. This approximation is valid considering the extended mission times.

7.2 Initial data
In order to study the mission, it is necessary to define a set of variables and assign them specific
values. These variables constitute the initial data of the problem and are incorporated into the
optimization code for the subsequent analysis.
For the Earth–2024 YR4 interplanetary transfer, a spacecraft with an initial mass of 1000 kg and
an available power of 4.2 kW was considered.
Assuming an efficiency of 0.625, the corresponding nominal thrust can be computed as follows:

T =
2ηPE

c
= 0.1622 N = 162.2 mN (7.1)

where:
c = ISP g0 = 32361.945m/s (7.2)

Below are the values of the variables inserted into the code.
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Initial mass m0 1000 kg
Specific impulse Isp 3300 s

Power P 4.2 kW
Nominal thrust T 162.2 mN

Efficiency η 0.625

Table 7.1: Initial parameters for electric propulsion system

There are also coefficients that take into account the duty cycle, since there are moments during
the flight when the engines turn off. To compensate for these shutdown periods, the available
thrust is assumed to be 90% of its actual thrust. In the moments before arriving at the target
body or before a flyby, since navigation is required and therefore the spacecraft’s position relative
to the main body must be monitored, the duty cycle is further reduced to 70%.

7.3 Synodic period
For the study of the trajectories towards the asteroid 2024 YR4, it is useful to calculate the value
of the synodic period in order to know after how long the missions are repeated. As already seen
in section 3.10.2, the formula used to calculate the synodic period is the following:

τs =
2π

|w1 − w2|
=

T1T2
|T1 − T2|

(7.3)

where w1 and w2 are the angular velocities of the planets and T1 and T2 are their periods of revo-
lution.

Knowing the period of revolution of the Earth and the asteroid 2024 YR4 around the Sun, a
synodic period equal to 487.4 days (or 1.34 years) is obtained. This synodic period implies that,
after approximately 4 years, orbital conditions will repeat themselves in a similar way. Specifically,
since the asteroid has an orbital period of 1457.574 days (or 3.9934 years), after four years, the
Earth will have completed approximately four revolutions, while the asteroid will have completed
only one. Consequently, a mission departing at t0 and a second departing approximately after 4
years should present very similar characteristics in terms of orbital geometry and launch window.
Solutions with later departure dates will be discussed later in Sections 8.3 and 8.4.

7.4 Non-dimensional variables
For calculation purposes, some variables are non-dimensionalised using appropriate constant pa-
rameters implemented within the code. Specifically, radius, velocity, mass, thrust and time are
non-dimensionalised using the following conversion parameters:

• Reference mass: mass of the satellite

m0 = 1000 kg (7.4)

• Reference distance: Earth-Sun distance equal to 1 AU

rconv = 1.49597870691× 108 km = 1 AU (7.5)

• Reference velocity: circular velocity of the Earth around the Sun

vconv =

√
µ⊙

rconv
= 29.784692 km/s (7.6)

• Reference acceleration: acceleration relative to the Earth’s orbit around the Sun

aconv =
µ⊙

r2conv
= 5.930084× 10−6 km/s2 (7.7)
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• Reference time

tconv =
1

86400

vconv
aconv

=
1

86400

√
r3conv
µ⊙

= 58.132441 days (7.8)

It follows that a period equal to one year can be non-dimensionalised as follows:

365 days
tconv

= 2π (7.9)

That is, in non-dimensional units, one year corresponds to 2π. In particular, the days are
counted starting from J2000, i.e., from January 1, 2000, at 12:00 UTC.

• Reference thrust
Trif = 1000 ·m0 · aconv = 5.930084N (7.10)

7.5 Code implementation and inputs
The code is based on an iterative process that finds the best trajectory toward NEAs in terms of
mass and ∆V .
Specifically, the code requires input from both data that the user can enter manually and values
saved in a file. The latter are the tentative values from which the program will start the iterative
process and are:

• departure and arrival dates: t0 and tf ;

• v∞ at departure;

• spacecraft position: r, θ, ϕ;

• spacecraft velocity: u, v, w;

• values of adjoint variables: λr, λθ, λϕ, λu, λv, λw;

• non-dimensional mass.

