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Abstract

The integration of artificial intelligence (Al), particularly machine and deep learning, in
manufacturing has accelerated in recent years, making data quality a critical
prerequisite for reliable and trustworthy Al systems. This thesis systematically
investigates how Al is applied to assess and enhance data reliability in manufacturing,
aiming to consolidate existing knowledge, identify key gaps, and provide guidance for

robust Al approaches.

A systematic literature review is conducted according to the PRISMA 2020 guidelines,
chosen for its methodological rigor, transparency, and reproducibility. The review is
grounded in a comprehensive retrieval of documents carried out using the Scopus and
Web of Science databases. Additionally, an innovative Python-based semantic filtering
step is applied to screen documents according to conceptual similarity with predefined
keywords, enabling the review of over 22,000 records and resulting in a selected corpus
of 164 studies. The filtering achieves an accuracy of approximately 86%, ensuring a

robust assessment.

Full-text analysis of the final corpus shows an evolution in data quality
conceptualization, shifting from intrinsic attributes such as accuracy and completeness
to more advanced dimensions, including dimension such as fairness and cross-domain
generalizability. In parallel, Al methods evolve from rule-based methods to deep learning
and hybrid architectures. Nevertheless, major challenges persist, particularly the

absence of standardized benchmarks, class imbalance and high labelling cost.

Overall, the research highlights Al as indispensable for data quality management in
manufacturing, while also acknowledging structural and methodological limitations.
Although there is consensus on the centrality of data quality, considerable variability
persists across industrial sectors in the definition and implementation of quality metrics.
The recent ISO/IEC 5259 standard represents a promising step toward harmonization
and provides a foundation for future unified frameworks for trustworthy, data-centric Al

in complex industrial contexts.



List of Figures

Figure 1 : PRISMA guidelines flowchart (Matthew J Page et al. 2021)......c.ccceevievenennen.n. 16
Figure 2: Documents distribution by subject area (Scopus 2025).....cccvevevievininienennnnen. 20
Figure 3: Annual publications distributions (Scopus 2025) .......ccviviiieiiniiiiiiniienenennnn. 21
Figure 4: Document filtering and merging workflow (own elaboration)............c............ 28
Figure 5: Semantic similarity distribution with threshold = 0.45 (Python code)............ 38
Figure 6: One-hot encoding example (Novack 2020) ......ccvviniiiiiiiiiiiiiniiinieeireeeneenen, 40
Figure 7: 3D semantic space with clustered categories (own elaboration).................. 41
Figure 8: Encoder- Decoder architecture example (Yaron 2019) .....cceveviieiininenennnnen. 43

Figure 9: Model output with manual validation on 10% of the total corpus (own

Z1F=] oTo] £= 14 To] o ) FOUT O U PP OU PO P PR 46
Figure 10: Example of Excel spreadsheet for Full text analysis (own elaboration) ........ 52
Figure 11: : Classification for data (Batini et al. 2009)......ccceeiiiiiiiiiiiiiiiiiireireeeeenen, 58
Figure 12: Components of ISO 8000 (Batini et al. 2009) ......cccieiiiiiiiiiiiiiiiinirereneneanen. 59
Figure 13: Data lifecycle Value chain (Taleb et al. 2027) c..ciniiiiiiiiiiiiirrnireeeeens 60
Figure 14: Early conceptual model of Data quality dimensions (Taleb et al. 2021) ....... 60
Figure 15: : 4 Vs of Data Quality (Zhang et al. 2021) ....cevinieiiiiniiiiiiee e, 62
Figure 16: : Issues, Data Quality, 4V, Solutions (Zhang etal. 2021)...cccveeenieveninienennnn.n. 63
Figure 17: Al application and Al system (Oviedo et al. 2024) .......cccveviiiiiiiiiiiniiininnnnnns 67



List of Tables

Table 1: Confusion matrix components from manual analySiS.......ccceeeeeeieieiiiiienrenennns

Table 2: Sample of five relevant papers analysed in fulltext ........cccveveieiiiiiiiiiiiiinnnnans



Table of Contents

LIS Of FlBUIES ettt e et e et e e e ettt eenensnsnsasasnsnanasanasnsnsnensnsnsnsanens 4
LISt Of TADLES ..eniiiiniiii ittt e ea e e e e 5
Chapter 1 - Introduction: trustworthy Al and data quality ......cccceeveiiriiiiiiiiiiniiireeneenen, 7
1.1- Problem Identification and Research Objective.....c..coveiiiiiiiiiiiiiiiiiiiiienineene, 9
Chapter 2 - PRISMA ... e ettt e e et e e e et e eneeenaes 12
2.1- PRISMA SUIAELNES ..eeiiiiiiiiii ettt et e e e e ena e 12
2.2 - PRISMA: History and development .. ..ot eie e ee e e eanes 13
2.3-Scope Of the GUIAELINES . cuiuiiiiii ettt e e e e e e eanes 14
(0191 o) (1 @SRl 4 =14 g Lo o o] Fo =V S 17
3.1 = SyStEMALIC SEAICH c.uieiii e e 17
3.2 - Data cleaning and exclusion/inClusion CHteria .....cccvveviiiiiiiiiiiiiiiiirreeeeenes 26
IR I (=14 { o= S P PP PP PR 27
Bl - SCIBENING ettt ittt ettt ettt et e et e eaeteenseaneaatasnsaesnsaetnsnseasnenesnsanes 28
3.4.1 - Semantic Filtering Using Al-Based Text AnalysiS.....cccccoviviiieiiiiiiceienennnn.. 28
3.4.2 - Implementation and Explanation of the Python Code .......cccccevvvieninnnnn.. 30
3.4.3-Theoryrecall: Embedding and BERT ....c.ceiiniiiiiiiiiiiiiiirieee e 39

3.5 - Performance Metrics of Semantic Filtering ProCess .....ccovvevviviiiiiinineninienenenne. 44
T o U1 L Ko A g F= 1 YT 50
(00 F-1 o) (=] g Bl o (=] U] 56
4.1 - Early Period (1995-2010): Foundational Definitions and Initial Approaches...... 57

4.2 - Intermediate Period (2010-2020): Big Data, loT, and the Expansion of Data
O 101114V D11 0 g =T o -] o] o I TN 61

4.3 - Advanced Period (2020-2025): Machine Learning, Deep Learning, and Integrated

Al Systems for Data QUality c..euenieieiiieeie e e e as 66
4.4 - SYNTNESIS AN GAPS ittt e e e e e e e e eaeaeaeaeteteeensnsnsnees 70
Chapter 5= CONCLUSIONS .iuiiiiiiiiiiiiiiiiie e e e e ettt aeaeteteteteeenenenseensasasseserasnsnnn 80
5.1 - FUTUIrEe deVElOPMENTS ..uiiiiiiiiiiiee e et e e e e e enens 82
e (o] £ g [ol Y PSPPI 85



Chapter 1 - Introduction: trustworthy Al and data quality

The integration of artificial intelligence (Al), particularly machine learning (ML) and deep
learning (DL), into a broad range of domains, including manufacturing, agriculture,
healthcare, and transportation, has accelerated significantly over the past decade
(Vaswani et al. 2023; Deng 2018; Silver, David 2017; He et al. 2016; Redmon et al. 2016;
McKinsey 2023). This rapid development has been driven by progress in computational
capabilities and neural network architecture. As Al systems increasingly influence
critical societal processes, public dialogue has shifted toward concerns surrounding
their transparency, fairness, and reliability (Esteva et al. 2017; Jumper et al. 2021; Teoh e
Kidd 2017; UK Governement 2023). In this context, the presence of a trustworthy Al
becomes essential. This term encompasses several qualities such as security,
robustness, fairness, interpretability and accountability (Adadi e Berrada 2018; Liu et al.
2022; Li et al. 2023; Kale et al. 2023; Alzubaidi et al. 2023; Moody’s 2024; European
Commission, High-Level Expert Group on Al 2020; Moody’s 2024).

One of the determining factors in the reliability of Al systems is the quality of the data on
which they are trained. The expression garbage in, garbage out (Geiger et al. 2020)
illustrates the principle that faulty and biased training data inevitably lead to faulty Al
behavior. Indeed, biases embedded in training data can be amplified during inference,
resulting in discriminatory or otherwise unfair results (Suresh e Guttag 2021; Mehrabi et
al. 2022). Consequently, data quality is of paramount importance in ensuring ethical,

reliable and trustworthy Al systems (Zhao et al. 2017; Whittlestone J. et al. 2019).

The concept of data quality has been investigated for several decades. A foundational
framework was proposed by Wang and Strong (Richard Y. Wang e Diane M. Strong 1996),
who defined data quality in terms of distinct dimensions, such as accuracy,
completeness, consistency, and accessibility. Since then, these dimensions have been
adapted and refined across various domains. However, no single standard and definition
has yet emerged, especially in complex and evolving fields like Al (Andrew Black e Peter

van Nederpelt 2020).



While data integrity refers to maintaining the accuracy and consistency of data over its
lifecycle, data quality is concerned with the data’s suitability for its intended use. From
the perspective of Al development, this means evaluating whether a dataset is
comprehensive, accurate, timely, relevant, and representative. These aspects, often
called data quality dimensions, are critical not only for the performance of Al models, but

also for their interpretability and societal impact.

Data quality assessment procedures will likely become an integral part of the Al
certification process, particularly in sectors like healthcare and industrial automation.
For this reason, methodologies that assess and guarantee the reliability of training data
are increasingly necessary, and it is on these that standards bodies and developers now

focus their attention.

In addition, ethical and social considerations further complicate the evaluation of data.
Data collection and processing are not neutral activities, as they inherently reflect
human assumptions regarding what is valuable or relevant. This implies that no data set
is completely objective or complete (Jess Whittlestone e Stephen Cave 2019). Moreover,
the digitization of data facilitates its replication, sharing and transformation on
unprecedented scales, raising concerns about privacy, consent and accountability.
Ethical frameworks often emphasize principles such as beneficence, non-maleficence,
justice, autonomy and explicability, but these are not always easy to apply in practice

due to the inherent trade-offs among them.

As more decision-making is delegated to Al systems, the societal impact of these
technologies continues to grow (Richard Y. Wang e Diane M. Strong 1996). According to
Wang and Strong (Wang e Strong 1996), fitness for purpose should be the guiding

concept for assessing whether data meet user expectations and requirements.

In summary, trustworthy Al can not be achieved without a rigorous focus on data quality.
For Al applications in manufacturing and other high-risk environments, this means
establishing robust frameworks to define, measure, and improve data quality. These
frameworks must consider both technical and ethical dimensions to ensure that Al

systems are not only high performing, but also well-reasoned and accountable.



1.1- Problem ldentification and Research Objective

As previously mentioned, Al systems reliability is deeply related to the quality of the data
on which they are based. Although the concept of data quality has long been studied in
all sectors, its evaluation and correlation in the context of Al-driven applications,
particularly in the manufacturing sector, remains an underdeveloped and fragmented

area.

Despite the increasing use of machine learning and deep learning techniques in
industrial environments, a standardized approach to assessing data reliability for
applications such as process monitoring and predictive maintenance is still lacking.
Manufacturing processes are inherently complex and dynamic, characterized by high
volumes of heterogeneous data generated by sensors, machines and human input. As
manufacturing environments become increasingly data-driven, the ability to ensure the
trustworthiness of collected data has become essential, not only for the technical
performance of Al models but also for ensuring safety, transparency, and compliance
with emerging regulations. For this reason, it is hecessary to ensure data consistency,
accuracy, completeness and representativeness. Furthermore, industrial artificial
intelligence systems are often deployed in critical environments, where errors can lead
to significant security risks, operational inefficiencies or financial losses. Therefore, the
issue of data reliability is not only a technical concern but also a matter of trust,

accountability, and regulatory compliance.

Although several frameworks for data quality assessment have been developed in fields
such as healthcare and medicine, the consolidation of knowledge specific to the
manufacturing domain remains limited. In the medical field, for instance, recent
research has proposed frameworks, such as the METRIC framework, to assess data
quality in ways that align with the broader goals of trustworthy Al. These frameworks
recognize that high-quality data is a prerequisite for Al systems that are safe, fair, and
transparent. A systematic review conducted under PRISMA guidelines reveals that, while
there is agreement on the importance of data quality, there is a variability in how different

sectors define and implement data quality metrics (Schwabe et al. 2024).



Furthermore, the role of Al in evaluating or improving data reliability itself is a relatively
novel concept. This raises the need to systematically investigate how Al techniques can
be used not only to process manufacturing data, but also to critically assess its

trustworthiness before being used in decision-making pipelines.

The objective of this thesis is to provide a comprehensive and structured literature review
of the current contributions and research efforts in the analysis and assessment of data

reliability within the manufacturing sector.

From this objective, the research question (RQ) is formulated as follows:

(RQ) How is artificial intelligence currently being applied to assess and enhance the
reliability of data in manufacturing processes, and what are the key challenges and gaps

in the existing literature?

This central question is supported by the following sub-questions:

e (RQa) Which dimensions of data quality are most frequently addressed in Al
applications for manufacturing? Along which characteristics should data quality be
evaluated when employing a dataset for trustworthy Al in manufacturing?

e (RQb) What are the main techniques used to evaluate or improve data reliability in

this context?

By answering these questions, synthesizing current knowledge and identifying existing
gaps, the thesis aims to provide a comprehensive overview of the current state of the art,
identify opportunities for future research, and contribute to the development of more

robust and trustworthy Al systems in the manufacturing domain.

The remainder of the thesis is structured as follows. Chapter 2 introduces the PRISMA
(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) framework,
which provides a systematic approach to conducting transparent and reproducible
literature reviews. In Chapter 3 the methodological pipeline developed in accordance
with the PRISMA principles, detailing each phase of the data collection, processing, and
filtering strategy implemented to address the research questions is presented. Chapter

4 discusses the results obtained through the review process, highlighting key trends,

10



findings, and gaps in the literature on Al and data quality in manufacturing. In conclusion,
Chapter 5 summarizes the main insights and outlines potential directions for future

research and methodological refinements.
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Chapter 2 - PRISMA

While trustworthiness in Al concerns various aspects, including ethical considerations,
transparency, and safety requirements, this study focuses on the critical role of data
quality in ML and DL. Since data quality significantly influences the behaviour of ML
models, assessing data quality becomes a pivotal component. To address the research
questions, a systematic review was conducted following the PRISMA methodology,

which provides guidelines for performing quantitative analyses of documents.

The objective of the review is to systematically collect, condense, and expand the
existing body of knowledge in the selected research area, thereby advancing the
understanding of data quality in ML applications. Specifically, the research question
aims at combining insights from general data quality frameworks with the impact of data

quality on ML applications within production processes.

2.1- PRISMA guidelines

The PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) were developed to enhance the transparency and completeness of reporting
in systematic reviews and meta-analyses. The guidelines assist authors in clearly

presenting the rationale for their review, the methods applied, and the results obtained.

