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Abstract

The growing interest in reusable space transportation systems has renewed the fo-
cus on horizontal landing capabilities for re-entry vehicles. While parafoil-assisted
recovery remains a widely studied and applied method, particularly for small-scale
or experimental platforms, current trends in aerospace engineering and spaceflight
operations emphasize the need for autonomous runway landings to improve operabil-
ity, reusability, and mission flexibility. Within this context, lifting-body and winged
configurations are increasingly regarded as viable solutions, although the minimum
aerodynamic and performance requirements for their final descent and landing re-
main insufficiently defined.
This thesis addresses this gap by developing a methodology to identify the fun-
damental requirements that a re-entry vehicle must satisfy—expressed in terms of
lift-to-drag ratio (L/D), lift-to-weight ratio (L/W), and other key aerodynamic per-
formance metrics—to successfully perform a controlled horizontal landing on a run-
way without the need for parafoil systems. To support the analysis, a simplified
automatic guidance model was implemented, enabling the simulation of the termi-
nal descent and landing phase under various aerodynamic configurations and con-
straints.
A central component of this research is the implementation of an optimization frame-
work to evaluate vehicle behavior and validate the feasibility of safe runway landing
for representative design cases. Optimization methods are a cornerstone in aerospace
design, as they allow the systematic treatment of nonlinear dynamics, operational
constraints, and multi-objective trade-offs. In this work, the Sequential Quadratic
Programming (SQP) algorithm, as implemented in the Sparse Nonlinear OPTimizer
(SNOPT), was adopted. SNOPT is particularly suited for large-scale constrained op-
timization problems, where sparsity in the constraint Jacobian can be exploited to
achieve computational efficiency. Its robustness and flexibility make it a standard
tool in trajectory optimization and guidance problems, enabling the incorporation of
realistic aerodynamic models, vehicle dynamics, and operational constraints within
a unified optimization environment.
In the proposed formulation, the optimization parameters are defined as the time-
dependent deflection angles of two control surfaces, which directly influence the
aerodynamic forces and moments during the final descent. By optimizing these
control inputs, the guidance model is capable of adapting the trajectory to meet
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runway-landing requirements while satisfying aerodynamic and dynamic constraints.
The optimization process was carried out within a three-degree-of-freedom (3-DOF)
simulation environment, which provided a computationally efficient yet sufficiently
accurate representation of the vehicle’s motion during the terminal phase. The
underlying model was initially inspired by the Space Shuttle and subsequently gen-
eralized to encompass generic winged-body and lifting-body configurations, thereby
ensuring the applicability of the methodology to a broader class of reusable re-entry
vehicles.
The outcome of this research is a comprehensive mapping of requirements for the
final re-entry and landing phase, offering a set of guidelines that can inform the
preliminary design of future reusable vehicles. By combining aerodynamic model-
ing, automatic guidance, and advanced optimization tools such as SNOPT, the thesis
contributes to the broader development efforts toward more versatile and fully au-
tonomous re-entry systems, thereby supporting the long-term vision of cost-effective
and operationally flexible space transportation.
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1. Introduction

The purpose of this thesis is to define the fundamental requirements for horizontal
re-entry vehicles, positioning itself within a rapidly expanding and dynamic domain
of the aerospace sector. In light of the growing global interest in reusable re-entry
systems, the work aims to contribute to the existing body of knowledge by identify-
ing key design considerations and establishing preliminary guidelines to be employed
during the conceptual and early design phases. This topic is of considerable rele-
vance not only from an academic perspective but also in relation to industrial and
commercial applications. Major aerospace companies, such as Thales Alenia Space,
have demonstrated a strong interest in the development of reusable vehicles and
associated technologies, recognizing their strategic value in terms of cost reduction,
operational flexibility, and sustainability. Beyond the definition of requirements, the
thesis seeks to provide a structured framework for analyzing the main challenges
and opportunities associated with horizontal landing strategies. By integrating the-
oretical insights with methodological approaches, the research aspires to support the
development of more efficient, reliable, and sustainable aerospace solutions. In doing
so, it also intends to offer a useful reference for both future academic investigations
and industrial initiatives in the field of reusable space transportation systems.
By addressing the landing problem as a sequential optimization task, the thesis con-
tributes to the broader effort of defining feasible aerodynamic configurations and
control strategies that ensure mission success. The methodology and results are
of direct relevance to aerospace companies engaged in the development of next-
generation reusable vehicles, which require robust frameworks to validate landing
feasibility during the early design phases.

This research addresses these challenges by developing a methodology to define the
requirements necessary for a safe and controlled horizontal landing of a re-entry
vehicle, with particular emphasis on aerodynamic parameters, guidance strategies,
and optimization frameworks.
The work is structured into several chapters. In Chapter 2, the fundamental con-
cepts of flight dynamics and optimization are introduced. The overview also includes
the definition and composition of reference frames, the characterization of aerody-
namic forces, and the description of the various moments generated by aerodynamic
effects or movable control surfaces. The theoretical framework of optimization is
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discussed through the presentation of its standard formulation and a survey of com-
mon optimization algorithms. In addition, a concise introduction to the theoretical
background of Guidance, Navigation, and Control (GNC) systems is provided, with
particular reference to typical architectures and feedback loops.
Chapter 3 addresses the landing problem itself, detailing the physical phases of the
maneuver and decomposing the problem into descent with flare and ground roll-out.
The challenge is also formulated as an optimal control problem, and several hy-
pothetical approaches are proposed. Furthermore, specific guidance objectives and
methodologies are discussed.
In Chapter 4, the adopted optimization methodology is described in detail. The
mathematical model underlying the analysis is introduced, together with its inter-
actions with the optimization functions. The methodological approach of performing
two sequential optimizations, each relying on distinct black-box formulations, is also
presented.
Chapter 5 illustrates the simulation environment and the assumptions adopted to
replicate realistic operating conditions. The Simulink platform, used for the im-
plementation of the dynamical equations, is thoroughly described. Moreover, the
optimization environment SQP SNOPT is presented, with the rationale for its selec-
tion, and subsequently applied to the case study. A baseline optimization process is
performed, and the obtained results are analyzed and discussed.
An extension of the optimization process to a broader set of scenarios is introduced
in Chapter 6, leading to the definition of the requirements for horizontal landing and
to the identification of potential perspectives for further development. The results
of the analysis are summarized in the form of a requirements map.
Finally, in Chapter 7, all findings are synthesized and critically discussed. The
contribution of the proposed methodology to the understanding and solution of the
landing problem is evaluated, and the main implications of the study are highlighted.
Concluding remarks emphasize both the strengths and limitations of the adopted
approach, while outlining promising directions for future research and potential ap-
plications in aerospace engineering.

A general bibliography of horizontal landing and related topics has been considered,
including seminal works on the Space Shuttle landing system [?], flight dynamics and
control [?, ?, ?], atmospheric re-entry dynamics [2], and modern optimization meth-
ods applied to aerospace systems [3]. These references provide both the historical
background and the technical foundation upon which this thesis builds.
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2. Flight Dynamics Concepts and Optimiza-
tion

Guiding a generic Horizontal Landing Vehicle (HLV) through the final descent, flare,
and touchdown phases presents several significant challenges. First, the development
of a three-degree-of-freedom (3-DOF) longitudinal flight dynamics model is essential.
Such a model must capture rigid-body motion, aerodynamic forces, and atmospheric
effects, thereby ensuring that the navigation system operates within a framework
of realistic vehicle behavior. Building upon this foundation, the subsequent task
involves the implementation of a robust guidance framework. In this context, the
navigation logic enforces landing constraints by means of an iterative optimization
process, dynamically adjusting the control commands to guarantee a safe touch-
down within prescribed operational limits. Another major challenge concerns the
validation of requirements, which is achieved by extending the optimization problem
to a broader set of HLV configurations characterized by varying aerodynamic and
structural properties.
Addressing these challenges requires a solid understanding of Flight Dynamics,
Flight Mechanics, Guidance, Navigation and Control (GNC) theory [4] [5], as well
as Optimization Algorithms. Accordingly, this section provides an introduction to
the fundamental principles of Flight Mechanics and GNC, while the discussion of
optimization methods is presented in detail in subsequent chapters.

2.1 Principles of Flight Mechanic

Flight mechanics is the discipline that describes and predicts an aircraft’s motion
by analyzing the balance of forces and moments acting on it. In a HLV’s descent
and landing phase, only two aerodynamic forces (lift and drag) and weight govern
a vehicle’s behavior: lift opposes weight to sustain altitude, drag resists forward
motion, and weight pulls it toward Earth. HLV motion is also described by moments,
generated by aerodynamic forces (acting on the aerodynamic center (AC), quite far
from the center of gravity (CG) of the vehicle) and control surfaces like body flap
and elevons.
Forces and moments feed into Newton’s second law to yield the rigid-body equations
of motion. By solving these coupled nonlinear differential equations, we can simulate
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2.1. Principles of Flight Mechanic

trajectories, design stability-augmenting control laws, and ensure that the vehicle
will respond predictably to pilot inputs or guidance commands. Due to the fact
that the 3-DOF model describes longitudinal dynamics, we will focus on forces and
moments that only affect this behavior.

2.1.1 Coordinates frames

Central to this process are coordinate frames (such as the body axis and Earth-fixed
frames) with which are calculated the state variables (attitude, velocity, position),
that provide a complete mathematical description of the instantaneous flight per-
formance and behavior. At the heart of these descriptions lies the Body-Fixed
frame, a right-handed Cartesian system whose origin is typically at the aircraft’s
center of gravity. Its axes are conventionally aligned with the fuselage: the x-axis
points forward toward the nose, the y-axis extends out through the right wing, and
the z-axis points downward.
Complementing the Body frame is the Wind frame, which is defined by the in-
stantaneous velocity vector of the aircraft relative to the airflow. Its longitudinal
axis lies along the relative wind direction, while the lateral axis remains orthogonal
in the plane of symmetry, and the normal axis completes the right-handed set. Lift
and Drag forces are applied in this frame and their projections on the body frame
are made using α and β angles that represent, respectively, a rotation along yw and
zw axes.

Figure 2.1: Wind (W) and body (B) frames [7]

For navigation and mission-level trajectory design, Earth-fixed frames are essential.
One of the most widely used is the North-East-Down (NED) frame, in which the
x-axis points toward true North, the y-axis toward East, and the z-axis downward
toward the Earth’s center. This choice aligns well with aviation conventions for
latitude, longitude and altitude, and simplifies the integration of inertial-navigation
and GPS measurements.
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2.1. Principles of Flight Mechanic

An alternative Earth-fixed system is the East-North-Up (ENU) frame, which
swaps axes so that x points east, y points north, and z points upward. ENU can be
advantageous in ground-station coordinate processing or sensor-fusion algorithms
where “up” corresponds to a positive vertical displacement. Transformations among
Body, NED and ENU frames rely on rotation matrices parameterized by Euler
angles (roll, pitch, yaw) or quaternions, ensuring precise mapping of vectors and
tensors between the aircraft’s intrinsic dynamics and the Earth-referenced navigation
solutions.

