POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Gestionale: indirizzo Innovazione

DINAMICHE D'INNOVAZIONE NELLE TECNOLOGIE GREEN HYDROGEN: PATENT LANDSCAPE ED ANALISI DELL'ECOSISTEMA START-UP

Candidato: Mauro Buompane

Relatore: Prof. Giuseppe Scellato

Anno accademico: 2024-2025

Sommario

/	ABSTRACT	4
C	CAPITOLO 1: Introduzione	5
	1.1 Contestualizzazione	5
	1.1.1 L'Idrogeno: natura, cenni storici e potenziale energetico	5
	1.1.2 I colori dell'Idrogeno	8
	1.3 Idrogeno verde	13
	1.3.1 Dall'acqua all'energia: L'elettrolisi	13
	1.3.2 Oltre l'elettrolisi: le frontiere dell'idrogeno sostenibile	24
	1.4 Supply Chain dell'Idrogeno	25
	1.4.1 Stoccaggio & Trasporto	25
	1.4.3 End-use dell'idrogeno	32
	1.5 Economia dell'Idrogeno: Struttura dei costi e Competitività	35
C	CAPITOLO 2: Analisi di Mercato	43
	2.2 Mercato globale dell'idrogeno verde	43
	2.2 Dall'idea alla realtà: i progetti più ambiziosi nel mondo	44
	2.3 Approfondimento: casi studio reali	48
	2.4 Obiettivi e Normative	52
C	CAPITOLO 3: Patent Landscape e Innovation Trends	58
	3.1 Importanza dell'innovazione e dei brevetti	58
	3.2 Patent Landscape: metodologia	62
	3.2.1 Descrizione del perimetro di ricerca	62
	3.2.2 Identificazione del dataset	63
	3.2.3 Download, pulizia e raffinamento del dataset	68
	3.3 Statistiche descrittive del Dataset	69
	3.3.1 Confronto tra tecnologie di produzione (cross-sector)	70
	3.3.2 Focus sulle tecnologie green hydrogen	73
	3.3.3 Analisi comparativa e discussione strategica	92
C	CAPITOLO 4: Casi studio start-up	99
	4.1 Ecosistema start-up neali USA e in Europa	99

4.2 Plug-power: la prima Scale-up nel settore	112
4.2.1 Le origini di Plug Power: Fondazione, primi passi e investimenti	112
4.2.2 Modello di business e soluzione tecnologica	113
4.2.3 Plug power oggi	117
4.3 Caso studio: Supercritical	118
4.3.1 Descrizione generale e Mission	118
4.3.2 Soluzione tecnologica e mercato target	119
4.3.3 Finanziamenti e risultati raggiunti	124
4.4 Caso studio: H2site	127
4.4.1 Descrizione generale e Mission	127
4.4.2 Soluzione tecnologica e mercato target	129
4.4.3 Finanziamenti e risultati raggiunti	132
CONCLUSIONI	139
Blibliografia	142
Sitografia	144

ABSTRACT

Oggi più che mai si avverte l'esigenza globale di accelerare il processo di transizione energetica da un sistema basato prevalentemente su fonti fossili ad uno con origini rinnovabili a basse emissioni di carbonio, in quest'ottica, la presente trattazione affronta il tema dell'idrogeno, con particolare attenzione all'idrogeno verde, considerato un vettore strategico per il futuro energetico sostenibile.

Il lavoro è stato articolato in quattro capitoli principali, al fine di fornire una visione complessiva e integrata dell'argomento. Nel primo capitolo è stata proposta una contestualizzazione generale dell'idrogeno; in primo luogo, descrivendone le caratteristiche fondamentali, il ruolo come vettore energetico e il suo potenziale chimico nello scenario della transizione. In secondo luogo, analizzando i diversi colori dell'idrogeno rappresentandone in particolare supply chain, tecnologie e relativi processi di produzione. Il secondo capitolo ha introdotto definitivamente la dimensione economica, con un'analisi del mercato globale dell'idrogeno verde e una valutazione complessiva del portafoglio progettuale globale. Per rendere più concreta la trattazione, sono stati inoltre presentati due casi studio reali, utili a evidenziare opportunità e criticità connesse allo sviluppo del settore. Nel capitolo 3 è stata condotta un'analisi brevettuale, che ha previsto l'identificazione, la pulizia e la successiva elaborazione di un dataset relativo ai brevetti sull'idrogeno a livello globale. L'obiettivo è stato quello di delineare lo stato di sviluppo tecnologico, valutando la crescita e il grado di concentrazione nel mercato.

A conclusione della trattazione, nel capitolo 4, è stata condotta un'analisi dell'ecosistema start-up legate all'idrogeno. Queste realtà rappresentano l'anello di congiunzione tra il mondo accademico e quello industriale, favorendo così processi di innovazione tecnologica. Dopo aver confrontato l'ecosistema americano ed europeo con quello mondiale, delineando le caratteristiche generali del settore, sono stati presentati tre casi studio reali: il primo relativo a una scale-up che attualmente genera un fatturato di decine di milioni di dollari, mentre gli altri due riguardano start-up ancora in fase di sviluppo.

CAPITOLO 1: Introduzione

1.1 Contestualizzazione

1.1.1 L'Idrogeno: natura, cenni storici e potenziale energetico.

Prima di affrontare qualsiasi tematica specifica, è fondamentale dedicare il giusto spazio alla sua contestualizzazione, in modo da offrire al lettore tutti gli elementi utili a comprendere in maniera chiara e coerente ciò che verrà approfondito nel corso dell'elaborato. In quest'ottica, questa sezione introduttiva è pensata per fornire un inquadramento completo e aggiornato della cosiddetta "situazione idrogeno", con l'obiettivo di costruire una base solida su cui sviluppare le successive analisi. Contestualmente, si intende ridurre al minimo il rischio di incoerenze tra quanto sarà discusso e ciò che attualmente rappresenta lo stato dell'arte, sia dal punto di vista scientifico che tecnico. Per queste ragioni, ritengo utile iniziare presentando alcune nozioni fondamentali relative all'idrogeno, così da favorire una maggiore familiarità con l'elemento oggetto di studio e permettere un approccio più consapevole agli aspetti tecnico-economici che verranno affrontati nelle sezioni seguenti. L'idrogeno è l'elemento più presente nell'universo, rappresenta circa il 75% della massa visibile, ed è il terzo elemento più abbondante sulla superficie terrestre; la sua semplicità strutturale, unita alla sua grande capacità di legarsi ad altri elementi, lo rendono un componente chiave nella molecola d'acqua e un tassello essenziale nei processi fondamentali della fisica, in particolare nella fusione nucleare che alimenta l'energia delle stelle e di conseguenza del nostro universo.

Caratteristiche Tecniche	
Peso atomico	1,00784 u
Raggio atomico (calc.)	53 pm
Configurazione elettronica	1s ¹
Stato della materia	gassoso
Punto di fusione	-259,125 °C (14,025 K)
Punto di ebollizione	-252,882 °C (20,268 K)
Elettronegatività	2,2 (Scala di Pauling)

Figure 1: Caratteristiche tecniche dell'idrogeno. Fonte: Nicola Armaroli, Elisa Bandini, Andrea Barbieri. 2023. Il vettore idrogeno: vincoli e opportunità.

Dal punto di vista atomico, è l'elemento fisicamente meno pesante e meno grande, questo facilita la sua infiltrazione nei materiali impiegati per contenerlo, ha numero atomico 1 (1 protone) e la sua struttura elementare gli conferisce proprietà uniche. In condizioni normali

di temperatura e pressione due atomi di idrogeno tendono a combinarsi formando una molecola biatomica H₂ (diidrogeno), estremamente leggera e altamente reattiva, che risulta un gas incolore, inodore, insapore e scarsamente solubile in acqua (IUPAC 2021). Se su altri pianeti come Giove l'idrogeno in forma molecolare (H2) è normalmente presente in natura, sul nostro pianeta esso è praticamente sempre in legame con altri elementi, tranne in pochissimi casi in cui è possibile trovarlo in natura (idrogeno bianco), questo non ci permette di classificarlo come una fonte primaria di energia, ma come un vettore energetico. Ciò significa che non viene utilizzato per ricavare direttamente energia dalla natura, come accade per il sole o il vento attraverso rispettivamente pannelli fotovoltaici e pale eoliche, ma serve per immagazzinare, trasportare e successivamente rilasciare energia prodotta da altre fonti. Da questo nasce la necessità, come vedremo successivamente, di chiamare l'idrogeno in funzione della fonte energetica che lo produce. Il termine idrogeno, deriva dal greco e significa letteralmente "generatore d'acqua", fu coniato nel 1783 dal chimico Antoine Lavoisier. Sebbene già in precedenza scienziati fossero entrati in contatto con questa molecola, fu Lavoisier il primo ad attribuirle una denominazione sistematica, segnando così un momento cruciale nella storia della chimica moderna. L'idea di utilizzare questo elemento come fonte inesauribile di energia risale però al 1847, in quell'anno Jules Verne pubblicò un romanzo dal titolo The Mysterious Island; in questo testo uno dei protagonisti afferma, in vena profetica, che un giorno l'acqua sarebbe stata utilizzata come combustibile, e che l'idrogeno e l'ossigeno che la compongono verranno quindi utilizzati per fornire una fonte illimitata di calore e luce. In realtà, agli inizi del Novecento l'idrogeno, in combinazione con il monossido di carbonio, veniva già utilizzato per la produzione del cosiddetto "gas di città", impiegato principalmente per il riscaldamento domestico e l'illuminazione pubblica. Tuttavia, con la diffusione dell'elettricità e l'introduzione su larga scala del petrolio e del gas naturale, l'utilizzo di questo gas venne progressivamente abbandonato. Nel corso del tempo, il settore che ha maggiormente catalizzato l'interesse e gli sforzi della ricerca sull'idrogeno è stato principalmente il settore dei trasporti e conseguentemente dello stoccaggio e del trasporto. Infatti, nel 1950 viene perfezionata una tecnica di stoccaggio dell'idrogeno liquido a bassa temperatura che permetterà nel 1965 alla NASA di equipaggiare la capsula della seconda missione Gemini con una cella a combustibile a idrogeno e ossigeno, dalla potenza di 1 kW, in grado di produrre energia ed acqua da bere per gli astronauti. Nel 2007 Honda lancia la vettura Honda FCX che rappresenta la prima auto con celle a combustibile destinata alla produzione industriale ma solo successivamente nel 2019 la società britannica AFC Energy presenta la prima cella a combustibile a idrogeno

destinata alla ricarica delle auto elettriche. Vedremo che l'idrogeno oggi si configura come un vettore energetico di crescente interesse scientifico e tecnologico, in grado di offrire un contributo significativo alla transizione verso un sistema energetico sostenibile e a basse emissioni di carbonio. Un aspetto centrale nello studio dell'idrogeno come vettore energetico riguarda l'analisi della sua densità energetica gravimetrica (MJ/Kg) e volumetrica (MJ/m³). Dal punto di vista gravimetrico, l'idrogeno presenta uno dei valori più elevati tra tutti i combustibili: con un potere calorifico pari a 120,2 MJ/kg, Spesso viene evidenziato come questo valore risulta circa tre volte superiore al corrispondente della benzina, in realtà il paragone è privo di significato per principalmente due ragioni:

- 1. In condizioni standard di temperatura e pressione, l'idrogeno si presenta allo stato gassoso e, per questo motivo, risulta più rilevante considerare la sua densità di energia volumetrica.
- L'idrogeno, come detto precedentemente, non è un candidato diretto alla sostituzione dei combustibili liquidi tradizionali, ma è predisposto a ricoprire il ruolo di vettore energetico e quindi il confronto con questi ultimi risulta poco significativo in un'ottica applicativa.

La situazione infatti cambia radicalmente se si considera la densità energetica per unità di volume, pari a soli 10,81 MJ/m³, rendendolo il combustibile con il più alto contenuto energetico per massa, ma anche con la più bassa resa energetica per volume.

Combustibile	Densità, Kg/m³	Potere calorifero netto, MJ/Kg (MJ/m³)
Idrogeno	0,09	120,2 (10,81)
Benzina	744	43,4 (32,32)
GPL	507	46,6 (23,65)
Gas naturale (CH 4)	0,747	48,6 (20,80)
Idrogeno liquido	71	120,1 (8,49)

Figure 2: Densità energetiche dell'idrogeno. Fonte: International Energy Agency. 2023. Towards Hydrogen Definitions Based on Their Emissions Intensity.

In generale, infatti, i combustibili gassosi tendono ad avere un potere calorifico specifico superiore rispetto a quelli solidi; tuttavia, nel caso dell'idrogeno, la bassa densità comporta una resa energetica volumetrica limitata. Questa caratteristica, come si vedrà nei capitoli successivi, rappresenta una delle principali criticità nello stoccaggio e nel trasporto dell'idrogeno, in particolare per l'impiego a bordo dei veicoli.

1.1.2 I colori dell'Idrogeno

La produzione dell'idrogeno rappresenta uno degli aspetti centrali per comprendere le reali potenzialità di questo elemento e la sua effettiva sostenibilità in un sistema energetico in cambiamento. Come abbiamo accennato precedentemente, l'idrogeno viene trovato in natura quasi sempre legato con altri elementi, questo comporta la necessità di utilizzare energia per scinderlo dagli stessi, ci sono diversi modi in cui è possibile effettuare ciò, ciascun metodo produttivo implica differenti livelli di emissioni, costi, tecnologie e infrastrutture. Proprio in funzione della fonte energetica utilizzata e delle emissioni associate, l'idrogeno viene oggi convenzionalmente classificato per "colori", una nomenclatura simbolica che consente di distinguerne le diverse tipologie. Nel 2023, la produzione globale di idrogeno ha raggiunto circa 97 milioni di tonnellate. A livello globale, la quasi totalità dell'idrogeno attualmente prodotto proviene da fonti fossili: circa il 66% deriva dal metano (CH₄), dando origine al cosiddetto idrogeno grigio o blu in base a se durante la produzione vengono usate tecnologie di cattura e stoccaggio del carbonio (CCUS); un ulteriore 20% viene ottenuto dalla gassificazione del carbone, noto come idrogeno marrone e un'altra consistente parte del totale circa il 13% è chiamato idrogeno by-product in quanto è un sottoprodotto nei processi di raffinazione del petrolio e nell'industria petrolchimica, ad esempio nel reforming della nafta. La produzione d'idrogeno a basse emissioni, ossia quello ottenuto mediante tecnologie di cattura, utilizzo e stoccaggio del carbonio (CCUS), ha registrato una crescita limitata fra il 2022 e il 2023, mantenendosi al di sotto di 1 milione di tonnellate annue e contribuendo per meno dell'1% al totale della produzione mondiale di idrogeno. Soltanto una quota marginale, pari a circa 100.000 tonnellate quindi lo 0,1% del totale, è generata tramite elettrolisi dell'acqua alimentata da fonti rinnovabili, configurandosi come idrogeno verde, che rappresenta al giorno d'oggi l'unica variante a basso impatto ambientale. Esistono infine altre tipologie cromatiche meno diffuse, come l'idrogeno rosa, prodotto con energia nucleare, il giallo, alimentato da elettricità proveniente dalla rete (quindi un mix fra rinnovabili e non), il turchese, ottenuto per pirolisi del metano, e il bianco, ovvero idrogeno molecolare presente naturalmente nel sottosuolo o rilasciato da fenomeni geologici. Nei paragrafi successivi saranno esaminate nel dettaglio le principali tipologie di idrogeno introdotte in precedenza, con particolare attenzione all'idrogeno verde, al fine di approfondirne i processi di produzione e i relativi costi. La tabella seguente deriva da una ricerca intitolata "Global Hydrogen Review" effettuata dallo IEA (International Energy Agency) e riporta la produzione globale di idrogeno registrata nel 2023, suddivisa per tecnologia di produzione e per area geografica, includendo inoltre una stima delle quantità attese per il 2024 sulla base delle tendenze osservate fino a metà anno.