First published in 2009, the PRISMA statement aimed to standardize the reporting
process in a way that promotes reproducibility and clarity. However, with the evolution
of systematic review methodologies and terminology over the past decade, an updated
version became necessary: PRISMA 2020. The revised PRISMA statement replaces the
original 2009 version, introducing updated guidance that reflects advancements in the
identification, selection, appraisal, and synthesis of studies, thus ensuring greater

methodological rigor and clarity in systematic reviews.

12



2.2 - PRISMA: History and development

Systematic reviews and meta-analyses were originally adopted in healthcare and
medical field as a starting point for developing clinical practice guidelines. Physicians
use them to keep up to date (Oxman et al. 1994; Swingler et al. 2003) and even funding
agencies may require a systematic review to ensure that further research is justified
(Moher et al. 2009). In recent year, editors in health journals have been moving in this

direction too (Young e Horton 2005).

Systematic reviews play many critical roles. Firstly, they can provide summaries of the
state of knowledge in a field from which future research priorities can be identified. They
can address questions that otherwise could not be answered by individual studies, and
they can identify problems in primary research that should be corrected in future
analysis. Additionally, they can generate or evaluate theories about how or why
phenomena occur. To ensure that a systematic review is valuable, authors must provide
a transparent, complete, and accurate explanation of the purpose, methods, and

findings of the study.

For instance, several studies have assessed the quality of review reports. In 1987,
Mulrow examined 50 review articles published in four major medical journalsin 1985 and
1986 and found that none fulfilled the explicit reporting criteria, such as assessing the
quality of the included studies (Mulrow 1987). In 1987, the adequacy of reporting of 83
meta-analyses on 23 characteristics across six domains was assessed (Sacks et al.
1987). Reporting was generally poor; between one and fourteen characteristics were
adequately reported. A 1996 update of this study found little improvement (Sacks et al.
1996).

In 1999, to address the problem of sub-optimal reporting of meta-analyses, an
international group developed a guide called QUOROM Statement (Quality Of Reporting
Of Meta-analyses), focusing on reporting of meta-analyses of randomized controlled

trials (Moher et al. 1999).

13



In 2009, the guideline was updated to consider various conceptual and practical
advances in the science of systematic reviews and was renamed PRISMA. The original
PRISMA statement was published in several journals (Moher et al. 2009) and

accompanied by an explanation and elaboration document (Liberati et al. 2009).

The significant advancements in systematic review methodology and terminology over
the past decade prompted an international group to update the original PRISMA
statement in 2017. The PRISMA 2020 statement was initially published as a preprint on
MetaArXivin September 2020 and subsequently released in March 2021 (Matthew J. Page
et al. 2021). Since the release of the PRISMA 2009 statement, the systematic review
process has been transformed by technological advancements such as natural language
processing and machine learning, which have enhanced the identification of relevant
studies. Additionally, new methods for synthesizing findings in the absence of feasible
meta-analyses have been developed (Matthew J. Page et al. 2021; Campbell et al. 2020),
alongside updated tools for assessing risk of bias in included studies (Sterne et al. 2019;
2016). The shift from evaluating quality to assessing certainty in evidence further reflects
the evolution in terminology (Hultcrantz et al. 2017). The publishing landscape has also
expanded, offering more avenues for registering protocols, disseminating review
findings, and ensuring data accessibility (Hutton et al. 2016). These cumulative
developments underscored the need for a comprehensive update to the original PRISMA
guidelines, ensuring their continued relevance and applicability in contemporary

research contexts.

2.3 - Scope of the guidelines

PRISMA was initially developed with the objective of enhancing the transparency and
completeness of reporting in systematic reviews and meta-analyses, primarily within the
context of health and medical research (Hutton et al. 2016). However, over time, its
scope has significantly broadened, extending to various other disciplinary fields,

including social sciences, education, engineering, and technology.

14



The PRISMA 2020 statement was specifically updated to reflect methodological and
terminological advances in systematic reviews over the past decade. Although it
maintains a primary focus on reviews assessing the effects of health interventions, its
guidelines have been structured to be applicable to systematic reviews of other types of
interventions as well as to reviews with broader objectives. Moreover, PRISMA 2020 is
relevant not only for systematic reviews that include a synthesis component (e.g., meta-

analysis) but also for those that do not (e.g., when only one eligible study is identified).

The checklist also applies to mixed-method systematic reviews that incorporate both
quantitative and qualitative evidence, although in these cases, additional guidelines on
qualitative data synthesis should be consulted. Furthermore, PRISMA 2020 can be
applied to original systematic reviews, updated reviews, or living (continuously updated)
reviews. Nevertheless, it is not intended to guide the actual conduct of systematic
reviews, for which comprehensive methodological resources are recommended.
Importantly, PRISMA 2020 is not designed to assess the conduct or methodological
quality of systematic reviews but rather to ensure a transparent and comprehensive

report of the methods and findings (Matthew J. Page et al. 2021).

The expansion of PRISMA to areas beyond health research highlights its flexibility and

utility in promoting clear and rigorous scientific communication across various fields.

The overall process described above is visually summarized in the PRISMA 2020 flow
diagram (Figure 1), which outlines the study identification, screening, and inclusion
phases, and allows for transparent documentation of the selection process in

systematic reviews.

15



PRISMA 2020 flow diagram for new systematic reviews which included searches of databases, registers and other sources

Identificaticn

Screening

Included

—

[ Identification of studies via databases and registers

]

[ Identification of studies via other methods

Records identified from™:
Databases (n =)
Registers (n =)

Records removed before

screening:
Duplicate records removed
(n=) ]
Records marked as ineligible
by automation tools (n =)
Records removed for other
reasons (n =)

Records identified from:
Websites (n =)
Organisations (n =)
Citation searching (n =)
elc

I

Records screened

Records excluded™

n=)

n=)
}

\d

Reports sought for retrieval

Reports not retrieved

n=)

Reports sought for retrieval

Reports not retrieved

U=S]

n=)
!

(n=)
!

Reports assessed for eligibility
(n=)

v

Reports excluded:
Reason 1 (n=)
Reason 2 (n =)
Reason 3 (n =)
efc.

Studies included in review
n=
Reports of included studies

(n=)

Reports assessed for eligibility
n=)

Reports excluded
Reason 1 (n =)
Reason 2 (n =)
Reason 3 (n =)
efc.

*Consider, if feasible to do so, reporting the number of records identified from each database or register searched (rather than the total number across all databases/registers).

**If automation tools were used, indicate how many records were excluded by a human and how many were excluded by automation fools.

Figure 1: PRISMA guidelines flowchart (Matthew J Page et al. 2021)
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Chapter 3 — Methodology

A semi-automatic, unregistered systematic review was carried out in accordance with
PRISMA guidelines to identify data quality criteria relevant to trustworthy Al applications
in manufacturing. The methodological approach of this study was desighed to ensure a
comprehensive and systematic review of existing literature relevant to the research

topic.

3.1 - Systematic Search

The data collection process was implemented using two major bibliometric databases:
Scopus and Web of Science (WoS). The rationale for selecting Scopus and WoS over
other databases such as PubMed, ACM Digital Library, and IEEE Xplore, lies in their
broader and multidisciplinary coverage. While databases like PubMed are highly
specialized in biomedical and life sciences research and ACM Digital Library and IEEE
Xplore are predominantly focused on computer science and engineering, Scopus and
WoS provide a more comprehensive spectrum of disciplines, including engineering,
social sciences, management studies, and environmental sciences. This broader scope
aligns more closely with the interdisciplinary nature of the current research. Additionally,
both Scopus and WoS offer advanced search functionalities, citation tracking, and
robust filtering options that facilitate more comprehensive and systematic literature

reviews.

The following search string in pseudo-code was executed on Web of Science and
Scopus. The search query is structured to identify academic literature that addresses
data quality concerns within the context of artificial intelligence (Al), machine learning
(ML), and deep learning. The query is divided into two main logical segments connected

by the OR operator.

17



1. (("data quality" OR "data-quality"

2.

3. OR "data qualities" OR "quality of data"
4,
5. OR "quality of the data" OR "qualities of data"

6.

7. OR "qualities of the data" OR "quality of training
8.

9. data"

10.

11. OR "quality of the training data" OR "quality of ML
12.

13. data"

14.

15. OR "data bias" OR "data biases"

16.

17. OR "bias in the data" OR "biases in the data"
18.

19. OR "data problem" OR "data problems"

20.

21. OR "problem in the data" OR "problem with the data"
22.

23. OR "problems with the data" OR "data error"
24.

25. OR "data errors" OR "error in the data"

26.

27. )

28.

29. AND

30.

31. ("dimension" OR "dimensions"

32.

33. OR "AI" OR "artificial intelligence"

34.

35. OR "ML" OR "machine learning"

18



36.

37. OR "deep learning"

38.

39. OR "neural network" OR "neural networks"))

40.

41. OR

42.

43, ("data quality framework" OR "data quality frame
44,

45, works"

46.

47. OR "framework of data quality" OR "framework for data
48.

49, quality")

The first segment targets various expressions and synonyms associated with data quality
issues. It includes a comprehensive set of terms such as data quality, data biases, data
problems and data errors, ensuring broad coverage of potential data quality concerns.
Additionally, it incorporates specific references to the quality of training data,

highlighting its critical role in the development of AI/ML models.

The second segment contextualizes these data quality concerns by specifying relevant
technological frameworks. Keywords such as Al, ML, deep learning, and neural networks
are included to narrow the search to literature that discusses data quality issues in the

context of these specific computational fields.

Moreover, a third segment, separated by the OR operator, is dedicated to capturing
references to frameworks for assessing data quality. This includes expressions like data
quality framework and framework for data quality, ensuring that systematic approaches

to data quality are also considered in the search results.

19



The logical structure of the query is designed to ensure comprehensive coverage by
combining data quality issues with technological contexts while also capturing

systematic frameworks for assessing data quality.

For the data retrieval from Scopus, performed in March 2025, an advanced search query
was utilized to refine the dataset according to specific keywords and research criteria.
The search process yielded over 88,000 results. To further analyze and categorize these
documents, the Analyze results function was employed, focusing specifically on the
subject area of Engineering, which accounted for 13.3% (Figure 2) of the total

documents, corresponding to about 20,000 entries.

Documents by subject area

Other (21.1%)
/ Computer Scienc... (24.3%)

Physics and Ast... (3.3%)

Business, Manag... (3.9%) ~ —
i1 1 0,
Decision Scienc... (4.0%) Engineering (13.3%)
Environmental S... (4.1%)
AN

Earth and Plane... (4.2%) /

!

\ "~ Medicine (7.6%)
Social Sciences... (6.9%) \
 Mathematics (7.5%)

Figure 2: Documents distribution by subject area (Scopus 2025)

Analysing the search results, it is possible to observe the distribution of publications of

interest over time, with a notable peak in the year 2024 (Figure 3).
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Documents by year

17.5k
15k
12.5k
10k

7.5k

Documents

Sk
2.5k

0
1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

Year

Figure 3: Annual publications distributions (Scopus 2025)

Forthe purposes of this study, metadata from the first 20,000 documents were extracted
from Scopus and exported in CSV format. The exported metadata included the following
fields: Title, Year, DOI, Link, Abstract, Keywords, Publisher, Language of Original
Document, and Document Type, which were then organized as columns in the Excel
tables. The CSV file was then formatted to remove delimiters and organize the data into
structured columns for subsequent analysis. However, a significant issue emerged
during this process: due to the CSV format, the presence of commas within certain
metadata fields, such as the title or abstract, led to misalighment across columns. For
instance, if a comma appeared in the title, it could shift all subsequent data fields,
causing the Year value to appear under DO/, the DOI under Link, and so on. This issue
was solved by implementing the following Python script to correctly parse the metadata

and realign them into the intended column structure.

1. pandas pd

2.

3. correggi_refusi(input_file, output_file):

4. # Carica il file Excel

5. df = pd.read_excel(input_file, engine="openpyxl")

6.

7. # Controlla ogni riga per verificare se La colonna B contiene testo

21



8. for index, row in df.iterrows():

9. if pd.notna(row["Year"]) and not str(row["Year"]).isdigit():

10. # Unisci il titolo (colonna A e B)

11. df.at[index, "Title"] = str(row["Title"]) + " " + str(row["Year"])

12. df.at[index, "Year"] None # Rimuove 1il testo errato dalla
colonna B

13.

14. # Sposta gli altri dati se necessario

15. if pd.notna(row["DOI"]) and str(row["DOI"]).startswith(("19"
"20")):

16. df.at[index, "Year"] = row["DOI"]

17. df.at[index, "DOI"] = None

18.

19. if pd.notna(row["Link"]) and str(row["Link"]).startswith("10."):

20. df.at[index, "DOI"] = row["Link"]

21. df.at[index, "Link"] = None

22.

23. if pd.notna(row[ "Abstract"]) and

str(row["Abstract”]).startswith("https://www"):

24. df.at[index, "Link"] row[ "Abstract"]

25. df.at[index, "Abstract"] None

26.

27. # Scala tutte le colonne successive

28. df.at[index, "Abstract"] = row["Author Keywords"]

29. df.at[index, "Author Keywords"] row[ "Publisher"]

30. df.at[index, "Publisher"] row[ "Language of Original Document"]

31. df.at[index, "Language of Original Document"] row[ "Document
Type"]

32. df.at[index, "Document Type"] = row["Source"]

33. df.at[index, "Source"] = None

34.

35. # Controlla se anche La colonna C contiene parte del titolo

36. if pd.notna(row["DOI"]) and not str(row["DOI"]).startswith(("19"

"20")) and not str(row["DOI"]).startswith("10."):

37. df.at[index, "Title"] str(df.at[index, "Title"]) + " " +
str(row["DOI"])

38. df.at[index, "DOI"] = None
39.
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40. if pd.notna(row["Link"]) and str(row["Link"]).startswith(("19"

"20")):
41. df.at[index, "Year"] = row["Link"]
42. df.at[index, "Link"] = None
43,
44, if pd.notna(row[ "Abstract"]) and

str(row["Abstract"]).startswith("10."):

45, df.at[index, "DOI"] = row["Abstract"]

46. df.at[index, "Abstract"] = None

47.

48. if pd.notna(row[ "Author Keywords"]) and str(row["Author

Keywords"]).startswith("https://www"):

49, df.at[index, "Link"] row[ "Author Keywords"]

50. df.at[index, "Author Keywords"] None

51.

52. # Scala tutte le colonne successive

53. df.at[index, "Abstract"] row[ "Author Keywords"]

54. df.at[index, "Author Keywords"] row[ "Publisher"]

55. df.at[index, "Publisher"] row[ "Language of Original Document"]

56. df.at[index, "Language of Original Document"] row[ "Document
Type"]

57. df.at[index, "Document Type"] = row["Source"]

58. df.at[index, "Source"] = None

59.

60. # Salva il file corretto

61. df.to_excel(output_file, index=False, engine="openpyxl")

62. print(f"Correzione completata! File salvato come: {output_file}")

63.

