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Abstract 

The integration of artificial intelligence (AI), particularly machine and deep learning, in 

manufacturing has accelerated in recent years, making data quality a critical 

prerequisite for reliable and trustworthy AI systems. This thesis systematically 

investigates how AI is applied to assess and enhance data reliability in manufacturing, 

aiming to consolidate existing knowledge, identify key gaps, and provide guidance for 

robust AI approaches. 

A systematic literature review is conducted according to the PRISMA 2020 guidelines, 

chosen for its methodological rigor, transparency, and reproducibility. The review is 

grounded in a comprehensive retrieval of documents carried out using the Scopus and 

Web of Science databases. Additionally, an innovative Python-based semantic filtering 

step is applied to screen documents according to conceptual similarity with predefined 

keywords, enabling the review of over 22,000 records and resulting in a selected corpus 

of 164 studies. The filtering achieves an accuracy of approximately 86%, ensuring a 

robust assessment.  

Full-text analysis of the final corpus shows an evolution in data quality 

conceptualization, shifting from intrinsic attributes such as accuracy and completeness 

to more advanced dimensions, including dimension such as fairness and cross-domain 

generalizability. In parallel, AI methods evolve from rule-based methods to deep learning 

and hybrid architectures. Nevertheless, major challenges persist, particularly the 

absence of standardized benchmarks, class imbalance and high labelling cost. 

Overall, the research highlights AI as indispensable for data quality management in 

manufacturing, while also acknowledging structural and methodological limitations. 

Although there is consensus on the centrality of data quality, considerable variability 

persists across industrial sectors in the definition and implementation of quality metrics. 

The recent ISO/IEC 5259 standard represents a promising step toward harmonization 

and provides a foundation for future unified frameworks for trustworthy, data-centric AI 

in complex industrial contexts. 
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Chapter 1 - Introduction: trustworthy AI and data quality 

The integration of artificial intelligence (AI), particularly machine learning (ML) and deep 

learning (DL), into a broad range of domains, including manufacturing, agriculture, 

healthcare, and transportation, has accelerated significantly over the past decade 

(Vaswani et al. 2023; Deng 2018; Silver, David 2017; He et al. 2016; Redmon et al. 2016; 

McKinsey 2023). This rapid development has been driven by progress in computational 

capabilities and neural network architecture. As AI systems increasingly influence 

critical societal processes, public dialogue has shifted toward concerns surrounding 

their transparency, fairness, and reliability (Esteva et al. 2017; Jumper et al. 2021; Teoh e 

Kidd 2017; UK Governement 2023). In this context, the presence of a trustworthy AI 

becomes essential. This term encompasses several qualities such as security, 

robustness, fairness, interpretability and accountability (Adadi e Berrada 2018; Liu et al. 

2022; Li et al. 2023; Kale et al. 2023; Alzubaidi et al. 2023; Moody’s 2024; European 

Commission, High-Level Expert Group on AI 2020; Moody’s 2024).  

One of the determining factors in the reliability of AI systems is the quality of the data on 

which they are trained. The expression garbage in, garbage out (Geiger et al. 2020) 

illustrates the principle that faulty and biased training data inevitably lead to faulty AI 

behavior. Indeed, biases embedded in training data can be amplified during inference, 

resulting in discriminatory or otherwise unfair results (Suresh e Guttag 2021; Mehrabi et 

al. 2022). Consequently, data quality is of paramount importance in ensuring ethical, 

reliable and trustworthy AI systems (Zhao et al. 2017; Whittlestone J. et al. 2019). 

The concept of data quality has been investigated for several decades. A foundational 

framework was proposed by Wang and Strong (Richard Y. Wang e Diane M. Strong 1996), 

who defined data quality in terms of distinct dimensions, such as accuracy, 

completeness, consistency, and accessibility. Since then, these dimensions have been 

adapted and refined across various domains. However, no single standard and definition 

has yet emerged, especially in complex and evolving fields like AI (Andrew Black e Peter 

van Nederpelt 2020). 
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While data integrity refers to maintaining the accuracy and consistency of data over its 

lifecycle, data quality is concerned with the data’s suitability for its intended use. From 

the perspective of AI development, this means evaluating whether a dataset is 

comprehensive, accurate, timely, relevant, and representative. These aspects, often 

called data quality dimensions, are critical not only for the performance of AI models, but 

also for their interpretability and societal impact. 

Data quality assessment procedures will likely become an integral part of the AI 

certification process, particularly in sectors like healthcare and industrial automation. 

For this reason, methodologies that assess and guarantee the reliability of training data 

are increasingly necessary, and it is on these that standards bodies and developers now 

focus their attention. 

In addition, ethical and social considerations further complicate the evaluation of data. 

Data collection and processing are not neutral activities, as they inherently reflect 

human assumptions regarding what is valuable or relevant. This implies that no data set 

is completely objective or complete (Jess Whittlestone e Stephen Cave 2019). Moreover, 

the digitization of data facilitates its replication, sharing and transformation on 

unprecedented scales, raising concerns about privacy, consent and accountability. 

Ethical frameworks often emphasize principles such as beneficence, non-maleficence, 

justice, autonomy and explicability, but these are not always easy to apply in practice 

due to the inherent trade-offs among them. 

As more decision-making is delegated to AI systems, the societal impact of these 

technologies continues to grow (Richard Y. Wang e Diane M. Strong 1996). According to 

Wang and Strong (Wang e Strong 1996), fitness for purpose should be the guiding 

concept for assessing whether data meet user expectations and requirements. 

In summary, trustworthy AI can not be achieved without a rigorous focus on data quality. 

For AI applications in manufacturing and other high-risk environments, this means 

establishing robust frameworks to define, measure, and improve data quality. These 

frameworks must consider both technical and ethical dimensions to ensure that AI 

systems are not only high performing, but also well-reasoned and accountable. 
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1.1- Problem Identification and Research Objective 

As previously mentioned, AI systems reliability is deeply related to the quality of the data 

on which they are based. Although the concept of data quality has long been studied in 

all sectors, its evaluation and correlation in the context of AI-driven applications, 

particularly in the manufacturing sector, remains an underdeveloped and fragmented 

area.  

Despite the increasing use of machine learning and deep learning techniques in 

industrial environments, a standardized approach to assessing data reliability for 

applications such as process monitoring and predictive maintenance is still lacking. 

Manufacturing processes are inherently complex and dynamic, characterized by high 

volumes of heterogeneous data generated by sensors, machines and human input. As 

manufacturing environments become increasingly data-driven, the ability to ensure the 

trustworthiness of collected data has become essential, not only for the technical 

performance of AI models but also for ensuring safety, transparency, and compliance 

with emerging regulations. For this reason, it is necessary to ensure data consistency, 

accuracy, completeness and representativeness. Furthermore, industrial artificial 

intelligence systems are often deployed in critical environments, where errors can lead 

to significant security risks, operational inefficiencies or financial losses. Therefore, the 

issue of data reliability is not only a technical concern but also a matter of trust, 

accountability, and regulatory compliance. 

Although several frameworks for data quality assessment have been developed in fields 

such as healthcare and medicine, the consolidation of knowledge specific to the 

manufacturing domain remains limited. In the medical field, for instance, recent 

research has proposed frameworks, such as the METRIC framework, to assess data 

quality in ways that align with the broader goals of trustworthy AI. These frameworks 

recognize that high-quality data is a prerequisite for AI systems that are safe, fair, and 

transparent. A systematic review conducted under PRISMA guidelines reveals that, while 

there is agreement on the importance of data quality, there is a variability in how different 

sectors define and implement data quality metrics (Schwabe et al. 2024). 
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Furthermore, the role of AI in evaluating or improving data reliability itself is a relatively 

novel concept. This raises the need to systematically investigate how AI techniques can 

be used not only to process manufacturing data, but also to critically assess its 

trustworthiness before being used in decision-making pipelines.  

The objective of this thesis is to provide a comprehensive and structured literature review 

of the current contributions and research efforts in the analysis and assessment of data 

reliability within the manufacturing sector.  

From this objective, the research question (RQ) is formulated as follows: 

(RQ) How is artificial intelligence currently being applied to assess and enhance the 

reliability of data in manufacturing processes, and what are the key challenges and gaps 

in the existing literature?  

This central question is supported by the following sub-questions: 

• (RQa) Which dimensions of data quality are most frequently addressed in AI 

applications for manufacturing? Along which characteristics should data quality be 

evaluated when employing a dataset for trustworthy AI in manufacturing? 

• (RQb) What are the main techniques used to evaluate or improve data reliability in 

this context? 

By answering these questions, synthesizing current knowledge and identifying existing 

gaps, the thesis aims to provide a comprehensive overview of the current state of the art, 

identify opportunities for future research, and contribute to the development of more 

robust and trustworthy AI systems in the manufacturing domain. 

The remainder of the thesis is structured as follows. Chapter 2 introduces the PRISMA 

(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) framework, 

which provides a systematic approach to conducting transparent and reproducible 

literature reviews. In Chapter 3 the methodological pipeline developed in accordance 

with the PRISMA principles, detailing each phase of the data collection, processing, and 

filtering strategy implemented to address the research questions is presented. Chapter 

4 discusses the results obtained through the review process, highlighting key trends, 
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findings, and gaps in the literature on AI and data quality in manufacturing. In conclusion, 

Chapter 5 summarizes the main insights and outlines potential directions for future 

research and methodological refinements. 
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Chapter 2 - PRISMA 

While trustworthiness in AI concerns various aspects, including ethical considerations, 

transparency, and safety requirements, this study focuses on the critical role of data 

quality in ML and DL. Since data quality significantly influences the behaviour of ML 

models, assessing data quality becomes a pivotal component. To address the research 

questions, a systematic review was conducted following the PRISMA methodology, 

which provides guidelines for performing quantitative analyses of documents.  

The objective of the review is to systematically collect, condense, and expand the 

existing body of knowledge in the selected research area, thereby advancing the 

understanding of data quality in ML applications. Specifically, the research question 

aims at combining insights from general data quality frameworks with the impact of data 

quality on ML applications within production processes.  

2.1- PRISMA guidelines 

The PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-

Analyses) were developed to enhance the transparency and completeness of reporting 

in systematic reviews and meta-analyses. The guidelines assist authors in clearly 

presenting the rationale for their review, the methods applied, and the results obtained.  

First published in 2009, the PRISMA statement aimed to standardize the reporting 

process in a way that promotes reproducibility and clarity. However, with the evolution 

of systematic review methodologies and terminology over the past decade, an updated 

version became necessary: PRISMA 2020. The revised PRISMA statement replaces the 

original 2009 version, introducing updated guidance that reflects advancements in the 

identification, selection, appraisal, and synthesis of studies, thus ensuring greater 

methodological rigor and clarity in systematic reviews.  



13 
 

2.2 - PRISMA: History and development   

Systematic reviews and meta-analyses were originally adopted in healthcare and 

medical field as a starting point for developing clinical practice guidelines. Physicians 

use them to keep up to date (Oxman et al. 1994; Swingler et al. 2003) and even funding 

agencies may require a systematic review to ensure that further research is justified 

(Moher et al. 2009). In recent year, editors in health journals have been moving in this 

direction too (Young e Horton 2005).   

Systematic reviews play many critical roles. Firstly, they can provide summaries of the 

state of knowledge in a field from which future research priorities can be identified. They 

can address questions that otherwise could not be answered by individual studies, and 

they can identify problems in primary research that should be corrected in future 

analysis. Additionally, they can generate or evaluate theories about how or why 

phenomena occur. To ensure that a systematic review is valuable, authors must provide 

a transparent, complete, and accurate explanation of the purpose, methods, and 

findings of the study.  

For instance, several studies have assessed the quality of review reports. In 1987, 

Mulrow examined 50 review articles published in four major medical journals in 1985 and 

1986 and found that none fulfilled the explicit reporting criteria, such as assessing the 

quality of the included studies (Mulrow 1987). In 1987, the adequacy of reporting of 83 

meta-analyses on 23 characteristics across six domains was assessed (Sacks et al. 

1987). Reporting was generally poor; between one and fourteen characteristics were 

adequately reported. A 1996 update of this study found little improvement (Sacks et al. 

1996).  

In 1999, to address the problem of sub-optimal reporting of meta-analyses, an 

international group developed a guide called QUOROM Statement (Quality Of Reporting 

Of Meta-analyses), focusing on reporting of meta-analyses of randomized controlled 

trials (Moher et al. 1999).  
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In 2009, the guideline was updated to consider various conceptual and practical 

advances in the science of systematic reviews and was renamed PRISMA. The original 

PRISMA statement was published in several journals (Moher et al. 2009) and 

accompanied by an explanation and elaboration document (Liberati et al. 2009). 

The significant advancements in systematic review methodology and terminology over 

the past decade prompted an international group to update the original PRISMA 

statement in 2017. The PRISMA 2020 statement was initially published as a preprint on 

MetaArXiv in September 2020 and subsequently released in March 2021 (Matthew J. Page 

et al. 2021). Since the release of the PRISMA 2009 statement, the systematic review 

process has been transformed by technological advancements such as natural language 

processing and machine learning, which have enhanced the identification of relevant 

studies. Additionally, new methods for synthesizing findings in the absence of feasible 

meta-analyses have been developed (Matthew J. Page et al. 2021; Campbell et al. 2020), 

alongside updated tools for assessing risk of bias in included studies (Sterne et al. 2019; 

2016). The shift from evaluating quality to assessing certainty in evidence further reflects 

the evolution in terminology (Hultcrantz et al. 2017). The publishing landscape has also 

expanded, offering more avenues for registering protocols, disseminating review 

findings, and ensuring data accessibility (Hutton et al. 2016). These cumulative 

developments underscored the need for a comprehensive update to the original PRISMA 

guidelines, ensuring their continued relevance and applicability in contemporary 

research contexts.  

2.3 - Scope of the guidelines  

PRISMA was initially developed with the objective of enhancing the transparency and 

completeness of reporting in systematic reviews and meta-analyses, primarily within the 

context of health and medical research (Hutton et al. 2016). However, over time, its 

scope has significantly broadened, extending to various other disciplinary fields, 

including social sciences, education, engineering, and technology. 
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The PRISMA 2020 statement was specifically updated to reflect methodological and 

terminological advances in systematic reviews over the past decade. Although it 

maintains a primary focus on reviews assessing the effects of health interventions, its 

guidelines have been structured to be applicable to systematic reviews of other types of 

interventions as well as to reviews with broader objectives. Moreover, PRISMA 2020 is 

relevant not only for systematic reviews that include a synthesis component (e.g., meta-

analysis) but also for those that do not (e.g., when only one eligible study is identified).  