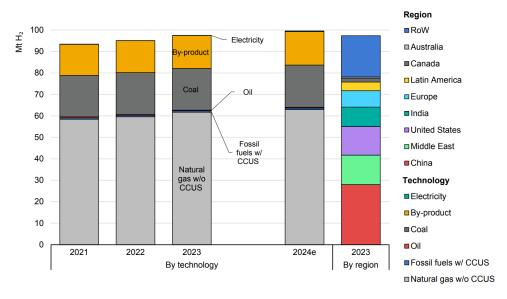


Figure 3: Produzione di idrogeno per tecnologia e regione, 2021–2024. (escl. sottoprodotti cloro-soda; CCUS = cattura e stoccaggio del carbonio; RoW = resto del mondo; 2024e = stima basata su dati fino a giugno 2024). Tabella presa dal "Global Hydrogen Review 2024".

Idrogeno Grigio

Come precedentemente detto, l'idrogeno grigio è ottenuto a partire dal gas naturale, in particolare dal metano, attraverso processi che non prevedono la cattura delle emissioni di anidride carbonica. La tecnologia più comune impiegata nella sua produzione è lo *Steam Methane Reforming (SMR)*. Questa tecnologia, sebbene consolidata, comporta un importante impatto ambientale, infatti, per ogni chilogrammo di idrogeno ottenuto, vengono emessi circa 7 kg di anidride carbonica, rendendo il processo responsabile di circa il 3% delle emissioni totali di CO₂ generate dall'industria a livello globale. Il principio alla base dello SMR è la trasformazione dell'energia chimica contenuta nel metano in energia chimica disponibile sotto forma di idrogeno, attraverso una serie di reazioni.

L'impianto di reforming si articola tipicamente in quattro sezioni operative principali:

- 1. *Trattamento iniziale (desolforazione):* bisogna rimuove lo zolfo dal gas naturale per due motivi: evitare la formazione di ossidi di zolfo nocivi e ridurre il deterioramento dei catalizzatori e delle eventuali membrane di separazione, soprattutto in presenza di leghe di palladio.
- Reattore di reforming: in questa fase il metano reagisce con vapore acqueo secondo un processo endotermico ad alta temperatura, generando monossido di carbonio e idrogeno.

- 3. Reazione water-gas shift: il monossido di carbonio prodotto nella fase precedente reagisce con ulteriore vapore, formando anidride carbonica e idrogeno addizionale, in un processo esotermico.
- 4. Separazione e purificazione: il gas in uscita viene raffreddato e deumidificato, dopodiché l'idrogeno viene isolato dagli altri componenti (CO, CO₂, H₂O e tracce di CH₄) attraverso appositi sistemi di separazione.

Le reazioni chimiche fondamentali coinvolte sono le seguenti:

- Reforming endotermico del metano: $CH_4 + H_2O \rightarrow CO + 3H_2$ $\Delta H = +251$ MJ/kmol
- Reazione water gas-shift esotermica: $CO + H_2O \rightarrow CO_2 + H_2$ $\Delta H = -41,2 \text{ MJ/kmol}$

L'insieme di queste due reazioni determina un bilancio termico complessivo positivo, rendendo l'intero processo globalmente endotermico. Le condizioni operative nel reformer prevedono temperature comprese tra 700°C e 1.000°C, pressioni tra 15 e 50 bar, e un rapporto vapore/carbonio generalmente compreso tra 2 e 5. Il gas sintetico prodotto (syngas), ricco in idrogeno, viene raffreddato prima di accedere alla successiva fase di conversione, e successivamente sottoposto a processi di condensazione per rimuovere l'umidità, seguiti dalla purificazione dell'idrogeno, che consente di ottenere un gas ad alta purezza, pronto per l'utilizzo industriale o energetico.

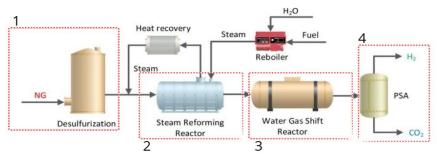


Figure 4: Diagramma di flusso del processo di Steam methane reforming.

Idrogeno Blu

La tecnologia di produzione dell'idrogeno blu si basa sul medesimo principio di quella dell'idrogeno grigio, ovvero lo Steam Methane Reforming (SMR). La differenza fondamentale risiede nella gestione delle emissioni di anidride carbonica: mentre nell'idrogeno grigio la CO2 viene rilasciata direttamente in atmosfera, nel caso dell'idrogeno blu essa viene catturata, compressa e stoccata nel sottosuolo mediante tecnologie di Carbon Capture, Utilization and Storage (CCUS o CCS). L'obiettivo della CCS è contenere l'impatto ambientale della produzione, pur continuando a utilizzare fonti fossili come il gas naturale. Nonostante ciò, la sostenibilità di questo processo è oggetto di ampi dibattiti. Per

prima cosa, le emissioni non vengono completamente eliminate: l'efficienza di cattura della CO₂ varia tra il 53% e il 90%, con valori medi intorno al 78–85%. Inoltre, non sempre viene catturata la CO₂ generata dalla combustione di gas naturale utilizzata per alimentare il processo stesso, questo porta a emissioni residue non trascurabili, che, secondo i dati, ridurrebbero solo del 9-12% le emissioni totali nette rispetto all'idrogeno grigio, se si considera l'intero ciclo di vita (Howarth & Jacobson, 2021). È importante anche considerare l'elevato fabbisogno energetico richiesto dal sistema CCS, stimato intorno al 25% dell'energia complessiva del processo SMR. Se tale energia proviene anch'essa da fonti fossili, l'efficacia ambientale della cattura si riduce ulteriormente. Quindi il ricorso alla CCS implica costi e infrastrutture non da poco con incertezze legate all'effettiva sostenibilità. L'idrogeno blu può rappresentare una soluzione transitoria per la decarbonizzazione di settori industriali ad alta intensità energetica, ma non costituisce una soluzione pienamente sostenibile nel lungo periodo (Howarth & Jacobson, 2021), un reale beneficio climatico potrà derivare solo da un progressivo abbandono delle fonti fossili a favore di vettori energetici a zero emissioni, come l'idrogeno verde.

Idrogeno Bianco

Precedentemente nella trattazione abbiamo considerato l'idrogeno come un elemento che, nella stragrande maggioranza dei casi, deve essere separato da altri elementi per poter essere utilizzato come vettore energetico. Tuttavia, ciò non è sempre vero: esistono infatti giacimenti sotterranei di idrogeno molecolare, generato attraverso processi geologici chiamati di serpentinizzazione in cui le peridotiti (rocce del mantello terrestre ricche di ferro) vengono trasformate in serpentiniti in seguito a reazioni chimiche con l'acqua circolante. Durante tali reazioni, il ferro si ossida e viene rilasciato idrogeno libero. L'idrogeno molecolare formato tende a migrare verso la superficie attraverso faglie e margini tra le placche tettoniche, ma può anche rimanere intrappolato sotto strati di rocce impermeabili, dando origine a giacimenti potenzialmente sfruttabili (geopop.it). Si potrebbe essere portati a pensare che non vi siano differenze sostanziali tra i giacimenti di gas naturale e quelli di idrogeno, dal momento che, una volta esauriti, entrambi sembrerebbero non più sfruttabili. Tuttavia, per quanto riguarda l'idrogeno, non è così: la sperimentazione ha dimostrato che il processo di serpentinizzazione si rinnova ciclicamente, generando ogni anno nuove quantità di idrogeno, con una produzione stimata pari a diversi tetagrammi (1 Tg = 1 milione di tonnellate metriche) per esempio dei campioni perforati della crosta oceanica indicano un flusso di 0,89 ± 0,6 Tg/anno (Victor Joseph Aimikhe and Oghenegare Emmanuel Eyankware (2023)). Tuttavia, lo sfruttamento su larga scala dei giacimenti di idrogeno bianco è ancora limitato a causa di una serie di fattori tecnici e scientifici. Infatti, la conoscenza scientifica riguardo alle rocce sorgenti, alle dimensioni dei giacimenti, alle tipologie di accumulo e ai metodi di estrazione risulta ancora limitata, questo comporta una significativa incertezza sia dal punto di vista tecnico che economico, rendendo lo sviluppo di questa tipologia di idrogeno per il momento, poco avanzato.

Idrogeno Marrone

L'idrogeno marrone rappresenta la forma di produzione di idrogeno più impattante dal punto di vista ambientale, in quanto ottenuto principalmente da carbone. La tecnologia più diffusa per la sua produzione è la gassificazione del carbone, un processo che può essere suddiviso in più fasi:

- 1. Essiccazione e pirolisi: Inizialmente, il carbone viene sottoposto a trattamenti quali la polverizzazione e desolforazione per rimuovere le impurità. Segue una fase di riscaldamento graduale, in cui il materiale viene essiccato a circa 200°C e successivamente pirolizzato tra i 300°C e i 700°C. In assenza di ossigeno (pirolisi), il carbone si decompone, liberando gas volatili come metano (CH₄), idrogeno (H₂), monossido di carbonio (CO), anidride carbonica (CO₂) e catrame, lasciando come residuo solido un materiale carbonioso solido detto char.
- 2. *Combustione:* Una parte del char reagisce con l'Ossigeno generando una reazione esotermica di combustione controllata. Questa combustione è sia completa che parziale, genera anidride carbonica e monossido di carbonio, ed è progettata per generare calore sufficiente ad alimentare le reazioni successive:
 - Combustione completa: $C + O_2 \rightarrow CO_2$
 - Combustione parziale: $2C + O_2 \rightarrow CO$
- 3. Reazioni di gassificazione: Il carbone residuo reagisce con vapore acqueo e CO₂ ad alte temperature (1.200–1.500°C), generando una miscela di gas nota come gas di sintesi (syngas). Le reazioni fondamentali sono:
 - Reazione acqua-gas (endotermica): $C + H_2O \rightleftharpoons CO + H_2$
 - Reazione di Boudouard (endotermica): $C + CO_2 \rightleftharpoons 2CO$

Il syngas risultante è composto principalmente da CO e H₂, con tracce di CO₂, H₂O e altri composti.

- 4. Depurazione del gas di sintesi: Il gas prodotto non può essere utilizzato direttamente senza un processo di purificazione, che comprende la rimozione del particolato solido (polveri e ceneri), la separazione dello zolfo tramite processi di scrubbing e la cattura dell'anidride carbonica.
- 5. Estrazione dell'idrogeno: l'ultima fase consiste nella separazione selettiva dell'idrogeno dalla miscela gassosa, che viene realizzata attraverso un processo di assorbimento a oscillazione di pressione che sfrutta materiali selettivi per trattenere le impurità e attraverso membrane selettive che permettono il passaggio solo delle molecole di idrogeno.

1.3 Idrogeno verde

Per idrogeno verde si intende la produzione di idrogeno molecolare attraverso processi a zero emissioni di carbonio (*IEA – International Energy Agency*). Il principale processo attualmente utilizzato è l'elettrolisi dell'acqua, un meccanismo chimico-fisico che consiste nella scissione della molecola d'acqua (H₂O) in idrogeno (H₂) e ossigeno (O₂) mediante l'impiego di corrente elettrica proveniente da fonti rinnovabili come energia solare, eolica, idroelettrica o geotermica.

Oltre all'elettrolisi, sono attualmente in fase di sviluppo altri processi innovativi, ancora caratterizzati da un basso livello di maturità tecnologica (TRL), che permettono di produrre idrogeno in modo sostenibile un processo che consente la scissione delle molecole d'acqua mediante l'impiego di catalizzatori attivati direttamente dalla luce solare.

1.3.1 Dall'acqua all'energia: L'elettrolisi

Fin dal XVIII secolo, le tecnologie di elettrolisi dell'acqua sono state costantemente sviluppate e impiegate in ambito industriale. Gradualmente, sono state introdotte diverse tecnologie, classificate in base al tipo di elettrolita utilizzato, alle condizioni operative e agli ioni coinvolti (OH $^-$, H $^+$, O $^{2-}$). Attualmente, le tecnologie con un grado di maturità tecnologica pari o superiore a 6 (TRL \geq 6) includono:

- 1. Elettrolisi alcalina (ALK/AWE: Alkaline Water Electrolysis)
- 2. Elettrolisi con membrana a scambio anionico (AEM: Anion Exchange Membrane)
- 3. Elettrolisi con membrana a scambio protonico (PEM: Proton Exchange Membrane)
- 4. Elettrolisi ad ossidi solidi (SOEC: Solid Oxide Electrolysis Cell)

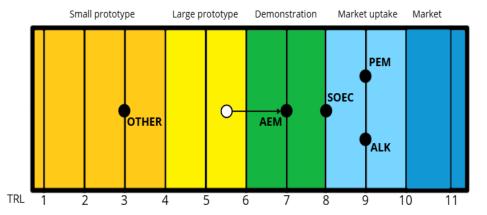


Figure 5: TRL delle principali tecnologie produttive di idrogeno verde. Fonte: report IEA, Global hydrogen report 2024.

Nonostante le differenze strutturali e operative, tutte le tecnologie di elettrolisi si basano sullo stesso principio di funzionamento di base (Shiva Kumar e Himabindu, 2019a) ovvero, come detto precedentemente, la scissione della molecola d'acqua in idrogeno e ossigeno attraverso la seguente reazione chimica:

$$H_2O \rightarrow H_2 + \frac{1}{2}O_2$$

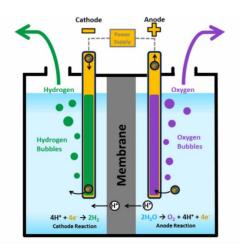


Figure 6: Schematizzazione reazione chimica generale dell'elettrolisi dell'acqua. Fonte: Hydrogen-news.it

L'idrogeno verde attualmente è prodotto quasi esclusivamente tramite l'elettrolisi, i dati raccolti dall'International energy agency (IEA) riportano che al termine del 2023, la capacità globale effettivamente installata di elettrolizzatori ha raggiunto 1,4 GW, quasi il doppio rispetto al 2022. Nonostante questo progresso, la crescita sta avvenendo più lentamente rispetto al previsto. Infatti, la capacità installata nel 2023, rappresenta appena un sesto di quanto previsto dal *Global Hydrogen Review 2021*, evidenziando un divario significativo tra gli annunci iniziali e la realizzazione concreta dei progetti. Questo evidenzia la necessità di un'accelerazione concreta sia negli investimenti sia nella realizzazione operativa degli impianti (IEA, Global hydrogen review 2024). Ma come viene dimensionato un

elettrolizzatore rispetto alla capacità della fonte rinnovabile? Il corretto dimensionamento di un elettrolizzatore rispetto all'impianto di generazione rinnovabile rappresenta un elemento fondamentale nella progettazione di sistemi per la produzione di idrogeno verde. Un bilanciamento adeguato tra queste due componenti consente infatti di massimizzare il tasso di utilizzo dell'elettrolizzatore, minimizzando il costo specifico di produzione dell'idrogeno. Se l'elettrolizzatore ha una dimensione maggiore rispetto alla disponibilità elettrica della fonte rinnovabile, si rischia di avere lunghi periodi di inattività o funzionamento a carico parziale, con conseguente aumento del costo per unità di idrogeno prodotto. Al contrario, se l'impianto rinnovabile è più grande rispetto all'elettrolizzatore, sarà possibile mantenerne il funzionamento vicino alla piena capacità per un numero maggiore di ore annue, migliorando l'efficienza economica complessiva. In questo contesto, un contributo fondamentale è offerto dal modello ETHOS (Energy Transformation PatHway Optimization Suite), sviluppato dall'International Renewable Energy Agency (IRENA). Si tratta di uno strumento di simulazione che consente di determinare il rapporto ottimale tra la potenza della fonte rinnovabile e quella dell'elettrolizzatore al fine di minimizzare il costo livellato dell'idrogeno LCOH¹ (Levelized cost of hydrogen). Questo indicatore non è fisso, ma varia in funzione della tecnologia utilizzata (fotovoltaico o eolico), delle caratteristiche del sito (fattore di capacità, disponibilità di radiazione solare o vento) e delle condizioni economiche del progetto. L'indicatore ETHOS, in particolare, permette di identificare il fattore di sovradimensionamento ottimale della fonte rinnovabile, espresso come rapporto:

$$Rapporto\ ottimale = \frac{Capacit\`{a}\ dell'impianto\ rinnovabile\ (MW)}{Capacit\`{a}\ dell'elettrolizzatore(MW)}$$

Sulla base delle simulazioni effettuate con questo modello, è emerso che per l'energia eolica onshore il rapporto ottimale varia da 1 a 1,4 in Europa, raggiunge valori leggermente superiori negli Stati Uniti e in Canada, e può arrivare fino a 2,8 in Brasile. Per quanto riguarda il fotovoltaico, il rapporto oscilla tra 1,3 e 1,7 in aree con elevata radiazione solare come il Cile, l'Africa e il Medio Oriente, mentre in Europa può raggiungere valori di 2, fino a 2,4 in alcune regioni della Cina (Global Hydrogen Review 2024, IEA). È importante sottolineare che l'ottimizzazione effettuata dal modello ETHOS non considera eventuali usi alternativi dell'energia rinnovabile generata. Nei progetti che prevedono l'utilizzo dell'elettricità anche per altri scopi, ad esempio per l'immissione in rete, il rapporto può

¹ Per LCOH si intende un indicatore economico che misura il costo medio di produzione dell'idrogeno lungo l'intero ciclo di vita dell'impianto.

essere più elevato. Un caso emblematico è rappresentato dal progetto Puertollano Green Hydrogen sviluppato da Iberdrola, che prevede un impianto fotovoltaico da 100 MW per alimentare un elettrolizzatore da 20 MW, con la possibilità di destinare l'energia in eccesso alla rete elettrica locale.