64. # Esequi la funzione

65. if __name__ " main__ ":

66. correggi_refusi("input.xlsx", "output_corretto.xlsx")

Below is a detailed breakdown of the script's logic and implementation steps, illustrating

how the data were programmatically corrected and reorganized.

1. Library Import and Function Definition:
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The script begins by importing the pandas library, essential for data manipulation and
analysis in Python. The function correggi_refusi() takes two arguments: input_file, the
path to the Excel file to be corrected, and output_file, the path where the corrected file

will be saved.
2. Loadingthe Excel File:

The function uses the read_excel() method to load the data into a DataFrame (df). The

engine="openpyx!" parameter is specified to ensure compatibility with .xlsx files.
3. lterating Through Rows:

The function iterates over each row of the DataFrame using iterrows(). This method
allows the function to access both the index and the data in each row, enabling the

manipulation of specific cell values.
4. Checking and correcting the Year Column:

e The function checks whether the Year column contains a non-numeric entry.

If so, itis assumed that this entry is part of the Title column.

o The Title is then updated by concatenating the current Title value with the

erroneous Year value, effectively combining both into a single text entry.
e The Yearcolumnisthen cleared by setting it to None.
5. Reassigning Data to Appropriate Columns:

e The function checks subsequent columns to verify if any data has been

incorrectly placed in the DOJ, Link, or Abstract columns.

e Ifthe DOI column contains a date-like entry (e.g., starting with 79 or 20), it is

moved to the Year column.

e Ifthe Link column contains a DOI-like entry (e.g., starting with 70), itis moved

to the DO/ column.

o If the Abstract column contains a URL (e.g., starting with https://), it is

reassigned to the Link column.
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6. Shifting Columns:

After reassigning the Year, DOI, and Link columns, the function proceeds to shift data in

the remaining columns to maintain logical consistency.
e The Abstract column is updated with the content from Author Keywords.
e Author Keywords is updated with the content from Publisher.
e Publisheris updated with the content from Language of Original Document.
e Language of Original Document is updated with the content from Document Type.
e Document Type is updated with the content from Source.
e The Source columnis then cleared by setting it to None.
7. Handling Additional Misalignments in the DO/ Column:

If the DOI column contains data that is not a valid DOI or date, it is treated as part of the
Title. The function concatenates this text to the existing Title content and clears the DO/

column.
8. Savingthe Corrected File:

After processing all rows and adjusting the data as necessary, the corrected DataFrame
is saved as a new Excelfile using the to_excel() method. The file is saved without the index
column, and the engine openpyxl is specified to ensure compatibility. A confirmation

message is then printed to indicate the successful completion of the operation.
9. Function Execution:

At the end of the script, the function is executed within the if__name__ =="_main__"

block. This ensures that the function only runs when the script is executed directly, not

when itis imported as a module.

In the case of WoS, a standard search query was employed, resulting in a total of 10,155
records. The same fields were exported as in Scopus. Unlike Scopus, WoS provides
direct export functionality in Excel format, facilitating the subsequent data processing

and organization for analysis.
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3.2 - Data cleaning and exclusion/inclusion criteria

Following the data export and initial formatting, the CSV files from Scopus and WoS were
converted into Excel tables, allowing for more efficient data cleaning and filtering

processes. The same procedure was applied to both datasets.

Starting with the Scopus dataset (i.e., 20,000 initial documents), the following filtering

steps were conducted:
1. DOlIfiltering

During this phase, we made a crucial assumption: if an article lacked a DOI" and a link
(URL DOI) or either of these fields, it was removed. Without a DOI code or its link, in fact,
itis not possible to access the publication and analyse the document. Consequently, the

Scopus dataset was reduced from 20,000 to 18,599 documents.
2. Language filtering

The Language of Original Document column was used to retain only those articles whose
language was indicated as English or whose language field was empty. This step further

refined the Scopus dataset to 18,583 documents.
3. Document Type filtering

The final filtering step targeted the 'Document Type' column. Records categorized as
article or review or those with empty fields were retained, reducing the datasetto 17,413
documents. This selection was carried out to include only primary research articles and
literature reviews, as these represent the most substantial and peer-reviewed sources of
scientific evidence for a literature review. Other document types (e.g., editorials, letters,
conference abstracts and technical notes) were excluded because they typically lack
rigorous peer review and are usually non-open access (i.e., readable for free, without a

particular additional subscription for the user).

DOI, an acronym for Digital Object Identifier, allows digital objects to be uniquely identified and reliably
accessed https://www.doi.org/index.html
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A similar filtering procedure was applied to the Web of Science dataset, initially
consisting of 10,155 documents. Following the removal of entries lacking a DOI or link
(i.e., 1,219 documents), the dataset was reduced to 8,936 records. The subsequent
language filtering step, focusing exclusively on English or empty language fields, further
refined the dataset to 8,850 documents. Finally, by retaining only articles, reviews, and
empty document type fields, the dataset was narrowed down to 6,427 documents,

aligning the selection criteria with those applied to the Scopus dataset.

3.3 - Merging

After the filtering processes, the two datasets from Scopus and WoS were merged into a
single table. Thus, a merger operation based on the DOI field was performed to identify

and remove duplicates.

The combined dataset (i.e., from Scopus and WoS records), obtained after the filtering
process, consisted of 23,840 documents. Records with equal DOIs were considered
redundant and eliminated. In total, 1,775 duplicates were detected and deleted,
resulting in a final dataset of 22,065 articles that served as the basis for subsequent
screening and analysis. The flow diagram below (Figure 4) provides a visual summary of

the data processing steps, from initial datasets to the final merged one.
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Scopus Web of Science

Merged Dataset
Duplicates removed: 1,775
Final: 22,065 Documents

Figure 4: Document filtering and merging workflow (own elaboration)

3.4 - Screening

3.4.1 - Semantic Filtering Using Al-Based Text Analysis

At this stage, we obtained a consolidated Excel table containing 22,065 rows, each
representing a unique document. The objective was to further filter these entries,
retaining only those articles that exhibit semantic relevance to specific keywords
associated with the research focus. Traditional keyword-based filtering would have been
insufficient due to variations in terminology and phrasing. Thus, we employed a more
advanced, Al-driven approach to semantic filtering using Python, leveraging libraries

such as pandas and sentence-transformers.
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As mentioned, the primary objective was to identify and retain only those documents that
are semantically aligned with the predefined set of keywords (e.g., machine learning,
artificial intelligence, etc.). However, a simple direct keyword search could potentially
exclude relevant documents that discuss these topics using different terminology or

contextual framing. To address this, we adopted a semantic filtering approach.

Rather than relying on explicit keyword matches, vector embeddings were utilized to
capture the contextual meaning of text. This process is analogous to having a virtual
assistant (hereafter referred to as the agent) who reads each abstract and assesses its

conceptual relevance to the specified keywords.

The agent reads each abstract and automatically converts the text into a high-
dimensional vector representation, capturing the semantic meaning rather than just the
words themselves. Similarly, the keywords are also embedded as vectors, representing
their conceptual meanings in the same vector space (for further theoretical background
on embedding, see Section 3.4.3.1). The model then compares the embedding of each

abstract with the embeddings of the keywords to assess semantic similarity.

The implementation was conducted using BERT, Bidirectional Encoder Representations
from Transformers, (a brief theoretical overview of BERT is provided in Section 3.4.3.2), a
transformer-based language model renowned for its ability to grasp contextual nuances
in text. The specific automatic implementation performed by BERT model involved the

following steps:

1. Data Preprocessing: Each abstract was extracted from the Excel table and

converted into a text string for processing.

2. Embedding Generation: Using the BERT model, each abstract was converted into

a 768-dimensional vector, representing its semantic content.

3. Similarity Calculation: The cosine similarity between each abstract's embedding
and the keyword embeddings was calculated. This metric quantifies the degree of
semantic alignment, with values ranging from -1 (completely dissimilar) to 1

(identical meaning).
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4. Thresholding: A similarity threshold was defined to determine whether a
document should be retained or not. If the similarity score exceeded the
threshold, the document was considered semantically relevant and retained in

the dataset, otherwise, it was excluded.

BERT model was selected due to its ability to capture bidirectional contextual meaning,
as opposed to traditional unidirectional models. This capability enables it to effectively
discern nuanced semantic connections between text segments, thereby improving the

accuracy of the filtering process.

Bidirectional contextual meaning refers to the model's ability to consider both the
preceding and following words in a sentence when interpreting the meaning of a specific
word or phrase. Unlike traditional models that process text in a single direction (left-to-
right or right-to-left), BERT simultaneously analyzes the context to the left and right of a
target word, allowing it to understand nuanced meanings more accurately. This
bidirectional approach enables BERT to better capture the full context and semantic
relationships between words, resulting in more accurate language understanding and
improved performance in tasks like text classification, question answering, and

information retrieval.

3.4.2 - Implementation and Explanation of the Python Code

#1
pip install torch sentence-transformers
pip install tf-keras
. #2
pandas pd
torch
0s
matplotlib.pyplot plt

sentence_transformers SentenceTransformer, util

O 00 N O 1 A W N B

10. # 3.1 Carica il file Excel

11. df = pd.read_excel("WIP_merged.xlsx", sheet_name="merged")
12.
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13. # 3.2 Crea una colonna "full context" combinando titolo, abstract e keyword

14. df['full_context'] = (

15. df['Title'].fillna('"') + '. ' +

16. df['Abstract'].fillna('") + '. ' +

17. df['Author Keywords'].fillna('")

18. )

19.

20. # 4. Parole chiave da confrontare semanticamente

21. parole_chiave = [

22. "Data Quality", "data-quality", "Data qualities", "quality of data",

"Quality of the data",

23. "qualities of data", "qualities of the data", "Quality of the training
data", "Quality of ML data",

24, "Data bias", "data biases", "Bias in the data", "biases in data", "Data
problem", "data problems",
25. "problem in data", "problem with the data", "data error", "data errors",

"error in data",

26. "error in the data", "Dimension", "dimensions", "AI", Tartificial

intelligence", "ML",

27. "machine learning", "Deep learning", "Neural network", "neural networks",

"Data quality framework",

28. "data quality frame works", "framework of data quality", "framework for
data quality",

29. "data reliability", "data integrity", "data consistency", "data accuracy",
"data completeness”,

30. "trustworthy data", "quality of input data", "label quality", "skewed
data", "sampling bias",

31. "machine intelligence", "data-driven models", "deep neural networks",

"automated learning",

32. "ML for process optimization", "deep learning for visual inspection", "AI

in supply chain”,

33. "AI for defect detection", "latency in decision making", "lack of
explainability"

34. ]

35.

36. # 5. Crea il modello per embedding semantico

37. model = SentenceTransformer('all-MinilM-L6-v2")

38.

39. # 6. Calcola gli embedding
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40. embedding_keywords = model.encode(parole_chiave, convert_to_tensor=True)

41. embedding_context model.encode(df['full_context'].tolist()

convert_to_tensor=True)

42.

43, # 7. Calcola lLa similarita tra ogni documento e Lle parole chiave

44, similarity_matrix = util.cos_sim(embedding_context, embedding_keywords)
45,

46. # 8. Prendi La similarita massima per ogni documento

47. max_similarities, _ = torch.max(similarity matrix, dim=1)

48. df['similarita’] max_similarities.cpu().numpy()

49,

50. # 9. Filtra 1 documenti con similarita 2 soglia

51. soglia = 0.45

52. df_filtrato = df[df['similarita’] soglia]

53. df_esclusi = df[df['similaritd'] < soglia]

54.

55. # 10. Statistiche

56. print(f"Documenti totali: {len(df)}")

57. print(f"Documenti rilevanti (similarita 2> {soglia}): {len(df_filtrato)}")
58. print(f"Documenti esclusi: {len(df_esclusi)}")

59.

60. # 11. Visualizza la distribuzione delle similarita

61. plt.figure(figsize=(8, 4))

62. plt.hist(df['similarita'], bins=50, color='skyblue', edgecolor="'black")
63. plt.axvline(soglia, color='red', linestyle='--', label=f"Soglia = {soglia}")
64. plt.title("Distribuzione delle similarita semantiche")

65. plt.xlabel("Similarita")

66. plt.ylabel("Numero di documenti™)

67. plt.legend()

68. plt.tight_layout()

69. plt.show()

70.

71. # 12. Salva i risultati

72. df _filtrato.to_excel("articoli_filtrati.xlsx", index=False)

73. df_esclusi.to_excel("articoli_ esclusi.xlsx", index=False)

74.

75. # 13. Mostra il percorso dei file
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76. ("File salvati in:")
77. (os.path.abspath("articoli_filtrati.xlsx"))

78. (os.path.abspath("articoli_esclusi.xlsx"))

The following section outlines the structure and functioning of the implemented Python

script, providing a step-by-step explanation of its main components and operations.

1. Library Installation

PyTorch is a comprehensive deep learning library developed by Facebook’s Research
Lab, widely utilized for tensor computations and model training due to its robust and
flexible framework for building and deploying neural networks. The sentence-
transformers library is an extension of PyTorch, specifically designed to generate
semantic embeddings of sentences using pre-trained models, enabling efficient
similarity calculations and clustering of textual data. Additionally, the scriptincludes the
installation of tf-keras, a high-level neural networks APl that provides a simplified
interface for constructing and training neural networks, although it is not actively

employed in the current implementation.

2. Import Libraries and Read Data

The script leverages several key libraries to facilitate data processing and analysis.
Pandas is employed for data manipulation and analysis, enabling the reading,
transformation, and organization of data within structured DataFrames. PyTorch is
utilized for tensor operations and model handling, providing a powerful framework for
deep learning tasks and seamless integration with other machine learning libraries. The
os module manages file paths and directory operations, ensuring efficient file handling
and data storage throughout the script. For data visualization, matplotlib.pyplot is used
to generate graphical representations of similarity scores, aiding in the interpretation of
semantic analysis results. Lastly, the sentence-transformers library is employed to
generate sentence embeddings and perform semantic similarity calculations, leveraging
pre-trained models to effectively measure contextual alignment between textual data

and predefined keywords.
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3. Load Excel File and Create Full Context Column

The script begins by reading data from the merged sheet within the Excel file called
WIP_merged.xlsx. To facilitate semantic analysis, a new column (full_context) is created
by concatenating the content of three specific columns: Title, Abstract, and Author
Keywords. This approach consolidates all relevant textual information into a single
column, providing a comprehensive representation of each document's context. To
prevent potential errors during the concatenation process, the. fillna(") method is
applied to each column, replacing any missing values with empty strings. This ensures
that the concatenation operation proceeds smoothly without generating null-related

errors.
4. Define Keywords for Semantic Analysis

A comprehensive list of keywords designed to capture a broad range of expressions and
terminologies associated with data quality, artificial intelligence (Al), and machine
learning (ML). This list includes specific terms, synonyms, and variations to ensure
comprehensive semantic coverage, enabling the identification of relevant content even

when different phrasing or terminology is used across documents.