The checklist also applies to mixed-method systematic reviews that incorporate both 

quantitative and qualitative evidence, although in these cases, additional guidelines on 

qualitative data synthesis should be consulted. Furthermore, PRISMA 2020 can be 

applied to original systematic reviews, updated reviews, or living (continuously updated) 

reviews. Nevertheless, it is not intended to guide the actual conduct of systematic 

reviews, for which comprehensive methodological resources are recommended. 

Importantly, PRISMA 2020 is not designed to assess the conduct or methodological 

quality of systematic reviews but rather to ensure a transparent and comprehensive 

report of the methods and findings (Matthew J. Page et al. 2021).  

The expansion of PRISMA to areas beyond health research highlights its flexibility and 

utility in promoting clear and rigorous scientific communication across various fields.  

The overall process described above is visually summarized in the PRISMA 2020 flow 

diagram (Figure 1), which outlines the study identification, screening, and inclusion 

phases, and allows for transparent documentation of the selection process in 

systematic reviews.  
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Figure 1 : PRISMA guidelines flowchart (Matthew J Page et al. 2021)  
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Chapter 3 – Methodology  

 

A semi-automatic, unregistered systematic review was carried out in accordance with 

PRISMA guidelines to identify data quality criteria relevant to trustworthy AI applications 

in manufacturing. The methodological approach of this study was designed to ensure a 

comprehensive and systematic review of existing literature relevant to the research 

topic.   

 

3.1 – Systematic Search 

The data collection process was implemented using two major bibliometric databases: 

Scopus and Web of Science (WoS). The rationale for selecting Scopus and WoS over 

other databases such as PubMed, ACM Digital Library, and IEEE Xplore, lies in their 

broader and multidisciplinary coverage. While databases like PubMed are highly 

specialized in biomedical and life sciences research and ACM Digital Library and IEEE 

Xplore are predominantly focused on computer science and engineering, Scopus and 

WoS provide a more comprehensive spectrum of disciplines, including engineering, 

social sciences, management studies, and environmental sciences. This broader scope 

aligns more closely with the interdisciplinary nature of the current research. Additionally, 

both Scopus and WoS offer advanced search functionalities, citation tracking, and 

robust filtering options that facilitate more comprehensive and systematic literature 

reviews.  

The following search string in pseudo-code was executed on Web of Science and 

Scopus. The search query is structured to identify academic literature that addresses 

data quality concerns within the context of artificial intelligence (AI), machine learning 

(ML), and deep learning. The query is divided into two main logical segments connected 

by the OR operator. 
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1. (("data quality" OR "data-quality"  

2.   

3. OR "data qualities" OR "quality of data"  

4.   

5. OR "quality of the data" OR "qualities of data"  

6.   

7. OR "qualities of the data" OR "quality of training  

8.   

9. data"  

10.   

11. OR "quality of the training data" OR "quality of ML  

12.   

13. data"  

14.   

15. OR "data bias" OR "data biases"  

16.   

17. OR "bias in the data" OR "biases in the data"  

18.   

19. OR "data problem" OR "data problems"  

20.   

21. OR "problem in the data" OR "problem with the data"  

22.   

23. OR "problems with the data" OR "data error"  

24.   

25. OR "data errors" OR "error in the data"  

26.   

27. )  

28.   

29. AND  

30.   

31. ("dimension" OR "dimensions"  

32.   

33. OR "AI" OR "artificial intelligence"  

34.   

35. OR "ML" OR "machine learning"  



19 
 

36.   

37. OR "deep learning"  

38.   

39. OR "neural network" OR "neural networks"))  

40.   

41. OR  

42.   

43. ("data quality framework" OR "data quality frame  

44.   

45. works"  

46.   

47. OR "framework of data quality" OR "framework for data  

48.   

49. quality") 

 

 

The first segment targets various expressions and synonyms associated with data quality 

issues. It includes a comprehensive set of terms such as data quality, data biases, data 

problems and data errors, ensuring broad coverage of potential data quality concerns. 

Additionally, it incorporates specific references to the quality of training data, 

highlighting its critical role in the development of AI/ML models. 

The second segment contextualizes these data quality concerns by specifying relevant 

technological frameworks. Keywords such as AI, ML, deep learning, and neural networks 

are included to narrow the search to literature that discusses data quality issues in the 

context of these specific computational fields. 

Moreover, a third segment, separated by the OR operator, is dedicated to capturing 

references to frameworks for assessing data quality. This includes expressions like data 

quality framework and framework for data quality, ensuring that systematic approaches 

to data quality are also considered in the search results. 
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The logical structure of the query is designed to ensure comprehensive coverage by 

combining data quality issues with technological contexts while also capturing 

systematic frameworks for assessing data quality. 

For the data retrieval from Scopus, performed in March 2025, an advanced search query 

was utilized to refine the dataset according to specific keywords and research criteria. 

The search process yielded over 88,000 results. To further analyze and categorize these 

documents, the Analyze results function was employed, focusing specifically on the 

subject area of Engineering, which accounted for 13.3% (Figure 2) of the total 

documents, corresponding to about 20,000 entries.  

 

 

Figure 2: Documents distribution by subject area (Scopus 2025) 

 

Analysing the search results, it is possible to observe the distribution of publications of 

interest over time, with a notable peak in the year 2024 (Figure 3).  
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Figure 3: Annual publications distributions (Scopus 2025) 

 

For the purposes of this study, metadata from the first 20,000 documents were extracted 

from Scopus and exported in CSV format. The exported metadata included the following 

fields: Title, Year, DOI, Link, Abstract, Keywords, Publisher, Language of Original 

Document, and Document Type, which were then organized as columns in the Excel 

tables. The CSV file was then formatted to remove delimiters and organize the data into 

structured columns for subsequent analysis. However, a significant issue emerged 

during this process: due to the CSV format, the presence of commas within certain 

metadata fields, such as the title or abstract, led to misalignment across columns. For 

instance, if a comma appeared in the title, it could shift all subsequent data fields, 

causing the Year value to appear under DOI, the DOI under Link, and so on. This issue 

was solved by implementing the following Python script to correctly parse the metadata 

and realign them into the intended column structure.   

 

1. import pandas as pd 

2.   

3. def correggi_refusi(input_file, output_file): 

4.     # Carica il file Excel 

5.     df = pd.read_excel(input_file, engine="openpyxl") 

6.   

7.     # Controlla ogni riga per verificare se la colonna B contiene testo 
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8.     for index, row in df.iterrows(): 

9.         if pd.notna(row["Year"]) and not str(row["Year"]).isdigit(): 

10.             # Unisci il titolo (colonna A e B) 

11.             df.at[index, "Title"] = str(row["Title"]) + " " + str(row["Year"]) 

12.             df.at[index, "Year"] = None  # Rimuove il testo errato dalla 

colonna B 

13.   

14.             # Sposta gli altri dati se necessario 

15.             if pd.notna(row["DOI"]) and str(row["DOI"]).startswith(("19", 

"20")): 

16.                 df.at[index, "Year"] = row["DOI"] 

17.                 df.at[index, "DOI"] = None 

18.   

19.             if pd.notna(row["Link"]) and str(row["Link"]).startswith("10."): 

20.                 df.at[index, "DOI"] = row["Link"] 

21.                 df.at[index, "Link"] = None 

22.   

23.             if pd.notna(row["Abstract"]) and 

str(row["Abstract"]).startswith("https://www"): 

24.                 df.at[index, "Link"] = row["Abstract"] 

25.                 df.at[index, "Abstract"] = None 

26.   

27.             # Scala tutte le colonne successive 

28.             df.at[index, "Abstract"] = row["Author Keywords"] 

29.             df.at[index, "Author Keywords"] = row["Publisher"] 

30.             df.at[index, "Publisher"] = row["Language of Original Document"] 

31.             df.at[index, "Language of Original Document"] = row["Document 

Type"] 

32.             df.at[index, "Document Type"] = row["Source"] 

33.             df.at[index, "Source"] = None 

34.   

35.         # Controlla se anche la colonna C contiene parte del titolo 

36.         if pd.notna(row["DOI"]) and not str(row["DOI"]).startswith(("19", 

"20")) and not str(row["DOI"]).startswith("10."): 

37.             df.at[index, "Title"] = str(df.at[index, "Title"]) + " " + 

str(row["DOI"]) 

38.             df.at[index, "DOI"] = None 

39.              
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40.             if pd.notna(row["Link"]) and str(row["Link"]).startswith(("19", 

"20")): 

41.                 df.at[index, "Year"] = row["Link"] 

42.                 df.at[index, "Link"] = None 

43.   

44.             if pd.notna(row["Abstract"]) and 

str(row["Abstract"]).startswith("10."): 

45.                 df.at[index, "DOI"] = row["Abstract"] 

46.                 df.at[index, "Abstract"] = None 

47.   

48.             if pd.notna(row["Author Keywords"]) and str(row["Author 

Keywords"]).startswith("https://www"): 

49.                 df.at[index, "Link"] = row["Author Keywords"] 

50.                 df.at[index, "Author Keywords"] = None 

51.   

52.             # Scala tutte le colonne successive 

53.             df.at[index, "Abstract"] = row["Author Keywords"] 

54.             df.at[index, "Author Keywords"] = row["Publisher"] 

55.             df.at[index, "Publisher"] = row["Language of Original Document"] 

56.             df.at[index, "Language of Original Document"] = row["Document 

Type"] 

57.             df.at[index, "Document Type"] = row["Source"] 

58.             df.at[index, "Source"] = None 

59.   

60.     # Salva il file corretto 

61.     df.to_excel(output_file, index=False, engine="openpyxl") 

62.     print(f"Correzione completata! File salvato come: {output_file}") 

63.   

64. # Esegui la funzione 

65. if __name__ == "__main__": 

66.     correggi_refusi("input.xlsx", "output_corretto.xlsx") 

 

 

Below is a detailed breakdown of the script's logic and implementation steps, illustrating 

how the data were programmatically corrected and reorganized. 

1. Library Import and Function Definition: 
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The script begins by importing the pandas library, essential for data manipulation and 

analysis in Python. The function correggi_refusi() takes two arguments: input_file, the 

path to the Excel file to be corrected, and output_file, the path where the corrected file 

will be saved. 

2. Loading the Excel File: 

The function uses the read_excel() method to load the data into a DataFrame (df). The 

engine="openpyxl" parameter is specified to ensure compatibility with .xlsx files. 

3. Iterating Through Rows: 

The function iterates over each row of the DataFrame using iterrows(). This method 

allows the function to access both the index and the data in each row, enabling the 

manipulation of specific cell values. 

4. Checking and correcting the Year Column: 

• The function checks whether the Year column contains a non-numeric entry. 

If so, it is assumed that this entry is part of the Title column. 

• The Title is then updated by concatenating the current Title value with the 

erroneous Year value, effectively combining both into a single text entry. 

• The Year column is then cleared by setting it to None. 

5. Reassigning Data to Appropriate Columns: 

• The function checks subsequent columns to verify if any data has been 

incorrectly placed in the DOI, Link, or Abstract columns. 

• If the DOI column contains a date-like entry (e.g., starting with 19 or 20), it is 

moved to the Year column. 

• If the Link column contains a DOI-like entry (e.g., starting with 10), it is moved 

to the DOI column. 

• If the Abstract column contains a URL (e.g., starting with https://), it is 

reassigned to the Link column. 
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6. Shifting Columns: 

After reassigning the Year, DOI, and Link columns, the function proceeds to shift data in 

the remaining columns to maintain logical consistency. 

• The Abstract column is updated with the content from Author Keywords. 

• Author Keywords is updated with the content from Publisher. 

• Publisher is updated with the content from Language of Original Document. 

• Language of Original Document is updated with the content from Document Type. 

• Document Type is updated with the content from Source. 

• The Source column is then cleared by setting it to None. 

7. Handling Additional Misalignments in the DOI Column: 

If the DOI column contains data that is not a valid DOI or date, it is treated as part of the 

Title. The function concatenates this text to the existing Title content and clears the DOI 

column. 

8. Saving the Corrected File: 

After processing all rows and adjusting the data as necessary, the corrected DataFrame 

is saved as a new Excel file using the to_excel() method. The file is saved without the index 

column, and the engine openpyxl is specified to ensure compatibility. A confirmation 

message is then printed to indicate the successful completion of the operation. 

9. Function Execution: 

At the end of the script, the function is executed within the if __name__ == "__main__" 

block. This ensures that the function only runs when the script is executed directly, not 

when it is imported as a module. 

In the case of WoS, a standard search query was employed, resulting in a total of 10,155 

records. The same fields were exported as in Scopus. Unlike Scopus, WoS provides 

direct export functionality in Excel format, facilitating the subsequent data processing 

and organization for analysis.   
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3.2 - Data cleaning and exclusion/inclusion criteria 

Following the data export and initial formatting, the CSV files from Scopus and WoS were 

converted into Excel tables, allowing for more efficient data cleaning and filtering 

processes. The same procedure was applied to both datasets.  

Starting with the Scopus dataset (i.e., 20,000 initial documents), the following filtering 

steps were conducted:  

1. DOI filtering 

During this phase, we made a crucial assumption: if an article lacked a DOI1 and a link 

(URL DOI) or either of these fields, it was removed. Without a DOI code or its link, in fact, 

it is not possible to access the publication and analyse the document. Consequently, the 

Scopus dataset was reduced from 20,000 to 18,599 documents.  

2. Language filtering 

The Language of Original Document column was used to retain only those articles whose 

language was indicated as English or whose language field was empty. This step further 

refined the Scopus dataset to 18,583 documents.  

3. Document Type filtering 

The final filtering step targeted the 'Document Type' column. Records categorized as 

article or review or those with empty fields were retained, reducing the dataset to 17,413 

documents. This selection was carried out to include only primary research articles and 

literature reviews, as these represent the most substantial and peer-reviewed sources of 

scientific evidence for a literature review. Other document types (e.g., editorials, letters, 

conference abstracts and technical notes) were excluded because they typically lack 

rigorous peer review and are usually non-open access (i.e., readable for free, without a 

particular additional subscription for the user).  