Figure 2.2: Wind, Body and Earth fixed body frames

2.1.2 Reference Frames

State vector �x is computed in ENU (East North Up) reference frame. Forces and
linear velocities are transposed from wind to body frame, from body to NED (North
East Down) frame and from NED to ENU reference frame through rotational matri-
ces [19]. These matrices are simplified for the only longitudinal dynamics of 3-DOF
(β = 0, φ = ψ = 0).
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2.1. Principles of Flight Mechanic

Rwind−body =




cos(α)cos(β) sin(α)sin(β) −sin(α)

−sin(β) cos(β) 0

sin(α)cos(β) sin(α)sin(β) cos(α)


 =




cos(α) 0 −sin(α)

0 1 0

sin(α) 0 cos(α)




(2.1)

Rbody−NED =




cos(θ) cos(ψ) cos(θ) sin(ψ) − sin(θ)

sin(φ) sin(θ) cos(ψ)− cos(φ) sin(ψ) sin(φ) sin(θ) sin(ψ) + cos(φ) cos(ψ) sin(φ) cos(θ)

cos(φ) sin(θ) cos(ψ) + sin(ψ) sin(φ) cos(φ) sin(θ) sin(ψ)− sin(ψ) sin(φ) cos(φ) cos(θ)




(2.2)

Rbody−NED =




cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)


 (2.3)

RNED−ENU =




0 1 0

1 0 0

0 0 −1


 (2.4)

It’s important to notice that also the angular velocities in the body frame (p, q, r)
should be calculated from angular velocities in the ENU frame (φ̇, θ̇, ψ̇) through a
rotation matrix but, due to the fact that only q velocity is present, this matrix is
simplified as an identity matrix. In fact:




p

q

r


 = Rw




φ̇

θ̇

ψ̇


 (2.5)

Rw =




1 0 − sin(θ)

0 cos(φ) sin(φ)cos(θ)

0 −sin(φ) cos(φ)cos(θ)


 =




1 0 0

0 1 0

0 0 1


 (2.6)

2.1.3 Aerodynamic forces

The HLV is subjected to two aerodynamic forces that arise from its interaction with
the surrounding airflow.
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2.1. Principles of Flight Mechanic

Aerodynamic lift is the force perpendicular to the oncoming flow that supports
the weight of the vehicle; it is most commonly expressed by the well-known relation

L = 1
2
ρ V 2 S CL (2.7)

where ρ is the air density, V the true airspeed, S the wing surface, and CL the
lift coefficient. The coefficient CL itself is determined by the wing’s shape, angle
of attack (α) and Mach number, and is typically obtained from wind tunnel tests,
computational fluid dynamics simulations, or empirical databases.
Aerodynamic drag acts parallel to the flow and resists forward motion. Its stan-
dard form is

D = 1
2
ρ V 2 S CD (2.8)

As CL, also CD depends on wing’s shape, α and Mach number.
In flight dynamics simulations, these forces are resolved into body-axis components
via angle of attack and sideslip angle.

Figure 2.3: Scheme of aerodynamic and gravity forces [9]

2.1.4 Aerodynamic moments

Aerodynamic moments arise from the non-uniform pressure and shear distribution
over an aircraft’s surfaces, generating torques about its center of gravity. There are
three principal moments (M , L and N), but only the first one affects the longitudinal
motion:

• Pitching moment (M) about the lateral (y) axis, which tends to rotate the
nose up or down.

Ma =
1
2
ρ V 2 S c̄Cm (2.9)

where c̄ is the mean aerodynamic chord. The pitching moment comes from
lift and drag distribution (thus from Mach number and α), plus contributions
from control deflections.
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2.1. Principles of Flight Mechanic

• Rolling moment (L) about the longitudinal (x) axis, which induces wing-tip
up or down.

La =
1
2
ρ V 2 S bCL (2.10)

with b the wing span. Roll moments come from aileron deflections, wing
dihedral effects, and asymmetric lift or drag distribution.

• Yawing moment (N) about the vertical (z) axis, which yaws the nose left
or right.

Na =
1
2
ρ V 2 S bCn, (2.11)

yawing moments result from rudder inputs, sideslip-induced side forces on the
vertical tail, and differential drag.

In the context of aircraft aerodynamics (so also HLV’s winged body vehicles), the
lift and drag forces do not generally act through the center of gravity (CG) of the
vehicle. Instead, their resultant is conventionally assumed to act at the aerodynamic
center (AC), which for subsonic airfoils is located approximately at the quarter-chord
position. In the case of HLV, the AC positioning could be slightly different due to
the fact that the wings are built differently to deal with supersonic and hypersonic
flows. The fact that the line of action of these aerodynamic forces does not pass
through the center of gravity gives rise to an aerodynamic moment about the CG.
This moment can be decomposed into two contributions: one associated with the lift
force, which acts perpendicular to the freestream velocity, and another associated
with the drag force, which acts in the direction opposite to the motion. Together,
these forces produce a net pitching moment whose magnitude and sign depend on
the relative position of the CG with respect to the AC.

Mf = (�rcg − �rac)× (�L+ �D) (2.12)

where �rcg is the coordinate vector of cg and �rac the vector of aerodynamic center.
From a stability perspective, this pitching moment is of central importance. If the
CG lies ahead of the AC, the aerodynamic moment tends to be restoring, contribut-
ing to the static longitudinal stability of the aircraft. Conversely, if the CG is located
behind the AC, the resulting moment may destabilize the configuration. For this
reason, the interplay between the center of gravity and the aerodynamic center is a
fundamental consideration in the design and operational performance of any flight
vehicle.
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2.1. Principles of Flight Mechanic

Figure 2.4: Forces and Moments scheme

2.1.5 Damping moments

In HLVs the damping moments play a crucial role in ensuring stability during reen-
try and landing phases. In longitudinal dynamics, the coefficient Cmq represents the
change in pitching moment due to a pitch rate q. Physically, it acts as a stabilizing
damping term that opposes rapid pitch oscillations. A negative coefficient of Cmq

is generally desirable, as it provides natural damping to pitch motions, preventing
excessive oscillations that could compromise vehicle control or structural integrity.
During reentry, HLVs operate at high angles of attack and often in transonic or
subsonic regimes where aerodynamic damping becomes especially critical. As the
vehicle pitches up or down, the resulting angular velocity generates additional aero-
dynamic forces that produce a moment opposing the pitch rate. This aerodynamic
feedback is captured in Cmq.
Damping moment Mq is calculated as follows:

Mq =
1
2

Sc̄2q

2V
Cmq (2.13)

Several factors influence Cmq in HLVs such as geometry, Mach number, angle of
attack and vehicle configuration.

2.1.6 Control surfaces and moments

Control surfaces are movable parts of an aircraft or reentry vehicle that are used to
control its orientation and flight path by generating moments. These surfaces affect
the pitch, roll, and yaw of the vehicle, which correspond to rotations around the
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2.2. Guidance Navigation and Control Theory

lateral, longitudinal, and vertical axes, respectively.
In particular, these are the most used control surfaces for longitudinal dynamics:

• Body Flaps: Large deflectable surfaces near the fuselage, used during reentry
to generate pitching moments and help stabilize the vehicle at high angles of
attack.

Mb =
1
2
ρ V 2 S c̄ Cm,b (2.14)

• Elevons: Used for pitch and roll control, especially in the subsonic phase, are
usually two, situated in every wing. Simultaneous deflections produce pitch
moment, while opposite deflections produce roll moment.

Me =
1
2
ρ V 2 S c̄ Cm,e (2.15)

Both values of Cm,b and Cm,e are scheduled as a function of Mach number, α and
the deflection of, respectively, body flap(δb) and elevon (δe). Positive deflection is
considered when the control surface performs a positive rotation around the y axis.
This is an example of Space Shuttle’s control surfaces:

Figure 2.5: Example of body flap and elevons in Space Shuttle [10]

2.2 Guidance Navigation and Control Theory

The theory of Guidance, Navigation and Control (GNC) of flight vehicles addresses
the fundamental challenge of ensuring that a vehicle follows a desired trajectory
while maintaining stability and robustness against disturbances. In this framework,
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2.2. Guidance Navigation and Control Theory

Guidance provides the reference trajectory and mission objectives, such as targeting
a landing site or optimizing energy management, Navigation defines the state and
position of the vehicle, while Control ensures that the vehicle can track these com-
mands by actuating control surfaces or propulsion elements to regulate its attitude,
velocity, and position.
For conventional aircraft, guidance and control systems are designed around rela-
tively stable aerodynamic conditions, with linear control methods often sufficient to
guarantee performance. However, for reentry vehicles, the dynamics are far more
complex. Reentry vehicles encounter rapidly changing atmospheric density, strong
aerodynamic forces, and stringent thermal and structural constraints, which demand
advanced nonlinear and adaptive control strategies [4] [5] [11].
Unlike purely ballistic capsules, which land vertically using parachutes or retro-
thrusters, HLVs are designed to reenter the atmosphere and perform a controlled,
airplane-like landing on a runway. This configuration offers significant advantages
in terms of reusability, landing precision, crew safety, and operational flexibility.
The guidance of HLVs typically involves multi-phase strategies: an initial hypersonic
entry phase, where trajectory shaping is crucial to manage heating and g-forces; a
transition phase, where lift is used to maneuver toward the target landing corri-
dor; and a final descent phase, which resembles conventional aircraft guidance with
glide slope and flare maneuvers. Control systems must therefore cope with a wide
range of flight regimes, from hypersonic reentry down to subsonic aerodynamics near
landing, combining space access with aircraft-like behavior. GNC systems rely on
robust trajectory optimization, adaptive feedback control, and integration of inertial
navigation with GPS to achieve high precision.

2.2.1 Architecture of GNC System

The GNC system can be divided into three functional layers, as just seen:

• Navigation – Estimates the vehicle’s current state (position, velocity, attitude,
angular rates) using sensors like Inertial Measurement Units (IMUs), GPS,
star trackers (at higher altitudes), radar altimeters (near landing) and more.
Outputs: full state vector (x, y, z, V, φ, θ, ψ).

• Guidance – Determines the desired trajectory or reference profile that the
vehicle should follow. In early reentry manages heating, load factors, and
footprint constraints, instead in terminal phase it provides lateral alignment,
glide slope commands, and flare initiation cues.
Outputs: reference flight path angle γref , reference reference velocity Vref ,
heading χref and altitude profile href .

• Control – Tracks guidance commands by generating actuator signals. Imple-
ments feedback control laws (PID, LQR, gain-scheduled controllers, or more
advanced adaptive controllers) and compensates disturbances such as gusts,

17



2.2. Guidance Navigation and Control Theory

crosswinds, and model uncertainties.
Outputs: control surface deflections δelevon, δrudder, δbodyflap.

Figure 2.6: GNC system [12]

2.2.2 The Closed-Loop

The GNC system is usually implemented as a closed-loop feedback system:

1. Navigation continuously measures the actual state of the vehicle using onboard
sensors.

2. This estimated state is fed into the Guidance module, which compares the
current trajectory with the desired one and updates the reference commands
accordingly.

3. The Control module then generates actuator inputs to minimize the difference
between actual and commanded states.

4. The actuators (elevons, rudder, body flap, landing gear) modify the vehicle’s
dynamics, which in turn affect the sensor measurements.

5. These new measurements close the loop, ensuring continuous correction and
robustness to disturbances.

This feedback structure ensures that deviations due to atmospheric turbulence, mod-
eling errors, or actuator nonlinearities are corrected in real time.

2.2.3 PID Controller

The Proportional-Integral-Derivative (PID) controller represents one of the most
widely adopted feedback control strategies in aerospace applications, due to its con-
ceptual simplicity, robustness, and ease of implementation [24]. The PID controller
computes the control signal as the weighted sum of three contributions: the propor-
tional term Kp, which produces an output directly proportional to the instantaneous
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error between the reference command and the measured state; the integral term Ki,
which accumulates the past error over time to eliminate steady-state offsets and en-
sure accurate tracking; and the derivative term Kd, which predicts the future trend
of the error by evaluating its rate of change, thus providing anticipatory damping
against oscillations. Mathematically, the control law can be expressed as

u(t) = Kpe(t) +Ki

∫ t

0

e(τ) dτ +Kd
de(t)

dt
, (2.16)

where u(t) denotes the control input, e(t) the tracking error, and Kp, Ki, Kd the
proportional, integral, and derivative gains, respectively. Here is a PID controller
scheme:

Figure 2.7: PID controller scheme [15]

The tuning of these gains determines the overall performance of the closed-loop
system, balancing fast response, accuracy, and robustness. In the context of reentry
vehicles, PID controllers may be employed in specific flight regimes or subsystems
where the dynamics can be approximated as linear and time-invariant, providing a
reliable and computationally efficient control solution.