Questo approccio progettuale, sostenuto dall'analisi fornita dal modello ETHOS, rappresenta un elemento per la realizzazione di impianti economicamente sostenibili per la produzione di idrogeno verde, soprattutto in vista del rapido aumento di capacità installata previsto nei prossimi anni. Dopo aver valutato la capacità mondiale attuale e il modo in cui gli elettrolizzatori vengono dimensionati rispetto alle fonti che li alimentano, analizzeremo, nelle successive pagine, le caratteristiche tecniche, i vantaggi, gli svantaggi e i costi delle quattro tecnologie maggiormente utilizzate per la produzione di idrogeno molecolare verde.

Elettrolisi alcalina (ALK o AWE):

L'elettrolisi alcalina (ALK) dell'acqua, nota anche con l'acronimo AWE (Alkaline Water Electrolysis), rappresenta una delle tecnologie più consolidate per la produzione di idrogeno a livello industriale. I primi esperimenti risalgono al 1789, grazie ai lavori di Troostwijk e Diemann, ma è nel 1939 che si realizza il primo impianto industriale su larga scala, con una capacità produttiva pari a 10.000 Nm³ di idrogeno all'ora. Già all'inizio del Novecento si contavano centinaia di unità installate e operative, a conferma della maturità di questa tecnologia.

Il processo avviene in ambiente alcalino, ovvero in una soluzione fortemente basica costituita generalmente da idrossido di potassio (KOH) o idrossido di sodio (NaOH) in concentrazione elevata. La cella elettrolitica è costituita da due elettrodi, anodo e catodo, immersi nella soluzione alcalina e separati da un diaframma, che consente il passaggio selettivo degli ioni ma impedisce la miscelazione dei gas prodotti. Durante il funzionamento, le molecole d'acqua vengono ridotte al catodo, dove si formano idrogeno molecolare e ioni idrossido. Questi ultimi migrano verso l'anodo attraverso il diaframma, dove si ossidano rilasciando ossigeno molecolare e completando il circuito elettrochimico. La reazione globale, quindi, porta alla scissione dell'acqua in idrogeno e ossigeno secondo il bilancio stechiometrico: $2H_2O \rightarrow 2H_2 + O_2$. L'ambiente alcalino agevola la conduzione ionica tramite il trasporto degli ioni OH^- , ma pone anche alcune criticità operative legate alla corrosività dell'elettrolita e alla sensibilità del sistema alla presenza di CO_2 atmosferica, che può reagire con l'idrossido formando carbonati come K_2CO_3 . Tali composti tendono a precipitare e a ostruire i pori del diaframma, riducendo l'efficienza di trasporto ionico e la produttività

dell'impianto. Dal punto di vista tecnologico, i componenti principali di una cella AWE includono diaframmi in materiali come l'asbesto, il Zirfon o l'acciaio inox rivestito in nichel, elettrodi in rete metallica o schiuma di nichel, e piastre separatrici in acciaio. L'intero sistema opera in genere a temperature comprese tra i 30 e gli 80 °C e consente la produzione di gas con una purezza dell'idrogeno fino al 99,9%, pur non garantendo un completo isolamento dei flussi gassosi tra anodo e catodo (S. Shiva Kumar a, Hankwon Lim. 2022) Complessivamente la reazione risulta: $2H_2O \rightarrow H_2 + 2O_2$.

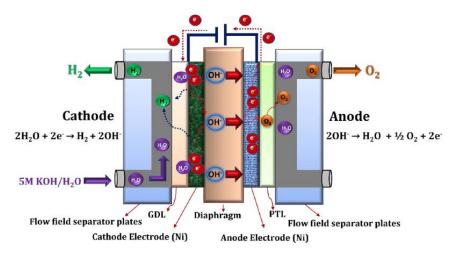


Figure 7: Illustrazione schematica del principio di funzionamento dell'elettrolisi alcalina dell'acqua. Fonte: S. Shiva Kumar, Hankwon Lim.: An overview of water electrolysis technologies for green hydrogen production 2022.

Elettrolisi con membrana a scambio anionico (AEM):

L'elettrolisi dell'acqua mediante membrane a scambio anionico (AEM) a differenza dell'elettrolisi alcalina tradizionale, utilizza membrane anioniche basate su gruppi ammonio quaternari (S. Shiva Kumar a, Hankwon Lim 2022). Queste membrane presentano numerosi vantaggi, tra cui la possibilità di impiegare catalizzatori a base di metalli di transizione, economicamente più accessibili rispetto ai metalli nobili, e l'utilizzo di soluzioni alcaline diluite o persino di acqua distillata come elettrolita. Il processo si svolge in un ambiente alcalino, in genere mediante una soluzione contenente idrossido di potassio (KOH), che favorisce il trasporto degli ioni attraverso la membrana. Durante l'elettrolisi, gli ioni idrossido (OH⁻) si spostano dal catodo all'anodo, attraversando la membrana AEM, consentendo così le reazioni di ossidazione e riduzione necessarie alla produzione di gas. Questa tecnologia consente la generazione di idrogeno ad elevata purezza e con un impatto ambientale più contenuto rispetto ad altri sistemi elettrolitici, poiché impiega materiali più comuni e facilmente reperibili, riducendo la dipendenza da metalli rari e preziosi (utilizzati nell'AWE), la cui estrazione comporta elevate emissioni e costi ambientali. Inoltre, gli elettrolizzatori AEM sono in grado di operare a densità di corrente elevate e pressori

differenziali significativi, mantenendo un contenuto minimo di metalli del gruppo del platino (PGM) all'interno dello stack, contribuendo così a una maggiore sostenibilità economica e ambientale del sistema (simplifhy.com). Nonostante le potenzialità in termini di riduzione dei costi e minore impatto ambientale, l'elettrolisi AEM è ancora in fase di sviluppo e richiede ulteriori miglioramenti, in particolare per quanto riguarda la stabilità delle membrane e l'efficienza delle celle elettrolitiche, aspetti fondamentali per il passaggio alla scala commerciale.

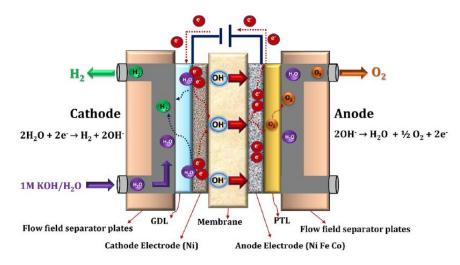


Figure 8: Illustrazione schematica del principio di funzionamento dell'elettrolisi dell'acqua con membrana a scambio anionico (AEM). Fonte: S. Shiva Kumar, Hankwon Lim.: An overview of water electrolysis technologies for green hydrogen production.

Elettrolisi con membrana a scambio protonico (PEM Water Electrolysis)

La prima membrana a scambio protonico (PEM) fu sviluppata dalla General Electric nel 1966 come alternativa alla tradizionale elettrolisi alcalina. Il principio di funzionamento si basa sempre sulla scomposizione elettrochimica dell'acqua in idrogeno e ossigeno, la reazione avviene inizialmente all'anodo, dove la molecola di acqua viene dissociata in ossigeno molecolare (O₂), protoni (H⁺) ed elettroni (e⁻). L'ossigeno viene rilasciato sulla superficie anodica, mentre i protoni attraversano la membrana conduttrice di protoni fino al catodo, dove si ricombinano con gli elettroni provenienti dal circuito esterno per formare idrogeno gassoso (H₂). La struttura della cella PEM si fonda sull'assemblaggio membrana-elettrodo (MEA), che include la membrana protonica e gli elettrodi per l'anodo e il catodo. Le membrane più comuni sono a base di Nafion, apprezzate per l'elevata conduttività protonica, la resistenza meccanica e la stabilità chimica. Altri materiali utilizzati includono Fumapem®, Flemion® e Aciplex®. I catalizzatori sono generalmente metalli nobili: l'anodo impiega IrO₂ per la reazione di evoluzione dell'ossigeno (OER), mentre il catodo utilizza Pt supportato su carbonio per la reazione di evoluzione dell'idrogeno (HER). Questi

materiali sono altamente efficienti ma anche costosi, con l'iridio che risulta più raro e più caro del platino, per esempio, un elettrolizzatore PEM da 10 MW funzionante a 1 A/cm² può richiedere circa 15 kg di iridio, con un costo stimato di oltre 2,9 milioni di dollari (prezzi 2021).

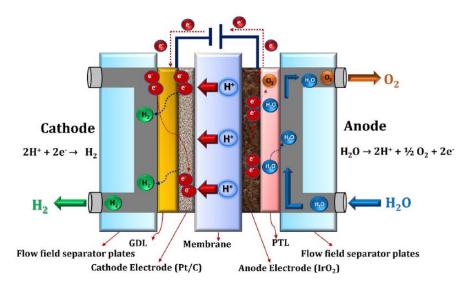


Figure 9: Illustrazione schematica del principio di funzionamento dell'elettrolisi dell'acqua con membrana a scambio protonico (PEM). Fonte: S. Shiva Kumar, Hankwon Lim.: An overview of water electrolysis technologies for green hydrogen production 2022.

Elettrolisi ad ossidi solidi (SOEC: Solid Oxide Electrolysis Cell)

Lo sviluppo della tecnologia a ossidi solidi per l'elettrolisi dell'acqua (SOEC – Solid Oxide Electrolysis Cell) ha avuto inizio negli Stati Uniti negli anni Settanta grazie al contributo della General Electric e del Brookhaven National Laboratory, per poi proseguire in Europa, in particolare in Germania. A differenza delle altre tecnologie di elettrolisi che lavorano a basse temperature, la SOEC opera in un intervallo termico compreso tra i 500 °C e gli 850 °C, utilizzando vapore acqueo come reagente principale. Questo regime ad alta temperatura consente una marcata riduzione del fabbisogno elettrico necessario per scindere la molecola d'acqua nei suoi componenti fondamentali, con un conseguente incremento dell'efficienza energetica complessiva del processo (Hauch et al., 2020; Nechache e Hody, 2021; Choe et al., 2022). Considerando che il costo dell'energia elettrica rappresenta una delle principali voci nel bilancio economico della produzione di idrogeno tramite elettrolisi, la diminuzione del consumo energetico derivante dall'impiego di SOEC può contribuire in modo sostanziale a ridurre il costo finale dell'idrogeno prodotto (Shen et al., 2020). Il principio di funzionamento della tecnologia SOEC prevede la riduzione della molecola di vapore all'elettrodo catodico, dove, attraverso l'assorbimento di elettroni, viene generato idrogeno molecolare (H₂) e ioni ossido (O²⁻). L'idrogeno prodotto viene rilasciato sulla superficie del

catodo, mentre gli ioni ossido migrano attraverso un elettrolita ceramico denso fino all'anodo, dove subiscono un processo di ossidazione che porta alla formazione di ossigeno molecolare (O₂) e al rilascio di elettroni, i quali completano il circuito elettrico tornando al catodo.

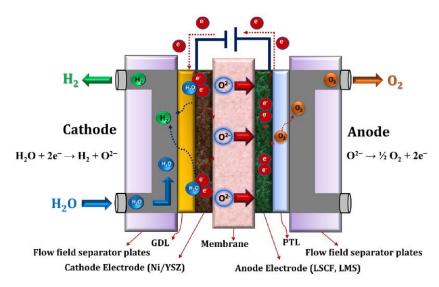


Figure 10: Illustrazione schematica del principio di funzionamento dell'elettrolisi dell'acqua a ossidi solidi (SOEC). Fonte: S. Shiva Kumar, Hankwon Lim.: An overview of water electrolysis technologies for green hydrogen production 2022.

Di seguito un Overview riassuntiva dei dati tecnici delle diverse tecnologie citate:

	AEW AEM PE		PEM	SOEC
Elettrolita	KOH/NaOH	Polimero con supporto KOH/NaOH	Elettrolita polimerico solido	Zirconia stabilizzata
Membrana	Amianto/Zirfon/Ni	Fumatech	Nafion	Elettrolita solido
Temperatura di				
esercizio	70–90 °C	40–60 °C	50–80 °C	700–850 °C
Efficienza	50%-78%	57%-59%	50%-83%	89% (lab)
Durata (stack)	60 000 h	30 000 h	50 000–80 000 h	20 000 h
Costo (stack) min. 1 MW	270 - 450 \$/kW	> 177 \$/kW	400 – 870 \$/kW	690 – 2000 \$/kW
CAPEX min. 1 MW	540 – 900 \$/kW	> 931 \$/kW	667 – 1450 \$/kW	2300-6677 \$/kW

Figure 11: Caratteristiche e costi delle principali tecnologie di elettrolisi dell'acqua. Fonte: IRENA, 2020b.

Nella valutazione dei costi complessivi (CAPEX) di un elettrolizzatore, è opportuno definire il concetto di stack, ovvero il cuore tecnologico in cui avviene la reazione elettrochimica che consente la scissione dell'acqua e la conseguente formazione di idrogeno molecolare. Sebbene rappresenti il componente più sofisticato dal punto di vista tecnico, lo stack incide meno del 50% (tranne nella PEM) sul costo totale dell'elettrolizzatore. La parte restante di costo, è suddivisa tra le apparecchiature tecniche e i costi indiretti.

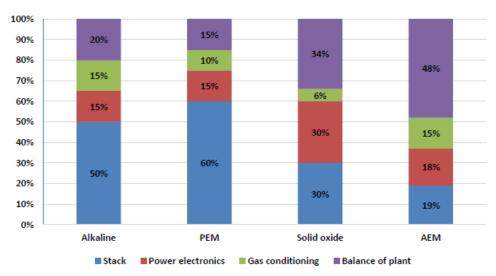


Figure 12: Suddivisione percentuale dei costi per tecnologia di elettrolizzatore. Fonte: Patonia, Aliaksei, e Rahmatallah Poudineh. 2022. Cost-Competitive Green Hydrogen: How to Lower the Cost of Electrolysers? EL 47. Oxford: Oxford Institute for Energy

Una volta definito il costo dell'investimento iniziale (CAPEX), è necessario analizzare i parametri che influenzano direttamente la produzione di idrogeno. Ogni elettrolizzatore è caratterizzato da una determinata potenza nominale, generalmente espressa in megawatt (MW). Nella *Figure 12*, ad esempio, vengono presi in considerazione elettrolizzatori con una potenza di 1 MW. Tale potenza deve essere correlata alla capacità produttiva per stimare con precisione la quantità di idrogeno generata. Un elettrolizzatore da 1 MW genera una disponibilità energetica pari a 1.000 kW per ogni ora di funzionamento a pieno carico. Un ulteriore misura è il consumo specifico definito come l'energia necessaria da un elettrolizzatore per generare un Kg di idrogeno molecolare. Sulla base di tali grandezze, è possibile stimare la produzione oraria di idrogeno secondo la seguente relazione (K.W. Harrison et al.)