The values requested from the user are the following:

• integration control parameters: rmin, pbis, jmax;

• thrust multiplicative coefficient: thrcoeff ;

• duration;

• departure, intermediate (in the case of a flyby) and arrival celestial bodies;

• non-dimensional mass: am0;

• arrival and residence times at the intermediate celestial body in the case of a flyby: tmid
and tstay.

To facilitate convergence, it is helpful if the t0 in the file containing the tentative values is the same
as the one entered by the user.

From this data, and using files containing the orbital parameters of the asteroids, the code performs
the calculations through various subroutines. If the selected initial guesses are not adequate, the
code will not converge. It is therefore essential to carefully choose the tentative values and, in
particular, the integration parameters.
If convergence occurs, the code produces several output files containing the transfer parameters,
such as the evolution of the thrust and the switching function over time, the position of the
spacecraft in spherical coordinates, the energy, the inclination and the eccentricity of the transfer
orbit.
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Results

This chapter analyses the trajectory solutions to 2024 YR4 obtained through the optimization
code. Specifically, five categories of solutions were considered:

• Direct transfers;

• Earth flyby transfers;

• Later direct transfer solutions;

• Later Earth flyby transfer solutions:

• Trajectory options before the expected impact date.

8.1 Direct transfer trajectories
This section presents the results related to direct transfers. For this type of trajectory, mission
durations between 22 and 28 were considered, which correspond to transfer times ranging from 3.5
to 4.4 years.

A large number of solutions were identified, and the most relevant ones are reported in the tables
8.1 and 8.2.

Solution
Duration t0 tf

Normalized Days Normalized Date Normalized Date
1 27.6 1604.46 181.4 14/11/2028 209 06/04/2033
2 22.1 1284.73 186.14 16/08/2029 208.24 21/02/2033

Table 8.1: Direct transfers - duration and timeline comparison

Solution Mf [kg] ∆V [km/s]
1 697.100 11.677
2 673.212 12.805

Table 8.2: Direct transfers - mass and ∆V comparison

These two solutions represent, respectively, the one with the lowest propellant consumption among
all those found, and the shortest one that still preserves a high final mass.

As can be observed, this type of mission requires a high total ∆V . As a result, the propellant
consumption is significant. For this reason, alternative solutions involving an Earth flyby were also
identified, with the goal of reducing both the ∆V cost and the associated propellant consumption
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(these solutions will be discussed in Sections 8.2, 8.4 and 8.5).

A comparison between the various direct transfer solutions found is presented below. The results
are compared by considering how the final mass evolves as either the departure date (at fixed
duration) or the duration (at fixed departure date) varies.

Figure 8.1: Direct transfers - final mass vs
t0 (duration = 27)

Figure 8.2: Direct transfers - final mass vs
duration (t0 = 181.4)

As can be seen from these first two graphs, at a fixed duration there will be a value of t0 at which
the final mass is maximized. At a fixed departure date, however, it is observed that the mass tends
to increase with duration, until a value is reached beyond which no further gain in terms of final
mass is achieved. This is due to the fact that, for the type of trajectory considered, increasing
the duration beyond a certain threshold results in a coasting phase with the engines off, in which
no further thrust is imparted to the spacecraft. Consequently, there is no further increase in final
mass beyond that point.

In particular, for the solutions of interest, at a fixed duration, a maximum in proximity of t0=181.4
is reached. By fixing the starting time, it can be observed that the mass increases up to a duration
of 27.6, beyond which no improvement is observed. Consequently, the final mass is maximized for:

• t0=181.4

• duration=27.6

which corresponds to Solution 1.

These trends for fixed durations and t0 also recur in other cases. In particular, it is interesting to
observe what happens for short durations and for starting times shifted by four years compared to
Solution 1.
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Figure 8.3: Direct transfers - final mass vs
t0 (duration = 22.1)

Figure 8.4: Direct transfers - final mass vs
t0 (max duration = 27)

From the graphs above, it is immediately observed that, as previously mentioned, for a fixed
duration, a maximum is reached near a certain value of t0. In particular, for orbital missions
shifted by 4 years, the trend in final mass is very similar to the case shown in Figure 8.1. This
occurs because, as already explained in Section 7.3, every 4 years the missions tend to repeat with
very similar characteristics both in terms of trajectory traveled and launch window. For the case of
shorter-duration solutions (duration equal to 22.1, or approximately 1285 days), it is observed that
the final mass is maximized for a departure date value of 186.14, which corresponds to Solution 2.