The keywords are carefully selected to cover essential aspects of data quality, such as
data accuracy, data consistency, data completeness, data integrity, and data reliability.
Additionally, itincludes terms related to common data quality issues, such as data bias,
data errors, and data problems, ensuring that various types of data-related concerns are

adequately represented.

In the context of Al and ML, the list incorporates phrases related to data usage in model
training, such as Quality of training data, Quality of ML data, and Label quality.
Furthermore, broader Al/ML concepts such as deep learning, neural networks, machine
intelligence, and automated learning are included to capture the intersection of data

quality within advanced computational frameworks.

The list also extends to more specific applications of Al and ML in industrial contexts,

such as ML for process optimization, Al for defect detection, and deep learning for visual
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inspection, reflecting scenarios where data quality issues can significantly impact model

performance and decision-making.

By encompassing both general and context-specific terms, the keyword list ensures a
comprehensive semantic analysis that not only identifies explicit references to data
quality but also captures implicit mentions related to Al and ML applications. These
keywords will be used to compute semantic similarity scores against the document
content, allowing the script to effectively assess the relevance of each document based

on its contextual alignment with the defined concepts.

5. Initialize Sentence Embedding Model

MiniLM is a transformer-based model that leverages the architecture of BERT but in a
more compact and computationally efficient format. Unlike the full BERT model, which
consists of hundreds of millions of parameters, MiniLM is designhed to achieve similar
semantic understanding with significantly fewer parameters, making it faster and less
resource intensive. The all-MiniLM-L6-v2 model is a compact, pre-trained model
optimized for semantic similarity tasks. It generates dense vector embeddings for textual
content, allowing for cosine similarity calculations between sentences. This makes it
particularly suitable for large-scale semantic analysis, as it maintains robust contextual
representation capabilities while minimizing computational overhead, aligning well with

the objectives of the implemented filtering process.

6.Compute Embeddings for Keywords and Document Context

The model.encode() function plays a crucial role in the semantic analysis process by
converting each textual input into a high-dimensional vector representation, known as
an embedding. This transformation enables the script to capture semantic meaningin a

numerical format, facilitating the calculation of similarity scores between texts.

In the context of this script, the model.encode() function is applied to two distinct
datasets. First, it processes the list of keywords, transforming each keyword or phrase in
parole_chiave into a tensor—a structured array of numerical values representing the
semantic meaning of each keyword. This step effectively converts linguistic content into

a mathematical form that can be systematically compared with other text embeddings.
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Similarly, the full_context column, which consolidates the Title, Abstract, and Author
Keywords for each document, is also processed using the same encoding function. Each
documentis converted into a corresponding tensor, creating a vector representation that

encapsulates the semantic context of the entire text.

By embedding both the keywords and document content in the same high-dimensional
space, the script enables direct comparison of their semantic proximity, allowing for the
calculation of cosine similarity scores between them. This alignment of text and

keywords in a shared vector space is fundamental to the subsequent similarity analysis.
7. Calculate Semantic Similarity

util.cos_sim() is a function provided by the sentence-transformers library. It computes
the cosine similarity between two sets of embeddings, such as document embeddings
and keyword embeddings. This results in a similarity matrix, where each row represents
adocument and each column represents a keyword. The values in the matrix range from

-1to 1, where 1 indicates maximum similarity and -1 indicates maximum dissimilarity.
8. Extract Maximum Similarity Score for Each Document

After calculating the similarity matrix using util.cos_sim(), the script proceeds to identify
the highest similarity score for each document. This is achieved using the torch.max()
function, which plays a crucialrole in extracting the most relevant similarity score across

all keyword embeddings.

The function torch.max() is specifically applied along the keyword dimension (columns)
of the similarity matrix, as indicated by the parameter dim=1. This parameter instructs
the function to locate the maximum value along each row, effectively identifying the

highest similarity score for each document across all keywords.

The function returns a tuple containing two elements. The first element contains the
maximum similarity scores for each document, representing the highest degree of
semantic similarity with any of the predefined keywords. The second element contains
the index of the corresponding keyword that generated the highest similarity score,

though this index is not utilized in this particular implementation.
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The maximum similarity scores are then extracted and stored in a new column named
similarita in the DataFrame. The .cpu() method is used to convert the tensor to a NumPy
array, enabling seamless integration with the DataFrame structure. The resulting
similarity scores provide a quantitative measure of how closely each document aligns

with the defined set of keywords, forming the basis for further filtering and analysis.
9. Filter Documents Based on Similarity Threshold

A similarity threshold of 0.45 is established to effectively filter relevant documents based
on their semantic similarity to the predefined set of keywords. This threshold was
determined through iterative testing and evaluation, during which different threshold

values were assessed to identify the optimal balance between precision and recall.

A threshold of 0.45 was chosen as it provided a sufficient level of semantic alignment,
allowing for the inclusion of documents that were contextually relevant to the targeted
keywords without being overly restrictive. Lower thresholds, such as 0.3 or 0.4, tended
to include too many unrelated documents, reducing the overall quality of the filtered
dataset. Conversely, higher thresholds, such as 0.5 or 0.6, were too stringent and
excluded potentially relevant documents that shared moderate but significant

contextual similarities with the keywords.

Therefore, setting the threshold at 0.45 ensures the inclusion of a comprehensive yet
manageable corpus of documents, optimizing the trade-off between capturing relevant
content and minimizing noise. Documents with similarity scores equal to or above 0.45
are considered relevant and are saved in the DataFrame df filtrato. Those with scores

below the threshold are deemed less relevant and are saved in df _esclusi.
10. Display Statistical Information

The script provides statistical feedback regarding the filtering process. Specifically, a
total of 2,763 documents were identified as relevant, having similarity scores equal to or
above the threshold, and were saved in the DataFrame df filtrato. Conversely, 19,302
documents with similarity scores below the threshold were classified as less relevant

and saved in df_esclusi. This output highlights the effectiveness of the chosen threshold
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in refining the dataset to focus on contextually alighed documents while excluding those

less pertinent to the targeted keywords.
11. Visualize Similarity Distribution

A histogram is generated to visualize the distribution of similarity scores across all
documents. Averticalred dashed line is drawn to indicate the similarity threshold (Figure

5).

Total documents: 22065
Relevant documents (similarity >= 0.45): 2763
Excluded documents: 19302

Semantic similarities distribution
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Figure 5: Semantic similarity distribution with threshold = 0.45 (Python code)

12. Save the Filtered Data

The filtered datasets (df_filtrato and df_esclusi) are saved as separate Excel files named

articoli_filtrati.xlsx and articoli_esclusi.xlsx directly from the Python code.
13. Display Output File Paths

The absolute file paths for the saved files are printed to confirm the location of the output

files.
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3.4.3 - Theory recall: Embedding and BERT

To ensure a comprehensive understanding of the semantic filtering process adopted in
this study, the following section outlines the theoretical foundations of the embedding
technique and the BERT model, both of which constitute the key elements of the text

analysis methodology applied.

3.4.3.1- Embedding

Unlike humans, who are capable of reasoning through abstract concepts and complex
semantic structures, machines can only operate on numerical data represented in
binary form. Therefore, enabling computers to process textual or otherwise non-
numerical inputs requires an effective transformation of such data into numerical
representations. This transformation must be performed at a level of granularity that
allows the capture of semantic relationships embedded in natural language.
Consequently, one of the fundamental challenges in natural language processing lies in
developing representations of word meaning that are both computationally tractable and

semantically informative.

Word embeddings emerged as a transformative solution. The technique embeds words
in a space with a lot of dimensions, where each single word is encoded as a vector (a list
of numbers). The key aspect of this technique is placing words with similar meanings in
proximity to each other in this multi-dimensional space. The two words having similar
vectors will likely be semantically close together. Interestingly, the direction from sets of

close words (e.g., king to queen) can embed underlying relationships (e.g., regality).

An embedding is nothing more than a vector (N-dimensions) that tries to capture the
meaning of a word or sentence, placing it in a vector space, also called semantic space
(Almeida e Xexéo 2023). As vectors, they obey the inherent mathematics: they have a

length, norm, and direction, and can be compared using measurement methods.
Moreover, embedding models can operate at various levels of granularity:

¢ Word embeddings (e.g., Word2Vec) focus on individual words or tokens.
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¢ Sentence or document embeddings (e.g., BERT) aim to capture the full semantic

content of longer inputs.

A clearer understanding of the functioning and relevance of word embeddings can be
gained by examining how they are typically visualized and interpreted. In the absence of
embedding techniques, a rudimentary approach to numerical representation would
involve assigning a unique integer index to each word within a vocabulary of, for example,
10,000 terms. Based on this mapping, each word could be expressed as an n-
dimensional vector, where n corresponds to the vocabulary size. In such a
representation, known as one-hot encoding or 1-of-N encoding (Naseem et al. 2020),
each word vector consists entirely of zeros except for a single element setto one, located

at the index position assigned to that word. Figure 6 exemplifies how this might work.

id color id color_red color_blue color_green
1 red 1 1 [c] o}
2 blue One Hot Encoding > 2 0 1 o
3 green 3 [0} Q 1
4 blue 4 @ 1 e

Figure 6: One-hot encoding example (Novack 2020)

However, this type of text representation, being purely symbolic rather than an
embedding, suffers from major limitations in generalization and contextual relevance. In
such aframework, a machine can only recognize whether a word exists in the vocabulary,
without understanding its meaning or its relationships to other words. As a result, the

representation is largely inadequate for real-world applications.

The primary goal of embeddings (as vector representations) and embedding models
(which map text inputs to such vectors) is to overcome the limitations of sparse and
context-free methods like one-hot encoding. These models aim to capture semantic

content, contextual dependencies, and inter-word relationships by leveraging patterns
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learned during training. As a result, machines are not only able to recognize a word’s
presence but also infer its meaning relative to other words in the language. By projecting
words into a continuous, high-dimensional semantic space, embedding models enable
generalization across similar linguistic units, supporting more sophisticated and
context-aware processing of language (Naseem et al. 2020). For example, apple and pear
(types of fruits) or hammer and wrench (types of tools) will be grouped together in that
space. This capacity to abstract and reason about relationships is what has made
embeddings so crucial to real-world NLP tasks. Figure 7plots a simplified representation

of a vector space.

Figure 7: 3D semantic space with clustered categories (own elaboration)

A complete set of word embeddings exhibits several useful and non-trivial properties,
enabling not only the recognition of semantically similar words but also the capture of
complex linguistic relationships. One of the most notable features of a trained
embedding space is its ability to group similar words in close proximity within an N-
dimensional vector space. For example, terms such as car, vehicle, and van tend to

cluster together, while remaining distant from unrelated terms like moon, tree, or space.
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This spatial similarity can be quantified using metrics such as Euclidean distance, which
measures the straight-line distance between two vectors, or cosine similarity, which

evaluates the angle between vectors.

In addition to capturing word similarity, word embeddings can also model more abstract
linguistic relationships through vector arithmetic. A classic example involves gender-
based analogies: the vector difference between man and woman is similar to that
between king and queen, or uncle and aunt. Such transformations illustrate how word
embeddings encode not just semantic proximity, but also structured, interpretable

relationships between concepts.

Word embeddings are produced by models, statistical or neural networks based,
learning to represent words as vectors based on the patterns that occur in large
collections of text data (Naseem et al., 2020). Such models are typically trained using
unsupervised or self-supervised methods, i.e., they do not require labelled data. Instead,
they leverage the distributional assumption that words with similar contexts would also
have similar meanings. The datasets typically contain books, websites, human

conversations, etc.

By discovering how to express every word as a point in higher-dimensional space, in
which semantic relationships are represented in the distances and directions between

vectors, these models learn to predict word co-occurrence in text.

3.4.3.2 - BERT: complex embedding model

At the end of 2018, a group of scientists from the Google Al Language laboratory
presented a new linguistic model called BERT (Bidirectional Encoder Representations
from Transformers) (Devlin et al. 2019). BERT is a pre-trained language model on a large
corpus that uses the masked language modelling and next-sentence prediction
objectives. The BERT family models are developed upon the Transformer encoder-
decoder architecture (Vaswani et al. 2023). An encoder reads and understands input text
by converting it into a numerical representation that captures its meaning. A decoder

takes this representation and generates new text based on it, such as a summary or a
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translation. Thus, while encoder-only models generate word embeddings, the decoder-

only models can generate text (Figure 8).
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Figure 8: Encoder- Decoder architecture example (Yaron 2019)

However, BERT models have an encoder only architecture. In fact, they can serve various
low-level NLP tasks: semantic search, clustering, sentence similarity, classification.
While Word2Vec assigns each word a fixed vector based on its general usage across a
corpus - meaning it doesn’t change depending on context - BERT dynamically generates
embeddings for words based on the entire sentence they appear in. This allows BERT to
capture in-context nuances and understand the semantic relationships between words

more accurately. Here is an example:
Imagine the word bank in two different sentences:
1. "He saton the river bank and watched the water flow."

2. "She deposited money into the bank yesterday."
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Atraditional model might treat the word bank the same way in both sentences; however,
BERT understands context bidirectionally — it examines the entire sentence (left and

right of the word) to determine meaning.
So, BERT will interpret:
e Insentence 1, bank =riverbank.
e Insentence 2, bank = financial institution.

As previously mentioned, one of the major applications of word embeddings are
semantic searches. Imagine you have a collection of articles about various topics, and
you want to find articles that are semantically related to a search query. For example,

consider the search query:
Tips for teaching my dog commands.

The traditional web search engine process, based on keywords matching, may fail to
retrieve relevant information, leading to unrelated or poorly related articles based on

your query.

Semantic search using models like BERT, however, understands the meaning of the
query. It does not just search for the word commands but understands that your query is
asking for training tips related to dogs. This will result in a more precise answer to the

user.

To demonstrate the practical application of semantic search using transformer-based
language models, the following Python implementation leverages BERT to encode both
user queries and textual data into dense vector representations. These embeddings are
then used to compute semantic similarity, enabling the retrieval of contextually relevant

results beyond simple keyword matching.

3.5 - Performance Metrics of Semantic Filtering Process

To evaluate the effectiveness of the semantic filtering process applied to the document
corpus, a two-step validation approach was adopted, combining algorithmic selection
with human judgment. In particular, the aim of Step 17 is to validate the algorithm in
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selecting the relevant papers, while the objective of Step 2 is to check manually all the
relevant selected papers from the model. The semantic filter was based on a truncated
Gaussian distribution applied to the similarity scores produced by a BERT-based model,
which excluded documents in the left portion of the distribution and retained only those

exceeding a predefined threshold on the right tail (Figure 5).

The initial dataset comprised 22,065 documents, resulting from the integration and
deduplication of bibliographic records extracted from Scopus and Web of Science. The
semantic filtering algorithm excluded 19,302 documents, while 2,763 documents were
retained as potentially relevant based on their similarity to a predefined set of keywords

related to data quality, artificial intelligence, and machine learning.