Produzione
$$H_2$$
 (kg/h) = $\frac{Potenza\ elettrolizzatore\ (kW)}{Consumo\ specifico\ (kWh/Kg)}$

Pertanto, un elettrolizzatore con potenza 1 MW e *consumo speficifo* 55 kWh/Kg è in grado di produrre, una quantità di idrogeno pari a circa:

$$H_2 = \frac{1.000}{55} \approx 18,18 \text{ kg/h}$$

La tabella presenta una panoramica dei principali elettrolizzatori impiegati ad oggi, suddivisi per tecnologia. Per ciascun modello sono indicate la potenza specifica e la capacità

produttiva oraria di idrogeno.

Tecnologia	Manufacturer	Paese	Modello	Capacità H ₂ (Nm³/h)	Capacità H ₂ (kg/h)	Consumo energetico (kWh/Nm³)	Consumo energetico (kWh/kg)
Alcalina	Nel	Norvegia	A3880	2400– 3880	216–349	3.8–4.4	42.27– 49.34
Alcalina	Cummins	Canada	HySTAT®- 100–10	100	9.0	5.0-5.4	55.62– 60.06
Alcalina	McPhy	Francia	McLyzer 800.30	800	71.9	4.5	50.05
Alcalina	TIANJIN Mainland	Cina	FDQ800	1000	89.88	4.4	48.94
Alcalina	GreenHydrogen	Danimarca	HyProvide A- 90	90	8.1	4.3	47.82
AEM	Enapter	Germania	AEM Multicore	210	18.9	4.8	53.39
PEM	Nel	Norvegia	M5000	5000	449.4	4.5	50.05
PEM	Cummins	Canada	HyLYZER®- 4.000-30	4000	359.5	4.3	47.82
PEM	Siemens	Germania	Silyzer 300	100– 2000	9.0– 179.8	N/A	N/A
PEM	Plug Power	USA	GenFuel 5 MW	1000	89.88	5.2	57.84
PEM	Elogen	Francia	ELYTE 260	260	23.4	4.9	54.28
Solido (SOEC)	Sunfire	Germania	HyLink SOEC	750	67.4	3.6	40.04

Figure 13: Principali produttori mondiali di elettrolizzatori e relative specifiche tecniche. Fonte: S. Shiva Kumar et al. 2022

Ma quali sono le principali differenze fra le tecnologie considerate? Il processo chimico è il medesimo, la quantità di energia teorica necessaria per separare l'acqua non cambia. Le principali differenze riguardano l'efficienza energetica reale, i costi complessivi del sistema, la temperatura operativa, nonché l'idoneità a diversi contesti industriali. Alcune tecnologie si distinguono per una maggiore efficienza, altre per una maggiore economicità o per la capacità di operare a temperature più elevate o più basse.

Quel che è certo è che i progressi tecnologici cercano di concentrarsi su soluzioni in grado di massimizzare l'efficienza e minimizzare i costi.

AEW	AEM	PEM	SOEC			
VANTAGGI						
Tecnologia ben consolidata	Catalizzatori privi di metalli nobili	Tecnologia commercializzata	Funzionamento ad alta temperatura			
Commercializzata per applicazioni industriali	Elettrolita liquido a bassa concentrazione	Opera con densità di corrente più elevate	Alta efficienza energetica			
Catalizzatori privi di metalli nobili	-	Elevata purezza dei gas prodotti	-			
Costo relativamente basso	-	Design compatto del sistema	-			
Stabilità a lungo termine	-	Risposta rapida	-			
SVANTAGGI						
Densità di corrente limitate	Stabilità limitata	Costo dei componenti della cella	Stabilità limitata			
Possibile mescolanza dei gas	Ancora in fase di sviluppo	Catalizzatori a base di metalli nobili	Ancora in fase di sviluppo			
Elettrolita liquido fortemente alcalino	-	Elettrolita acido	-			
-	-	-	-			
-	-	-	-			

Figure 14: Vantaggi e svantaggi fra le diverse tecnologie di elettrolisi. Fonte: S. Shiva Kumar a, Hankwon Lim. An overview of water electrolysis technologies for green hydrogen 2022.

L'elettrolisi alcalina rappresenta una tecnologia consolidata e ampiamente commercializzata per applicazioni industriali, grazie al suo basso costo, all'utilizzo di catalizzatori privi di metalli nobili e a una buona stabilità operativa nel lungo periodo. Tuttavia, presenta alcune limitazioni legate alle basse densità di corrente, alla possibile contaminazione incrociata tra idrogeno e ossigeno e alla necessità di impiegare soluzioni fortemente alcaline, come il KOH a concentrazioni elevate, che comportano rischi di corrosione e gestione complessa. L'elettrolisi con membrana a scambio anionico (AEM), pur condividendo alcune caratteristiche con quella alcalina, si distingue per l'impiego di elettroliti a bassa concentrazione e per la possibilità di utilizzare catalizzatori

economici, rendendola potenzialmente più sostenibile. Tuttavia, questa tecnologia è ancora in fase di sviluppo e soffre attualmente di una limitata stabilità operativa, fattore che ne ostacola la diffusione su scala industriale. La tecnologia PEM, già ampiamente commercializzata, è caratterizzata da una maggiore efficienza e dalla produzione di gas ad elevata purezza. La struttura compatta e la capacità di operare con elevati carichi di corrente la rendono particolarmente adatta per applicazioni dinamiche. D'altro canto, l'impiego di materiali costosi come metalli nobili per gli elettrodi e la presenza di un ambiente acido rappresentano elementi critici in termini di costi e sostenibilità. Infine, l'elettrolisi ad ossidi solidi (SOEC) opera ad alte temperature presenta un'elevata efficienza energetica,

soprattutto se integrata con altri processi termici industriali. La possibilità di lavorare senza metalli nobili rappresenta un ulteriore vantaggio. Nonostante ciò, la tecnologia è ancora in una fase poco matura, con problemi legati alla stabilità a lungo termine che ne limitano l'applicazione su larga scala. Questo confronto permette di comprendere meglio l'evoluzione tecnologica dell'elettrolisi e le sfide da affrontare per rendere ciascuna tecnologia economicamente competitiva e sostenibile.

1.3.2 Oltre l'elettrolisi: le frontiere dell'idrogeno sostenibile

Sebbene la produzione di idrogeno verde attualmente avvenga quasi esclusivamente tramite elettrolisi, sono in procinto di emergere nuove tecnologie potenzialmente promettenti.

Tra queste, merita particolare menzione una tecnologia per produrre idrogeno basata sulla fotocatalisi, che, nonostante abbia un TRL non elevato ha attirato significativi investimenti a livello globale per il suo potenziale innovativo nella produzione sostenibile di idrogeno.

A differenza dell'elettrolisi, che richiede una fonte di energia esterna come l'elettricità, la fotocatalisi utilizza l'energia solare attraverso materiali chiamati fotocatalizzatori come il Biossido di Titanio (TiO₂), capaci di assorbire energia e innescare reazioni chimiche.

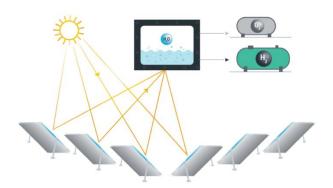


Figure 15: Fotocatalisi del progetto Sparc Hydrogen. (sparchydrogen.com).

Quando la luce colpisce il fotocatalizzatore, questo attiva al suo interno delle cariche elettriche (elettroni) che vengono trasferite all'acqua circostante in modo tale da reagire con i protoni presenti nella stessa formando idrogeno molecolare (Ama Dahanayake et al. 2023). Sebbene questa tecnologia sia ancora in fase di sviluppo, il suo potenziale è molto alto: se perfezionata, potrebbe permettere la produzione di idrogeno verde in modo semplice, economico e con un impatto ambientale ridotto, soprattutto in regioni con elevata esposizione solare.

Un esempio rilevante di applicazione della fotocatalisi per la produzione di idrogeno verde è rappresentato dal progetto Sparc Hydrogen, una joint venture tra Sparc Technologies, Fortescue Limited e l'Università di Adelaide. Il consorzio sta sviluppando una tecnologia

innovativa basata sulla scissione fotocatalitica dell'acqua (Photocatalytic Water Splitting, PWS) nella quale solo nel 2025 sono stati investiti 2,5 milioni di dollari.

Nel 2025, è iniziata la costruzione di un impianto pilota presso il campus di Roseworthy dell'Università di Adelaide. Questo impianto mira a testare su scala reale la tecnologia PWS, avanzando il livello di maturità tecnologica (TRL) da 5 a 6. Il sistema utilizza specchi solari concentrati per dirigere la luce su reattori fotocatalitici, con l'obiettivo di produrre idrogeno in modo efficiente e a basso costo. La tecnologia sviluppata da Sparc Hydrogen presenta diversi vantaggi rispetto all'elettrolisi tradizionale: riduzione dei costi di produzione, minori requisiti infrastrutturali e maggiore adattabilità in contesti off-grid. Inoltre, l'azienda ha ottenuto il suo primo brevetto per il reattore PWS nel gennaio 2025, con ulteriori domande di brevetto in corso in 17 giurisdizioni (australianmanufacturing.com.au).

1.4 Supply Chain dell'Idrogeno

La supply chain rappresenta l'insieme integrato dei processi, delle risorse e degli attori coinvolti nel ciclo completo che va dalla fornitura delle materie prime fino alla consegna del prodotto finale al cliente. Comprende tutte le attività logistiche, produttive e distributive necessarie per garantire che beni e servizi siano disponibili nel momento, luogo e quantità richiesti, in modo efficiente e sostenibile (mecalux.it). Il presente sotto-capitolo si propone di analizzare la catena di approvvigionamento dell'idrogeno, con particolare attenzione alle fasi e alle attività necessarie affinché questo elemento possa consolidarsi come vettore energetico sostenibile e competitivo. Infatti, oltre agli aspetti legati alla fattibilità produttiva, già trattati in precedenza, è fondamentale garantire la presenza di soluzioni efficienti per il trasporto e lo stoccaggio dell'idrogeno in diversi contesti, al fine di assicurarne un utilizzo diffuso su scala territoriale e industriale. La value chain dell'idrogeno include diverse fasi: si parte dalla produzione, si passa allo stoccaggio e al trasporto, per arrivare infine alle applicazioni end-user in settori quali la mobilità, l'industria e la produzione di energia elettrica. Analizzare tutto questo consente di individuare le criticità attuali, le opportunità tecnologiche ed economiche emergenti e le strategie necessarie per promuovere una rapida e sostenibile diffusione dell'idrogeno nel panorama energetico futuro.

1.4.1 Stoccaggio & Trasporto

Nonostante l'idrogeno verde sia una soluzione promettente per integrare le fonti rinnovabili intermittenti come il solare e l'eolico, immagazzinarlo e trasportarlo in modo sicuro, efficiente ed economicamente sostenibile rimane tutt'oggi una sfida. L'idrogeno, infatti, ha

una densità energetica volumetrica molto bassa rispetto ai combustibili tradizionali, è estremamente volatile e tende a disperdersi facilmente nei materiali metallici, causando fenomeni di fragilità detti "hydrogen embrittlement²" (RSEview, 2021). A ciò si aggiungono i costi elevati associati alle infrastrutture necessarie e alle perdite di energia che possono verificarsi durante le fasi di compressione, liquefazione o rilascio del gas. È importante sottolineare che ogni tecnologia di stoccaggio richiede una modalità di trasporto coerente che ne valorizzi le caratteristiche, ottimizzando tempi e costi. Allo stesso modo, la scelta della tipologia di trasporto dipende strettamente dal tipo di stoccaggio adottato e dalla distanza da coprire, rendendo fondamentale un approccio integrato tra logistica e gestione del vettore energetico in base alle necessità specifiche. Analizziamo di seguito i metodi ad oggi maggiormente utilizzati per lo stoccaggio e il relativo trasporto di idrogeno.

Idrogeno compresso

Lo stoccaggio dell'idrogeno in forma compressa è attualmente una delle tecnologie più consolidate e largamente utilizzate. Questo metodo prevede la conversione dell'idrogeno in stato gassoso a pressioni elevate, tipicamente comprese tra 300 e 700 bar. In questa modalità, l'idrogeno viene immagazzinato in serbatoi cilindrici ad alta resistenza, realizzati con materiali metallici oppure compositi avanzati, come la fibra di carbonio, per ridurre il peso complessivo e garantire un'elevata tenuta alla pressione. Sebbene il principio alla base del sistema sia relativamente semplice, la gestione dell'idrogeno compresso presenta sfide tecniche importanti. Tra queste, vi è la necessità di ridurre al minimo le perdite dovute all'embrittlement. Dal punto di vista energetico, la compressione dell'idrogeno richiede un consumo significativo di elettricità. Secondo i dati (Nan Ma et al.), l'energia necessaria per comprimere l'idrogeno a 700 bar può arrivare fino al 13% del contenuto energetico stesso del gas. Questo rappresenta un costo energetico non trascurabile. Nonostante queste perdite, lo stoccaggio in forma compressa è attualmente una delle opzioni più praticabili, soprattutto quando l'idrogeno viene prodotto e utilizzato localmente. A livello infrastrutturale, questo metodo è già impiegato nelle stazioni di rifornimento per veicoli a celle a combustibile, dove l'idrogeno viene erogato in tempi molto rapidi grazie alla disponibilità di serbatoi ad alta pressione. Inoltre, è spesso utilizzata per lo stoccaggio intermedio dell'idrogeno nei processi industriali. Una delle limitazioni principali di questo sistema è la bassa densità energetica volumetrica dell'idrogeno quando compresso: infatti, se confrontata con i combustibili

_

² Per Hydrogen embrittlement si intende quel fenomeno per cui l'idrogeno penetra nei metalli, rendendoli più fragili e suscettibili a rotture sotto sforzo.

liquidi tradizionali, la quantità di energia immagazzinabile per unità di volume resta piuttosto bassa, il che implica l'impiego di serbatoi di grandi dimensioni per applicazioni su larga scala (M. Yang et al., 2023). Il trasporto dell'idrogeno compresso avviene principalmente su strada tramite trailer cilindrici dotati di batterie di tubi in acciaio. Il trasporto su gomma risulta particolarmente vantaggioso per tratte che non superano i 200 km. Tuttavia, è importante considerare che la capacità limitata di carico e i tempi di compressione e decompressione rappresentano fattori limitanti in termini di efficienza logistica. Il costo per il trasporto stradale dell'idrogeno compresso può rappresentare una quota significativa del costo finale del vettore, soprattutto se la distanza tra il punto di produzione e quello di utilizzo supera i 200 chilometri. In questo scenario, si stanno valutando anche soluzioni ferroviarie e marittime, ma il loro impiego per l'idrogeno compresso è ancora in fase sperimentale e limitato a contesti specifici (M. Yang et al., 2023).

Figure 16: Costi di trasporto e Compression dell'idrogeno molcolare per capacità del t e distanza percorsa. Fonte: Department for Energy Security and Net Zero, Hydrogen Transport and Storage Cost Report (London: UK Government, 2023).

