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Abstract

This thesis presents a techno-economic analysis of a renewable energy system (RES) integrated
with electrolyzers and green hydrogen storage. The research aims to identify the most efficient
and cost-effective configurations by comparing different electrolyzer technologies and hydrogen
storage options.

The work is structured into three main phases.

The first phase, Data Collection and Laboratory Review, includes a comprehensive state-of-
the-art survey of electrolyzer technologies and hydrogen storage systems, covering both physical
and material-based storage solutions, as well as the collection of relevant data for subsequent
analyses.

The second phase, Computational Framework Development, focuses on the application of object-
oriented programming (OOP) methods to design a modular, adaptable, and transparent simu-
lation environment. This framework allows the definition of multiple scenarios, optimization of
the computational structure, and improved usability of the code.

The third phase, Plant Simulation and Economic Analysis, implements the developed models to
simulate RES plants coupled with electrolyzers and hydrogen storage systems. The simulation
results are then assessed through a detailed economic evaluation.

Two computational models were developed, both based on fixed-point iteration with temporal
discretization. The second model was simplified with respect to the thermal analysis to facilitate
broader scenario exploration and reduce computational costs.

The results of this research provide a scalable and adaptable framework for optimizing hydrogen-
based RES systems, thereby contributing to the development of sustainable and economically
viable energy solutions. This thesis has been conducted within the broader context of the Eu-
ropean H2Glass project, in collaboration with the CITCEA research group at the Universitat
Politècnica de Catalunya, where the internship work was carried out.
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1 Preface

This thesis marks the conclusion of an important and formative stage in both my academic and
personal journey. The fact that it coincided with my Erasmus experience is a source of great
pride, as it further emphasizes the international dimension of this path and the global relevance
of the Renewable Energy Engineering program.

I am deeply convinced that the study of hydrogen in the energy sector can represent one of the
key solutions for a more sustainable and greener future for our continent, improving both quality
of life and the health of the planet. The urgency of decarbonizing hard to abate sectors and the
role of hydrogen as an energy vector, supporting grid stability with a high share of renewable
sources and enabling large scale energy storage, were at the heart of my motivation to undertake
this work.

Equally significant was the opportunity to carry out my research at CITCEA, within a stimu-
lating and international environment, in the dynamic and multicultural city of Barcelona. This
setting offered the ideal context to develop a research project aligned with the challenges of the
energy transition and the vision of a sustainable future.

Ultimately, the deeper meaning of this work is to remind us that a different future is not only
necessary but also possible. Research in hydrogen technologies is progressing in promising ways,
bringing us closer to Europe’s goals of clean and accessible energy for all, and to the ambition
of making our continent a better place for present and future generations.
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2 Introduction

2.1 Hydrogen: Benefits and Challenges

The energy problem represents one of the greatest challenges for contemporary human society.
Only a few decades ago, it was believed to be an issue that would primarily concern future
generations in the distant future. However, it has emerged much earlier than expected, or at
least sooner than many had hoped. Humanity is now confronted with the urgent necessity of
identifying alternative solutions to the use of fossil fuels as an energy source, mainly for two
reasons:

The imminent depletion of fossil fuel reserves.

The high environmental and pollutant impact of combustion products.

Given that the structure of our electricity production system, as well as the vast majority of
engines used for transportation, relies on the combustion of gases or fossil fuels, the most im-
mediate and straightforward solution to the energy problem may lie in the identification of a
superior fuel compared to those currently in use. This would make it possible to avoid the
radical transformation of the entire industrial and energy infrastructure.

By analyzing the two main issues related to current fuels, it is possible to state that a “good”
fuel should meet two fundamental requirements:

High quantitative availability.

Low environmental impact and minimal pollutant emissions from combustion products.

At present, hydrogen appears to be the most promising candidate to satisfy both of these con-
ditions, both from a technological and economic standpoint. In its elemental state, hydrogen is
a colorless, odorless, and highly flammable gas, while in the universe it predominantly exists in
plasma form (the state that constitutes stars). In fact, hydrogen accounts for 73.9

The primary challenge, however, lies in the chemical form in which hydrogen is found. Due to
its molecular structure, hydrogen is highly unstable in isolation and tends to form bonds with
electronegative atoms such as those in Group VI (oxygen, forming HO) and Group VII (fluorine
and chlorine, forming HF and HCl). As a result, molecular hydrogen (H) is almost absent in
nature. It is generally found bound to other elements, for instance in water (a molecule of
hydrogen and oxygen) or hydrocarbons (hydrogen and carbon). To isolate hydrogen on Earth,
it is necessary to “extract” it by supplying energy to drive separation processes, thus incurring
both economic and, often, environmental costs.

Since hydrogen does not exist freely in nature and its production requires an external energy
input, it is considered an energy carrier rather than a primary energy source.

In an oxygen-rich atmosphere such as Earth’s, hydrogen burns in a manner similar to methane
or natural gas. Among conventional fuels, it possesses the highest energy content per unit
mass—three times greater than gasoline. A significant advantage of hydrogen lies in its potential
to act as an effective energy storage medium for electricity generated from renewable sources (such
as solar or wind power). These energy sources, although clean, suffer from high intermittency
both seasonally and daily, and are strongly affected by unpredictable fluctuations in productivity
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due to climatic variability.

Another critical advantage of hydrogen as a future fuel is its specific energy density, which is
significantly higher than that of fossil fuels: 140 MJ/kg for hydrogen, compared with 55 MJ/kg
for methane, 42 MJ/kg for petroleum, and 15 MJ/kg for coal—exceeded only by nuclear fuels.
This advantage is partially offset by hydrogen’s low volumetric energy density, a consequence of
its low physical density, which makes storage and transport relatively challenging.

The first major obstacle to the practical realization of a hydrogen-based society, often referred
to as the “Hydrogen Economy,” lies in producing hydrogen in its usable molecular form, H. As
noted, although hydrogen is abundant on Earth, it is chemically bound to other elements. Its
extraction requires specific physico-chemical processes capable of isolating it in pure form.

According to the latest report from the International Energy Agency (IEA), global hydrogen
consumption amounts to approximately 75 million tonnes per year. At present, hydrogen is
primarily used as a feedstock in industrial processes, such as ammonia production, fertilizer
manufacturing, and petroleum refining. Nearly all of this hydrogen is produced from fossil fuels,
mainly via coal gasification:

C + CO → 2 CO

C + HO → CO + H

or via natural gas steam reforming:

CH + HO → CO + 3 H

CO + HO → CO + H

Currently, 95% of global hydrogen production (55 Mtpa) originates from fossil fuels, predomi-
nantly natural gas. These processes are associated with significant CO emissions, with a carbon
footprint estimated at 10–12 kgCO/kgH for hydrogen obtained from natural gas reforming (grey
hydrogen).

The gasification process involves the conversion of carbon with CO and steam into syngas (CO
and H). In steam reforming, the first step decomposes methane into hydrogen and carbon monox-
ide. In the subsequent step, known as the water-gas shift reaction, carbon monoxide reacts with
steam to form carbon dioxide and additional hydrogen.

Such processes are unlikely to be viable in the long term, as they are highly polluting and
inconsistent with European directives on reducing climate-altering emissions. It is worth noting
that gasification could, in principle, be performed using renewable feedstocks such as biomass or
waste. However, these processes also risk generating significant pollutant by-products.

Hydrogen production via steam reforming cannot contribute to decarbonization unless combined
with carbon capture and storage/utilization (CCS/U) technologies. When hydrogen from fossil
fuels is produced in facilities integrated with CCS/U, it is referred to as blue hydrogen.

The only truly sustainable and commercially viable hydrogen is so-called green hydrogen, pro-
duced through water electrolysis in specialized electrochemical cells powered by electricity from
renewable sources.
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2.2 Objectives

Within such a complex and constantly evolving energy scenario, the purpose of this work takes
shape. The central idea is the development of a digital twin of a plant designed for the production
of green hydrogen, with the specific goal of evaluating its potential application in a blast furnace
for hydrogen-based processes. A digital twin may be defined as a virtual counterpart of a
real system, which enables the reproduction of its dynamics in a simulated environment and
therefore makes it possible to analyze, predict, and optimize its performance under a wide range
of operating conditions.

The project was carried out using Python, following the principles of object-oriented program-
ming. This programming paradigm is based on the definition of objects that bring together
both the data that describe them and the functions that govern their behavior. In the present
case, a class was created for each component of the plant, while a main function was designed to
coordinate and recall all classes in an orderly manner. Such a structure proved to be particularly
effective, as it allowed us to maintain a clear and modular organization of the code, thereby
facilitating both the implementation of simulations and the future extension of the model.

Thanks to this digital twin it became possible to simulate the operation of the plant, to carry out
preliminary sizing activities, and to explore different combinations of parameters that optimize
hydrogen production. In particular, the simulations were enriched by the integration of meteo-
rological data, which made it possible to assess the long-term effects of environmental variability
on plant performance and lifetime.

Alongside the technical analysis, a cost analysis of the system was also performed. In this respect,
hydrogen storage was deliberately excluded from the economic evaluation, since the specific
technology considered, although particularly promising for the future development of stationary
storage systems, is still at a non-commercial Technology Readiness Level. This condition made
it impossible to obtain reliable data for an accurate simulation of its economic implications.
For this reason, the economic analysis was conducted instead by exploring different scenarios
and future perspectives based on solid and verifiable data. This approach proved to be fruitful,
as it allowed us to obtain a number of significant graphs that highlight under what conditions
and within what timeframes a project of this kind could become appealing not only from an
environmental standpoint, but also, and above all, from an economic and industrial perspective.
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2.3 H2Glass

Figure 1: H2GLASS

The H2GLASS project is a Horizon Europe initiative that addresses one of the most pressing
challenges for European industry: the decarbonisation of glass production. Glass is a material of
growing global demand, widely appreciated for its recyclability and for its central role in the devel-
opment of sustainable materials. However, glass manufacturing remains highly energy-intensive
and responsible for significant carbon emissions. Achieving the European Union’s ambitious
goal of net zero emissions by 2050 requires immediate innovation, especially considering that
the average lifetime of a glass furnace is around twelve to fifteen years. In practical terms, this
means that only two generations of furnaces remain before the 2050 deadline, which underlines
the urgency of developing breakthrough solutions.

Within this framework, hydrogen emerges as a particularly promising alternative to fossil fuels.
The use of green hydrogen can substantially reduce carbon dioxide emissions without increasing
other harmful by-products such as nitrogen oxides. Unlike other renewable energy alternatives,
hydrogen can improve the energy efficiency of air-fuel combustion and enable higher furnace
throughput, all while preserving furnace lifetime. Furthermore, the flexibility offered by different
hydrogen concentration mixtures allows for a gradual and adaptable transition between natural
gas and hydrogen without compromising product quality.
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Safety is a fundamental consideration in this transition. Hydrogen is already employed in a vari-
ety of industrial applications and is considered a safe fuel when handled correctly. Nevertheless,
scaling up its use and introducing new technologies inevitably introduces risks. For this reason,
H2GLASS has placed safety at the heart of its objectives, dedicating a specific focus to risk
management. The project includes the design and implementation of detailed safety protocols,
fully aligned with the recommendations of the European Hydrogen Safety Panel, to ensure the
secure handling, storage and combustion of hydrogen in industrial environments.

Although H2GLASS is centred on the glass industry, its ambition goes further. One of its objec-
tives is to ensure that the developed solutions can be transferred to other energy-intensive indus-
tries facing similar challenges. The aluminium industry, which also relies on high-temperature
furnaces and energy-intensive processes, has been chosen as a demonstrator to test the scalability
and flexibility of the technologies developed. This confirms the potential of hydrogen not only to
revolutionise glassmaking but also to provide a pathway for the decarbonisation of other strategic
sectors in Europe.

The scope and ambition of H2GLASS are reflected in its scale. The project brings together
twenty-three partners from eight European countries, combining industrial leaders, research cen-
tres and technology developers. In total, six industrial demonstrators will be implemented, five
in the glass industry and one in aluminium, to validate the solutions in real operating conditions.
With funding of 23.3 million euros, the project represents one of the most significant investments
in hydrogen applications for heavy industry at European level.

Within this context, the project is structured around five key objectives. The first is the de-
velopment of a technology stack enabling one hundred percent hydrogen combustion in glass
furnaces. The second is the validation of the proposed solutions in industrial environments and
the demonstration of their economic and environmental viability. The third objective focuses on
the creation of an IT architecture and digital twin platform to enable automatic control, smart
management and the improvement of industrial processes. The fourth seeks to raise public aware-
ness and understanding of hydrogen technologies as a decarbonisation pathway. The fifth and
final objective is the transfer of these solutions to other energy-intensive industries within the
European Union.
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Figure 2: H2GLASS goal

My contribution to H2GLASS, during my work at CITCEA–UPC in Barcelona, was closely
connected to the third objective. I was involved in the development of the digital twin and the
related IT architecture, adopting an object-oriented programming approach that made it possible
to create a structured and modular tool. Each component of the plant was represented as a class,
while a main function coordinated the overall operation of the system. This model enabled the
simulation of hydrogen combustion processes, the study of different operational scenarios and
the evaluation of the influence of meteorological data on the long-term performance of the plant.

2.4 Why Power-to-X

The concept of Power-to-X has emerged over the past decade as a central element in the transition
towards a carbon-neutral energy system. It refers to the conversion of renewable electricity into
other forms of energy carriers or chemical products, with the aim of overcoming the inherent
variability of renewable energy sources such as solar and wind. The “X” in Power-to-X represents
the wide range of possible products that can be generated, the most relevant being hydrogen
(Power-to-Hydrogen), methanol (Power-to-Methanol), and ammonia (Power-to-Ammonia).

At the core of Power-to-X lies hydrogen production via electrolysis, where water is split into
hydrogen and oxygen using renewable electricity. Hydrogen can then be used directly as a
fuel in fuel cells or combustion systems, producing only water as a byproduct. On a mass basis,
hydrogen has a high energy density, around 33.3 kWh per kilogram, but its low volumetric density
makes storage challenging. For this reason, further conversion into methanol or ammonia can be
advantageous, as both of these compounds can be stored and transported more easily in liquid
form at moderate conditions.
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Methanol synthesis combines hydrogen with captured carbon dioxide, thus creating a liquid fuel
while also contributing to carbon recycling. Ammonia, on the other hand, is produced by reacting
hydrogen with nitrogen separated from air, and it offers the benefit of being entirely carbon-free
when used as an energy vector. These additional pathways provide higher volumetric energy
density compared to hydrogen gas and are therefore more attractive for large-scale storage and
international energy transport.

The importance of Power-to-X is tied to its ability to balance renewable generation with demand
across different time scales. Renewable electricity is intermittent by nature, and conventional
battery storage cannot always provide the flexibility needed for seasonal or large-scale energy
storage. Power-to-X enables long-term storage and sector coupling, integrating the power sector
with transportation, industry, and even agriculture. For instance, ammonia not only serves as a
fuel but also as a fertilizer, which allows synergies between the energy and agricultural sectors.

Figure 3: Power to X

From an economic and environmental perspective, Power-to-X technologies are still at an early
stage, facing high capital costs and efficiency challenges. Electrolysis technologies such as alkaline,
PEM, and solid oxide systems are expected to see cost reductions as production scales up, with
projections that by 2030 costs could fall by nearly half compared to current values. Similarly,
the development of flexible methanol and ammonia synthesis processes adapted to fluctuating
renewable inputs is crucial to improve economic viability.

Despite these challenges, the potential impact of Power-to-X is significant. It offers a pathway
to decarbonize sectors that are otherwise difficult to electrify directly, such as heavy transport,
shipping, and energy-intensive industries. In addition, by creating liquid or gaseous fuels from
renewable electricity, Power-to-X enables the storage, transport, and trade of renewable energy
across regions, turning intermittent power into a versatile and globally tradable commodity.

In conclusion, Power-to-X should be seen not only as a technical solution to integrate renewable
energy but also as a strategic pillar for the wider decarbonisation of the global economy. While
hydrogen remains the backbone of Power-to-X, methanol and ammonia expand its potential
by addressing storage, transport, and sectoral integration challenges. Continued research and
system-level optimization will be key to reducing costs and achieving large-scale deployment in
the coming decades.
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The content of this paragraph is presented as a broad synthesis of the referenced paper Power-
to-X: A review and perspective (Matthew J. Palys, Prodromos Daoutidis, 2022) [9]
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3 State of the Art: Electrolyzer

3.1 Why Electrolyzer

As discussed in the Introduction, we are at a critical turning point in the technological devel-
opment of renewable energy sources. Technologies like solar photovoltaic and wind power are
now technologically mature and economically competitive, with economies of scale approaching
stability. However, energy storage remains a fundamental challenge, and hydrogen is currently
the most promising solution in terms of environmental impact. In concept, it is now possible to
produce energy exclusively from renewable sources and water, significantly minimizing environ-
mental impact, almost to zero, while utilizing natural elements that are abundantly available and
evenly distributed across the planet, such as water, wind, and solar energy. In comparison with
conventional fuels, hydrogen offers a higher energy density per unit mass. Its higher heating value
(HHV) is 141.6 MJ/kg, and its lower heating value (LHV) is 119.9 MJ/kg, while burning with
a colorless flame. Key safety considerations, under standard atmospheric pressure (101.3 kPa),
include its autoignition temperature of 585°C, a relatively high flame temperature of 2045°C,
flame velocity ranging from 265 cm/s to 325 cm/s, detonation limits, and low ignition energy.
Today, global energy consumption has been gradually increasing due to population growth and
rising living standards. Moreover, as global warming and environmental pollution worsen, the
development of renewable energy sources becomes more critical. Hydrogen is one of the most
promising clean and sustainable energy carriers, emitting only water as a byproduct with no car-
bon emissions. Hydrogen has many appealing properties as an energy carrier, including its high
energy density (140 MJ/kg), which is more than twice the energy density of typical solid fuels (50
MJ/kg). Hydrogen can be produced from both renewable and non-renewable energy resources.
To determine if green hydrogen production processes are viable, several techno-economic analy-
sis frameworks have been developed. One of the most well-known and environmentally friendly
methods for hydrogen production is electrolysis. Electrolysis technology, particularly proton
exchange membrane (PEM) electrolysis, has advanced significantly. Green hydrogen can be gen-
erated using renewable energy sources like wind and solar, with minimal costs ranging from 2.94
to 3.32 USD per kg of H2. Furthermore, biomass gasification technology plays an important
role in producing low-emission, sustainable hydrogen, especially for decarbonizing hard-to-abate
sectors like industrial and residential heating. As shown in the Fig. 4, which outlines various hy-
drogen production methods, we can initially exclude fossil fuel-based methods from our analysis,
despite their lower economic cost. This leaves us with renewable sources, which can be broadly
divided into two categories: those derived from biomass and water splitting technologies. It is
logical to focus our research on water splitting technologies, as they are essentially free from CO2
emissions. Therefore, we will provide a brief overview of the three main methods before focusing
on electrolysis, and we will discuss the four main types of electrolyzers currently available.
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Figure 4: Various Hydrogen Production Method [1]

THERMOCHEMICAL WATER SPLITTING

Thermochemical water splitting processes utilize high-temperature heat (500°–2,000°C) to drive
a series of chemical reactions that produce hydrogen. The chemicals used in the process are
recycled within each cycle, creating a closed-loop system that consumes only water and produces
hydrogen and oxygen. The necessary high temperatures can be generated in the following ways:
Concentrating sunlight onto a reactor tower using a field of mirror "heliostats," as illustrated in
Fig. 5. Using waste heat from advanced nuclear reactors.

Figure 5: Thermochemical water splitting processes [2]



3 State of the Art: Electrolyzer 18

Several solar thermochemical water-splitting cycles have been investigated for hydrogen produc-
tion, each with different operating conditions, engineering challenges, and hydrogen production
potential. In fact, over 300 water-splitting cycles have been described in the literature. For more
details, refer to "Solar Thermochemical Hydrogen Production Research: Thermochemical Cycle
Selection and Investment Priority." However, challenges remain in the research, development,
and demonstration of commercially viable thermochemical cycles and reactors:
• Efficiency and durability of reactant materials for thermochemical cycling need significant im-
provement.
• Efficient and robust reactor designs that can withstand high temperatures and thermal cycling
need to be developed.
• For solar thermochemical systems, the cost of concentrating mirror systems needs to be re-
duced.
Exciting progress continues in this field, especially by leveraging synergies with concentrated so-
lar power technologies and emerging solar-fuel production technologies. However, the technology
is still not commercially viable due to the high costs and the need for significant power flows
to enable thermal electrolysis. Regarding the comparison of hydrogen production from sunlight,
there are currently two viable methods: Photolysis and electrolysis powered by renewable energy
sources (RES) like photovoltaic solar energy. In the paper “Analysis of photon-driven solar-to-
hydrogen production methods in the Netherlands,” [3] a comprehensive comparison between these
technologies is presented. Utilizing energy from other photon-driven solar-to-hydrogen (STH)
methods holds promising prospects due to their relatively high theoretical efficiency potential
and potentially lower costs compared to indirect hydrogen production methods. While extensive
research has been conducted on the theoretical aspects of these direct renewable hydrogen pro-
duction methods, the actual technologies are not yet commercially adopted. There are two types
of photochemical water splitting methods: photoelectrochemical (PEC-WS) and photocatalytic
(PC-WS) water splitting. It is worth noting that there is no consensus in the literature regarding
this distinction, and the terms "PC" and "PEC" are often used interchangeably. Both methods
share many similarities. Essentially, the same processes occur in both, but in PC-WS, all reac-
tions take place within individual particles, whereas in PEC-WS, the components are separated.
In some literature, PC-WS is referred to as particulate photocatalytic water splitting. A photo-
electrochemical reactor can either be a fixed panel or a reactor that uses a solar concentrator to
optimize energy absorption. The most common catalysts used in PEC-WS systems include metal
oxides because of their high electrochemical stability, relatively low cost, and wide range of band
gaps. A combination of platinum (Pt) and iridium oxide (IrO2), or platinum (Pt) and titanium
oxide (TiO2), is frequently used. Additionally, much research is being done on implementing
iron oxide (Fe2O3) due to its high solar-to-hydrogen (STH) efficiency potential. A schematic
representation of hydrogen production via PEC-WS is shown in Fig 6 and Fig 7.
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Figure 6: Schematic of PC-WS for hydrogen production [3]

Figure 7: PEC-WS for hydrogen production [3]

BIO-PHOTOLYSIS
Direct bio-photolysis is an aerobic process, while indirect bio-photolysis is an anaerobic process.In
the latter, CO2 is temporarily sequestered, and fermentation occurs as part of the anaerobic pro-
cess. The schematics for both methods are shown in Fig. 8 and in Fig. 9 . Bio-photolysis
is a light-dependent process where photosynthesis enables the splitting of water molecules to
produce hydrogen. Bio-photolysis utilizes incoming solar light for hydrogen production. Both
methods commonly use microalgae, such as green algae, specifically the single-celled Chlamy-
domonas reinhardtii, as they contain hydrogenase. This is crucial as hydrogenase catalyzes the
reduction of CO2 and hydrogen formation. Generally, cyanobacteria or green algae are used for
this process, with hydrogenase and nitrogenase enzymes acting as catalysts. Cyanobacteria are
typically mutants of Anabaena, and the green algae are Chlamydomonas reinhardtii.
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Figure 8: Schematic for DBP [3]
[3]

Figure 9: Schematic for IBP [3]
[3]

PV-ELECTROLYSIS
With PV-electrolysis, hydrogen is produced through an indirect method using photovoltaic (PV)
electricity to power an electrolyzer. A schematic of this process is shown in Fig. 10. Both PV and
electrolyzers are mature technologies, but currently, only a small percentage of global hydrogen is
produced in this manner. The most common water electrolyzer methods are alkaline electrolyzers
and proton exchange membrane (PEM) electrolyzers. Both methods generate hydrogen and
oxygen by using a cathode and an anode.
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Figure 10: Schematic of PV-electrolysis [3]

As can be seen from tables in Fig. 11 and Fig. 12, the best systems are PV combined with alkaline
or PEM electrolyzers, with efficiencies ranging from 8% to 14%. Photoelectrochemical (PEC-
WS) systems have similar efficiencies, but they are still in much earlier stages of technological
and commercial development, as can be seen from the hydrogen price graphs. In contrast,
photocatalytic (PC-WS) water splitting systems have efficiencies that are about one order of
magnitude lower, around 1% .
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Figure 11: STH efficiency conversion 1 [3]
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Figure 12: STH efficiency conversion 2 [3]

From the graph provided in the study “Analysis of photon-driven solar-to-hydrogen production
methods in the Netherlands” [3] by Laurens S.F. Frowijn and Wilfried G.J.H.M. van Sark, it
is clear that the most cost-effective choice at present is to focus on PV + Electrolysis systems.
However, it is still reasonable for research into direct hydrogen production methods through
photocatalysis to continue, as, in theory, it could be one of the best methods since it uses a
single element for the reaction, maximizing theoretical efficiency and reducing plant complexity.
But for now, this method is still in experimental stages



3 State of the Art: Electrolyzer 24

Figure 13: LCOH [3]

Figure 14: STH method comparison [3]

Having established that the PV + Electrolysis system is the most economically viable and tech-
nologically ready for real-world applications, let us now look at how the plant costs are evaluated
in this study, as shown in the graph below.
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Figure 15: PV + ELY cost analysis [3]

Another important parameter highlighted in this study when choosing the PV + Electrolysis
system is the minimum (tested) stable operation time (MTSOT). The MTSOT refers to the
stability of the solar-to-hydrogen (STH) methods during a specific operation time. The operation
time of a particular technology was assumed to be stable and sufficient for a minimum of 500–1000
hours, without significant efficiency losses or other key performance issues.To perform an accurate
comparative analysis of all these solar-to-hydrogen methods, seven key parameters were defined
to assess how each one varies individually and to conduct a sensitivity analysis. This led to
the determination of an average Levelized Cost of Hydrogen (LCOH) based on all the possible
variations of these seven parameters. Below is the graph for the PV + Electrolysis system; for
the other systems, reference can be made directly to the aforementioned study. In any case, the
numerical results are as shown in the graph.
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Figure 16: lifetime ELY [3]

To perform an accurate comparative analysis of all these solar-to-hydrogen methods, in this
paper [3] seven key parameters were defined to assess how each one varies individually and to
conduct a sensitivity analysis. This led to the determination of an average Levelized Cost of
Hydrogen (LCOH) based on all the possible variations of these seven parameters. Below is the
graph for the PV + Electrolysis system; for the other systems, reference can be made directly
to the aforementioned study. In any case, the numerical results are as shown in the graph.

3.2 State of the Art and Technical Specifications

Having justified in the first chapter the need to introduce hydrogen into our energy system and
verified that among all possible hydrogen production technologies, the only ones with zero CO2
impact and economically sustainable (although current technologies for hydrogen production
from fossil fuels are still the most cost-effective) are electrolyzers, it is now necessary to focus our
study on these technologies. This will allow us to conduct a state-of-the-art analysis of both the
commercial and technical status of the current electrolyzer technologies in order to determine
which ones would make sense to incorporate into a Power-to-X (PtX) plant. Water electrolysis
is one of the most promising methods for hydrogen production because it uses renewable water
(H2O) as a feedstock and produces only pure oxygen as a by-product. Additionally, the elec-
trolysis process utilizes direct current (DC) power derived from sustainable energy sources, such
as solar and wind. Currently, only 4% of hydrogen is produced from renewable sources through
electrolysis. However, numerous studies indicate that this percentage is expected to grow, par-
ticularly in light of the targets set by the European Union’s Energy Directive, which has set
a goal to achieve 14% hydrogen production from renewable sources. The advantages of this
technology for hydrogen production include high conversion efficiency and excellent hydrogen
purity quality. In the electrolysis process, water molecules dissociate into hydrogen and oxygen
molecules under the influence of electricity. Water electrolysis can be classified into four types
based on their electrolyte, operating conditions, and ionic agents (OH-, H+, O2-). However,
the operating principles remain the same across all methods. The four main types of electrol-
ysis are: Alkaline Water Electrolysis (AWE), Solid Oxide Electrolysis (SOE), Proton Exchange
Membrane (PEM) Water Electrolysis, and Anion Exchange Membrane (AEM) Electrolysis. In
the following sections, we will describe each of these technologies in detail, with a particular
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focus on PEM and AEM electrolyzers, as they are commercially more viable and better suited
for integration into a Power-to-X plant, such as the one we aim to develop. In the table below,
we can see a comparison between the four main types of electrolyzers. This table, taken from
the 2020 IRENA report [10], shows the chemical reactions at the anode and cathode, the overall
reaction, the different electrolytes and cell construction materials, the voltage range, operating
temperature, hydrogen purity, electrode area, and also the capital cost. Some data for AEM are
missing in this table, but we will discuss them later on, as AEM is a newer technology and not
yet as mature as PEM.

Figure 17: Technical characteristic of typical water electrolysis technologies [4]

This second table provides a summary of the advantages and disadvantages of the different
electrolysis technologies.
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Figure 18: Advantages and disadvantages of typical water electrolysis technologies [4]

Now, before presenting a comparison between the different technologies using appropriate charts,
let’s analyze each of the four technologies individually.