In order to validate the algorithm (Step 7), a manual screening was conducted on

approximately 10% of the total corpus, amounting to 2,370 documents randomly

2,370
22,065

sampled across both included and excluded sets (i.e., ~ 10%). Each document

was assessed by examining its Title, Abstract, and Author Keywords.

Among manually examined documents, 38 were identified as relevant, while the
remaining 2,332 were classified as irrelevant (i.e., 337 + 1,995 = 2,332 irrelevant

documents).

This first phase provided an initial estimation of the alignment between the semantic
filtering algorithm and human evaluation, serving as a key reference point for the

calculation of classification metrics.

The second validation phase (Step 2) consisted of a complete manual review of the 2,763
documents selected by the Python semantic filtering algorithm. Among these, 375
documents had already been reviewed during the first manual evaluation phase (Step 7).
In particular, 337 had been classified as irrelevant and 38 had been confirmed as relevant
to the purpose of the search, as in Figure 9. To avoid redundancies, these previously

analyzed documents were excluded from the second screening phase.
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(Total Corpus) (Step 1)
22,065 > 2,370

10% of the total corpus

manually analysed

38yes->TP
- /
2,763 yes _ manually
\ 337no->FP

/ ! ’995 no->TN
1,995
19,302 no _ manually

\ Oyes->FN

Figure 9: Model output with manual validation on 10% of the total corpus (own elaboration)

The remaining 2,388 documents (among those included by the Python algorithm), which
had never been evaluated before, were subjected to a manual evaluation, applying the
same assessment criteria as in Step 7. The manual analysis resulted in confirmation that
126 documents were correctly included in the analysis, while the remaining 2,262 were

considered irrelevant to the defined inclusion criteria.

Combining the results from both steps, the total number of documents correctly

identified as relevant is:

38 (Step 1) + 126 (Step 2) = 164 documents

Accordingly, the remaining 2,599 documents included by the filter were manually

assessed as not relevant.

To evaluate the performance of the semantic filter using standard classification metrics,

the following definitions were adopted:
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e True Positives (TP): Documents included by the semantic filter and confirmed as

relevant during manual review > 38

o False Positives (FP): Documents included by the filter but manually rejected as

irrelevant > 337

e True Negatives (TN): Documents excluded by the filter and manually confirmed as

irrelevant > 1,995

o False Negatives (FN): Documents excluded by the filter but manually judged

relevant~> 0

This classification enables a detailed quantitative assessment of the filter’s behaviour.

Table 1: Confusion matrix components from manual analysis

Category Count [documents]

True Positives (TP) 38

False Positives (FP) | 337

True Negatives (TN) | 1,995

False Negatives (FN) | O

Based on the classification above, the following metrics are derived:

TP + TN 38 +1,995
e Accuracy = = ~ 85.78 %
TP + FP + FN + TN 2,370
. TP 38
e Precision = ~ 10.13 %

TP+ FP  38+337

e Recall = o _ 38 ~ 100 %
TP + FN 38 +0

The performance metrics obtained reveal a high accuracy (= 85.78%) and a perfect recall
(100%), indicating that the semantic filter was highly effective in identifying nearly all
documents considered relevant by human evaluation. Accuracy, which can be defined

as the proportion of correct classifications over the total number of instances in the
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dataset, provides a general indication of overall model performance. However, it does

not distinguish between different types of mistakes.

Conversely, recall, defined as the ratio of true positives to the sum of true positives and
false negatives, captures the model’s ability to retrieve all relevant items. The perfect
recall observed here suggests that the filter successfully retained every document

judged relevant by human screening.

On the other hand, precision, calculated as the proportion of true positives out of all
positive predictions, is notably low (= 10.13%). This indicates that, although the filter
retrieved all relevantdocuments, italso included a high number of irrelevant ones, which
were subsequently rejected during manual validation. This outcome is consistent with
the choice made during the implementation of the semantic filtering algorithm, where a
relatively broad inclusion threshold (set at 0.45 on the similarity score distribution) was
deliberately adopted. While this threshold focuses on the right tail of the truncated
Gaussian distribution (Figure 5), it still retains a relatively large portion of documents in
order to maximize recall. This strategic choice was guided by the objective of ensuring
that potentially relevant documents would not be prematurely excluded, thus favouring
a more inclusive filtering phase that could subsequently be refined through manual
screening. If amore restrictive threshold had been applied, the algorithm would probably
have achieved greater precision by reducing the number of irrelevant documents
incorrectly included. However, this would have occurred at the cost of a lower accuracy
and potentially a loss of relevant documents, an outcome perceived less desirable given
the exploratory nature of the literature review and the need to ensure comprehensive

coverage of the topic.

To further assess the reliability of the semantic filtering process, a statistical
interpretation of the algorithm's performance was carried out by estimating Type | and
Type Il error rates. In this context, the null hypothesis (H,) is: A document included by the

semantic filter is actually relevant to the analysis.

Rejecting this hypothesis when it is true constitutes a Type | error (a), or a false positive;

in this case, the algorithm incorrectly classifies a document as relevant even though it is
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not actually pertinent to the analysis. Conversely, a Type Il error (3) occurs when the null
hypothesis is false, but it is not rejected: this results in the algorithm failing to identify

and includes a document that is indeed pertinent to the research objectives.

Based on the manually validated dataset, the estimated Type | error (a) reflects the
proportion of documents incorrectly classified as relevant among those included by the
filter (the false positives). Out of a total of 375 documents included by the semantic filter
and manually reviewed, 337 were identified as false positives. Therefore, the Type | error

rate is calculated as:

FP 337
TP + FP 38 +337

This high value indicates that a large proportion of the documents selected by the
algorithm were not considered relevant upon manualinspection. However, this outcome
is consistent with the design strategy adopted in the filtering phase, which intentionally

prioritized inclusivity to reduce the likelihood of missing relevant content.

The Type Il error (), on the other hand, corresponds to the proportion of relevant
documents that were excluded by the filter (the false negatives). In this case, no relevant
documents are missed as all documents identified as relevant through manual
validation have already been included by the semantic filter. As a result, the number of

false negatives (FN) is zero, and the Type Il error rate is calculated as:

FN 0
B: = = 0 %.
FN + TP 0+38

This outcome confirms that the semantic filter successfully captured all relevant
documents within the corpus. The recall of the system is therefore maximized, which
was precisely the intended effect of setting a relatively inclusive similarity threshold (i.e.,

0.45).

Although this strategy resulted in a substantial number of false positives, reflected in a
low precision, it effectively guaranteed that no relevant literature was inadvertently
excluded. Such an outcome represents an intended and acceptable trade-off
considering the review’s exploratory nature and its aim to achieve comprehensive

coverage of the topic.
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3.6 - Full Text Analysis

In accordance with PRISMA methodology, the next phase of the document screening
process corresponds to the Eligibility step, which involves a full-text analysis of the

documents previously identified as relevant (i.e., 164 documents).

Following the screening process, a total of 164 documents are retained based on the
combined outcomes of the manual validation procedures: 126 documents are identified
during the second-level screening (Step 2) and 38 are confirmed during the initial sample

assessment (Step 7).

Each of these documents is subjected to a full-text eligibility check to verify their actual
suitability for inclusion in the final dataset. This step is aimed at ensuring that
methodological content, thematic alignment, and level of detail provided by the studies
were consistent with the research objectives. During this process, it was found that 28
documents were not accessible in full text due to access restrictions. The unavailability
was primarily imputable to technical issues related to DOI resolution and the presence
of paywalls requiring additional subscriptions. As a result, the number of documents

eligible for in-depth analysis was reduced to 136.

These 136 documents represent the final set of sources on which the qualitative and

content-based analyses are conducted in the subsequent stages of the research.

The purpose of this step is not to examine the methodological design or research
strategies employed by the authors, but rather to extract meaningfulinsights concerning
data-related issues within the scope of artificial intelligence and machine learning in

manufacturing settings.

More specifically, the analysis is aimed at identifying two distinct but often overlapping
dimensions within each paper. The first concerns problems and challenges reported in
management, quality, or structure of data: these are issues which tend to persist over
time and technological evolutions (RQa). The second dimension relates to the solutions,
techniques, and frameworks proposed or adopted by the authors to address those

issues (RQb). This separation is critical, as it enables a clearer understanding of which
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obstacles are structurally rooted, and which are being actively mitigated through

evolving technological solutions.

This dual-level reading of each article was guided by a structured analysis framework,

implemented in the form of a spreadsheet, where each column corresponded to a

specific analytical variable (Figure 10).

The columns were designed to capture the following dimensions:

Relevance: A binary classification indicating whether the paper was considered

relevant (yes) or not (no) for answering the research questions.

Problems/Challenges: This column identifies the main issues or limitations
addressed in the paper, which may concern various aspects such as data,

methodology, implementation, or application context.

Techniques/Solutions/Tools: Techniques, methods, or tools proposed or

discussed by the authors to address the identified challenges.

Research Questions (RQ)/Aim of the paper: This field summarizes the research
objectives or explicit questions stated by the authors, offering alignment with our

RQa and RQb.

Results: A brief synthesis of the main findings or conclusions reached by the

study, focusing on data-related aspects.
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Is the paper relevant
for the topic under Problems/Challenges Techniques/Solutions/Tools RQ(s)/Aim of the paper Results

investigatinn?n -

“what data is dirty?,” “why is it dirty?,” and
no “how does a particular piece of data
contribute to the overall dirtiness?

RQ: How can data quality be evaluated and
improved in ML-based design and
manufacturing?

RQ1 What definitions, concepts,
frameworks, and techniques are frequently

utilized in this domain? (1) The data handling techniques, terminologies, and challenges in ML-based
RQZ What are the dominant data design and manufacturing are investigated.
+ Types of data ) + Data augmentation: artificially expanding the data volume and possibly challenges in this domain? F?] The d?(a quality concepts, such as da(? qualiw, éa(a rteadimess, ar?d
+ Data heterogeneity R N B L RQ3 What are the concepts developed to information quality (InfoQ), as well as their applications in this domain, are
. B enhancing the data diversity for better model generalization N B N N
si * Data imbalance investigate and evaluate data quality reviewed.

» Active learning

D §
+ Data scarsity + Adaptive sampling

+ Labeling data (to train ML models)

regarding the identified data challenges? (3) The data imbalance and biases in design and manufacturing data sets are
RQ4 What are the techniques developed to  analyzed.

resolve the identified data challenges? (4) We present and discuss data quality improvement and bias mitigation
RQ5 How do the techniques compare and  techniques, focusing on data augmentation and active learning.

how applicable are they in this domain?

RQ6 What are the status, trends, and future

directions for the surveyed data quality

improvement technigues?

Figure 10: Example of Excel spreadsheet for Full text analysis (own elaboration)

52



This allowed for a systematic and replicable review of each document, facilitating the
identification of recurring themes, emerging trends, and gaps in current practices. The
collected evidence serves as the basis for mapping common data-related problems,
contextualizing them across different manufacturing environments, and observing how

the field is conceptually and practically responding to such challenges.

Among the 136 documents selected for in-depth analysis, several metadata fields
extracted from bibliometric databases were found to be incomplete or missing, such as
document type. Although the initial inclusion and exclusion criteria were clearly defined,
some documents, such as short conference papers, were nevertheless retained in the
dataset due to their thematic relevance. However, these documents often lacked

sufficient in-depth analysis and did not provide substantial analytical value.

Of the 136 documents, 25 were analysed entirely manually, while the remaining 111 were
first examined with the support of ChatGPT, followed by manual validation. This
methodological choice aimed to establish a sufficiently robust baseline of manually
analysed documents to serve as a benchmark for subsequent comparison. The
underlying objective was to verify the degree of consistency between human
interpretation and the outputs generated by ChatGPT. To this end, approximately one
fifth of the overall corpus (25 out of 136 documents) was initially examined exclusively
through manual review and subsequently processed using the same prompts in
ChatGPT. Once a satisfactory correspondence between the manual and Al-assisted
analyses was observed, the remaining documents were analysed directly with the

support of ChatGPT and subjected to subsequent validation.

ChatGPT was employed exclusively as a support tool, with each document being
individually processed and the tool was used to extract structured information
corresponding to predefined Excel columns: Application Area, Problems/Challenges,
Techniques/Solutions/ Tools, RQ(s)/Aims of the paper and Results (as per columns title

in Figure 10).

The reason behind the choice of using ChatGPT as a support tool is that large language
models have recently demonstrated strong effectiveness in tasks comparable to

literature analysis, such as abstract screening in systematic reviews. In this context,
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ChatGPT v4.0 achieved excellent performance, with overall accuracy above 90% and
balanced levels of sensitivity and specificity, while drastically reducing the time and cost
of manual evaluation. According to Li (Michael Li et al. 2024), these results highlight the
potential of ChatGPT as a reliable assistant in supporting, rather than replacing, human
evaluation. This process helped guide manual reading and improve review efficiency

without compromising critical evaluation.

In accordance with the PRISMA guidelines, the full-text analysis was conducted by
applying a set of predefined eligibility criteria to assess the relevance of each document.

The inclusion criteria required that the study:

e Addresses generalized and transferable concepts of data quality, particularly in
relation to its impact on Al systems in manufacturing contexts.
e Explicitly evaluates or discusses how data quality influences the trustworthiness

or performance of Al-driven applications.

The exclusion criteria, consistent with those previously applied during earlier screening

phases (as detailed in previous sections), included:

e Studies whose primary focus was not data quality.
e Contributions lacking sufficient methodological or conceptual depth to support
the research objectives (e.g. short or unstructured abstracts, editorial notes, or

promotional content).

Based on the application of these criteria, the full-text analysis of the 136 selected

documents led to the following categorization:

62 documents were considered irrelevant or only marginally related to the research

questions and were therefore excluded from further analysis.

33 documents were classified as case studies or highly specialized researches, typically
focused on narrowly defined applications or sector-specific implementations. Although
thematically related to the broader topic of Al and data quality, these studies exhibited a
high degree of verticality, namely, they addressed highly specific use cases,

technologies, or industrial contexts that limited their generalizability. For example,
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several short conference papers included in this category explored niche applications

with limited methodological transferability or theoretical depth.

41 documents were deemed fully relevant and aligned with the research objectives.
These studies addressed both RQa and RQb in a clear and substantive way and provided
meaningful insights into data-related challenges as well as the corresponding Al-based
solutions. In addition to thematic alignment, these contributions were characterized by
a sufficient level of generality and abstraction, which made their findings applicable
across a range of manufacturing contexts. Hence, they represent the empirical

foundation of the analysis presented in Chapter 4.
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Chapter 4 - Results

The 41 papers identified as relevant for this analysis span a period from 1995 to 2025,
offering a comprehensive overview of how definitions, technologies, and artificial
intelligence approaches to data quality in manufacturing have evolved over the last three
decades. The chronological and thematic examination of these works allows for a
nuanced understanding of both conceptual developments and practical

implementations, as well as the persistent challenges that continue to shape the field.