Idrogeno liquido

Per incrementare la densità energetica posseduta rispetto all'idrogeno compresso è possibile effettuare lo stoccaggio dell'idrogeno in forma liquida. Questo metodo si basa sulla liquefazione dell'idrogeno gassoso, processo che avviene raffreddando il gas fino a una temperatura estremamente bassa, pari a circa -253 °C. A queste condizioni, l'idrogeno passa dallo stato gassoso allo stato liquido, riducendo il proprio volume di circa 800 volte rispetto allo stato gassoso (a temperatura e pressione ambiente). Questo aspetto lo rende particolarmente adatto per applicazioni che richiedono trasporto a lunga distanza o

stoccaggio di grandi quantità in spazi limitati. Tuttavia, la liquefazione dell'idrogeno è un processo altamente energivoro. Il consumo energetico per liquefare l'idrogeno può variare tra il 25% e il 35% del contenuto energetico stesso del gas, rendendolo uno dei metodi di stoccaggio meno efficienti dal punto di vista energetico. Inoltre, il mantenimento dell'idrogeno allo stato liquido richiede serbatoi criogenici avanzati, dotati di sistemi di isolamento termico ad alte prestazioni, spesso basati su contenitori a doppia parete e vuoto intermedio. L'idrogeno liquido è ampiamente utilizzato nel settore aerospaziale, dove la necessità di elevate densità energetiche e la disponibilità di infrastrutture dedicate ne giustificano i costi. Anche in campo civile e industriale si sta valutando l'utilizzo dell'idrogeno liquido per applicazioni su larga scala, come ad esempio il trasporto intercontinentale via nave, dove grandi volumi di idrogeno possono essere stoccati in serbatoi criogenici integrati nelle stive. In questi casi, la progettazione di sistemi di rigassificazione a bordo può essere fondamentale per rendere l'idrogeno disponibile allo stato gassoso all'arrivo a destinazione. Su scala commerciale, l'idrogeno liquido può essere movimentato anche su strada o su rotaia utilizzando apposite cisterne criogeniche montate su rimorchi o carri ferroviari. Questi mezzi sono progettati per mantenere l'idrogeno a bassissima temperatura durante tutto il viaggio riducendo al minimo le perdite per evaporazione. Una delle principali sfide nel trasporto dell'idrogeno liquido è proprio il fenomeno del boil-off, ovvero l'evaporazione naturale del gas durante il trasporto o la fase di stoccaggio, che può comportare non solo perdite economiche ma anche rischi di sicurezza. In generale, il trasporto dell'idrogeno liquido è più conveniente su lunghe distanze rispetto all'idrogeno compresso. Tuttavia, il bilancio energetico e il costo complessivo restano ancora sfavorevoli rispetto ad altre tecnologie, rendendo questa opzione particolarmente adatta a settori specializzati senza vincoli di prezzo come l'aerospazio (M. Yang et al., 2023).

Stoccaggio geologico

Lo stoccaggio geologico dell'idrogeno rappresenta fore la soluzione più sostenibile per conservare grandi quantità di gas in modo sicuro ed economicamente efficiente. Si tratta di un metodo già impiegato da decenni per il gas naturale, ed oggi viene sempre più considerato anche per l'idrogeno, soprattutto in vista della necessità di integrare su larga scala fonti rinnovabili intermittenti come il solare e l'eolico. La logica è semplice: produrre idrogeno nei momenti di surplus energetico, in modo tale da pagare meno l'energia rinnovabile, accumularlo nel sottosuolo e renderlo disponibile quando necessario, ad esempio per

bilanciare la rete elettrica o alimentare settori industriali energivori. Le principali formazioni geologiche utilizzate per lo stoccaggio sotterraneo sono le cavità saline, gli acquiferi profondi e i giacimenti esausti di petrolio o gas. Le cavità saline, create artificialmente, sono particolarmente adatte perché offrono una tenuta naturale molto elevata, sono chimicamente inerti e possono essere pressurizzate e depressurizzate ripetutamente. Sono già utilizzate per lo stoccaggio del gas naturale e rappresentano la soluzione geologica oggi più matura anche per l'idrogeno. Gli acquiferi profondi sono formazioni porose e permeabili contenenti acqua salmastra, spesso non potabile, situate a grande profondità. In questo caso, l'idrogeno viene iniettato al di sopra della colonna d'acqua, sfruttando la copertura geologica superiore come sigillo (geopop.it). Questo metodo offre ampie capacità di stoccaggio, ma comporta anche maggiori incertezze geochimiche, in quanto l'idrogeno può reagire con i minerali presenti portando a perdite o contaminazioni. Un'altra possibilità è rappresentata dai giacimenti esauriti di gas naturale o petrolio, che hanno già dimostrato nel tempo di poter trattenere gas a lungo. Il vantaggio principale è la possibilità di riutilizzare infrastrutture esistenti, riducendo i costi iniziali. Tuttavia, la presenza di residui di idrocarburi o altri contaminanti può compromettere la purezza dell'idrogeno immagazzinato, rendendo necessario un trattamento successivo. Dal punto di vista economico, lo stoccaggio geologico si distingue per la convenienza su larga scala: una volta realizzato il sito, i costi di esercizio sono relativamente bassi, e l'idrogeno può essere accumulato in volumi molto superiori rispetto ai metodi fisici come compressione o liquefazione. È quindi una soluzione ideale per il cosiddetto "seasonal storage", ovvero lo stoccaggio stagionale, in cui si accumula energia in estate per usarla in inverno. Per quanto riguarda il trasporto, i siti di stoccaggio geologico, essendo generalmente localizzati in aree periferiche o sotterranee, devono essere collegati alla rete attraverso gasdotti ad alta pressione oppure serviti da trasporti su gomma o rotaia. Nel caso delle cavità saline è possibile prevedere connessioni dirette a impianti industriali o elettrolizzatori, mentre per l'estrazione e la distribuzione su lunga distanza si stanno valutando soluzioni miste, in cui l'idrogeno viene temporaneamente stoccato in forma compressa o liquida per essere poi trasportato tramite trailer o navi. Nei progetti in corso, è previsto anche l'utilizzo di infrastrutture ibride, in cui lo stoccaggio geologico funge da "buffer" tra produzione rinnovabile e consumo, facilitando il bilanciamento della rete e riducendo la necessità di trasporti continui.

Idrogeno in materiali solidi

Lo stoccaggio dell'idrogeno in materiali solidi è una tecnologia in forte sviluppo, che si basa sulla capacità di certi materiali di assorbire e rilasciare idrogeno attraverso meccanismi chimici o fisici reversibili. A differenza delle soluzioni più tradizionali, come l'idrogeno compresso o liquido, questo approccio non implica l'utilizzo di alte pressioni o temperature criogeniche, ma sfrutta interazioni a livello atomico tra l'idrogeno e il materiale che lo ospita. Uno dei metodi più studiati prevede l'utilizzo di idruri metallici, ovvero leghe o composti metallici capaci di incorporare atomi di idrogeno all'interno della loro struttura cristallina. Questi materiali funzionano un po' come una spugna: quando esposti a idrogeno gassoso, lo assorbono; quando riscaldati, lo rilasciano. I vantaggi di questo tipo di stoccaggio sono diversi: si tratta di una tecnologia molto sicura, in quanto l'idrogeno non è libero ma legato al materiale; inoltre, la densità volumetrica di idrogeno che si può ottenere è elevata, superiore in molti casi a quella dell'idrogeno liquido. Tuttavia, ci sono anche delle limitazioni importanti. Innanzitutto, il rilascio dell'idrogeno richiede in genere il riscaldamento del materiale, e quindi un apporto energetico esterno. Inoltre, gli idruri hanno una bassa densità gravimetrica, cioè contengono molto materiale solido rispetto alla quantità di idrogeno effettivamente stoccata, il che li rende poco efficienti dal punto di vista del peso complessivo, soprattutto in applicazioni mobili come i trasporti. Oltre agli idruri, la ricerca si sta concentrando anche su nanomateriali porosi e su composti a base di carbonio o boro, capaci di offrire una buona capacità di stoccaggio e un rilascio più controllabile. In questi casi, si parla più di adsorbimento fisico (anziché chimico), in cui l'idrogeno si "attacca" alla superficie del materiale grazie a forze deboli, senza entrare nella struttura interna. Queste tecnologie sono ancora in fase di sviluppo, ma promettono di offrire soluzioni flessibili per lo stoccaggio a bassa pressione e in ambienti dove la sicurezza è prioritaria, come dispositivi portatili o piccoli impianti domestici.

Dal punto di vista del trasporto, lo stoccaggio in materiali solidi offre alcune caratteristiche uniche. Trattandosi di un sistema in cui l'idrogeno non è presente in forma libera, ma legato al materiale ospite, i rischi legati alla volatilità e all'infiammabilità del gas risultano drasticamente ridotti, rendendo questi sistemi particolarmente adatti per applicazioni mobili o per il trasporto in ambienti sensibili, ad esempio su veicoli di servizio o in zone urbane. Tuttavia, il trasporto su lunga distanza di materiali solidi caricati con idrogeno non è ancora una pratica diffusa, anche a causa dell'elevato peso del sistema e della necessità di condizioni specifiche per il rilascio controllato del gas. Ad oggi, l'uso dei solidi per il

trasporto dell'idrogeno è più teorico che applicativo, e trova spazio in progetti pilota o prototipi destinati a dispositivi portatili, piccoli generatori o veicoli leggeri. La ricerca si sta orientando verso la possibilità di realizzare moduli trasportabili contenenti idruri o materiali adsorbenti, che possano essere ricaricati centralmente e poi distribuiti in rete come "cartucce energetiche", in modo simile a quanto accade con le bombole di gas (M. Yang et al., 2023).

Ammoniaca e metanolo come vettori chimici

Un metodo alternativo sia per lo stoccaggio che per il trasporto dell'idrogeno, è rappresentato dall'utilizzo di composti chimici contenenti idrogeno, come l'ammoniaca (NH₃) e il metanolo (CH₃OH). Questi composti non vengono impiegati solo per la loro capacità di trasportare idrogeno in forma chimicamente legata, ma anche per la maggiore stabilità, densità energetica e per il fatto che possono essere maneggiati con infrastrutture già esistenti, come serbatoi, condutture o navi cisterna concepite per carburanti liquidi. Nel caso dell'ammoniaca, il vantaggio principale è che si tratta di una molecola ad alta densità di idrogeno, stabile a temperatura e pressione ambiente e facilmente liquefattibile già a -33 °C, quindi più semplice da gestire rispetto all'idrogeno liquido. L'ammoniaca può essere prodotta a partire da idrogeno verde e azoto atmosferico attraverso il processo Haber-Bosch³, una tecnologia consolidata e ampiamente diffusa nel settore industriale. Una volta sintetizzata, l'ammoniaca può essere trasportata in forma liquida, in cisterne pressurizzate o navi specializzate, verso i luoghi di utilizzo. L'idrogeno viene poi recuperato tramite cracking, un processo che comporta l'impiego di energia termica e catalizzatori, e che presenta il rischio di rilascio di tracce di ammoniaca, una sostanza tossica e corrosiva. Il metanolo, invece, rappresenta una soluzione ancora più pratica per il trasporto, poiché si tratta di un liquido a temperatura ambiente, compatibile con le infrastrutture logistiche attuali. Può essere prodotto non solo da idrogeno e CO2, ma anche da fonti rinnovabili, ed è già largamente utilizzato come combustibile in diversi settori. La sua densità energetica è inferiore rispetto all'ammoniaca, ma la facilità di manipolazione e stoccaggio lo rendono adatto a scenari operativi diversi, come la mobilità pesante, i porti o i generatori off-grid. L'uso di vettori chimici come ammoniaca e metanolo offre vantaggi logistici rilevanti. Entrambi i composti possono essere trasportati tramite navi cisterna, ferrovie o autocisterne, sfruttando le reti di distribuzione già impiegate per il trasporto di combustibili liquidi.

_

³ Haber Bosch: metodo industriale per la sintesi dell'ammoniaca (NH₃) a partire da azoto (N₂) e idrogeno (H₂), combinati ad alta pressione (150–250 bar) e temperatura (400–500 °C) in presenza di un catalizzatore di ferro (Appl, Michael. 2006).

Inoltre, possono essere caricati, scaricati e stoccati a pressioni moderate o in condizioni ambientali, evitando le criticità legate al trasporto dell'idrogeno puro in forma compressa o liquida. Questa caratteristica li rende particolarmente adatti per il trasporto intercontinentale, in quanto semplificano le operazioni portuali, riducono i rischi e migliorano la flessibilità commerciale. Un aspetto fondamentale è che, a differenza dell'idrogeno puro, questi vettori non richiedono condizioni estreme di temperatura o pressione, facilitando sia lo stoccaggio che la movimentazione su lunghe distanze e in volumi elevati. Inoltre, rappresentano una soluzione concreta per i Paesi importatori, che possono ricevere idrogeno legato chimicamente da zone ricche di energia solare o eolica, anche in assenza di una rete di pipeline dedicata. D'altro canto, questi sistemi non sono privi di criticità. Oltre ai già citati rischi legati alla tossicità dell'ammoniaca o alle emissioni di CO2 nel ciclo del metanolo, c'è il problema dell'efficienza energetica complessiva: ogni passaggio di conversione, sia in fase di sintesi che di rilascio dell'idrogeno, comporta perdite di energia. Per questa ragione, ammoniaca e metanolo sono spesso considerati come soluzioni complementari ad altri metodi di stoccaggio e trasporto, piuttosto che un'alternativa universale.

1.4.3 End-use dell'idrogeno

Storicamente l'idrogeno è stato quasi esclusivamente utilizzato come materia prima nell'industria chimica e nella raffinazione del petrolio, oggi si propone come alternativa principale per decarbonizzare settori difficili da elettrificare, noti come "hard-to-abate". La capacità dell'idrogeno di fungere sia da vettore energetico sia da reagente industriale lo rende un alleato strategico nella lotta per la decarbonizzazione. Attualmente gli utilizzi finali dell'idrogeno possono essere raggruppati in tre grandi settori strategici: Industria chimica e metallurgica, raffinerie e settore dei Trasporti.

Industria

Il settore industriale rappresenta da sempre il principale ambito di utilizzo dell'idrogeno a livello globale. Nel 2023, la domanda complessiva di idrogeno destinata a questo settore ha raggiunto circa 54 milioni di tonnellate (su 97 totali prodotti), confermando il ruolo centrale di questo vettore come materia prima nei processi chimici e metallurgici. L'impiego dell'idrogeno in ambito industriale si concentra prevalentemente in poche applicazioni strategiche, che da decenni costituiscono il fulcro della domanda.

La parte più consistente, pari a circa il 60% del totale consumato, è destinata alla *produzione* di ammoniaca. Questo composto è essenziale per la realizzazione di fertilizzanti azotati,

fondamentali per l'agricoltura moderna. Il processo di sintesi dell'ammoniaca, noto come Haber-Bosch, richiede ingenti quantità di idrogeno, tradizionalmente ottenuto attraverso processi ad alta intensità di carbonio, come il reforming del gas naturale o la gassificazione del carbone. Un ulteriore 30% della domanda industriale di idrogeno è assorbito dalla produzione di metanolo, un altro pilastro dell'industria chimica, quest'ultimo è utilizzato sia come base per la sintesi di numerosi prodotti chimici, sia come combustibile o additivo nei carburanti. Infine, circa il 10% dell'idrogeno impiegato dall'industria viene destinato al settore siderurgico, in particolare per la produzione di ferro attraverso il processo di riduzione diretta del minerale (Direct Reduced Iron, DRI). Sebbene questa applicazione rappresenti una quota minore rispetto a quelle chimiche, il suo significato strategico è crescente, soprattutto in un'ottica di decarbonizzazione dei settori hard-to-abate come quello dell'acciaio. Nonostante l'attenzione crescente verso l'idrogeno a basse emissioni, va sottolineato che la quasi totalità dell'idrogeno utilizzato nel settore industriale continua ad essere prodotta attraverso processi convenzionali basati su combustibili fossili, senza l'impiego di sistemi di cattura e stoccaggio della CO2. Questo scenario ha comportato nel 2023 l'emissione di circa 680 milioni di tonnellate di CO₂, un valore che da solo equivale alle emissioni annuali di un intero Paese industrializzato come la Turchia (IEA 2024). Sebbene questa tendenza, negli ultimi anni si è registrato un crescente interesse verso soluzioni più sostenibili. Uno degli esempi più promettenti dell'utilizzo industriale dell'idrogeno verde è rappresentato dalla produzione di acciaio tramite la riduzione diretta del minerale di ferro. Questo processo permette di sostituire il carbone come agente riducente con l'idrogeno, riducendo le emissioni di CO2 fino al 95%. Progetti pionieristici come quello avviato nel 2023 da Stegra a Boden, in Svezia, mirano a produrre 2,5 milioni di tonnellate annue di acciaio con H₂ al 100% (IEA 2024). In parallelo, il progetto Oshivela in Namibia impiegherà una tecnologia alternativa basata su un forno rotativo ermetico per trattare polveri di minerale di ferro (IEA 2024). Ulteriori iniziative sono in fase di sviluppo in Corea, Giappone e Australia, dove aziende come POSCO, Nippon Steel e Fortescue stanno testando forni, capaci di utilizzare H₂ come riducente anche con minerali di qualità inferiore.