1) ALKALINE WATER ELECTROLYSIS
Hydrogen production by alkaline water electrolysis is well established technology up to the
megawatt range for commercial level in worldwide. Alkaline water electrolysis process initially at
the cathode side two molecules of alkaline solution (KOH/NaOH) were reduced to one molecule
of hydrogen (H2) and two hydroxyl ions (OH) are produced. The produced H2 eliminate from
the cathode surface to recombine in a gaseous form and the hydroxyl ions (OH) transfer under
the influence of the electrical circuit between anode and cathode through the porous diaphragm
to the anode, here in discharged to ½ molecule of oxygen (O2) and one molecule of water (H2O).
The O2 recombined at the surface of electrode and escapes as hydrogen. In alkaline water
electrolysis process, asbestos diaphragm and nickel materials are used as the electrodes. The
diaphragm having in the middle of the cell and it separates the cathode, and anode also sepa-
rates the produced gases from their respective electrodes and avoiding the mixing of produced
gases electrolysis process. However, in alkaline electrolysis have negative aspects such as limited
current densities (below 400 mA/cm2), low operating pressure and low energy efficiency.
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Figure 19: Alkaline Electrolysis [1]

2) SOLID OXIDE OLECTROLYSIS (SOE)
Solid oxide electrolysis has attracted an abundant deal of attention due to the electrical energy
converts into the chemical energy along with producing the ultra-pure hydrogen with greater
efficiency. Solid oxide electrolysis operates at high pressure and high temperatures 500–850 C
and utilizes the water in the form of steam. Solid oxide electrolysis process conventionally uses
the O2 conductors which are mostly from nickel/yttria stabilized zirconia. Nowadays, some of
the ceramic proton conducting materials have been developed and studied in solid oxide fuel
cells. However, increasing the much attention towards ceramic proton conducting materials
for SOE electrolysis process, due to these materials demonstrates high efficiency and superior
ionic conductivity than O2 conductors at an operating temperature of 500–700 C. The main
characteristics of solid oxide electrolysis (SOE) technology is higher operating temperature which
makes advantageous compared to low temperature electrolysis. Although, the SOE having some
issues related to lack of stability and degradation, which have to be solved before going to
commercialization on a large scale
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Figure 20: Solid Oxide Electrolysis [1]

I won’t go into too much detail about PEM and AEM for now, because once the comparison is
completed, it will become clear that these two are the most interesting options for our Power-
to-X plant.In PEM water electrolysis, water is electrochemically split into hydrogen and oxygen
at their respective electrodes such as hydrogen at the cathode and oxygen at the anode. PEM
water electrolysis is accrued by pumping of water to the anode where it is spilt into oxygen (O2),
protons (H+) and electrons (e). These protons are travelled via proton conducting membrane to
the cathode side. The electrons exit from the anode through the external power circuit, which
provides the driving force (cell voltage) for the reaction. At the cathode side the protons and
electrons re-combine to produce the hydrogen.

3.3 Comparison Between the Different Types of Electrolyzers

CAPEX and Future Developments
The actual capital expenditures (CAPEX) for the four types of electrolyzers are presented in
this table.

Regarding potential future developments in CAPEX for the two most commercially mature
technologies, ALK and PEM, a report compares 22 studies conducted worldwide on this topic.
As shown in the following charts—though highly uncertain and often inconsistent with each
other—both technologies are expected to see a reduction in CAPEX. However, as with most
energy-related forecasts, future projections are complex and unreliable, being influenced by nu-
merous geopolitical, social, economic, and technological factors. This is simply to highlight that
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Type Industrial demonstration size (MW) CAPEX (SoA), Euro/kW

AEL 150 600
PEM 10 900
AEM 1 1.000
SOE 4 2.130

Table 1: CAPEX (State of the Art) and demonstration sizes for various types of electrolyzers
[11]

potential future developments should not be overly relied upon when choosing an electrolyzer
today. Instead, decisions should be based on solid, current, and concrete data, while keeping in
mind that there is no strong reason to believe any alternative technology will clearly outperform
the ones we will model in the future. The study also highlights how the region of the world where
a specific technology is deployed can significantly impact the CAPEX of the electrolyzer. This
is why it will be necessary to localize our plant in order to give more reliability and relevance to
the simulation.

Figure 21: Future Develope CAPEX [5]
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Figure 22: Future Develope LCOH [5]

Some conclusions from this paper are cited to support the previous statements.

“1) There is a general agreement between the projections of CAPEX for both AEC and PEM
technologies as almost all show a declining trend until 2050, though with different magnitudes:
60 and 75

2) LCOH projections also show a downward behavior trend throughout the studied timeframe,
affirming the agreement on the potential for production cost reductions in future for both AEC
and PEM technologies.

3) The analyzed projections are aligned with the trendline of actual market costs of CAPEX and
LCOH. Even with sudden changes in the pattern of actual costs, as is the case for PEM LCOH
between 2020 and 2022, a majority of projections have a value near to the actual market costs.

4) In terms of disagreements, on CAPEX for AEC technology, China shows the lowest values by
far. Australia is on the other extreme. For PEM, United States is cheapest, and Australia most
expensive. On AEC LCOH, Germany and the United Kingdom are most expensive due to high
electricity prices, while UAE is cheapest. On PEM LCOH, Japan and again Germany project
substantially higher costs. The difference between extremes in CAPEX and LCOH are about
a factor of 4 and 8, respectively, underscoring the significance of considering specific country
contexts in hydrogen production assessments.”

conclusion of: "Electrolyzer cost projections compared to actual market costs: A Critical Anal-
ysis" [5].

TRL Level
Another important parameter in choosing the right electrolyzer is the level of technological
development, which is summarized in the image below.
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Figure 23: TRL Electrolyzer [6]

Moreover, the conclusion of the research work on AEM electrolyzers by the research group at the
Warsaw University of Technology helps us understand that the purpose of this work—attempting
to model a plant with AEM—makes sense in order to explore the potential developments of this
technology, including the possible integration with storage systems. “First, no studies were found
in the literature that present advanced models for energy-storage applications. Secondly, most
research has focused on single-cell experimental tests to explore the chemistry of individual cell
components, assess their stability, and evaluate new membranes and electrode compositions.
While this research offers a foundational base of knowledge, it highlights the need for further
numerical and experimental research to develop models applicable to larger-scale systems” Cit.[6]

PEM and AEM
Now, let’s carry out a more detailed analysis of the two technologies that will be simulated
in the plant: PEM and AEM. While currently, PEM is the only technology ready to power a
Power-to-X plant of this kind, AEM is one of the most promising prospects for further reducing
hydrogen production costs, even though, as shown in Fig. 23, it is still not ready for actual
industrial use. Following the description of these two technologies, we will examine some graphs
created from the data in the previous tables and make considerations to justify the choice of
PEM electrolyzers for Power-to-X and AEM as a potential better future option. PEM Let’s
begin by describing PEM technology:
In PEM water electrolysis, water is electrochemically split into hydrogen and oxygen at their
respective electrodes such as hydrogen at the cathode and oxygen at the anode. PEM water
electrolysis is accrued by pumping of water to the anode where it is spilt into oxygen (O2),
protons (H+) and electrons (e). These protons are travelled via proton conducting membrane to
the cathode side. The electrons exit from the anode through the external power circuit, which
provides the driving force (cell voltage) for the reaction. At the cathode side the protons and
electrons re-combine to produce the hydrogen.
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Figure 24: PEM [1]

A PEM consists of:
• Two bipolar plates: These ensure charge transport between cells, manage reactants (water)
and produced gases (H, O), and provide mechanical stability. They also facilitate mass transport
and heat dissipation through flow channels that allow water to wash over the gas diffusion layer
and remove residual gases.
• Gas diffusion layers: Enable the flow of components. In fuel cells, hydrogen enters the anode
and oxygen enters the cathode. In electrolyzers, water enters the anode (oxygen exits), while
hydrogen exits from the cathode.
• Catalyst-coated membrane: Enhances the reaction. Since the membrane (NAFION) is sensitive
to temperature and carbon cracking, an expensive catalyst is used. On the cathode side, platinum
(a noble metal) is typically supported by conductive materials to improve conductivity and reduce
catalyst loading.
• Solid acidic membrane: Also known as a proton exchange membrane (PEM), it facilitates H
proton exchange, separates product gases, and supports both the anode and cathode catalyst
layers.

Whether the power comes from a renewable intermittent, variable, or constant source, the com-
ponent must exhibit dynamic behavior. Temperature fluctuations inside the cell, caused by
degradation phenomena and variable power, can lead to changes in current, affecting hydrogen
production. Additionally, material degradation may cause malfunctions, hot spots, obstructions,
and ultimately, cell failure. PEM electrolyzer have advantages like: Less caustic, can be reversible
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device, operate a lower cell voltage, higher current density, higher temperature and pressures lead
to higher efficiencies (80-99%).
Soma disadvantages can be high material cost, cross permeation phenomena is neede a dunamic
connection between electrolysis system and the intermittent electrical source The production of
Idrogen in an electrolyser is related to the currents that flows in it. A cell operates with two
types of currents: one from electron transport through the external circuit and another from
ion movement across the membrane between electrodes. Since the cell current directly corre-
lates with the number of reacting or produced chemical species, both currents are equivalent in
magnitude. This relationship is governed by Faraday’s law:

ni =
I

z ∗ F
(1)

Where:
- ni is the molar flow of species i participating to the reaction [mol/s]
- I is the cell current [A]
- F is the faraday constant [c/mol]
- z is the charge number of species i
This way, we can calculate the molar flow of hydrogen produced as a function of the current
supplied to the electrolyzer at the specific nominal voltage for each electrolyzer. With the molar
flow, we can then calculate the mass flow.

The Nernst voltage represents the ideal voltage required for the electrolyser to operate under
perfect conditions, defining the minimum thermodynamic voltage needed for the electrochemical
reaction. The Nernst law is derived by modeling the cell/electrolyser as a black box exchang-
ing work, heat, and mass with the surroundings under these assumptions: Neglecting transport
mechanisms, thus ignoring entropy generation due to irreversibility. Ideal operating conditions
are assumed. Steady-state operation is considered. Applying the first and second laws of ther-
modynamics under these constraints (derivation omitted here, to be included later) leads to the
following expression:

Ecell = +
∆G(T, p)

zF
(2)

Ecell = E0
rev +

RT

2F

ln
PH2P

1/2
O2

PH2O


 (3)

G0 is the free enthalpy of reaction at temperature T and pressure p of the cell [J mol-1] – E, also
known as Nerst Voltage or Reversible cell voltage he Nerst voltage depends on the Temperature
and on the pressure of the cell and it decreases linearly while the Temperature increases. To
explicit the relationship between the temperature and the pressure and see how it affects the
Nerst voltage it is possible to write the voltage of the cell explicating it in the following way:

Erev is the Nerst voltage calculated at standard temperature and pressure (25°C, 1 bar). p refers
to the partial pressure of reactant (H2O) and of the products (H2 and O2). Ecell is still under
ideal conditions
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POLARIZATION CURVE
The real voltage of the cell can be expressed through the polarization law:

Vc = Ecell + Eact + Eohm + Econc (4)

-Eact is the activation overvoltage, which accounts for charge transfer at the electrode and is
related to the kinetics of the charge transfer mechanism.
- Eohm is the ohmic overvoltage, considering the charge conduction and migration through the
electrolyte and electrodes, reflecting the ohmic resistance and associated losses.
- Econc is the concentration overvoltage, which relates to mass transport and molecular diffusion
within the electrodes, accounting for concentration differences between reactants at the bulk and
the active sites in the catalyst layer.

Temperature also affects the current-voltage curve of an electrolyzer and, consequently, its effi-
ciency. This is why it is essential to manage the cooling system effectively in order to optimize
the plant’s operation.

AEM
The AEM water electrolysis technology is similar to conventional alkaline water electrolysis.
However, the key difference between alkaline and AEM water electrolysis is the substitution
of traditional diaphragms (such as asbestos) with an anion exchange membrane (quaternary
ammonium ion exchange membranes) in AEM water electrolysis. AEM water electrolysis offers
several advantages, such as the use of cost-effective transition metal catalysts instead of noble
metal catalysts. Additionally, it can utilize distilled water or a low-concentration alkaline solution
(1M KOH) as the electrolyte, rather than a highly concentrated (5M KOH) solution1. Despite
these significant advantages, AEMWE still requires further research and improvements regarding
MEA stability and cell efficiency, which are crucial for large-scale or commercial applications.
Currently, the reported stability is 2,000 hours with Sustain ion and 1,000 hours with Fumatech
(A 201 and FAA3-50), and over 35,000 hours for the Enapter multicore AEM electrolyzer. AEM
water electrolysis is one of the electrochemical water splitting techniques with the help of an
anion exchange membrane and electricity. The electrochemical reaction consists of two half-cell
reactions they are hydrogen evolution reaction (HER) and oxygen evolution reaction (OER).
Initially, at the cathode side, the water molecule is reduced to generate hydrogen (H2) and
hydroxyl ions (OH) by the addition of two electrons. The hydrogen is released from the surface
of cathode and the hydroxyl ions (OH) are diffused through the ion exchange membrane to the
anode side by the positive attraction of the anode, while the electrons are transported through
the external circuit to the anode. At the anode side, the hydroxyl ions recombine as a water
molecules and oxygen by losing electrons. The produced oxygen is released from the anode. The
basic principle and half-cell reactions of AEM water electrolysis as shown in Fig. 25
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Figure 25: AEM [4]

Generally, AEM water electrolysis cell components are membrane (separator), electrode mate-
rials current collectors (gas diffusion layer), separator plates (bipolar plates), and end plates
respectively. Typical anion exchange membranes are quaternary ammonium ion exchange mem-
branes i.e., Sustanion® , Fumasep, Fumatech respectively. Commonly used anode and cathode
electrode materials are transition metal based electrocatalysts especially Nickel and NiFeCo alloy
materials respectively. The nickel foam/porous nickel mesh and carbon cloth are used as anode
and cathode gas diffusion layers. Stainless steel and nickel-coatedstainless steel separator plates
are used as bipolar and end plates respectively. AEM water electrolysis technology is under the
developmental stage up to the kW scale. Globally, several research organizations/institutions are
actively working on the development of AEM water electrolyzers, some of the AEM and PEM
water electrolyzer manufacturers/developers are listed in table.

Figure 26: Commercial AEM and PEM [4]

PEM electrolyzers, mostly using IrO2 and Pt as catalyst materials, generate hydrogen with high-
purity at lower temperatures. Proton exchange membranes conduct hydrogen ions, and act as a
solid electrolyte. One constraint of PEM water electrolysis is its dependence on scarce materials
such as platinum and iridium for operation.As said before the AEM electrolyzers are a recent
water electrolysis technology that combines the benefits of Alkaline and PEM water electrolyzers.
The AEM plays an important role in the transporting of hydroxide ions. At the cathode, both
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hydrogen and hydroxyl ions are generated. Furthermore, AEM cells can use non-noble catalyst
materials, which reduces the cost of producing hydrogen.

Anode: 4OH− → O2 + 2H2O + 4e−

Cathode: 4H2O + 4e− → 2H2 + 4OH−

Overall reaction: 2H2O → 2H2 + O2

(5)

To effectively perform the functions of AEM as the ionconducting path and gas separation bar-
rier, AEM must possess several key characteristics: high ionic conductivity (ideally exceeding
100 mS/ cm at the operating temperature), excellent alkaline stability, good thermal and dimen-
sional stability, and robust mechanical properties.
However, achieving these ideal properties simultaneously remains a challenge. The harsh alkaline
environment in water electrolyzers can compromise AEM stability, while strategies to enhance
ionic conductivity, such as increasing ion exchange capacity (IEC), often lead to excessive water
uptake and swelling, impacting the membrane’s integrity. The structure of AEM generally consist
of polymer backbones and anion exchange functional groups. Some of conductive polymer such
as poly (vinyl alcohol), polystyrene, polyphenylenes, poly (arylene ether ketone), and polyben-
zimidazole was currently intensive in research for high mechanical and chemical stable polymer
backbones in AEM. This trend is exemplified by a substantial increase in research publications
on AEM water electrolysis, particularly over the past two years, as depicted in the Fig. 27

Figure 27: Publication AEM [7]

COMMERCIAL AEM
Several AEM membranes have been developed for commercial use. In the following section, a
comparison is made based on key performance parameters.
Fumasep® FAA-3 series: fumatech One of the most affordable and durable AEM polymers
offering the best balance between price and performance is the membrane from the Fumatech
with their product are Fumasep® FAA-3 series [44]. This membrane is offered in a variety
of thicknesses in the range of 20 to 50 µm for unsupported membrane and from 75 to 130
µm for membrane with reinforced with PP or PEEK. The price of the membrane is affordable
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among other commercial AEMs in the market. Fumasep® FAA-3-50 is the type of Fumasep®
series that is frequently used in the electrochemical system, especially for water electrolysis.
It is derived from a polysulfone (PSf) polymer backbone with QA groups in the side chain
Sustainion® X37-50: dioxide materials Sustainion® X37-50 is an imidazolium functionalized
polystyrene membrane provided by Dioxide Materials

PiperION®: versogen PiperION® is a poly(aryl piperidinium)-based AEM provided by Verso-
gen™ that was first introduced as a hydroxide exchange membrane (HEM) fuel cell. Because of
its higher ultimate stress when compared to other AEMs (Sustainion® and Fumasep® FAA-3),
the PiperION® membrane also exhibits better wet/dry cycling stability

A201 and A901: tokuyama A201 and A901 types of Tokuyama membranes are hydrocarbonbased
membranes with QA groups terminated side chains. Unfortunately, it is also necessary to mention
that the chemical formula of A201 and A901 is not disclosed in the public domain

Aemion™: ionomr innovation inc Aemion™ is a membrane fabricated by Ionomr Innovation and
was developed based on methylated polybenzimidazoles

TM1: ORION polymer Orion™ TM1 membrane is based on a terphenyl polymer with quaternary
ammonium (QA) groups on alkyl side chains. It was specifically designed to prevent backbone
degradation by eliminating aromatic ether groups, making it an all-carbon poly(arylene) struc-
ture with medium molecular weight. The National Renewable Energy Laboratory (NREL) tested
over 50 AEM membranes from more than 10 partners. Orion™ TM1 stood out as one of the
most durable and stable, showing no signs of degradation. Its alkyl side chains help protect QA
groups by reducing electron-withdrawing effects and mitigating cation deterioration.

All the membranes listed above are available in various thicknesses, which affects their structural
strength. In the graphs above, we can see a comparison between the different types of membranes
in terms of ion exchange capacity, area-specific resistance, ionic conductivity as a function of
temperature, and tensile strength.
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Figure 28: Ion Exchange Capacity [7]

Figure 29: Area Specific Resistance [7]
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Figure 30: Ion Conductivity [7]

Figure 31: Tensile Strength [7]
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Figure 32: Voltage - Current Density [7]

AEM Multicore At the commercial level, one of the available AEM electrolyzers is the AEM
Multicore. The product’s commercial brochure provides some key technical specifications. The
concept behind it is an electrolyzer designed to reach megawatt-scale power, using a scalable
module architecture arranged in stacks.

Figure 33: AEM Multicore Stack [8]
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Figure 34: AEM Multicore [8]

Figure 35: AEM Multicore structure [8]

Multiple stacks avoid a single point of failure. But not only this, a redundant balance of plant
fully ensures that the failure of any single component doesn’t result in complete shutdown of
hydrogen production. Racks are installed on each side of the container, with plenty of working
space in between. The entire system can be managed in a simple and intelligent way through
an app and a dedicated IT system developed by the company itself. The technical datasheet is
provided below.
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Figure 36: AEM Multicore Thecnical specification [8]

Comparison between Electrolyzers:
The charts below show a comparison of the main technical and economic parameters of the
electrolyzers we’ve discussed so far. From a technical point of view, we can observe that both
PEM and AEM electrolyzers perform best, with high nominal current, long lifetime, and low
degradation rate. They also stand out in terms of lower initial investment costs.

Alkaline electrolyzers are certainly competitive, but they suffer from a significantly lower current
density.
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Between AEM and PEM, AEM electrolyzers currently appear to be more expensive, which seems
contradictory to the idea that they could be the ideal solution, as they combine the advantages
of both Alkaline and PEM technologies while avoiding the use of rare and expensive materials.

The high cost of AEMs is mainly due to their development stage, which is still between prototype
and commercial product. As a result, they are far from benefiting from economies of scale—a
phase that PEM electrolyzers are already experiencing, contributing to their decreasing costs.

Figure 37: Nominal Current Density

Figure 38: Lifetime
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Figure 39: Voltage

Figure 40: Capital cost (stack) min 1 MW
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Figure 41: Degradation Rate
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4 State of the Art: Storage

Hydrogen storage is a critical component in the development of a sustainable hydrogen economy.
As a clean energy carrier, hydrogen offers high energy density by weight and produces only water
upon combustion, making it an attractive alternative to fossil fuels. However, its low volumetric
density poses significant challenges for storage and transport. Various storage methods have
been developed, including gaseous and liquid storage, as well as solid-state storage using metal
hydrides. Among these, metal hydrides are particularly promising due to their high volumetric
hydrogen densities, safety advantages, and potential for reversible absorption and desorption.
These materials can store hydrogen in a compact form, making them ideal for stationary and
mobile applications. Nevertheless, issues such as cost, energy requirements for synthesis, material
criticality, and recyclability must be addressed to enable large-scale adoption.

In this chapter, we will review the current state-of-the-art hydrogen storage technologies, with a
particular focus on metal hydrides. We will analyze their economic and environmental aspects,
availability of raw materials, and the potential for future implementation in industrial-scale
hydrogen storage systems.

4.1 Physical Based

Physical-based hydrogen storage retains hydrogen in its molecular form using methods like com-
pression and liquefaction. These technologies are already commercially used but face challenges
such as energy demand, safety, and space efficiency. Despite their maturity, limitations remain
for large-scale deployment. This section reviews current technologies and their development
prospects.

4.1.1 Gaseous hydrogen

Gaseous hydrogen is the most common form used for energy storage and industrial applications.
It is typically stored at high pressures, ranging from 200 to 700 bar, in specially designed cylin-
drical or composite tanks. This form of storage is straightforward and allows for quick refueling,
making it suitable for mobility and transport sectors. However, due to its low volumetric energy
density, high-pressure storage requires robust materials and strict safety measures. Advances in
vessel technology and thermal management continue to improve its efficiency and practicality.

There are several types of vessels for storing gaseous hydrogen, classified from Type I to Type IV.
Each type has specific characteristics regarding operating pressure and construction materials.
Type I and II vessels are mainly used for industrial applications, while Type III and IV vessels,
which are lighter and more advanced, are suitable for transportation and can withstand much
higher pressures. In particular, Type IV composite cylinders can handle pressures up to 1000
bar.

4.1.2 Liquid Hydrogen

Liquid hydrogen is safe and more compact. It is liquefied at -253°C and then pressurized to
250-350 atm, with a volumetric density of 70 g/L and a boiling point of -253°C. The storage
vessels are typically spherical (which reduce the surface area) or cylindrical.

The main challenges are:
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Type Characteristics

Type I 17.5-20 MPa (industrial use)
Type II 26.3-30 MPa (industrial use)
Type III 25%-75% lighter, transport use, 450-700 Bar
Type IV Composite cylinder, carbon fiber, up to 1000 Bar

Table 2: Characteristics of Compressed Hydrogen Storage Vessels

• Energy efficiency of the liquefaction process (with 25-40% losses)

• Thermal insulation (loss of 0.4% per day)

Typically, liquid hydrogen consists of 75% ortho-hydrogen (with parallel proton spins, thus higher
energy) and 25% para-hydrogen (with antiparallel proton spins). Ortho-hydrogen decreases
from 75% to 0% when the temperature reaches 20 K. The conversion from ortho- to para-
hydrogen is crucial because it is exothermic and releases heat.Liquid hydrogen is ideal for marine
transportation and storage in isolated locations.

4.1.3 Cryo-Compressed Hydrogen

Cryo-compressed hydrogen partially addresses the volume problem. It requires vessels that are
insulated to handle high pressures and low temperatures.

At 1 bar, it has a density of 70 g/L, and at 240 bar, it has a density of 87 g/L when compressing
liquefied hydrogen at 20 K.

This method provides a high dormancy period and reduces boil-off losses (evaporation losses over
time).

4.2 Material Based

Material-based hydrogen storage refers to methods that store hydrogen through physical or chem-
ical interactions with solid materials, rather than as a gas or liquid. These technologies aim to
offer safer, more compact, and potentially more efficient alternatives to traditional storage meth-
ods. Common approaches include metal hydrides, chemical hydrogen carriers, and adsorption
onto porous materials such as metal-organic frameworks (MOFs). Such systems can enable hy-
drogen storage at lower pressures and temperatures. However, challenges remain in terms of
weight, reversibility, and cost for large-scale applications.

Hydrogen storage can be achieved by attaching hydrogen molecules to solid surfaces or by dis-
sociating them into hydrogen atoms. The main methods are physisorption and chemisorption.

4.2.1 Physisorption

Physisorption occurs at high surface areas and low temperatures (below 77 K) with high pressure
required for greater hydrogen capacity. A large surface area enhances absorption, typically
requiring a high-pressure cylinder and a cooling system.

One common material used is Carbon Nanotubes (CNTs), which are lightweight and dominated
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by Van der Waals interactions (10 kJ/mol). These structures are essentially rolled-up graphite
sheets in cylindrical form.

Physisorption is promising in terms of storage capacity (7.75 wt%) and volumetric capacity
(0.209 kg H2/L at ambient temperature and 650 atm).

Single-wall nanotubes can store around 3 wt% of hydrogen. Multi-wall nanotubes range between
1.8-2.6 wt% at approximately 10 MPa and ambient temperature. Overall, materials in this
category have a storage capacity of 5-9 wt% and volumetric capacities between 40-60 g/L at
high pressure and 77 K.

4.2.2 Chemisorption

Chemisorption involves bonding hydrogen chemically with materials such asmetals, chemical
hydrides, ammonia, and liquid organic hydrogen carriers (LOHCs).

Advantages: High volumetric density. Disadvantages: High cost and high operating temperature.

• Metal Hydrides Solid-state storage using metal hydrides is achieved by combining binary
hydrogen compounds with transition metals (Fe, Cr, Mn, V, Cu, Co, Ni, Au, Pt).

- Current best materials achieve a volumetric density of 150 kg/m3 (e.g., Mg2FeH6 and
Al(BH4)3). - Some metal hydrides can reach up to 115 kg/m3.

However, separate hydrogenation is required, making "on-the-fly" refueling impractical.
The process is time-consuming, requiring specialized equipment, making it more suitable
for long-term storage rather than transport. Additionally, hydrogen desorption requires
high activation energy, exceeding that of standard hydrogen release.

• Ammonia Ammonia is a potential hydrogen carrier with a vapor pressure of 9.2 bar at am-
bient temperature, containing 17.65% hydrogen and a volumetric density 4.5 times higher
than liquid hydrogen.

- Advantages:No CO2 emissions, co-combustion with existing fuels.
- Challenges: High energy demand for hydrogen release and potential traces of ammonia
in the extracted hydrogen.

• Chemical Hydrogen Storage This method involves absorption in water and materials, which
can be either solid or liquid. Storage capacity typically ranges between 6-8 wt%, offering
higher energy density than metal hydrides. Examples include boron hydrides and ammonia
borane.

- Strengths: Good volumetric capacities and suitable temperatures due to the presence of
lightweight elements.
- Limitations: High activation energy for absorption and irreversible dehydrogenation re-
actions, making it a one-time-use solution.

• Liquid Organic Hydrogen Carriers (LOHCs) LOHCs are a promising hydrogen storage and
transportation technology. The process consists of two phases: 1. Hydrogenation (storage)
2. Dehydrogenation (release)
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Advantages:
- High storage density
- Safe and easy to transport at ambient temperature
- Low operational risk, utilizing existing infrastructure
- Reduced explosion risk

Hydrogenation occurs at high pressure, while hydrogen release happens at low pressure
(lower than 5 bar), making LOHCs an efficient and secure solution.

4.3 Comparison of Different Hydrogen Storage Technologies

• Ammonia and Liquid Hydrogen Carriers (LOHCs) have the highest hydrogen con-
tent in terms of weight.

• Metals and Chemical Hydrides offer the highest volumetric energy density, but present
safety concerns, high energy consumption, and require elevated operating temperatures.

• Sorbent and Carbon-Based Materials provide high storage capacity, but their hydro-
gen storage potential is not yet fully developed.

Table 3: Comparison of physical-based and physisorption hydrogen storage technologies

Technology Advantages Drawbacks
Compressed Gas Mature technology, fast charging/discharging,

simple vessel structure
Limited storage capacity, safety concerns due to
high pressure, heat management required

Liquid Hydrogen High gravimetric and volumetric density, high
purity

Energy-intensive and time-consuming, costly, hy-
drogen boil-off, safety issues

Cryocompressed High volumetric density High energy demand for compression and lique-
faction

Physisorption
(Sorbent/Carbon-Based
Materials)

High storage density, lightweight systems Depends on sorbent geometry/temperature,
cooling required, high cost

Table 4: Comparison of chemical-based hydrogen storage technologies

Technology Advantages Drawbacks
Metal Hydrides No need for high pressure, safer operation, ther-

mal integration possible
Low hydrogen capacity due to weight, expensive,
high temperature needed for release

Chemical Hydrides Good volumetric density Requires thermal management, off-board regen-
eration

LOHC (Liquid Organic Hy-
drogen Carriers)

Liquid phase storage, existing infrastructure
compatible, storage possible >1 year

High hydrogen input required for dehydrogena-
tion

Ammonia Inexpensive, can be used directly, compatible
with infrastructure

Toxicity and odor management required, 13%
H2 needed for dehydrogenation and purification

The content of this paragraph is taken from the paper "Hydrogen energy, economy and storage:
Review and recommendation" [12]
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Figure 42: Hydrogen content in different storage technologies (weight %)

Figure 43: Volumetric energy density of hydrogen storage technologies (MJ/L)
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4.4 Focus on Metal Hydrides and Solid Storage

As previously mentioned, green hydrogen produced from renewable sources is highly suscepti-
ble to the inherent intermittency of renewable energy generation. Therefore, hydrogen storage
becomes a crucial component in ensuring a stable and reliable energy supply.