2.3 Optimization

First-order optimization algorithms represent a fundamental class of numerical meth-
ods aimed at efficiently solving problems subject to specific objectives and con-
straints [13]. Formally, an optimization method is referred to as first-order when
its update rules depend exclusively on information derived from the first derivative
(the gradient) of the objective function, without requiring access to higher-order
derivatives such as the Hessian. This reliance on gradient information ensures rela-
tively low computational cost per iteration, which makes such methods particularly
attractive in high-dimensional settings.
A general first-order update rule can be expressed as:

xk+1 = xk − ηk∇f(xk) (2.17)
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where xk ∈ Rn denotes the current iterate, ηk > 0 is the step size (or learning rate),
and ∇f(xk) is the gradient of the objective function f : Rn → R evaluated at xk.
Variants of this formulation introduce modifications to the step size, gradient scal-
ing, or direction, in order to improve convergence speed, robustness, or stability.
These algorithms are extensively applied in engineering, applied mathematics, and
computational sciences, as they provide systematic procedures to improve perfor-
mance, accuracy, and efficiency in complex systems. Despite their effectiveness,
first-order approaches may suffer from sensitivity to local minima, saddle points, or
ill-conditioning. To mitigate these issues, several families of first-order algorithms
have been developed, which can be broadly classified as follows:

• Gradient-descent methods
Gradient Descent is a fundamental first-order optimization algorithm designed
to minimize a differentiable objective function. It operates as an iterative pro-
cedure that seeks a local minimum by updating the current solution in the di-
rection opposite to the gradient, which corresponds to the direction of steepest
descent. The efficiency of Gradient Descent depends critically on the choice
of ηk. A step size that is too large may cause divergence, while an excessively
small value may lead to slow convergence. Under appropriate assumptions,
such as convexity and Lipschitz continuity of the gradient, Gradient Descent
is guaranteed to converge to a global minimum; in the non-convex case, it
generally converges to a local minimum or a stationary point.

• Stochastic methods
In large-scale optimization, the computation of full gradients can be pro-
hibitively expensive. Stochastic approaches, such as Stochastic Gradient De-
scent (SGD) and its mini-batch variants, approximate the gradient using ran-
domly sampled subsets of data. While this introduces variance into the op-
timization trajectory, the stochasticity can be beneficial, as it enhances ex-
ploration and facilitates escape from shallow local minima. Such methods
have become indispensable in modern machine learning and data-intensive
optimization tasks, where problem dimensionality and dataset size render full-
gradient methods impractical.

• Evolutionary and population-based methods
Beyond purely gradient-driven schemes, evolutionary algorithms—most no-
tably Genetic Algorithms—provide an alternative optimization paradigm. In-
spired by the principles of natural selection and genetic evolution, these meth-
ods operate on populations of candidate solutions that evolve through mech-
anisms such as selection, crossover, and mutation. Since they do not require
differentiability of the objective function, evolutionary approaches are appli-
cable to highly nonlinear, discontinuous, or multimodal landscapes. Although
typically more computationally demanding than gradient-based methods, their
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global search capability enhances robustness and reliability in complex opti-
mization scenarios.

Each family offers specific advantages and limitations, and the choice of method
should be informed by problem characteristics such as smoothness, dimensionality,
and the presence of non-convexities.

Figure 2.8: Optimization algorithm scheme [14]

A fundamental aspect of any optimization problem is its formulation, which typi-
cally requires the specification of two key elements: the objective function and the
set of constraints. These components together define both the purpose of the opti-
mization and the admissible domain of search.
The objective function, often also referred to as the cost or performance function,
serves as a quantitative measure of the quality of a candidate solution. It maps
the decision variables into a scalar value that expresses how desirable a particular
configuration is. Depending on the context, the task may consist of minimizing
this function—for instance, when reducing costs, energy consumption, or errors—or
maximizing it, such as in the case of profit, efficiency, or system robustness. The
existence of the objective function is therefore indispensable, as it provides the cri-
terion by which different solutions are compared and ranked. In its absence, no
systematic procedure could determine which solution should be preferred, rendering
the optimization process meaningless.
The second crucial element is represented by the constraints, which delineate the
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feasible region of the problem. Constraints are mathematical conditions, often for-
mulated as equalities or inequalities, that encode the physical, technical, or practical
requirements of the system under study. They ensure that the solutions produced
by the optimization process are not only mathematically valid but also practically
admissible. Without them, the optimization would explore the entire solution space,
potentially yielding results that are theoretically optimal yet infeasible in real ap-
plications.
It is important to highlight that optimization problems can be classified as either
constrained or unconstrained. In unconstrained formulations, only the objective
function is considered, and the search extends over the entire domain of the decision
variables. While mathematically simpler, such problems rarely capture the complex-
ity of real-world scenarios. Conversely, constrained optimization explicitly accounts
for limitations, and the solution sought must satisfy all imposed conditions. In this
case, the optimal solution is the one that yields the best value of the objective func-
tion among the feasible alternatives.
The procedure begins with an initial guess for the decision variables, which serves
as the starting point of the search. At each iteration, the algorithm evaluates the
objective function to determine the quality of the current solution.
Based on this evaluation, a new candidate is generated by applying a search strat-
egy. In gradient-based methods, this typically involves exploiting derivative infor-
mation to move in a direction of improvement, while derivative-free or heuristic
approaches rely on rules of exploration, sampling, or probabilistic mechanisms to
identify promising regions of the search space. If constraints are present, the algo-
rithm ensures that the candidate solutions remain feasible, either by directly enforc-
ing the conditions or by penalizing violations within the objective function.
The process continues iteratively, updating the solution at each step, until one or
more stopping criteria are satisfied. These may include convergence of the objective
function value, satisfaction of optimality conditions, or the exhaustion of computa-
tional resources such as time or iteration limits.

2.3.1 Parallelization and MATLAB Parallel Computing Tool-
box

In the context of computational optimization, parallelization represents a crucial
strategy to enhance performance and scalability, particularly when dealing with
large-scale problems or computationally intensive algorithms. The fundamental
principle of parallel computing lies in decomposing a complex task into smaller,
independent subtasks that can be executed simultaneously across multiple process-
ing units. This approach significantly reduces overall computation time, facilitates
the exploration of multiple solution candidates in parallel, and enables the efficient
utilization of available hardware resources such as multicore CPUs, GPUs, and dis-
tributed clusters.
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MATLAB provides native support for parallel computing through the Parallel
Computing Toolbox, which offers a comprehensive framework for executing op-
erations concurrently. This toolbox allows users to define and manage parallel
pools—collections of MATLAB workers that operate as independent computational
engines. Once a parallel pool is established, parallel constructs – such as parfor
loops and distributed arrays – can be employed to distribute workloads automat-
ically across available workers. For instance, optimization algorithms involving
population-based methods (e.g., Genetic Algorithms or Particle Swarm Optimiza-
tion) can assign the evaluation of individual candidate solutions to distinct work-
ers, thereby achieving substantial acceleration without altering the core algorithmic
logic.
By leveraging these capabilities, optimization procedures can exploit concurrency at
multiple levels, achieving enhanced efficiency and robustness while maintaining nu-
merical accuracy and reproducibility. The integration of parallel computing within
MATLAB thus constitutes an essential asset for addressing the computational de-
mands of modern optimization tasks.
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3. The Landing Problem

The first step in addressing the objective of this thesis consists in the analysis of the
reference landing problem.
The landing problem for a horizontal landing reentry vehicle is a complex task
that extends from the final segment of atmospheric flight to ground operations. It
typically begins at altitudes on the order of 15 km, where the vehicle transitions
from high-speed, high-altitude flight to a controlled descent toward the runway. In
this phase, the vehicle must manage the residual kinetic and potential energy accu-
mulated during reentry, while ensuring that trajectory and attitude remain within
controllable limits [22, 23].
From the entry interface of the terminal descent, the vehicle is required to execute a
precise glide trajectory that guarantees both runway alignment and adequate mar-
gins of controllability. Aerodynamic forces dominate at these altitudes, and the
vehicle relies on lift-to-drag management to balance the competing needs of range
extension and controllability. Guidance objectives include regulating flight path an-
gle and airspeed in order to establish favorable conditions for the final descent.
As the vehicle descends below a few kilometers of altitude, additional constraints
emerge. The flare maneuver must ensure a progressive reduction of vertical speed in
order to achieve a safe touchdown without exceeding structural or load factor limits.
Upon ground contact, the dynamics change fundamentally: ground reaction forces,
braking systems, and tire dynamics replace aerodynamic control as the dominant
mechanisms for deceleration. This ground roll phase must be completed within the
available runway length, while maintaining stability against disturbances such as
crosswinds or surface irregularities.
Overall, the landing problem for horizontal reentry vehicles is characterized by the
coupling of high-energy flight mechanics with the requirements of conventional run-
way operations. It involves a continuous sequence of phases — high-altitude glide,
descent, flare, and rollout — each governed by distinct physical phenomena and
operational constraints, yet seamlessly connected to achieve a safe and reliable ter-
mination of the mission.
From a mathematical perspective, the landing problem can be formulated as an op-
timal control problem. The system dynamics are described by nonlinear equations
of motion, subject to phase-dependent boundary conditions and path constraints.
The objective function may reflect multiple criteria, such as minimization of runway
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length required, reduction of structural loads, or maximization of safety margins.
The challenge arises from the need to ensure a smooth transition between flight
regimes, each governed by different dominant forces, while satisfying stringent op-
erational and safety requirements.
For analytical clarity, it is convenient to divide the landing sequence into two dis-
tinct phases. The first extends from the terminal descent down to the instant when
the main landing gear touches the runway. This phase is dominated by aerodynamic
control and must ensure a stable trajectory and acceptable touchdown conditions.
The second phase, beginning at main gear contact and continuing until the vehi-
cle reaches a full stop, corresponds to the ground rollout. Here, braking dynamics,
tire–runway interactions, and aerodynamic deceleration become the governing fac-
tors. Although the fundamental equations of motion remain consistent across the
two phases, the associated boundary conditions, constraints, and control priorities
differ substantially. This separation provides a clearer framework for analysis and
facilitates the formulation of tailored control strategies for each regime.

Figure 3.1: HLV’s landing problem

The guidance system must generate commands that align the vehicle with the des-
ignated landing site, while ensuring adherence to glide slope requirements. Key
elements of final descent guidance include:

• Glide Slope Control – A predefined descent angle is tracked to achieve an
optimal balance between lift and drag. For HLVs, which often possess lim-
ited lift-to-drag ratios, precise glide slope management is essential to avoid
undershooting or overshooting the runway.

• Flare and Touchdown – In the final seconds before landing, guidance com-
mands a flare maneuver: the nose of the vehicle is pitched up to reduce descent
rate and achieve a soft touchdown. Smooth transition from descent glide to
ground contact is critical to minimize structural loads and ensure landing gear
integrity.
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To implement these functions, guidance algorithms rely on integrated navigation
equations. Control laws during this phase resemble those of advanced flight control
systems in aircraft; however, they must also account for the unique aerodynamic
characteristics of HLVs, which are optimized for reentry rather than for efficient
low-speed flight.
While gliding, the guidance attempts to set the vehicle in a fixed position, similar to
a trimmed position for aircraft, until it reaches a certain altitude (initial flare height
hflare). Past this point, the guidance should start to make the vehicle flare and set
it to the landing position until touchdown.
In addition to trajectory shaping and guidance design, the landing problem must
also address the identification of the aerodynamic parameter combinations that en-
able a feasible and robust descent. The vehicle’s characteristics — primarily m, S,
L/D — directly determine its ability to regulate flight path angle, dissipate velocity,
and maintain controllability during the terminal descent. Consequently, the landing
analysis is not solely a matter of optimal control under given dynamics, but also
of determining the minimal set of aerodynamic properties necessary to achieve the
maneuver.
The rationale behind this focus lies in the inherent design trade-off for horizontal
landing reentry vehicles. On one hand, high aerodynamic performance facilitates
controllability and widens the feasible landing envelope; on the other hand, ex-
cessive aerodynamic requirements may lead to over-designed or impractical vehicle
configurations. The problem, therefore, involves a systematic search for the lowest
yet sufficient values of aerodynamic coefficients that still permit a safe glide, con-
trolled flare, and stable touchdown.
From an optimization perspective, this can be approached through a systematic
analysis and mapping of the aerodynamic parameter space, in which different combi-
nations of lift, drag, and moment coefficients are evaluated with respect to trajectory
feasibility, dynamic constraints, and safety margins. Such a mapping enables the
identification of regions where landing is feasible, highlighting how different aerody-
namic configurations influence controllability and energy management. In this way,
it becomes possible to select the most convenient set of aerodynamic parameters ac-
cording to mission priorities — for example, favoring robustness, minimizing control
effort, or reducing structural demands. This perspective not only clarifies the aero-
dynamic requirements for safe landing but also provides a flexible decision-making
framework that adapts to the specific objectives of vehicle design and operational
needs.
In summary, the landing problem must be regarded as a dual challenge: designing
an optimal sequence of control inputs for descent and flare while simultaneously de-
termining the optimal and minimal aerodynamic parameter set that ensures mission
success. This dual formulation provides a more integrated perspective, where guid-
ance, control, and aerodynamic design converge in the definition of feasible landing
strategies.
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4. Optimization Approach

After clearly defining the problem, an optimization framework is established with
the objective of ensuring a successful landing under the baseline configuration. This
chapter presents in detail the mathematical model governing the system dynam-
ics and provides a systematic discussion of the rationale underlying the adopted
optimization methodology. Particular attention is devoted to the formulation of
the equations of motion, the assumptions introduced to simplify the analysis, and
the choices that define the optimization process. In addition, the chapter outlines
the logical structure of the solution strategy, highlighting how the chosen approach
balances accuracy with computational efficiency.