Raffinerie

Il settore della raffinazione nel 2023 ha confermato il proprio ruolo nella domanda globale di idrogeno, con un consumo che ha raggiunto circa 43 milioni di tonnellate, segnando un nuovo record rispetto agli anni precedenti. L'impiego dell'idrogeno in questo ambito è strettamente legato ai processi di miglioramento della qualità dei prodotti petroliferi e al rispetto delle normative ambientali. In particolare, l'idrogeno viene utilizzato principalmente per i processi di desolforazione, indispensabili per ridurre il contenuto di zolfo nei carburanti e garantire la conformità agli standard sulle emissioni. Oltre alla desolforazione, trova applicazione nei processi di hydrotreating e hydrocracking, tecniche che permettono di trasformare frazioni pesanti del petrolio greggio in prodotti più leggeri e a maggior valore aggiunto, come diesel e benzina. Un ulteriore utilizzo rilevante riguarda il reforming catalitico della nafta, attraverso cui si ottiene benzina e si produce idrogeno come sottoprodotto. Nonostante l'attenzione crescente verso soluzioni a basse emissioni, la quasi totalità dell'idrogeno impiegato nelle raffinerie nel 2023 è stata prodotta da fonti fossili senza sistemi di cattura della CO₂. Questo modello produttivo tradizionale ha comportato un significativo impatto ambientale, mantenendo elevati i livelli di emissioni associate. Solo una piccola parte del fabbisogno, pari a circa 250.000 tonnellate, è stata coperta da idrogeno a basse emissioni, grazie a progetti pionieristici avviati soprattutto in Cina. Sebbene siano stati annunciati numerosi interventi per incrementare l'uso di idrogeno verde e blu nel settore, la transizione appare ancora lenta e fortemente condizionata da fattori economici e tecnologici (IEA 2024).

Trasporti

Nel 2023, l'uso dell'idrogeno nel settore dei trasporti ha raggiunto circa 60.000 tonnellate, una quota marginale rispetto alla domanda globale, ma in costante crescita, soprattutto grazie allo sviluppo dei veicoli pesanti a celle a combustibile (fuel cell) in Cina. L'idrogeno trova applicazione principalmente nella mobilità dove autonomia elevata e tempi di rifornimento rapidi rappresentano un vantaggio competitivo rispetto alle soluzioni elettriche a batteria. Questo spiega il focus su camion, autobus e veicoli commerciali, mentre la diffusione delle auto a celle a combustibile ha mostrato un rallentamento. Parallelamente, si stanno affermando nuovi ambiti di utilizzo come il settore dei taxi e delle consegne urbane, dove l'idrogeno offre una valida alternativa per ottimizzare l'operatività dei mezzi.

Oltre al trasporto su strada, l'idrogeno sta iniziando a ritagliarsi un ruolo anche nel settore navale e in quello aeronautico. Nel comparto marittimo, sono in corso numerosi progetti per

l'impiego di celle a combustibile e motori alimentati a idrogeno, con particolare attenzione alle navi da carico, ai traghetti e ai battelli. La costruzione di imbarcazioni alimentate a idrogeno, come il primo portacontainer e diversi traghetti in Norvegia e Francia, testimonia la volontà di sperimentare soluzioni a basse emissioni anche nel trasporto marittimo commerciale (IEA 2024).

Nel settore dell'aviazione, l'adozione diretta dell'idrogeno è ancora in fase embrionale, con importanti sfide tecnologiche da superare. Le attività si concentrano principalmente sulla produzione di carburanti sostenibili per l'aviazione (SAF - Sustainable Aviation Fuel) a base di idrogeno, in quanto rappresentano una soluzione immediatamente integrabile nelle infrastrutture esistenti. Tuttavia, programmi come l'Airbus ZEROe e le sperimentazioni di aziende come ZeroAvia indicano un crescente interesse verso l'impiego futuro dell'idrogeno sia tramite combustione diretta che con sistemi a celle a combustibile. Nonostante ciò, si prevede che il passaggio a un uso commerciale effettivo richiederà ancora diversi anni di sviluppo e test (IEA 2024).

1.5 Economia dell'Idrogeno: Struttura dei costi e Competitività

Dopo aver approfondito le tecnologie di produzione dell'idrogeno e i suoi principali ambiti di applicazione, è necessario soffermarsi sull'aspetto economico, elemento fondamentale per comprenderne la reale diffusione e competitività.

Ogni "colore" dell'idrogeno è infatti caratterizzato da un costo specifico, determinato da una combinazione di fattori economici e tecnologici, tra cui i costi di investimento iniziale dell'impianto (CAPEX), le spese operative per materie prime ed energia, e il numero di ore annuali di funzionamento della tecnologia impiegata. A influenzare in modo significativo il costo finale è, in particolare, il prezzo dell'energia, che varia in funzione del metodo di produzione adottato (vedremo successivamente più in dettaglio). Ad esempio, il costo dell'idrogeno grigio è direttamente influenzato dall'andamento del prezzo del metano, elemento fondamentale nel processo di steam reforming da cui deriva. Analogamente, l'idrogeno verde risente del costo dell'energia generata da fonti rinnovabili e in particolare tende a ridursi solo in presenza di un surplus di energia rinnovabile⁴. Le tecnologie consolidate, come quelle per la produzione di idrogeno grigio e marrone, oltre al minor costo medio delle materie prime, risultano avvantaggiate rispetto alle soluzioni emergenti, grazie

⁴Quando la produzione (offerta di energia) da fonti eoliche e solari, legata alle condizioni climatiche, supera la domanda di energia si parla di surplus energetico in quanto l'offerta è maggiore della domanda. Questo provoca un abbassamento dei prezzi.

alla presenza di infrastrutture già operative da decenni. In questi casi, i CAPEX sono stati ampiamente ammortizzati, riducendo la necessità di ulteriori investimenti e limitando l'incidenza dei costi fissi sul prezzo finale dell'idrogeno prodotto. Considerando tutti questi parametri, il costo di produzione dell'idrogeno viene generalmente calcolato attraverso la seguente relazione:

$$C_{H_2} = \frac{CAPEX \cdot \alpha + C_{o\&m}}{T} + \frac{C_f/e}{\eta}$$

Dove:

- CAPEX= costi specifici di investimento dell'impianto di produzione dell'idrogeno [€/kW].
- $\alpha = \frac{r(1+r)^n}{(1+r)^{n-1}}$; serve a trasformare il costo di investimento iniziale in un costo annuale.
- $C_{o\&m}$ = costi operativi e di manutenzione [€/kW].
- T= ore di funzionamento annuali [h/anno].
- $C_f/e=$ costo del combustibile o dell'elettricità [€/MWh].
- η = efficienza dell'elettrolizzatore.

A partire dalla formula espressa per il calcolo del costo di produzione dell'idrogeno, è possibile determinare i valori riportati nella *Tabella 8*. I costi indicati non vanno intesi come valori assoluti, ma come intervalli che riflettono la variabilità legata a fattori geografici, economici e tecnologici. A livello globale, infatti, esistono differenze significative sia nei costi di produzione sia nel prezzo dell'energia, elementi che determinano ampie oscillazioni nei valori finali. La *Tabella 8* è stata costruita distinguendo tra scenari "best case" e "worst case", evidenziando come le condizioni ottimali (ad esempio, basso costo dell'energia o infrastrutture consolidate) e quelle più sfavorevoli influenzano il costo per chilogrammo di idrogeno prodotto. I dati presentati derivano da un'analisi condotta sulla base di report ufficiali elaborati dall'International Energy Agency (IEA).

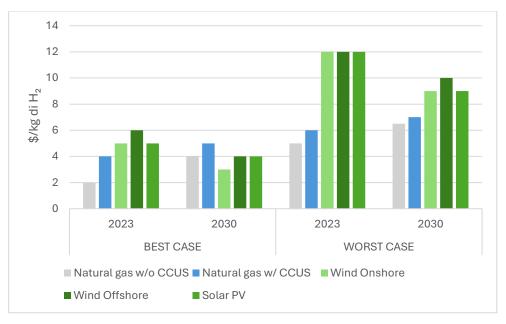


Figure 17: Range di costi di produzione dell'idrogeno. (IEA 2024).

Dal grafico emerge chiaramente che, nel 2023, il costo di produzione meno elevato è associato all'idrogeno grigio, dai 2 ai 4 \$/kg, confermando il vantaggio economico di questa tecnologia consolidata, come evidenziato in precedenza. L'idrogeno blu, prodotto tramite gas naturale abbinato a sistemi di cattura e stoccaggio della CO2, presenta attualmente un costo intermedio dai 4 ai 6 \$/kg, valori superiori rispetto al grigio a causa dei costi aggiuntivi legati alla tecnologia CCUS, ma ancora inferiori rispetto all'idrogeno verde. Questo lo rende una soluzione rilevante nel contesto della transizione energetica, rappresentando nella transizione un compromesso tra sostenibilità ambientale e sostenibilità economica. Nel 2023, il costo di produzione più elevato è stato registrato dall'idrogeno verde, con un picco che ha raggiunto i 12 \$/kg nello scenario meno favorevole (worst case) e i 5 \$/kg nel più favorevole (best case). Questo risultato riflette le attuali difficoltà legate agli alti costi degli elettrolizzatori, al prezzo dell'energia rinnovabile e alla mancanza di economie di scala che caratterizza una tecnologia ancora in fase di sviluppo; più nello specifico l'analisi dei principali fattori che determinano il costo di produzione (cost drivers) evidenzia come il 70% del costo totale sia legato al prezzo dell'energia rinnovabile, seguito dal 14% imputabile agli investimenti iniziali, dall'8% ai costi di finanziamento e da un 5% relativo alle spese operative e di manutenzione. Per rendere l'idrogeno verde realmente competitivo, sarebbe necessario ridurre il costo di investimento iniziale degli elettrolizzatori a circa 200 \$/kW e garantire un prezzo dell'energia rinnovabile stabile nell'intervallo di 20-30 \$/MWh. Questi due obiettivi, se raggiunti, permetterebbero di abbattere in modo significativo i costi di produzione, avvicinando l'idrogeno verde ai livelli di competitività richiesti per una diffusione su larga scala (RSE 2021). Ma quali sono gli aspetti degli elettrolizzatori da poter migliore per riuscire ad abbassare il costo al valore target precedentemente espresso (200\$/kW)?

Un primo aspetto riguarda il miglioramento dell'efficienza: incrementare l'efficienza delle celle elettrolitiche consente di produrre una maggiore quantità di idrogeno a parità di energia consumata, abbattendo così il costo per Kg di prodotto. Un secondo intervento può essere rappresentato dall'estensione della vita utile dello stack in modo tale da riuscire a distribuire l'investimento iniziale su un numero maggiore di ore di funzionamento. Questo può essere eseguito attraverso la ricerca di materiali più resistenti e meno soggetti a usura. Per renderci conto delle tempistiche attuali di funzionamento la tecnologia alcalina permette un range di funzionamento più ampio rispetto alle altre compreso fra le 60.000 e le 100.000 ore. Parallelamente, lo sviluppo di sistemi modulari e standardizzati permetterebbe di ridurre i costi di produzione, semplificando la progettazione e favorendo la produzione su larga scala. Inoltre, è fondamentale ampliare il range di carico⁵ operativo degli elettrolizzatori, così da renderli più flessibili e adatti a seguire l'intermittenza tipica delle fonti rinnovabili, attualmente le celle PEM e SOEC garantiscono una flessibilità maggiore con un range che varia fra il 3 e il 125%. Infine, l'attuazione di economie di scala, sia nella produzione di componenti sia nell'installazione degli impianti, rappresenta un ulteriore fattore chiave per la progressiva riduzione dei costi complessivi, è stimato che se tutti i progetti relativi agli elettrolizzatori annunciati nel 2024 venissero realizzati entro il 2030, i costi di produzione degli elettrolizzatori potrebbero ridursi addirittura del 50-55% (IEA 2024).

_

⁵ Per range di carico si intende l'intervallo di potenza all'interno del quale l'elettrolizzatore riesce a lavorare in modo stabile ed efficiente rispetto la sua capacità nominale. Per esempio: Se un elettrolizzatore ha un range di carico dal 10% al 100%, significa che può funzionare efficacemente a partire dal 10% della sua potenza nominale fino al 100% della stessa.

Oltre i costi degli elettrolizzatori è emblematico come attualmente il 70% del costo dell'idrogeno verde sia direttamente influenzato dal prezzo dell'energia rinnovabile. Questo evidenzia la necessità di approfondire il tema dei costi dell'energia. Un grafico che può aiutarci a osservare l'andamento dei costi dell'energia rinnovabile rispetto le fonti tradizionale è il LCOE (Levelized Cost of Energy)

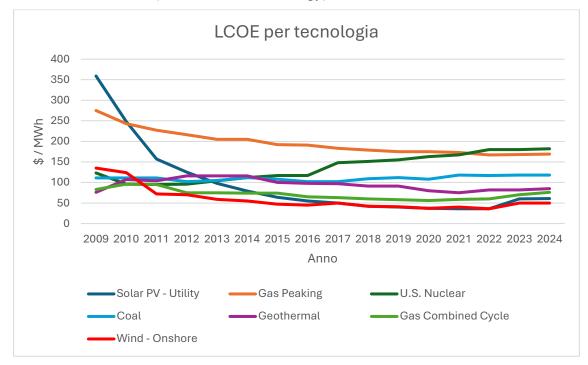


Figure 18: LCOE (Levelized cost of energy). IEA 2024.

Emerge chiaramente come, negli ultimi dieci anni, il costo delle energie rinnovabili abbia subito una significativa riduzione. Un ruolo decisivo in questo processo è stato svolto dal cosiddetto effetto apprendimento, il quale ha favorito l'abbattimento dei costi attraverso la crescente standardizzazione delle tecnologie, la specializzazione delle imprese nella produzione di componenti e la semplificazione dei processi produttivi. Questo meccanismo ha permesso di migliorare l'efficienza lungo l'intera filiera, contribuendo a rendere le fonti rinnovabili sempre più competitive nel tempo. Sebbene questo processo abbia consentito una significativa riduzione dei costi delle energie rinnovabili, non è stato sufficiente a renderle pienamente competitive dal lato della domanda. Questo è dovuto principalmente alla volatilità dei prezzi, che, essendo determinati dal mercato, sono fortemente influenzati dall'intermittenza e dall'imprevedibilità delle condizioni meteorologiche. Per affrontare questo, è fondamentale un intervento normativo da parte degli stati, volto a incentivare l'utilizzo di energia verde stabilizzando i prezzi, creando così le condizioni favorevoli per una transizione energetica sostenibile.

È quindi fondamentale interpretare i dati considerati non semplicemente come valori statici, ma piuttosto come un punto di partenza fondamentale per guidare le decisioni di governi e istituzioni. Questi elementi dovrebbero orientare l'elaborazione di strategie mirate a favorire lo sviluppo del mercato dell'idrogeno, stimolando la domanda e creando le condizioni ideali per consentire a imprese e centri di ricerca di perfezionare le tecnologie emergenti. In questo modo, sarà possibile raggiungere economie di scala e ridurre progressivamente i costi di produzione delle soluzioni a zero emissioni, rendendole competitive rispetto alle tecnologie attualmente in uso.

Un altro aspetto da considerare nella transizione verso l'idrogeno verde è il cosiddetto green premium, ovvero il sovrapprezzo che un'impresa deve sostenere nel momento in cui decide di sostituire le fonti fossili con soluzioni a basse emissioni, come l'idrogeno verde. Attraverso analisi condotte dalla International Energy Agency (2024), è stato possibile quantificare questo differenziale di costo per diverse categorie di prodotto. I risultati mostrano che, per beni intermedi non direttamente destinati al consumatore finale, come l'ammoniaca, il green premium risulti particolarmente elevato, arrivando fino a un incremento del 40-100% rispetto alla produzione tradizionale, in quanto l'ammoniaca si colloca molto a monte nella filiera produttiva, in prossimità dell'idrogeno. Al contrario, nel caso di beni di largo consumo situati a valle della filiera, come la pasta, l'impatto del sovrapprezzo viene notevolmente diluito lungo la catena del valore, portando a un incremento stimato inferiore al 2% sul prezzo finale in Europa. Questo dato evidenzia come l'idrogeno verde possa risultare già oggi competitivo in alcuni mercati, soprattutto laddove la sua incidenza sui costi finali risulta marginale.