This section provides an in-depth review and state-of-the-art overview of the main available
technologies based on metal hydrides. Although hydrogen has the highest energy density per
unit mass of any fuel, its low volumetric density at ambient temperature and pressure results in
a relatively low energy content per unit volume.

One promising storage technology applicable across various sectors is hydrogen storage via ab-
sorption in metal hydrides. These materials offer high volumetric energy densities and enhanced
safety, as hydrogen is chemically bound within the material and stored at relatively low pressures.

Six key types of metal hydrides are commonly investigated: MgH2, TiFe, TiMn2, LaNi5, NaAlH4,
and LiBH4.

This section will also address important issues related to material durability, activation meth-
ods, production costs, availability of raw materials, and environmental impact, with a focus on
recyclability.

4.4.1 Material Properties

Metal hydrides are compounds formed by the reaction of hydrogen with metals or metal alloys.
When a metal absorbs hydrogen, a metal hydride is formed through an exothermic chemical
absorption reaction:

M + H2 → MHx + heat

The reverse reaction, which releases hydrogen (desorption), is endothermic:

MHx + heat → M + H2

To resume this concept in one balance equation we can say that metal hydrides are formed via
the reversible interaction of a hydride-forming metal/alloy, or intermetallic compound (IMC),
with H2 gas:

M(s) +
x

2
H2 (g)

absorption−−−−−−−⇀↽−−−−−−
desorption

MHx(s) + Q

where M is an individual metal, or a multicomponent alloy or IMC. Typical M components
include individual metals e for example, rare earths such as La, Ce, Nd or Pr, and elements
such as Zr, Ti, Mg, Ca and V e and IMCs, which can include AB5 (e.g. LaNi5, CaNi5), AB2
(e.g. ZrMn2, ZrV2, ZrCr2), AB (e.g. TiFe), and A2B (e.g. Ti2Ni, Zr2Fe) compounds. For a
binary IMC, A is typically a hydride-forming element, while B is a transition or non-transition
metal/element that does not form a stable hydride under normal conditions. [?]

Two key parameters in comparing hydrogen storage technologies are the gravimetric storage
capacity and the volumetric energy density.
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The gravimetric capacity is defined as the ratio of the mass of hydrogen absorbed to the total
mass of the hydride material, expressed in weight percent (wt%).

The volumetric energy density is typically calculated as:

Volumetric Energy Density =
mH2 · LHV

VMH

where:

• mH2 is the maximum absorbed hydrogen mass,

• LHV is the lower heating value of hydrogen (approximately 120 MJ/kg),

• VMH is the volume of the hydride material.

In general, interstitial metal hydrides have gravimetric capacities in the range of 1–2 wt%,
whereas complex hydrides can reach significantly higher values. Among them, LiBH4 stands
out with the highest theoretical gravimetric capacity, up to 18.5 wt%.

A comparative table in this section will present key parameters including gravimetric storage
capacity, volumetric energy density, operating pressure, and operating temperature for each
metal hydride material.

Table 5: Storage capacities and energy densities of different hydrogen storage technologies and
metal hydride materials.

Hydrogen storage Grav. storage
capacitya [wt%]

Vol. energy
densityb [kWh/dm3]

Operating
pressurec [bar]

Operating
temperatured
[K]

CGH2 350 bar 100 0.8 350 Ambient
CGH2 700 bar 100 1.3 700 Ambient
LH2 100 2.2 1–10 20
Metal hydrides
Elemental MgH2 7.6 (5.5) 3.67 (2.65) – 593
AB TiFe 1.86 (1.5) 4.03 (3.25) 4.1 265
AB2 TiMn2 1.86 (1.15) 4.09 (2.53) 8.4 252
AB5 LaNi5 1.49 (1.28) 4.12 (3.53) 1.8 285
Complex hydrides
LiBH4 18.5 (13.4) 4.08 (3.02) – 573
NaAlH4 7.5 (3.7) 3.20 (1.58) – 473

a Theoretical values, practical values in parentheses.
b Based on LHV of hydrogen, theoretical/practical values.
c Approximate pressure required for absorption.
d Approximate temperature required for desorption.
e Not applicable due to chemical stability in standard conditions.

The values presented are for the pure substance. For the system (tank) level a weight increase
of approximately 50% and a volume increase of 100% is expected for metal hydrides

In order to determine the operating ranges of pressure and temperature for different metal hydride
materials, Pressure-Concentration Isotherms (PCI) and Van’t Hoff plots (Fig. 2b) are commonly
used. The curves in the Van’t Hoff plot can be described by the following equation:
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ln

(
P

P0

)
= −∆H

RT
+

∆S

R

where:

• R is the universal gas constant,

• T is the absolute temperature,

• P0 is the reference pressure (typically 1 bar),

• ∆H is the enthalpy change of the absorption reaction,

• ∆S is the entropy change of the desorption reaction.

Low-temperature metal hydrides generally exhibit lower activation enthalpies and are capable of
operating at or near ambient temperatures. Among the thermodynamic parameters, the reaction
enthalpy ∆H plays a particularly crucial role in thermal management, as it is closely associated
with the amount of heat released or required during the absorption and desorption processes.

Since hydrogen absorption is an exothermic process, heat is released during uptake, causing
an increase in temperature. However, as described by the Van’t Hoff equation, an increase
in temperature leads to a rise in equilibrium pressure. Consequently, to maintain hydrogen
absorption under elevated temperatures, a higher hydrogen pressure is needed. Without effective
thermal management, the system may "self-lock": the hydride heats up excessively and ceases
to absorb hydrogen, significantly slowing the filling process.

Similarly, during desorption, it is essential to supply heat to sustain hydrogen release at the
desired pressure. If the material is not sufficiently heated, the equilibrium pressure drops, and
hydrogen is no longer effectively released. Therefore, proper thermal control is critical to ensuring
the efficient operation of metal hydride storage systems.

Figure 44: Pressure-Composition-Isotherm (PCI) diagram

The Pressure-Composition-Isotherm (PCI) diagram illustrates the relationship between the hy-
drogen pressure and the amount of hydrogen absorbed or desorbed at constant temperature.
These curves typically exhibit a plateau region, representing a phase where hydrogen is absorbed
or released at nearly constant pressure. However, the plateau is not perfectly flat—it usually has
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a slope. Moreover, there is a phenomenon of hysteresis: the pressure required for absorption is
higher than that for desorption.

The equilibrium pressure (peq), defined at the midpoint of the plateau, is a key parameter in
understanding metal hydride behavior (see Fig. 2a). For absorption to proceed, the partial pres-
sure of hydrogen gas must exceed the equilibrium pressure at a given temperature. Conversely,
desorption occurs when the hydrogen pressure falls below this equilibrium value. Notably, as the
temperature increases, the equilibrium pressure also rises, in accordance with thermodynamic
principles.

Most interstitial hydrides can operate under near-ambient conditions, typically within the range
of 0–100°C and 1–40 bar, depending on the specific application. On the other hand, elemental
hydrides such as MgH2 and complex hydrides may also function at low pressures but require
substantially higher operating temperatures, ranging from 100 to 400°C.

One of the key challenges in metal hydride storage systems is the relatively slow hydrogen
absorption and desorption kinetics, which directly affects charging and discharging times. These
rates vary significantly depending on the material and operating conditions. Current research is
focused on improving both the filling and extraction rates, which are often limited by poor heat
transfer and contamination within the hydride material.

Efforts to enhance kinetics include optimizing material properties through partial elemental
substitution, the use of dopants and catalysts, and improving thermal conductivity—e.g., by
incorporating aluminum foam—or redesigning the storage container to enhance heat dissipation.

Contaminants have a significant negative impact on hydrogen storage performance. Common
impurities include O2, H2O, CO, CO2, N2, NH3, and various hydrocarbons. The effects of
these impurities are well documented in the literature and include poisoning (irreversible loss
of capacity), kinetic retardation (slower reaction rates), chemical reactions (e.g., corrosion), and
inert gas blanketing.

The long-term viability of metal hydride storage is assessed through cyclic stability, which
refers to the material’s ability to retain its storage capacity over numerous hydrogen absorp-
tion/desorption cycles. Degradation over time, caused by both physical and chemical changes,
leads to a reduction in storage efficiency.

In terms of safety, while the risk of explosion is significantly lower compared to high-pressure
hydrogen gas storage, some metal hydride materials are flammable when exposed to air. This
poses a safety concern in the event of a container breach. Other safety risks include material
toxicity and the potential for inhalation of fine hydride powders.

4.4.2 Stationary Applications of Metal Hydrides

The use of metal hydrides for stationary hydrogen storage offers several distinct advantages.
Chief among these are the high volumetric energy density and the relatively low operating pres-
sures compared to compressed gaseous hydrogen (CGH2) systems. The typical hydrogen outlet
pressure of PEM electrolysers is around 30 bar, which is sufficient for charging metal hydrides
directly without the need for additional compression.

The reduced operating pressure contributes not only to improved safety but also to lower system
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maintenance requirements. Moreover, avoiding high-pressure components can lead to significant
cost reductions. Due to their high energy density and modular scalability, metal hydride systems
are suitable for a range of storage capacities—from small-scale residential use to large-scale
seasonal applications.

Additionally, since metal hydride systems do not suffer from hydrogen loss during storage, they
are well-suited for medium- to long-term energy storage. In seasonal storage applications, the
compactness and scalability of metal hydrides can compensate for their lower round-trip efficiency
relative to batteries. Although slower reaction kinetics may necessitate a small buffer storage
system to manage peak demand, they do not pose a significant drawback in these use cases.

Potential application areas include residential energy systems, off-grid installations, backup power
systems, and centralized seasonal hydrogen storage solutions.

Figure 45: Ratio Gravimetric-Volumetric energy densities

To better evaluate the balance between weight and volume efficiency of different hydrogen storage
technologies, the ratio between volumetric and gravimetric energy density can be calculated.
This metric helps identify whether a material is more space-efficient or mass-efficient for storing
hydrogen.

The ratio is defined as:

Ratio =
Volumetric Energy Density [kWh/dm3]
Gravimetric Energy Density [kWh/kg]

A lower ratio indicates better gravimetric performance per unit of volume (i.e., more hydrogen
stored per unit of weight), while a higher ratio indicates superior volumetric storage at the cost
of heavier materials.



4 State of the Art: Storage 58

Table 6: Volumetric to gravimetric energy density ratio of selected hydrogen storage technologies

Technology / Material Gravimetric Energy
Density [kWh/kg]

Volumetric Energy
Density [kWh/dm3]

Ratio (Vol/Grav)
[dm3/kg]

LiBH4 4.5 2.3 0.51
LaNi5 0.9 2.1 2.33
TiFe 1.0 2.0 2.00
TiMn2 1.1 1.9 1.73
MgH2 1.5 1.6 1.07
NaAlH4 1.4 1.5 1.07
LH2 2.5 1.1 0.44
CGH2 700 bar 2.0 0.7 0.35
CGH2 350 bar 1.7 0.5 0.29
Li-ion Battery 0.6 0.4 0.67
VRFB (Redox Flow) 0.2 0.1 0.50

Although this ratio is an interesting parameter, in our specific Power-to-X application we will
limit the material selection criteria to energy per unit volume, cost, technological readiness,
compatibility with the system, material availability, and safety.

The volumetric and gravimetric energy densities of various hydrogen storage systems—including
compressed gaseous hydrogen (CGH2), liquid hydrogen (LH2), and metal hydrides—are shown
with system-level penalties applied: a 50% weight increase and a 100% volume increase over
material values. For comparison, lithium-ion and vanadium redox flow batteries (VRFB) are
also included. The 2025 and ultimate targets set by the U.S. Department of Energy (DOE)
are represented by dashed lines, while the 2030 targets of the European Clean Hydrogen Joint
Undertaking (CH JU), continuing the Fuel Cells and Hydrogen Joint Undertaking, are indicated
by a dash-dotted line.

One important aspect to consider in large-scale hydrogen storage is compliance with the Seveso III
Directive (2012/18/EU), which regulates major accident hazards involving dangerous substances.
This directive specifies quantitative thresholds for substances stored at a single facility. Hydrogen
is explicitly listed in Annex I of the directive, with threshold quantities of 5 tonnes (lower-tier)
and 50 tonnes (upper-tier).

A facility storing 5 tonnes or more of hydrogen is classified as a lower-tier establishment and must
fulfill specific safety obligations. Exceeding 50 tonnes qualifies a site as an upper-tier establish-
ment, which imposes stricter safety requirements. These limits reflect the extreme flammability
and high risk associated with hydrogen.

Many metal hydride materials used for hydrogen storage (e.g., sodium alanate) also pose haz-
ards. They are often flammable solids that may react violently with water, releasing hydrogen
and forming corrosive byproducts. As such, the hydride materials themselves are considered
dangerous. The Seveso III Directive applies to hydrides classified as flammable, toxic, or water-
reactive, based on the applicable hazard category thresholds—typically ranging from a few to
several dozen tonnes.

This means that even before reaching the hydrogen threshold, a facility may already be subject
to Seveso regulation based on the mass of hydride material stored. For instance, hundreds of
kilograms of metal hydride may be required to store just a few kilograms of hydrogen. Therefore,
the effective hydrogen storage capacity may be constrained by the Seveso threshold of the hydride
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compound itself. Conversely, if the storage material is not classified as hazardous, it would not
trigger Seveso obligations on its own.

Another implication of Seveso III is the need to consider siting and land-use planning. Article 13
of the directive requires authorities to regulate land use around hazardous sites to ensure appro-
priate distances from residential areas, public spaces, critical infrastructure, and transportation
corridors. This implies that large-scale hydrogen storage facilities should be located in isolated
industrial zones or at sufficient distance from populated areas.

Facilities falling under Seveso regulation must follow a defined authorization process. Opera-
tors are required to submit a formal notification to the competent authorities (in Italy, via the
portal defined under Legislative Decree 105/2015), providing detailed information about stored
substances, quantities, activities, and the local environment. All Seveso establishments must
implement a Major Accident Prevention Policy (MAPP), as mandated by Article 8.

In the case of upper-tier sites, a full Safety Report (Article 10) is required, including an in-depth
analysis of potential accident scenarios and the technical and organizational measures in place
to prevent or mitigate such events. These facilities must also develop an Internal Emergency
Plan (Article 12) and provide relevant data for an External Emergency Plan coordinated by
local authorities, civil protection agencies, and fire services. These steps involve substantial
documentation and risk assessment that must be factored into the engineering planning process,
including time and budget estimates. Public consultation (Article 15) and technical review by
national or regional authorities are often prerequisites for project approval.

The directive also necessitates the integration of high safety standards in system design. Pre-
ventive measures must be implemented to minimize the likelihood of accidental hydrogen release
and to reduce the consequences of possible incidents. This includes:

• Forced ventilation and gas detection systems to prevent hazardous accumulations,

• Use of intrinsically safe electrical equipment (ATEX certified) in storage areas,

• Installation of safety valves and automatic shut-off systems in case of leaks or fire.

In systems using solid-state hydrides, design must prevent unwanted reaction triggers such as
water ingress or overheating that could cause material decomposition or self-ignition. Redundant
containment systems and physical separation are often used. Hydrogen tanks may be buried or
shielded with protective barriers, while hydride modules may be compartmentalized to prevent
chain reactions.

Internal safety distances are also maintained between hydrogen or hydride storage systems and
other equipment to reduce the risk of domino effects. All safety measures must be incorporated
in the early design phase and will be scrutinized during the Safety Report assessment by relevant
authorities. Compliance with recognized standards (e.g., ISO/TR 15916 for hydrogen safety,
ASME/ANSI codes for pressure vessels, NFPA/API standards for separation distances) greatly
facilitates the approval process by demonstrating adherence to best engineering practices.

From a risk management perspective, detailed analysis of accident scenarios—such as flash fires,
vapor cloud explosions (VCE), jet fires, and internal explosions in hydride tanks due to air
mixing—is required. This analysis, often in the form of a Quantitative Risk Assessment (QRA),
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informs the design, safety features, and emergency planning.

Facilities under Seveso jurisdiction are subject to periodic inspections by regulatory bodies such
as fire departments and environmental agencies (e.g., ARPA, ISPRA). These inspections ensure
compliance with declared safety measures and promote a culture of continuous safety improve-
ment.

As for mobile applications, I will simply note that the weight percentage relative to the total
vehicle mass remains one of the main obstacles, currently making this solution unsuitable for
mobile hydrogen storage.

4.4.3 Various classes of metal hydrides

The most prominent representatives of the different classes of metal hydrides have been selected
for analysis. From the elemental hydrides group, magnesium hydride (MgH2) is the most studied.
For interstitial hydrides, TiFe, TiMn2, and LaNi5 serve as examples of the AB, AB2, and AB5
subgroups, respectively. Among complex hydrides, sodium alanate (NaAlH4) is one of the most
widely discussed, while lithium borohydride (LiBH4) is noted for having the highest theoretical
gravimetric capacity of any hydride material.

Tailoring the properties of metal hydrides through enhancement techniques is common practice.
The most promising strategies include:

• Doping with catalytic elements,

• Alloying or substituting with different elements,

• Particle or grain size reduction (e.g., ball milling),

• Severe plastic deformation (SPD),

• Annealing treatments.

1. Magnesium Hydride (MgH2)

Magnesium hydride is one of the most extensively studied materials for hydrogen storage due
to its high theoretical gravimetric capacity (7.6 wt%). It can be synthesized through direct
reaction with hydrogen at temperatures above 400°C or via advanced methods such as high-
energy ball milling. However, it suffers from slow absorption/desorption kinetics and requires
elevated temperatures for hydrogen release. Additionally, magnesium is highly susceptible to
surface oxidation, which hinders hydrogenation. Therefore, thermal or mechanical activation is
needed to remove the oxide layer. Various strategies have been explored to improve performance,
including doping with transition metals (e.g., Ti, Fe, Ni), incorporating carbon nanotubes or
graphene, and nanosizing the particles to increase surface area. A promising approach is confining
the material in nanoporous matrices to prevent particle agglomeration during cycling. Despite
these improvements, large-scale production remains costly due to the energy-intensive treatments
involved.
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2. Titanium–Iron (TiFe)

TiFe is a well-known intermetallic hydride recognized for its reversible hydrogen storage proper-
ties. It is typically produced through arc or induction melting under an inert atmosphere using
high-purity titanium and iron. One of the main limitations is the challenging activation process
prior to the first hydrogenation, which usually involves cycling between room temperature and
400–450°C under high hydrogen pressure (around 65 bar). Air exposure leads to the formation of
a surface oxide layer (TiO2) that impedes hydrogen diffusion. However, mechanical treatments
such as ball milling, severe plastic deformation, and catalytic doping (with elements like Mn, V,
Pd) have been successfully applied to facilitate activation. TiFe exhibits two pressure plateaus
in PCI diagrams, although the second often diminishes with repeated cycling. With a storage
capacity of around 1.7 wt%, it is not particularly competitive in gravimetric terms but remains
attractive due to its cycle stability and relatively low cost.

3. Titanium–Manganese (TiMn2)

TiMn2 is a widely used intermetallic hydride, appreciated for its good absorption/desorption
kinetics at room temperature and ease of activation. It is generally synthesized via arc melting
or induction furnaces under argon, followed by annealing at 1000°C to enhance alloy homogeneity.
The Ti/Mn ratio can vary, but TiMn1.5 is often considered optimal for balancing storage capacity
and maintaining a flat pressure plateau in PCI curves. Notable drawbacks include a relatively
high plateau pressure and pronounced hysteresis. Performance can be enhanced by partially
substituting Ti or Mn with elements such as Zr, V, Cr, or Al. For instance, Zr can lower the
plateau pressure, while V improves both capacity and operating pressure. Mechanical processing,
including milling, further improves kinetics. TiMn2 is also more affordable and does not require
complex activation, making it a promising material for vehicular and portable hydrogen systems.

4. Lanthanum–Nickel (LaNi5)

LaNi5 is a classic and reliable material for reversible hydrogen storage. It is well known for
easy activation, excellent cycle stability, and a flat pressure plateau, which is advantageous in
applications requiring stable operation. Production methods include induction or arc melting,
as well as chemical reduction of oxide mixtures with CaH2. Activation requires only a few
hydrogenation cycles at temperatures below 100°C and moderate pressures (<100 bar). However,
intensive mechanical treatment (e.g., ball milling) tends to reduce storage capacity, likely due
to the formation of overly stable hydride phases at grain boundaries. LaNi5 is less sensitive to
oxygen compared to other hydrides, thanks to the ability of nickel to regenerate the active surface
after each cycle. Performance improvements are typically achieved through partial substitution
of Ni with Al, Mn, or Co, and La with Ce, Nd, or mischmetal. Al addition notably reduces the
plateau pressure, while Co enhances cycle life. LaNi5 remains a dependable option for stationary
storage systems and low-power devices.

5. Sodium Alanate (NaAlH4)

NaAlH4 is a complex hydride that has garnered considerable attention as a reversible hydrogen
storage material, especially after the discovery that titanium-based catalysts (e.g., TiCl3) can
greatly enhance its reversibility. In its pure form, NaAlH4 shows slow kinetics and requires high
temperatures (200–400°C) and pressures for recharging. It is synthesized economically by milling
NaH with Al in an inert atmosphere, followed by hydrogen exposure. Hydrogen is released in two
primary steps, with a theoretical capacity of approximately 5.5 wt%. The addition of catalytic
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dopants (e.g., Ti, Sc, Ce) improves absorption rates and reduces operating temperatures. Ad-
vanced approaches, such as using carbon-based supports (graphene, nanotubes) or metal-organic
frameworks (MOFs), have also been explored to improve performance. Nevertheless, NaAlH4
is sensitive to moisture and may release flammable gases, necessitating controlled handling en-
vironments. While promising for mobile applications, further optimization is needed to ensure
stable and efficient cycling.

6. Lithium Borohydride (LiBH4)

LiBH4 is known for its exceptionally high theoretical hydrogen storage capacity (18.5 wt%),
but its practical use is hindered by slow kinetics and extreme operating conditions. Hydro-
gen desorption occurs in multiple steps, with most of the hydrogen released between 400 and
680°C. Rehydrogenation requires high pressures (>70 bar) and elevated temperatures, making
it unsuitable for conventional applications without modification. To overcome these limitations,
strategies such as doping with transition metals (Fe, Ti, Ni), halide catalysts (e.g., TiCl3, ZnF2),
and nanoscaling via physical deposition or confinement in porous matrices have been investigated.
Partial anion or cation substitution has also shown potential in lowering desorption temperatures.
However, LiBH4 is extremely reactive with moisture and may ignite upon air exposure, requiring
strict atmospheric controls. Despite these challenges, it remains a highly promising candidate
for long-term, high-density hydrogen storage applications.

Property MgH2 TiFe TiMn2

H2 Capacity (%wt) 7.6 ∼1.7 ∼1.8
Desorption Temp. (°C) >300–400 80–200 20–50
Desorption Pressure (bar) >10–30 10–20 10–30
Activation Difficult (oxide layer) Complex (thermal cy-

cles)
Easy

Kinetics Slow Good after activation Good
Advantages High capacity, low cost Economical, good cy-

cling stability
Simple activation, good
kinetics

Disadvantages High T, surface oxida-
tion, slow kinetics

Difficult activation, oxi-
dation blocks H2

High plateau, hysteresis,
O2-sensitive

Improvements Doping (Ti, Fe), CNTs,
nanosizing, nanoconfine-
ment

Doping (Mn, V), Pd
coating, mechanical
treatments

Substitution (Zr, V, Cr),
milling, annealing

Table 7: Comparison of MgH2, TiFe, and TiMn2 metal hydrides.

4.4.4 Economic and environmental factors

The main driver for economic assessments is cost, which includes raw material prices, manufac-
turing processes (including energy demand and process complexity), quality control, recycling,
and profit margins. While raw material costs are somewhat traceable, the contributions from
other cost components are harder to quantify. Enhancing domestic mining and production of
critical raw materials is a key strategy for increasing self-sufficiency. Europe holds significant
reserves of titanium (notably in Norway), nickel (Norway and Russia), magnesium and boranes
(Balkan region, especially Greece), lithium (Portugal, France, Austria, Germany, Serbia), and
some rare-earth elements like lanthanum (found in Turkey, Greece, Balkans, and recently discov-
ered in Arctic Sweden). Despite this, the EU remains highly dependent on imports, particularly
from China.

Waste reduction and recycling are crucial strategies for both sustainability and cost-effectiveness.
Recycling involves both using secondary raw materials in hydride synthesis and recovering the
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Property LaNi5 NaAlH4 LiBH4

H2 Capacity (%wt) ∼1.4 5.5 theoretical, ∼5 prac-
tical

18.5 theoretical, ∼9
practical

Desorption Temp. (°C) <100 30–150 400–600
Desorption Pressure (bar) 2–3 60–150 >70
Activation Very easy Moderate (requires dop-

ing)
Difficult

Kinetics Very good Slow without catalyst Very slow
Advantages Flat plateau, stable, air-

resistant
Decent density, re-
versible with catalyst

Extremely high theoreti-
cal capacity

Disadvantages Limited capacity, toxic,
sensitive to milling

High T/P, slow, reactive
with H2O

High T/P, poor re-
versibility

Improvements Substitution (Al, Mn,
Co, Ce), annealing

Doping (TiCl3, ScCl3),
carbon materials, MOFs

Doping (Fe, Ti),
nanoconfinement, ionic
substitutions

Table 8: Comparison of LaNi5, NaAlH4, and LiBH4 metal hydrides.

hydride after its end-of-life. Noteworthy examples include recycled aluminum from cans and
automotive sources for NaAlH, achieving performance comparable to high-purity aluminum.
Promising studies on LiBH synthesis using recycled boranes show encouraging results. Recycled
Mg/Al wastes have demonstrated good hydrogen storage capacities and improved thermal prop-
erties, while TiFe alloys produced from scrap iron and titanium show nearly equivalent storage
capacities to pure TiFe, helping reduce costs.

Although recycling of rare-earth elements is still in early stages, recovery rates for nickel and
rare-earths from NiMH batteries are promising. Most metal hydrides can be recovered using
metallurgical processes (pyro-, hydro-, or electrometallurgy), and ideally re-activated for reuse.
However, hydrogen remaining in the tank (either physically or chemically bound) must be care-
fully removed through venting or heating and vacuum pumping.

Life-cycle CO equivalent emissions are another critical factor. Materials like MgH have relatively
low emissions per kg of hydrogen stored, due to low extraction impacts and high capacity. In
contrast, TiFe and TiMn have higher carbon footprints due to titanium’s high CO cost and
energy-intensive activation steps. Although LaNi’s raw materials have high extraction emissions,
the alloy is easier to activate. A study comparing metal hydride tanks with Type III and IV
gaseous tanks revealed higher production GHG emissions for hydrides but comparable total
emissions when compression energy for gases is considered.

Manufacturing costs depend on synthesis method (e.g., ball milling, thermal activation), produc-
tion scale, equipment costs (CAPEX), operating costs (OPEX), and additive materials. High-
purity hydride materials are significantly more expensive; for instance, storage-grade LiBH can
cost 50% more than lower-purity forms, and LiAlH up to 200% more. Lab-scale prices are
misleadingly high—NaAlH (87 €/10g), LiBH (219 €/10g), LaNi (84 €/10g)—but large-scale
production could lower prices by orders of magnitude. Mg remains the cheapest material in
terms of hydrogen stored per euro.

To compete with gaseous storage (about 1000 €/kg H), metal hydrides must reach target costs
under 10 €/kg. However, metal hydrides have 10 times the volumetric energy density compared
to 80 bar gaseous systems, potentially justifying higher costs through space savings. The criti-
cality of elements also influences material choice. According to the EU’s Critical Raw Materials
list, B, La, Li, Mg, Ni, and Ti are all deemed critical, while NaAlH is free from these elements.
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With rising global demand for these materials, especially for climate targets, and geopolitical
uncertainties, supply risks are increasingly important.

Ultimately, while metal hydrides face economic and technical challenges, their recyclability, com-
pactness, and environmental potential make them promising for certain hydrogen storage appli-
cations, especially if future developments can optimize recycling processes and scale production
efficiently.

Table 9: Economic and environmental aspects of selected metal hydrides (Part 1)

Hydride Material Key Ele-
ments

Gravimetric Ca-
pacity (wt%)

CO2 eq (kg/kg) Lab-Scale Price CRM (EU)

NaAlH4 Na, Al Moderate Low–Moderate €87/10g No
LiBH4 Li, B High Moderate €219/10g Yes (Li, B)
LaNi5 La, Ni Low High (La: 11, Ni: 6.5) €84/10g Yes (La, Ni)

Table 10: Economic and environmental aspects of selected metal hydrides (Part 2)

Hydride Material Key Ele-
ments

Gravimetric Ca-
pacity (wt%)

CO2 eq (kg/kg) Lab-Scale Price CRM (EU)

TiFe Ti, Fe Low–Moderate Moderate (Ti: 8.1, Fe:
1.5)

Not available Yes (Ti)

TiMn2 Ti, Mn Moderate Moderate (Ti: 8.1, Mn:
1.0)

€79/25g Yes (Ti)

MgH2 Mg High Low (Mg: 5.6) Cheapest per H2 stored Yes (Mg)

The content of this paragraph is taken from the paper "A review on metal hydride materials for
hydrogen storage " [13]
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5 Case study and Methodology

5.1 Design of the PtX Plant

This chapter describes the development and validation of the Power-to-X (PtX) plant model used
for the simulation and subsequent cost analysis. The objective of this plant is the production and
storage of green hydrogen, which can subsequently be used as a fuel in hard-to-abate industrial
sectors, specifically in this case, the glass manufacturing industry. The model was built using an
object-oriented approach in Python to ensure a clear structure and facilitate future extensions.