This analysis is guided by the following research question:

How is artificial intelligence currently being applied to assess and enhance the reliability
of data in manufacturing processes, and what are the key challenges and gaps in the

existing literature?
In addressing this overarching question, two sub-questions are considered:

e (RQa) Which dimensions of data quality are most frequently addressed in Al
applications for manufacturing? Along which characteristics should data quality be
evaluated when employing a dataset for trustworthy Al in manufacturing?

e (RQb) What are the main Al techniques used to evaluate or improve data reliability in

this context?

To provide a clear and structured narrative, the results are organized into three
chronological periods that correspond to major shifts in focus and technological
capability. It should be noted that these periods are not rigid or mutually exclusive.
Rather, they provide a heuristic structure to highlight predominant trends over time. In
practice, overlaps exist: some recent works (e.g., surveys or conceptual reviews) revisit
early discussions on the definition of data and data quality, while certain methodological
advances anticipated in later stages can already be observed in earlier contributions. The
chronological division thus serves as an analytical framework rather than a strict
categorisation, enabling a clearer understanding of how different themes have evolved

and interacted over the last three decades.
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1. 1995-2010: Early efforts to establish shared definitions of data and data quality,
highlighting the absence of a universal standard and the reliance on foundational

attributes such as accuracy, completeness, and consistency.

2. 2010-2020: Expansion into the domains of Big Data and the Internet of Things
(loT), with an emphasis on scalability, interoperability, and the integration of new

dimensions of data quality into manufacturing systems.

3. 2020-2025: Advanced applications of machine learning (ML), deep learning (DL),
and Al, embedding continuous assessment and improvement of data reliability

into complex manufacturing environments.

4.1 - Early Period (1995-2010): Foundational Definitions and Initial

Approaches

In the earliest years covered by this review, literature predominantly focused on building
a conceptual foundation for what would later become the broader discourse on data
quality in manufacturing. The central concern was to establish clear, operational
definitions of data and data quality, often drawing from parallel domains such as

information systems, database management, and software engineering.

The term data was generally described as recorded values representing facts, events, or
measurements, which could be structured, semi-structured, or unstructured depending
on their origin and format (Wang, Strong 1996). In the manufacturing domain, the
concept acquires greater specificity, as data were frequently generated by sensors,
control systems, and manual entry processes, each with distinct characteristics and
potential sources of error. These distinctions were important for understanding the types

of quality challenges likely to arise in different manufacturing contexts (Figure 11).
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Basis Data Types Description

Structured data Data with formal schema definition; (e.g., relation tables)
Structure Unstructured data Generic sequence of symbols (e.g., video)

Semi-structured data Data partly structured or have a descriptive without schema (e.g., XML file)
Change frequency Stable data Data impossible to change

Long-term changing data Data with very low frequency of change

Frequently changing data ~ Dramatically changing data, (e.g., real-time traffic information)
Product Raw data items Data that have not been processed

Information products Results of manufacturing activities

Component data items Semi-processed information

Federated data Data from different heterogeneous sources

Web data Data from the Web
Nature High-dimensional data Big data

Descriptive data Consists of many tables with complex interrelationships.

Longitudinal data Time series data

Streaming data Data generated sequentially at a higher rate in a single source

Figure 11: : Classification for data (Batini et al. 2009)

Data quality in this early period was not yet supported by a universally accepted
definition. One of the most influential and enduring conceptualizations was the idea of
fitness for use (Wang e Strong 1996), which framed data quality as a relative and context-
dependent property: datais said to be of high quality if they meet the needs of the specific
task, decision or process it is intended to support. This perspective underscored that
quality requirements are dynamic, shaped by evolving operational contexts, the gradual

accumulation of data in repositories, and changing stakeholder expectations.

Within this conceptual frame, the attributes most frequently emphasized were accuracy,
completeness and consistency, often complemented by timeliness and relevance as
additional indicators of usability (Wang e Diane M. Strong 1996; Redman 1998). These
attributes provided the initial operational foundation for assessing data quality, serving

as reference points for both academic research and early industrial applications.

Over time, formal standards began to address the issue more explicitly. The ISO 8000
data quality standard was developed to provide a structured approach for assessing and
improving data quality across the product life cycle, from conceptual design to disposal.
ISO 8000 defines quality characteristics for data, offers a framework for improvement,
and can be applied independently or alongside broader quality management systems.
Its structure encompasses general principles, master data quality (including syntax,
semantic encoding, provenance, accuracy and completeness), transaction data quality,

and product data quality (Figure 12).
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— 1SO 8000-1 Introduction

1ISO 8000-2 Vacabulary

General Principles
1SO 8000-8 Concepts and measuring of information and DQ
ISO 8000-60 Data quality management

— IS0 8000-100

Overview

ISO 8000-110 —— Syntax, semantic encoding, and conformance to data specification

— 150 8000-120

Provenance

ISO 8000-130

Accuracy

— 150 8000-140 Completeness

ISO 8000-150 Quality management framework

Transaction Data Quality Jf 1SO 8000 200~299

1ISO 8000 300~399

Product Data Quality

Figure 12: Components of ISO 8000 (Batini et al. 2009)

The conceptual roots of data quality also draw from the broader definition of quality in
ISO 9000, which describes it as the degree to which customer requirements are satisfied
(Nikiforova 2020). By extension, data quality is understood as the degree to which data
meets the requirements of their intended use, reflecting both their inherent properties
and their suitability for the context in which they are applied. This definition highlights the
inherently relative and dynamic nature of data quality, a property that can change over

time as data evolve, accumulate, or are repurposed for new applications.

The focus on inherent dimensions of data quality, accuracy, completeness, and
consistency, was a natural reflection of the stage of development. Evaluation methods
in this early stage were typically manual or rule-based, with a limited set of metrics
applied to discrete datasets. The process followed a linear lifecycle, moving from data
generation, often from multiple heterogeneous sources, to acquisition, storage, and
finally analysis (Figure 13). At each stage of this lifecycle, there were potential risks of
quality degradation, such as errors in collection, transmission delays, incomplete
storage, or inaccuracies introduced during processing and visualization. This highlights
that data quality is not a static property, but one that can be affected at any pointin the

data’s journey from source to use.
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Figure 13: Data lifecycle Value chain (Taleb et al. 2021)

In terms of quality dimensions, early approaches concentrated on intrinsic properties
such as completeness, consistency, accuracy, and timeliness. Over time, these were
complemented by broader categories including contextual dimensions (e.g.,
believability, relevancy, value-added, accessibility, reputation) and representational
dimensions (e.g., interpretability, manipulability) (Figure 14). This expansion reflects the
growing recognition that data must not only be correct, but also meaningful, relevant,

and usable within the specific operational context of manufacturing.
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Figure 14: Early conceptual model of Data quality dimensions (Taleb et al. 2021)
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Despite the conceptual advances made during this period, several challenges persisted.
First, the absence of standardization in defining and measuring data quality continued to
hinder the comparability of results and the development of universally applicable
frameworks. In addition, the heterogeneity of data sources, ranging from sensor readings
and control system logs to manually recorded information, posed significant integration
difficulties, often leading to inconsistencies and information loss. Finally, the level of
automation in quality assessment remained limited, with few solutions capable of

providing real-time evaluation and corrective actions.

4.2 - Intermediate Period (2010-2020): Big Data, loT, and the

Expansion of Data Quality Dimensions

From the early 2000s onwards, literature shifted towards the practicalimplications of Big

Data and the Internet of Things (loT).

According to IBM, the Internet of Things (loT) refers to a network of physical devices,
vehicles, appliances, and other physical objects embedded with sensors, software, and
network connectivity that enable them to collect and share data (IBM 2023). Big Data
concerns with massive, complex data sets that traditional data management systems
cannot handle. When properly collected, managed and analyzed, Big Data can help

organizations discover new insights and make better business decisions (Kosinski 2024).

The rapid advancement of technologies such as social networks, the Internet of Things
(loT), cloud computing, and other digital innovations has introduced the era of Big Data.
The exponential growth in data volumes has created substantial value for both
enterprises and society at large, while simultaneously raising critical questions about

how to manage and exploit these vast resources effectively.

Big Data is commonly characterized by its four Vs: volume, variety, velocity and veracity

(Figure 15) (Zhang et al. 2017).
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Figure 15: : 4 Vs of Data Quality (Zhang et al. 2021)

Each of these aspects brings its own challenges when it comes to processing and
ensuring the quality of data. Large volumes, for instance, call for storage and processing
systems that can scale effectively. Variety points to the difficulty of bringing together very
different types of information, from structured databases to semi-structured files and
unstructured content. Velocity reflects the pressure to deal with data that arrives and
changes at high speed, while veracity concerns that not all data can be taken at face

value, raising questions about its reliability and trustworthiness (Zhang et al. 2017).

In manufacturing, the effective use of Big Data is contingent on ensuring high data quality
and the reliability of its sources. Degradation in data quality can lead to unpredictable
consequences, eroding confidence in both the data and its origin. Factors such as the
integration of multi-heterogeneous sources and the rapid pace of data generation
exacerbate the risk of quality loss, making continuous monitoring and validation

essential.

Nevertheless, maintaining Big Data Quality (BDQ) in such environments is inherently
costly and resource-intensive, as it often requires substantial computational power and
complex pre-processing workflows (Taleb et al. 2021). This reality underscores that data
quality management is not a peripheral concern but a prerequisite for the successful
application of Big Data techniques in manufacturing, enabling accurate analytics,

informed decision-making, and the effective deployment of Al-driven solutions.
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The practical implications of the Four Vs for data quality management in manufacturing
can be illustrated by mapping common issues across the main stages of the Big Data
lifecycle, from collection to analysis, together with their primary causes, affected quality

dimensions, and potential solutions (Figure 16).

Stages Issues Primary Cause Data Quality 4Vs Solutions
Less data collected and Network connectivity and Availability I/blunl:e Increase collection coverage
. low recall rates dynamics Velocity
Collection
Data sparseness The interaction between the user Relevance Volume Dimension reduction and
P and the item is less Variety processing algorithms
. Abnormal data and cheating data g . : .
Noise data at the time of collection Usability Variety Remove noise operation
Preprocessing Data distribution is not balanced,
Incomplete data the network transmission is Reliabiliry Velocity Clustering Algorithm
unstable
Lmut_:}:lco;;oliz Storage Thea‘ltiita&li.mt;;u;o;c};tal ;; big Usability Volume Cloud SIOSI;Z(I)%: an Tiered
Storage Y P g
Data timeliness Response time is long Availability Velocity Spark platform
. Processing algorithms and
Accuracy The rule of the data is elusive Reliability Veracity Elodgels
Analysis High data dimension, high
Scalability £ - » 18 Usability Volume Clustering Algorithm
computational complexity

Figure 16: : Issues, Data Quality, 4V, Solutions (Zhang et al. 2021)

While these challenges are inherent to Big Data environments in general, they become
even more pronounced in manufacturing contexts where data are increasingly generated
through interconnected devices and systems. This transition leads directly to the domain
of the Internet of Things (loT), whose distributed and heterogeneous nature further

amplifies both the opportunities and the complexities of ensuring data quality.

The concept of the Internet of Things (loT) was first introduced to describe the potential
of sensors to connect to the Internet and thereby enable new forms of service provision.
It has also been defined more broadly as a network that connects ordinary physical
objects, each with an identifiable address, to deliver intelligent services (Batini et al.
2009). In the manufacturing domain, the loT is best understood as a networked
ecosystem of interconnected devices, sensors, machines, and control systems that are
capable of collecting, transmitting, and in some cases processing data without direct
human intervention (Gubbi et al. 2013). These devices operate across different stages of

the production process, from raw material handling to assembly lines and quality control
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stations, generating continuous and real-time data streams that form the backbone of

modern smart manufacturing.

For example, heterogeneous device specifications, communication protocols, and data
formats can lead to interoperability issues and inconsistencies across datasets. Sensor
drift, calibration errors, and connectivity disruptions can reduce accuracy and
completeness, while the velocity of data flows can hinder effective timeliness control if
processing systems cannot keep pace (Batini et al. 2009). Moreover, the distributed
architecture of loT systems demands robust traceability mechanisms to track the

provenance and transformation of data across multiple nodes in the network.

This combination of opportunities and challenges has positioned loT as both a driver and
a stress test for Al-based data quality solutions. Al techniques, particularly in anomaly
detection, sensor fusion, and real-time quality monitoring, have become essential for

managing the complexity of loT-enabled manufacturing environments.

The adoption of Big Data architectures and loT technologies in manufacturing brought a
significant shiftin the way data quality was conceptualized and assessed. While intrinsic
dimensions such as accuracy, completeness and consistency remained essential, the
new technological landscape required the inclusion of additional attributes that

captured the operational and systemic aspects of modern manufacturing data flows.

One of the most prominent was traceability, referring to the ability to track each data
point back to its source and to reconstruct its transformation across the production
chain (Isaja et al. 2023). This capability became crucial in loT-enabled environments,
where multiple heterogeneous devices contribute to the same dataset and where any

anomaly must be traced rapidly to its origin to prevent production disruptions.

Equally important was interoperability, defined as the continuous integration and
exchange of information between different systems, platforms, and devices. In practice,
this meant overcoming incompatibility in data formats, communication protocols, and
metadata standards, which could otherwise fragment the information landscape and

reduce overall reliability.
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Timeliness also emerged as a critical dimension, particularly in applications where data
is collected and processed in real time or near real time. In such contexts, the value of
the data can degrade rapidly if there are delays in acquisition, transmission, or analysis,
making time-sensitive quality checks and low-latency data pipelines essential (Mirzaie

et al. 2023).

Finally, data governance gained relevance as manufacturing systems became more
complex and distributed (Sahi et al. 2023). Governance encompasses the policies,
procedures, and accountability structures for managing data assets, ensuring not only
technical quality but also compliance with standards, security requirements, and ethical

considerations.

By integrating these additional dimensions, the assessment of data quality evolved from
a narrow, intrinsic focus to a multi-layered framework capable of addressing the
complexity of interconnected manufacturing environments. This evolution directly
influenced Al-driven quality management, as algorithms increasingly needed to account
for contextual, temporal, and systemic factors beyond the traditional scope of data

cleaning and validation.

During this period, Al methods for data quality management in manufacturing became
more sophisticated and diversified. Feature selection and extraction techniques were
increasingly used to refine high-dimensional datasets, ensuring that only the most
relevant variables were retained for analysis. Unsupervised anomaly detection methods
allowed for the identification of faulty sensor readings and process deviations without
requiring exhaustive labelling efforts. Data augmentation strategies were employed to
mitigate class imbalance in predictive modelling, while active learning approaches
optimized the use of expert labelling by focusing human intervention on the most
informative samples (Zhou et al. 2024; Xie et al. 2025). Machine learning (ML)
technologies have become substantial in practically all aspects of society and data
quality (DQ) is critical for the performance, fairness, robustness, safety, and scalability
of ML models. With the large and complex data in data-centric Al, traditional methods
like exploratory data analysis (EDA) and cross-validation (CV) face challenges,

highlighting the importance of mastering DQ tools.
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Despite these advancements, significant challenges persisted. Scalability remained a
concern, as even distributed architectures struggled to maintain performance when
processing high-volume, high-velocity industrial data streams. Standardization issues
continued to limit interoperability and hinder the consistent application of quality
metrics across systems. Moreover, achieving real-time assurance of data quality proved
difficult, as many Al models lacked the capacity to adaptinstantaneously to fluctuations

in production conditions.