Concludiamo il primo capitolo citando uno dei settori in cui l'idrogeno può dimostrarsi particolarmente competitivo: i trasporti. Quest'ultimo rappresenta ad oggi uno dei settori più inquinanti e complicati da decarbonizzare. Sebbene le batterie elettriche rappresentino attualmente una soluzione efficiente per veicoli di piccola e media taglia, la loro produzione è strettamente legata all'approvvigionamento di elementi, come litio, cobalto e nichel, limitati e difficili da reperire. Da queste considerazioni nasce l'opportunità di integrare l'idrogeno all'interno del settore, soprattutto per quanto riguarda il trasporto pesante. Infatti, grazie all'utilizzo di celle a combustibile (fuel cell), l'idrogeno può essere impiegato come fonte di energia per alimentare motori elettrici, offrendo un'alternativa sostenibile e potenzialmente competitiva. In questo contesto, quindi, diventa cruciale confrontare due vettori energetici differenti: l'idrogeno da un lato e le batterie dall'altro. Nel settore dei trasporti hanno lo stesso fine: immagazzinare e rilasciare energia in modo controllato per

alimentare veicoli. Nonostante questo, hanno caratteristiche tecniche, economiche e infrastrutturali profondamente diverse, che ne influenzano l'applicabilità nei vari segmenti di trasporto. Qui di seguito una tabella che confronta i principali aspetti dei due vettori (smartgrid.ieee.org).

Parametro	Batterie Li-ion	Idrogeno (H₂)	
Rendimento energetico	90%	30–40% (elettrolisi + fuel cell) <i>prospettive 50% nel 2030</i>	
Densità energetica gravimetrica	0,2-0,3 kWh/kg	33,33 kWh/kg H₂ liquido	
Densità energetica volumetrica	0,3–0,7 kWh/L (batterie automotive)	1,4 kWh/L (H₂ compresso 700 bar)	
Tempo di ricarica/rifornimento	15 min – 8 ore (in base alla potenza)	< 5 minuti (idrogeno gassoso)	
Autonomia veicoli leggeri	300–500 km (con batteria 50–100 kWh)	500–700 km (con 5–6 kg H₂)	

Figure 19: Tabella comparativa tra Batterie agli ioni di litio e Celle a combustibile a idrogeno per veicoli di piccola taglia; Fonte: smartgrid.ieee.org.

Da questa analisi, emerge chiaramente come, dal punto di vista dell'efficienza energetica, i veicoli elettrici a batteria (BEV) risultino significativamente più efficienti rispetto ai veicoli a celle a combustibile a idrogeno (FCEV). Questa differenza è principalmente dovuta al fatto che la produzione, lo stoccaggio e il trasporto dell'idrogeno richiedono quantità di energia notevolmente superiori rispetto al corrispettivo elettrico. Per immaginare meglio questa differenza di efficienza, consideriamo che mediamente per percorrere la stessa distanza, un FCEV può richiedere 2-3 volte più energia rispetto a un BEV. Sebbene l'efficienza dei veicoli FCEV possa sembrare effettivamente bassa, è importante notare che anche i moderni motori a combustione interna alimentati a benzina presentano un'efficienza simile, generalmente compresa tra il 30% e il 40%.

Per quanto riguarda la densità energetica, l'idrogeno è la soluzione più vantaggiosa. Nei veicoli a celle a combustibile, l'idrogeno è generalmente immagazzinato allo stato gassoso a 350 bar, garantendo una maggiore densità volumetrica rispetto ai pacchi batteria. Questo si riflette direttamente nell'autonomia: un veicolo a idrogeno può coprire 500-700 km con un pieno di 5-6 kg di H₂, con tempi di rifornimento molto rapidi, generalmente tra 3 e 5 minuti, simili a quelli dei carburanti tradizionali. Al contrario, i BEV attuali possono percorrere 300-500 km con pacchi batteria da 50-80 kWh, ma richiedono tempi di ricarica significativamente più lunghi, anche se in continua riduzione grazie ai progressi nelle tecnologie di ricarica rapida.

Questa distinzione evidenzia come le batterie siano generalmente preferite per veicoli

leggeri destinati al trasporto passeggeri e commerciale, grazie alla maggiore efficienza e flessibilità di installazione. Al contrario, l'idrogeno, con la sua maggiore autonomia e tempi di rifornimento ridotti, risulta più adatto per applicazioni più pesanti e a lunga percorrenza, come il trasporto merci, i mezzi d'opera e alcuni segmenti del trasporto marittimo e aereo, dove il peso e il volume delle batterie rappresentano ancora un ostacolo significativo.

Attualmente, nel 2025, il costo di acquisto di un veicolo leggero BEV è mediamente inferiore del 14,1% rispetto a un veicolo FCEV (AutoScout24), mentre nel segmento dei veicoli pesanti per il trasporto passeggeri, come gli autobus, i veicoli FCEV risultano addirittura più convenienti, con un prezzo inferiore del 4,48% rispetto ai BEV. La storia è diversa per quanto riguarda i costi operativi, questi ultimi sono significativamente più elevati per i veicoli FCEV e si attestano mediamente intorno ai 2,12 €/km rispetto agli 1,12 €/km dei veicoli BEV (Qualenergia). Per rendere quindi questa transizione tecnologica realmente possibile, è necessario investire in modo significativo nello sviluppo di un'infrastruttura dedicata per la produzione, lo stoccaggio e il trasporto dell'idrogeno. Questo richiede l'implementazione, come detto nella trattazione, di progetti strategici per migliorare l'efficienza dei processi produttivi, ridurre i costi e rendere l'idrogeno una soluzione energetica sostenibile anche dal punto di vista economico.

CAPITOLO 2: Anglisi di Mercato

Il presente capitolo si propone di analizzare il mercato dell'idrogeno verde. Inizialmente, verrà fornita una panoramica generale sulla produzione complessiva e sul mercato globale di questo vettore energetico, evidenziando i progetti attuali e la composizione geografica degli investimenti. Successivamente, si procederà all'analisi degli attori coinvolti nella domanda e nell'offerta di mercato, distinguendo i ruoli ricoperti dal settore privato e dal settore pubblico. In questa fase, saranno considerati anche esempi di microfiliere già operative, per rendere ancora più tangibile questa trasformazione energetica. Infine, verranno esaminate le principali normative e politiche che generalmente orientano lo sviluppo tecnologico di una soluzione piuttosto che di un'altra.

2.2 Mercato globale dell'idrogeno verde

La produzione di idrogeno verde globale è ancora in fase iniziale, rappresenta attualmente una quota molto ridotta rispetto all'offerta totale. Nel 2023, la domanda globale di idrogeno ha sfiorato le 97 milioni di tonnellate, di queste, solo l'1% è stato prodotto tramite tecnologie che permettono basse emissioni (IEA 2024). Ciò significa che oltre il 99% dell'idrogeno prodotto attualmente deriva da fonti fossili, con conseguente impatto ambientale. In particolare, la produzione tramite elettrolisi, che attualmente rappresenta il principale processo per ottenere idrogeno verde, ha raggiunto nel 2024 circa 230 mila tonnellate (0,23 Mt), pari allo 0,23% del totale. Tuttavia, le stime più recenti indicano una crescita significativa come avvenuto nel passato, infatti, a fine 2021 la potenza cumulativa mondiale degli impianti di elettrolisi era già salita a circa 510 MW, con un aumento di +70% rispetto al 2020. Negli anni successivi questa crescita è proseguita: ad esempio, la Cina nel 2024 da sola ha portato la propria capacità di idrogeno verde a 115 mila tonnellate/anno di produzione installata, valore che rappresenta circa il 50% della capacità mondiale di idrogeno verde (spglobal.com). Nel 2023 la produzione di idrogeno tramite elettrolisi è stata di 109 mila tonnellate, questo significa che tra il 2023 e il 2024 la capacità globale è aumentata di oltre il 100%. Nonostante i tassi di crescita registrati siano notevoli, è importante evidenziare che l'idrogeno verde rappresenta ancora una quota marginale della produzione global. Tuttavia, l'infrastruttura iniziale e gli investimenti messi in atto pongono le fondamenta per una potenziale espansione significativa nei prossimi anni. Le proiezioni a medio termine indicano un potenziale sviluppo esponenziale dell'idrogeno verde, trainato da numerosi progetti attualmente in fase di pianificazione o costruzione. Secondo i dati dell'Agenzia Internazionale dell'Energia (IEA), qualora tutti i progetti in fase di realizzazione fossero portati a termine, la produzione annua di idrogeno verde potrebbe superare i 14 milioni di tonnellate entro il 2030. Estendendo l'analisi anche ai progetti ancora allo stadio di annuncio preliminare, la capacità produttiva teorica globale potrebbe raggiungere i 49 Mt/anno nello stesso orizzonte temporale (IEA, 2024), pari a circa la metà del fabbisogno previsto per il raggiungimento degli obiettivi di decarbonizzazione al 2030. Tuttavia, è improbabile che tutti i progetti si concretizzino nei tempi previsti. Numerosi ostacoli tra cui ritardi nei processi autorizzativi, incertezze sulla domanda futura e l'elevato costo della tecnologia, stanno già determinando lo slittamento o la cancellazione di diversi progetti. Alcuni studi di settore, come quello dell'Hydrogen Council, stimano che, tenendo conto delle difficoltà attuative, la capacità realmente operativa entro il 2030 possa attestarsi tra 12 e 18 Mt/anno di idrogeno verde. Sebbene si tratti comunque di un incremento di un ordine di grandezza rispetto ai livelli attuali, esso risulterebbe significativamente inferiore rispetto alle promesse annunciate. In conclusione, la crescita registrata finora, caratterizzata da incrementi annui di decine di punti percentuali, è stata significativa, ma sarà necessario mantenere ritmi straordinariamente elevati (circa +90% annuo secondo le proiezioni IEA) per avvicinarsi agli scenari di piena decarbonizzazione

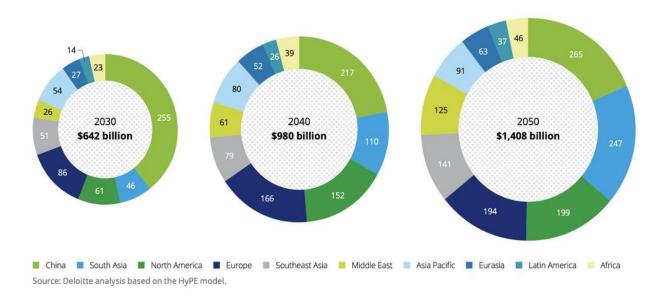


Figure 20: Prospettive di Mercato dell'idrogeno verde dal 2030 al 2050.

2.2 Dall'idea alla realtà: i progetti più ambiziosi nel mondo

L'interesse globale nei confronti dell'idrogeno verde si traduce in centinaia di iniziative su scala mondiale. Di seguito vengono riportati alcuni dei principali progetti attualmente in fase di sviluppo o pianificati, suddivisi per area geografica:

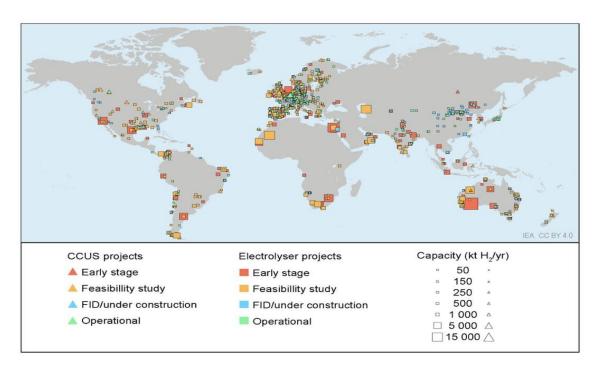


Figure 21: Stato mondiale dei progetti inerenti all'idrogeno verde. Fonte IEA2024

Medio Oriente: In Arabia Saudita è in costruzione il progetto NEOM Green Hydrogen. Questo complesso rappresenta una delle iniziative più avanguardistiche del settore. Nasce come una joint venture fra ACWA Power, Air Products e NEOM, sarà alimentato da 4 GW di energia rinnovabile (2,2 GW solare + 1,6 GW eolico) e produrrà circa 600 tonnellate al giorno di idrogeno verde (convertito in ammoniaca per l'esportazione), equivalenti a oltre 200 mila ton/anno di H2 puro (canrymedia.com). L'impianto, attualmente all'80% di avanzamento lavori, dovrebbe entrare in funzione nel 2027, fornendo circa 1,2 milioni di ton/anno di ammoniaca verde (ammoniaenergy.com). L'investimento complessivo per NEOM è di circa \$8,4 miliardi. Oltre all'Arabia Saudita, anche altri paesi del Golfo e Nord Africa (es. Oman, Emirati, Egitto, Marocco) hanno annunciato hub dell'idrogeno mirati sia al mercato interno sia all'export verso Europa e Asia.

Cina: la Cina, come riportato più volte nella trattazione, è attualmente il maggiore produttore e consumatore mondiale di idrogeno, negli ultimi due anni ha spinto con decisione sul fronte idrogeno verde, grazie alla sua leadership nelle rinnovabili e nella manifattura di elettrolizzatori. Solo nel 2024 la Cina ha installato sul suo territorio 35 nuovi impianti di elettrolisi con una capacità totale di 115 kt/anno (IEA 2024). Il più grande singolo impianto operativo al mondo si trova proprio in Cina (nella regione Xinjiang) con capacità di circa 44 kt/anno (canarymedia.com). Numerosi mega-progetti cinesi sono in cantiere, spesso integrati a poli industriali (raffinerie, produzione di ammoniaca, acciaierie) per

decarbonizzare processi esistenti. La Cina sta inoltre dominando la filiera produttiva: circa il 60% della capacità mondiale di produzione di elettrolizzatori è cinese (IEA 2024), fattore che contribuisce a ridurre i costi degli impianti. Questa forte spinta interna pone la Cina in posizione di leadership anche per le esportazioni future di tecnologie e, potenzialmente, di combustibili derivati dall'idrogeno (come l'ammoniaca).

Europa: l'Europa è stata tra le prime regioni a credere nell'idrogeno verde come pilastro della transizione energetica. Oltre 30 paesi hanno adottato strategie nazionali sull'idrogeno entro il 2022, e l'Unione Europea ha fissato target ambiziosi: produrre 10 milioni di tonnellate di idrogeno rinnovabile annue nell'UE e importarne altre 10 Mt entro il 2030 (canarymedia.com). Per raggiungere questi obiettivi, sono in sviluppo progetti su più fronti. In campo industriale, ad esempio, si punta alla produzione di acciaio verde: in Svezia è operativo un primo impianto pilota (Hybrit) e si sta costruendo uno stabilimento (H2 Green Steel) con elettrolizzatori dedicati. Altri progetti riguardano la produzione di ammoniaca verde (Spagna, Portogallo), la realizzazione di elettrolizzatori gigawatt-scale nei porti del Nord Europa (Paesi Bassi, Germania) per rifornire sia industria che trasporti, e la conversione di hydrogen hubs in ex distretti fossili (ad es. in Germania nella Ruhr e in Regno Unito nell'Humber). Tra i paesi leader in termini di capacità pianificata vi sono Germania, Francia, Svezia e Regno Unito, tutti nella top 10 globale per progetti finanziati (canarymedia.com). L'Europa inoltre sta investendo in infrastrutture dedicate (come la rete di trasporto "European Hydrogen Backbone") e in meccanismi di incentivazione della domanda (ad esempio gli Hydrogen Contracts for Difference in Germania e i mandati UE per carburanti verdi nei trasporti) per stimolare sia l'offerta che l'utilizzo di idrogeno verde nei settori difficili da elettrificare.