5.1.1 Power-to-X Overview

The model simulates a system consisting of three main subsystems: a photovoltaic (PV) array for
power generation, a Proton Exchange Membrane (PEM) electrolyzer for hydrogen production,
and a metal-hydride storage unit. The objective is to efficiently convert solar energy into storable
chemical energy in the form of hydrogen, which can then be supplied to the industrial process.
The diagram below illustrates the general structure of a Power-to-X system.

Figure 46: Power to X

The Power-to-X (PtX) concept is a technology that converts electrical energy into chemical
energy, primarily in the form of hydrogen. This hydrogen can be utilized for various purposes,
such as an alternative fuel for transportation, a feedstock for chemical synthesis, or, as in the
specific case of this study, as a clean fuel for a glass industrial furnace. This application is crucial
for decarbonizing hard-to-abate sectors, which are difficult to electrify directly.

5.1.2 Software Environment

Python was chosen as the development environment for its versatility, computational efficiency,
and widespread adoption as one of the most recognized and widely used programming languages
globally. Python’s strengths include its suitability for handling large datasets—such as the mete-
orological data that will be integrated into the model—and its pivotal role in the implementation
of artificial intelligence algorithms, a feature that may prove valuable for potential future de-
velopments of the PtX model. The initial approach focused on creating a dynamic model in
Python, using as a reference a validated Simulink model from a previous Master’s thesis [14].
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5.1.3 First Dynamic Electrolyzer Model

After defining the software environment, the following section describes the mathematical model-
ing and physical structure of the PtX plant, which constitutes the foundation for the subsequent
simulations and cost analysis. The model was initially developed as a complete dynamic sys-
tem to capture the transient behavior of the electrolyzer. To solve this behavior, a fixed-point
iteration method was employed across all time- and temperature-dependent variables, iterating
within a for loop using a variable time step dt and time horizon. The simulation was performed
on a daily basis (24 hours) with a fixed time step of dt = 1 second, ensuring accurate resolution
of the transient dynamics.

An important insight emerged from experimenting with different values of dt in the code, which
proved to be a crucial turning point in the development of the final model.

Table 11: Physical constants used in the electrolyzer dynamic model.

Constant Value
Faraday constant F 96485C/mol
Ideal gas constant R 8.314 J/(mol ·K)

Stefan–Boltzmann constant σSB 5.67× 10−8W/(m2·K4)
Molar mass of water MH2O 0.01801528 kg/mol
Reference pressure Pel 101325Pa
Membrane density ρme 1980 kg/m3

Equivalent weight of membrane EWme 1100 g/mol
Higher heating value of H2 (HHV) 1.416× 108 J/kg
Lower heating value of H2 (LHV) 1.199× 108 J/kg
Molar mass of hydrogen MH2 0.00201568 kg/mol
Gibbs free energy ∆G 236480 J/mol
Reaction enthalpy ∆H 285830 J/mol
Electrons transferred z 2

The governing equations of the model can be grouped into five categories. For clarity, each
set is presented together with its physical meaning. In addition, all equations are explained
component-by-component in a complete and logical manner in the three subsequent subsections
(Photovoltaic System, Electrolyzer, and Hydrogen Storage). As discussed, this is a transient
process model that serves as the foundation for the final techno-economic analysis.

Electrochemical Potentials. These relations define the fundamental driving forces of elec-
trolysis:

E0 =
∆G

zF
Nernst potential at standard conditions (from Gibbs free energy),

(6)

VTN =
∆H

zF
Thermoneutral voltage, including electrical and thermal contributions,

(7)

En = E0 +
RT

2F
ln
(
PH2

√
PO2

)
Nernst potential at operating gas pressures. (8)
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Currents and Efficiencies. These equations describe how the electrical current translates
into hydrogen and oxygen flows:

i =
I

ncellsAcell
Current density (A/m2), (9)

iloss = 0.01 i Fraction of current lost due to parasitic effects, (10)

ηF = 1− iloss
i

Faradaic efficiency, (11)

ṄO2 =
ncells i

4F
ηF Molar flow of O2, (12)

ṄH2 =
ncells i

2F
ηF Molar flow of H2. (13)

Pressures and Gas Flows. They govern gas accumulation and water transport:

PO2 =
ṄO2RT

Van
Partial pressure of O2 in the anode chamber, (14)

PH2 =
ṄH2RT

Vca
Partial pressure of H2 in the cathode chamber, (15)

ṄH2O,an = kao(PO2 − Pel)yH2O,an Anode-side water molar flow, (16)

ṄH2O,ca = kco(PH2 − Pel) · 0.05 Cathode-side water molar flow. (17)

Membrane Water Content and Transport. The PEM’s hydration state strongly affects
conductivity:

Psat = −2846.4 + 411.24TC − 10.554T 2
C + 0.16636T 3

C Saturation vapor pressure of water,

(18)

aan =
PH2O,an

Psat
, aca =

PH2O,ca

Psat
Relative humidities at anode and cathode,

(19)

σm = (0.005139λm − 0.00326)e1268(
1

303
− 1

T ) Protonic conductivity, (20)

Rohm =
tme

σm
Ohmic resistance of the membrane.

(21)

Voltage Losses. The total cell voltage accounts for several contributions:

Van =
RT

2αanF
sinh−1

(
i

2i0,an

)
Activation overpotential (anode), (22)

Vca =
RT

2αcaF
sinh−1

(
i

2i0,ca

)
Activation overpotential (cathode), (23)

Vcell = En + Van + Vca + iRohm Total cell voltage, (24)
Vstack = ncellsVcell Total stack voltage. (25)
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Thermal Model and Energy Balances. In proton exchange membrane (PEM) electrolyzers,
the conversion of electrical power into hydrogen is not perfectly efficient: a significant fraction
of the input energy is dissipated as heat due to overpotentials, ohmic losses, and auxiliary
system inefficiencies. The stack temperature is a key operational variable, as it directly affects
electrochemical kinetics, efficiency, and durability of the membranes. To correctly capture these
effects, the digital twin incorporates a dynamic thermal model that updates the temperature
of the stack at each simulation step, based on first-principles energy balances. This allows
the system to account for the transient coupling between electricity consumption, hydrogen
generation, and heat transfer to the surroundings.

The governing equations can be grouped as follows:

Pstack = Vstack · I Electrical power absorbed by the stack, (26)

ηel =
ṁH2 · LHVH2

Pstack
Electrolyzer efficiency (LHV basis), (27)

Qgen = Pstack (1− ηel) Heat generated by irreversible losses, (28)
Qloss = (hc + hr)Aext (T − Tamb) Heat lost to the environment by convection and radiation,

(29)
dT

dt
=

Qgen −Qloss

Cth
Dynamic temperature evolution of the stack. (30)

Equation (26) defines the absorbed electrical power as the product of stack voltage and current.
Equation (27) relates the chemical power of the produced hydrogen (based on its lower heating
value, LHV) to the absorbed electrical power, defining the instantaneous efficiency. Equation (28)
quantifies the heat generated internally, equal to the fraction of input power not converted
into hydrogen. Equation (29) represents the heat lost to the environment, including convective
and radiative contributions. Finally, Equation (30) closes the dynamic balance, linking the net
thermal power to the time derivative of the stack temperature through the effective thermal
capacity Cth.

In this way, the thermal model provides a transient prediction of the stack temperature evolu-
tion, closely coupled with the electrical and electrochemical behaviour of the electrolyzer. By
simulating the heating due to inefficiencies and the cooling due to external heat exchange, the
model allows one to evaluate operating stability under different load conditions and ambient
environments. Such a description is crucial, as excessive temperature excursions may reduce
efficiency, accelerate degradation of the membranes, or limit hydrogen productivity.

It is important to note that, thanks to this first transient model, it was possible to verify that
the thermal transient of the electrolyzer is negligible both in terms of characteristic time scale
(on the order of a few tens of seconds) and in terms of temperature variations (limited to a
few degrees). For this reason, and in order to significantly reduce computational cost without
compromising the reliability of the results, subsequent simulations were carried out under the
assumption of a fixed stack temperature.

The polarization curve obtained from the dynamic simulation is reported in Figure 47. It shows
excellent agreement with literature data, confirming the validity of the implemented equations.
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Figure 47: Polarization curve obtained from the dynamic model.

Figure 48: Transient temperature profile of the electrolyzer stack

The thermal transient curve shows that the stack temperature reaches the operating setpoint
within approximately 10 seconds, a timescale that is negligible compared to the long-term hori-
zons (days to years) considered in this study. This behavior has no meaningful impact on cumu-
lative hydrogen production or energy balances at the plant scale. Consequently, the model was
simplified by fixing the operating temperature at a nominal value instead of solving the transient
thermal equation at every time step. This choice significantly reduces computational cost while
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maintaining the accuracy of the results under steady-state conditions. In summary, the model’s
predictive reliability is preserved, while unnecessary short-term dynamics are omitted.

The model, although highly detailed and consistent with both literature polarization curves and
the Cummins 500 datasheet, was later simplified. Thermal transients from ambient conditions to
the nominal operating temperature of 60 ◦C occur in just a few seconds, a negligible timescale for
lifetime simulations of industrial plants. Therefore, the iterative thermal loop was omitted and a
constant operating temperature was assumed. This reduced the computational cost significantly
while preserving model accuracy.

Simulation of the Cummins 500

The HyLYZER® 500 is a PEM water electrolyzer with a nominal hydrogen production capacity
of 500 Nm3/h (1080 kg/day). It delivers hydrogen at 30 bar without the need for a compressor,
while ensuring a purity level of 99.998% with very low oxygen and nitrogen impurities. This
unit represents a compact and robust benchmark for large-scale green hydrogen generation.
The developed digital twin aims to replicate the operation of the HyLYZER 500 under realistic
conditions. When the model is executed with a fixed current input, the simulated output matches
the technical specifications with high accuracy, confirming the validity of the approach.

Figure 49: HyLYZER-500.
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Before structuring the code according to the principles of object-oriented programming, two
preliminary simulations were carried out to verify the consistency of the model with the technical
specifications of the commercial Cummins 500 electrolyzer. These tests were essential to validate
the reliability of the implemented equations and to ensure that the digital twin could accurately
reproduce the nominal performance of the system.

The first simulation was performed under constant irradiance conditions of 1000W/m2, repre-
senting the standard test case scenario. The second simulation considered a variable irradiance
profile, corresponding to an ideal clear-sky day, in order to assess the system’s response to fluc-
tuating inputs. In both cases, the model equations remain unchanged and will be discussed in
detail in the following subsections dedicated to each component of the PtX plant (PV system,
electrolyzer, and hydrogen storage). Here, we limit ourselves to reporting the input data and the
simulation results for the two scenarios.

These tables highlight the differences in system performance under the two conditions: constant
irradiance at 1000W/m2, variable irradiance representing an ideal sunny day. In this case, the
irradiance profile is modeled as a sinusoidal function that starts from zero at sunrise, gradually
increases to a peak of 1000W/m2 at noon, and then decreases back to zero by 18:00, thus
providing a simplified yet representative description of a clear-sky daily cycle.

Table 12: Results for constant irradiance simulation at 1000W/m2.

Output Parameter Value
Average stack current [A] 5638.04
Current density [A/cm2] 0.78
Average cell voltage [V] 1.8558
E0 [V] 1.2255
Average stack voltage [V] 399.00
Average absorbed power [MW] 2.500
Total H2 production [kg/day] 1083.05
Average efficiency [%] 60.13

Table 13: Results for variable irradiance simulation (ideal sunny day).

Output Parameter Value
Average absorbed power [MW] 0.737
Total H2 production [kg/day] 364.28

The results confirm that the model is capable of reproducing the nominal performance of the
Cummins 500 electrolyzer under constant irradiance, while also responding consistently to a
time-varying solar input. This provides confidence in the robustness of the digital twin before
extending the analysis to longer simulation horizons.

5.2 Object-Oriented Programming Approach

To ensure flexibility, scalability, and transparency, the computational model developed in this
work was implemented in Python following the principles of object-oriented programming (OOP).
Python was chosen not only for its widespread adoption and powerful numerical libraries, but also
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for its ability to support a modular coding structure. In this context, OOP provides an effective
framework for representing complex energy systems by breaking them down into well-defined
components.

Object-oriented programming (OOP) is a paradigm widely used in software engineering that
organizes code around objects rather than functions. Each object represents an entity with
its own attributes (data) and methods (operations), which together define its behavior. This
approach improves modularity, reusability, and clarity, making it particularly well suited for
modeling complex systems such as energy conversion plants.

The model is organized in a modular and well-structured manner, where each physical subsystem
is encapsulated within its own class. In this way, the digital twin of the plant is built in a clear,
scalable, and reusable form, facilitating both the simulation process and future developments.
The overall code structure is organized around a main script, which manages the time iteration
and coordinates the interaction among the different subsystems. The time-based loop allows
the simulation of the entire plant’s dynamics over a given period, capturing the evolution of the
physical variables and their interdependencies.

Three main components are included in the model: a photovoltaic (PV) system, an electrolyzer,
and a hydrogen storage unit. Each of these components has been implemented as an independent
class containing the relevant physical laws and operating principles necessary to replicate its
behavior. In addition, a separate data file provides the required input parameters, which serve
as the boundary conditions and technical specifications for the simulation.

The photovoltaic system class models the conversion of solar radiation into electrical power,
taking as input meteorological and system data and returning the electricity produced at each
time step. The electrolyzer class uses this electricity to perform water electrolysis, generating
hydrogen. Its inputs are the power supplied and the technical parameters of the device, while
the output is the hydrogen produced as a function of efficiency and operating conditions. The
hydrogen storage class accounts for the accumulation of hydrogen over time, balancing the inflows
from the electrolyzer with the current storage level and possible withdrawals, thus providing
information on the available hydrogen stock.

The interaction between these components is governed by the main script, which ensures the
temporal consistency of the simulation and the logical flow of inputs and outputs. At each
iteration, the PV system supplies electricity, the electrolyzer converts part of it into hydrogen, and
the storage unit updates its state according to the production balance. This modular structure
not only ensures an orderly and transparent implementation but also makes the code flexible
and easily extendable. Additional functionalities or new components can be integrated into the
system with minimal changes to the existing framework.

In summary, the OOP design establishes the foundation for the digital twin representation of
the PtX plant, which is further detailed in the following section.

5.3 Model of the PtX

The model described in this section represents the final and complete implementation of the
digital twin of the PtX plant. As a first validation step, the code was executed with a constant
current input in order to verify its consistency with the technical data of the Cummins 500 elec-
trolyzer, as previously discussed. The simulation successfully reproduced the expected behavior,
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confirming the accuracy of the implemented equations.

Subsequently, the model was tested using a theoretical solar irradiance profile over a 12-hour
period to verify its capability of handling variable inputs. This preliminary daily simulation
demonstrated that the program is able to correctly propagate fluctuations in irradiance into
the electrical output, hydrogen production, and storage dynamics. Once these validations were
completed, the model was extended to longer time horizons. For monthly, annual, and lifetime
simulations, meteorological datasets from ARPA were employed, providing average values of
irradiance and temperature representative of real operating conditions.

The code was developed following the principles of Object-Oriented Programming (OOP), as in-
troduced in the previous section. This choice ensures a clear, modular, and extendable structure,
while facilitating future improvements. The computational framework was therefore divided into
distinct modules, each dedicated to a specific subsystem of the plant: the photovoltaic (PV)
array, the proton exchange membrane (PEM) electrolyzer, and the hydrogen storage unit. In
addition, two auxiliary modules were implemented: the main script, responsible for orchestrating
the execution flow, and the plotting module, dedicated to generating graphical representations
of the results.

This section also presents the main physical formulas employed for the modeling of the different
components, providing a clear overview of the theoretical foundations underlying the imple-
mented calculations. Specific simulation modules were later developed to evaluate the system’s
performance over different time horizons (daily, monthly, annual, and lifetime). Finally, a dedi-
cated module was created to perform the cost analysis, using the outputs of the simulations as
input parameters.

The main script acts as the orchestrator of the simulation environment. Its primary function
is to coordinate the interactions among the different subsystems of the plant—PV generator,
electrolyzer, and hydrogen storage unit—according to a time-iteration scheme. The script governs
the initialization of system parameters, the calculation of the irradiance profile, the execution of
the simulation loop, the collection of results, and their visualization.

At the beginning, the required Python libraries (NumPy, Pandas, Matplotlib) are imported, to-
gether with the subsystem classes defined in separate files. The SystemParameters class provides
the general configuration of the plant. Once the temporal variables and the irradiance profile are
defined, the three subsystem classes are instantiated. Each class contains the physical models
necessary for constructing the digital twin.

The core of the simulation is handled within the loop, where at each time step the PV model
computes the available electrical power, the electrolyzer converts part of it into hydrogen ac-
cording to its efficiency and operational state, and the storage unit updates its level of hydrogen
accordingly. This sequential interaction guarantees temporal consistency and reflects the physical
flow of energy and mass within the system.

After the iterative phase, the main script compiles the results into a structured DataFrame,
which contains the time evolution of all relevant variables: electrolyzer current and voltage,
hydrogen flow rate, cumulative hydrogen production, storage state of charge, and overall system
efficiency. These outputs are then passed to the Plotting class, which generates the graphical
representation of the results. Diagnostic calculations are also performed, reporting average values
of current, voltage, efficiency, and total hydrogen produced, to provide a quick validation of the
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simulation outcomes.

It is important to highlight that this main script was originally designed for a first daily simu-
lation, evaluating the plant behavior under simplified irradiance conditions. Longer-term simu-
lations, based on ARPA meteorological datasets, were performed in separate scripts to account
for seasonal and long-term variations. In summary, the main script acts as the core orchestrator,
integrating the inputs and outputs of each subsystem into a coherent temporal evolution, in line
with the modular philosophy of the OOP approach.

5.3.1 Photovoltaic System

Once the general simulation framework was defined, the focus shifted to the implementation of
the photovoltaic (PV) subsystem, which provides the primary energy input to the PtX plant.
The PhotovoltaicSystem class models the conversion of solar irradiance into electrical power
available for the electrolyzer and, when applicable, for the electrical grid. It is designed to capture
the essential dynamics of a PV field by applying standard physical relations and efficiency factors,
while keeping the implementation computationally efficient for time-domain simulations.

The class takes as input the irradiance profile and the ambient temperature, and computes the
instantaneous PV power as a function of the incident solar radiation and cell temperature. It
also includes a method for generating the irradiance profile. For daily simulations, a sinusoidal
approximation of the solar curve is adopted, providing a simplified but representative description
of solar input.

Meteorological Input

Parameter Description

G Solar irradiance (W/m2), location dependent

The PV model accounts for temperature effects on module efficiency through a temperature
coefficient, as well as for derating factors and auxiliary system losses. The available PV power is
then split between the electrolyzer (up to its maximum allowable input power) and the electrical
grid, with any surplus energy being exported. Table 14 summarizes the main parameters used
in the PV subsystem model.

Table 14: Input parameters for the photovoltaic (PV) subsystem.

Parameter Symbol Value Unit / Description
PV surface area APV 20000 m2

PV module efficiency ηPV 0.22 – (fraction)
Irradiance at STC GSTC 1000 W/m2

Rated PV power PPV,rated 4.4× 106 W (calculated as APV · ηPV ·GSTC)
PV derating factor fPV 0.9 – (fraction)
Temperature coefficient of power αP -0.004 1/K
Cell temperature at STC Tc,STC 25 ◦C
Maximum electrolyzer power input Preale 2.5× 106 W
Auxiliary systems efficiency ηaux 0.9 – (fraction)
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Governing Equations

The central function of the PhotovoltaicSystem class is updatepvpower, which computes the
instantaneous photovoltaic power at each time step. The model accounts for: (i) the influence
of ambient temperature on module temperature, (ii) the correction of efficiency through the
temperature coefficient, and (iii) auxiliary system losses.

The irradiance profile for a daily simulation is approximated as:

G(t) = Gpeak ·max

(
0, sin

(
π(thr − 6)

12

))
, (31)

where thr is the time expressed in hours and Gpeak is the maximum daily irradiance.

The cell temperature is estimated as:

Tc = Tamb + 0.03 ·G(t), (32)

where Tamb is the ambient temperature.

The theoretical PV power output is then calculated by:

PPV,teo = fPV · PPV,rated ·
(

G(t)

GSTC

)
·
(
1 + αP · (Tc − Tc,STC)

)
, (33)

which is subsequently corrected for auxiliary system efficiency:

PPV = ηaux · PPV,teo. (34)

The allocation of PV power is governed by the electrolyzer’s maximum admissible input:

PPV→Electrolyzer = min(PPV, Preale), (35)
PPV→Grid = max(PPV − Preale, 0). (36)

Outputs. The outputs of this class are threefold: 1. the PV power delivered to the electrolyzer,
2. the surplus PV power injected into the grid, and 3. the theoretical PV power without auxiliary
losses.

In summary, the PhotovoltaicSystem class provides a simplified but effective digital twin of
a PV field. It captures the dependence of power production on irradiance and temperature,
applies realistic constraints such as the maximum admissible power for the electrolyzer, and
ensures that any excess energy is properly accounted for. This enables dynamic simulation of the
PV subsystem within the overall PtX model, reflecting both physical principles and operational
constraints.

5.3.2 Electrolyzer

The next component is the electrolyzer class, which converts the PV-generated electricity into
hydrogen according to electrochemical principles. The Electrolyzer class encapsulates the
dynamic behaviour of a PEM electrolyzer operated under time-varying electrical input. It receives
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the global simulation parameters and the time vector from the main script, preallocates all state
and output arrays, and advances its internal state at each time step according to standard
electrochemical relations.

Inputs to this component are the DC electrical power routed from the PV field at each time step
and the previous cell voltage, which is used as a stabilising reference for the next-step calculation.
The outputs are time series of stack current, cell and stack voltages, stack power, instantaneous
hydrogen production rate, voltage contributions, and instantaneous efficiency.

The core routine of the class converts available electrical power into stack current, computes the
current density, and applies a pragmatic cutoff for low-current operation to avoid non-physical
hydrogen production. Once a meaningful operating point is established, the model evaluates the
principal electrochemical contributions that determine the instantaneous cell voltage: - Faradaic
efficiency, which penalizes parasitic losses at low current density, - anodic and cathodic activation
overpotentials, modeled through a simplified Butler–Volmer inverse hyperbolic sine relation, -
the thermodynamic equilibrium potential, computed from the Nernst relation, and - an ohmic
drop, proportional to current density and membrane resistance.

Hydrogen generation is computed from the electrical current by Faraday’s law, converted from
moles per second to kilograms per second. Finally, the instantaneous efficiency is reported as
the ratio between the chemical power of hydrogen produced (based on its lower heating value)
and the absorbed electrical power.

In summary, the Electrolyzer class provides a compact and computationally efficient digital
twin of a PEM electrolyzer. It preserves numerical robustness under zero-input or low-load
conditions, exposes diagnostic variables for analysis and plotting, and integrates seamlessly within
the time-iterated orchestration managed by the main script.

Governing Equations. The physical behaviour is governed by standard electrochemical rela-
tions.

Current and Current Density:

Ik =
Pin,k

ncells · Vk−1
, ik =

Ik
Acell

, (37)

where Pin,k is the PV power input at time step k, Vk−1 is the reference cell voltage from the
previous step, and Acell is the active cell area.

Faradaic Efficiency:

ηF ≈ 1−
0.01 ik,cm2

ik,cm2

≃ 0.99, (38)

an empirical relation that captures parasitic losses at low current densities.

Activation Overpotentials:

Van =
RT

2αanF
arcsinh

(
ik,cm2

2i0,an

)
, (39)

Vca =
RT

2αcaF
arcsinh

(
ik,cm2

2i0,ca

)
, (40)
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where i0,an and i0,ca are the anode and cathode exchange current densities.

Nernst Potential and Cell Voltage:

En = E0 +
RT

2F
ln

(
PH2

√
PO2

PH2O,an

)
, (41)

Vcell = En + Van + Vca + ikRΩ, (42)
Vstack = ncells · Vcell. (43)

Hydrogen Production:

ṅH2 =
ncells · Ik

2F
ηF , (44)

ṁH2 = ṅH2 ·
MH2

1000
, (45)

where MH2 is the molar mass of hydrogen.

Instantaneous Efficiency:

ηinst =
ṁH2 · LHVH2

Pin,k
× 100 [%]. (46)

Input Parameters. Table 15 reports the initialization seeds and internal thresholds of the
Electrolyzer class, while Table 16 lists the main physical and electrochemical constants.

Table 15: Class-level inputs, thresholds, and initialization used by the Electrolyzer model.

Quantity Symbol Value Unit / Notes
Initial cell voltage seed Vcell,0 2.23 V
Initial stack current seed I0 6239.76 A
Initial H2 mass flow seed ṁH2,0 11 kg/s (seed; overwritten)
Minimum current density for production imin 1.0× 10−4 A/m2 (below this, no production)
Parasitic-loss factor for ηF – 0.01 – (empirical coefficient)
Current density conversion – icm2 = i/104 A/cm2
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Table 16: Electrochemical and thermophysical input parameters for the PEM electrolyzer.

Parameter Symbol Value Unit / Description
Number of cells ncells 215 –
Active cell area Acell 0.7225 m2

Universal gas constant R 8.314 J/(mol·K)
Operating temperature T 333.15 K
Charge transfer coefficient (anode) αan 2.0 –
Charge transfer coefficient (cathode) αca 0.5 –
Faraday constant F 96485 C/mol
Exchange current density (anode) i0,an 2× 10−7 A/cm2

Exchange current density (cathode) i0,ca 2× 10−3 A/cm2

Standard cell potential E0 1.224 V
H2 partial pressure PH2 3.0× 106 Pa (30 bar)
O2 partial pressure PO2 3.0× 106 Pa (30 bar)
Anode-side H2O partial pressure PH2O,an 101325 Pa (1 bar)
Area-specific ohmic resistance RΩ 0.000139 Ω·m2

Hydrogen molar mass MH2 2.016 g/mol
Hydrogen lower heating value LHVH2 1.199× 108 J/kg

5.3.3 Hydrogen Storage

The last major subsystem is the hydrogen storage unit, modeled as a metal–hydride (MH) tank.
The HydrogenStorage class simulates the dynamic accumulation and release of hydrogen under
time-varying inflows from the electrolyzer, while enforcing a simplified day–night operating policy.
The model encapsulates four main processes: (i) hydrogen absorption and desorption constrained
by Johnson–Mehl–Avrami (JMA) kinetics, (ii) thermodynamic equilibrium relations based on
the Van’t Hoff and Sieverts laws, (iii) a lumped thermal balance of the tank including reaction
enthalpy and water-loop heat exchange, and (iv) inventory management governed by maximum
storage capacity.

Inputs to this component are the hydrogen inflow from the electrolyzer at each time step and
the simulation parameters defining the tank’s physical, kinetic, and thermodynamic properties.
Outputs are time series of stored hydrogen mass, state of charge, absorbed and released flow rates,
tank temperature, and the chemical energy content of the stored hydrogen. These quantities are
used both for downstream analysis and for graphical visualization of the system’s behaviour.

Input Parameters. Tables 17 and 18 summarize the thermochemical, kinetic, and thermal
parameters adopted in the hydrogen storage model.
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Table 17: Thermochemical and kinetic parameters for the hydrogen storage system.

Parameter Symbol Value Unit / Description
Reference reaction enthalpy ∆Href 32500 J/mol (positive for desorption)
Reaction heat capacity change ∆Crxn

p 0 J/(mol·K)
Reference temperature Tref 298.15 K
Reaction entropy ∆S 100 J/(mol·K)
Universal gas constant Rgas 8.314 J/(mol·K)
Arrhenius pre-exponential A 7.3× 104 h−m

Activation energy Ea 22000 J/mol
JMA exponent mJMA 0.55 –
Maximum H2 capacity mH2,max 200 kg
Hydrogen molar mass MH2 2.016 g/mol
Hydrogen lower heating value LHVH2 1.199× 108 J/kg

Table 18: Thermal mass and heat-exchanger parameters for the hydrogen storage system.

Parameter Symbol Value Unit / Description
Hydride bed mass mMH 10869.6 kg
Effective heat capacity cp,eff 506.33 J/(kg·K)
Water mass flow rate ṁw 5 kg/s
Water specific heat cp,w 4180 J/(kg·K)
Cold-side inlet temperature Tin,cold 298.15 K (25°C)
Hot-side inlet temperature Tin,hot 353.15 K (80°C)

Governing Equations. The hydrogen storage dynamics are determined by thermodynamic
equilibrium, reaction kinetics, and thermal balances.

Kinetics (JMA model):

kJMA(T ) = A exp

(
− Ea

RT

)
,

dα

dt
= kJMAmtm−1(1− α) [− ln(1− α)], (47)

where α is the conversion fraction (state of absorption).