4.1 Chosen Strategy

An initial strategy conceived for the resolution of the landing problem was struc-
tured as follows. The problem was divided into two sequential optimization stages as
the (Descent and Landing), where the solution obtained from the first was employed
as the initial state for the second. This initial guess encompassed several elements,
including the total simulation time T , a set of parameters describing both the flare
maneuver and the glide phase, as well as the time discretization of the angular de-
flections of the two control surfaces. The discretization process was performed over
a considerable number N of time segments (50 for each control surface), interpolated
across the total flight duration. The optimization procedure thus acted directly on
the dynamic control system in order to satisfy the set of constraints typically asso-
ciated with the landing phase.

Despite the initially satisfactory results, during the optimization analyses a signifi-
cant computational burden was observed, primarily arising from the structure of the
problem formulation itself. In the described setup, the optimizer received as input
a vector of 103 elements. The first three entries corresponded to the total flight
time T , the altitude at which the flare maneuver was initiated, and the equilibrium
flight path angle. The subsequent 50 elements represented the time-discretized an-
gular deflections of the body flap, while the final 50 elements corresponded to the
angular deflections of the elevons. This input configuration proved to be excessively
demanding in terms of computational effort, as it introduced a large number of op-
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timization variables. For each optimization run, the solver SNOPT was required
to compute a derivative matrix, consisting of the Jacobian of the constraints with
dimension 9 × 103 and the Hessian of the Lagrangian with dimension 103 × 103.
As a consequence, optimization times often extended to several hours. Given that
two such optimizations were executed in sequence, and that several tens of runs
were required, the computational effort quickly became prohibitive. Furthermore,
the interpolation of control variables, including the total simulation time, added
additional complexity to the problem. As a result, the total flight time remained
rarely modified during the optimization process, effectively constraining the vehicle
to land within the time frame imposed by the initial guess.

The issues highlighted in these analyses led to the development of a new simulation
approach aimed at reducing the number of variables and, consequently, alleviating
the overall computational cost of the process. To this end, the workflow of the
initial black-box was restructured into two separate black-box modules, representing
respectively the Guidance and the Control during the descent of the vehicle. These
two modules are hereafter referred to as Descent Guidance and Descent Control. As
the terminology suggests, the first module defines the guidance strategy in terms
of the commanded angle of attack α, while the second module attempts to follow
this guidance law through the tuning of a controller. By adopting this strategy, the
number of optimization variables was significantly reduced, from 103 down to 4+3,
which in turn resulted in considerably smaller Jacobian and Hessian matrices. As
will be shown in the following sections, the optimization problem associated with
Descent Control does not even require explicit constraints, relying solely on a cost
function, thereby further reducing the overall computational effort and the duration
of the process.
The previously described optimization strategy was instead employed for the runway
Landing phase, where an explicit guidance law was not strictly required, and it was
therefore considered more appropriate to act directly on the control inputs.

4.2 Mathematical Model

The simulator describes the longitudinal dynamics of a typical horizontal re-entry
vehicle, representing forces that act along two body axes (X and Z) and moments
around the third one (Y ) [17] [18]. For clarity of analysis, the study of the vehicle
motion was divided (like in the problem description) into two distinct phases: the
Descent phase, extending until the instant of landing gear contact with the runway,
and the Landing phase, encompassing the deceleration and roll-out until the vehicle
comes to a complete stop. This separation was required because the two phases
are subject to different boundary conditions and constraints. In particular, the
transition to ground contact introduces specific dynamic effects, such as pitching
moments induced by the landing gear, which are absent in the airborne phase.

28



4.2. Mathematical Model

Furthermore, during ground operations, additional parameters, including the flight
path angle (FPA) and vertical velocity, are constrained in ways that do not apply
during the descent.
As discussed in the previous paragraph, an additional distinction was introduced
during the problem formulation phase by further subdividing the descent phase into
two separate stages: the Guidance and the Control of the descent. Consequently,
the overall architecture of the simulator comprises three main black boxes: two
associated with the descent phase — namely, the Descent Guidance and the Descent
Control — and one dedicated to the landing phase on the runway. This modular
structure allows for a clearer representation of the different dynamic and control
logics governing each portion of the trajectory, facilitating both the analysis and the
validation of the implemented algorithms.
In terms of the optimization process, it’s important to underline that these three
simulations became the black boxes for the further optimization.

Figure 4.1: Division in Descent and Landing simulations

Each part has different initial and final conditions, total time, slightly different
moments composition, but the same dynamics behavior. Forces are responsible for
the positional dynamics of the vehicle, described by positions and velocities (x, z,
Vx, Vz), while moments influence the attitude dynamics, described by attitude angles
(θ, α, γ) and angular velocity (q).
The simulator takes the initial state vector and the corresponding inputs—whose
nature depends on the black box—as its input. At each time step, it retrieves the
current state and input to carry out the propagation.

{
�X = {x, z, Vx, Vz, q, θ}
Input

(4.1)
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After performing the propagation over the interval ∆t, it provides as output the
corresponding derivative state vector:

�̇X = {ẋ, ż, V̇x, V̇z, q̇, θ̇} (4.2)

Subsequently, an integration process is applied in order to reconstruct the updated
state vector. The integrated result is then fed back as the input for the subsequent
time step, thus closing the propagation–integration loop. As previously mentioned
and further detailed in the following chapter, the simulation of the Guidance phase
features a distinct formulation of the rotational dynamics, since its time evolution is
prescribed through a predefined function. Consequently, the rotational dynamics are
not included within the propagation and integration loop, unlike the translational
motion, which is directly computed during the simulation process.

Figure 4.2: Guidance Descent Blackbox scheme

Figure 4.3: Control Descent and Landing Blackbox scheme

Among the required inputs, the vehicle properties—such as mass, wing surface area,
aerodynamic coefficients, and related parameters—also play a fundamental role. The
criteria adopted for their selection will be discussed in the following chapter.
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In each step, the simulator resolves two vectorial equations of motion (in X and Z
axes) and one attitude equation (around Y ):





d�x
dt

= �v
d�v
dt

=
�L
m
+

�D
m
+ �g

Iyθ̈ = My

(4.3)

It’s important to notice that in this study Coriolis and inertial effects are neglected.
In order to solve these equations, the simulator calculates �v, �L, �D and My from of
the state vector given as input.

The sum of the forces defines the total accelerations applied to the vehicle. These
forces are only Lift, Drag and Weight due to the fact that HLVs usually perform a
gliding landing, so the Thrust is not present. From the acceleration equation, we
can integrate it in the longitudinal axis (x and z) to obtain velocities and positions
that describe the longitudinal linear behavior of the HLV [6].

�F = m�g + �L+ �D (4.4)

�a =
�L

m
+

�D

m
+ �g (4.5)

by integrating and splitting in axes components:

Vx(ti +∆t) = Vx(ti) +

∫ ti+∆t

ti

ax dt (4.6)

Vz(ti +∆t) = Vz(ti) +

∫ ti+∆t

ti

az(t) dt (4.7)

Same for positions x and z:

x(ti +∆t) = x(ti) +

∫ ti+∆t

t

Vx(t) dt (4.8)

z(ti +∆t) = z(ti) +

∫ ti+∆t

ti

Vz(t) dt (4.9)

The sum of all the moments defines the total moment applied to the vehicle:

My = Mf +Ma +Mq +Mb +Me (4.10)

that is fed directly into the rotational equation of motion (simplifying by considering
only longitudinal rotational behavior):

Iyθ̈ − (Iz − Ix)rp = My (4.11)
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Iyθ̈ = My (4.12)

where q is the pitch rate and Iy is one of the principal inertia moments.
As for position dynamics, we can integrate to obtain rotational behavior:

q(ti +∆t) = q(ti) +

∫ ti+∆t

ti

θ̈(t) dt (4.13)

θ(ti +∆t) = θ(ti) +

∫ ti+∆t

ti

q(t) dt (4.14)

As said before, for Guidance simulation, part of the rotational behavior is imposed
as an input. This prescribed function is the angle of attack αid, and the dynamic
propagation is composed as follows:

θ = αid + γ (4.15)

4.2.1 Forces and Moments

In the simulator, forces acting on the X and Z body axes are implemented as Lift,
Drag and Weight. L and D generate moments across the Y axis, executed in the
simulation as well. Other moments are also considered, such as the damping moment
and the control moment actuated by the body flap and the elevons.
In order to calculate the aerodynamic forces, it is first necessary to determine the
dynamic pressure, defined as

Q =
1

2
ρV 2 (4.16)

where ρ denotes the air density and V the true airspeed. The static pressure,
and consequently the air density, are obtained through the International Standard
Atmosphere (ISA) model, by using as input the altitude, which corresponds to the
z-coordinate of the state vector. This model has been implemented in Simulink
using the Aerospace Tool Blockset. The true airspeed perceived by the vehicle is
then derived from the velocity components in the body axis system, namely Vxb and
Vzb, from which the magnitude of the airspeed is obtained as

V =
√
V 2
xb + V 2

zb (4.17)

This formulation ensures the consistent evaluation of both the atmospheric proper-
ties and the velocity components required for the aerodynamic force calculation.
Another essential step in obtaining the aerodynamic forces at each simulation step
is the use of aerodynamic databases, which provide tabulated values of the aerody-
namic coefficients as functions of key flight parameters, such as the Mach number,
the angle of attack α, and the deflection angles of control surfaces (δ). This method-
ology avoids the prohibitive computational cost of real-time CFD evaluations while
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still reproducing the nonlinear aerodynamic behavior over the entire flight envelope.
Formally, the aerodynamic coefficients can be expressed as multidimensional func-
tions of the relevant flight variables, e.g.

CX = fx(M,α, δ) (4.18)

where CX denotes the aerodynamic force coefficients along the body axes, and the
functional dependence is obtained from the Space Shuttle Aerodynamic Database
[?]. This database served as the baseline for the initial simulation and optimization;
subsequently, the model parameters were systematically varied to explore alternative
configurations.
L and D are calculated as follows:

L =
1

2
ρV 2SCL (4.19)

D =
1

2
ρV 2SCD (4.20)

where CL and CD are functions of Mach number M and angle of attack α.
L and D generate moments about the cg (named Mf ), calculated as follows:

Mf = (�rcg − �rac)× �Fa (4.21)

where �Fa is the vector sum of �L and �D.
In the Landing simulation, an additional force is considered, representing the ground
reaction. This force generates a negative pitching moment with respect to the center
of gravity (CG) until the nose landing gear touches the ground:

Mground =

{
(�rcg − �rwheel)× ( �Fa + �W ) if θ > 0

0 if θ = 0
(4.22)

where �rwheel denotes the position vector of the rear landing gear and �Fa + �W is the
reaction force.
Aerodynamic moment is calculated as follows:

Ma =
1

2
ρV 2SCma (4.23)

Damping moment is calculated as follows:

Mq =
1

2

ρSc2q

2V
Cmq (4.24)

c is the Mean Aerodynamic Chord, also named MAC.
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4.2.2 Control System

The control system is implemented through two primary movable aerodynamic sur-
faces, the body flap and the elevons [21]. They are calculated as follows:

Mb =
1

2
ρScCmb (4.25)

Me =
1

2
ρScCme (4.26)

Cmb and Cme also depend on M , b and e, which are the deflection angles of the body
flap and elevons.
At each discretization step, the attitude equation reported in (4.10) governs the
evaluation of the total aerodynamic moment acting on the vehicle. The control sur-
faces generate additional aerodynamic moments that modify this resultant moment
by introducing other contributions with respect to the uncontrolled aerodynamic
moments. The magnitude of these control contributions is a direct function of the
deflection angles of the movable surfaces. Through this mechanism, the total mo-
ment acting on the vehicle can either be canceled, when equilibrium conditions are
required, or deliberately modified to achieve the desired attitude response. The
overall compensating effect produced in this way is conventionally referred to as the
Control Moment.