 
1 DOI, an acronym for Digital Object Identifier, allows digital objects to be uniquely identified and reliably 
accessed https://www.doi.org/index.html 

https://www.doi.org/index.html
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A similar filtering procedure was applied to the Web of Science dataset, initially 

consisting of 10,155 documents. Following the removal of entries lacking a DOI or link 

(i.e., 1,219 documents), the dataset was reduced to 8,936 records. The subsequent 

language filtering step, focusing exclusively on English or empty language fields, further 

refined the dataset to 8,850 documents. Finally, by retaining only articles, reviews, and 

empty document type fields, the dataset was narrowed down to 6,427 documents, 

aligning the selection criteria with those applied to the Scopus dataset.  

3.3 - Merging 

After the filtering processes, the two datasets from Scopus and WoS were merged into a 

single table. Thus, a merger operation based on the DOI field was performed to identify 

and remove duplicates.  

The combined dataset (i.e., from Scopus and WoS records), obtained after the filtering 

process, consisted of 23,840 documents. Records with equal DOIs were considered 

redundant and eliminated. In total, 1,775 duplicates were detected and deleted, 

resulting in a final dataset of 22,065 articles that served as the basis for subsequent 

screening and analysis.  The flow diagram below (Figure 4) provides a visual summary of 

the data processing steps, from initial datasets to the final merged one. 
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Figure 4: Document filtering and merging workflow (own elaboration) 

 

3.4 - Screening 

3.4.1 - Semantic Filtering Using AI-Based Text Analysis  

At this stage, we obtained a consolidated Excel table containing 22,065 rows, each 

representing a unique document. The objective was to further filter these entries, 

retaining only those articles that exhibit semantic relevance to specific keywords 

associated with the research focus. Traditional keyword-based filtering would have been 

insufficient due to variations in terminology and phrasing. Thus, we employed a more 

advanced, AI-driven approach to semantic filtering using Python, leveraging libraries 

such as pandas and sentence-transformers.  
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As mentioned, the primary objective was to identify and retain only those documents that 

are semantically aligned with the predefined set of keywords (e.g., machine learning, 

artificial intelligence, etc.). However, a simple direct keyword search could potentially 

exclude relevant documents that discuss these topics using different terminology or 

contextual framing. To address this, we adopted a semantic filtering approach.  

Rather than relying on explicit keyword matches, vector embeddings were utilized to 

capture the contextual meaning of text. This process is analogous to having a virtual 

assistant (hereafter referred to as the agent) who reads each abstract and assesses its 

conceptual relevance to the specified keywords.  

The agent reads each abstract and automatically converts the text into a high-

dimensional vector representation, capturing the semantic meaning rather than just the 

words themselves. Similarly, the keywords are also embedded as vectors, representing 

their conceptual meanings in the same vector space (for further theoretical background 

on embedding, see Section 3.4.3.1). The model then compares the embedding of each 

abstract with the embeddings of the keywords to assess semantic similarity.  

The implementation was conducted using BERT, Bidirectional Encoder Representations 

from Transformers, (a brief theoretical overview of BERT is provided in Section 3.4.3.2), a 

transformer-based language model renowned for its ability to grasp contextual nuances 

in text. The specific automatic implementation performed by BERT model involved the 

following steps:  

1. Data Preprocessing: Each abstract was extracted from the Excel table and 

converted into a text string for processing.  

2. Embedding Generation: Using the BERT model, each abstract was converted into 

a 768-dimensional vector, representing its semantic content.  

3. Similarity Calculation: The cosine similarity between each abstract's embedding 

and the keyword embeddings was calculated. This metric quantifies the degree of 

semantic alignment, with values ranging from -1 (completely dissimilar) to 1 

(identical meaning).  
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4. Thresholding: A similarity threshold was defined to determine whether a 

document should be retained or not. If the similarity score exceeded the 

threshold, the document was considered semantically relevant and retained in 

the dataset, otherwise, it was excluded.  

BERT model was selected due to its ability to capture bidirectional contextual meaning, 

as opposed to traditional unidirectional models. This capability enables it to effectively 

discern nuanced semantic connections between text segments, thereby improving the 

accuracy of the filtering process.  

Bidirectional contextual meaning refers to the model's ability to consider both the 

preceding and following words in a sentence when interpreting the meaning of a specific 

word or phrase. Unlike traditional models that process text in a single direction (left-to-

right or right-to-left), BERT simultaneously analyzes the context to the left and right of a 

target word, allowing it to understand nuanced meanings more accurately. This 

bidirectional approach enables BERT to better capture the full context and semantic 

relationships between words, resulting in more accurate language understanding and 

improved performance in tasks like text classification, question answering, and 

information retrieval.  

3.4.2 - Implementation and Explanation of the Python Code   

#1 

1. !pip install torch sentence-transformers 

2. !pip install tf-keras 

3. #2  

4. import pandas as pd 

5. import torch 

6. import os 

7. import matplotlib.pyplot as plt 

8. from sentence_transformers import SentenceTransformer, util 

9.   

10. # 3.1 Carica il file Excel 

11. df = pd.read_excel("WIP_merged.xlsx", sheet_name="merged") 

12.   
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13. # 3.2 Crea una colonna "full_context" combinando titolo, abstract e keyword 

14. df['full_context'] = ( 

15.     df['Title'].fillna('') + '. ' + 

16.     df['Abstract'].fillna('') + '. ' + 

17.     df['Author Keywords'].fillna('') 

18. ) 

19.   

20. # 4. Parole chiave da confrontare semanticamente 

21. parole_chiave = [ 

22.     "Data Quality", "data-quality", "Data qualities", "quality of data", 

"Quality of the data", 

23.     "qualities of data", "qualities of the data", "Quality of the training 

data", "Quality of ML data", 

24.     "Data bias", "data biases", "Bias in the data", "biases in data", "Data 

problem", "data problems", 

25.     "problem in data", "problem with the data", "data error", "data errors", 

"error in data", 

26.     "error in the data", "Dimension", "dimensions", "AI", "artificial 

intelligence", "ML", 

27.     "machine learning", "Deep learning", "Neural network", "neural networks", 

"Data quality framework", 

28.     "data quality frame works", "framework of data quality", "framework for 

data quality", 

29.     "data reliability", "data integrity", "data consistency", "data accuracy", 

"data completeness", 

30.     "trustworthy data", "quality of input data", "label quality", "skewed 

data", "sampling bias", 

31.     "machine intelligence", "data-driven models", "deep neural networks", 

"automated learning", 

32.     "ML for process optimization", "deep learning for visual inspection", "AI 

in supply chain", 

33.     "AI for defect detection", "latency in decision making", "lack of 

explainability" 

34. ] 

35.   

36. # 5. Crea il modello per embedding semantico 

37. model = SentenceTransformer('all-MiniLM-L6-v2') 

38.   

39. # 6. Calcola gli embedding 
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40. embedding_keywords = model.encode(parole_chiave, convert_to_tensor=True) 

41. embedding_context = model.encode(df['full_context'].tolist(), 

convert_to_tensor=True) 

42.   

43. # 7. Calcola la similarità tra ogni documento e le parole chiave 

44. similarity_matrix = util.cos_sim(embedding_context, embedding_keywords) 

45.   

46. # 8. Prendi la similarità massima per ogni documento 

47. max_similarities, _ = torch.max(similarity_matrix, dim=1) 

48. df['similarità'] = max_similarities.cpu().numpy() 

49.   

50. # 9. Filtra i documenti con similarità ≥ soglia 

51. soglia = 0.45 

52. df_filtrato = df[df['similarità'] >= soglia] 

53. df_esclusi = df[df['similarità'] < soglia] 

54.   

55. # 10. Statistiche 

56. print(f"Documenti totali: {len(df)}") 

57. print(f"Documenti rilevanti (similarità ≥ {soglia}): {len(df_filtrato)}") 

58. print(f"Documenti esclusi: {len(df_esclusi)}") 

59.   

60. # 11. Visualizza la distribuzione delle similarità 

61. plt.figure(figsize=(8, 4)) 

62. plt.hist(df['similarità'], bins=50, color='skyblue', edgecolor='black') 

63. plt.axvline(soglia, color='red', linestyle='--', label=f"Soglia = {soglia}") 

64. plt.title("Distribuzione delle similarità semantiche") 

65. plt.xlabel("Similarità") 

66. plt.ylabel("Numero di documenti") 

67. plt.legend() 

68. plt.tight_layout() 

69. plt.show() 

70.   

71. # 12. Salva i risultati 

72. df_filtrato.to_excel("articoli_filtrati.xlsx", index=False) 

73. df_esclusi.to_excel("articoli_esclusi.xlsx", index=False) 

74.   

75. # 13. Mostra il percorso dei file 
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76. print("File salvati in:") 

77. print(os.path.abspath("articoli_filtrati.xlsx")) 

78. print(os.path.abspath("articoli_esclusi.xlsx")) 

 

The following section outlines the structure and functioning of the implemented Python 

script, providing a step-by-step explanation of its main components and operations. 

1. Library Installation 

PyTorch is a comprehensive deep learning library developed by Facebook’s Research 

Lab, widely utilized for tensor computations and model training due to its robust and 

flexible framework for building and deploying neural networks. The sentence-

transformers library is an extension of PyTorch, specifically designed to generate 

semantic embeddings of sentences using pre-trained models, enabling efficient 

similarity calculations and clustering of textual data. Additionally, the script includes the 

installation of tf-keras, a high-level neural networks API that provides a simplified 

interface for constructing and training neural networks, although it is not actively 

employed in the current implementation. 

2. Import Libraries and Read Data  

The script leverages several key libraries to facilitate data processing and analysis. 

Pandas is employed for data manipulation and analysis, enabling the reading, 

transformation, and organization of data within structured DataFrames. PyTorch is 

utilized for tensor operations and model handling, providing a powerful framework for 

deep learning tasks and seamless integration with other machine learning libraries. The 

os module manages file paths and directory operations, ensuring efficient file handling 

and data storage throughout the script. For data visualization, matplotlib.pyplot is used 

to generate graphical representations of similarity scores, aiding in the interpretation of 

semantic analysis results. Lastly, the sentence-transformers library is employed to 

generate sentence embeddings and perform semantic similarity calculations, leveraging 

pre-trained models to effectively measure contextual alignment between textual data 

and predefined keywords. 
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3. Load Excel File and Create Full Context Column 

The script begins by reading data from the merged sheet within the Excel file called 

WIP_merged.xlsx. To facilitate semantic analysis, a new column (full_context) is created 

by concatenating the content of three specific columns: Title, Abstract, and Author 

Keywords. This approach consolidates all relevant textual information into a single 

column, providing a comprehensive representation of each document's context. To 

prevent potential errors during the concatenation process, the. fillna('') method is 

applied to each column, replacing any missing values with empty strings. This ensures 

that the concatenation operation proceeds smoothly without generating null-related 

errors. 

4. Define Keywords for Semantic Analysis 

A comprehensive list of keywords designed to capture a broad range of expressions and 

terminologies associated with data quality, artificial intelligence (AI), and machine 

learning (ML). This list includes specific terms, synonyms, and variations to ensure 

comprehensive semantic coverage, enabling the identification of relevant content even 

when different phrasing or terminology is used across documents. 

The keywords are carefully selected to cover essential aspects of data quality, such as 

data accuracy, data consistency, data completeness, data integrity, and data reliability. 

Additionally, it includes terms related to common data quality issues, such as data bias, 

data errors, and data problems, ensuring that various types of data-related concerns are 

adequately represented. 

In the context of AI and ML, the list incorporates phrases related to data usage in model 

training, such as Quality of training data, Quality of ML data, and Label quality. 

Furthermore, broader AI/ML concepts such as deep learning, neural networks, machine 

intelligence, and automated learning are included to capture the intersection of data 

quality within advanced computational frameworks. 

The list also extends to more specific applications of AI and ML in industrial contexts, 

such as ML for process optimization, AI for defect detection, and deep learning for visual 
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inspection, reflecting scenarios where data quality issues can significantly impact model 

performance and decision-making. 

By encompassing both general and context-specific terms, the keyword list ensures a 

comprehensive semantic analysis that not only identifies explicit references to data 

quality but also captures implicit mentions related to AI and ML applications. These 

keywords will be used to compute semantic similarity scores against the document 

content, allowing the script to effectively assess the relevance of each document based 

on its contextual alignment with the defined concepts. 

5. Initialize Sentence Embedding Model 

MiniLM is a transformer-based model that leverages the architecture of BERT but in a 

more compact and computationally efficient format. Unlike the full BERT model, which 

consists of hundreds of millions of parameters, MiniLM is designed to achieve similar 

semantic understanding with significantly fewer parameters, making it faster and less 

resource intensive. The all-MiniLM-L6-v2 model is a compact, pre-trained model 

optimized for semantic similarity tasks. It generates dense vector embeddings for textual 

content, allowing for cosine similarity calculations between sentences. This makes it 

particularly suitable for large-scale semantic analysis, as it maintains robust contextual 

representation capabilities while minimizing computational overhead, aligning well with 

the objectives of the implemented filtering process. 

6.Compute Embeddings for Keywords and Document Context 

The model.encode() function plays a crucial role in the semantic analysis process by 

converting each textual input into a high-dimensional vector representation, known as 

an embedding. This transformation enables the script to capture semantic meaning in a 

numerical format, facilitating the calculation of similarity scores between texts. 

In the context of this script, the model.encode() function is applied to two distinct 

datasets. First, it processes the list of keywords, transforming each keyword or phrase in 

parole_chiave into a tensor—a structured array of numerical values representing the 

semantic meaning of each keyword. This step effectively converts linguistic content into 

a mathematical form that can be systematically compared with other text embeddings. 
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Similarly, the full_context column, which consolidates the Title, Abstract, and Author 

Keywords for each document, is also processed using the same encoding function. Each 

document is converted into a corresponding tensor, creating a vector representation that 

encapsulates the semantic context of the entire text. 

By embedding both the keywords and document content in the same high-dimensional 

space, the script enables direct comparison of their semantic proximity, allowing for the 

calculation of cosine similarity scores between them. This alignment of text and 

keywords in a shared vector space is fundamental to the subsequent similarity analysis. 

7. Calculate Semantic Similarity 

util.cos_sim() is a function provided by the sentence-transformers library. It computes 

the cosine similarity between two sets of embeddings, such as document embeddings 

and keyword embeddings. This results in a similarity matrix, where each row represents 

a document and each column represents a keyword. The values in the matrix range from 

-1 to 1, where 1 indicates maximum similarity and -1 indicates maximum dissimilarity. 