Equilibrium Pressure (Van’t Hoff and Sieverts laws):

Peq(T ) = exp

(
−∆Href

RT
+

∆S

R

)
, kSieverts(T ) =

√
Peq(T ). (48)

Temperature-Dependent Enthalpy:

∆Hrxn(T ) = ∆Href +∆Crxn
p (T − Tref). (49)

Thermal Balance:

∆E = Qreaction→tank +QHX→tank, (50)

∆Ttank =
∆E

mMH cp,eff
, (51)
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where Qreaction→tank accounts for exothermic/endothermic reaction heat and QHX→tank represents
water-loop heat exchange.

Stored Energy:
Echem = mH2,stored · LHVH2 . (52)

Operating Policy
The storage system follows a simple day–night logic:
- Daytime (06:00–18:00): absorption is prioritized, with inflows from the electrolyzer stored
up to the kinetic and capacity limits.
- Nighttime (18:00–06:00): hydrogen is released at a constant target rate, designed to deplete
the inventory over 12 hours, while still constrained by kinetics and available stored mass.

This ensures a realistic cycling of charge/discharge that reflects solar-driven operation.

Outputs. The primary variables stored over the simulation are listed in Table 19.

Table 19: Primary outputs stored over time by the HydrogenStorage model.

Output Symbol Unit / Description
State of charge SOCt % (relative to mH2,max)
Stored hydrogen mH2,t kg
Chemical energy content Echem,t MJ (from LHV of H2)
Tank temperature Ttank,t

◦C (internally updated in K)
Absorbed flow ṁabs,t kg/s
Released flow ṁrel,t kg/s

In summary, the hydrogen storage subsystem provides a compact, computationally efficient dig-
ital twin of a metal–hydride tank. It captures the essential features of absorption/desorption
thermodynamics and kinetics, incorporates a lumped-parameter thermal model, and enforces a
transparent day–night policy. Together with the PV and electrolyzer components, it completes
the simulation framework of the PtX plant.
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6 Scenarios

6.1 Approach for Simulations

Building upon the computational framework developed in Chapter 5, this chapter applies it to,
this chapter applies the computational framework to different simulation horizons and analyses.
The objective is to evaluate the technical, environmental, and economic performance of the PtX
system

Once the correct operation of the plant had been verified through a daily simulation, the next
step involved gathering meteorological data from the ARPA Veneto website. The plant was
geographically located at the Zignago Vetro facility in the town of Fossalta di Portogruaro,
which hosts one of the company’s main production sites.

Following a systematic approach, simulations were performed in three stages: first on a monthly
basis, then on an annual basis, and finally using long-term meteorological data spanning a period
of 25 years. The input meteorological parameters considered were the average temperature and
the average monthly solar irradiance.

From these datasets, the hydrogen production over the plant’s entire lifetime was estimated. This
lifetime hydrogen yield then served as the basis for carrying out the subsequent cost analysis,
enabling an evaluation of the economic feasibility of the proposed system under real climatic
conditions.

6.1.1 Daily Simulations (Plant Scale)

At this stage of the work, the computational framework was consolidated and prepared for long-
term analyses. To facilitate future developments and ensure clarity, as already mentioned before,
the code was developed following the principles of Object-Oriented Programming (OOP). The
framework was organized into distinct modules, each dedicated to a specific subsystem of the
plant: the photovoltaic (PV) field, the proton exchange membrane (PEM) electrolyzer, and the
hydrogen storage unit. Two additional modules were introduced: the main script, responsible
for coordinating the execution flow, and a plotting module dedicated to generating graphical
representations of the results. The detailed description of the OOP implementation has already
been provided in Chapter 5.3 and is only briefly recalled here.

Building on this structure, specific simulation modules were implemented to evaluate system
performance across different time horizons: daily validation, annual operation, and lifetime anal-
ysis. A dedicated module was also developed to perform the cost analysis, using the outputs of
the technical simulations as input parameters.

The daily simulation represents the first validation step of the framework. It is performed over
a single-day horizon using an ideal clear-sky irradiance profile, which rises from sunrise, peaks
at noon, and decreases to zero at sunset. This controlled scenario allows the model to be tested
under smooth boundary conditions, avoiding the stochastic variability of real meteorological data.
At each time step, the PV subsystem computes the available electrical power, which is then fed
into the electrolyzer to generate hydrogen, while the storage unit manages absorption and release
according to the predefined operating policy. The outputs include instantaneous quantities such
as current, voltage, and hydrogen flow, as well as cumulative hydrogen production over the day.
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The main purpose of this validation is to ensure the numerical stability of the time-iterated code,
verify the correct interaction among subsystems, and confirm that the electrolyzer reproduces
datasheet-consistent operating points. Once these aspects were validated at the plant scale, the
framework was extended to longer horizons, namely annual and lifetime simulations.

6.1.2 Annual simulation

This script extends the daily digital-twin framework to an annual horizon using monthly meteo-
rological data. The goal is to estimate the yearly hydrogen output of the PV–electrolyzer–storage
system while preserving the object-oriented architecture previously described. The approach is
based on a representative-day method: for each month, a 24-hour simulation is executed with
monthly average ambient temperature and a sinusoidal irradiance profile scaled to match the
month’s measured global irradiation. The monthly hydrogen yield is then obtained by multiply-
ing the daily result by the number of days in that month, and the annual total is the sum of the
twelve contributions.

The script begins by declaring the monthly series used as inputs: average near-surface air temper-
ature in degrees Celsius and global solar irradiation in megajoules per square metre per month.
These data were acquired from the ARPAV Centro Meteorologico di Teolo and correspond to
the year 2023, the latest available. The arrays are passed, month by month, to the physical
components, thereby linking the digital twin to observed climatic conditions without changing
the components’ internal models.

Table 20: Monthly mean air temperature at 2 m in 2023 (◦C).

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean

2023 6.2 5.5 10.1 11.9 18.2 22.6 24.4 23.8 21.3 16.9 8.5 5.8 14.6

The time discretization mirrors the daily setup used previously: a 60-second time step over a
24-hour window that runs from 06:00 to 06:00 of the following day. The irradiance profile is
generated by a sinusoidal function with a nominal 12-hour daylight duration and is scaled so
that the integral of the daily curve matches the month’s measured irradiation. This preserves
the monthly energy balance while keeping the transient behaviour physically plausible.

For each month, the three component classes are re-instantiated, thus resetting their internal
states. The PV model converts the irradiance profile and ambient temperature into electri-
cal power; the electrolyzer converts DC power into hydrogen according to its electrochemical
operating map; the metal-hydride storage updates its state by applying the day–night policy
constrained by kinetics and thermal balance. This coupling is identical to the daily simulation,
but now executed twelve times with month-specific boundary conditions.

At the end of each day-simulation the script aggregates the hydrogen mass flow into a daily
production figure and scales it by the number of days in the month to obtain the monthly
production. The monthly series is then plotted as a bar chart and summed to yield the annual
production.

mH2,month =

 N∑
k=1

ṁH2(k) ·∆t

 ·Dmonth (53)
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From a modelling standpoint, the underlying physical laws remain those already discussed for
each component. The PV output accounts for irradiance and temperature effects on module
performance; the electrolyzer maps electrical input to hydrogen output via thermodynamic po-
tential, activation overpotentials, ohmic losses, and Faradaic conversion; the storage follows
metal-hydride equilibrium, kinetics, and a lumped thermal balance with a simple operating pol-
icy. No explicit equations are printed here because they are defined within the component classes;
the present script focuses on feeding month-specific boundary conditions and aggregating results
over the annual horizon.

Two remarks improve clarity of use. First, components are re-created each month, so there
is no carry-over of storage state across months; this is consistent with the representative-day
philosophy but can be relaxed in future work if seasonal coupling of the storage is needed.
Second, the irradiance profile assumes twelve hours of daylight for all months, which preserves
monthly energy but simplifies the diurnal shape; it can be replaced by hour-by-hour irradiance
if higher temporal fidelity is required.

Overall, this annual driver provides a compact and transparent way to quantify the yearly hy-
drogen yield of the plant under observed meteorological conditions while keeping the simulation
cost low and the codebase fully modular.

6.1.3 Lifetime simulation (25-Year Series)

While the annual simulation provides a one-year estimate, the lifetime simulation extends the
analysis over 25 years to assess inter-annual variability and long-term performance trends. Build-
ing upon the representative-day methodology introduced for single-year studies, the model was
extended to a lifetime horizon of twenty-five years. The simulation replicates the annual proce-
dure for each calendar year from 1999 through 2023, using observed monthly meteorological data
as boundary conditions. The resulting time series of hydrogen production and photovoltaic en-
ergy serve as inputs to the techno-economic assessment and the environmental analysis discussed
later in this thesis, including the estimation of avoided CO emissions and the displacement of
natural gas consumption.

The driver function sets the temporal scope, the discretization for the representative day, and the
per-month boundary conditions. The object-oriented architecture remains unchanged: at each
month of each year the three component classes are instantiated, the daily time loop is executed,
and the results are aggregated to monthly and annual figures.

Meteorological inputs are provided as two matrices indexed by year and month. For each year,
the script reads the monthly mean air temperature in degrees Celsius and the monthly global
irradiance in megajoules per square metre. These values are mapped to the component mod-
els without changing their internal physics, thereby keeping the digital twin consistent while
adapting to year-specific boundary conditions.

For each month, the representative-day irradiance curve is constructed as a sinusoid with twelve
hours of daylight. Its peak value is chosen so that the daily integral of the curve equals the
month’s measured global irradiation divided by the number of days. The monthly mean temper-
ature sets the ambient condition used by the PV model.

At the end of the daily loop, hydrogen mass flow is integrated to obtain the daily production
and then scaled by the number of days in the month to obtain the monthly production. This
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value is accumulated over the twelve months to obtain the annual total for that year:

mH2,year =
12∑
j=1

mH2,month(j) (54)

In parallel, the script aggregates the photovoltaic electrical energy delivered to the electrolyzer.
The daily electrical energy is obtained by integrating the power time series; the monthly and
annual values are computed by multiplication and summation, and finally a multi-year average
is reported.

Eavg,year =
1

N

N∑
i=1

Eyear(i) (55)

Several modelling choices ensure transparency and computational efficiency. The representative-
day assumption preserves the monthly energy budget while simplifying the intra-day pattern,
which is sufficient for lifetime-scale scenarios. Components are re-instantiated at each month
so that the storage state does not carry over between months, consistent with the aggregation
method; this can be relaxed in future work if seasonal storage coupling is required. Numerical
safeguards are in place for low-power conditions and start-up phases.

The multi-year outputs obtained with this driver constitute the quantitative basis for the sub-
sequent cost analysis, the CO reduction assessment, and the natural gas displacement study.
Those post-processing scripts use the annual hydrogen production and electrical energy series
reported here and will be analysed in the following sections.

6.2 Post-processing of Simulation Results: CO Reduction and Methane Sav-
ings

Beyond the purely technical performance, the model outputs were post-processed to quantify
environmental and economic indicators, which are crucial for assessing the viability of the PtX
system. The first post-processing module consumes the yearly hydrogen production obtained
from the lifetime simulation that replicates the annual procedure for each calendar year from
1999 to 2023. Its purpose is to translate usable hydrogen into equivalent methane savings and
avoided carbon dioxide emissions. The script adopts fixed energy equivalences and an emission
factor for natural gas combustion, applies them to the annual hydrogen output, and aggregates
the results both by year and over the full lifetime.

Table 21: Energy and emission constants used in the CO2 and methane savings module.

Quantity Value

Methane energy content (LHV) 10.7 kWhSm−3

Hydrogen energy content (LHV) 33.33 kWhkg−1

CO2 emission factor for CH4 2.024 kgCO2 Sm
−3

Annual methane consumption (reference) 84,543,271 Sm3/yr

For each year in the analysis window the module reads the mass of usable hydrogen in kilograms,



85 6.3 Economic Analysis: LCOE, LCOH, NPC and Payback Period

converts it into electrical energy on a lower heating value basis, and then computes the equivalent
volume of methane that would deliver the same energy. The avoided carbon dioxide is evaluated
by applying the specific emission factor per standard cubic metre of methane and reporting the
result in tonnes. A compact loop builds a tabular dataset, computes lifetime totals, and produces
diagnostic bar charts.

EH2(t) = mH2(t) · LHVH2 (56)

VCH4,saved(t) =
EH2(t)

LHVCH4

(57)

CO2, avoided(t) = VCH4,saved(t) · fCH4 (58)

The script concludes with two figures that display, year by year, the methane saved and the
avoided carbon dioxide. These graphics provide a direct visual link between the variability of
yearly hydrogen production and its environmental impact, while the lifetime totals summarise
the cumulative benefit over the twenty-five year horizon.

6.3 Economic Analysis: LCOE, LCOH, NPC and Payback Period

The second post-processing module implements the economic assessment. Using the lifetime
outputs of the simulation as technical inputs, it evaluates the levelised cost of electricity for the
photovoltaic field, the levelised cost of hydrogen for the combined system, the net present cost
of the project, and the discounted payback under two distinct revenue models: savings from
displaced methane and hydrogen sales at an exogenous market price. The same core routine is
run repeatedly under multiple scenarios to reflect plausible future cost trends.

Table 22: Key economic parameters used in the analysis.

Plant PV rating 4400 kW
Plant PEM rating 2500 kW
Methane price 2 €/m3

Hydrogen market price 4 €/kg
Discount rate 4.9% (real)

The heart of the module is a function that computes the net present cost (NPC) by summing
the initial investment, the discounted stream of annual operating expenses, and any discounted
replacement cost. The levelised cost of electricity is obtained by dividing the NPC by the
discounted lifetime energy, while the levelised cost of hydrogen divides the same NPC by the total
hydrogen produced over the lifetime. This choice of denominator for hydrogen is conservative
and transparent; an alternative would be to discount the annual hydrogen output as well, which
can be considered in sensitivity analyses.
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NPC = CAPEX +
N∑
t=1

OPEXt +RCt

(1 + r)t
(59)

LCOE =
NPC∑N

t=1

Et

(1 + r)t

(60)

LCOH =
NPC∑N
t=1H2,t

(61)

Three scenarios are defined to reflect learning-curve cost reductions for photovoltaic and PEM
technologies. Each scenario specifies capital costs per kilowatt and the operating expenditure
model.

Table 23: Scenario assumptions for CAPEX and OPEX in the economic analysis.

2025 2030 2050

PV CAPEX [€/kW] 1200 1000 600
PEM CAPEX [€/kW] 1500 1000 800
PV OPEX [€/kW·yr] 24 24 24
PEM OPEX [% of CAPEX] 3% 3% 2%

The module also implements a discounted cash-flow routine for payback analysis. In the first
revenue model the project accrues savings proportional to the annual methane displaced, using
an externally provided series in cubic metres per year multiplied by the methane price. In the
second model revenues come from selling hydrogen at a fixed market price per kilogram. In both
cases a discount factor is applied year by year and the break-even year is identified as the first
year in which the cumulative discounted cash flow turns non-negative.

NPVt = −CAPEX +
t∑

i=1

(Ri −OPEXi)

(1 + r)i
(62)

Break-even year = min{t : NPVt ≥ 0} (63)

The analysis is then executed for all scenarios. Lifetime-average PV electricity and total lifetime
hydrogen production, previously computed by the 1999–2023 simulation, enter as technical inputs
that remain constant across scenarios. The outputs include LCOE for the PV plant alone,
LCOH for the combined system, the total net present cost, the discounted cost streams, and the
discounted payback curves under the two revenue models.

Table 24: Lifetime technical outputs used for economic analysis.

Average annual PV electricity 3,972,934 kWh
Total hydrogen production (25 yrs) 2,194,133 kg
Analysis horizon 25 years
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Finally the module produces a set of figures that compare the discounted annual energy across
scenarios, the discounted operating and replacement costs, and the levelised costs. Two additional
graphs document the discounted cash flows and the break-even year for both revenue models.
These plots make it straightforward to understand how learning-curve cost reductions shift the
economics of the project. In the broader workflow of the thesis, this module and the preceding
environmental module are run multiple times with different price assumptions and savings series
to generate a suite of scenarios that reflect plausible futures for equipment costs and energy
markets.

This economic layer completes the digital-twin workflow. The simulation engine generates con-
sistent multi-year technical outputs. The environmental module quantifies avoided emissions
and fuel displacement. The economic module translates technical performance into levelised
metrics and discounted payback under multiple scenarios. Together they provide the quantita-
tive basis for discussing the conditions under which the project becomes attractive from both an
environmental and an industrial perspective.
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7 Results

7.1 Daily Simulation

The first two figures produced by the simulation of the digital twin correspond to the photovoltaic
(PV) module class. They represent, respectively, the power output and the electrical current of
the PV system.

As expected, and in agreement with what is widely reported in the literature, both power and
current follow a sinusoidal-like profile over the course of the day. The values start from zero at
sunrise, increase steadily until reaching a maximum around solar noon—when irradiance is at
its peak—and then symmetrically decrease back to zero at sunset. During nighttime hours, the
output remains null, consistently with the absence of solar radiation.

This behavior confirms the physical consistency of the model, since the curves correctly reproduce
the expected diurnal solar cycle. Moreover, the similarity between the shapes of the power
and current profiles highlights the direct relationship between irradiance, power generation, and
current flow in the PV system.

Figure 50: Photovoltaic Power over time
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Figure 51: Electric Current

The other key results produced by the digital twin involve the PEM electrolyzer module. In
these plots, the instantaneous hydrogen production rate is computed as a function of time. As
expected, given that in our simulation the PEM electrolyzer is directly and exclusively connected
to the photovoltaic (PV) field, the hydrogen production follows a sinusoidal diurnal profile: it
increases throughout the morning, reaches its maximum around solar noon, and decreases again
towards sunset, while remaining null during the night.

A second plot shows the cumulative hydrogen production over the day. The total daily output
reaches slightly above 350 kg of H2, which is fully consistent with expectations. This result aligns
with the fact that the digital twin was designed to reproduce the behavior of the commercial
CUMMINS HyLYZER® 500 electrolyzer, which is rated for up to 1000 kg of H2 per day under
conditions of continuous 24-hour power supply.
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Figure 52: Instantaneous H2 production

Figure 53: Comulative H2 production

The results obtained for the PEM electrolyzer digital twin are in strong agreement with the
scientific literature, suggesting that the model is both reliable and physically consistent with the
system it aims to reproduce. This strengthens confidence in the robustness of the simulation
framework.

Three figures are particularly significant and are discussed below:

Polarization curve – The simulated polarization curve is in excellent agreement with experimental
trends reported in the literature, both under nominal and varying operating conditions. This
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correspondence also confirms that the temperature-dependent effects integrated into the model
are consistent with the underlying electrochemical physics.

Figure 54: Polarization Curve

Cell voltage profile – The evolution of the cell voltage during operation matches the expected
behavior for a commercial PEM unit. The accuracy of this result demonstrates that the model
correctly captures the characteristic performance of a single PEM cell under dynamic conditions.
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Figure 55: PEM Cell Voltage

Overall system efficiency – The global efficiency, calculated using the formulas introduced in the
methodology and case study sections, reaches values close to those reported for commercial PEM
electrolyzers, typically in the range of 60–70%. Such consistency with industrial benchmarks
reinforces the validity of the digital twin.

Figure 56: Electrolyzer Efficiency

Taken together, these results indicate that the model not only reproduces the expected physical
behavior of the electrolyzer but also provides a credible basis for scenario analysis and techno-
economic assessments. This suggests that the digital twin can be confidently employed to inves-
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tigate both operational strategies and potential improvements in future PEM-based hydrogen
production systems.

Among the simulation results, it is also worthwhile to discuss the figure comparing the cumu-
lative electrical energy absorbed by the PEM electrolyzer with both the daily electrical energy
consumption and the chemical energy stored in the produced hydrogen. The latter is calculated
using both the Lower Heating Value (LHV) and the Higher Heating Value (HHV) of hydrogen.

This representation offers an alternative and insightful way of visualizing the efficiency of the
electrolyzer, as it directly contrasts the input electrical energy with the chemical energy embodied
in the hydrogen output. In addition, the same plot highlights the cumulative hydrogen production
over the simulation period, providing a clear link between energy conversion efficiency and total
hydrogen yield.

Figure 57: Cumulative Energy Comparison

The following figures describe the behavior of the storage system within the digital twin during
the simulated daily cycle. In this scenario, half of the hydrogen produced by the PEM electrolyzer
is consumed directly by the industrial furnace, while the remaining 50

The first graph illustrates the state of charge (SOC) of the storage system. The SOC increases
gradually during the day as hydrogen is absorbed, reaching its maximum value in the late af-
ternoon. Once charging stops, the stored hydrogen is progressively released during the night,
leading to a corresponding linear decrease in SOC until it returns to zero in the early morning
hours. This profile is fully consistent with the imposed operational strategy and reflects the
expected dynamic balance between daytime production and nighttime release.
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Figure 58: H2 Storage State of the Charge

The second figure presents the cumulative hydrogen quantity stored in kilograms, which follows
the same trend as the SOC, confirming the direct correlation between the absorbed hydrogen
and the storage level. The peak value corresponds to approximately half of the daily hydrogen
production, in line with the initial assumption that the remaining half is directly consumed.

Figure 59: H2 Stored

Finally, the third plot shows the temperature evolution of the storage tank. During the charging
phase, the absorption of hydrogen leads to a slight cooling effect, which is physically consistent
with the endothermic nature of the process. Conversely, during the discharging phase at night,
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the tank exhibits a marked temperature rise, stabilizing at a higher level as hydrogen is released.
This thermal behavior highlights the importance of effective thermal management in storage
systems, since temperature strongly influences both absorption and desorption rates.

Figure 60: Tank Temperature

7.2 Yearly Simulation

Overall, these results confirm that the storage module not only reproduces the expected physical
trends but also provides valuable insights into the daily interaction between hydrogen production,
direct consumption, and storage dynamics. The combined analysis of SOC, stored mass, and
temperature offers a comprehensive picture of how the storage system can support the continuous
supply of hydrogen in applications where demand extends beyond the hours of solar production.
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Figure 61: Monthly Hydrogen production

7.3 Lifetime Simulation Results

Using the same simulation approach, the lifetime savings in methane consumption were calcu-
lated, assuming that the hydrogen produced by the system is directly supplied to the industrial
furnace. From this calculation, it was also possible to determine the corresponding reduction in
CO emissions.

The results indicate that over the plant’s operational lifetime, approximately 6.83 million cu-
bic meters of methane would be displaced, leading to a cumulative avoidance of nearly 13,833
tonnes of CO2. When normalized by the photovoltaic (PV) surface area, the avoided emissions
correspond to about 692 kg of CO2 per square meter of PV panel.

It is worth noting that, although inter-annual variations in both irradiance and temperature
naturally occur, the seasonality of the solar resource is essentially annual rather than multi-
annual. An analysis of the past 25 years shows no significant long-term trends in irradiance or
temperature that would affect hydrogen production on the scale of the system considered.

This indicator is particularly meaningful, as it highlights the central role of the PV field as the
system’s primary bottleneck. In fact, under the present configuration, the electrolyzer produces
only about one-third of the hydrogen it would be capable of generating if supplied continuously
with electricity. Consequently, the scalability and effectiveness of the system are strongly tied to
the availability and expansion of solar resources.
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Figure 62: CO2 emissione avoided annually

Figure 63: Annual reduction in methane consumption
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7.4 Economic Results

The final set of figures to be discussed are arguably the most relevant, as they address the
cost analysis of the system. As previously explained, the assessment was carried out under
different market and technological scenarios (natural gas prices ranging from €0.40 to €2.00 per
m³; hydrogen market prices of €4.00, €6.00, and €8.00 per kg; and projected CAPEX/OPEX
values for PV and PEM technologies in 2025, 2030, and 2050).

It is important to emphasize once again that, for both the annual and lifetime simulations, the
storage component was not included in the cost analysis. The reason is the lack of reliable
economic data for large-scale metal hydride storage systems, which remain at a pre-commercial
stage of development. For this reason, and in order to keep the analysis realistic and robust, the
storage module was deliberately excluded.

This was made possible thanks to the object-oriented structure of the simulation framework,
which allows individual components to be easily decoupled from the system. Such flexibility
ensures that the results remain as reliable and representative as possible of an actual industrial
deployment. Indeed, this modeling choice is fully aligned with the real-world case of the Zignago
Vetro H Glass project, where the electrolyzer will be directly connected to the industrial furnace
without large-scale hydrogen storage.

7.5 Economic Analysis of Scenarios

The economic feasibility of the PtX system is assessed through levelized cost indicators, namely
the Levelized Cost of Electricity (LCOE) for the photovoltaic subsystem and the Levelized Cost
of Hydrogen (LCOH) for the integrated PV–PEM plant. These parameters normalize the total
discounted cost of the investment over its expected lifetime against the cumulative useful en-
ergy output. They are widely adopted in techno-economic assessments as they allow a direct
comparison between different technologies and scenarios.

We can repeat here that the general expression for the Levelized Cost of Electricity is:

LCOE =
NPCPV∑N
t=1

Et
(1+r)t

, (64)

where NPCPV is the net present cost of the photovoltaic system (CAPEX, OPEX, and possible
replacements), Et the electricity produced in year t, r the discount rate, and N the plant lifetime.

Similarly, as wrote before the Levelized Cost of Hydrogen is expressed as:

LCOH =
NPCPV+PEM∑N

t=1H2,t

, (65)

where NPCPV+PEM is the net present cost of the coupled PV and electrolyzer system, and H2,t

the annual hydrogen production (kg).
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These formulations ensure that both metrics incorporate time-value-of-money effects and capture
the impact of CAPEX/OPEX trajectories on the final unitary cost of energy and hydrogen.

For the discounted cash flow analysis, two sets of market scenarios were considered: (i) natural
gas price evolution, which determines the economic value of avoided methane consumption; (ii)
hydrogen selling price, which represents revenues in case of direct market integration.

Table 25: Scenario inputs for DCF under varying natural gas price, including CAPEX and OPEX
for PV and PEM.

Year PV CAPEX PEM CAPEX OPEX NG price
[€/kW] [€/kW] [€/kW·yr + %CAPEX] [€/m3]

2025 1200 1500 24 + 3% 0.40
2030 1000 1000 24 + 3% 0.40
2050 600 800 24 + 2% 0.40

2025 1200 1500 24 + 3% 0.80
2030 1000 1000 24 + 3% 0.80
2050 600 800 24 + 2% 0.80

2025 1200 1500 24 + 3% 1.20
2030 1000 1000 24 + 3% 1.20
2050 600 800 24 + 2% 1.20

2025 1200 1500 24 + 3% 2.00
2030 1000 1000 24 + 3% 2.00
2050 600 800 24 + 2% 2.00

Note: PV CAPEX, PEM CAPEX, and OPEX values are scenario assumptions; storage excluded.

Note: PV CAPEX, PEM CAPEX, and OPEX values are scenario assumptions; storage excluded.

Table 26: Scenario inputs for DCF under varying hydrogen selling price, including CAPEX and
OPEX for PV and PEM.

Year PV CAPEX PEM CAPEX OPEX H2 price
[€/kW] [€/kW] [€/kW·yr + %CAPEX] [€/kg]

2025 1200 1500 24 + 3% 4
2030 1000 1000 24 + 3% 4
2050 600 800 24 + 2% 4

2025 1200 1500 24 + 3% 6
2030 1000 1000 24 + 3% 6
2050 600 800 24 + 2% 6

2025 1200 1500 24 + 3% 8
2030 1000 1000 24 + 3% 8
2050 600 800 24 + 2% 8

Note: PV CAPEX, PEM CAPEX, and OPEX values are scenario assumptions; storage excluded.

Results: LCOE and LCOH

The following tables summarize the modeled values of LCOE and LCOH for the three technology scenarios.



7 Results 100

Table 27: Modeled LCOH across technology scenarios.

Scenario Year LCOH [€/kg] Trend

2025 ≈ 5.5 Upper bound of current expectations
2030 ≈ 4.3 Improved competitiveness
2050 3.0 Competitive with fossil alternatives

Discussion. The results clearly indicate a strong downward trajectory for both LCOE and LCOH. In partic-
ular, the LCOE of photovoltaic energy decreases from about €120/MWh in 2025 to €73/MWh in 2050, while the
modeled LCOH drops from €5.5/kg to just above €3/kg in the same period. These trends confirm the crucial role
of technological learning curves and cost reductions in driving the competitiveness of green hydrogen. Moreover,
they highlight that the economic feasibility of large-scale hydrogen production is strongly dependent on future
CAPEX/OPEX trajectories of both PV and PEM technologies.

The first graph that we analize in this section is the Levelized Cost of Electricity (LCOE) shows a clear decreasing
trend across the three time horizons. In 2025, the LCOE is close to €120/MWh, reflecting the still relatively
high CAPEX values for PV installations. By 2030, this cost drops to around €105/MWh, driven by expected
technological learning curves and cost reductions in photovoltaic components. The most significant improvement
is observed in 2050, with the LCOE reaching nearly €73/MWh, which is consistent with long-term projections
for mature renewable technologies. This steady decline confirms that PV electricity costs will play an increasingly
favorable role in reducing the overall cost of hydrogen production.

Table 28: Modeled LCOE across technology scenarios.

Scenario Year LCOE [€/MWh] Trend

2025 ≈ 120 High CAPEX, early stage PV
2030 ≈ 105 Learning curve reduction
2050 ≈ 73 Mature renewable technology

Figure 64: Levelized Cost of Electricity (LCOE)
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The Levelized Cost of Hydrogen (LCOH) also follows a pronounced downward trajectory. In 2025, the modeled
cost of hydrogen is about €5.5 per kilogram, which places it at the upper bound of current market price expecta-
tions. By 2030, the value decreases to roughly €4.3/kg, marking a substantial improvement due to both declining
electricity costs and reduced PEM electrolyzer CAPEX. The lowest value is reached in 2050, at just above €3/kg,
which would make green hydrogen cost-competitive with fossil-based alternatives in many industrial applications.
This result highlights the strong impact of future technological progress and cost reductions on the economic
viability of hydrogen as a large-scale energy carrier.