Trajectory followed by the spacecraft

Figure 8.5: Solution 1 - Trajectory
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Figure 8.6: Solution 2 - Trajectory

Figure 8.5 and 8.6 show the trajectories of the spacecraft and the orbits of the Earth and the
asteroid 2024 YR4. Plotted distances are in astronomical units (1 AU = 1.496 · 108 km).

The number of revolutions of the spacecraft around the Sun is slightly more than three and two,
respectively. It is natural that shorter time intervals correspond to fewer revolutions and vice
versa. Typically, the first revolution is approximately 1 year, the second roughly 1.5 years, and the
possible third revolution roughly 2 years. As there is still a small fraction of the revolution left,
the total mission times are barely less than 4.5 years for the case with duration equal to 27, and
around 3.5 years for the case with duration equal to 22.1.

In the three-dimensional representation of the trajectory, the change in inclination of the space-
craft’s orbit required to reach that of the asteroid can be observed. These variations are intention-
ally accentuated in the image for better visualization. It should be noted that, since the orbit of
2024 YR4 is inclined by only about 3.4◦, the variations along the z-axis are limited. To highlight
this phenomenon, the range of values reported on the z-axis is much narrower than those reported
along the x-axis and y-axis.
The same reasoning also applies to the trajectories reported in the other sections.
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Variation of thrust with time

Figure 8.7: Solution 1 - Thrust Figure 8.8: Solution 2 - Thrust

Graphs 8.7 and 8.8 show the thrust profile over time. It can be seen that for longer durations,
there are periods in which the engines are off and do not generate thrust, while for shorter dura-
tions, since the final orbit must be reached in less time, the thrust profile is nearly continuous, and
therefore there are almost no coasting phases with the engines off.

In both thrust profiles, the higher thrust peaks correspond to manoeuvres intended to increase the
aphelion of the orbit, while the smaller peaks are associated with thrust phases aimed at reducing
the perihelion. These thrust segments are timed to modify the orbit shape progressively, according
to the mission requirements.

Evolution of aphelion and perihelion as a function of time

Figure 8.9: Solution 1 - Aphelion and peri-
helion

Figure 8.10: Solution 2 - Aphelion and peri-
helion

The above graphs show how the aphelion and perihelion radii vary with time. The spacecraft have
to reach high levels of aphelion due to the high eccentricity of the orbit of 2024 YR4. On the other
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hand, the perihelion must be reduced, since the asteroid’s perihelion is lower than the Earth’s. As
previously outlined, the engines are fired at the appropriate times to regularly raise the aphelion
and lower the perihelion, gradually shaping the spacecraft’s trajectory into that of the target.

By comparing the two trends, it can be observed that in Solution 1 the changes in aphelion and
perihelion are more distinctly marked than in Solution 2. This is consistent with the earlier discus-
sion on the thrust profiles: for shorter durations, the engines remain active for a greater percentage
of the mission time, resulting in more continuous modifications of the orbital parameters. In con-
trast, for longer durations, there are periods during which neither the aphelion nor the perihelion
is significantly altered.

Evolution of eccentricity as a function of time

Figure 8.11: Solution 1 - Eccentricity Figure 8.12: Solution 2 - Eccentricity

The comments regarding the aphelion and the perihelion radii can also be extended to the eccen-
tricity trend, since these three parameters are correlated. Indeed, here too, it can be observed that
the variation is much more marked for the longer-duration solution than for the shorter one. Ob-
viously, since the asteroid’s orbit is more elliptical than the Earth’s, the eccentricity must increase.
This growth is caused by both the increase in aphelion and the decrease in perihelion, two effects
that lead to a more elliptical orbit.