8. Extract Maximum Similarity Score for Each Document 

After calculating the similarity matrix using util.cos_sim(), the script proceeds to identify 

the highest similarity score for each document. This is achieved using the torch.max() 

function, which plays a crucial role in extracting the most relevant similarity score across 

all keyword embeddings. 

The function torch.max() is specifically applied along the keyword dimension (columns) 

of the similarity matrix, as indicated by the parameter dim=1. This parameter instructs 

the function to locate the maximum value along each row, effectively identifying the 

highest similarity score for each document across all keywords. 

The function returns a tuple containing two elements. The first element contains the 

maximum similarity scores for each document, representing the highest degree of 

semantic similarity with any of the predefined keywords. The second element contains 

the index of the corresponding keyword that generated the highest similarity score, 

though this index is not utilized in this particular implementation. 
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The maximum similarity scores are then extracted and stored in a new column named 

similarità in the DataFrame. The .cpu() method is used to convert the tensor to a NumPy 

array, enabling seamless integration with the DataFrame structure. The resulting 

similarity scores provide a quantitative measure of how closely each document aligns 

with the defined set of keywords, forming the basis for further filtering and analysis. 

9. Filter Documents Based on Similarity Threshold 

A similarity threshold of 0.45 is established to effectively filter relevant documents based 

on their semantic similarity to the predefined set of keywords. This threshold was 

determined through iterative testing and evaluation, during which different threshold 

values were assessed to identify the optimal balance between precision and recall. 

A threshold of 0.45 was chosen as it provided a sufficient level of semantic alignment, 

allowing for the inclusion of documents that were contextually relevant to the targeted 

keywords without being overly restrictive. Lower thresholds, such as 0.3 or 0.4, tended 

to include too many unrelated documents, reducing the overall quality of the filtered 

dataset. Conversely, higher thresholds, such as 0.5 or 0.6, were too stringent and 

excluded potentially relevant documents that shared moderate but significant 

contextual similarities with the keywords. 

Therefore, setting the threshold at 0.45 ensures the inclusion of a comprehensive yet 

manageable corpus of documents, optimizing the trade-off between capturing relevant 

content and minimizing noise. Documents with similarity scores equal to or above 0.45 

are considered relevant and are saved in the DataFrame df_filtrato. Those with scores 

below the threshold are deemed less relevant and are saved in df_esclusi. 

10. Display Statistical Information 

The script provides statistical feedback regarding the filtering process. Specifically, a 

total of 2,763 documents were identified as relevant, having similarity scores equal to or 

above the threshold, and were saved in the DataFrame df_filtrato. Conversely, 19,302 

documents with similarity scores below the threshold were classified as less relevant 

and saved in df_esclusi. This output highlights the effectiveness of the chosen threshold 
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in refining the dataset to focus on contextually aligned documents while excluding those 

less pertinent to the targeted keywords. 

11. Visualize Similarity Distribution 

A histogram is generated to visualize the distribution of similarity scores across all 

documents. A vertical red dashed line is drawn to indicate the similarity threshold (Figure 

5). 

 

Figure 5: Semantic similarity distribution with threshold = 0.45 (Python code) 

 

12. Save the Filtered Data 

The filtered datasets (df_filtrato and df_esclusi) are saved as separate Excel files named 

articoli_filtrati.xlsx and articoli_esclusi.xlsx directly from the Python code. 

13. Display Output File Paths 

The absolute file paths for the saved files are printed to confirm the location of the output 

files. 
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3.4.3 - Theory recall: Embedding and BERT 

To ensure a comprehensive understanding of the semantic filtering process adopted in 

this study, the following section outlines the theoretical foundations of the embedding 

technique and the BERT model, both of which constitute the key elements of the text 

analysis methodology applied. 

3.4.3.1- Embedding   

Unlike humans, who are capable of reasoning through abstract concepts and complex 

semantic structures, machines can only operate on numerical data represented in 

binary form. Therefore, enabling computers to process textual or otherwise non-

numerical inputs requires an effective transformation of such data into numerical 

representations. This transformation must be performed at a level of granularity that 

allows the capture of semantic relationships embedded in natural language. 

Consequently, one of the fundamental challenges in natural language processing lies in 

developing representations of word meaning that are both computationally tractable and 

semantically informative. 

Word embeddings emerged as a transformative solution. The technique embeds words 

in a space with a lot of dimensions, where each single word is encoded as a vector (a list 

of numbers). The key aspect of this technique is placing words with similar meanings in 

proximity to each other in this multi-dimensional space. The two words having similar 

vectors will likely be semantically close together. Interestingly, the direction from sets of 

close words (e.g., king to queen) can embed underlying relationships (e.g., regality).   

An embedding is nothing more than a vector (N-dimensions) that tries to capture the 

meaning of a word or sentence, placing it in a vector space, also called semantic space 

(Almeida e Xexéo 2023). As vectors, they obey the inherent mathematics: they have a 

length, norm, and direction, and can be compared using measurement methods.  

Moreover, embedding models can operate at various levels of granularity:  

• Word embeddings (e.g., Word2Vec) focus on individual words or tokens.  
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• Sentence or document embeddings (e.g., BERT) aim to capture the full semantic 

content of longer inputs.  

A clearer understanding of the functioning and relevance of word embeddings can be 

gained by examining how they are typically visualized and interpreted. In the absence of 

embedding techniques, a rudimentary approach to numerical representation would 

involve assigning a unique integer index to each word within a vocabulary of, for example, 

10,000 terms. Based on this mapping, each word could be expressed as an n-

dimensional vector, where n corresponds to the vocabulary size. In such a 

representation, known as one-hot encoding or 1-of-N encoding (Naseem et al. 2020), 

each word vector consists entirely of zeros except for a single element set to one, located 

at the index position assigned to that word. Figure 6 exemplifies how this might work. 

 

 

Figure 6:  One-hot encoding example (Novack 2020) 

 

However, this type of text representation, being purely symbolic rather than an 

embedding, suffers from major limitations in generalization and contextual relevance. In 

such a framework, a machine can only recognize whether a word exists in the vocabulary, 

without understanding its meaning or its relationships to other words. As a result, the 

representation is largely inadequate for real-world applications. 

The primary goal of embeddings (as vector representations) and embedding models 

(which map text inputs to such vectors) is to overcome the limitations of sparse and 

context-free methods like one-hot encoding. These models aim to capture semantic 

content, contextual dependencies, and inter-word relationships by leveraging patterns 
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learned during training. As a result, machines are not only able to recognize a word’s 

presence but also infer its meaning relative to other words in the language. By projecting 

words into a continuous, high-dimensional semantic space, embedding models enable 

generalization across similar linguistic units, supporting more sophisticated and 

context-aware processing of language (Naseem et al. 2020). For example, apple and pear 

(types of fruits) or hammer and wrench (types of tools) will be grouped together in that 

space. This capacity to abstract and reason about relationships is what has made 

embeddings so crucial to real-world NLP tasks. Figure 7plots a simplified representation 

of a vector space.  

 

 

Figure 7: 3D semantic space with clustered categories (own elaboration) 

 

A complete set of word embeddings exhibits several useful and non-trivial properties, 

enabling not only the recognition of semantically similar words but also the capture of 

complex linguistic relationships. One of the most notable features of a trained 

embedding space is its ability to group similar words in close proximity within an N-

dimensional vector space. For example, terms such as car, vehicle, and van tend to 

cluster together, while remaining distant from unrelated terms like moon, tree, or space. 
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This spatial similarity can be quantified using metrics such as Euclidean distance, which 

measures the straight-line distance between two vectors, or cosine similarity, which 

evaluates the angle between vectors. 

In addition to capturing word similarity, word embeddings can also model more abstract 

linguistic relationships through vector arithmetic. A classic example involves gender-

based analogies: the vector difference between man and woman is similar to that 

between king and queen, or uncle and aunt. Such transformations illustrate how word 

embeddings encode not just semantic proximity, but also structured, interpretable 

relationships between concepts. 

Word embeddings are produced by models, statistical or neural networks based, 

learning to represent words as vectors based on the patterns that occur in large 

collections of text data (Naseem et al., 2020). Such models are typically trained using 

unsupervised or self-supervised methods, i.e., they do not require labelled data. Instead, 

they leverage the distributional assumption that words with similar contexts would also 

have similar meanings. The datasets typically contain books, websites, human 

conversations, etc. 

By discovering how to express every word as a point in higher-dimensional space, in 

which semantic relationships are represented in the distances and directions between 

vectors, these models learn to predict word co-occurrence in text. 

3.4.3.2 - BERT: complex embedding model  

At the end of 2018, a group of scientists from the Google AI Language laboratory 

presented a new linguistic model called BERT (Bidirectional Encoder Representations 

from Transformers) (Devlin et al. 2019). BERT is a pre-trained language model on a large 

corpus that uses the masked language modelling and next-sentence prediction 

objectives. The BERT family models are developed upon the Transformer encoder-

decoder architecture (Vaswani et al. 2023). An encoder reads and understands input text 

by converting it into a numerical representation that captures its meaning. A decoder 

takes this representation and generates new text based on it, such as a summary or a 
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translation. Thus, while encoder-only models generate word embeddings, the decoder-

only models can generate text (Figure 8). 

 

 

Figure 8: Encoder- Decoder architecture example (Yaron 2019) 

 

However, BERT models have an encoder only architecture. In fact, they can serve various 

low-level NLP tasks: semantic search, clustering, sentence similarity, classification. 

While Word2Vec assigns each word a fixed vector based on its general usage across a 

corpus - meaning it doesn’t change depending on context - BERT dynamically generates 

embeddings for words based on the entire sentence they appear in. This allows BERT to 

capture in-context nuances and understand the semantic relationships between words 

more accurately. Here is an example:  

 Imagine the word bank in two different sentences:  

1. "He sat on the river bank and watched the water flow."  

2. "She deposited money into the bank yesterday."  
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A traditional model might treat the word bank the same way in both sentences; however, 

BERT understands context bidirectionally — it examines the entire sentence (left and 

right of the word) to determine meaning.  

So, BERT will interpret:  

• In sentence 1, bank = riverbank.  

• In sentence 2, bank = financial institution.  

As previously mentioned, one of the major applications of word embeddings are 

semantic searches. Imagine you have a collection of articles about various topics, and 

you want to find articles that are semantically related to a search query. For example, 

consider the search query: 

Tips for teaching my dog commands. 

The traditional web search engine process, based on keywords matching, may fail to 

retrieve relevant information, leading to unrelated or poorly related articles based on 

your query.  

Semantic search using models like BERT, however, understands the meaning of the 

query. It does not just search for the word commands but understands that your query is 

asking for training tips related to dogs. This will result in a more precise answer to the 

user. 

To demonstrate the practical application of semantic search using transformer-based 

language models, the following Python implementation leverages BERT to encode both 

user queries and textual data into dense vector representations. These embeddings are 

then used to compute semantic similarity, enabling the retrieval of contextually relevant 

results beyond simple keyword matching. 

3.5 - Performance Metrics of Semantic Filtering Process 

To evaluate the effectiveness of the semantic filtering process applied to the document 

corpus, a two-step validation approach was adopted, combining algorithmic selection 

with human judgment. In particular, the aim of Step 1 is to validate the algorithm in 
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selecting the relevant papers, while the objective of Step 2 is to check manually all the 

relevant selected papers from the model. The semantic filter was based on a truncated 

Gaussian distribution applied to the similarity scores produced by a BERT-based model, 

which excluded documents in the left portion of the distribution and retained only those 

exceeding a predefined threshold on the right tail (Figure 5). 

The initial dataset comprised 22,065 documents, resulting from the integration and 

deduplication of bibliographic records extracted from Scopus and Web of Science. The 

semantic filtering algorithm excluded 19,302 documents, while 2,763 documents were 

retained as potentially relevant based on their similarity to a predefined set of keywords 

related to data quality, artificial intelligence, and machine learning. 

In order to validate the algorithm (Step 1), a manual screening was conducted on 

approximately 10 of the total corpus, amounting to 2,370 documents randomly 

sampled across both included and excluded sets (i.e., 2,370

22,065
 ≈ 10%). Each document 

was assessed by examining its Title, Abstract, and Author Keywords. 

Among manually examined documents, 38 were identified as relevant, while the 

remaining 2,332 were classified as irrelevant (i.e., 337 + 1,995 = 2,332 irrelevant 

documents). 

This first phase provided an initial estimation of the alignment between the semantic 

filtering algorithm and human evaluation, serving as a key reference point for the 

calculation of classification metrics. 

The second validation phase (Step 2) consisted of a complete manual review of the 2,763 

documents selected by the Python semantic filtering algorithm. Among these, 375 

documents had already been reviewed during the first manual evaluation phase (Step 1). 

In particular, 337 had been classified as irrelevant and 38 had been confirmed as relevant 

to the purpose of the search, as in Figure 9. To avoid redundancies, these previously 

analyzed documents were excluded from the second screening phase. 
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Figure 9: Model output with manual validation on 10% of the total corpus (own elaboration) 

 

The remaining 2,388 documents (among those included by the Python algorithm), which 

had never been evaluated before, were subjected to a manual evaluation, applying the 

same assessment criteria as in Step 1. The manual analysis resulted in confirmation that 

126 documents were correctly included in the analysis, while the remaining 2,262 were 

considered irrelevant to the defined inclusion criteria. 

Combining the results from both steps, the total number of documents correctly 

identified as relevant is:  

38 (𝑆𝑡𝑒𝑝 1) + 126 (𝑆𝑡𝑒𝑝 2) = 164 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 

Accordingly, the remaining 2,599 documents included by the filter were manually 

assessed as not relevant. 

To evaluate the performance of the semantic filter using standard classification metrics, 

the following definitions were adopted: 

(Total Corpus) 
22,065 

2,763 yes 

19,302 no 

375  
manually 

(Step 1) 
2,370 

10% of the total corpus 
manually analysed 

38 yes -> TP 

337 no -> FP 

1,995 no -> TN 

0 yes -> FN 

1,995  
manually 
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• True Positives (TP): Documents included by the semantic filter and confirmed as 

relevant during manual review → 38 

• False Positives (FP): Documents included by the filter but manually rejected as 

irrelevant → 337 

• True Negatives (TN): Documents excluded by the filter and manually confirmed as 

irrelevant → 1,995  

• False Negatives (FN): Documents excluded by the filter but manually judged 

relevant → 0 

This classification enables a detailed quantitative assessment of the filter’s behaviour. 