Figure 65: Levelized Cost of Hydrogen (LCOH)

The discounted cash flow analysis clearly highlights the strong dependence of project profitability on the assumed
natural gas price and on the selected technological scenario. At the lowest gas price of €0.40/m³, all three scenarios
(2025, 2030, and 2050) remain consistently negative over the entire 25-year horizon, meaning that under such
market conditions the investment cannot be recovered. When the price increases to €0.80/m³, the trajectories
improve, particularly for the 2050 scenario, which approaches break-even but still does not cross into positive
values.

A significant change occurs at €1.20/m³, where the 2050 case nearly reaches cash-back within the plant lifetime,
while the 2030 case shows reduced losses compared to 2025. Finally, at the highest natural gas price assumption
of €2.00/m³, both the 2050 and 2030 scenarios achieve positive net present values. In particular, the 2050 case
reaches break-even after approximately 8 years, while the 2030 case follows at around 19 years. The 2025 case,
however, remains only marginally below zero even at this favorable market condition, highlighting the difficulty
of achieving profitability under current cost structures.

Overall, these results emphasize that economic feasibility is contingent upon both future technological cost reduc-
tions and sufficiently high fossil gas prices. In other words, the combination of lower CAPEX/OPEX in future
years and increasing methane prices is critical to ensure a positive business case for green hydrogen integration
in industrial applications.
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Figure 66: Discounted Cash Flow 0.4 €/m3 of CH4

Figure 67: Discounted Cash Flow 0.8 €/m3 of CH4
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Figure 68: Discounted Cash Flow 1.2 €/m3 of CH4

Figure 69: Discounted Cash Flow 2 €/m3 of CH4

The discounted cash flow analysis under different hydrogen sales prices provides further insights into the economic
viability of the system. At the highest price assumption of €8/kg, all three cost scenarios achieve break-even
within the plant’s lifetime. The 2050 cost trajectory reaches positive net present value after approximately 6
years, while the 2030 case requires about 12 years and the 2025 case around 16 years. This confirms that high
hydrogen prices can ensure profitability even under current or near-term cost structures, although with different
payback periods.

At the intermediate price of €6/kg, the results become more differentiated. The 2050 scenario still reaches
break-even, though later, around year 9, while the 2030 case barely achieves positive values only after about 21
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years. The 2025 case, however, remains below zero throughout the entire 25-year horizon, indicating that with
present-day costs hydrogen priced at €6/kg is insufficient to recover the investment.

At the lowest assumed price of €4/kg, only the 2050 scenario approaches break-even, and even then only after
roughly 21 years of operation. Both the 2025 and 2030 cases remain negative for the full duration, showing
that under such market conditions hydrogen production is not economically feasible with current or mid-term
technology costs.

Overall, these results demonstrate that economic viability depends strongly on both technological progress and
market prices. In a parallel way to the natural gas substitution case, only a favorable combination of reduced
CAPEX/OPEX and sufficiently high hydrogen selling price ensures a competitive business case.

Figure 70: Discounted Cash Flow 8 €/m3 of H2
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Figure 71: Discounted Cash Flow 6 €/m3 of H2

Figure 72: Discounted Cash Flow 4 €/m3 of H2
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8 Conclusion

The objective of this thesis was to carry out a comprehensive techno-economic analysis of renewable energy
systems integrated with PEM electrolyzers and green hydrogen storage, combining a state-of-the-art review, the
development of an object-oriented computational framework, and its application to plant-scale simulations and
economic assessments.

The review phase confirmed that PEM electrolyzers represent the most promising technology for this type of
application, thanks to their low-temperature operation, compactness, scalability, and high technology readiness
level.Their coupling with photovoltaic generation allows the production of fully renewable hydrogen with virtually
zero emissions, but at the same time highlights a structural bottleneck: because solar energy is intermittent,
the electrolyzer, one of the costliest components of the system, operates at a fraction of its capacity. This low
utilization rate significantly penalizes economic performance, while grid connection would undermine the objective
of producing 100% green hydrogen.

A major achievement of this work has been the development of two computational models in Python, both based
on fixed-point iteration with temporal discretization. The first included a thermal dynamic description, which
for the first time in this context enabled the transient thermal behavior of a PEM electrolyzer to be simulated.
This led to the realization that thermal transients are negligible both in time and magnitude, justifying a second,
simplified model at constant temperature that drastically reduces computational cost.

Another important result is the demonstration of the framework’s ability to handle a large meteorological database
spanning 25 years, confirming Python’s suitability for data-intensive energy system analyses. The results proved
the reliability of the models when compared with manufacturer datasheets and literature, with polarization curves
and efficiencies consistent with reference data. On the economic side, the Levelized Cost of Hydrogen was found
to decrease steadily from around €5.5/kg in 2025 to just above €3/kg in 2050, values that align with market
expectations and indicate the future competitiveness of green hydrogen. Profitability, however, remains highly
dependent on external factors: only in favorable conditions, such as hydrogen prices around €8/kg or natural
gas prices near €2/m3, do the scenarios reach payback within the plant’s lifetime, with break-even achieved after
a few years in the most optimistic 2050 case, but remaining unattainable in the near term without additional
support.

Beyond the economic aspects, the environmental results are particularly significant. Over its 25-year operational
lifetime, the system would displace approximately 6.8 million cubic meters of methane and avoid nearly 13,800
tonnes of CO2, corresponding to about 692 kg of CO2 per square meter of PV panel. These figures highlight the
importance of green hydrogen in decarbonizing hard-to-abate sectors such as the glass industry, one of the most
polluting and least electrifiable sectors of all. The research thus demonstrates the dual role of computational
modeling: as a tool for understanding technical feasibility and as a means to quantify the environmental benefits
of renewable hydrogen integration. At the same time, it points out the limitations of the present work, such as the
exclusion of large-scale hydrogen storage from the economic analysis due to lack of reliable data and the absence
of direct experimental validation on a commercial electrolyzer. The study also confirms that under current cost
conditions, green hydrogen production is not yet economically viable without public incentives or regulatory sup-
port. Looking forward, the framework developed here provides a solid foundation for extensions that incorporate
industrial case studies beyond the H2Glass project and that evaluate the role of green hydrogen in enabling deep
decarbonization of energy-intensive processes. In conclusion, this thesis has shown that while technical feasibility
is already well established, economic viability requires both technological progress and supportive policies, and
that the deployment of hydrogen in hard-to-abate sectors can deliver substantial environmental benefits in the
transition to a sustainable energy future.
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10 Python code
System_parameters.py
import numpy as np
import math

# ==============================================================================
# CLASSE: SystemParameters
# Gestisce tutte le costanti fisiche e i parametri dell’impianto e dello storage.
# ==============================================================================
class SystemParameters:

def __init__(self):
# Costanti Fisiche
self.F = 96485 # Costante di Faraday (C/mol)
self.R = 8.314 # Costante dei gas ideali (J/(mol·K))
self.T = 333.15 # Temperatura di riferimento (K)

self.deltaG = 236480 # Energia libera di Gibbs standard (J/mol)
self.z = 2 # Numero di elettroni trasferiti
self.E0 = self.deltaG / (self.z * self.F) # Potenziale standard di cella (V)

# Parametri Impianto Elettrolizzatore
self.n_cells = 215 # Numero di celle nello stack
self.cell_area_cm2 = 85 * 85 # Area di una singola cella (cm^2)
self.cell_area_m2 = self.cell_area_cm2 / 1e4 # Area di una singola cella (m^2)
self.alpha_ca = 0.5 # Coefficiente di trasferimento di carica catodico
self.alpha_an = 2 # Coefficiente di trasferimento di carica anodico
self.i0_an = 2e-7 # Densità di corrente di scambio anodica (A/cm^2)
self.i0_ca = 2e-3 # Densità di corrente di scambio catodica (A/cm^2)

# PARAMETRI AGGIUSTATI PER COERENZA CON IL GRAFICO DI RIFERIMENTO
self.t_me_cm = 0.010 # Spessore della membrana elettrolitica (cm) - Modificato da 0.025
self.lambda_m = 16 # Conduttività protonica (S/cm) - Modificato da 14

self.t_me_m = self.t_me_cm / 100 # Spessore della membrana elettrolitica (m)

# Calcolo conduttività e resistenza della membrana
# La conduttività dipende dalla temperatura (T)
sigma_m_cm_calc = (0.005139 * self.lambda_m - 0.00326) * np.exp(1268 * (1 / 303 - 1 / self.T))
self.sigma_m_cm = max(sigma_m_cm_calc, 1e-6) # Assicura un valore minimo
self.sigma_m = self.sigma_m_cm * 1e2 # Conversione a S/m
self.R_ohm = self.t_me_m / self.sigma_m # Resistenza ohmica della membrana (ohm·m^2)

# Potere calorifico dell’idrogeno
self.LHV_H2 = 119900000 # Potere calorifico inferiore dell’idrogeno (J/kg)
self.HHV_H2 = 141600000 # Potere calorifico superiore dell’idrogeno (J/kg)

# Pressioni (costanti nel tempo)
self.P_H2Oan = 101325 # Pressione dell’acqua all’anodo (Pa)
self.P_H2Oca = 101325 # Pressione dell’acqua al catodo (Pa)
self.P_H2 = 30e5 # Pressione dell’idrogeno in uscita (Pa, 30 bar)
self.P_O2 = 30e5 # Pressione dell’ossigeno in uscita (Pa, 30 bar)

# Parametri Storage
self.M_H2 = 2.016 # Massa molare H2 (g/mol)
self.R_gas = 8.314 # Costante dei gas ideali (J/(mol·K)) - duplicato con R, ma per chiarezza
self.elementi = { # Proprietà degli elementi per l’idruro metallico

’Ti’: {’densita’: 4.5, ’peso_atomico’: 47.87, ’cp’: 523},
’Fe’: {’densita’: 7.87, ’peso_atomico’: 55.85, ’cp’: 449},
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’Mn’: {’densita’: 7.2, ’peso_atomico’: 54.94, ’cp’: 479}
}
self.composizione = {’Ti’: 1, ’Fe’: 0.85, ’Mn’: 0.05} # Composizione dell’idruro metallico
self.porosita = 0.3 # Porosità del letto di idruro metallico
self.wt_percent_H2 = 0.0184 # Percentuale in peso di H2 assorbito
self.mass_H2_max_kg = 200 # Capacità massima di stoccaggio H2 (kg)

# Calcolo proprietà idruro metallico
self.M_molare = sum(self.elementi[e][’peso_atomico’] * self.composizione[e] for e in self.composizione)
self.V_molare = sum(

(self.elementi[e][’peso_atomico’] * self.composizione[e]) / self.elementi[e][’densita’] for e in
self.composizione)

self.densita_teorica = self.M_molare / self.V_molare # Densità teorica (g/cm^3)

self.densita_effettiva = self.densita_teorica * 1000 * (1 - self.porosita) # Densità effettiva (kg/m^3)
self.cp_ponderato = sum(self.elementi[e][’cp’] * self.composizione[e] for e in self.composizione) / sum(

self.composizione[e] for e in self.composizione) # Calore specifico ponderato (J/kgK)

self.mass_MH_kg = (self.mass_H2_max_kg * 1000) / (
self.wt_percent_H2 * 1000) # Massa totale idruro metallico (kg)

self.volume_tank_m3 = self.mass_MH_kg / self.densita_effettiva # Volume del serbatoio (m^3)

self.DeltaH_ref = 32500 # Entalpia di reazione di riferimento (J/mol) - Desorbimento (endotermico)
self.T_ref = 298.15 # Temperatura di riferimento per DeltaH_ref (K)
self.DeltaCp_rxn = 0 # Differenza di calore specifico per la reazione (J/molK)
self.DeltaS = 100 # Entropia di reazione (J/molK) - Aggiunto per P_equilibrio

self.m_dot_acqua = 5 # Portata massica dell’acqua per lo scambio termico (kg/s)
self.cp_acqua = 4180 # Calore specifico dell’acqua (J/kgK)
# Temperature di ingresso del fluido termovettore (modificate per un migliore controllo)
self.T_in_cold = 25+273.15 # Temperatura ingresso acqua fredda (K) - 40°C
self.T_in_hot = 80+273.15 # Temperatura ingresso acqua calda (K) -

# Parametri JMA per la cinetica di assorbimento/desorbimento
self.m_jma = 0.55 # Esponente JMA per H2 puro
self.A_preexp = 7.3e4 # Prefattore di Arrhenius [h^(m)]
self.Ea = 22000 # Energia di attivazione [J/mol]

Photovoltaic_system.py
import numpy as np
import math
from system_parameters import SystemParameters

# ==============================================================================
# CLASSE: PhotovoltaicSystem
# Modella il comportamento del sistema fotovoltaico.
# ==============================================================================
class PhotovoltaicSystem:

def __init__(self, params: SystemParameters, time_s: np.ndarray):
self.params = params
self.time_s = time_s

# Parametri PV specifici
self.AreaPV=20000
self.etaPV=0.22
self.G_STC = 1000
self.P_PV_rated = self.AreaPV * self.etaPV * self.G_STC # Potenza nominale del campo FV (W)
self.f_PV = 0.9 # Fattore di derating FV
self.alpha_P = -0.004 # Coefficiente di temperatura della potenza FV (1/K)
self.T_c_STC = 25 # Temperatura di cella alle condizioni di test standard (°C)
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self.Preale = 2.5e6 # Potenza nominale massima accettata dall’elettrolizzatore (W)
self.eta_aux = 0.9 # Efficienza dei sistemi ausiliari FV

def calculate_irradiance_profile_sine(self, G_peak):
"""Calcola il profilo di irradianza sinusoidale."""
t_hr = self.time_s / 3600
return G_peak * np.maximum(0, np.sin(np.pi * (t_hr - 6) / 12))

def update_pv_power(self, G_t, T_amb):
"""
Calcola la potenza FV disponibile e la divide tra elettrolizzatore e rete.
Restituisce P_fv_to_electrolyzer, P_fv_to_grid e P_fvteorico.
"""
# Temperatura del modulo FV (modello semplice: lineare con T_amb)
T_c = T_amb + 0.03 * G_t

# Potenza FV aggiornata
P_fvteorico = self.f_PV * self.P_PV_rated * \

(G_t / self.G_STC) * \
(1 + self.alpha_P * (T_c - self.T_c_STC))

# Potenza disponibile considerando perdite dei sistemi ausiliari
P_fv = self.eta_aux * P_fvteorico

# Potenza effettiva FV all’elettrolizzatore (non oltre Preale)
P_fv_to_electrolyzer = np.minimum(P_fv, self.Preale)

# Surplus FV immesso in rete (se c’è)
P_fv_to_grid = np.maximum(P_fv - self.Preale, 0)

# Restituisce P_fv_to_electrolyzer, P_fv_to_grid e P_fvteorico
return P_fv_to_electrolyzer, P_fv_to_grid, P_fvteorico

Electrolyzer.py
import numpy as np
from system_parameters import SystemParameters

# ==============================================================================
# CLASSE: Electrolyzer
# Modella il comportamento dell’elettrolizzatore.
# ==============================================================================
class Electrolyzer:

def __init__(self, params: SystemParameters, time_s: np.ndarray):
self.params = params
self.time_s = time_s

# Preallocazione vettori di output
self.V_cell_t = np.zeros_like(time_s, dtype=float)
self.V_stack_t = np.zeros_like(time_s, dtype=float)
self.P_stack = np.zeros_like(time_s, dtype=float)
self.I_t = np.zeros_like(time_s, dtype=float)
self.m_H2 = np.zeros_like(time_s, dtype=float)
self.E_n_t = np.zeros_like(time_s, dtype=float)
self.V_an_t = np.zeros_like(time_s, dtype=float)
self.V_ca_t = np.zeros_like(time_s, dtype=float)
self.V_ohm_t = np.zeros_like(time_s, dtype=float)
self.eff_vec = np.zeros_like(time_s, dtype=float) # Efficienza istantanea

# Inizializzazione valori per il primo passo (o per i primi 10, come nell’originale)
# Questi valori verranno sovrascritti nel loop di simulazione
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self.V_cell_t[0] = 2.23
self.I_t[0] = 6239.76
self.m_H2[0] = 11

def simulate_step(self, k, P_fv_electrolyzer_k, V_prev):
"""
Simula un singolo passo dell’elettrolizzatore.
Aggiorna gli stati interni e restituisce il flusso di H2 prodotto.
"""
# Calcolo corrente e densità di corrente
# Evita divisione per zero se P_fv_electrolyzer_k è 0
if P_fv_electrolyzer_k <= 0 or self.params.n_cells * V_prev <= 0:

I = 0.0
else:

I = P_fv_electrolyzer_k / (self.params.n_cells * V_prev)

i = I / self.params.cell_area_m2
i_cm2 = i / 1e4
self.I_t[k] = I

# Se la densità di corrente è troppo bassa, non c’è produzione
if i < 0.0001:

self.V_cell_t[k] = V_prev
self.V_stack_t[k] = V_prev * self.params.n_cells
self.P_stack[k] = V_prev * self.params.n_cells * I
self.m_H2[k] = 0
self.eff_vec[k] = 0 # Efficienza zero se non c’è produzione
self.E_n_t[k] = 0.0 # Inizializza per evitare NaN
self.V_an_t[k] = 0.0
self.V_ca_t[k] = 0.0
self.V_ohm_t[k] = 0.0
return 0.0 # Ritorna flusso H2 nullo

# Calcolo efficienza di Faraday
i_loss = 0.01 * i_cm2
eta_F = 1 - i_loss / i_cm2

# Sovratensioni anodica e catodica (Butler-Volmer semplificata)
V_an = (self.params.R * self.params.T) / (2 * self.params.alpha_an * = =self.params.F)
* np.arcsinh(i_cm2 / (2 * self.params.i0_an))
V_ca = (self.params.R * self.params.T) / (2 * self.params.alpha_ca * = =self.params.F)
* np.arcsinh(i_cm2 / (2 * self.params.i0_ca))

# Potenziale di Nernst
E_n = self.params.E0 + (self.params.R * self.params.T) / (2 * self.params.F) * np.log((self.params.P_H2 * np.sqrt(self.params.P_O2)) / self.params.P_H2Oan)

# Tensione di cella e di stack
V_cell = E_n + V_an + V_ca + i * self.params.R_ohm
V_stack = V_cell * self.params.n_cells

# Aggiornamento vettori di output
self.V_cell_t[k] = V_cell
self.V_stack_t[k] = V_stack
self.P_stack[k] = V_stack * I

# Produzione di H2 (kg/s)
N_H2gen = self.params.n_cells * I / (2 * self.params.F) * eta_F
mH2 = N_H2gen * (self.params.M_H2 / 1000) # Converti g/mol a kg/mol
self.m_H2[k] = mH2
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# Salvataggio contributi di tensione
self.E_n_t[k] = E_n
self.V_an_t[k] = V_an
self.V_ca_t[k] = V_ca
self.V_ohm_t[k] = i * self.params.R_ohm

# Calcolo efficienza istantanea
potenza_H2 = mH2 * self.params.LHV_H2
potenza_PV = P_fv_electrolyzer_k if P_fv_electrolyzer_k > 0 else np.nan

if np.isfinite(potenza_PV) and potenza_PV > 0:
self.eff_vec[k] = (potenza_H2 / potenza_PV) * 100

else:
self.eff_vec[k] = np.nan

return mH2 # Ritorna il flusso di H2 prodotto

hydrogen_storage.py
import numpy as np
from system_parameters import SystemParameters

# ==============================================================================
# CLASSE: HydrogenStorage
# Modella il comportamento del sistema di stoccaggio dell’idrogeno a idruri metallici.
# ==============================================================================
class HydrogenStorage:

def __init__(self, params: SystemParameters, time_s: np.ndarray):
self.params = params
self.time_s = time_s

self.T_amb = 298.15 # Temperatura ambiente iniziale (K)
# Inizializzazione della temperatura del serbatoio alla temperatura ambiente
self.T_tank = self.T_amb # Temperatura iniziale del serbatoio (K)

self.H2_stored = 0.0 # Idrogeno inizialmente immagazzinato (kg)

# Preallocazione vettori di output
self.soc_vec = np.zeros_like(time_s, dtype=float)
self.H2_vec = np.zeros_like(time_s, dtype=float)
self.Q_termico_vec = np.zeros_like(time_s, dtype=float)
self.T_tank_vec = np.zeros_like(time_s, dtype=float)
self.flusso_assorbito_vec = np.zeros_like(time_s, dtype=float)
self.flusso_rilasciato_vec = np.zeros_like(time_s, dtype=float)

# Inizializzazione temperatura serbatoio in Celsius per output
self.T_tank_vec[:] = self.T_tank - 273.15 # Converti la temperatura iniziale in Celsius

# Variabili per la gestione della scarica dinamica
self.H2_stored_at_discharge_start = 0.0
self.discharge_target_rate = 0.0
self.discharge_phase_active = False # Flag per indicare l’inizio della fase di scarica

def deltaH_rxn(self, T):
"""Calcola l’entalpia di reazione in funzione della temperatura (entalpia di desorbimento)."""
# self.params.DeltaH_ref è positivo per il desorbimento (endotermico)
return self.params.DeltaH_ref + self.params.DeltaCp_rxn * (T - self.params.T_ref)

def P_equilibrio(self, T):
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"""Calcola la pressione di equilibrio (Van’t Hoff)."""
# Assicurati che T sia sempre positivo per evitare logaritmi di numeri negativi o zero
T_safe = max(T, 1e-6)
return np.exp(
(-self.params.DeltaH_ref / (self.params.R_gas * T_safe)) + (self.params.DeltaS / self.params.R_gas))

def k_Sieverts(self, T):
"""Calcola la costante di Sieverts."""
return np.sqrt(self.P_equilibrio(T))

def simulate_step(self, k, flusso_in_PEM, dt_sec):
"""
Simula un singolo passo del sistema di stoccaggio.
Aggiorna gli stati interni (H2_stored, T_tank) e restituisce i valori.
"""
# Flusso di H2 che tenta di entrare nello storage (metà del flusso PEM)
flusso_in_storage_from_pem = 0.5 * flusso_in_PEM

# =============================
# CINETICA BASATA SU MODELLO JMA
# =============================

# Temperatura attuale del serbatoio (in K)
T_eff = self.T_tank_vec[k - 1] + 273.15
T_eff = max(T_eff, 273.15) # Assicurati che la temperatura sia almeno 0°C (273.15 K)

# Calcolo di k(T) con legge di Arrhenius
k_jma = self.params.A_preexp * np.exp(-self.params.Ea / (self.params.R_gas * T_eff))

# Tempo cumulativo in ore (tempo dall’inizio della simulazione)
time_h = self.time_s[k] / 3600
time_h_safe = max(time_h, 1e-9) # Assicurati che time_h non sia zero

# Stato di carica attuale (alpha)
alpha_attuale = self.H2_stored / self.params.mass_H2_max_kg
alpha_attuale = np.clip(alpha_attuale, 1e-6, 0.9999) # Evita log(0) o log(negativo)

# Derivata d(alpha)/dt secondo JMA
ln_term = -np.log(1 - alpha_attuale)
if ln_term < 1e-9: # Gestione caso limite per evitare valori indefiniti

dalpha_dt = 0.0
else:

dalpha_dt = k_jma * self.params.m_jma * (time_h_safe ** (self.params.m_jma - 1)) * (
1 - alpha_attuale) * ln_term

# Tasso di assorbimento/desorbimento massimo (kg/s) basato sulla cinetica
flusso_jma_kinetic = (dalpha_dt * self.params.mass_H2_max_kg) / 3600

hour = (self.time_s[k] / 3600) % 24

flusso_assorbito = 0.0
flusso_rilasciato = 0.0

# Logica di carica/scarica basata sul profilo solare e cinetica
if 6 <= hour < 18: # Ore diurne: priorità all’assorbimento

if flusso_in_storage_from_pem > 0: # C’è H2 disponibile dall’elettrolizzatore
flusso_assorbito = min(flusso_in_storage_from_pem, flusso_jma_kinetic)

else:
flusso_assorbito = 0.0

self.discharge_phase_active = False # Reset flag per la scarica
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self.discharge_target_rate = 0.0 # Reset target rate

else: # Ore notturne: priorità alla scarica (18:00 - 06:00)
# Attiva la fase di scarica e calcola il tasso target solo all’inizio della fase
# e solo se c’è idrogeno da scaricare.
if not self.discharge_phase_active and self.H2_stored > 0:

self.H2_stored_at_discharge_start = self.H2_stored
# Calcola il tasso costante necessario per scaricare questa quantità in 12 ore
# Se H2_stored_at_discharge_start è 0, il tasso sarà 0, evitando divisione per 0.
self.discharge_target_rate = self.H2_stored_at_discharge_start / (12 * 3600)
self.discharge_phase_active = True

flusso_target_rilascio_notturno = self.discharge_target_rate

# Se il target rate non è stato impostato (es. no H2 stored at 18h), o è molto piccolo
if flusso_target_rilascio_notturno <= 1e-9: # Usa un valore minimo per evitare
scariche nulle se il target è quasi zero

flusso_target_rilascio_notturno = 0.0 # Se non c’è H2 o
il target è nullo, non scaricare

# Rilascia il minimo tra il target uniforme (dinamico), il tasso cinetico JMA
e l’H2 disponibile
if flusso_target_rilascio_notturno > 0: # Solo se c’è un target di scarica

flusso_rilasciato = min(flusso_target_rilascio_notturno,
flusso_jma_kinetic, self.H2_stored / dt_sec)

else:
flusso_rilasciato = 0.0

flusso_assorbito = 0.0

# Aggiorna quantità H2 immagazzinata
self.H2_stored += (flusso_assorbito - flusso_rilasciato) * dt_sec
self.H2_stored = max(0.0, min(self.H2_stored, self.params.mass_H2_max_kg))

# Aggiorna vettori di flusso
self.flusso_assorbito_vec[k] = flusso_assorbito
self.flusso_rilasciato_vec[k] = flusso_rilasciato

# =============================
# BILANCIO ENERGETICO SERBATOIO
# =============================
delta_H2_mass = (flusso_assorbito - flusso_rilasciato) * dt_sec
moles_H2_change = (delta_H2_mass * 1000) / self.params.M_H2 # Variazione moli H2

# Q_reaction_to_tank: calore trasferito dalla reazione al tank (positivo se tank
riceve calore, negativo se tank cede calore)
# self.deltaH_rxn(T) è l’entalpia di desorbimento (positiva, endotermica)
Q_reaction_to_tank = 0.0
if delta_H2_mass > 0: # Assorbimento (esotermico: rilascia calore al tank)

# Calore rilasciato dalla reazione esotermica è positivo per il tank
Q_reaction_to_tank = abs(moles_H2_change) * self.deltaH_rxn(self.T_tank)

elif delta_H2_mass < 0: # Desorbimento (endotermico: assorbe calore dal tank)
# Calore assorbito dalla reazione endotermica è negativo per il tank
Q_reaction_to_tank = -abs(moles_H2_change) * self.deltaH_rxn(self.T_tank)

# Calore scambiato con l’acqua (Q_HX_to_tank: positivo se tank riceve calore,
negativo se tank cede calore)
Q_HX_to_tank = 0.0
if delta_H2_mass > 0: # Fase di carica (assorbimento) - Il tank dovrebbe tendere a T_in_cold

# Se T_tank > T_in_cold, il tank cede calore all’acqua (Q_HX_to_tank negativo)
# Se T_tank < T_in_cold, l’acqua cede calore al tank (Q_HX_to_tank positivo)
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Q_HX_to_tank = self.params.m_dot_acqua * self.params.cp_acqua * (
self.params.T_in_cold - self.T_tank) * dt_sec

elif delta_H2_mass < 0: # Fase di scarica (desorbimento) - Il tank dovrebbe tendere a T_in_hot
# Se T_tank < T_in_hot, l’acqua cede calore al tank (Q_HX_to_tank positivo)
# Se T_tank > T_in_hot, il tank cede calore all’acqua (Q_HX_to_tank negativo)
Q_HX_to_tank = self.params.m_dot_acqua * self.params.cp_acqua * (

self.params.T_in_hot - self.T_tank) * dt_sec

# Bilancio energetico: variazione energia interna del tank = calore dalla reazione + calore dal HX
deltaE = Q_reaction_to_tank + Q_HX_to_tank

deltaT_tank = deltaE / (self.params.mass_MH_kg * self.params.cp_ponderato)
if self.params.mass_MH_kg > 0 else 0
self.T_tank += deltaT_tank

# Assicurati che la temperatura non scenda troppo o salga troppo
self.T_tank = np.clip(self.T_tank, 250, 450) # Min -23°C, max 177°C (LIMITI ALLENTATI)

# Energia immagazzinata chimicamente (LHV)
energy_stored_H2_chemical = self.H2_stored * self.params.LHV_H2

# === alla fine del ciclo, salvataggio ===
self.soc_vec[k] = self.H2_stored / self.params.mass_H2_max_kg * 100
self.H2_vec[k] = self.H2_stored
self.Q_termico_vec[k] = energy_stored_H2_chemical / 1e6 # Converti J a MJ
self.T_tank_vec[k] = self.T_tank - 273.15 # Converti K a °C

plotting.py
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from mpl_toolkits.mplot3d import Axes3D
from system_parameters import SystemParameters