8.2 Earth flyby transfer trajectories
Analysing the results reported in Section 7.2, it is observed that, after approximately one revolu-
tion (and therefore approximately a year after the start of the mission), the spacecraft’s trajectory
intersects Earth’s orbit. It is therefore possible to exploit an Earth flyby to reduce the mission
cost in terms of ∆V , consequently reducing the propellant mass required for the transfer.

The two most interesting solutions involving Earth flybys are reported below.
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Solution
Duration t0 tfb tf

Normalized Days Normalized Date Normalized Date Normalized Date

3 24 1395.18 185.17 21/06/2029 193.72 31/10/2030 209.17 16/04/2033

4 21 1220.78 186.93 01/10/2029 193.83 06/11/2030 207.93 03/02/2033

Table 8.3: Earth flyby transfers - duration and timeline comparison

Solution Mfb [kg] Mf [kg] ∆V1 [km/s] ∆V2 [km/s] ∆Vtot [km/s]

3 908.209 785.178 3.116 4.711 7.827
4 905.573 758.522 3.210 5.734 8.944

Table 8.4: Earth flyby transfers - mass and ∆V comparison

Comparing the results above with the direct transfer results reported in Tables 8.1 and 8.2, the
gains in terms of ∆V and final mass are immediately noticeable. More specifically, using the Earth
flyby allows for a saving of almost 100 kg of propellant mass, with transfers requiring approxi-
mately 4 km/s less in terms of ∆V .

For Earth flyby transfers too, it is possible to compare the various solutions by varying the depar-
ture date for a fixed duration.

Figure 8.13: Earth flyby transfers - final
mass vs t0 (duration = 21)

Figure 8.14: Earth flyby transfers - final
mass vs t0 (duration = 22)

As with the direct solutions, there exists a departure date at which the value of mf is maximized.

Comparing the range of t0 values present in this case with those for direct transfers, it can be seen
that the Earth flyby solutions have narrower launch windows. In fact, increasing or decreasing the
values of t0 reported above significantly reduces the final mass value.
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Figure 8.15: Earth flyby transfers - final
mass vs t0 (duration = 23)

Figure 8.16: Earth flyby transfers - final
mass vs t0 (duration = 24)

For longer durations, the same trend is observed, but shifted to higher mf values. This occurs
precisely because, as already mentioned when discussing direct transfers, increasing the mission
duration results in a gain in terms of total mission cost.

Trajectory followed by the spacecraft
The trajectories with Earth flyby are shown below, with the exact flyby point highlighted.

Figure 8.17: Solution 3 - Trajectory
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Figure 8.18: Solution 4 - Trajectory

Compared to direct solutions, it’s immediately noticeable that the spacecraft completes fewer
revolutions around the Sun. The flyby allows the mission duration to be shortened, albeit slightly.
This is because, as will be analysed later, the flyby significantly raises the aphelion, reducing the
thrust required by the engine. Consequently, since it’s sufficient to push for a shorter time, the
overall mission duration can be reduced.
There are, in fact, solutions with durations around 19–20, which correspond to transfers up to
a year shorter than the direct ones. Naturally, these solutions have lower final mass values than
those reported here, as they are associated with shorter transfer times.

Variation of thrust with time

Figure 8.19: Solution 3 - Thrust Figure 8.20: Solution 4 - Thrust

Graphs 8.19 e 8.20 show that the greatest thruster contribution occurs after the Earth flyby, which
happens about a year into the mission. In both cases, in fact, a nearly continuous thrust phase is
observed starting about a year and a half or two into the mission.
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Evolution of aphelion and perihelion as a function of time

Figure 8.21: Solution 3 - Aphelion and peri-
helion

Figure 8.22: Solution 4 - Aphelion and peri-
helion

From the graphs above, it can be seen that, at t0=193.72 for Solution 3 and at t0=193.83 for
Solution 4, i.e., at the moment the flyby occurs, a significant increase in the aphelion radius is
recorded. This gain is accompanied by a slight increase in the perihelion, a negative aspect for the
mission, since this quantity must be reduced overall. However, performing the flyby remains very
advantageous, since the aphelion gain is far greater than the cost in terms of thrust required to
bring the perihelion back to the desired level. The flyby, in fact, allows the aphelion to be raised by
approximately 50% of the total required, thus enabling significant savings in terms of propellant.