4.3 - Advanced Period (2020-2025): Machine Learning, Deep

Learning, and Integrated Al Systems for Data Quality

The most recent period marks the integration of Al into real-time manufacturing data
pipelines, aligned with trustworthy Al principles. Artificial Intelligence (Al) has become
one of the primary drivers of digital transformation, with applications that are rapidly
expanding across industrial sectors (Oviedo et al. 2024). Manufacturing has been
profoundly affected by the integration of Al-based systems, which are now central to
predictive analytics, process optimization, and real-time quality monitoring (Sharma et
al. 2022). This technological evolution has been accompanied by increasing regulatory
and institutional attention, reflected in the development of international standards (e.g.,
ISO/IEC) aimed at guiding the design, deployment, and assessment of Al solutions,

including those that directly affect data quality management.

Within this broader context, Machine Learning (ML) represents one of the most widely
used paradigms, providing the foundation for prediction, classification, and anomaly
detection tasks in manufacturing (Azimi e Pahl 2025). However, the reliability of ML
models is strongly dependent on the quality of the data used during training and
validation. Low-quality datasets, characterized by noise, sparsity, or irrelevant
attributes, can significantly compromise performance in critical tasks such as defect
detection or predictive maintenance. As such, assessing and enhancing dataset quality
has become a prerequisite for trustworthy ML applications. This has driven growing

emphasis on practices such as data curation (the systematic collection, selection, and
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organization of data) and on the development of algorithmic solutions capable of

mitigating the effects of low-quality inputs.

Deep Learning (DL), while offering transformative potential through its ability to
automatically extract complex patterns from raw data, poses further challenges in
industrial environments. DL models are inherently data-hungry and require very large,
diverse, and reliable datasets to achieve robust performance (Munappy et al. 2022). In
real-world manufacturing scenarios, obtaining such high-quality data is not always
feasible, as corrupted, incomplete, or biased samples are common. This has raised
interestin fairness metrics, data augmentation strategies, and robustness techniques to
enable DL models to tolerate imperfections in training data while still delivering

dependable results.

The relationship between Artificial Intelligence as a broader application domain and the
role of machine learning models within Al systems can be illustrated by considering their
structural organization. Figure 17 provides an overview of how training and production
data are processed within Al systems, highlighting the continuous interaction between

data, models, and outputs.
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Figure 17: Al application and Al system (Oviedo et al. 2024)
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Overall, the most recent period is characterized by the recognition that the success of Al
systems in manufacturing depends less on the sophistication of algorithms alone and
more on the quality of the data they consume (Majeed e Hwang 2024). Unlike
conventional software, where improvements can often be achieved by refining code, Al-
based software is inductively derived from data. Consequently, advancing the field
requires both rigorous assessment of dataset quality and the development of strategies

to safeguard reliability, fairness, and interpretability in Al-driven manufacturing systems.

Artificial Intelligence (Al) has become a pivotal driver of digital transformation in
manufacturing, permeating every layer of production, maintenance, and quality control.
In this context, ensuring the reliability of Al systems, and, critically, of the data that feeds
them, has evolved into a central concern. Recent years have seen the introduction of
international standards (notably ISO/IEC standards) that specifically target Al system
quality, covering not only processes and products but also the integrity and quality of the

data underpinning them (Oviedo et al. 2024).

In contemporary Al-driven manufacturing systems, the spectrum of data quality
dimensions extends well beyond the traditional triad of accuracy, completeness, and
timeliness. Within data-driven industrial contexts, researchers argue that quality must
now be conceived as a multi-layered construct: it should not only reflect correctness but
also the ability of data to be meaningful, usable, and trustworthy across various

scenarios.

Emerging dimensions such as bias detection and fairness ensure that Al systems do not
systematically disadvantage certain outcomes or populations. Semantic accuracy
emphasizes that data should faithfully represent real-world phenomena at a level of
understanding aligned with human judgment and domain semantics. Cross-domain
generalizability, meanwhile, involves ensuring that data collected in one manufacturing

context can support Al models deployed across diverse operational environments.

These developments are motivated by evolving industry needs, captured in frameworks
like quality-by-design, and the growing recognition that data must maintain its value
across changing use cases. Fu et al. highlight this shift, showing how data quality is

increasingly framed within socio-technical systems where usability, provenance, and
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ongoing value supersede static notions of correctness (Fu et al. 2024). In manufacturing,
this means moving from verifying data correctness toward ensuring data remain fair,

interpretable, and adaptable over time and across applications.

The sophistication of Al techniques applied to manufacturing data quality has likewise
grown concurrently with these expanded dimensions. Deep Learning architectures, such
as convolutional, recurrent, and transformer models, are now widely used for detecting
defects, forecasting maintenance needs, and extracting high-level features from multi-
modal sensor streams. These models excel at capturing complex patterns but demand

vast amounts of high-quality data.

To mitigate this challenge, practitioners increasingly rely on Transfer Learning: pre-
trained models are adapted to new manufacturing environments with limited new
training data, enabling faster deployment and improved generalizability. For enhanced
robustness, Ensemble and Hybrid Systems combine multiple models, or blend rule-
based and learning-based logic, offering better interpretability and error resilience (Fu et

al. 2024).

Data scarcity and labelling costs are addressed through Active Learning, guiding human
annotation toward the most informative or uncertain instances, thus optimizing expert
effort. Additionally, Automated Data Augmentation techniques synthetically enhance
data diversity, by adding noise, transformations, or simulated edge cases, to improve

model training where real-world samples remain scarce.

Collectively, these techniques shift Al’s role from passive analysis to active quality
guardianship: models now not only consume data but also help enforce quality
standards, detect bias, and adapt to changing operating conditions. This reflects a
profound change: in modern manufacturing, Al systems are not just data-driven, but they
are data-oriented in the sense that data quality becomes a continuous, integral part of

their operation.

Despite these advances, several challenges continue to limit the effectiveness and
scalability of Al-based approaches to data quality in manufacturing. One persistentissue
is class imbalance, whereby defective cases are underrepresented compared to normal

instances. This imbalance hampers the training of reliable predictive models, often
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leading to biased outcomes or reduced sensitivity in detecting rare but critical events

(Clemente et al. 2023).

A second major obstacle is the high cost of annotation (Kumar et al. 2024). Many Al
techniques, particularly in supervised and semi-supervised learning, require large
volumes of accurately labelled data. In manufacturing, however, expert labelling is both
expensive and time-consuming, and errors in annotation can further compromise model

reliability.

Another recurring gap is the absence of benchmark datasets that are standardized and
openly available for evaluation and comparison. Without shared references, itis difficult
to assess the generalizability of proposed methods or to establish performance

baselines across different manufacturing contexts (Nikiforova 2020).

Finally, interoperability gaps persist due to the heterogeneity of manufacturing
environments (Oviedo et al. 2024). Differences in data formats, system architectures,
and communication protocols create barriers to integrating data from multiple sources,

limiting the scope of Al-driven quality management systems.

4.4 - Synthesis and Gaps

The chronological review of the 41 selected papers, spanning the period from 1995 to
2025, reveals a clear trajectory in the way data quality in manufacturing has been
conceptualized, evaluated, and enhanced through artificial intelligence. This trajectory
can be interpreted as a progressive expansion in both the dimensions of data quality
considered relevant (RQa) and the Al techniques applied to support them (RQb),
alongside the persistence of challenges that remain unresolved. Table 2 illustrates an
example of 5 documents from the final corpus selected and fully analysed (i.e., 41
documents), structured according to the approach described in Chapter 3 (sub-section
3.6). This table illustrates how the information was organised across application areas,
challenges, techniques, and research questions, thereby serving as a representative

synthesis of the broader analysis.
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In the early period (1995-2010), academic attention was primarily devoted to building a
conceptual foundation. Data were defined as recorded values of events, facts, or
measurements, and the absence of a universal definition of data quality led to reliance
on intrinsic dimensions such as accuracy, completeness and consistency, with
timeliness and relevance occasionally included. Evaluation methods were largely
manual or rule-based, and Al applications were embryonic, limited to statistical
methods and simple classification or clustering approaches. The main limitation of this
stage lies in the lack of standardization: ISO 8000 only begins to introduce structured
principles, and in the inability of available methods to provide real-time or scalable

assurance of data quality.

The intermediate period (2010-2020) marked a decisive shift towards Big Data and
Internet of Things (loT). The four Vs, volume, variety, velocity and veracity, became
central, reflecting the practical challenges of managing large, heterogeneous, and fast-
moving data streams in manufacturing environments. These developments brought
about a significant expansion in data quality dimensions. While intrinsic properties
remained relevant, additional dimensions emerged: traceability, ensuring the ability to
reconstruct data provenance across distributed loT networks; interoperability,
facilitating integration across devices and platforms; timeliness, reflecting the critical
importance of near real-time data flows; governance, encompassing accountability,
compliance, and policy frameworks for managing increasingly complex data assets.
Correspondingly, Al techniques grew more sophisticated. Feature selection and
extraction were used to reduce high-dimensional datasets, unsupervised anomaly
detection allowed fault identification without exhaustive labelling and data
augmentation and active learning addressed issues of imbalance and labelling costs.
Nevertheless, scalability and interoperability remained problematic, and real-time
adaptation of Al methods often failed to meet the needs of rapidly changing industrial

contexts.

The advanced period (2020-2025) is characterized by the consolidation of Machine
Learning (ML), Deep Learning (DL), and integrated Al systems as central components of
manufacturing data quality management. Here, the emphasis shifted from algorithms

alone to the quality of the data that fuels them, recognizing that Al software is inductively

71



derived from data rather than written deterministically. This period introduced new and
critical dimensions of data quality: bias detection and fairness, ensuring that Al systems
do not propagate systematic disadvantage; semantic accuracy, emphasizing the faithful
and meaningful representation of real-world phenomena; cross-domain generalizability,
enabling models trained in one context to perform reliably in others. Alongside these
conceptual advances, Al techniques reached a new level of sophistication. Deep
learning architectures such as CNNs, RNNs and transformers became widely used for
defect detection and predictive maintenance; transfer learning allowed models to be
adapted to new contexts with minimal retraining; ensemble and hybrid systems
combined complementary methods for improved robustness; active learning and
automated data augmentation alleviated the bottleneck of scarce and costly labelled
data. At the same time, the recognition of fairness metrics, robustness techniques and
explainability underscored a shift towards data-oriented Al systems, where maintaining

quality is an integral and continuous part of operation.

Despite these advances, several persistent gaps remain across all three periods. Class
imbalance continues to compromise the reliability of predictive models, as defective
cases remain underrepresented in real datasets. The high cost of annotation remains a
critical obstacle, especially in supervised learning contexts where expert labelling is
indispensable but resource intensive. The absence of standardized benchmark datasets
hinders comparability across studies and limits the establishment of universally
accepted performance baselines. Finally, interoperability gaps persist due to
heterogeneous system architectures, data formats, and communication protocols,
which restrict the seamless integration of Al-based quality management systems in

diverse manufacturing environments.

This analysis shows that Al applications in manufacturing data quality have evolved from
rudimentary preprocessing and classification techniques to highly sophisticated, multi-
layered systems capable of addressing complex industrial realities. However, the field is
still constrained by structural challenges that impede scalability, generalizability, and
standardization. These gaps provide fertile ground for further research and innovation,
underscoring the need for collaborative efforts in benchmarking, interoperability

frameworks, and the development of data-centric Al methods that explicitly integrate

72



fairness, adaptability, and robustness as essential dimensions of trustworthy

manufacturing systems.
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Table 2: Sample of five relevant papers analysed in full text

DOl | Year Title Author Keywords | Document Application Problems/Challenges Techniques/Solutions/Tools RQ(s)/Aim of the Results
Type Area paper

g N Big data Big data quality; %  Big Data e Lack of systematic and * Proposal of a holistic e Todevelop a 1) The proposed
o =

Q N quality Data quality E environments | scalable approaches to framework for big data quality | comprehensive BDQF framework

8. framework | profile; Quality e Continuous measure and manage (BDQF). framework for supports

b :aholistic | assessment; data quality data quality in big data ¢ Integration of DQ monitoring | continuous data automated and

E approach Quality metrics monitoring contexts. into data processing quality management | continuous DQ

3 to and scores; Pre- * Data * High volume, variety, pipelines. in big data systems. | monitoring in

% continuou | processing warehousing and velocity of data make | ¢ Use of technical and * To align technical large-scale data

) s quality and analytics traditional DQ methods organizational quality DQ mechanisms environments.

2 managem ¢ Cloud- inadequate. dimensions. with organizational 2) The integration

S ent based data * Fragmentation of data * Modular architecture quality governance. of technical and

v processing quality dimensions and enabling continuous * To validate the organizational

responsibilities.

¢ Need for real-time DQ
monitoring integrated
within processing
workflows.

assessment, feedback, and
correction.

* Implementation case based
on a real-world big data
platform.

feasibility of
integrated DQ
monitoring in
practice.

quality aspects
improves
traceability and
accountability.
3) Experimental
results show the
framework's
effectiveness in
identifying and
mitigating quality
issues in real
time.

4) The modular
design allows
adaptation to
different big data
architectures and
use cases.
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10.1145/1541880.1541883

2009

Methodolo
gies for
Data
Quality
Assessme
ntand
Improvem
ent

Management;
Measurement;
Data quality; data
quality
measurement;
data quality
assessment; data
quality
improvement;
methodology;
information
system; quality
dimension

Article]

* Data
warehousing.
e Data
integration
systems.

e Database
management
and
governance.
* Data
cleaning and
quality
monitoring
frameworks.

* Inconsistent,
incomplete, and
inaccurate data in large
datasets.

* Lack of standardized
procedures for assessing
data quality.

e Difficulty in reconciling
heterogeneous data
sources.

* Need for continuous
monitoring and
improvement cycles.

¢ Definition and formalization
of a Data Quality Assessment
Methodology (DQAM).

¢ Use of metadata and
quality-related information for
rule generation.

¢ Integration of user feedback
into quality metrics and
improvement steps.

* [terative framework
including assessment,
analysis, improvement, and
monitoring phases.

*Howcana
methodological and
structured approach
help organizations
assess and improve
data quality?

e What are the key
dimensions and
procedures
necessary for
implementing
effective data
quality
management?

1) Presented a
formal framework
(DQAM) for
systematic
assessment and
improvement of
data quality.

2) Emphasized
the role of
metadata and
domain-specific
rules in quality
evaluation.

3) Demonstrated
applicability
through use-case
discussions and
integration
strategies.