 

Table 1: Confusion matrix components from manual analysis 

Category Count [documents] 

True Positives (TP) 38 

False Positives (FP) 337 

True Negatives (TN) 1,995 

False Negatives (FN) 0 

 

 

Based on the classification above, the following metrics are derived: 

• Accuracy  =   𝑇𝑃 + 𝑇𝑁

TP + FP + FN + TN
 =  

38 +1,995

2,370
 ≈ 85.78 %  

• Precision  =  𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

38

38 +337
≈ 10.13 %  

• Recall  =   
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 =  

38

38 +0
 ≈ 100 % 

The performance metrics obtained reveal a high accuracy (≈ 85.78%) and a perfect recall 

(100%), indicating that the semantic filter was highly effective in identifying nearly all 

documents considered relevant by human evaluation. Accuracy, which can be defined 

as the proportion of correct classifications over the total number of instances in the 
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dataset, provides a general indication of overall model performance. However, it does 

not distinguish between different types of mistakes. 

Conversely, recall, defined as the ratio of true positives to the sum of true positives and 

false negatives, captures the model’s ability to retrieve all relevant items. The perfect 

recall observed here suggests that the filter successfully retained every document 

judged relevant by human screening. 

On the other hand, precision, calculated as the proportion of true positives out of all 

positive predictions, is notably low (≈ 10.13%). This indicates that, although the filter 

retrieved all relevant documents, it also included a high number of irrelevant ones, which 

were subsequently rejected during manual validation. This outcome is consistent with 

the choice made during the implementation of the semantic filtering algorithm, where a 

relatively broad inclusion threshold (set at 0.45 on the similarity score distribution) was 

deliberately adopted. While this threshold focuses on the right tail of the truncated 

Gaussian distribution (Figure 5), it still retains a relatively large portion of documents in 

order to maximize recall. This strategic choice was guided by the objective of ensuring 

that potentially relevant documents would not be prematurely excluded, thus favouring 

a more inclusive filtering phase that could subsequently be refined through manual 

screening. If a more restrictive threshold had been applied, the algorithm would probably 

have achieved greater precision by reducing the number of irrelevant documents 

incorrectly included. However, this would have occurred at the cost of a lower accuracy 

and potentially a loss of relevant documents, an outcome perceived less desirable given 

the exploratory nature of the literature review and the need to ensure comprehensive 

coverage of the topic. 

To further assess the reliability of the semantic filtering process, a statistical 

interpretation of the algorithm's performance was carried out by estimating Type I and 

Type II error rates. In this context, the null hypothesis (H₀) is: A document included by the 

semantic filter is actually relevant to the analysis.  

Rejecting this hypothesis when it is true constitutes a Type I error (), or a false positive; 

in this case, the algorithm incorrectly classifies a document as relevant even though it is 
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not actually pertinent to the analysis. Conversely, a Type II error () occurs when the null 

hypothesis is false, but it is not rejected: this results in the algorithm failing to identify 

and includes a document that is indeed pertinent to the research objectives. 

Based on the manually validated dataset, the estimated Type I error (α) reflects the 

proportion of documents incorrectly classified as relevant among those included by the 

filter (the false positives). Out of a total of 375 documents included by the semantic filter 

and manually reviewed, 337 were identified as false positives. Therefore, the Type I error 

rate is calculated as: 

 =  𝐹𝑃

𝑇𝑃 + 𝐹𝑃 
=

337

38 +337
≈ 89.87 %. 

This high value indicates that a large proportion of the documents selected by the 

algorithm were not considered relevant upon manual inspection. However, this outcome 

is consistent with the design strategy adopted in the filtering phase, which intentionally 

prioritized inclusivity to reduce the likelihood of missing relevant content. 

The Type II error (), on the other hand, corresponds to the proportion of relevant 

documents that were excluded by the filter (the false negatives). In this case, no relevant 

documents are missed as all documents identified as relevant through manual 

validation have already been included by the semantic filter. As a result, the number of 

false negatives (FN) is zero, and the Type II error rate is calculated as: 

 =  𝐹𝑁

𝐹𝑁 + 𝑇𝑃
=

0

0 +38
  ≈ 0 %. 

This outcome confirms that the semantic filter successfully captured all relevant 

documents within the corpus. The recall of the system is therefore maximized, which 

was precisely the intended effect of setting a relatively inclusive similarity threshold (i.e., 

0.45).  

Although this strategy resulted in a substantial number of false positives, reflected in a 

low precision, it effectively guaranteed that no relevant literature was inadvertently 

excluded. Such an outcome represents an intended and acceptable trade-off 

considering the review’s exploratory nature and its aim to achieve comprehensive 

coverage of the topic. 
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3.6 - Full Text Analysis  

In accordance with PRISMA methodology, the next phase of the document screening 

process corresponds to the Eligibility step, which involves a full-text analysis of the 

documents previously identified as relevant (i.e., 164 documents). 

Following the screening process, a total of 164 documents are retained based on the 

combined outcomes of the manual validation procedures: 126 documents are identified 

during the second-level screening (Step 2) and 38 are confirmed during the initial sample 

assessment (Step 1). 

Each of these documents is subjected to a full-text eligibility check to verify their actual 

suitability for inclusion in the final dataset. This step is aimed at ensuring that 

methodological content, thematic alignment, and level of detail provided by the studies 

were consistent with the research objectives. During this process, it was found that 28 

documents were not accessible in full text due to access restrictions. The unavailability 

was primarily imputable to technical issues related to DOI resolution and the presence 

of paywalls requiring additional subscriptions. As a result, the number of documents 

eligible for in-depth analysis was reduced to 136. 

These 136 documents represent the final set of sources on which the qualitative and 

content-based analyses are conducted in the subsequent stages of the research. 

The purpose of this step is not to examine the methodological design or research 

strategies employed by the authors, but rather to extract meaningful insights concerning 

data-related issues within the scope of artificial intelligence and machine learning in 

manufacturing settings. 

More specifically, the analysis is aimed at identifying two distinct but often overlapping 

dimensions within each paper. The first concerns problems and challenges reported in 

management, quality, or structure of data: these are issues which tend to persist over 

time and technological evolutions (RQa). The second dimension relates to the solutions, 

techniques, and frameworks proposed or adopted by the authors to address those 

issues (RQb). This separation is critical, as it enables a clearer understanding of which 
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obstacles are structurally rooted, and which are being actively mitigated through 

evolving technological solutions. 

This dual-level reading of each article was guided by a structured analysis framework, 

implemented in the form of a spreadsheet, where each column corresponded to a 

specific analytical variable (Figure 10).   

The columns were designed to capture the following dimensions: 

• Relevance: A binary classification indicating whether the paper was considered 

relevant (yes) or not (no) for answering the research questions. 

• Problems/Challenges: This column identifies the main issues or limitations 

addressed in the paper, which may concern various aspects such as data, 

methodology, implementation, or application context. 

• Techniques/Solutions/Tools: Techniques, methods, or tools proposed or 

discussed by the authors to address the identified challenges. 

• Research Questions (RQ)/Aim of the paper: This field summarizes the research 

objectives or explicit questions stated by the authors, offering alignment with our 

RQa and RQb. 

• Results: A brief synthesis of the main findings or conclusions reached by the 

study, focusing on data-related aspects. 
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Figure 10: Example of Excel spreadsheet for Full text analysis (own elaboration) 

 



53 
 

This allowed for a systematic and replicable review of each document, facilitating the 

identification of recurring themes, emerging trends, and gaps in current practices. The 

collected evidence serves as the basis for mapping common data-related problems, 

contextualizing them across different manufacturing environments, and observing how 

the field is conceptually and practically responding to such challenges. 

Among the 136 documents selected for in-depth analysis, several metadata fields 

extracted from bibliometric databases were found to be incomplete or missing, such as 

document type. Although the initial inclusion and exclusion criteria were clearly defined, 

some documents, such as short conference papers, were nevertheless retained in the 

dataset due to their thematic relevance. However, these documents often lacked 

sufficient in-depth analysis and did not provide substantial analytical value. 

Of the 136 documents, 25 were analysed entirely manually, while the remaining 111 were 

first examined with the support of ChatGPT, followed by manual validation. This 

methodological choice aimed to establish a sufficiently robust baseline of manually 

analysed documents to serve as a benchmark for subsequent comparison. The 

underlying objective was to verify the degree of consistency between human 

interpretation and the outputs generated by ChatGPT. To this end, approximately one 

fifth of the overall corpus (25 out of 136 documents) was initially examined exclusively 

through manual review and subsequently processed using the same prompts in 

ChatGPT. Once a satisfactory correspondence between the manual and AI-assisted 

analyses was observed, the remaining documents were analysed directly with the 

support of ChatGPT and subjected to subsequent validation.  

ChatGPT was employed exclusively as a support tool, with each document being 

individually processed and the tool was used to extract structured information 

corresponding to predefined Excel columns: Application Area, Problems/Challenges, 

Techniques/Solutions/ Tools, RQ(s)/Aims of the paper and Results (as per columns title 

in Figure 10).  

The reason behind the choice of using ChatGPT as a support tool is that large language 

models have recently demonstrated strong effectiveness in tasks comparable to 

literature analysis, such as abstract screening in systematic reviews. In this context, 
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ChatGPT v4.0 achieved excellent performance, with overall accuracy above 90% and 

balanced levels of sensitivity and specificity, while drastically reducing the time and cost 

of manual evaluation. According to Li (Michael Li et al. 2024), these results highlight the 

potential of ChatGPT as a reliable assistant in supporting, rather than replacing, human 

evaluation. This process helped guide manual reading and improve review efficiency 

without compromising critical evaluation.  

In accordance with the PRISMA guidelines, the full-text analysis was conducted by 

applying a set of predefined eligibility criteria to assess the relevance of each document. 

The inclusion criteria required that the study:  

• Addresses generalized and transferable concepts of data quality, particularly in 

relation to its impact on AI systems in manufacturing contexts.  

• Explicitly evaluates or discusses how data quality influences the trustworthiness 

or performance of AI-driven applications. 

The exclusion criteria, consistent with those previously applied during earlier screening 

phases (as detailed in previous sections), included:  

• Studies whose primary focus was not data quality.  

• Contributions lacking sufficient methodological or conceptual depth to support 

the research objectives (e.g. short or unstructured abstracts, editorial notes, or 

promotional content). 

Based on the application of these criteria, the full-text analysis of the 136 selected 

documents led to the following categorization: 

62 documents were considered irrelevant or only marginally related to the research 

questions and were therefore excluded from further analysis.  

33 documents were classified as case studies or highly specialized researches, typically 

focused on narrowly defined applications or sector-specific implementations. Although 

thematically related to the broader topic of AI and data quality, these studies exhibited a 

high degree of verticality, namely, they addressed highly specific use cases, 

technologies, or industrial contexts that limited their generalizability. For example, 
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several short conference papers included in this category explored niche applications 

with limited methodological transferability or theoretical depth. 

41 documents were deemed fully relevant and aligned with the research objectives. 

These studies addressed both RQa and RQb in a clear and substantive way and provided 

meaningful insights into data-related challenges as well as the corresponding AI-based 

solutions. In addition to thematic alignment, these contributions were characterized by 

a sufficient level of generality and abstraction, which made their findings applicable 

across a range of manufacturing contexts. Hence, they represent the empirical 

foundation of the analysis presented in Chapter 4. 
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Chapter 4 - Results 

The 41 papers identified as relevant for this analysis span a period from 1995 to 2025, 

offering a comprehensive overview of how definitions, technologies, and artificial 

intelligence approaches to data quality in manufacturing have evolved over the last three 

decades. The chronological and thematic examination of these works allows for a 

nuanced understanding of both conceptual developments and practical 

implementations, as well as the persistent challenges that continue to shape the field. 

This analysis is guided by the following research question:  

How is artificial intelligence currently being applied to assess and enhance the reliability 

of data in manufacturing processes, and what are the key challenges and gaps in the 

existing literature?  

In addressing this overarching question, two sub-questions are considered:  

• (RQa) Which dimensions of data quality are most frequently addressed in AI 

applications for manufacturing? Along which characteristics should data quality be 

evaluated when employing a dataset for trustworthy AI in manufacturing? 

• (RQb) What are the main AI techniques used to evaluate or improve data reliability in 

this context? 

To provide a clear and structured narrative, the results are organized into three 

chronological periods that correspond to major shifts in focus and technological 

capability. It should be noted that these periods are not rigid or mutually exclusive. 

Rather, they provide a heuristic structure to highlight predominant trends over time. In 

practice, overlaps exist: some recent works (e.g., surveys or conceptual reviews) revisit 

early discussions on the definition of data and data quality, while certain methodological 

advances anticipated in later stages can already be observed in earlier contributions. The 

chronological division thus serves as an analytical framework rather than a strict 

categorisation, enabling a clearer understanding of how different themes have evolved 

and interacted over the last three decades.  
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1. 1995–2010:  Early efforts to establish shared definitions of data and data quality, 

highlighting the absence of a universal standard and the reliance on foundational 

attributes such as accuracy, completeness, and consistency. 

2. 2010–2020: Expansion into the domains of Big Data and the Internet of Things 

(IoT), with an emphasis on scalability, interoperability, and the integration of new 

dimensions of data quality into manufacturing systems. 

3. 2020–2025: Advanced applications of machine learning (ML), deep learning (DL), 

and AI, embedding continuous assessment and improvement of data reliability 

into complex manufacturing environments. 

4.1 - Early Period (1995–2010): Foundational Definitions and Initial 

Approaches 

In the earliest years covered by this review, literature predominantly focused on building 

a conceptual foundation for what would later become the broader discourse on data 

quality in manufacturing. The central concern was to establish clear, operational 

definitions of data and data quality, often drawing from parallel domains such as 

information systems, database management, and software engineering. 

The term data was generally described as recorded values representing facts, events, or 

measurements, which could be structured, semi-structured, or unstructured depending 

on their origin and format (Wang, Strong 1996). In the manufacturing domain, the 

concept acquires greater specificity, as data were frequently generated by sensors, 

control systems, and manual entry processes, each with distinct characteristics and 

potential sources of error. These distinctions were important for understanding the types 

of quality challenges likely to arise in different manufacturing contexts (Figure 11). 
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Figure 11: : Classification for data (Batini et al. 2009) 

 

Data quality in this early period was not yet supported by a universally accepted 

definition. One of the most influential and enduring conceptualizations was the idea of 

fitness for use (Wang e Strong 1996), which framed data quality as a relative and context-

dependent property: data is said to be of high quality if they meet the needs of the specific 

task, decision or process it is intended to support. This perspective underscored that 

quality requirements are dynamic, shaped by evolving operational contexts, the gradual 

accumulation of data in repositories, and changing stakeholder expectations. 