4.3 Optimizer configuration

To address the problem under consideration, a sequential triple-optimization frame-
work (2 for the Descent phase and 1 for the Landing phase) has been adopted. In
this scheme, the optimizer operates through interconnected black-box models, where
the outcome of the first optimization serves as the input for the second.
The first black-box, denoted as Descent Guidance, receives as input the value of
the flight path angle during the glide phase, together with a set of angle of attack
(α) and time values that are used to parameterize both the glide segment and the
subsequent flare maneuver. The optimization is constrained by typical landing re-
quirements in terms of position, velocity, and attitude, while aiming to minimize
the time needed to achieve a stable condition.
Once the guidance solution has been obtained, a second optimization is performed
through the Descent Control black-box. This module takes as input the parameters
of the controller (a PID controller has been chosen) and operates on the movable
control surfaces with the objective of minimizing the error between the ideal angle
of attack αid) and the actual controlled one. It should be recalled that, in this
black-box, the attitude dynamics are fully included, allowing the movable surfaces
to effectively control the vehicle’s motion.
Once the optimized solution has been obtained, Landing acts as a third and last
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black-box to refine the roll-out phase on the runway. In this case, the objective is to
minimize both the landing distance and the angular velocity at which the aircraft
performs the nose landing gear touchdown. The guess is composed by the control
surface deflections and the total simulation time.

Figure 4.4: Descent optimization approach

Figure 4.5: Landing optimization approach
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Guidance Control Landing

Initial conditions �X0
�X0

�X0,L = �Xf

Final conditions �Xf
�Xf

�Xf,L

Initial guess α1, α2, T1, T2, FPA0 Kp, Ki, Kd δb,L, δe,L, tf,L

4.3.1 Constraints

The final descent and landing of an HLV is governed not only by the need to track
a reference trajectory but also by a set of constraints that ensure safety, structural
integrity, and mission success. These constraints arise from aerodynamics, vehicle
performance limits, environmental factors, and operational requirements. Specifi-
cally for 3-DOF longitudinal landing:

1. Geometric and Runway Constraints

• Touchdown point: The vehicle must reach the touchdown point with
sufficient margin for deceleration.

• Runway length: The vehicle must stop in a distance shorter than the
total length of the runway.

• Maximum touchdown velocity: The vertical touchdown velocity must not
be too elevated to avoid impact damage to the vehicle.

2. Kinematic and Dynamic Constraints

• Velocity bounds: The velocity must remain into two margins, lower mar-
gin to avoid stall velocity and upper margin to prevent excessive aerody-
namic or thermal loads.

• Normal load factor: The normal load factor must not exceed the maxi-
mum value allowed.

• Angular rate limits: Pitch/yaw/roll rates must stay within actuator ca-
pabilities.
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5. Experimental Analysis

In order to validate the proposed methodology and assess its effectiveness, a compre-
hensive experimental analysis has been conducted. This section provides a detailed
description of the computational environment, the assumptions adopted, the nu-
merical data employed, and the optimization framework applied. The simulation
environment has been developed in MATLAB, with the dynamic model of the
vehicle implemented in Simulink, which enables the integration of the system equa-
tions and the evaluation of control strategies under various configurations.
The analysis is carried out under a set of simplifying yet representative assump-
tions, ensuring both computational tractability and physical relevance. The input
data, together with their admissible ranges, are systematically defined to reproduce
realistic operating conditions. Furthermore, the optimization process relies on the
SNOPT (Sparse Nonlinear OPTimizer) algorithm, whose choice is described below
in the chapter.
The following subsections will present the hypotheses, numerical values, parame-
ter ranges, and optimization settings in detail, thereby establishing a transparent
framework for the subsequent interpretation of the results.

5.1 Simulation environment

The complete 3-DOF dynamics of HLV’s vehicle has been implemented in Matlab
Simulink. This software provides very simple and user-friendly interfaces for the
application of forces and moment, and can immediately provide an overview of the
logical flow of information and the relationships among the formulas.

5.1.1 Hypothesis and features

Baseline Configuration

As previously discussed, an initial baseline model of the HLV was developed, inspired
by the Space Shuttle. From this model, essential parameters such as mass, wing
surface area, moment of inertia and aerodynamic coefficients were obtained. The
baseline configuration was employed to establish a preliminary reference for the
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expected behavior of reentry vehicles and to provide a means of internal validation
for the simulator.
Space Shuttle parameters:

• Dry mass m = 85230 kg

• Surface Area S = 249.91 m2

• Moment of inertia Iy = 9.68 · 106 kg ·m2

• CG coordinates: CG = [21.303, 0, −0.635] m

• AG coordinates: AC = [21.460, 0, 0] m

Subsequently, several modifications were introduced in order to obtain a simulator
that is consistent and independent of the physical characteristics of the Space Shut-
tle, while still being able to represent, in a first approximation, a reentry vehicle of
arbitrary size and shape. Many of the parameters available in the baseline configura-
tion, but not directly defined for alternative designs—such as the mean aerodynamic
chord (MAC), the moments of inertia, and the distance between the center of grav-
ity and the aerodynamic center—were scaled according to the dimensions of the
configuration under consideration. In particular, the scaling was primarily based on
the vehicle mass and wing surface area.

Databases

In the Simulink environment, the aerodynamic databases discussed in 4.2.1 are
implemented using 3-D Lookup Tables. A 3-D Lookup Table is an interpolation tool
that outputs the value of a dependent variable given three independent inputs, by
referencing pre-computed multidimensional arrays. In this application, the lookup
tables return the aerodynamic coefficients corresponding to the instantaneous Mach
number, angle of attack, and control surface deflections. This framework ensures
a balance between accuracy and computational efficiency, which is crucial for both
real-time simulations and iterative trajectory optimization of aerospace vehicles.

Control Surfaces

The control surfaces considered are the body flap δb and the elevons δe, implemented
only in the Control Descent and Landing phase black-boxes, that generate the suf-
ficient moment in order to follow the guidance trajectory. It has been hypothesized
that surfaces also have these limitations:

Body flap δb Elevons δe

Range of motion [◦] [−25 ; 25] [−40 ; 25]

Rate Limiter [◦/s] ±4.5 ±15
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Table 5.1: Control surfaces

5.1.2 Descent Guidance black-box

The Descent Guidance black-box defines an open-loop guidance profile for the con-
sidered vehicle. Specifically, the loop is “opened” with respect to the attitude dy-
namics, by prescribing an optimal angle of attack α that ensures the success of the
glide phase, the flare maneuver, and the final landing. The angle of attack is imposed
to remain constant at a value α1 until a prescribed time T1, at which the maneuver
is initiated. From this point, it is gradually increased until reaching a value α2 at
time T2. The temporal evolution of α, hereafter referred to as the αideal within this
guidance law, is therefore defined by interpolating these four key parameters.
This ideal guidance profile then serves as the reference input for the Descent Con-
trol black-box, which is responsible for tracking the prescribed αideal through the
appropriate controller tuning.

Simulation Workflow

The simulator is described following a step-by-step approach. The input variables
are provided from the Matlab Workspace. It is worth noting that, at this stage,
aerodynamic characteristics and geometric dimensions are not treated as simulation
inputs, but rather assumed as constant values. Inputs:

• Initial state vector X0;

• Parameters for αid plot: ALPHA = [α1, α2] and TIME = [T1, T2];

The components of vectors ALPHA and TIME are interpolated in order to obtain
the αid angle as a function of time.
At each time step (∆t = 0.5 s), the simulation proceeds as follows:

1. Vehicle data are initialized and the state vector is decomposed into its com-
ponents. Istantaneous value of αid(t) is extracted from the plot.

2. Velocities in the ENU reference frame are transformed into the body frame
using the appropriate rotation matrix.

3. Intermediate aerodynamic variables are computed, namely the flight path an-
gle FPA, dynamic pressure Q, Mach number M , and gravitational acceleration
g. The latter is considered to vary slightly with altitude.

4. Aerodynamic coefficients are obtained as functions of α and M , making use of
aerodynamic databases based on Space Shuttle data. In particular, CL, CD

are computed.
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5. From the aerodynamic coefficients, aerodynamic forces L and D are computed
in the wind frame and then transformed into the body frame. Performance
indicators such as L/D and L/W ratios are also evaluated.

6. Total forces in the ENU frame, FENU , are obtained by transforming the aero-
dynamic forces from the body frame and adding the weight contribution.

7. The derivative of the state vector is then computed. Velocities in the ENU
frame provide ẋ and ż. Accelerations v̇x and v̇z are obtained by dividing FENU

by the vehicle mass.

8. The state vector is updated through numerical integration of its derivative,
starting from the initial condition X0. The pitch angle θ is computed as
sum of FPA and αid and normalized within the interval [−180◦, 180◦]. The
resulting state vector is then used as input for the next iteration.

Figure 5.1: Simulink Descent Guidance simulation

The simulation terminates when the vertical position z reaches the airport reference
altitude (94 m).

5.1.3 Descent Control black-box

The Descent Control black-box is therefore tasked with tracking the guidance profile
defined in the previous phase. In this case, a PID controller is employed to command
the movable control surfaces of the vehicle directly. Unlike the open-loop guidance,
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the dynamic loop here is closed, with the angle of attack α entering the equations
of motion and the propagation-integration process. By subtracting the “ideal” angle
of attack αid, as defined by the guidance module, from the current α, the PID
controller computes a corrective control action aimed at minimizing this error. As
outlined in Chapter 2, this control action is achieved by appropriately tuning the
proportional, integral, and derivative gains, Kp, Ki, and Kd, which determine the
response characteristics and stability of the closed-loop system.
The output of the PID controller is a continuously varying parameter, bounded in
the interval [−1, 1]. This parameter is subsequently scaled to generate the control
inputs for the body flap deflection δb and the elevon deflections δe, which are actuated
simultaneously. It is important to account for the fact that the deflection ranges
of these surfaces differ, as described in the previous section. In particular, positive
deflections are applied symmetrically to both surfaces, while negative deflections
exhibit slight differences.
The schematic formulation of the control law must also consider potential errors
in position and timing caused by the tracking of the guidance profile. The main
risk is that the flare maneuver may be executed at the same commanded instant as
in the guidance law, but with the vehicle having accumulated positional deviations
that place it in a location different from that assumed during guidance design. To
mitigate this issue, the control of the angle of attack is therefore not imposed as a
function of time but rather as a function of altitude. In this way, the flare maneuver
is triggered when the vehicle actually reaches the prescribed altitude, regardless of
the exact time at which this occurs.

Simulation Workflow

Inputs:

• Initial state vector X0;

• Guidance law αid(z);

• PID parameters Kp, Ki, Kd.

Steps

1. Vehicle data are initialized and the state vector is decomposed into its compo-
nents. Kp, Ki and Kd fit into the PID to define control deflections of mobile
surfaces δb and δe.

2. Velocities in the ENU reference frame are transformed into the body frame
using the appropriate rotation matrix.

3. Intermediate aerodynamic variables are computed, namely the flight path an-
gle FPA, the angle of attack α, dynamic pressure Q, Mach number M , and
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gravitational acceleration g. The latter is considered to vary slightly with
altitude.

4. Aerodynamic coefficients are obtained as functions of α, M, δb and δe, making
use of aerodynamic databases based on Space Shuttle data. In particular,
CL, CD, CM,b, CM,e are computed, as well as the incremental contributions
of body flap and elevons: ∆CL,b, ∆CL,e, ∆CD,b, ∆CD,e.

5. From the aerodynamic coefficients, aerodynamic forces L and D are computed
in the wind frame and then transformed into the body frame. Performance
indicators such as L/D and L/W ratios are also evaluated.

6. Aerodynamic forces generate moments around the center of gravity (CG),
computed as the cross product between the forces and the distance vector
between CG and aerodynamic center (AC).