# ==============================================================================
# CLASS: Plotting
# Manages the generation of all simulation plots.
# ==============================================================================
class Plotting:

def __init__(self, df: pd.DataFrame, params: SystemParameters, time_s: np.ndarray):
self.df = df
self.params = params
self.time_s = time_s

def _customize_xticks(self):
"""Helper function to customize X-axis labels."""
tick_locs = np.arange(6, 31, 6)
tick_labels = [str(int(t)) for t in tick_locs]

for i, loc in enumerate(tick_locs):
if loc == 24:

tick_labels[i] = ’24’
elif loc == 30:

tick_labels[i] = ’6’

plt.xticks(tick_locs, tick_labels)

def plot_pv_power(self, P_fvteorico: np.ndarray):
"""PLOT PV Power."""
plt.figure(figsize=(10, 5))
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plt.plot(self.df["Time_h"], P_fvteorico / 1e6, label="PV Power")
plt.xlabel("Time [h]")
plt.ylabel("PV Power [MW]")
plt.title("Photovoltaic Power over time")
plt.grid(True)
plt.legend()
plt.tight_layout()
plt.xlim(6, 30)
self._customize_xticks()

def plot_current(self):
"""Electric Current - Solar Profile."""
plt.figure(figsize=(10, 5))
plt.plot(self.df["Time_h"], self.df["I_A"])
plt.title("Electric Current - Solar Profile")
plt.xlabel("Time [h]")
plt.ylabel("Current [A]")
plt.ylim(0, 10000)
plt.yticks(np.arange(0, 10001, 2000))
plt.grid()
plt.tight_layout()
plt.xlim(6, 30)
self._customize_xticks()

def plot_h2_instantaneous_production(self):
"""Instantaneous H Production [g/s]."""
plt.figure(figsize=(10, 5))
plt.plot(self.df["Time_h"], self.df["H2_flow_g_s"])
plt.title("Instantaneous H Production")
plt.xlabel("Time [h]")
plt.ylabel("H Flow [g/s]")
plt.ylim(0, 20)
plt.yticks(np.arange(0, 21, 2))
plt.grid()
plt.tight_layout()
plt.xlim(6, 30)
self._customize_xticks()

def plot_h2_cumulative_production(self):
"""Cumulative H Production [kg]."""
plt.figure(figsize=(10, 5))
plt.plot(self.df["Time_h"], self.df["H2_total_kg"])
plt.title("Cumulative H Production")
plt.xlabel("Time [h]")
plt.ylabel("Cumulative H Mass [kg]")
plt.grid()
plt.tight_layout()
plt.xlim(6, 30)
self._customize_xticks()

def plot_electrical_energy_cumulative(self):
"""Cumulative Electrical Energy [MWh]."""
plt.figure(figsize=(10, 5))
plt.plot(self.df["Time_h"], self.df["Energy_el_MWh"], label="Electrical Energy Consumed")
plt.title("Cumulative Electrical Energy Consumed")
plt.xlabel("Time [h]")
plt.ylabel("Cumulative Electrical Energy [MWh]")
plt.grid(True)
plt.tight_layout()
plt.xlim(6, 30)
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self._customize_xticks()

def plot_electrolyzer_efficiency(self):
"""Electrical Efficiency [%] ( 100 %), excluding NaN and zeros."""
plt.figure(figsize=(10, 5))
df_clean = self.df[(self.df["Efficiency_percent"].notna()) & (self.df["Efficiency_percent"] > 0)]
plt.plot(df_clean["Time_h"], df_clean["Efficiency_percent"], label="Efficiency")
plt.axhline(100, color=’gray’, linestyle=’--’, label="100 %")
plt.ylim(0, 100)
plt.title("Electrolyzer Efficiency over time")
plt.xlabel("Time [h]")
plt.ylabel("Efficiency [%]")
plt.legend()
plt.grid()
plt.tight_layout()
plt.xlim(6, 30)
self._customize_xticks()

def plot_pem_cell_voltage(self):
"""PEM Cell Voltage (production only)."""
plt.figure(figsize=(10, 5))
mask = self.df["I_A"] > 1e-6
plt.plot(self.df["Time_h"][mask], self.df["V_cell_V"][mask], label="V_cell")
plt.title("PEM Cell Voltage (production only)")
plt.xlabel("Time [h]")
plt.ylabel("Cell Voltage [V]")
plt.ylim(1, 3)
plt.yticks(np.arange(1, 3, 0.2))
plt.legend()
plt.grid()
plt.tight_layout()
plt.xlim(6, 30)
self._customize_xticks()

def plot_polarization_curve(self):
"""Polarization Curve: Nominal vs Real."""
i_range = np.linspace(0.01, 2.0, 200)

# === Common Parameters ===
T_nom = 25 + 273.15
T_real = self.params.T
lambda_m = self.params.lambda_m
t_me_cm = self.params.t_me_cm
R_gas = self.params.R_gas
F = self.params.F
alpha_an = self.params.alpha_an
alpha_ca = self.params.alpha_ca
i0_an = self.params.i0_an
i0_ca = self.params.i0_ca
E0 = self.params.E0

# === Pressures ===
P_std = 101325
P_H2_real = self.params.P_H2
P_O2_real = self.params.P_O2
P_H2O = self.params.P_H2Oan

# === Curve at Nominal Conditions (1 atm, 25°C) ===
sigma_nom = (0.005139 * lambda_m - 0.00326) * np.exp(1268 * (1 / 303 - 1 / T_nom))
R_ohm_nom_calc = t_me_cm / sigma_nom
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E_n_nom = E0 + (R_gas * T_nom) / (2 * F) * np.log((P_std * np.sqrt(P_std)) / P_std)
V_an_nom = (R_gas * T_nom) / (2 * alpha_an * F) * np.arcsinh(i_range / (2 * i0_an))
V_ca_nom = (R_gas * T_nom) / (2 * alpha_ca * F) * np.arcsinh(i_range / (2 * i0_ca))
V_ohm_nom = i_range * R_ohm_nom_calc
V_cell_nom = E_n_nom + V_an_nom + V_ca_nom + V_ohm_nom

# === Curve at Real Conditions (30 bar, 60°C) ===
sigma_real = (0.005139 * lambda_m - 0.00326) * np.exp(1268 * (1 / 303 - 1 / T_real))
R_ohm_real_calc = t_me_cm / sigma_real
E_n_real = E0 + (R_gas * T_real) / (2 * F) * np.log((P_H2_real * np.sqrt(P_O2_real)) / P_H2O)
V_an_real = (R_gas * T_real) / (2 * alpha_an * F) * np.arcsinh(i_range / (2 * i0_an))
V_ca_real = (R_gas * T_real) / (2 * alpha_ca * F) * np.arcsinh(i_range / (2 * i0_ca))
V_ohm_real = i_range * R_ohm_real_calc
V_cell_real = E_n_real + V_an_real + V_ca_real + V_ohm_real

# === Plot ===
plt.figure(figsize=(10, 5))
plt.plot(i_range, V_cell_nom, label="Nominal Conditions (1 atm, 25°C)")
plt.plot(i_range, V_cell_real, label="Operating Conditions (30 bar, 60°C)")
plt.title("Polarization Curve: Nominal vs Real")
plt.xlabel("Current Density [A/cm²]")
plt.ylabel("Cell Voltage [V]")
plt.grid()
plt.legend()
plt.tight_layout()
plt.xlim(i_range.min(), i_range.max())

def plot_energy_comparison(self):
"""Comparison of Electrical and H Energy [MWh]."""
plt.figure(figsize=(10, 5))
plt.plot(self.df["Time_h"], self.df["Energy_el_MWh"], label="Electrical Energy Consumed")
plt.plot(self.df["Time_h"], self.df["Energy_H2_LHV_MWh"], label="H (LHV)")
plt.plot(self.df["Time_h"], self.df["Energy_H2_HHV_MWh"], label="H (HHV)")
plt.title("Cumulative Energy Comparison")
plt.xlabel("Time [h]")
plt.ylabel("Cumulative Energy [MWh]")
plt.legend()
plt.grid()
plt.tight_layout()
plt.xlim(6, 30)
self._customize_xticks()

def plot_stack_temperature(self):
"""Stack Temperature [°C]."""
plt.figure(figsize=(10, 5))
plt.plot(self.df["Time_h"], self.df["T_stack_K"] - 273.15, ’r-’)
plt.title("Stack Temperature over time")
plt.xlabel("Time [h]")
plt.ylabel("Temperature [°C]")
plt.grid()
plt.tight_layout()
plt.xlim(6, 30)
self._customize_xticks()

def plot_polarization_curves_3d(self):
"""3D Polarization Curves during the day."""
i_range = np.linspace(0.01, 2.0, 100)
time_vals_continuous = self.time_s / 3600
mask_time = (time_vals_continuous >= 6) & (time_vals_continuous <= 30)
time_vals_plot = time_vals_continuous[mask_time]
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V_curves = []
start_idx = np.where(time_vals_continuous >= 6)[0][0]
end_idx = np.where(time_vals_continuous <= 30)[0][-1] + 1
num_points_3d = 100
step_3d = max(1, int((end_idx - start_idx) / num_points_3d))
selected_indices = np.arange(start_idx, end_idx, step_3d)

for idx in selected_indices:
T = self.df["T_stack_K"].iloc[idx]
sigma = (0.005139 * self.params.lambda_m - 0.00326) * np.exp(1268 * (1 / 303 - 1 / T))
R_ohm_calc = self.params.t_me_cm / sigma
V_act_an = (self.params.R * T) / (2 * self.params.alpha_an * self.params.F) =
=* np.arcsinh(i_range / (2 * self.params.i0_an))
V_act_ca = (self.params.R * T) / (2 * self.params.alpha_ca * self.params.F) =
=* np.arcsinh(i_range / (2 * self.params.i0_ca))
V_ohm = i_range * R_ohm_calc
E_n = self.params.E0 + (self.params.R * T) / (2 * self.params.F) =
= * np.log((self.params.P_H2 * np.sqrt(self.params.P_O2)) / self.params.P_H2Oan)
V_curves.append(E_n + V_act_an + V_act_ca + V_ohm)

n_curves = len(V_curves)
colors = cm.viridis(np.linspace(0, 1, n_curves))
fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection=’3d’)
ax.set_xlabel("Current Density [A/cm²]")
ax.set_ylabel("Time [h]")
ax.set_zlabel("Cell Voltage [V]")
ax.set_title("Polarization Curves during the day")
ax.set_xlim(i_range.min(), i_range.max())
ax.set_ylim(time_vals_continuous[selected_indices].min(), time_vals_continuous[selected_indices].max())
ax.set_zlim(

min(curve.min() for curve in V_curves),
max(curve.max() for curve in V_curves)

)

for j, curve in enumerate(V_curves):
t = time_vals_continuous[selected_indices[j]]
y = np.full_like(i_range, t)
ax.plot(i_range, y, curve, color=colors[j], linewidth=1)

sm = cm.ScalarMappable(cmap="viridis",
norm=plt.Normalize(vmin=time_vals_continuous[selected_indices].min(),

vmax=time_vals_continuous[selected_indices].max()))
sm.set_array([])
cbar = fig.colorbar(sm, ax=ax, pad=0.1, aspect=10)
cbar.set_label("Time")
plt.tight_layout()

def plot_h2_stored(self):
"""H2 stored [kg]."""
plt.figure(figsize=(10, 5))
plt.plot(self.df["Time_h"], self.df["H2_Stored_kg"])
plt.title("H2 stored")
plt.xlabel("Time [h]")
plt.ylabel("H2 stored [kg]")
plt.grid(True)
plt.tight_layout()
plt.xlim(6, 30)
self._customize_xticks()
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def plot_soc_storage(self):
"""H2 Storage SoC Trend."""
plt.figure(figsize=(10, 5))
plt.plot(self.df["Time_h"], self.df["SoC_percent"], label="SoC (%)")
plt.xlabel("Time [h]")
plt.ylabel("State of Charge (%)")
plt.title("H2 Storage State of Charge Trend")
plt.grid(True)
plt.legend()
plt.tight_layout()
plt.xlim(6, 30)
self._customize_xticks()

def plot_tank_temperature(self):
"""Tank Temperature over Time."""
plt.figure(figsize=(10, 5))
plt.plot(self.df["Time_h"], self.df["T_tank_C"], label="Tank Temperature (°C)", color=’orange’)
plt.xlabel("Time [h]")
plt.ylabel("Temperature (°C)")
plt.title("Tank Temperature over Time")
plt.grid(True)
plt.legend()
plt.tight_layout()
plt.xlim(6, 30)
self._customize_xticks()

def plot_kinetic_constant_k(self):
"""Kinetic constant k(T) over time."""
T_k_array = self.df["T_tank_C"].values + 273.15
T_k_array = np.maximum(T_k_array, 1e-6)
k_jma_vec = self.params.A_preexp * np.exp(-self.params.Ea / (self.params.R_gas * T_k_array))

plt.figure(figsize=(10, 5))
plt.plot(self.df["Time_h"], k_jma_vec, label="k(T) [h$^{-m}$]")
plt.xlabel("Time [h]")
plt.ylabel("k [h$^{-m}$]")
plt.title("Kinetic constant k(T) over time")
plt.grid(True)
plt.legend()
plt.tight_layout()
plt.xlim(6, 30)
self._customize_xticks()

def plot_soc_hydrode(self):
"""Hydride State of Charge."""
plt.figure(figsize=(10, 5))
plt.plot(self.df["Time_h"], self.df["SoC_percent"], label="State of Charge [%]")
plt.xlabel("Time [h]")
plt.ylabel("SoC [%]")
plt.title("Hydride State of Charge")
plt.grid(True)
plt.legend()
plt.tight_layout()
plt.xlim(6, 30)
self._customize_xticks()

def plot_tank_temperature_hydrode(self):
"""Tank Temperature Trend."""
plt.figure(figsize=(10, 5))
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plt.plot(self.df["Time_h"], self.df["T_tank_C"], label="Tank Temp. [°C]")
plt.xlabel("Time [h]")
plt.ylabel("Temperature [°C]")
plt.title("Tank Temperature Trend")
plt.grid(True)
plt.legend()
plt.tight_layout()
plt.xlim(6, 30)
self._customize_xticks()

def plot_thermal_energy_stored(self):
"""Energy stored in the storage system."""
plt.figure(figsize=(10, 5))
plt.plot(self.df["Time_h"], self.df["Q_termico_MJ"], label="Thermal Energy [MJ]")
plt.xlabel("Time [h]")
plt.ylabel("Thermal Energy [MJ]")
plt.title("Energy stored in the storage system")
plt.grid(True)
plt.legend()
plt.tight_layout()
plt.xlim(6, 30)
self._customize_xticks()

def show_all_plots(self):
"""Shows all generated plots."""
plt.show()

Main.py
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import math

# Importa le classi dai rispettivi file
from system_parameters import SystemParameters
from photovoltaic_system import PhotovoltaicSystem
from electrolyzer import Electrolyzer
from hydrogen_storage import HydrogenStorage
from plotting import Plotting # Importa la nuova classe Plotting

# ==============================================================================
# FUNZIONE MAIN
# Orchesta la simulazione, inizializza le classi e gestisce il loop temporale.
# ==============================================================================
def main():

# 1. Inizializzazione Parametri di Sistema
params = SystemParameters()

# Parametri Tempo
dt_sec = 60 # Intervallo di tempo (secondi)
# Modifica qui: la simulazione inizia alle 6 del mattino e dura 24 ore (fino alle 6 del giorno successivo)
time_start_sec = 6 * 3600 # Inizia alle 6 del mattino in secondi
time_end_sec = (6 + 24) * 3600 # Termina alle 6 del mattino del giorno successivo in secondi
time_s = np.arange(time_start_sec, time_end_sec, dt_sec) # Array del tempo per 24 ore

# Parametri Ambientali
T_amb = 23.8 # Temperatura ambiente (°C)

# Input Irradianza
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irradianza_mensile_mj = 655.505 # MJ/m²/mese
giorni_mese = 30
ore_sole = 12
fattore_seno = (math.pi / 4) * ore_sole
mj_giorno = irradianza_mensile_mj / giorni_mese
kwh_giorno = mj_giorno * 0.27778
G_peak = kwh_giorno / fattore_seno * 1000 # Potenza di picco (W/m^2)

print(f"Irradianza di picco calcolata (G_peak): {G_peak:.2f} W/m²")

# 2. Inizializzazione Classi di Modello
pv_system = PhotovoltaicSystem(params, time_s)
electrolyzer = Electrolyzer(params, time_s)
storage = HydrogenStorage(params, time_s)

# Calcolo profilo di irradianza
# --- Invece di calcolare un profilo sinusoidale, usa l’irradianza fissa ---
fixed_irradiance_W_m2 = 1000
#G_t = np.full_like(time_s, fixed_irradiance_W_m2, dtype=float)
# --- FINE MODIFICA ---
G_t = pv_system.calculate_irradiance_profile_sine(G_peak)

# Calcolo potenza FV per ogni istante di tempo
P_fv_to_electrolyzer, P_fv_to_grid, P_fvteorico = pv_system.update_pv_power(G_t, T_amb)

# Inizializzazione per il loop
V_prev = electrolyzer.V_cell_t[0] # Usa il valore iniziale preallocato

# 3. Loop di Simulazione
for k in range(1, len(time_s)):

# Simula l’elettrolizzatore
# V_prev è la tensione di cella del passo precedente
flusso_in_PEM = electrolyzer.simulate_step(k, P_fv_to_electrolyzer[k], V_prev)
V_prev = electrolyzer.V_cell_t[k] # Aggiorna V_prev per il prossimo passo

# Simula lo storage
storage.simulate_step(k, flusso_in_PEM, dt_sec)

# Fissa i primi 10 valori iniziali uguali al valore all’undicesima iterazione (index 10)
# Questo è un workaround per allinearsi al comportamento del codice originale.
# In una simulazione più robusta, i primi valori dovrebbero essere calcolati o
# inizializzati correttamente.
for k in range(10):

electrolyzer.I_t[k] = electrolyzer.I_t[10]
electrolyzer.P_stack[k] = electrolyzer.P_stack[10]
electrolyzer.V_cell_t[k] = electrolyzer.V_cell_t[10]
electrolyzer.V_stack_t[k] = electrolyzer.V_stack_t[10]
electrolyzer.m_H2[k] = electrolyzer.m_H2[10]
electrolyzer.eff_vec[k] = electrolyzer.eff_vec[10]
storage.soc_vec[k] = storage.soc_vec[10]
storage.H2_vec[k] = storage.H2_vec[10]
storage.Q_termico_vec[k] = storage.Q_termico_vec[10]
storage.T_tank_vec[k] = storage.T_tank_vec[10]
storage.flusso_assorbito_vec[k] = storage.flusso_assorbito_vec[10]
storage.flusso_rilasciato_vec[k] = storage.flusso_rilasciato_vec[10]

# 4. Elaborazione e Salvataggio Risultati Finali
m_H2_cum = np.cumsum(electrolyzer.m_H2 * dt_sec)
E_stack = np.cumsum(electrolyzer.P_stack * dt_sec)
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T_nom_arr = np.full_like(time_s, params.T) # Temperatura nominale (costante)

df = pd.DataFrame({
# Calcola Time_h in modo continuo per il plotting
"Time_h": time_s / 3600,
"I_A": electrolyzer.I_t,
"V_cell_V": electrolyzer.V_cell_t,
"V_stack_V": electrolyzer.V_stack_t,
"T_stack_K": T_nom_arr,
"H2_flow_kg_s": electrolyzer.m_H2,
"H2_flow_g_s": electrolyzer.m_H2 * 1000,
"H2_total_kg": m_H2_cum,
"Energy_H2_LHV_MWh": (m_H2_cum * params.LHV_H2) / 3.6e9,
"Energy_H2_HHV_MWh": (m_H2_cum * params.HHV_H2) / 3.6e9,
"Energy_el_MWh": E_stack / 3.6e9,
"Efficiency_percent": electrolyzer.eff_vec,
"H2_Stored_kg": storage.H2_vec,
"SoC_percent": storage.soc_vec,
"Q_termico_MJ": storage.Q_termico_vec,
"T_tank_C": storage.T_tank_vec,
"E_n_V": electrolyzer.E_n_t,
"V_an_V": electrolyzer.V_an_t,
"V_ca_V": electrolyzer.V_ca_t,
"V_ohm_V": electrolyzer.V_ohm_t,
"P_stack_W": electrolyzer.P_stack,
"H2_cum_kg": m_H2_cum,
"H2_abs_kg_s": storage.flusso_assorbito_vec,
"H2_rel_kg_s": storage.flusso_rilasciato_vec,
"P_H2_bar": params.P_H2 / 1e5 # Converti Pa a bar

})

print("\nSimulazione completata. Prime 5 righe del DataFrame dei risultati:")
print(df.head())

# 5. Visualizzazione (Esempio) - Ora gestita dalla classe Plotting
plotter = Plotting(df, params, time_s) # Passiamo time_s originale per la cinetica JMA se necessario

plotter.plot_pv_power(P_fvteorico)
plotter.plot_current()
plotter.plot_h2_instantaneous_production()
plotter.plot_h2_cumulative_production()
plotter.plot_electrical_energy_cumulative()
plotter.plot_electrolyzer_efficiency()
plotter.plot_pem_cell_voltage()
plotter.plot_polarization_curve()
plotter.plot_energy_comparison()
plotter.plot_stack_temperature()
plotter.plot_polarization_curves_3d()
plotter.plot_h2_stored()
plotter.plot_soc_storage()
plotter.plot_tank_temperature()
plotter.plot_kinetic_constant_k()
plotter.plot_soc_hydrode()
plotter.plot_tank_temperature_hydrode()
plotter.plot_thermal_energy_stored()

# Chiamata singola a plt.show() per visualizzare tutti i grafici
plotter.show_all_plots()

# DEBUG PRODUZIONE H2 E STACK - Rimangono qui in main
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print("\n--- DEBUG PRODUZIONE H2 E STACK ---")
print(f"Corrente media stack [A]: {np.mean(electrolyzer.I_t):.2f}")
print(f"Densita di corrente [A/cm2]: {np.mean(electrolyzer.I_t) / params.cell_area_cm2:.2f}")
print(f"Tensione media cella [V]: {np.mean(electrolyzer.V_cell_t):.4f}")
print(f"E0 [V]: {params.E0:.4f}") # E0 è costante, non ha senso mediare
print(f"V_an [V]: {np.mean(electrolyzer.V_an_t):.4f}")
print(f"V_ca [V]: {np.mean(electrolyzer.V_ca_t):.4f}")
print(f"Tensione media stack [V]: {np.mean(electrolyzer.V_stack_t):.2f}")
print(f"Potenza media assorbita [MW]: {np.mean(electrolyzer.P_stack) / 1e6:.3f}")
print(f"Produzione totale H2 [kg/g]: {np.sum(electrolyzer.m_H2) * dt_sec :.2f}")
print(f"Efficienza media [%]: {np.nanmean(electrolyzer.eff_vec):.2f}")

if __name__ == "__main__":
main()

Idrogeno 2023.py
import numpy as np
import matplotlib.pyplot as plt
import math

from system_parameters import SystemParameters
from photovoltaic_system import PhotovoltaicSystem
from electrolyzer import Electrolyzer
from hydrogen_storage import HydrogenStorage

def simulate_yearly_production():
# Monthly data: average temperature (°C) and global irradiance (MJ/m²/month)
T_media_C = [6.2, 5.5, 10.1, 11.9, 18.2, 22.6, 24.4, 23.8, 21.3, 16.9, 8.5, 5.8]
irradianza_mensile_MJ = [144.571, 245.137, 403.169, 529.804, 596.424, 771.272,

795.202, 655.505, 537.152, 317.604, 215.314, 141.824]
giorni_mese = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
mesi = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]

# Time parameters and constants
dt_sec = 60
time_start_sec = 6 * 3600
time_end_sec = (6 + 24) * 3600
time_s = np.arange(time_start_sec, time_end_sec, dt_sec)
ore_sole = 12
params = SystemParameters()

produzione_mensile_kg = []

for mese_idx in range(12):
T_amb = T_media_C[mese_idx]
irradianza_mj = irradianza_mensile_MJ[mese_idx]
giorni = giorni_mese[mese_idx]

# Calculate G_peak
fattore_seno = (math.pi / 4) * ore_sole
mj_giorno = irradianza_mj / giorni
kwh_giorno = mj_giorno * 0.27778
G_peak = kwh_giorno / fattore_seno * 1000

# Initialize components
pv_system = PhotovoltaicSystem(params, time_s)
electrolyzer = Electrolyzer(params, time_s)
storage = HydrogenStorage(params, time_s)



129

# Irradiance and PV power
G_t = pv_system.calculate_irradiance_profile_sine(G_peak)
P_fv_to_electrolyzer, _, _ = pv_system.update_pv_power(G_t, T_amb)

# Daily simulation
V_prev = electrolyzer.V_cell_t[0]
for k in range(1, len(time_s)):

flusso_in_PEM = electrolyzer.simulate_step(k, P_fv_to_electrolyzer[k], V_prev)
V_prev = electrolyzer.V_cell_t[k]
storage.simulate_step(k, flusso_in_PEM, dt_sec)

# Align initial values (workaround)
for k in range(10):

electrolyzer.I_t[k] = electrolyzer.I_t[10]
electrolyzer.P_stack[k] = electrolyzer.P_stack[10]
electrolyzer.V_cell_t[k] = electrolyzer.V_cell_t[10]
electrolyzer.V_stack_t[k] = electrolyzer.V_stack_t[10]
electrolyzer.m_H2[k] = electrolyzer.m_H2[10]
electrolyzer.eff_vec[k] = electrolyzer.eff_vec[10]
storage.soc_vec[k] = storage.soc_vec[10]
storage.H2_vec[k] = storage.H2_vec[10]
storage.Q_termico_vec[k] = storage.Q_termico_vec[10]
storage.T_tank_vec[k] = storage.T_tank_vec[10]
storage.flusso_assorbito_vec[k] = storage.flusso_assorbito_vec[10]
storage.flusso_rilasciato_vec[k] = storage.flusso_rilasciato_vec[10]

produzione_giornaliera_kg = np.sum(electrolyzer.m_H2) * dt_sec
produzione_mese = produzione_giornaliera_kg * giorni
produzione_mensile_kg.append(produzione_mese)

print(f"{mesi[mese_idx]}: {produzione_mese:.2f} kg H2")

produzione_annua = sum(produzione_mensile_kg)
print(f"\nTotal annual hydrogen production: {produzione_annua:.2f} kg")

# Monthly chart
plt.figure()
plt.bar(mesi, produzione_mensile_kg) # Use ’mesi’ (months) for x-axis labels
plt.ylabel("Monthly H production [kg]")
plt.title("Monthly hydrogen production (daily simulation multiplied)")
plt.grid(True)
plt.tight_layout()
plt.show()

if __name__ == "__main__":
simulate_yearly_production()

CO2 e Methane reduction.py
import matplotlib.pyplot as plt
import pandas as pd

# === Energy constants ===
PCS_CH4 = 10.7 # kWh/Sm3 of methane
PCS_H2 = 33.33 # kWh/kg of hydrogen
CO2_EMISSION_FACTOR_CH4 = 2.024 # kg CO2/Sm3 of methane

# === Annual methane consumption ===
annual_methane_consumption_m3 = 84543271 # m3/year

# === Annual usable hydrogen data (in kg) ===
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hydrogen_data = {
1999: 86448.00, 2000: 89031.41, 2001: 88248.87, 2002: 84655.52, 2003: 95330.74,
2004: 87515.27, 2005: 90784.62, 2006: 90670.98, 2007: 86031.65, 2008: 80481.18,
2009: 86001.51, 2010: 82565.70, 2011: 90774.72, 2012: 90623.63, 2013: 84628.54,
2014: 83264.19, 2015: 87259.07, 2016: 82839.69, 2017: 87362.69, 2018: 82771.75,
2019: 85675.20, 2020: 92257.90, 2021: 92154.50, 2022: 94091.86, 2023: 92663.52

}
# === Calculation of results for each year ===
results = []
for year, h2_kg in hydrogen_data.items():

h2_energy_kwh = h2_kg * PCS_H2
methane_saved_m3 = h2_energy_kwh / PCS_CH4
co2_avoided_tonnes = (methane_saved_m3 * CO2_EMISSION_FACTOR_CH4) / 1000
results.append({

"Year": year,
"H2_kg": h2_kg,
"Methane_Saved_m3": methane_saved_m3,
"CO2_Avoided_tonnes": co2_avoided_tonnes

})

# === DataFrame creation ===
df = pd.DataFrame(results)

# === Totals over 25 years ===
total_methane_saved = df["Methane_Saved_m3"].sum()
total_co2_avoided = df["CO2_Avoided_tonnes"].sum()

print(f"Total methane saved: {total_methane_saved:,.0f} m³")
print(f"Total CO avoided: {total_co2_avoided:,.0f} tonnes")

# === Plot: Methane saved ===
plt.figure(figsize=(12, 6))
plt.bar(df["Year"], df["Methane_Saved_m3"], color=’orange’)
plt.xlabel("Year")
plt.ylabel("Methane saved (m³)")
plt.title("Annual reduction in methane consumption due to H substitution")
plt.grid(True)
plt.tight_layout()
plt.show()

# === Plot: CO2 avoided ===
plt.figure(figsize=(12, 6))
plt.bar(df["Year"], df["CO2_Avoided_tonnes"], color=’green’)
plt.xlabel("Year")
plt.ylabel("CO avoided (tonnes)")
plt.title("CO emissions avoided annually due to H substitution")
plt.grid(True)
plt.tight_layout()
plt.show()