Within this conceptual frame, the attributes most frequently emphasized were accuracy, 

completeness and consistency, often complemented by timeliness and relevance as 

additional indicators of usability (Wang e Diane M. Strong 1996; Redman 1998). These 

attributes provided the initial operational foundation for assessing data quality, serving 

as reference points for both academic research and early industrial applications. 

Over time, formal standards began to address the issue more explicitly. The ISO 8000 

data quality standard was developed to provide a structured approach for assessing and 

improving data quality across the product life cycle, from conceptual design to disposal. 

ISO 8000 defines quality characteristics for data, offers a framework for improvement, 

and can be applied independently or alongside broader quality management systems. 

Its structure encompasses general principles, master data quality (including syntax, 

semantic encoding, provenance, accuracy and completeness), transaction data quality, 

and product data quality (Figure 12). 
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Figure 12: Components of ISO 8000 (Batini et al. 2009) 

 

The conceptual roots of data quality also draw from the broader definition of quality in 

ISO 9000, which describes it as the degree to which customer requirements are satisfied 

(Nikiforova 2020). By extension, data quality is understood as the degree to which data 

meets the requirements of their intended use, reflecting both their inherent properties 

and their suitability for the context in which they are applied. This definition highlights the 

inherently relative and dynamic nature of data quality, a property that can change over 

time as data evolve, accumulate, or are repurposed for new applications. 

The focus on inherent dimensions of data quality, accuracy, completeness, and 

consistency, was a natural reflection of the stage of development. Evaluation methods 

in this early stage were typically manual or rule-based, with a limited set of metrics 

applied to discrete datasets. The process followed a linear lifecycle, moving from data 

generation, often from multiple heterogeneous sources, to acquisition, storage, and 

finally analysis (Figure 13). At each stage of this lifecycle, there were potential risks of 

quality degradation, such as errors in collection, transmission delays, incomplete 

storage, or inaccuracies introduced during processing and visualization. This highlights 

that data quality is not a static property, but one that can be affected at any point in the 

data’s journey from source to use. 
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Figure 13: Data lifecycle Value chain (Taleb et al. 2021) 

 

In terms of quality dimensions, early approaches concentrated on intrinsic properties 

such as completeness, consistency, accuracy, and timeliness. Over time, these were 

complemented by broader categories including contextual dimensions (e.g., 

believability, relevancy, value-added, accessibility, reputation) and representational 

dimensions (e.g., interpretability, manipulability) (Figure 14). This expansion reflects the 

growing recognition that data must not only be correct, but also meaningful, relevant, 

and usable within the specific operational context of manufacturing. 

 

 

Figure 14: Early conceptual model of Data quality dimensions (Taleb et al. 2021) 
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Despite the conceptual advances made during this period, several challenges persisted. 

First, the absence of standardization in defining and measuring data quality continued to 

hinder the comparability of results and the development of universally applicable 

frameworks. In addition, the heterogeneity of data sources, ranging from sensor readings 

and control system logs to manually recorded information, posed significant integration 

difficulties, often leading to inconsistencies and information loss. Finally, the level of 

automation in quality assessment remained limited, with few solutions capable of 

providing real-time evaluation and corrective actions. 

4.2 - Intermediate Period (2010–2020): Big Data, IoT, and the 

Expansion of Data Quality Dimensions 

From the early 2000s onwards, literature shifted towards the practical implications of Big 

Data and the Internet of Things (IoT). 

According to IBM, the Internet of Things (IoT) refers to a network of physical devices, 

vehicles, appliances, and other physical objects embedded with sensors, software, and 

network connectivity that enable them to collect and share data (IBM 2023). Big Data 

concerns with massive, complex data sets that traditional data management systems 

cannot handle. When properly collected, managed and analyzed, Big Data can help 

organizations discover new insights and make better business decisions (Kosinski 2024). 

The rapid advancement of technologies such as social networks, the Internet of Things 

(IoT), cloud computing, and other digital innovations has introduced the era of Big Data. 

The exponential growth in data volumes has created substantial value for both 

enterprises and society at large, while simultaneously raising critical questions about 

how to manage and exploit these vast resources effectively. 

Big Data is commonly characterized by its four Vs: volume, variety, velocity and veracity 

(Figure 15) (Zhang et al. 2017).   
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Figure 15: : 4 Vs of Data Quality (Zhang et al. 2021) 

 

Each of these aspects brings its own challenges when it comes to processing and 

ensuring the quality of data. Large volumes, for instance, call for storage and processing 

systems that can scale effectively. Variety points to the difficulty of bringing together very 

different types of information, from structured databases to semi-structured files and 

unstructured content. Velocity reflects the pressure to deal with data that arrives and 

changes at high speed, while veracity concerns that not all data can be taken at face 

value, raising questions about its reliability and trustworthiness (Zhang et al. 2017). 

In manufacturing, the effective use of Big Data is contingent on ensuring high data quality 

and the reliability of its sources. Degradation in data quality can lead to unpredictable 

consequences, eroding confidence in both the data and its origin. Factors such as the 

integration of multi-heterogeneous sources and the rapid pace of data generation 

exacerbate the risk of quality loss, making continuous monitoring and validation 

essential. 

Nevertheless, maintaining Big Data Quality (BDQ) in such environments is inherently 

costly and resource-intensive, as it often requires substantial computational power and 

complex pre-processing workflows (Taleb et al. 2021). This reality underscores that data 

quality management is not a peripheral concern but a prerequisite for the successful 

application of Big Data techniques in manufacturing, enabling accurate analytics, 

informed decision-making, and the effective deployment of AI-driven solutions. 
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The practical implications of the Four Vs for data quality management in manufacturing 

can be illustrated by mapping common issues across the main stages of the Big Data 

lifecycle, from collection to analysis, together with their primary causes, affected quality 

dimensions, and potential solutions (Figure 16). 

 

 

Figure 16: : Issues, Data Quality, 4V, Solutions (Zhang et al. 2021) 

 

While these challenges are inherent to Big Data environments in general, they become 

even more pronounced in manufacturing contexts where data are increasingly generated 

through interconnected devices and systems. This transition leads directly to the domain 

of the Internet of Things (IoT), whose distributed and heterogeneous nature further 

amplifies both the opportunities and the complexities of ensuring data quality. 

The concept of the Internet of Things (IoT) was first introduced to describe the potential 

of sensors to connect to the Internet and thereby enable new forms of service provision. 

It has also been defined more broadly as a network that connects ordinary physical 

objects, each with an identifiable address, to deliver intelligent services (Batini et al. 

2009). In the manufacturing domain, the IoT is best understood as a networked 

ecosystem of interconnected devices, sensors, machines, and control systems that are 

capable of collecting, transmitting, and in some cases processing data without direct 

human intervention (Gubbi et al. 2013). These devices operate across different stages of 

the production process, from raw material handling to assembly lines and quality control 



64 
 

stations, generating continuous and real-time data streams that form the backbone of 

modern smart manufacturing. 

For example, heterogeneous device specifications, communication protocols, and data 

formats can lead to interoperability issues and inconsistencies across datasets. Sensor 

drift, calibration errors, and connectivity disruptions can reduce accuracy and 

completeness, while the velocity of data flows can hinder effective timeliness control if 

processing systems cannot keep pace (Batini et al. 2009). Moreover, the distributed 

architecture of IoT systems demands robust traceability mechanisms to track the 

provenance and transformation of data across multiple nodes in the network. 

This combination of opportunities and challenges has positioned IoT as both a driver and 

a stress test for AI-based data quality solutions. AI techniques, particularly in anomaly 

detection, sensor fusion, and real-time quality monitoring, have become essential for 

managing the complexity of IoT-enabled manufacturing environments. 

The adoption of Big Data architectures and IoT technologies in manufacturing brought a 

significant shift in the way data quality was conceptualized and assessed. While intrinsic 

dimensions such as accuracy, completeness and consistency remained essential, the 

new technological landscape required the inclusion of additional attributes that 

captured the operational and systemic aspects of modern manufacturing data flows. 

One of the most prominent was traceability, referring to the ability to track each data 

point back to its source and to reconstruct its transformation across the production 

chain (Isaja et al. 2023). This capability became crucial in IoT-enabled environments, 

where multiple heterogeneous devices contribute to the same dataset and where any 

anomaly must be traced rapidly to its origin to prevent production disruptions. 

Equally important was interoperability, defined as the continuous integration and 

exchange of information between different systems, platforms, and devices. In practice, 

this meant overcoming incompatibility in data formats, communication protocols, and 

metadata standards, which could otherwise fragment the information landscape and 

reduce overall reliability. 
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Timeliness also emerged as a critical dimension, particularly in applications where data 

is collected and processed in real time or near real time. In such contexts, the value of 

the data can degrade rapidly if there are delays in acquisition, transmission, or analysis, 

making time-sensitive quality checks and low-latency data pipelines essential (Mirzaie 

et al. 2023). 

Finally, data governance gained relevance as manufacturing systems became more 

complex and distributed (Sahi et al. 2023). Governance encompasses the policies, 

procedures, and accountability structures for managing data assets, ensuring not only 

technical quality but also compliance with standards, security requirements, and ethical 

considerations. 

By integrating these additional dimensions, the assessment of data quality evolved from 

a narrow, intrinsic focus to a multi-layered framework capable of addressing the 

complexity of interconnected manufacturing environments. This evolution directly 

influenced AI-driven quality management, as algorithms increasingly needed to account 

for contextual, temporal, and systemic factors beyond the traditional scope of data 

cleaning and validation. 

During this period, AI methods for data quality management in manufacturing became 

more sophisticated and diversified. Feature selection and extraction techniques were 

increasingly used to refine high-dimensional datasets, ensuring that only the most 

relevant variables were retained for analysis. Unsupervised anomaly detection methods 

allowed for the identification of faulty sensor readings and process deviations without 

requiring exhaustive labelling efforts. Data augmentation strategies were employed to 

mitigate class imbalance in predictive modelling, while active learning approaches 

optimized the use of expert labelling by focusing human intervention on the most 

informative samples (Zhou et al. 2024; Xie et al. 2025). Machine learning (ML) 

technologies have become substantial in practically all aspects of society and data 

quality (DQ) is critical for the performance, fairness, robustness, safety, and scalability 

of ML models. With the large and complex data in data-centric AI, traditional methods 

like exploratory data analysis (EDA) and cross-validation (CV) face challenges, 

highlighting the importance of mastering DQ tools.  
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Despite these advancements, significant challenges persisted. Scalability remained a 

concern, as even distributed architectures struggled to maintain performance when 

processing high-volume, high-velocity industrial data streams. Standardization issues 

continued to limit interoperability and hinder the consistent application of quality 

metrics across systems. Moreover, achieving real-time assurance of data quality proved 

difficult, as many AI models lacked the capacity to adapt instantaneously to fluctuations 

in production conditions. 

4.3 - Advanced Period (2020–2025): Machine Learning, Deep 

Learning, and Integrated AI Systems for Data Quality 

The most recent period marks the integration of AI into real-time manufacturing data 

pipelines, aligned with trustworthy AI principles. Artificial Intelligence (AI) has become 

one of the primary drivers of digital transformation, with applications that are rapidly 

expanding across industrial sectors (Oviedo et al. 2024). Manufacturing has been 

profoundly affected by the integration of AI-based systems, which are now central to 

predictive analytics, process optimization, and real-time quality monitoring (Sharma et 

al. 2022). This technological evolution has been accompanied by increasing regulatory 

and institutional attention, reflected in the development of international standards (e.g., 

ISO/IEC) aimed at guiding the design, deployment, and assessment of AI solutions, 

including those that directly affect data quality management. 

Within this broader context, Machine Learning (ML) represents one of the most widely 

used paradigms, providing the foundation for prediction, classification, and anomaly 

detection tasks in manufacturing (Azimi e Pahl 2025). However, the reliability of ML 

models is strongly dependent on the quality of the data used during training and 

validation. Low-quality datasets, characterized by noise, sparsity, or irrelevant 

attributes, can significantly compromise performance in critical tasks such as defect 

detection or predictive maintenance. As such, assessing and enhancing dataset quality 

has become a prerequisite for trustworthy ML applications. This has driven growing 

emphasis on practices such as data curation (the systematic collection, selection, and 
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organization of data) and on the development of algorithmic solutions capable of 

mitigating the effects of low-quality inputs. 

Deep Learning (DL), while offering transformative potential through its ability to 

automatically extract complex patterns from raw data, poses further challenges in 

industrial environments. DL models are inherently data-hungry and require very large, 

diverse, and reliable datasets to achieve robust performance (Munappy et al. 2022). In 

real-world manufacturing scenarios, obtaining such high-quality data is not always 

feasible, as corrupted, incomplete, or biased samples are common. This has raised 

interest in fairness metrics, data augmentation strategies, and robustness techniques to 

enable DL models to tolerate imperfections in training data while still delivering 

dependable results. 

The relationship between Artificial Intelligence as a broader application domain and the 

role of machine learning models within AI systems can be illustrated by considering their 

structural organization. Figure 17 provides an overview of how training and production 

data are processed within AI systems, highlighting the continuous interaction between 

data, models, and outputs. 

 

Figure 17: AI application and AI system (Oviedo et al. 2024) 
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Overall, the most recent period is characterized by the recognition that the success of AI 

systems in manufacturing depends less on the sophistication of algorithms alone and 

more on the quality of the data they consume (Majeed e Hwang 2024). Unlike 

conventional software, where improvements can often be achieved by refining code, AI-

based software is inductively derived from data. Consequently, advancing the field 

requires both rigorous assessment of dataset quality and the development of strategies 

to safeguard reliability, fairness, and interpretability in AI-driven manufacturing systems. 

Artificial Intelligence (AI) has become a pivotal driver of digital transformation in 

manufacturing, permeating every layer of production, maintenance, and quality control. 

In this context, ensuring the reliability of AI systems, and, critically, of the data that feeds 

them, has evolved into a central concern. Recent years have seen the introduction of 

international standards (notably ISO/IEC standards) that specifically target AI system 

quality, covering not only processes and products but also the integrity and quality of the 

data underpinning them (Oviedo et al. 2024). 