Evolution of eccentricity as a function of time

Figure 8.23: Solution 3 - Eccentricity Figure 8.24: Solution 4 - Eccentricity

In addition to observing it visually in the graphs 8.21 and 8.22, it is also possible to note through
the eccentricity trend how, at the moment of the flyby, the increase in the aphelion (which increases
the eccentricity value) is larger than that of the perihelion (which reduces it). The fact that overall
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the eccentricity increases confirms what was said in the previous paragraph: the gain in terms of
aphelion radius is greater than the cost of lowering the perihelion after the flyby.

8.3 Later direct transfer solutions
As highlighted in Section 7.3, the same mission can be repeated every four years while maintaining
very similar characteristics in terms of trajectory and duration. This section presents two solutions
similar to Solution 1, postponed by four and eight years respectively, with departure dates in 2032
and 2036.

Solution
Duration t0 tf

Normalized Days Normalized Date Normalized Date
5 27 1569.58 206.5 12/11/2032 233.5 28/02/2037
6 27 1569.58 231.6 10/11/2036 258.6 27/02/2041

Table 8.5: Later direct transfers - duration and timeline comparison

Solution Mf [kg] ∆V [km/s]

5 695.501 11.751
6 695.329 11.759

Table 8.6: Later direct transfers - mass and ∆V comparison

From the data reported in the two tables, the similarity between these two solutions and the so-
lution with duration equal to 27.6 starting in 2028 is immediately noticeable. In fact, even when
solutions with slightly shorter durations are considered, the results for final mass and required ∆V
are virtually identical.

The observations regarding the spacecraft trajectory, the evolution of the thrust, and the variations
of aphelion, perihelion and eccentricity over time are the same as those discussed in Section 8.1.

Trajectory followed by the spacecraft

Figure 8.25: Solution 5 - Trajectory
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Figure 8.26: Solution 6 - Trajectory

Variation of thrust with time

Figure 8.27: Solution 5 - Thrust Figure 8.28: Solution 6 - Thrust
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Evolution of aphelion and perihelion as a function of time

Figure 8.29: Solution 5 - Aphelion and peri-
helion

Figure 8.30: Solution 6 - Aphelion and peri-
helion

Evolution of eccentricity as a function of time

Figure 8.31: Solution 5 - Eccentricity Figure 8.32: Solution 6 - Eccentricity

8.4 Later Earth flyby transfer solutions
As with direct transfers, a similar reasoning holds for Earth flyby missions planned further ahead
in time, with launch windows that will be narrower in this case.
Solutions 7 and 8 are reported here, which correspond to Solutions 3 and 4 moved forward in time
by four years.
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Solution
Duration t0 tfb tf

Normalized Days Normalized Date Normalized Date Normalized Date

7 24 1395.18 210.31 21/06/2033 218.86 31/10/2034 234.31 17/04/2037

8 21 1220.78 212.05 30/09/2033 218.96 06/11/2034 233.05 02/02/2037

Table 8.7: Later Earth flyby transfers - duration and timeline comparison

Solution Mfb [kg] Mf [kg] ∆V1 [km/s] ∆V2 [km/s] ∆Vtot [km/s]

7 908.569 784.395 3.103 4.756 7.859
8 906.130 758.321 3.190 5.763 8.953

Table 8.8: Later Earth flyby transfers - mass and ∆V comparison

Here too, the results reported in the tables immediately show the similarity with the solutions
reported in Section 8.2, both in terms of masses and the required ∆V .

The observations regarding the spacecraft trajectory, the evolution of the thrust, and the variations
of aphelion, perihelion and eccentricity over time are the same as those discussed in Section 8.2.