7. Aerodynamic moments are calculated using the aerodynamic databases: CM ,
CMq, CM,b, CM,e. The total moment Mtot is obtained as their sum.

8. Total forces in the ENU frame, FENU , are obtained by transforming the aero-
dynamic forces from the body frame and adding the weight contribution.

9. The derivative of the state vector is then computed. Velocities in the ENU
frame provide ẋ and ż. Accelerations v̇x and v̇z are obtained by dividing
FENU by the vehicle mass. The angular acceleration q̇ is calculated as the
ratio between the total moment and the moment of inertia IY (noting that all
moments act along the Y axis). The angular velocity q corresponds to θ̇.

10. The state vector is updated through numerical integration of its derivative,
starting from the initial condition X0. The pitch angle θ is normalized within
the interval [−180◦, 180◦]. The resulting state vector is then used as input for
the next iteration.
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Figure 5.2: Simulink Descent Control simulation

Also this simulation terminates when the vertical position z reaches the airport
reference altitude (94 m).

5.1.4 Landing black box

Although the input parameters and initial conditions differ, the structural differ-
ences between the Descent Control and Landing simulations are limited. The main
distinctions can be summarized as follows.
Inputs:

• Initial state vector X0,L;

• Average total simulation time T ;

• Discretization parameter N ;

• Body flap deflections vector B;

• Elevons deflections vector E.

The components of vectors B and E are interpolated (considering actuator rate lim-
itations and maximum deflection constraints) in order to obtain continuous control
surface deflection functions δ, thus avoiding discontinuous step profiles.

• In this simulation, no PID controller is implemented to track a guidance profile;
instead, the control parameters are provided as input in the form of time-
dependent interpolations.
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• Vehicle data are initialized and the state vector is decomposed into its compo-
nents. Current values of body flap and elevon deflections are extracted from
interpolation of B and E.

• The pitch angle θ is constrained within the range [0◦, 90◦], while the pitch rate
q is considered only until both main landing gear wheels are in contact with
the ground.

• A reaction force, acting at the rear landing gear, is introduced to represent the
ground reaction. This force generates a moment about the center of gravity
(CG), which remains active until the nose gear also makes contact with the
ground. The moment is computed as the cross product between the total
aerodynamic forces expressed in the body axes and the distance vector between
the CG and the rear landing gear.

• To correctly evaluate the reaction moment, the weight vector is expressed in
the body reference frame.

• Braking on the runway is modeled by introducing an additional force, Fbrake.
This force acts in the direction opposite to the velocity in the ENU frame and
is defined as a fraction of the vehicle’s weight. Both this braking force and the
corresponding deceleration are included in the computation of the derivative
state vector.

Figure 5.3: Simulink Landing simulation
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5.2 Optimization environment

This section provides a detailed description of the methodological procedure adopted
for the optimization process and the subsequent verification of the project require-
ments. The study involved a critical assessment of different optimization approaches
and algorithms to identify the most suitable and efficient configuration for the ap-
plication under consideration.
In particular, the selected optimization strategy is based on the Single Shooting
method, in which the entire time horizon is integrated as a single initial value prob-
lem. This approach simplifies the problem formulation and reduces the number of
optimization variables, while still ensuring a consistent propagation of the system
dynamics throughout the trajectory. Although it may be more sensitive to initial
guesses compared to multi-segment techniques, it offers computational efficiency and
straightforward implementation, making it well suited for the present application.

5.2.1 Optimizer Choice

A wide range of optimization algorithms exists, each characterized by distinct meth-
ods and underlying principles. Consequently, a preliminary comparative study was
carried out to identify the most appropriate approach for the specific problem under
investigation. The analysis considered three main categories of optimizers: de-
terministic algorithms, genetic algorithms, and stochastic algorithms. Among the
deterministic methods, both the fmincon solver available in MATLAB and the SNOPT
optimizer were tested. These gradient-based techniques aim to efficiently converge
to a local optimum through sequential quadratic programming and constrained non-
linear optimization schemes. In parallel, a genetic algorithm was implemented to
assess the performance of evolutionary, population-based methods, which explore
the design space through selection, crossover, and mutation operators. Further-
more, a stochastic particle swarm optimization (PSO) routine was developed and
evaluated to investigate the capability of swarm-intelligence strategies in achieving
global convergence. Although all these algorithms pursue the same optimization
objective, they exhibit markedly different exploration and convergence behaviors,
providing complementary insights into the performance and robustness of the pro-
posed optimization framework.

SNOPT - Deterministic algorithm

The deterministic gradient-based mode in SNOPT is particularly efficient when the
optimization problem is smooth, differentiable, and characterized by a sparse con-
straint structure. In such cases, the algorithm can exploit accurate gradient informa-
tion to rapidly converge to a local optimum with a high level of numerical precision.
This makes the method especially suitable for trajectory optimization and guidance
problems, where strict feasibility requirements and computational efficiency are of
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primary importance. However, its reliance on local gradient information also rep-
resents its main limitation: the algorithm is inherently a local search method and
is therefore prone to converge to suboptimal solutions in the presence of multiple
minima. Moreover, the quality of the final solution is strongly influenced by the
initial guess, which may hinder robustness when prior knowledge of the problem is
limited.

fmincon function

In addition to SNOPT, another widely used optimizer is Matlab’s fmincon, which
is part of the Optimization Toolbox and is often adopted for constrained nonlin-
ear problems. Its main advantage lies in accessibility: the solver is fully integrated
within Matlab, supported by extensive documentation, and offers multiple algo-
rithmic variants (such as SQP, interior-point, and trust-region methods) that can
be selected according to the problem structure. When analytical gradients and, if
needed, Hessians are provided, fmincon can be computationally efficient and accu-
rate, while maintaining flexibility in the treatment of linear, nonlinear, and bound
constraints. Nevertheless, fmincon shares the typical drawbacks of gradient-based
deterministic methods. Its performance strongly depends on the initial guess, and
convergence is usually limited to local optima, making it less suitable for highly
non-convex landscapes. In the absence of analytical derivatives, it relies on finite
differences, which may introduce additional computational cost and numerical inac-
curacies.

Genetic algorithm

By contrast, the genetic optimization mode available in Matlab offers a global search
capability that is not constrained by differentiability requirements. Instead of follow-
ing a single path of descent guided by local gradients, genetic algorithms maintain
and evolve a population of candidate solutions. This stochastic mechanism allows
the exploration of wide regions of the design space, thereby reducing the risk of pre-
mature convergence to local minima. Genetic optimization is therefore advantageous
in highly non-convex or poorly characterized problems, where global exploration is
essential. Nevertheless, this broader search comes at the cost of computational effi-
ciency: genetic algorithms typically require a large number of function evaluations,
converge more slowly than deterministic methods, and often provide solutions that
are less precise in terms of strict optimality. In addition, their performance is highly
sensitive to the tuning of algorithmic parameters, such as population size and mu-
tation rates. It is worth noting that genetic optimization methods do not inherently
account for explicit constraints, but operate exclusively on the basis of the cost func-
tion. To ensure that the search is restricted to feasible regions of the design space,
the constraint equations are reformulated as penalty terms within the cost function.
These terms are multiplied by a sufficiently large weighting parameter, such that
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any violation of the constraints is heavily penalized, thereby discouraging infeasible
solutions and guiding the optimization process toward admissible trajectories.

Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is another population-based stochastic optimiza-
tion technique inspired by the collective behavior of social organisms, such as bird
flocks or fish schools. In PSO, a set of particles—each representing a potential so-
lution—moves through the search space according to both its individual experience
and the experience of neighboring particles. This mechanism allows PSO to dynam-
ically balance exploration and exploitation, adapting the search behavior based on
collective intelligence. Compared to classical genetic algorithms, PSO requires fewer
control parameters and typically exhibits smoother convergence behavior. However,
its performance is still sensitive to parameter tuning and it may suffer from prema-
ture convergence when the cost landscape features narrow valleys or multiple local
minima. In the context of the present study, PSO was implemented as a benchmark
to evaluate its capability in handling nonlinear, multi-variable optimization under
aerodynamic and guidance constraints. While it demonstrated promising global
search behavior and robustness against poor initial guesses, its computational cost
was significantly higher than that of deterministic gradient-based methods. Conse-
quently, PSO was primarily used for exploratory analyses and parameter sensitivity
studies, rather than for routine trajectory optimization.

5.2.2 Rationale for the Chosen Method

For the present work, the deterministic gradient-based mode of SNOPT was selected
as the primary optimization tool. This choice is motivated by the specific require-
ments of an autonomous guidance system for the horizontal landing of a reentry
vehicle, where computational efficiency, robustness, and precision are of paramount
importance. The problem formulation is characterized by smooth and differentiable
dynamics, together with a sparse constraint structure that SNOPT can exploit effec-
tively. Under these conditions, the deterministic approach ensures rapid and reliable
convergence to feasible solutions while satisfying strict aerodynamic and operational
constraints.
Although preliminary tests were also carried out with alternative optimizers, in-
cluding the genetic mode of SNOPT, the Particle Swarm Optimization (PSO) routine,
and Matlab’s fmincon, the deterministic SNOPT implementation consistently demon-
strated superior robustness and efficiency. PSO and genetic approaches exhibited
stronger global search capabilities, but their higher computational cost and slower
convergence made them less suitable for the real-time or near real-time guidance
applications targeted in this study.
However, given the relatively small number of decision parameters in the present
optimization problem, the PSO method proved particularly effective for performing
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a preliminary convergence analysis. Its stochastic exploration allowed the identifica-
tion of promising regions within the solution space without being overly affected by
the initial guess. Therefore, a hybrid optimization strategy was adopted: the PSO
algorithm was first employed to obtain an approximate global solution, which served
as the initial guess for the deterministic SNOPT refinement. This sequential approach
effectively combined the global exploration capability of PSO with the local preci-
sion and efficiency of the gradient-based optimizer, leading to faster convergence
and improved numerical stability while ensuring that all dynamic and aerodynamic
constraints were satisfied.

5.3 Initial Conditions, Constraints and Cost Func-
tion

After defining the optimization function, the next important step is the definition
of Initial Conditions, Constraints and Cost Function, that completely define the
problem.
Santa Maria Airport has been identified as the landing site. Santa Maria is a
Portuguese airport in the autonomous region of the Azores. Its coordinates are
36◦ 58′ 24.17′′ N 25◦ 09′ 55.14′′ W and its altitude is 94 m ASML.

Figure 5.4: Initial Conditions and landing site

The initial and final conditions were determined during the study phase. For in-
stance, the state vector for the landing simulation was either pre-defined or derived
from the final state vector of the preceding simulation. The constraints were chosen
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to ensure a successful landing and braking on the runway, all while adhering to the
structural limitations of the vehicle and the scenario.
It is important to note that, in the following text, the constraints are presented with-
out distinction; however, in optimization, they are typically classified into equality
and inequality constraints. Equality constraints require that a given function of
the decision variables be exactly satisfied, thereby restricting the feasible set to lie
on a lower-dimensional manifold. Inequality constraints, by contrast, impose up-
per or lower bounds on functions of the decision variables, thus defining regions of
admissibility within the search space.