In contemporary AI-driven manufacturing systems, the spectrum of data quality 

dimensions extends well beyond the traditional triad of accuracy, completeness, and 

timeliness. Within data-driven industrial contexts, researchers argue that quality must 

now be conceived as a multi-layered construct: it should not only reflect correctness but 

also the ability of data to be meaningful, usable, and trustworthy across various 

scenarios. 

Emerging dimensions such as bias detection and fairness ensure that AI systems do not 

systematically disadvantage certain outcomes or populations. Semantic accuracy 

emphasizes that data should faithfully represent real-world phenomena at a level of 

understanding aligned with human judgment and domain semantics. Cross-domain 

generalizability, meanwhile, involves ensuring that data collected in one manufacturing 

context can support AI models deployed across diverse operational environments. 

These developments are motivated by evolving industry needs, captured in frameworks 

like quality-by-design, and the growing recognition that data must maintain its value 

across changing use cases. Fu et al. highlight this shift, showing how data quality is 

increasingly framed within socio-technical systems where usability, provenance, and 
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ongoing value supersede static notions of correctness (Fu et al. 2024). In manufacturing, 

this means moving from verifying data correctness toward ensuring data remain fair, 

interpretable, and adaptable over time and across applications. 

The sophistication of AI techniques applied to manufacturing data quality has likewise 

grown concurrently with these expanded dimensions. Deep Learning architectures, such 

as convolutional, recurrent, and transformer models, are now widely used for detecting 

defects, forecasting maintenance needs, and extracting high-level features from multi-

modal sensor streams. These models excel at capturing complex patterns but demand 

vast amounts of high-quality data. 

To mitigate this challenge, practitioners increasingly rely on Transfer Learning: pre-

trained models are adapted to new manufacturing environments with limited new 

training data, enabling faster deployment and improved generalizability. For enhanced 

robustness, Ensemble and Hybrid Systems combine multiple models, or blend rule-

based and learning-based logic, offering better interpretability and error resilience (Fu et 

al. 2024). 

Data scarcity and labelling costs are addressed through Active Learning, guiding human 

annotation toward the most informative or uncertain instances, thus optimizing expert 

effort. Additionally, Automated Data Augmentation techniques synthetically enhance 

data diversity, by adding noise, transformations, or simulated edge cases, to improve 

model training where real-world samples remain scarce. 

Collectively, these techniques shift AI’s role from passive analysis to active quality 

guardianship: models now not only consume data but also help enforce quality 

standards, detect bias, and adapt to changing operating conditions. This reflects a 

profound change: in modern manufacturing, AI systems are not just data-driven, but they 

are data-oriented in the sense that data quality becomes a continuous, integral part of 

their operation. 

Despite these advances, several challenges continue to limit the effectiveness and 

scalability of AI-based approaches to data quality in manufacturing. One persistent issue 

is class imbalance, whereby defective cases are underrepresented compared to normal 

instances. This imbalance hampers the training of reliable predictive models, often 
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leading to biased outcomes or reduced sensitivity in detecting rare but critical events 

(Clemente et al. 2023). 

A second major obstacle is the high cost of annotation (Kumar et al. 2024). Many AI 

techniques, particularly in supervised and semi-supervised learning, require large 

volumes of accurately labelled data. In manufacturing, however, expert labelling is both 

expensive and time-consuming, and errors in annotation can further compromise model 

reliability. 

Another recurring gap is the absence of benchmark datasets that are standardized and 

openly available for evaluation and comparison. Without shared references, it is difficult 

to assess the generalizability of proposed methods or to establish performance 

baselines across different manufacturing contexts (Nikiforova 2020). 

Finally, interoperability gaps persist due to the heterogeneity of manufacturing 

environments (Oviedo et al. 2024). Differences in data formats, system architectures, 

and communication protocols create barriers to integrating data from multiple sources, 

limiting the scope of AI-driven quality management systems. 

4.4 - Synthesis and Gaps 

The chronological review of the 41 selected papers, spanning the period from 1995 to 

2025, reveals a clear trajectory in the way data quality in manufacturing has been 

conceptualized, evaluated, and enhanced through artificial intelligence. This trajectory 

can be interpreted as a progressive expansion in both the dimensions of data quality 

considered relevant (RQa) and the AI techniques applied to support them (RQb), 

alongside the persistence of challenges that remain unresolved. Table 2 illustrates an 

example of 5 documents from the final corpus selected and fully analysed (i.e., 41 

documents), structured according to the approach described in Chapter 3 (sub-section 

3.6). This table illustrates how the information was organised across application areas, 

challenges, techniques, and research questions, thereby serving as a representative 

synthesis of the broader analysis. 
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In the early period (1995–2010), academic attention was primarily devoted to building a 

conceptual foundation. Data were defined as recorded values of events, facts, or 

measurements, and the absence of a universal definition of data quality led to reliance 

on intrinsic dimensions such as accuracy, completeness and consistency, with 

timeliness and relevance occasionally included. Evaluation methods were largely 

manual or rule-based, and AI applications were embryonic, limited to statistical 

methods and simple classification or clustering approaches. The main limitation of this 

stage lies in the lack of standardization: ISO 8000 only begins to introduce structured 

principles, and in the inability of available methods to provide real-time or scalable 

assurance of data quality. 

The intermediate period (2010–2020) marked a decisive shift towards Big Data and 

Internet of Things (IoT). The four Vs, volume, variety, velocity and veracity, became 

central, reflecting the practical challenges of managing large, heterogeneous, and fast-

moving data streams in manufacturing environments. These developments brought 

about a significant expansion in data quality dimensions. While intrinsic properties 

remained relevant, additional dimensions emerged: traceability, ensuring the ability to 

reconstruct data provenance across distributed IoT networks; interoperability, 

facilitating integration across devices and platforms; timeliness, reflecting the critical 

importance of near real-time data flows; governance, encompassing accountability, 

compliance, and policy frameworks for managing increasingly complex data assets. 

Correspondingly, AI techniques grew more sophisticated. Feature selection and 

extraction were used to reduce high-dimensional datasets, unsupervised anomaly 

detection allowed fault identification without exhaustive labelling and data 

augmentation and active learning addressed issues of imbalance and labelling costs. 

Nevertheless, scalability and interoperability remained problematic, and real-time 

adaptation of AI methods often failed to meet the needs of rapidly changing industrial 

contexts. 

The advanced period (2020–2025) is characterized by the consolidation of Machine 

Learning (ML), Deep Learning (DL), and integrated AI systems as central components of 

manufacturing data quality management. Here, the emphasis shifted from algorithms 

alone to the quality of the data that fuels them, recognizing that AI software is inductively 
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derived from data rather than written deterministically. This period introduced new and 

critical dimensions of data quality: bias detection and fairness, ensuring that AI systems 

do not propagate systematic disadvantage; semantic accuracy, emphasizing the faithful 

and meaningful representation of real-world phenomena; cross-domain generalizability, 

enabling models trained in one context to perform reliably in others. Alongside these 

conceptual advances, AI techniques reached a new level of sophistication. Deep 

learning architectures such as CNNs, RNNs and transformers became widely used for 

defect detection and predictive maintenance; transfer learning allowed models to be 

adapted to new contexts with minimal retraining; ensemble and hybrid systems 

combined complementary methods for improved robustness; active learning and 

automated data augmentation alleviated the bottleneck of scarce and costly labelled 

data. At the same time, the recognition of fairness metrics, robustness techniques and 

explainability underscored a shift towards data-oriented AI systems, where maintaining 

quality is an integral and continuous part of operation. 

Despite these advances, several persistent gaps remain across all three periods. Class 

imbalance continues to compromise the reliability of predictive models, as defective 

cases remain underrepresented in real datasets. The high cost of annotation remains a 

critical obstacle, especially in supervised learning contexts where expert labelling is 

indispensable but resource intensive. The absence of standardized benchmark datasets 

hinders comparability across studies and limits the establishment of universally 

accepted performance baselines. Finally, interoperability gaps persist due to 

heterogeneous system architectures, data formats, and communication protocols, 

which restrict the seamless integration of AI-based quality management systems in 

diverse manufacturing environments. 

This analysis shows that AI applications in manufacturing data quality have evolved from 

rudimentary preprocessing and classification techniques to highly sophisticated, multi-

layered systems capable of addressing complex industrial realities. However, the field is 

still constrained by structural challenges that impede scalability, generalizability, and 

standardization. These gaps provide fertile ground for further research and innovation, 

underscoring the need for collaborative efforts in benchmarking, interoperability 

frameworks, and the development of data-centric AI methods that explicitly integrate 
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fairness, adaptability, and robustness as essential dimensions of trustworthy 

manufacturing systems.
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Table 2: Sample of five relevant papers analysed in full text 

DOI Year Title Author Keywords Document 
Type 

Application 
Area 

Problems/Challenges Techniques/Solutions/Tools RQ(s)/Aim of the 
paper 

Results 

10
.1

18
6/

s4
05

37
-0

21
-0

04
68

-0
 

20
21

 

Big data 
quality 
framework
: a holistic 
approach 
to 
continuou
s quality 
managem
ent 

Big data quality; 
Data quality 
profile; Quality 
assessment; 
Quality metrics 
and scores; Pre-
processing 

Ar
tic

le
 

• Big Data 
environments 
• Continuous 
data quality 
monitoring 
• Data 
warehousing 
and analytics 
• Cloud-
based data 
processing  

• Lack of systematic and 
scalable approaches to 
measure and manage 
data quality in big data 
contexts. 
• High volume, variety, 
and velocity of data make 
traditional DQ methods 
inadequate. 
• Fragmentation of data 
quality dimensions and 
responsibilities. 
• Need for real-time DQ 
monitoring integrated 
within processing 
workflows. 

• Proposal of a holistic 
framework for big data quality 
(BDQF). 
• Integration of DQ monitoring 
into data processing 
pipelines. 
• Use of technical and 
organizational quality 
dimensions. 
• Modular architecture 
enabling continuous 
assessment, feedback, and 
correction. 
• Implementation case based 
on a real-world big data 
platform. 

• To develop a 
comprehensive 
framework for 
continuous data 
quality management 
in big data systems. 
• To align technical 
DQ mechanisms 
with organizational 
quality governance. 
• To validate the 
feasibility of 
integrated DQ 
monitoring in 
practice. 

1) The proposed 
BDQF framework 
supports 
automated and 
continuous DQ 
monitoring in 
large-scale data 
environments. 
2) The integration 
of technical and 
organizational 
quality aspects 
improves 
traceability and 
accountability. 
3) Experimental 
results show the 
framework's 
effectiveness in 
identifying and 
mitigating quality 
issues in real 
time. 
4) The modular 
design allows 
adaptation to 
different big data 
architectures and 
use cases. 
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10
.1

14
5/

15
41

88
0.

15
41

88
3 

20
09

 

Methodolo
gies for 
Data 
Quality 
Assessme
nt and 
Improvem
ent 

Management; 
Measurement; 
Data quality; data 
quality 
measurement; 
data quality 
assessment; data 
quality 
improvement; 
methodology; 
information 
system; quality 
dimension 

Ar
tic

le
 

• Data 
warehousing. 
• Data 
integration 
systems. 
• Database 
management 
and 
governance. 
• Data 
cleaning and 
quality 
monitoring 
frameworks. 

• Inconsistent, 
incomplete, and 
inaccurate data in large 
datasets. 
• Lack of standardized 
procedures for assessing 
data quality. 
• Difficulty in reconciling 
heterogeneous data 
sources. 
• Need for continuous 
monitoring and 
improvement cycles. 

• Definition and formalization 
of a Data Quality Assessment 
Methodology (DQAM). 
• Use of metadata and 
quality-related information for 
rule generation. 
• Integration of user feedback 
into quality metrics and 
improvement steps. 
• Iterative framework 
including assessment, 
analysis, improvement, and 
monitoring phases. 

• How can a 
methodological and 
structured approach 
help organizations 
assess and improve 
data quality? 
• What are the key 
dimensions and 
procedures 
necessary for 
implementing 
effective data 
quality 
management? 

1) Presented a 
formal framework 
(DQAM) for 
systematic 
assessment and 
improvement of 
data quality. 
2) Emphasized 
the role of 
metadata and 
domain-specific 
rules in quality 
evaluation. 
3) Demonstrated 
applicability 
through use-case 
discussions and 
integration 
strategies. 
4) Advocated for 
feedback-driven, 
iterative 
enhancement of 
data quality over 
time. 
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10
.3

39
0/

da
ta

91
20

15
1 

20
24

 

A 
Framewor
k for 
Current 
and New 
Data 
Quality 
Dimension
s: An 
Overview 

data quality; data 
model; data 
quality 
dimensions; data 
traceability; 
confidence in 
data; data 
metrology; data 
uncertainty; data 
structures; big 
data; IoT 

Ar
tic

le
 

• Data quality 
assessment 
and 
management. 
• Information 
systems and 
databases. 
•Multidimensi
onal data 
quality 
modeling. 

• Fragmentation and lack 
of consensus on 
definitions of data quality 
dimensions. 
• Difficulty in comparing 
and mapping dimensions 
across different models 
• Ambiguity and overlap 
between dimension 
definitions. 
• Need for clarity on how 
dimensions apply across 
contexts and domains. 

• Comparative literature 
analysis of existing data 
quality dimensions. 
• Development of a unified 
classification framework 
(Data Quality Data Model). 
• Proposal of a meta-model 
for organizing and categorizing 
dimensions. 
• Identification of 49 current 
and 15 new dimensions and 
their grouping under broader 
categories. 

• To review, analyze 
and classify existing 
and emerging data 
quality dimensions. 
• To develop a 
framework that can 
consolidate and 
compare data 
quality dimensions. 
• To highlight gaps 
and overlaps in 
current dimensional 
models. 

1) Identified and 
categorized 64 
data quality 
dimensions (49 
existing, 15 new). 
2) Proposed a 
unified framework 
composed of six 
categories: 
Intrinsic, 
Contextual, 
Representational, 
Accessibility, 
Operational, and 
Organizational. 
3) Facilitated 
comparative 
analysis and 
interoperability 
between DQ 
models. 
4) Provided a 
basis for future 
development of 
tailored DQ 
assessment tools. 
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10
.1

10
9/

AC
C

ES
S.