4) Advocated for
feedback-driven,
iterative
enhancement of
data quality over
time.
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10.3390/data9120151

2024

A
Framewor
k for
Current
and New
Data
Quality
Dimension
s:An
Overview

data quality; data
model; data
quality
dimensions; data
traceability;
confidence in
data; data
metrology; data
uncertainty; data
structures; big
data; loT

Article|

¢ Data quality
assessment
and
management.
¢ Information
systems and
databases.
eMultidimensi
onal data
quality
modeling.

* Fragmentation and lack
of consensus on
definitions of data quality
dimensions.

e Difficulty in comparing
and mapping dimensions
across different models
e Ambiguity and overlap
between dimension
definitions.

* Need for clarity on how
dimensions apply across
contexts and domains.

e Comparative literature
analysis of existing data
quality dimensions.

¢ Development of a unified
classification framework
(Data Quality Data Model).

* Proposal of a meta-model
for organizing and categorizing
dimensions.

* |dentification of 49 current
and 15 new dimensions and
their grouping under broader
categories.

* To review, analyze
and classify existing
and emerging data
quality dimensions.
* Todevelop a
framework that can
consolidate and
compare data
quality dimensions.
¢ To highlight gaps
and overlaps in
current dimensional
models.

1) Identified and
categorized 64
data quality
dimensions (49
existing, 15 new).
2) Proposed a
unified framework
composed of six
categories:
Intrinsic,
Contextual,
Representational,
Accessibility,
Operational, and
Organizational.

3) Facilitated
comparative
analysis and
interoperability
between DQ
models.

4) Provided a
basis for future
development of
tailored DQ
assessment tools.
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10.1109/ACCESS.2019.2899751

2019

An
Overview
of Data
Quality
Framewor
ks

Data quality

assessment; data

structures;

decision making;

information
management;
quality
management

Article|

Cross-domain
data quality
management
across diverse
business
environments,
information
systems, and
data types
(structured,
semi-
structured,
and
unstructured).
Particularly
relevant for
organizations
seeking
comprehensiv
e DQ
strategies in
enterprise
data, data
warehouses,
and Big Data
contexts.

*Heterogeneity of data
quality requirements
across organizations and
application domains.
eDifficulty selecting
appropriate frameworks
due to the diversity of
existing methodologies.
eComplexity in handling
different types of data
(structured, semi-
structured, unstructured)
and quality dimensions.
el ack of standardization
in defining and applying
data quality dimensions
and assessment
processes.
eInconsistent treatment
of improvement costs and
decision-making
strategies across
frameworks.

Comparative survey of 12
general-purpose data quality
frameworks that include:
eDefinition of data quality
attributes and dimensions.
*Assessment processes
(using subjective and/or
objective metrics).
eImprovement strategies
(including root cause analysis,
cost-benefit analysis, and
decision frameworks).
¢Classification and
comparison of frameworks
based on:

-Types of data handled

-Types of measurements
used (e.g., metrics,
questionnaires)

-Level of detail in
improvement steps

-Cost considerations and
decision models
*Proposal of a decision guide
to support the selection of
suitable data quality
frameworks depending on
context-specific criteria.

To provide a
comprehensive,
comparative
overview of general-
purpose data quality
frameworks,
enabling
organizations to:

¢ Understand core
components
(definition,
assessment,
improvement)

e Compare available
methodologies;

* Select the most
suitable framework
using a structured
decision guide.

Identification of
12 general-
purpose DQ
frameworks, each
described in
terms of:

eData quality
definition and
dimensions
eAssessment
processes and
measurement
types
e|mprovement
strategies,
including cost and
decision-making
approaches

Recognition that
accuracy,
completeness,
and timeliness are
the most
frequently cited
quality
dimensions.

Emphasis on the
need for
customization of
DQ dimensions
based on
organizational
needs.

Highlight of the
variation in
assessment
methods
(objective vs.
subjective,
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metrics vs.
surveys).

Presentation of a
decision support
table to help
practitioners
choose the most
appropriate
framework based
on factors like
data type,
organizational
needs, and cost
awareness.
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10.1016/j.js5.2022.111359

2022

Data
managem
ent for
productio
n quality
deep
learning
models:
Challenge
sand
solutions

Deep learning;
Data
management;
Production quality
DL models;
Challenges;
Solutions;
Validation

Article]

* Deep
learning in
production
(deployment-
level)
environments.
e Data
management
for Al
pipelines at
scale.

e Applications
across
multiple
sectors
including
manufacturing
, automotive,
and retail.

* MLOps and
data-centric
Al system
development.

* Deep learning models
are highly dependent on
data quality, yet data
processes are often ad
hoc or poorly managed.
e Lack of standardized
practices for managing
datasets over the ML
lifecycle.

e Common pain points
include:

- Data versioning and
traceability

- Labeling consistency
- Data drift and spurious
correlations

- Weak supervision and
noisy labels.

* Difficulty aligning data
operations with
DevOps/MLOps
pipelines.

e Structured a six-stage data
management framework:
1. Data acquisition

2. Data cleaning and
preparation

3. Data labeling

4. Data versioning

5. Data monitoring and
validation

6. Data governance.

* Highlighted tools and
techniques such as:

- Data versioning tools (e.g.
DVC)

- Active learning and weak
supervision frameworks

- Continuous monitoring for
data and concept drift

- Label audits and
standardization practices.
* Emphasis on aligning ML
data lifecycle with software
engineering principles
(MLOps).

* What are the main
data management
challenges in
deploying
production-level
deep learning
systems?

* How can these
challenges be
addressed with
current tools and
organizational
practices?

¢ Can a structured
framework help
ensure data quality
and traceability
across the ML
lifecycle?

¢ [dentified six key
stages in the data
lifecycle critical to
production-ready
DL systems.

* Mapped
common issues to
each stage,
offering
actionable
practices to
address them.

¢ Emphasized the
role of
standardized data
pipelines and
governance in
improving model
reliability.

* Showed how
poor data handling
leads to
performance
degradation,
compliance risks,
and scaling
issues.

¢ Advocated for
data-centric
MLOps strategies
to ensure
consistency and
traceability.

¢ Positioned data
management as a
first-class citizen
in Al system
development, on
par with model
architecture.
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Chapter 5 - Conclusions

Thisfinalchapter brings together the findings of the literature review and provides explicit

answers to the research questions formulated in Chapter 1.

The analysis of final corpus of 41 papers selected through PRISMA methodology and
described step by step in Chapter 3 shows how data quality in manufacturing has been
conceptualized, assessed and enhanced through the application of Artificial
Intelligence. The results, extracted from the corpus of 41 articles, have been organized
chronologically in Chapter 4 to highlight the predominant changes over time.
Nevertheless, the periods identified should not be considered as rigid boundaries.
Rather, they serve as a heuristic framework that reveals both continuities and turning

points in the evolution of concepts, techniques, and challenges.

The review demonstrates that Al applications for manufacturing data quality have
evolved from simple preprocessing and validation techniques to highly sophisticated,
integrated systems. Initially, Al played a limited role, with rule-based methods and basic
statistical checks. Over time, the expansion of Big Data and loT required scalable and
automated approaches, leading to the adoption of machine learning for anomaly
detection, feature extraction, and active learning. In the most recent period, deep
learning, transfer learning, ensemble models, and hybrid systems have made it possible
to embed data quality assurance directly into manufacturing pipelines. Despite this
progress, several unresolved challenges persist, including class imbalance, high
annotation costs, lack of standardized benchmark datasets, and ongoing
interoperability gaps. Together, these findings suggest that Al has become indispensable
for managing data reliability, but its full potential remains constrained by structural and

methodological limitations.

Across the three decades examined, some dimensions, particularly accuracy,
completeness and consistency, have remained central. These intrinsic properties are
essential for ensuring that data faithfully reflect manufacturing processes and can
support reliable Al-driven decisions. As technologies evolved, additional dimensions

became prominent. In the Big Data and loT era, traceability, interoperability, timeliness,
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and governance gained importance, reflecting the complexity of distributed and
heterogeneous environments. In the most recent period, novel dimensions such as
fairness, bias detection, semantic accuracy and cross-domain generalizability have
emerged, highlighting the alignment of data quality with the broader principles of
trustworthy Al (RQa). Overall, the trajectory indicates a progressive broadening of data
quality concept, from technical correctness to socio-technical robustness and
adaptability. The Al techniques applied to data quality in manufacturing reflect this

evolution.

In the early years, applications were limited to simple classification, clustering, and
anomaly detection methods. Between 2000 and 2020, machine learning approaches
became widespread, including feature selection, unsupervised anomaly detection and
data augmentation strategies, often combined with active learning to reduce labelling
costs. From 2020 onwards, the field has increasingly relied on deep learning
architectures (CNNs, RNNs, transformers), transfer learning for domain adaptation and
ensemble or hybrid approaches to improve robustness and interpretability. Moreover, Al
has shifted from being a tool for post hoc data cleaning to becoming an integral
mechanism for continuous monitoring and quality assurance. These techniques not only
enhance data reliability but also reflect the recognition that trustworthy Al depends

fundamentally on trustworthy data.

Taken together, the findings reveal a clear trajectory: definitions and conceptual
frameworks laid in the late 1990s provided the basis for technical developments during
the Big Data and loT era, which in turn set the stage for today’s advanced Al-driven
solutions. The dimensions of data quality have expanded from intrinsic attributes to
multi-layered constructs that include governance, fairness, and interpretability. Al
techniques have moved from simple preprocessing to sophisticated, integrated systems
capable of enforcing data quality standards in real time. Nonetheless, the persistence of
unresolved issues, such as imbalanced datasets, annotation costs, interoperability, and
lack of benchmarks, demonstrates that the field remains incomplete (RQb). Addressing
these challenges will be crucial for ensuring that Al in manufacturing can be both

technically effective and aligned with the principles of trustworthy Al.
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5.1 - Future developments

Across all three periods analysed, a persistent gap was the lack of a common standard
for data quality in Al-driven manufacturing, together with the absence of a unified
terminology and consistent set of dimensions. This deficiency limited comparability
across studies and hindered the development of universally accepted frameworks.
Earlier standards partially addressed this issue: ISO 9000 introduced the general
concept of quality as the degree to which requirements are satisfied, and ISO 8000
extended these principles to data quality through domains such as master, transaction,
and product data. Although the ISO 8000 series represented an initial attempt to
structure data quality, it was primarily designed for traditional industrial data
management and lacked provisions for the complexity of Al- and ML-driven

environments, including Big Data and loT.

However, animportant developmentin the institutionalization of data quality for artificial
intelligence and machine learning is represented by the recent publication, in June 2025,
of the ISO/IEC 5259 series. This family of standards provides a harmonized set of
concepts, characteristics, measures, processes, and governance principles. It offers a
comprehensive framework for defining, measuring, managing, and governing data
quality in the context of analytics and machine learning. The series is structured into five
complementary parts, each addressing a specific level of abstraction, from terminology

and metrics to processes and governance.

ISO/IEC 5259-1: Overview, terminology, and examples introduces the fundamental
concepts and serves as the entry point to the series. It defines the data life cycle as the
set of phases covering the entire existence of data, from creation to decommissioning. It
distinguishes between roles such as data originator, i.e., the party that creates data and
may hold rights over them; data holder, namely the party with legal control over data use
and data user, the party authorized to process data under such control. Central to this
partis the definition of data quality as the degree to which data satisfy stated and implied
needs when used under specified conditions. Related concepts include data quality
characteristics, defined as a category of attributes of data that bear on its quality, data

quality model, namely a defined set of characteristics and relationships that provide a
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framework for specifying requirements and evaluating data and data quality measure,
understood as a variable to which a value is assigned as the result of measurement. This
part also provides examples and scenarios showing how deficiencies in quality

dimensions can impact the performance of machine learning and analytics.

ISO/IEC 5259-2: Data quality measures specify the data quality model to be applied in
the context of analytics and ML. It identifies a range of quality characteristics grouped
into three categories. Inherent characteristics include accuracy, completeness,
consistency, credibility, and currentness. System-dependent characteristics
encompass accessibility, compliance, efficiency, precision, traceability and
understandability, as well as availability, portability and recoverability. Finally, additional
characteristics include auditability, balance, diversity, effectiveness, identifiability,
relevance, representativeness, similarity, and timeliness. For each characteristic, the
standard provides definitions and guidelines for establishing corresponding data quality
measures, understood as measurable variables. This part also specifies a framework for

reporting on data quality, ensuring transparency and comparability across stakeholders.

ISO/IEC 5259-3: Data quality management requirements and guidelines establishes
requirements and recommendations for the implementation of a data quality
management system (DQMS). It introduces key definitions such as data quality claim,
namely a statement that data meets a particular quality requirement, and data quality
plan, a specification of practices, processes, and resources required to achieve stated
quality objectives. This part prescribes management principles including the
establishment of a data quality culture, resource and competence management,
auditing and reviewing, and project-specific planning. It further details the management
of the data quality life cycle, which spans from motivation and specification, through
planning, acquisition, preprocessing, augmentation, and provisioning, to
decommissioning. Cross-cutting processes include verification and validation,

configuration management, change management, and risk management.

ISO/IEC 5259-4: Data quality process framework provides an operational framework of
processes to ensure and improve data quality for ML. It defines concepts central to data
preparation and annotation, including outsourcing (the use of external organizations for
data-related tasks), stand-off annotation (annotations kept separate from primary data),
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bounding box (a rectangular region enclosing an object of interest), segmentation (the
separation of objects of interest from context), and key-point (a salient point on an
object). The framework covers processes for planning, acquisition, preparation
(including annotation, labelling, encoding, and de-identification), provisioning, and
decommissioning. It provides guidance across different learning paradigms (supervised,
unsupervised, semi-supervised, and reinforcement learning) and emphasizes the role of
annotation and labelling quality in supervised ML. It also specifies the responsibilities of
actors in the data ecosystem, including the data planner, originator, collector, engineer,

holder and user.

ISO/IEC 5259-5: Data quality governance framework addresses the governance level,
establishing principles and responsibilities for ensuring data quality in organizational
and strategic contexts. It emphasizes that governance should ensure the establishment
of strategies, policies, and oversight mechanisms to direct and control data quality
management. The standard identifies the responsibilities of the governing body, which
include recognizing the strategic importance of data quality, establishing an enabling
environment, formulating strategies and policies, and ensuring oversight. In parallel, the
management is responsible for implementing these strategies and policies,
strengthening internal controls, and integrating risk management mechanisms. This part
highlights the importance of accountability, business planning linked to data quality, and

the alignment of technical quality practices with organizational objectives.

Taken together, the ISO/IEC 5259 provides a structured and comprehensive reference
framework that connects conceptual definitions, measurable characteristics,
management processes, operational practices, and governance responsibilities. For the
manufacturing sector, this set of standards represents an important step toward
harmonizing approaches to data quality in Al and ML, ensuring that technical,
organizational, and strategic dimensions are jointly addressed in the pursuit of

trustworthy artificial intelligence.
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