5.3.1 Descent Guidance Optimization

Initial Conditions and Guess

The starting point is located at an altitude of z = 15000 m. Initial velocity has been
chosen to be at M = 0.8 with a flight path angle of FPA = γ = −50◦. From these
parameters, the corresponding velocity components along the x and z axes can be
derived. {√

V 2
x + V z2/a = M = 0.8

tan−1(Vz/Vx) = γ = −50◦
(5.1)

We obtain Vx = 151.7338 m/s and Vz = −180.8291 m/s.
Initial attitude angle θ has been settled to −40◦, while angular velocity q = 0.
The initial state vector is complete:

X0 =




x(t0) = 0 m

z(t0) = 15000 m

Vx(t0) = 151.7338 m/s

Vz(t0) = −180.8291 m/s

q(t0) = 0

θ(t0) = −40◦

(5.2)

It’s important to note that angles and angular velocities in the simulator are trans-
posed in rad and rad/s, and linear velocities are reported in ENU .
As outlined in the preceding chapter, the initial guess is defined by a limited set
of parameters, namely the values of α and the corresponding times associated with
the ideal trajectory, together with the glide flight path angle FPA0 (as reported in
5.1.2):

U0 = [ALPHA, TIME, FPA0] (5.3)

The explicit numerical values of the initial guess are not provided, as they are subject
to variation at each iteration of the optimization process.
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Constraints

The vehicle is required to perform the landing maneuver under specific conditions.
In particular, it must touch down at an altitude of z = 94 m (corresponding to the
elevation of Santa Maria Airport) with a low vertical velocity, i.e., −4 < Vz(tf ) <
0 m/s, in order to remain within the structural limits of the vehicle [26]. The
longitudinal velocity at touchdown, Vx(tf ), is constrained by the available runway
length. Furthermore, both the attitude angle and the angle of attack must be
positive at the moment of touchdown to ensure the execution of the flare maneuver.
Additional limitations are imposed throughout the glide phase.
The constraints can be categorized according to their time of application, namely
those enforced during the entire simulation and those applied only at the final time
tf :

∀t ∈ [t0; tf ] C = −10◦ ≤ α(t) ≤ 45◦ (5.4)

It’s worth noticing that an altitude limitation would have been redundant because,
as described in Chapter 4, the simulation ends when the vehicle reaches the airport
altitude. The final-time constraints are defined as follows:

Cf =




α(tf ) ≥ 0◦

θ(tf ) ≥ 0◦

z(tf ) ≤ 95 m

Vx(tf ) ≤ 100 m/s

Vz(tf ) ≤ −4 m/s

(5.5)

Cost Function

The primary objective in selecting the Cost Function J was to achieve a stable vehicle
attitude as rapidly as possible and to maintain it throughout the glide phase, until
the vehicle begins the flare maneuver, at T1. This stable attitude is defined by a
Flight Path Angle (FPA) set at a target value of FPA0 = −20◦. To accomplish
this goal, the following Cost Function was established:

J =

∫ T1

0

|FPA(t)− FPA0| dt (5.6)

The time-based integration term compels the optimizer to converge to the desired
FPA0 in the shortest possible time while the integrating term ensures maintaining
this angle until the initiation of the flare maneuver. As shown in the previous
chapter, FPA0 and T1 have initial values but are not fixed and may change during
the optimization process.
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5.3.2 Descent Control Optimization

Initial Conditions and Guess

The initial conditions are identical to those used in the Guidance Descent simulation:

X0 =





x(t0) = 0 m

z(t0) = 15000 m

Vx(t0) = 151.7338 m/s

Vz(t0) = −180.8291 m/s

q(t0) = 0

θ(t0) = −40◦

(5.7)

It is important to note that the reference profile of αid is also provided as an input,
but it is interpolated as a function of altitude rather than time, as previously spec-
ified.
The initial guess, on the other hand, is different, as it is defined in terms of the
proportional–integral–derivative (PID) controller parameters:

U0 = [Kp, Ki, Kd] (5.8)

Constraints

As described in Chapter 4, this simulation is performed without any explicit con-
straints, in order to allow the optimizer to focus solely on minimizing the cost
function. In fact, if the cost function reaches a sufficiently small value, it implies
that the constraints are inherently satisfied.

Cost Function

The cost function is defined as the integral of the module of the error e(t) between
the commanded guidance angle of attack (αideal) and the actual response:

J =

∫ T

0

|e(t)| dt =
∫ T

0

|α(t)− αideal(t)| dt (5.9)

The use of the integral aims to minimize the tracking error over the shortest possible
time horizon, thereby improving both accuracy and responsiveness of the control
loop.

5.3.3 Landing Optimization

Initial Conditions and Guess

Certain initial conditions for the braking phase simulation are derived from the end
of the preceding simulation. Specifically, the horizontal velocity and the pitch angle
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(θ) are taken from the values the vehicle has just as it touches down, while the
altitude remains fixed at the landing altitude. The vertical velocity is converted
into an angular velocity based on the conservation of angular momentum law:

qt = Vxf,Descent ·
r

r2 + Iy/m
(5.10)

The initial state vector is composed as follows:

X0 =





x(t0) = 0 m

z(t0) = 94 m

Vx(t0) = Vxf,Descent

Vz(t0) = 0 m/s

q(t0) = qt

θ(t0) = θf,Descent

(5.11)

The guess is composed with the control vector B and E, and the total simulation
time T :

U0 = [T, B, E] (5.12)

Final Constraints

The vehicle must be capable of landing on a 3,048-meter runway (Santa Maria
runway length). Considering a typical margin of error for reentry vehicles (±15%),
the effective distance available for deceleration is 2,629 meters [25] [27]. Other
constraints may include reaching an attitude angle θ = 0 and ensuring that the
horizontal velocity is equal to zero. The latter constraint has been slightly modified
by setting the final velocity to a value slightly above zero, in order to prevent the
simulator from reaching negative velocities during the final propagation steps, which
would compromise the validity of the simulation.

Cf =




x(tf ) ≤ 2629 m

θ(tf ) = 0◦

Vx(tf ) ≤ 0.5m/s

(5.13)

Cost Function

For the Landing simulation, the primary objective guiding the selection of the Cost
Function was to ensure a safe and controlled pitch-down maneuver without compro-
mising the structural integrity of the vehicle. This critical requirement necessitated
that the optimizer guide the vehicle to a very low angular velocity. Specifically,
the target angular velocity was set to q0 = −0.5◦/s. To achieve this goal, a Cost
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Function similar to that used in previous phases was established, as shown in the
following equation:

JL =

∫ T

0

|q(t)− q0| dt (5.14)

In this function, the integration of the difference between the actual angular velocity
(q) and the target value (q0) over the total time of the maneuver (T ) serves as the
objective for the optimizer. This formulation forces the system to minimize the
deviation from the desired slow pitch rate throughout the landing phase and ensures
a gentle and controlled final descent, which is paramount for the safety and success
of the landing. It is important to note that, unlike in the Descent simulation, the
objective parameter q0 is now fixed for every optimization attempt.

5.4 First Results

The optimization performed with PSO and SNOPT yielded satisfactory results, achiev-
ing full compliance with the imposed constraints and maintaining a contained cost
function in both simulation scenarios. The results are presented below, including
the discretizations of the control surfaces.

Descent

Figure 5.5: z(t)
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Figure 5.6: vx(t) e vz(t)

Figure 5.7: θ(t)
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Figure 5.8: αid(t) vs α(t)

It’s worth zooming in on the graphic of α(t) to understand the action of the PID
controller:
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Figure 5.9: αid(t) vs α(t), first seconds

Figure 5.10: αid(t) vs α(t), flare maneuver and last seconds

56



5.4. First Results

Figure 5.11: FPA(t)

Figure 5.12: δb(t)

57



5.4. First Results

Figure 5.13: δe(t)

During the descent phase, the vehicle converges, after few instabilities, to the desired
flight path angle FPA0 (not the −20◦ settled in the guess but a slightly different
value found by the optimizer during the process) and maintains it with stability. At
approximately 600 meters altitude, the flare maneuver is initiated, beginning with
an initial pitch-up and stabilizing to a final value of α until touchdown is achieved.
The evolution of the main characteristic quantities follows this common pattern: an
initial adjustment phase to reach stable conditions, maintained until the onset of the
flare maneuver. The pitch angle θ remains stable and subsequently increases up to
approximately 9◦ at touchdown, while the angle of attack α exhibits a similar trend.
The vertical speed is stable throughout most of the trajectory and then gradually
approaches zero toward the end of the simulation. Regarding the control variables,
δb and δe remain nearly constant throughout the flight, thereby providing a stabi-
lizing negative moment. In the last 30 seconds of simulation, the deflection rapidly
decrease. This behavior subsequently induces the pitching-up moment required for
the landing phase.
The optimized simulation for most of the variables over time (like θ and FPA) ex-
hibits a characteristic behavior that can be interpreted in light of the Turnpike
property. Initially, the trajectory shows oscillations as the system rapidly adjusts
to the boundary conditions at the starting point. After this transient phase, the
value stabilizes around a nearly constant value for the majority of the trajectory,
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reflecting the system’s tendency to remain close to a steady-state solution that min-
imizes the cost function. Toward the end of the simulation, additional oscillations
are observed as the trajectory adapts to perform the flare maneuver and satisfy
the terminal boundary conditions. This pattern is consistent with the turnpike
phenomenon, whereby the optimal trajectory spends most of the horizon near a
quasi-stationary state, with deviations primarily localized at the beginning and end
of the time interval to enforce the required constraints.

Landing

The optimization for Landing phase and braking on the runway manages to per-
form a successful arrest of the vehicle while remaining in length constraints. It also
manages to have a slow pitch down of the nose landing gear.

Figure 5.14: x(t)
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Figure 5.15: vx(t)

Figure 5.16: θ(t)
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Figure 5.17: q(t)

Figure 5.18: δb(t)
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Figure 5.19: δe(t)

The optimal solution aims to stabilize the nose pitch-down rotation induced by the
transposition of the linear vertical velocity at touchdown into angular velocity. In
fact, both δb and δe assume negative values for the majority of the time, thereby
generating a positive compensating moment. The pitch rate q remains very small
in magnitude, not exceeding −5◦/s.
Although the results comply with all imposed constraints, it is noteworthy that the
pitch-down control exhibits a certain degree of overshooting. The control inputs dis-
play an oscillatory behavior, alternately exceeding and then correcting in an attempt
to track a desired pitch-rate value. This trend is reflected in the time histories of
both the pitch angle θ, which oscillates rather than performing a constant decrease,
and the angular velocity q. Such behavior may be attributed to the highly com-
putational model employed to simulate the roll-out phase: more than one hundred
variables are involved, and no dedicated controller—such as the PID used during the
descent phase—is implemented. Consequently, the optimizer struggles to identify
a strictly smooth and steady solution. This outcome provides an interesting point
of comparison between the different optimization approaches, emphasizing how the
constraints are nevertheless satisfied, albeit with higher computational times and
the occurrence of overshooting phenomena.
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6. Overall Requirements Definition and Fu-
ture Development

To achieve the objective of this thesis, namely the validation of requirements for a
horizontal re-entry vehicle, it is necessary to investigate which alternative configu-
rations are capable of performing a successful landing in addition to the one just
optimized. The underlying idea of performing this discretization is to obtain a fea-
sibility map of the landing capability over a wide range of combinations of vehicle
characteristics, by interpolating through the discretized values. This map can then
be employed to identify the admissible characteristics of the vehicle according to
specific requirements—for instance, determining the minimum achievable wing sur-
face area or the minimum lift-to-drag ratio (L/D) for a fixed mass.
To this end, a series of optimizations must be carried out by varying the main char-
acteristics of the vehicle—particularly aerodynamic properties and aerodynamic co-
efficients—as well as intrinsic parameters. The constraints are also varied in order to
be as non-conservative as possible, while still remaining within the logistical limits
of the territory.
The series of optimizations was structured as follows. First, the parameters to be
varied were selected, as outlined below:

• m mass: 5 values between 10000 kg and 100000 kg have been chosen.

• S wing surface: varies from 100 m2 to 300 m2 in 3 values.

• L/D ratio: to perform aerodynamic performance variation, the value of L has
been multiplied for XL/D, a varying factor from 1 to 2. By doing this the
L/Dmax parameter varies from a value of 4 to 8 depending on the simulations.

As mentioned in the previous chapter, the variables dependent on these parameters
are also parametrically scaled as functions of them. For instance, the mean aero-
dynamic chord (MAC) is parametrically scaled as a function of the wing surface
area S, while the moment of inertia IY is parametrically scaled as a function of the
vehicle mass.
These are the total variation parameters:
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m [kg] S [m2] XL/D

10000 100 1

32500 200 1.5

55000 300 2

77500 - -

100000 - -

Table 6.1: Discretization of analysis parameters

The choice of these discretizations represents a compromise between ensuring a suf-
ficiently broad range of parameter variations and avoiding excessive computational
cost, which would otherwise result in prohibitively long solution times. To mitigate
this issue and reduce computation time, the Matlab parallelization tool parfor is
employed.
The Matlab code for requirements validation operates as follows:

1. A cell array (C = {5×3×3}) is generated, containing all possible combinations
of the previously defined parameters. In the first parfor loop, each core
processes one parameters combination, corresponding to a single element of
C, and give it as input for Simulink.