Cost Analysis.py

import numpy as np
import matplotlib.pyplot as plt

# ==============================================================================
# MODIFIABLE ECONOMIC PARAMETERS
# Modify these values to change scenarios and prices
# ==============================================================================
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# Plant power (kW)
PV_kW = 4400 # Peak power of the photovoltaic system in kW
PEM_kW = 2500 # Nominal power of the PEM electrolyzer in kW

# Market prices
price_CH4 = 2 # €/m³ - Price of saved methane
price_H2_market = 4 # €/kg H2 - Selling price of hydrogen on the market

# Discount rate
discount_rate = 0.049 # Real discount rate

# --- Scenario 2025 Parameters ---
capex_PV_2025_per_kW = 1200 # €/kW
capex_PEM_2025_per_kW = 1500 # €/kW
opex_PV_2025_per_kW_per_year = 24 # €/kW/year
opex_PEM_2025_perc_capex = 0.03 # % of CAPEX_PEM
replacement_PEM_2025_perc_capex = 0 # Replacement cost of the PEM electrolyzer

# --- Scenario 2030 Parameters ---
capex_PV_2030_per_kW = 1000 # €/kW (reduced compared to 2025)
capex_PEM_2030_per_kW = 1000 # €/kW
opex_PV_2030_per_kW_per_year = 24 # €/kW/year
opex_PEM_2030_perc_capex = 0.03 # % of CAPEX_PEM
replacement_PEM_2030_perc_capex = 0

# --- Scenario 2050 Parameters (Added) ---
# Hypothetical values based on the reduction trend
capex_PV_2050_per_kW = 600 # €/kW
capex_PEM_2050_per_kW = 800 # €/kW
opex_PV_2050_per_kW_per_year = 24 # €/kW/year (assuming further reduction)
opex_PEM_2050_perc_capex = 0.02 # % of CAPEX_PEM (assuming further reduction)
replacement_PEM_2050_perc_capex = 0 # No replacement cost

# ==============================================================================
# END OF MODIFIABLE PARAMETERS
# ==============================================================================

def calculate_LCOE_LCOH(
avg_annual_energy_kWh,
total_H2_kg,
capex_PV,
capex_PEM,
opex_PV,
opex_PEM,
replacement_PEM,
years=25,
discount_rate=0.049

):
"""
Calculates the LCOE, LCOH, and NPC for a given scenario.
"""
CAPEX = capex_PV + capex_PEM
year_array = np.arange(1, years + 1)

annual_OPEX = opex_PV + opex_PEM
discounted_OPEX = annual_OPEX / (1 + discount_rate) ** year_array

discounted_RC = np.zeros(years)
if replacement_PEM > 0 and years > 5:
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discounted_RC[4] = replacement_PEM / (1 + discount_rate) ** 5

NPC = CAPEX + np.sum(discounted_OPEX + discounted_RC)

discounted_energy = (avg_annual_energy_kWh/1000) / (1 + discount_rate) ** year_array
total_discounted_energy = np.sum(discounted_energy)
LCOE = NPC / total_discounted_energy

LCOH = NPC / total_H2_kg

return LCOE, LCOH, NPC, discounted_energy, discounted_OPEX + discounted_RC, CAPEX

# Production data (does not vary between scenarios)
avg_annual_energy_kWh = 3972933.82 # Average annual PV production (kWh)
total_H2_kg = 2194132.725 # Total H2 production over 25 years (kg)

# Years for economic analysis
years_for_economic_analysis = np.arange(1, 26)

# Saved methane data
metano_risparmiato_m3 = [

270000, 280000, 265000, 275000, 295000,
285000, 278000, 268000, 250000, 260000,
288000, 276000, 270000, 265000, 258000,
260000, 275000, 268000, 262000, 255000,
285000, 289000, 290000, 292000, 288000

]

guadagni_metano_risparmiato = np.array(metano_risparmiato_m3) * price_CH4 # €/year

# Function to calculate Payback Period
def calculate_payback_npv(capex, opex, revenues_per_year, years, discount_rate):

npv_series = np.zeros(len(years) + 1)
npv_series[0] = -capex # Initial cost (CAPEX) at year 0
for i in range(len(years)):

year_idx = i + 1
discount_factor = (1 + discount_rate) ** year_idx
net_flow = (revenues_per_year[i] - opex) / discount_factor
npv_series[year_idx] = npv_series[year_idx-1] + net_flow

return npv_series[1:]

# Function to find the break-even year
def find_break_even_year(npv_array):

for i, val in enumerate(npv_array):
if val >= 0:

return i + 1
return None

# ==============================================================================
# CALCULATIONS FOR ALL SCENARIOS
# ==============================================================================

# Scenario 2025 Calculations
capex_PV_2025 = capex_PV_2025_per_kW * PV_kW
capex_PEM_2025 = capex_PEM_2025_per_kW * PEM_kW
opex_PV_2025 = opex_PV_2025_per_kW_per_year * PV_kW
opex_PEM_2025 = opex_PEM_2025_perc_capex * capex_PEM_2025
opex_tot_2025 = opex_PV_2025 + opex_PEM_2025
replacement_PEM_2025 = replacement_PEM_2025_perc_capex * capex_PEM_2025
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# LCOE Calculation for PV ONLY
LCOE_25, _, NPC_25, energy_disc_25, cost_ann_25, capex_2025 = calculate_LCOE_LCOH(

avg_annual_energy_kWh, total_H2_kg,
capex_PV_2025, 0, opex_PV_2025, 0, 0

)

# LCOH Calculation for PEM (can be used for comparison only, not in the LCOE chart)
_, LCOH_25_val, *_ = calculate_LCOE_LCOH(

avg_annual_energy_kWh, total_H2_kg,
capex_PV_2025, capex_PEM_2025, opex_PV_2025, opex_PEM_2025, replacement_PEM_2025

)
payback_2025 = calculate_payback_npv(capex_2025, opex_tot_2025, guadagni_metano_risparmiato,
years_for_economic_analysis, discount_rate)
break_even_2025_year = find_break_even_year(payback_2025)

# Scenario 2030 Calculations
capex_PV_2030 = capex_PV_2030_per_kW * PV_kW
capex_PEM_2030 = capex_PEM_2030_per_kW * PEM_kW
opex_PV_2030 = opex_PV_2030_per_kW_per_year * PV_kW
opex_PEM_2030 = opex_PEM_2030_perc_capex * capex_PEM_2030
opex_tot_2030 = opex_PV_2030 + opex_PEM_2030
replacement_PEM_2030 = replacement_PEM_2030_perc_capex * capex_PEM_2030

# LCOE for PV only
LCOE_30, _, NPC_30, energy_disc_30, cost_ann_30, capex_2030 = calculate_LCOE_LCOH(

avg_annual_energy_kWh, total_H2_kg,
capex_PV_2030, 0, opex_PV_2030, 0, 0

)

# LCOH for PV + PEM
_, LCOH_30_val, *_ = calculate_LCOE_LCOH(

avg_annual_energy_kWh, total_H2_kg,
capex_PV_2030, capex_PEM_2030,
opex_PV_2030, opex_PEM_2030,
replacement_PEM_2030

)
payback_2030 = calculate_payback_npv(capex_2030, opex_tot_2030, guadagni_metano_risparmiato,
years_for_economic_analysis, discount_rate)
break_even_2030_year = find_break_even_year(payback_2030)

# Scenario 2050 Calculations (ADDED)
capex_PV_2050 = capex_PV_2050_per_kW * PV_kW
capex_PEM_2050 = capex_PEM_2050_per_kW * PEM_kW
opex_PV_2050 = opex_PV_2050_per_kW_per_year * PV_kW
opex_PEM_2050 = opex_PEM_2050_perc_capex * capex_PEM_2050
opex_tot_2050 = opex_PV_2050 + opex_PEM_2050
replacement_PEM_2050 = replacement_PEM_2050_perc_capex * capex_PEM_2050

# LCOE for PV only
LCOE_50, _, NPC_50, energy_disc_50, cost_ann_50, capex_2050 = calculate_LCOE_LCOH(

avg_annual_energy_kWh, total_H2_kg,
capex_PV_2050, 0, opex_PV_2050, 0, 0

)

# LCOH for PV + PEM
_, LCOH_50_val, *_ = calculate_LCOE_LCOH(

avg_annual_energy_kWh, total_H2_kg,
capex_PV_2050, capex_PEM_2050,
opex_PV_2050, opex_PEM_2050,
replacement_PEM_2050
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)
payback_2050 = calculate_payback_npv(capex_2050, opex_tot_2050, guadagni_metano_risparmiato,
years_for_economic_analysis, discount_rate)
break_even_2050_year = find_break_even_year(payback_2050)

# H2 sales calculations
annual_H2_production_kg_avg = total_H2_kg / 25
annual_revenue_H2_undiscounted = np.full(len(years_for_economic_analysis),
annual_H2_production_kg_avg * price_H2_market)

payback_H2_market_2025_costs = calculate_payback_npv(capex_2025, opex_tot_2025,
annual_revenue_H2_undiscounted, years_for_economic_analysis, discount_rate)
payback_H2_market_2030_costs = calculate_payback_npv(capex_2030, opex_tot_2030,
annual_revenue_H2_undiscounted, years_for_economic_analysis, discount_rate)
payback_H2_market_2050_costs = calculate_payback_npv(capex_2050, opex_tot_2050,
annual_revenue_H2_undiscounted, years_for_economic_analysis, discount_rate)

break_even_H2_market_2025_costs_year = find_break_even_year(payback_H2_market_2025_costs)
break_even_H2_market_2030_costs_year = find_break_even_year(payback_H2_market_2030_costs)
break_even_H2_market_2050_costs_year = find_break_even_year(payback_H2_market_2050_costs)

# ====================== UPDATED PLOTS ===========================

# Plot 1: Discounted Energy per Year
plt.figure(figsize=(10, 5))
plt.plot(years_for_economic_analysis, energy_disc_25 / 1e6, label=’2025’, marker=’o’)
plt.plot(years_for_economic_analysis, energy_disc_30 / 1e6, label=’2030’, marker=’s’)
plt.plot(years_for_economic_analysis, energy_disc_50 / 1e6, label=’2050’, marker=’^’)
plt.title("Discounted Annual PV Electricity Production")
plt.xlabel("Year")
plt.ylabel("Energy [MWh]")
plt.grid(True)
plt.legend()
plt.tight_layout()
plt.show()

# Plot 2: Discounted OPEX + Replacement
plt.figure(figsize=(10, 5))
bar_width = 0.25
r1 = np.arange(len(years_for_economic_analysis))
r2 = [x + bar_width for x in r1]
r3 = [x + bar_width for x in r2]

plt.bar(r1, cost_ann_25 / 1e6, width=bar_width, label=’2025’)
plt.bar(r2, cost_ann_30 / 1e6, width=bar_width, label=’2030’)
plt.bar(r3, cost_ann_50 / 1e6, width=bar_width, label=’2050’)

plt.title("Discounted Annual OPEX + Replacement Costs")
plt.xlabel("Year")
plt.ylabel("Cost [Million €]")
plt.xticks([r + bar_width for r in range(len(years_for_economic_analysis))],
years_for_economic_analysis)
plt.grid(axis=’y’)
plt.legend()
plt.tight_layout()
plt.show()

# Plot 3a: LCOE Comparison
labels = [’2025’, ’2030’, ’2050’]
LCOE_values = [LCOE_25 , LCOE_30, LCOE_50 ] # €/MWh
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plt.figure(figsize=(8, 5))
plt.bar(labels, LCOE_values, color=[’skyblue’, ’lightgreen’, ’darkblue’])
plt.title("LCOE Comparison")
plt.xlabel("Scenario")
plt.ylabel("LCOE [€/MWh]")
plt.grid(axis=’y’)
plt.tight_layout()
plt.show()

# Plot 3b: LCOH Comparison
LCOH_values = [LCOH_25_val, LCOH_30_val, LCOH_50_val] # €/kg H2

plt.figure(figsize=(8, 5))
plt.bar(labels, LCOH_values, color=[’salmon’, ’gold’, ’firebrick’])
plt.title("LCOH Comparison")
plt.xlabel("Scenario")
plt.ylabel("LCOH [€/kg H2]")
plt.grid(axis=’y’)
plt.tight_layout()
plt.show()

# Plot 4: NPV Comparison - Saved Methane
plt.figure(figsize=(10, 6))
plt.title(f"Discounted Cash Flow – Saved Methane (Cost: {price_CH4} €/m³)")
plt.plot(years_for_economic_analysis, payback_2025 / 1e6, label="Scenario 2025", color=’blue’)
plt.plot(years_for_economic_analysis, payback_2030 / 1e6, label="Scenario 2030", color=’green’)
plt.plot(years_for_economic_analysis, payback_2050 / 1e6, label="Scenario 2050", color=’orange’)
plt.axhline(0, color=’black’, linestyle=’--’, linewidth=0.8)

# Break-even point annotations
if break_even_2025_year is not None:

plt.axvline(break_even_2025_year, color=’blue’, linestyle=’:’, linewidth=0.8)
plt.text(break_even_2025_year + 0.2, payback_2025[-1] / 1e6 * 0.7, f’{break_even_2025_year}’,
color=’blue’)

if break_even_2030_year is not None:
plt.axvline(break_even_2030_year, color=’green’, linestyle=’:’, linewidth=0.8)
plt.text(break_even_2030_year + 0.2, payback_2030[-1] / 1e6 * 0.7, f’{break_even_2030_year}’,
color=’green’)

if break_even_2050_year is not None:
plt.axvline(break_even_2050_year, color=’orange’, linestyle=’:’, linewidth=0.8)
plt.text(break_even_2050_year + 0.2, payback_2050[-1] / 1e6 * 0.7, f’{break_even_2050_year}’,
color=’orange’)

plt.title("Discounted Cash Flow – Saved Methane")
plt.title(f"Discounted Cash Flow – (price: {price_CH4} €/m³)")
plt.xlabel("Year")
plt.ylabel("Net Present Value [Million €]")
plt.grid(True)
plt.legend()
plt.tight_layout()
plt.show()

# Plot 5: NPV Comparison - H2 Sales
plt.figure(figsize=(10, 6))
plt.plot(years_for_economic_analysis, payback_H2_market_2025_costs / 1e6, label=f"2025 Costs",
color=’purple’)
plt.plot(years_for_economic_analysis, payback_H2_market_2030_costs / 1e6, label=f"2030 Costs",
color=’darkorange’)
plt.plot(years_for_economic_analysis, payback_H2_market_2050_costs / 1e6, label=f"2050 Costs",
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color=’cyan’)
plt.axhline(0, color=’black’, linestyle=’--’, linewidth=0.8)

if break_even_H2_market_2025_costs_year is not None:
plt.axvline(break_even_H2_market_2025_costs_year, color=’purple’, linestyle=’:’, =
= linewidth=0.8)
plt.text(break_even_H2_market_2025_costs_year + 0.2, payback_H2_market_2025_costs[-1] /
1e6 * 0.7, f’{break_even_H2_market_2025_costs_year}’, color=’purple’)

if break_even_H2_market_2030_costs_year is not None:
plt.axvline(break_even_H2_market_2030_costs_year, color=’darkorange’, linestyle=’:’, =
= linewidth=0.8)
plt.text(break_even_H2_market_2030_costs_year + 0.2, payback_H2_market_2030_costs[-1] /
1e6 * 0.7, f’{break_even_H2_market_2030_costs_year}’, color=’darkorange’)

if break_even_H2_market_2050_costs_year is not None:
plt.axvline(break_even_H2_market_2050_costs_year, color=’cyan’, linestyle=’:’, =
= linewidth=0.8)
plt.text(break_even_H2_market_2050_costs_year + 0.2, payback_H2_market_2050_costs[-1] / 1e6 * 0.7,
f’{break_even_H2_market_2050_costs_year}’, color=’cyan’)

plt.title(f"Discounted Cash Flow – H2 Sales at {price_H2_market} €/kg")
plt.xlabel("Year")
plt.ylabel("Net Present Value [Million €]")
plt.grid(True)
plt.legend()
plt.tight_layout()
plt.show()

# ============ FINAL UPDATED OUTPUT =============

print("===== ECONOMIC ANALYSIS SUMMARY =====")

print("\n===== SCENARIO: 2025 (Saved Methane) =====")
print(f"Total NPC: {NPC_25:,.2f} €")
print(f"LCOE: {LCOE_25:.2f} €/MWh")
print(f"LCOH: {LCOH_25_val:.2f} €/kg H2")
print(f"Payback Period: Year {break_even_2025_year}" if break_even_2025_year is not None else
"Payback Period: Not reached within 25 years")

print("\n===== SCENARIO: 2030 (Saved Methane) =====")
print(f"Total NPC: {NPC_30:,.2f} €")
print(f"LCOE: {LCOE_30:.2f} €/MWh")
print(f"LCOH: {LCOH_30_val:.2f} €/kg H2")
print(f"Payback Period: Year {break_even_2030_year}" if break_even_2030_year is not None else
"Payback Period: Not reached within 25 years")

print("\n===== SCENARIO: 2050 (Saved Methane) =====")
print(f"Total NPC: {NPC_50:,.2f} €")
print(f"LCOE: {LCOE_50:.2f} €/MWh")
print(f"LCOH: {LCOH_50_val:.2f} €/kg H2")
print(f"Payback Period: Year {break_even_2050_year}" if break_even_2050_year is not None else
"Payback Period: Not reached within 25 years")

print(f"\n===== SCENARIO: H2 Sales at {price_H2_market} €/kg =====")
print(f"Annual H2 revenue (average): {annual_revenue_H2_undiscounted[0]:,.2f} €")

print("\n--- With 2025 Costs ---")
print(f"Payback Period: Year {break_even_H2_market_2025_costs_year}"
if break_even_H2_market_2025_costs_year is not None else "Payback Period: Not reached within 25 years")

print("\n--- With 2030 Costs ---")
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print(f"Payback Period: Year {break_even_H2_market_2030_costs_year}"
if break_even_H2_market_2030_costs_year is not None else "Payback Period: Not reached within 25 years")

print("\n--- With 2050 Costs ---")
print(f"Payback Period: Year {break_even_H2_market_2050_costs_year}"
if break_even_H2_market_2050_costs_year is not None else "Payback Period: Not reached within 25 years")

Life time analisys.py

import numpy as np
import matplotlib.pyplot as plt
import math

from system_parameters import SystemParameters
from photovoltaic_system import PhotovoltaicSystem
from electrolyzer import Electrolyzer
from hydrogen_storage import HydrogenStorage

def simulate_h2_production():
years = list(range(1999, 2024))
months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
days_in_month = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
dt_sec = 60
time_start_sec = 6 * 3600
time_end_sec = (6 + 24) * 3600
time_s = np.arange(time_start_sec, time_end_sec, dt_sec)
sun_hours = 12
params = SystemParameters()

# Monthly temperature data (°C) and monthly irradiance (MJ/m²)
T_mensili = [

[2.9, 2.6, 8.6, 12.8, 18.4, 21, 23.1, 22.5, 19.7, 13.8, 6.6, 2.5],
[0.6, 4.3, 8.1, 14.1, 18.5, 22.2, 21, 23.2, 18.4, 14.5, 10, 6.3],
[5.5, 5.6, 10, 11.8, 19.4, 19.9, 22.7, 23.9, 15.8, 15.9, 6.5, 1],
[1, 5.6, 10.1, 12.5, 17.6, 22.6, 23, 22.2, 17.6, 13.8, 11.2, 5.9],
[2.7, 2.4, 8.3, 11.7, 19.4, 25.1, 24.5, 26.1, 17.5, 11.3, 9.7, 4.9],
[2, 2.9, 7.6, 12.6, 15.4, 20.6, 22.7, 22.5, 18.2, 15.3, 8.1, 5.2],
[1.7, 2.3, 7.4, 11.9, 18, 21.6, 22.9, 20.4, 18.5, 13.3, 7.4, 2.9],
[1.7, 3.9, 6.8, 12.6, 16.9, 21.9, 25.8, 19.9, 19.7, 15.4, 9, 5.8],
[5.8, 7.1, 10.3, 16, 18.8, 21.9, 23, 21.7, 16.7, 12.6, 7.4, 3.5],
[5.3, 4.9, 8.2, 12.3, 18.2, 21.8, 23.3, 23.2, 17.3, 14.1, 8.3, 4.7],
[3.5, 4.5, 8.2, 14.2, 19.3, 20.6, 23.2, 24.1, 20.1, 13.4, 9.7, 3.8],
[2.2, 4.8, 7.8, 13.6, 16.9, 21.4, 24.6, 22.3, 17.8, 12.5, 9.9, 3.1],
[3.1, 5, 8.8, 15.1, 19.3, 21.6, 22.1, 23.8, 21.8, 13, 8.1, 4.9],
[2.1, 2.1, 11, 12.2, 17.6, 22.7, 24.9, 24.8, 19.9, 14.5, 10.4, 3.3],
[4.1, 4, 7.4, 13.8, 16.2, 21.3, 24.9, 23.4, 18.7, 14.7, 9.8, 5.4],
[7.1, 8, 10.9, 14.7, 17.2, 21.7, 21.6, 20.9, 18, 15.5, 11.7, 5.8],
[4.2, 5.5, 9.2, 12.4, 18, 21.9, 26, 24.1, 18.9, 13.6, 8.1, 4.3],
[2.7, 7.1, 9.4, 13.6, 16.6, 21.4, 24.5, 22.9, 20.9, 13.1, 9.2, 3.6],
[0.9, 6.3, 10.9, 13.9, 18.3, 23.1, 24, 24.7, 17.1, 13.6, 8.4, 3.5],
[5.8, 3.8, 7.4, 16.1, 20.2, 22.8, 24.5, 25, 20.3, 15.6, 10.9, 3.9],
[2.7, 6.4, 9.8, 13.4, 14.9, 24.8, 24.4, 24.6, 19.1, 15.3, 10.9, 6.3],
[4.2, 7.1, 9.4, 14.2, 17.9, 20.8, 23.4, 24, 19.9, 13.3, 8.5, 6.2],
[3.4, 7.1, 8.3, 11.4, 15.5, 23.6, 24.3, 22.9, 19.9, 12.8, 9.5, 4.2],
[3.3, 6, 7.7, 11.9, 19.8, 24.2, 26.4, 25, 18.7, 16.4, 10.2, 6.4],
[6.2, 5.5, 10.1, 11.9, 18.2, 22.6, 24.4, 23.8, 21.3, 16.9, 8.5, 5.8]

]
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irradianza_mensile = [
[161.246, 257.694, 386.764, 491.332, 620.019, 726.91, 715.212, 574.306, 455.855,
254.82, 171.419, 115.37],
[202.24, 241.854, 380.783, 471.99, 667.107, 814.722, 750.564, 682.778, 459.168,
225.335, 129.955, 104.977],
[111.629, 241.326, 294.339, 552.321, 694.426, 734.912, 711.704, 680.425, 385.352,
286.161, 187.636, 178.222],
[164.459, 142.287, 414.967, 491.596, 575.028, 736.813, 732.376, 637.78, 439.468,
292.952, 127.024, 96.912],
[161.692, 335.207, 465.764, 510.524, 745.248, 779.916, 784.341, 681.755, 486.211,
277.293, 154.217, 136.783],
[153.539, 143.253, 374.676, 459.005, 674.594, 700.162, 791.872, 683.757, 491.803,
209.775, 180.57, 154.286],
[173.253, 275.663, 416.593, 507.574, 740.376, 778.818, 770.276, 562.934, 432.377,
246.504, 154.876, 139.984],
[179.948, 227.128, 340.454, 468.162, 668.883, 814.578, 819.824, 585.809, 490.73,
314.729, 176.089, 137.894],
[109.853, 201.136, 362.652, 607.104, 627.061, 614.766, 746.541, 552.296, 461.698,
292.858, 186.607, 154.726],
[111.623, 220.539, 310.462, 431.046, 652.986, 609.739, 710.951, 658.585,
433.525, 274.319, 134.857, 51.774],
[65.201, 244.306, 372.082, 467.766, 667.974, 669.618, 761.421, 691.979, 463.944,
327.922, 101.33, 120.585],
[138.239, 172.449, 345.876, 560.022, 530.532, 672.147, 744.358, 607.97, 419.097,
299.684, 117.855, 105.636],
[113.531, 221.52, 396.108, 594.721, 774.939, 642.48, 702.899, 684.115, 464.628,
332.763, 191.979, 114.842],
[177.25, 267.459, 492.442, 429.659, 710.994, 705.396, 790.453, 707.725,
418.589, 265.03, 141.188, 121.721],
[116.217, 216.154, 280.965, 498.273, 576.942, 752.189, 788.797, 680.544,
433.732, 225.358, 159.508, 137.141],
[85.867, 164.635, 440.824, 479.809, 674.318, 742.914, 650.883, 579.91,
404.311, 298.399, 138.986, 108.748],
[152.435, 221.212, 405.165, 567.766, 611.352, 710.041, 764.672, 612.746,
443.228, 255.165, 152.642, 117.07],
[134.298, 144.941, 348.161, 495.399, 584.839, 620.685, 720.069, 677.312,
450.865, 267.836, 138.54, 153.677],
[192.958, 162.69, 420.6, 521.965, 674.607, 704.631, 755.986, 675.002, 353.33,
280.231, 154.35, 128.284],
[125.737, 197.144, 306.083, 496.185, 576.105, 683.618, 706.131, 634.686, 469.253,
274.923, 149.406, 134.615],
[170.905, 264.483, 447.763, 429.393, 494.765, 766.178, 727.924, 647.765, 449.067,
264.955, 121.664, 130.476],
[189.858, 250.47, 427.011, 640.623, 685.445, 638.652, 782.059, 639.399, 475.586,
278.973, 210.79, 91.392],
[138.992, 220.98, 488.991, 537.136, 639.059, 780.135, 709.101, 671.576, 490.931,
336.928, 158.416, 131.166],
[196.837, 258.434, 480.394, 546.83, 703.551, 734.422, 814.019, 678.755, 460.668,
326.275, 173.578, 83.858],
[144.571, 245.137, 403.169, 529.804, 596.424, 771.272, 795.202, 655.505, 537.152,
317.604, 215.314, 141.824]

]

annual_production = []
annual_energy = []
production_2023_monthly = []
total_production = 0

for anno_idx, anno in enumerate(years):
yearly_production = 0
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current_yearly_energy = 0

for mese_idx in range(12):
T_amb = T_mensili[anno_idx][mese_idx]
irradiance = irradianza_mensile[anno_idx][mese_idx]
days = days_in_month[mese_idx]

sine_factor = (math.pi / 4) * sun_hours
mj_day = irradiance / days
kwh_day = mj_day * 0.27778
G_peak = kwh_day / sine_factor * 1000

pv = PhotovoltaicSystem(params, time_s)
el = Electrolyzer(params, time_s)
st = HydrogenStorage(params, time_s)

G_t = pv.calculate_irradiance_profile_sine(G_peak)
P_fv_to_electrolyzer, _, _ = pv.update_pv_power(G_t, T_amb)

# Daily PV energy production (in kWh)
daily_energy_kWh = np.sum(P_fv_to_electrolyzer) * dt_sec / 3600

# Monthly energy (kWh)
monthly_energy_kWh = daily_energy_kWh * days

# Sum for the year
current_yearly_energy += monthly_energy_kWh

V_prev = el.V_cell_t[0]
for k in range(1, len(time_s)):

flow = el.simulate_step(k, P_fv_to_electrolyzer[k], V_prev)
V_prev = el.V_cell_t[k]
st.simulate_step(k, flow, dt_sec)

for k in range(10):
el.m_H2[k] = el.m_H2[10]

daily_production = np.sum(el.m_H2) * dt_sec
monthly_production = daily_production * days
yearly_production += monthly_production

if anno == 2023:
production_2023_monthly.append(monthly_production)

annual_production.append(yearly_production)
annual_energy.append(current_yearly_energy)
print(f"{anno}: {yearly_production:.2f} kg H")
total_production += yearly_production

# PLOT 1: Monthly production for 2023
plt.figure(figsize=(8, 4))
plt.bar(months, production_2023_monthly)
plt.title("Monthly H Production - Year 2023")
plt.ylabel("Production [kg]")
plt.grid(True)
plt.tight_layout()
plt.show()

# PLOT 2: Annual production
plt.figure(figsize=(10, 5))
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plt.plot(years, annual_production, marker=’o’)
plt.title("Annual H Production (1999–2023)")
plt.xlabel("Year")
plt.ylabel("H Production [kg]")
plt.grid(True)
plt.tight_layout()
plt.ylim(65000, 115000)
plt.show()

print(total_production)

# Convert from Wh to kWh
annual_energy_kwh = np.array(annual_energy) / 1e3
average_annual_energy_kwh = np.mean(annual_energy_kwh)

print(f"Average annual PV production: {average_annual_energy_kwh:.2f} kWh")

# PLOT: Annual PV electric energy in kWh
plt.figure(figsize=(10, 5))
plt.plot(years, annual_energy_kwh, marker=’o’)
plt.title("Annual PV Electric Energy Production (1999–2023)")
plt.xlabel("Year")
plt.ylabel("PV Energy [kWh]")
plt.axhline(y=average_annual_energy_kwh, color=’r’, linestyle=’--’,

label=f"Average: {average_annual_energy_kwh:,.0f} kWh")
plt.grid(True)
plt.legend()
plt.tight_layout()
plt.show()

if __name__ == "__main__":
simulate_h2_production()
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