Trajectory followed by the spacecraft

Figure 8.33: Solution 7 - Trajectory
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Figure 8.34: Solution 8 - Trajectory

Variation of thrust with time

Figure 8.35: Solution 7 - Thrust Figure 8.36: Solution 8 - Thrust
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Evolution of aphelion and perihelion as a function of time

Figure 8.37: Solution 7 - Aphelion and peri-
helion

Figure 8.38: Solution 8 - Aphelion and peri-
helion

Evolution of eccentricity as a function of time

Figure 8.39: Solution 7 - Eccentricity Figure 8.40: Solution 8 - Eccentricity

8.5 Trajectory options before the expected impact date
It is interesting to explore solutions with arrival dates before December 22, 2032, the day on which
asteroid 2024 YR4 is expected to have a probability of 4.3% of impacting the Moon. The solutions
reported in this section are Earth flyby transfers with an arrival date around 2031, approximately
one year before the potential collision with the natural satellite. Below are the main data for two
solutions with not too long durations and final masses almost close to those obtained in Sections
8.2 and 8.4.
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Solution
Duration t0 tfb tf

Normalized Days Normalized Date Normalized Date Normalized Date

9 27 1569.58 171.67 28/04/2027 180.81 10/10/2028 198.67 15/08/2031

10 24 1395.18 171.56 22/04/2027 180.79 09/10/2028 195.56 15/02/2031

Table 8.9: Earth flyby transfers before December 22, 2032 - duration and timeline comparison

Solution Mfb [kg] Mf [kg] ∆V1 [km/s] ∆V2 [km/s] ∆Vtot [km/s]

9 846.462 773.428 5.394 2.920 8.314
10 821.050 751.962 6.380 2.845 9.225

Table 8.10: Earth flyby transfers before December 22, 2032 - mass and ∆V comparison

It is immediately evident that, compared to the Earth flyby solutions discussed previously, the final
masses are lower due to slightly higher costs in terms of ∆V . However, as expected, by increasing
the mission duration even beyond the value 30, which corresponds to almost five years of transfer
time, final masses very similar to those of Solutions 3, 4 and 7 can be obtained. Consequently,
to reach values of mf around 785 kg, it is necessary to plan missions extending up to almost two
years beyond those discussed in the previous sections.

Figure 8.41: Earth flyby transfer - final mass vs duration (t0=171.6)

From the graph it can be observed that, for durations exceeding 32 (and therefore exceeding 5
years), the final mass seems to reach a limit value around 788 kg beyond which it does not increase
further. This occurs for the same reasoning as for direct transfers: after a certain amount of time
sufficient to reach the required aphelion and perihelion radii, thrust is no longer required from the
engine. This is followed by a coasting phase with the engines off, during which no fuel is consumed,
without attempting to redistribute the thrust more efficiently than in previous cases, thus keeping
the final mass within its limit.
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Trajectory followed by the spacecraft

Figure 8.42: Solution 9 - Trajectory

Figure 8.43: Solution 10 - Trajectory

It is immediately apparent that, compared to other flyby solutions, the arrival point is no longer
located at perihelion but at aphelion of the 2024 YR4 orbit. The spacecraft completes two revolu-
tions around the Sun. The first lasts about a year, and the second, half of which occurs after the
flyby, takes up the remainder of the mission, approximately three years.
In addition to the arrival dates reported in Table 8.9, the figures also show that the asteroid is
reached before it crosses the Earth’s orbit and, consequently, also that of the Moon. Specifically,
analysing the various output files obtained from the optimization code, it is observed that the
potential collision with the asteroid would occur at the second trajectory crossing between Earth
and 2024 YR4. The solutions presented guarantee arrival before this event and, in general, before
both orbital crossings.
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Variation of thrust with time

Figure 8.44: Solution 9 - Thrust Figure 8.45: Solution 10 - Thrust

Thrust profile over time appears to be more irregular than in previous cases. It is also noted that,
after about 2.5 years (i.e., after a mission duration equal to 15), the thrust is used only to lower
the perihelion. In fact, the aphelion is raised by the thrust only twice, near the two peaks observed
in the graphs above.

Evolution of aphelion and perihelion as a function of time

Figure 8.46: Solution 9 - Aphelion and peri-
helion

Figure 8.47: Solution 10 - Aphelion and per-
ihelion

The two graphs show that, close to the flyby, approximately one year after the start of the mission,
there is a significant rise in aphelion and a modest increase in perihelion, which will subsequently be
lowered again by thrust. In this case, too, the flyby achieves an aphelion increase of approximately
50% of the total required, thus significantly reducing the mission costs. The discussion regarding
the perihelion increase and the resulting cost required to lower it is the same as in Section 8.2: the
aphelion gain is far greater than the cost in terms of thrust required to bring the perihelion back
to the desired level.
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Compared to previous flyby cases, where the aphelion radius was increased with thrust up to that
of the asteroid towards the end of the mission, in this case this parameter is raised immediately
after the flyby. The spacecraft’s trajectory will then be adjusted without further affecting the
aphelion but by gradually decreasing the perihelion radius.