2. The PSO+SNOPT optimizer attempts to converge to a solution for the two De-
scent simulations with the selected parameters, satisfying the imposed con-
straints while minimizing the cost function.

3. If the 2 simulation is successful, the 2 guess solutions (α1, α2, T1, T2, FPA0

and Kp, Ki, Kd) and cost function + constraints values are stored in the
vectors bestU and bestF. Conversely, if the simulation fails or does not respects
constraints, the entries of these vectors are assigned the value -inf. Once all
parameter combinations have been processed, the first parfor loop terminates.

4. A second parfor loop is then executed, performing optimization for the Land-
ing simulations. This step is restricted to the parameter combinations that
did not lead to failure during the Descent phase, i.e., only for the elements of
C associated with maximum tolerance in bestF. The outcomes of the Landing
simulations are similarly collected in the corresponding result vectors.

6.1 Results

The following figure illustrates the feasibility grid related to the Guidance optimiza-
tion process. The axes represent the discretizations of the main parameters (m, S,

64



6.1. Results

and L/D). It can be observed that, in most cases, the guidance system success-
fully satisfies the imposed constraints and enables the vehicle to perform a complete
landing after executing a flare maneuver, which reduces the velocity and aligns the
vehicle in an appropriate landing attitude. Moreover, the value of the cost func-
tion remains sufficiently low across all feasible points, indicating that the vehicle
is capable of reaching a steady flight-path angle within a relatively short time and
maintaining it throughout the glide phase.

Figure 6.1: Final Results

The points highlighted in red correspond to feasible configurations, in which all
constraints are satisfied within a tolerance of 10−4. Conversely, some points are
identified as infeasible, as under those specific conditions the vehicle is unable to
complete a successful landing. This infeasibility may be attributed to an excessive
mass relative to the wing surface area, or to a wing area or lift-to-drag ratio (L/D)
that is too low to allow a proper flare maneuver. It is also interesting to note that an
increase in wing surface area does not necessarily guarantee the success of the opti-
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mization. This occurs because a larger wing surface leads not only to an increase in
lift, but also to a proportional increase in drag. Therefore, for the same L/D ratio,
a vehicle with a larger wing may experience greater aerodynamic resistance, making
it more difficult to perform the flare maneuver effectively.

The plot is further enriched with the results of the Control descent (colored in green)
which verifies whether the vehicle is effectively able to follow the guidance commands
and complete both the maneuver and the landing. As can be observed, not all of the
red points are reachable by the controlled vehicle, and this may be caused by several
factors. The first and most significant factor is that the defined control surfaces may
not generate a sufficient control moment to effectively follow the guidance trajec-
tory. A second possible cause lies in the input of the PID control parameter: the
controller tracks the evolution of the angle of attack, α, both in time and altitude,
compensating for possible delays or anticipations in reaching flare altitude.

The results corresponding to the landing phase are also reported. These simulations
were performed only for the configurations that exhibited acceptable feasibility dur-
ing the descent phase, namely the green points in the feasibility grid. All of these
simulations resulted in terms of feasibility and constraints satisfaction, successfully
completing a smooth nose pitch-down maneuver and a deceleration within the con-
sidered runway length. Therefore, the landing results are not highlighted with a
distinct color, but are instead included within the green points already shown in the
figure.

Overall, the results confirm that the proposed guidance and control framework allows
the vehicle to perform a complete and controlled landing within the considered
parameter space, while clearly identifying the limits of feasibility associated with
mass, aerodynamic efficiency, and control effectiveness.

6.2 Future Developments and Reflections on Re-
search

The work presented in this thesis has laid the foundations for a systematic definition
of the requirements for the horizontal landing of a re-entry vehicle. Nevertheless,
several potential extensions can be envisaged. Future research could expand the
modeling framework, refine the optimization methodology, and strengthen the cou-
pling between aerodynamic, guidance, and control aspects. The following subsec-
tions outline several promising directions for advancement, together with broader
reflections on the research methodology.
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Degrees of Freedom of the Simulator

A natural extension of the present work would involve expanding the simulation
environment from a three-degree-of-freedom (3-DOF) longitudinal model to a full
six-degree-of-freedom (6-DOF) dynamic representation. This enhancement would
enable the study of lateral-directional effects—such as sideslip, roll dynamics, and
yaw control—which play a crucial role in the final alignment and crosswind com-
pensation phases of runway approach.
The inclusion of these dynamics would inevitably increase both the mathematical
and computational complexity of the problem. However, such complexity would be
offset by the gain in physical realism and predictive fidelity, allowing for a more
accurate assessment of control surface effectiveness, actuator authority, and aerody-
namic coupling during landing. Moreover, a higher-fidelity simulator would enable
the simultaneous optimization of longitudinal and lateral trajectories, contributing
to a unified description of vehicle behavior during the complete terminal phase.

Aerodynamic Databases

The current implementation relies primarily on aerodynamic data derived from the
Space Shuttle configuration. A valuable extension would consist of testing the pro-
posed methodology against other aerodynamic databases, corresponding to different
wing planforms, aspect ratios, or lifting-body geometries. For instance, data derived
from slender delta wings, double-delta configurations, or blended-wing bodies could
provide insights into how aerodynamic efficiency and control sensitivity influence
landing feasibility.
The inclusion of diverse aerodynamic models would also facilitate the development of
scaling laws applicable to a broader class of re-entry vehicles, ultimately supporting
preliminary design activities. Future efforts could further consider the integration
of surrogate aerodynamic databases generated through reduced-order modeling or
machine-learning interpolation of CFD results, thus ensuring continuity between
conceptual design and high-fidelity aerodynamic analysis.

Alternative Optimization Strategies

Another significant improvement could concern the optimization architecture itself.
In the current framework, the descent and landing optimizations are performed se-
quentially through independent black-box modules. Although this approach simpli-
fies implementation, it introduces discontinuities between the output of the descent
phase and the initial conditions of the landing phase.
A more advanced methodology would merge the two stages into a single, coupled
optimization problem, in which both black boxes are included. This unified formu-
lation would ensure smoother transitions between flight regimes, better coupling of
constraints, and potentially shorter computation times, since the optimizer would

67



6.2. Future Developments and Reflections on Research

handle the entire trajectory in a single run. Exploring other hybrid optimization
techniques – such as IPOPT (Interior Point Optimizer) for gradient-based algo-
rithms and or surrogate for stochastic algorithms -— could further improve con-
vergence robustness and facilitate the exploration of complex, multimodal solution
spaces.

Advanced and Multi-Objective Control Laws

While the present study adopted a PID-based control architecture for its simplicity
and robustness, future work could investigate more sophisticated control schemes.
Linear Quadratic Regulators (LQR), Model Predictive Controllers (MPC), or adap-
tive and gain-scheduled control systems could be implemented to provide higher
precision and robustness under varying aerodynamic conditions.
Furthermore, rather than limiting the control objective to pitch attitude, the con-
troller could be designed to simultaneously regulate additional parameters such as
flight path angle, velocity, or vertical acceleration. This multi-parameter control
approach would allow the system to maintain trajectory adherence even under dis-
turbances or modeling uncertainties, ultimately leading to smoother and more stable
landing profiles.

Refinement of Requirement Mapping and Interpolation Techniques

The current mapping of aerodynamic and performance requirements could be refined
by increasing the density of sampling points and adopting interpolation techniques to
ensure smoother transitions between discrete results. By applying multidimensional
interpolation or regression methods, the requirement maps could evolve from discrete
feasibility domains to continuous response surfaces, thereby enabling a more intuitive
and precise identification of optimal configurations.
Such an approach would be particularly beneficial for early design optimization,
where the sensitivity of performance metrics to aerodynamic parameters plays a
critical role in system-level trade-off analysis.

Convergence Enhancement and Sensitivity to Initial Guesses

A final avenue of improvement concerns the convergence behavior of the optimization
process. As demonstrated in the experimental phase, the quality of the initial guess
substantially influences the solver’s ability to converge toward feasible solutions.
Future studies could undertake a systematic analysis of the solution landscape, fo-
cusing on the characterization of local minima and the development of heuristics for
generating informed initial conditions.
Techniques such as continuation methods, warm-starting strategies, or surrogate-
based pre-optimization could significantly improve convergence reliability and re-
duce computational time. This line of research would also contribute to a deeper
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understanding of the underlying dynamics of the problem, shedding light on the
sensitivity of optimal solutions to both model parameters and initial conditions.

Broader Reflections on the Research

Beyond the specific methodological extensions, the work presented herein highlights
the importance of integrating multidisciplinary approaches in the design and analysis
of reusable re-entry vehicles. The combination of flight dynamics, control theory, and
numerical optimization proved to be a powerful framework for investigating complex
aerospace problems characterized by strong nonlinearities and coupled constraints.
Future developments should continue to emphasize this interdisciplinary perspective,
promoting the creation of flexible simulation tools that can adapt to different mission
profiles and vehicle architectures.
In conclusion, while the present study has achieved its primary goal of defining
baseline requirements for horizontal landing, it also reveals a wide range of open
challenges. Addressing them will not only enhance the technical maturity of the
proposed methodology but also contribute to the broader advancement of reusable
space transportation systems, bridging the gap between theoretical modeling and
operational implementation.
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7. Conclusions

This thesis has presented a comprehensive methodology for defining the aerodynamic
and control requirements necessary to enable the horizontal landing of a reusable
re-entry vehicle. Starting from a theoretical framework rooted in flight dynamics,
guidance and control theory, and numerical optimization, the research developed
an integrated approach capable of simulating and optimizing the final descent and
landing phases with a high degree of fidelity and computational efficiency.

The work addressed the landing problem as a multi-phase optimization task, decom-
posing it into distinct yet interconnected stages — Descent Guidance, Descent Con-
trol, and Landing. This modular structure allowed for the independent assessment
of each phase while ensuring global consistency in the vehicle’s dynamic response.
The adopted optimization framework followed a hybrid strategy that combined a
global and a local optimization stage. Specifically, a Stochastic Algorithm (PSO)
was first employed to perform a global exploration of the solution space and to iden-
tify promising regions within the design domain, thereby reducing the likelihood of
convergence to suboptimal local minima. Subsequently, a deterministic Sequential
Quadratic Programming (SQP) method, implemented through the SNOPT solver,
was applied to refine the solution locally and achieve rapid convergence to the op-
timal trajectory. This two-step approach effectively balanced exploration and ex-
ploitation, improving robustness and computational efficiency. The use of MATLAB
and Simulink enabled a flexible simulation environment that integrated the physical
modeling of forces and moments, the implementation of control laws, and the par-
allel execution of computational tasks through the Parallel Computing Toolbox.

The results obtained from the optimization process provided valuable insights into
the feasibility of horizontal landing maneuvers for lifting-body and winged re-entry
configurations. In particular, the analyses identified the key parameters— lift-to-
drag ratio (L/D), surface area (S) and mass (m)—that delineate the boundary
between feasible and non-feasible landing conditions. These findings allow for the es-
tablishment of minimum performance thresholds that future reusable vehicles must
meet to achieve controlled runway landings without the aid of parafoil or retro-
propulsion systems. The proposed framework thus contributes to bridging the gap
between theoretical modeling and early design assessment, offering a practical tool
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for preliminary mission analysis and vehicle design.
Beyond the immediate results, this research highlights the importance of coupling
dynamic simulation with hybrid optimization techniques in the design of next-
generation re-entry systems. The integration of realistic aerodynamic models, ad-
vanced control strategies, and parallel computational methods provides a scalable
foundation for more complex analyses, including six-degree-of-freedom (6-DOF)
dynamics, atmospheric uncertainties, and actuator nonlinearities. Moreover, the
methodology can be extended to evaluate crosswind landings, variable-mass effects,
or adaptive guidance laws for autonomous systems.

In conclusion, the thesis advances the current understanding of horizontal landing
feasibility for reusable vehicles by offering both a methodological contribution and
a quantitative characterization of critical requirements. While the presented model
operates under simplifying assumptions, it establishes a solid basis for future in-
vestigations aimed at refining landing guidance algorithms, validating results with
high-fidelity simulations, and ultimately supporting the development of safer, more
efficient, and fully autonomous re-entry systems. The work thereby contributes to
the long-term vision of sustainable and cost-effective access to space.
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