20
19

.2
89

97
51

 

20
19

 

An 
Overview 
of Data 
Quality 
Framewor
ks 

Data quality 
assessment; data 
structures; 
decision making; 
information 
management; 
quality 
management 

Ar
tic

le
 

Cross-domain 
data quality 
management 
across diverse 
business 
environments, 
information 
systems, and 
data types 
(structured, 
semi-
structured, 
and 
unstructured). 
Particularly 
relevant for 
organizations 
seeking 
comprehensiv
e DQ 
strategies in 
enterprise 
data, data 
warehouses, 
and Big Data 
contexts. 

•Heterogeneity of data 
quality requirements 
across organizations and 
application domains. 
•Difficulty selecting 
appropriate frameworks 
due to the diversity of 
existing methodologies. 
•Complexity in handling 
different types of data 
(structured, semi-
structured, unstructured) 
and quality dimensions. 
•Lack of standardization 
in defining and applying 
data quality dimensions 
and assessment 
processes. 
•Inconsistent treatment 
of improvement costs and 
decision-making 
strategies across 
frameworks. 

Comparative survey of 12 
general-purpose data quality 
frameworks that include: 
•Definition of data quality 
attributes and dimensions. 
•Assessment processes 
(using subjective and/or 
objective metrics). 
•Improvement strategies 
(including root cause analysis, 
cost-benefit analysis, and 
decision frameworks). 
•Classification and 
comparison of frameworks 
based on: 
   -Types of data handled 
   -Types of measurements        
used (e.g., metrics, 
questionnaires) 
   -Level of detail in 
improvement steps 
   -Cost considerations and 
decision models 
•Proposal of a decision guide 
to support the selection of 
suitable data quality 
frameworks depending on 
context-specific criteria. 

To provide a 
comprehensive, 
comparative 
overview of general-
purpose data quality 
frameworks, 
enabling 
organizations to: 
• Understand core 
components 
(definition, 
assessment, 
improvement) 
• Compare available 
methodologies; 
• Select the most 
suitable framework 
using a structured 
decision guide. 

Identification of 
12 general-
purpose DQ 
frameworks, each 
described in 
terms of: 
•Data quality 
definition and 
dimensions 
•Assessment 
processes and 
measurement 
types 
•Improvement 
strategies, 
including cost and 
decision-making 
approaches 
 

Recognition that 
accuracy, 
completeness, 
and timeliness are 
the most 
frequently cited 
quality 
dimensions. 
 

Emphasis on the 
need for 
customization of 
DQ dimensions 
based on 
organizational 
needs. 
 
Highlight of the 
variation in 
assessment 
methods 
(objective vs. 
subjective, 
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metrics vs. 
surveys). 
 
Presentation of a 
decision support 
table to help 
practitioners 
choose the most 
appropriate 
framework based 
on factors like 
data type, 
organizational 
needs, and cost 
awareness. 
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10
.1

01
6/

j.j
ss

.2
02

2.
11

13
59

 

20
22

 

Data 
managem
ent for 
productio
n quality 
deep 
learning 
models: 
Challenge
s and 
solutions 

Deep learning; 
Data 
management; 
Production quality 
DL models; 
Challenges; 
Solutions; 
Validation 

Ar
tic

le
 

• Deep 
learning in 
production 
(deployment-
level) 
environments. 
• Data 
management 
for AI 
pipelines at 
scale. 
• Applications 
across 
multiple 
sectors 
including 
manufacturing
, automotive, 
and retail. 
• MLOps and 
data-centric 
AI system 
development. 

• Deep learning models 
are highly dependent on 
data quality, yet data 
processes are often ad 
hoc or poorly managed. 
• Lack of standardized 
practices for managing 
datasets over the ML 
lifecycle. 
• Common pain points 
include:   
- Data versioning and 
traceability   
- Labeling consistency   
- Data drift and spurious 
correlations   
- Weak supervision and 
noisy labels. 
• Difficulty aligning data 
operations with 
DevOps/MLOps 
pipelines. 

• Structured a six-stage data 
management framework:   
1. Data acquisition   
2. Data cleaning and 
preparation   
3. Data labeling   
4. Data versioning   
5. Data monitoring and 
validation   
6. Data governance. 
• Highlighted tools and 
techniques such as:   
- Data versioning tools (e.g. 
DVC)   
- Active learning and weak 
supervision frameworks   
- Continuous monitoring for 
data and concept drift   
- Label audits and 
standardization practices. 
• Emphasis on aligning ML 
data lifecycle with software 
engineering principles 
(MLOps). 

• What are the main 
data management 
challenges in 
deploying 
production-level 
deep learning 
systems? 
• How can these 
challenges be 
addressed with 
current tools and 
organizational 
practices? 
• Can a structured 
framework help 
ensure data quality 
and traceability 
across the ML 
lifecycle? 

• Identified six key 
stages in the data 
lifecycle critical to 
production-ready 
DL systems. 
• Mapped 
common issues to 
each stage, 
offering 
actionable 
practices to 
address them. 
• Emphasized the 
role of 
standardized data 
pipelines and 
governance in 
improving model 
reliability. 
• Showed how 
poor data handling 
leads to 
performance 
degradation, 
compliance risks, 
and scaling 
issues. 
• Advocated for 
data-centric 
MLOps strategies 
to ensure 
consistency and 
traceability. 
• Positioned data 
management as a 
first-class citizen 
in AI system 
development, on 
par with model 
architecture. 
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Chapter 5 – Conclusions 

This final chapter brings together the findings of the literature review and provides explicit 

answers to the research questions formulated in Chapter 1.  

The analysis of final corpus of 41 papers selected through PRISMA methodology and 

described step by step in Chapter 3 shows how data quality in manufacturing has been 

conceptualized, assessed and enhanced through the application of Artificial 

Intelligence. The results, extracted from the corpus of 41 articles, have been organized 

chronologically in Chapter 4 to highlight the predominant changes over time. 

Nevertheless, the periods identified should not be considered as rigid boundaries. 

Rather, they serve as a heuristic framework that reveals both continuities and turning 

points in the evolution of concepts, techniques, and challenges.  

The review demonstrates that AI applications for manufacturing data quality have 

evolved from simple preprocessing and validation techniques to highly sophisticated, 

integrated systems. Initially, AI played a limited role, with rule-based methods and basic 

statistical checks. Over time, the expansion of Big Data and IoT required scalable and 

automated approaches, leading to the adoption of machine learning for anomaly 

detection, feature extraction, and active learning. In the most recent period, deep 

learning, transfer learning, ensemble models, and hybrid systems have made it possible 

to embed data quality assurance directly into manufacturing pipelines. Despite this 

progress, several unresolved challenges persist, including class imbalance, high 

annotation costs, lack of standardized benchmark datasets, and ongoing 

interoperability gaps. Together, these findings suggest that AI has become indispensable 

for managing data reliability, but its full potential remains constrained by structural and 

methodological limitations. 

Across the three decades examined, some dimensions, particularly accuracy, 

completeness and consistency, have remained central. These intrinsic properties are 

essential for ensuring that data faithfully reflect manufacturing processes and can 

support reliable AI-driven decisions. As technologies evolved, additional dimensions 

became prominent. In the Big Data and IoT era, traceability, interoperability, timeliness, 
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and governance gained importance, reflecting the complexity of distributed and 

heterogeneous environments. In the most recent period, novel dimensions such as 

fairness, bias detection, semantic accuracy and cross-domain generalizability have 

emerged, highlighting the alignment of data quality with the broader principles of 

trustworthy AI (RQa). Overall, the trajectory indicates a progressive broadening of data 

quality concept, from technical correctness to socio-technical robustness and 

adaptability. The AI techniques applied to data quality in manufacturing reflect this 

evolution.  

In the early years, applications were limited to simple classification, clustering, and 

anomaly detection methods. Between 2000 and 2020, machine learning approaches 

became widespread, including feature selection, unsupervised anomaly detection and 

data augmentation strategies, often combined with active learning to reduce labelling 

costs. From 2020 onwards, the field has increasingly relied on deep learning 

architectures (CNNs, RNNs, transformers), transfer learning for domain adaptation and 

ensemble or hybrid approaches to improve robustness and interpretability. Moreover, AI 

has shifted from being a tool for post hoc data cleaning to becoming an integral 

mechanism for continuous monitoring and quality assurance. These techniques not only 

enhance data reliability but also reflect the recognition that trustworthy AI depends 

fundamentally on trustworthy data. 

Taken together, the findings reveal a clear trajectory: definitions and conceptual 

frameworks laid in the late 1990s provided the basis for technical developments during 

the Big Data and IoT era, which in turn set the stage for today’s advanced AI-driven 

solutions. The dimensions of data quality have expanded from intrinsic attributes to 

multi-layered constructs that include governance, fairness, and interpretability. AI 

techniques have moved from simple preprocessing to sophisticated, integrated systems 

capable of enforcing data quality standards in real time. Nonetheless, the persistence of 

unresolved issues, such as imbalanced datasets, annotation costs, interoperability, and 

lack of benchmarks, demonstrates that the field remains incomplete (RQb). Addressing 

these challenges will be crucial for ensuring that AI in manufacturing can be both 

technically effective and aligned with the principles of trustworthy AI. 
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5.1 - Future developments 

Across all three periods analysed, a persistent gap was the lack of a common standard 

for data quality in AI-driven manufacturing, together with the absence of a unified 

terminology and consistent set of dimensions. This deficiency limited comparability 

across studies and hindered the development of universally accepted frameworks. 

Earlier standards partially addressed this issue: ISO 9000 introduced the general 

concept of quality as the degree to which requirements are satisfied, and ISO 8000 

extended these principles to data quality through domains such as master, transaction, 

and product data. Although the ISO 8000 series represented an initial attempt to 

structure data quality, it was primarily designed for traditional industrial data 

management and lacked provisions for the complexity of AI- and ML-driven 

environments, including Big Data and IoT. 

However, an important development in the institutionalization of data quality for artificial 

intelligence and machine learning is represented by the recent publication, in June 2025, 

of the ISO/IEC 5259 series. This family of standards provides a harmonized set of 

concepts, characteristics, measures, processes, and governance principles. It offers a 

comprehensive framework for defining, measuring, managing, and governing data 

quality in the context of analytics and machine learning. The series is structured into five 

complementary parts, each addressing a specific level of abstraction, from terminology 

and metrics to processes and governance. 

ISO/IEC 5259-1: Overview, terminology, and examples introduces the fundamental 

concepts and serves as the entry point to the series. It defines the data life cycle as the 

set of phases covering the entire existence of data, from creation to decommissioning. It 

distinguishes between roles such as data originator, i.e., the party that creates data and 

may hold rights over them; data holder, namely the party with legal control over data use 

and data user, the party authorized to process data under such control. Central to this 

part is the definition of data quality as the degree to which data satisfy stated and implied 

needs when used under specified conditions. Related concepts include data quality 

characteristics, defined as a category of attributes of data that bear on its quality, data 

quality model, namely a defined set of characteristics and relationships that provide a 
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framework for specifying requirements and evaluating data and data quality measure, 

understood as a variable to which a value is assigned as the result of measurement. This 

part also provides examples and scenarios showing how deficiencies in quality 

dimensions can impact the performance of machine learning and analytics. 

ISO/IEC 5259-2: Data quality measures specify the data quality model to be applied in 

the context of analytics and ML. It identifies a range of quality characteristics grouped 

into three categories. Inherent characteristics include accuracy, completeness, 

consistency, credibility, and currentness. System-dependent characteristics 

encompass accessibility, compliance, efficiency, precision, traceability and 

understandability, as well as availability, portability and recoverability. Finally, additional 

characteristics include auditability, balance, diversity, effectiveness, identifiability, 

relevance, representativeness, similarity, and timeliness. For each characteristic, the 

standard provides definitions and guidelines for establishing corresponding data quality 

measures, understood as measurable variables. This part also specifies a framework for 

reporting on data quality, ensuring transparency and comparability across stakeholders. 

ISO/IEC 5259-3: Data quality management requirements and guidelines establishes 

requirements and recommendations for the implementation of a data quality 

management system (DQMS). It introduces key definitions such as data quality claim, 

namely a statement that data meets a particular quality requirement, and data quality 

plan, a specification of practices, processes, and resources required to achieve stated 

quality objectives. This part prescribes management principles including the 

establishment of a data quality culture, resource and competence management, 

auditing and reviewing, and project-specific planning. It further details the management 

of the data quality life cycle, which spans from motivation and specification, through 

planning, acquisition, preprocessing, augmentation, and provisioning, to 

decommissioning. Cross-cutting processes include verification and validation, 

configuration management, change management, and risk management. 

ISO/IEC 5259-4: Data quality process framework provides an operational framework of 

processes to ensure and improve data quality for ML. It defines concepts central to data 

preparation and annotation, including outsourcing (the use of external organizations for 

data-related tasks), stand-off annotation (annotations kept separate from primary data), 
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bounding box (a rectangular region enclosing an object of interest), segmentation (the 

separation of objects of interest from context), and key-point (a salient point on an 

object). The framework covers processes for planning, acquisition, preparation 

(including annotation, labelling, encoding, and de-identification), provisioning, and 

decommissioning. It provides guidance across different learning paradigms (supervised, 

unsupervised, semi-supervised, and reinforcement learning) and emphasizes the role of 

annotation and labelling quality in supervised ML. It also specifies the responsibilities of 

actors in the data ecosystem, including the data planner, originator, collector, engineer, 

holder and user. 

ISO/IEC 5259-5: Data quality governance framework addresses the governance level, 

establishing principles and responsibilities for ensuring data quality in organizational 

and strategic contexts. It emphasizes that governance should ensure the establishment 

of strategies, policies, and oversight mechanisms to direct and control data quality 

management. The standard identifies the responsibilities of the governing body, which 

include recognizing the strategic importance of data quality, establishing an enabling 

environment, formulating strategies and policies, and ensuring oversight. In parallel, the 

management is responsible for implementing these strategies and policies, 

strengthening internal controls, and integrating risk management mechanisms. This part 

highlights the importance of accountability, business planning linked to data quality, and 

the alignment of technical quality practices with organizational objectives. 

Taken together, the ISO/IEC 5259 provides a structured and comprehensive reference 

framework that connects conceptual definitions, measurable characteristics, 

management processes, operational practices, and governance responsibilities. For the 

manufacturing sector, this set of standards represents an important step toward 

harmonizing approaches to data quality in AI and ML, ensuring that technical, 

organizational, and strategic dimensions are jointly addressed in the pursuit of 

trustworthy artificial intelligence. 
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