Evolution of eccentricity as a function of time

Figure 8.48: Solution 9 - Eccentricity Figure 8.49: Solution 10 - Eccentricity

In this case, too, the eccentricity shows an upward trend. It can be seen how it rises sharply near
the flyby due to the increase in aphelion (which here also prevails over that of perihelion) and then
continues to grow at a reduced rate as the perihelion gradually decreases.

It can be concluded that, based on the duration times and final mass values, this type of solutions,
although not the most performing compared to those presented in the other sections, still allow
reaching the asteroid 2024 YR4 while respecting the arrival constraint before December 22, 2032,
with final mass values that remain acceptable.
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Conclusions

The work presented in this thesis concerns the optimization and analysis of space trajectories
toward the celestial body 2024 YR4, a Near-Earth asteroid that currently has a 4.3% probability
of impacting the Moon.
Trajectory search was performed using indirect optimization methods based on optimal control
theory. Specifically, the study initially focused on finding direct trajectories, meaning transfers
without exploiting the gravitational fields of planets or other asteroids. Following observations of
direct solutions, given that the spacecraft’s initial trajectory does not deviate significantly from
Earth’s orbit, the focus shifted to finding solutions that included a flyby of the planet with the aim
of saving propellant mass. Of the many trajectories identified, the ten most interesting solutions
were included in this thesis and are summarized in the following table.

Direct transfer solutions

Solution Departure date Flyby date Arrival date Duration [years] mf [kg] ∆V [km/s]

1 14/11/2028 N/A 06/04/2033 4.4 697.100 11.677
2 16/08/2029 N/A 21/02/2033 3.5 673.212 12.805
5 12/11/2032 N/A 28/02/2037 4.3 695.501 11.751
6 10/11/2036 N/A 27/02/2041 4.3 695.329 11.759

Earth flyby transfer solutions

Solution Departure date Flyby date Arrival date Duration [years] mf [kg] ∆V [km/s]

3 26/09/2029 31/10/2030 16/04/2033 3.8 785.178 7.827
4 01/10/2029 06/11/2030 03/02/2033 3.3 758.522 8.944
7 21/06/2033 31/10/2034 17/02/2037 3.8 784.395 7.859
8 30/09/2033 06/11/2034 02/02/2037 3.3 758.321 8.953
9 28/04/2027 10/10/2028 15/08/2031 4.3 773.428 8.314
10 22/04/2027 09/10/2028 15/02/2031 3.8 751.962 9.225

N/A = Not applicable (value not present for this solution)

Table 9.1: Transfer solutions

The results show that trajectories that exploit Earth’s gravitational field are those that allow for
the lowest propellant consumption. Furthermore, these solutions are characterized by a shorter
average mission duration, since much of the increase in the aphelion radius, which would require
multiple thrust arcs distributed over time, occurs during the flyby of the planet in a single ma-
noeuvre.
Particular attention should also be paid to Solutions 9 and 10, i.e., those trajectories with an
arrival date prior to the potential impact with the Moon, scheduled for December 22, 2032. On
average, these solutions have slightly lower final mass values, but still acceptable, thanks in part
to the extension of the mission duration compared to Solutions 3 and 4.
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It should be noted that the solutions found using the optimization code depend heavily on the
initial trial values, and therefore, even by slightly varying some initial parameters, new solutions
may be found. The difficulty in finding these trajectories is also due to the fact that the target
asteroid’s orbit is highly eccentric, making it more difficult for the code to converge.

A possible future development involves the search for new solutions that introduce new features
or improvements over those found so far, such as missions scheduled in different launch windows,
missions with additional flybys to further reduce propellant mass consumption and missions with
shorter transfer durations, which could, however, result in lower final masses.
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