Nord America: negli Stati Uniti è stato fondamentale l'aiuto di normative ed incentivi che hanno permesso la creazione di un eco-sistema verde. L'Infrastructure Investment and Jobs Act del 2021 ha stanziato \$8 miliardi per creare Hydrogen Hubs regionali (iea.org), ovvero distretti per la produzione e l'uso dell'idrogeno in diversi stati (es. California, Texas, Midwest). Inoltre, l'Inflation Reduction Act, approvato negli Stati Uniti nel 2022, ha introdotto crediti d'imposta particolarmente incentivanti per la produzione di idrogeno pulito, con sussidi che possono arrivare fino a 3 dollari per chilogrammo di H₂ verde o blu prodotto (iea.org). Questa misura ha contribuito a stimolare un'ondata di nuovi progetti su tutto il territorio statunitense, rafforzando significativamente l'attrattività economica del

settore e accelerando gli investimenti nelle tecnologie low-carbon. Attualmente sono pianificati 67 impianti di idrogeno verde negli Stati Uniti entro i prossimi 5 anni, con investimenti totali dichiarati di circa 26 miliardi (airswift.com). A livello globale, lo sviluppo dell'idrogeno a basse emissioni di carbonio presenta significative differenze geografiche. In Nord America, ad esempio, la maggior parte dei progetti finora approvati riguarda l'idrogeno "blu", ottenuto dal gas naturale associato a tecnologie di cattura e stoccaggio della CO₂ (CCS). Questo orientamento è stato favorito da incentivi fiscali come il 45Q un credito in dollari per ogni tonnellata metrica di anidride carbonica catturata, che ha contribuito a rendere gli investimenti in questa direzione particolarmente attrattivi. Secondo i dati dell'Hydrogen Council, nel 2024 circa il 90% della capacità di produzione di idrogeno low-carbon a livello globale che aveva raggiunto la Final Investment Decision (FID) si trovava proprio in Nord America.

Resto del mondo: al di fuori delle principali economie Mondiali, anche altre regioni stanno investendo con decisione nello sviluppo dell'idrogeno rinnovabile. L'Australia, in particolare, si distingue come uno dei paesi più attivi, grazie alla disponibilità di vaste risorse solari ed eoliche. Alla fine del 2022, il paese deteneva il maggior numero di impianti annunciati di idrogeno verde a livello globale (REN21, 2022). Progetti ambiziosi come il Western Green Energy Hub e l'Asian Renewable Energy Hub prevedono l'impiego di decine di gigawatt di fonti rinnovabili per la produzione di idrogeno e ammoniaca destinati all'esportazione verso mercati asiatici, come Giappone e Corea del Sud. In America Latina, il Cile è stato tra i primi paesi a dotarsi di una strategia nazionale sull'idrogeno verde, puntando su impianti eolici situati nella regione della Patagonia per produrre idrogeno e carburanti sintetici (e-fuels) destinati all'export. Nello stato di Piauí in Brasile è in corso di sviluppo un progetto mondiale, con una capacità prevista di 400.000 tonnellate annue di idrogeno verde, alimentato da grandi parchi eolici e solari. Infine, il continente africano dove paesi come Namibia, Mauritania e Sudafrica, dotati di ampie risorse rinnovabili e vaste aree disponibili, hanno annunciato la realizzazione di hub per la produzione di idrogeno verde. Molti di questi progetti vedono il coinvolgimento di investitori europei e asiatici e puntano sia a soddisfare la domanda energetica interna, sia a esportare ammoniaca o altri vettori energetici a basse emissioni.

Pur essendo in molti casi ancora in fase preliminare, questi progetti evidenziano una crescente diffusione geografica dell'economia dell'idrogeno verde e il suo potenziale ruolo strategico nelle future traiettorie di decarbonizzazione.

2.3 Approfondimento: casi studio reali

Di seguito sono presentati due esempi reali, attualmente operativi, di impianti che producono e utilizzano idrogeno verde attraverso il processo di elettrolisi. Questi casi studio rappresentano esempi significativi dell'applicazione concreta della tecnologia, mostrando sia il potenziale tecnico che le sfide ancora da affrontare per una diffusione su larga scala.

Impianto Iberdrola – Fertiberia di Puertollano (Europa – Spagna)

Il primo impinto che andiamo a rappresentare è situato a Puertollano (provincia di Ciudad Real) nella regione Castiglia-La Mancia, in Spagna. Si tratta di un progetto realizzato dalla multinazionale energetica Iberdrola presso lo stabilimento di fertilizzanti del gruppo Fertiberia (iberdrola.com). È fra i più grandi impianti di idrogeno verde per uso industriale in Europa, è stato inaugurato nel 2022 e utilizza elettrolizzatori di tipo PEM (Proton Exchange Membrane). Iberdrola ha selezionato la società norvegese Nel Hydrogen come fornitrice degli elettrolizzatori basati sulla sua tecnologia Proton PEM® (iberdrola.com).

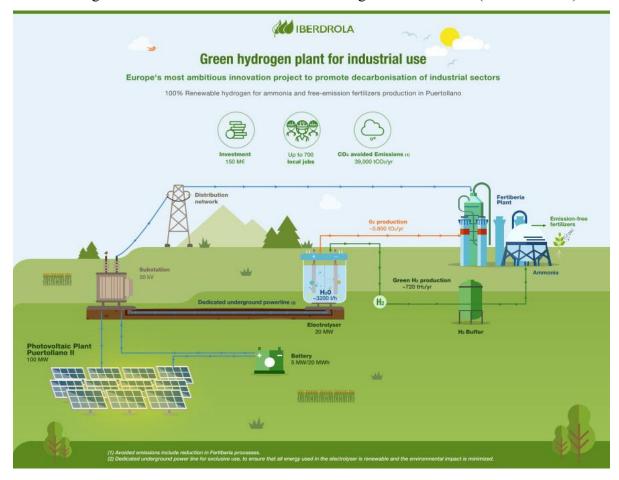


Figure 22: Schema di impianto per la produzione di idrogeno verde progettato da Iberdrola a Puertollano (Spagna).

Fonte: Iberdrola.it

La potenza installata dell'elettrolizzatore è di 20 MW, composta da stack modulari PEM, rendendo questo sistema di elettrolisi uno dei più grandi al mondo nella sua categoria. La produzione di idrogeno è alimentata al 100% da energia rinnovabile fotovoltaica dedicata. In particolare, l'impianto è integrato con un parco solare da 100 MW situato nelle vicinanze, dotato di moduli bifacciali (per maggiore efficienza) e di un sistema di accumulo agli ioni di litio da 20 MWh. Questa configurazione garantisce che l'elettrolisi avvenga con elettricità rinnovabile, azzerando le emissioni di CO₂ associate (iberdrola.com).

Il progetto è frutto della collaborazione tra Iberdrola (che ha investito circa 150 milioni di euro nell'impianto) e Fertiberia (utilizzatore dell'idrogeno prodotto). Oltre a questi, sono coinvolti partner tecnologici e industriali: la già citata Nel Hydrogen come fornitore degli elettrolizzatori PEM, la società spagnola Elecnor che ha curato l'assemblaggio elettrico e la fornitura di apparecchiature elettriche in sito, nonché il Centro Nazionale dell'Idrogeno di Spagna (con sede proprio a Puertollano) che ha fornito supporto tecnico durante la costruzione.

L'elettrolizzatore installato da 20 MW può produrre fino a 3.000 tonnellate di idrogeno verde all'anno. L'impianto riuscirà, in condizioni di regime, a generare circa 156 GWh sotto forma di idrogeno consentendo di evitare l'emissione di circa 78.000 tonnellate annue di CO₂ rispetto all'idrogeno tradizionale da fonte fossile (iberdrola.com).

L'idrogeno verde prodotto a Puertollano viene interamente utilizzato nel vicino stabilimento Fertiberia per la produzione di ammoniaca e fertilizzanti. Ciò permette di sostituire parte dell'idrogeno da gas naturale precedentemente impiegato nel processo industriale, contribuendo alla decarbonizzazione di un settore difficile da elettrificare come quello chimico-fertilizzante. Fertiberia utilizza l'idrogeno (nonché l'ossigeno coprodotto dall'elettrolisi) nei suoi processi produttivi, diventando la prima azienda europea del settore fertilizzanti a sperimentare la generazione di ammoniaca verde su larga scala. In prospettiva, l'idrogeno potrà trovare impiego anche in altri settori locali (ad es. miscelato nel gas naturale per riscaldamento urbano tramite una rete di teleriscaldamento verde in progetto a Puertollano, nonché nel trasporto pesante e nell'industria siderurgica, ma l'uso primario attuale è nell'industria dei fertilizzanti.

L'impianto è pienamente operativo dal 2022. È stato inaugurato ufficialmente a maggio 2022 ed ha avviato la produzione di idrogeno verde, rifornendo regolarmente lo stabilimento Fertiberia. Attualmente l'impianto funziona come prima fase di un piano di espansione più ampio: Iberdrola e Fertiberia hanno annunciato l'intenzione di sviluppare entro il 2027 ulteriori impianti per raggiungere complessivamente 40.000 tonnellate/anno di capacità di

idrogeno verde (circa 830 MW di elettrolizzatori installati in totale) distribuiti su altri siti Fertiberia in Spagna. Il progetto di Puertollano, dunque, rappresenta un primo progetto dimostrativo su scala industriale, già operativo, destinato potenzialmente ad essere ampliato e replicato in futuro su scala maggiore.

Impianto Sinopec di Kuqa (Asia – Cina)

Il Kuqa Green Hydrogen Project, situato nella città di Kuqa, prefettura di Aksu, nella regione autonoma dello Xinjiang (Cina occidentale), rappresenta attualmente il più grande impianto "solar-to-hydrogen" al mondo in esercizio (prnewswire.com). Il progetto è stato sviluppato e viene gestito dalla compagnia petrolchimica statale Sinopec (China Petroleum & Chemical Corporation), tramite la sua controllata New Star Energy. La costruzione dell'impianto è iniziata alla fine del 2021 ed è stato ufficialmente messo in funzione nel 2023. L'investimento iniziale complessivo per la realizzazione del progetto è stato pari a circa 470 milioni di dollari (reuters.com).

Figure 23: Impianto Sinopec di Kuqa. Fonte: Sinopecgroup.com

Dal punto di vista tecnologico, l'impianto impiega la tecnologia di elettrolisi alcalina su larga scala, attualmente dominante in Cina nei grandi progetti di idrogeno verde per via dei costi relativamente contenuti.

Va osservato che, sebbene Sinopec stia sviluppando anche tecnologie PEM (Proton Exchange Membrane) su scala ridotta per le stazioni di rifornimento a idrogeno, per questo impianto ha optato per l'uso della più consolidata tecnologia alcalina, adatta a progetti di grandi dimensioni.

L'impianto di Kuqa è alimentato esclusivamente da fonti rinnovabili, a tal fine, è stato realizzato un ampio parco fotovoltaico dedicato, situato nelle immediate vicinanze dell'impianto di elettrolisi, con una capacità stimata dell'ordine di alcune centinaia di megawatt (prnewswire.com). Tale infrastruttura è completata da linee elettriche e sistemi di trasformazione volti a convogliare efficientemente l'energia prodotta verso l'elettrolizzatore, garantendo un processo interamente verde dal punto di vista energetico. Secondo quanto dichiarato da Sinopec, il progetto fa leva sulla "ricchezza di risorse fotovoltaiche" dell'area di Kuqa, e prevede l'impiego esclusivo di energie rinnovabili (solare ed eventualmente eolica) per l'intero ciclo produttivo, con l'obiettivo di ridurre al minimo l'impronta carbonica associata alla produzione di idrogeno (prnewswire.com).

L'impianto dispone inoltre di infrastrutture avanzate per lo stoccaggio e il trasporto dell'idrogeno: i serbatoi installati hanno una capacità complessiva di circa 210.000 m³, mentre il sistema di distribuzione consente una movimentazione fino a 28.000 m³/ora. Ciò evidenzia l'elevato livello di integrazione della filiera, dalla produzione di energia rinnovabile fino alla distribuzione dell'idrogeno (prnewswire.com).

L'impianto ha una capacità produttiva annua di 20.000 tonnellate di idrogeno, rendendolo il primo in Cina a superare la soglia delle 10.000 tonnellate annue. Per raggiungere tale output, sono stati installati elettrolizzatori alcalini pressurizzati per una potenza complessiva di circa 260 MW, distribuiti su 52 unità fornite da diversi produttori nazionali (spglobal.com).

L'idrogeno verde prodotto a Kuqa viene principalmente utilizzato per sostituire l'idrogeno da gas naturale nei processi di raffinazione del petrolio, contribuendo in modo importante alla decarbonizzazione della produzione di carburanti. Secondo le stime di Sinopec, l'utilizzo dell'idrogeno verde consente una riduzione delle emissioni di CO₂ pari a circa 485.000 tonnellate annue (prnewswire.com). Sebbene il principale utilizzo dell'idrogeno sia attualmente limitato alla raffinazione, Sinopec considera il progetto come un modello replicabile per altri settori. In particolare, l'azienda prevede un'espansione dell'uso dell'idrogeno nella mobilità sostenibile, tramite lo sviluppo di una rete nazionale di stazioni di rifornimento a celle a combustibile. Tuttavia, a oggi l'uso prevalente dell'idrogeno di Kuqa resta confinato all'ambito industriale.

L'impianto è attualmente operativo, seppur in fase di rampa graduale verso la piena capacità. Dal lancio ufficiale nel luglio 2023, l'impianto ha prodotto oltre 30.000 tonnellate di idrogeno verde (spglobal.com). Data la sua scala senza precedenti e il carattere pionieristico, l'impianto è attentamente monitorato da Sinopec per ottimizzare prestazioni e gestione

operativa, in particolare in relazione all'intermittenza della fonte solare. Contestualmente, l'azienda ha avviato un secondo progetto in Inner Mongolia da 30.000 tonnellate/anno e pianifica la costruzione di una rete di gasdotti per idrogeno che colleghi le future aree di produzione rinnovabile ai poli industriali come Pechino (reuters.com).

In conclusione, il polo di Kuqa rappresenta un caso esemplare di produzione e utilizzo integrato dell'idrogeno verde su scala industriale in Cina e costituisce un pilastro fondamentale della strategia nazionale per la transizione energetica.

2.4 Obiettivi e Normative

EUROPA

La Strategia Europea per l'Idrogeno, intitolata *A Hydrogen Strategy for a Climate-Neutral Europe*, è stata adottata dalla Commissione Europea nel 2020, ed è attualmente in fase di attuazione tramite il pacchetto normativo "Fit for 55" (che include il RED III, il Gas & Hydrogen Package e successive integrazioni, come il piano REPowerEU del 2022)⁶. Questa strategia si inserisce nel più ampio obiettivo europeo di raggiungere la neutralità climatica entro il 2050, individuando nell'idrogeno rinnovabile un vettore essenziale per la decarbonizzazione dei settori hard-to-abate, come l'industria pesante, la chimica, i trasporti pesanti, l'aviazione e lo stoccaggio energetico.

La strategia Europea mira a raggiungere i seguenti traguardi: Entro il 2025, installare 6 GW di elettrolizzatori che, a regime, riusciranno a generare circa 1 milione di tonnellate all'anno di idrogeno verde (observatory.clean-hydrogen.europa.eu).

Riuscire, entro il 2030, a sviluppare una potenza degli elettrolizzatori di 40 GW, riuscendo a produrre circa 10 milioni di tonnellate annualmente. Per rendere possibile il raggiungimento di questi obiettivi, l'Unione Europea sta lavorando su un quadro normativo e finanziario appositamente progettato, attraverso gli atti delegati RED II e RED III sono state fissate quote vincolanti di consumo nei settori industriali e dei trasporti. Almeno il 50% dell'idrogeno dell'industria sarà di origine rinnovabile entro il 2030 e i carburanti nei trasporti dovranno contenere almeno il 2,6% di RFNBO (Combustibili Rinnovabili di Origine Non Biologica) (eur-lex.europa.eu).

Sul fronte economico l'UE ha rilasciato un importante quantitativo strumentale di finanziamento e di incentivo. L'innovation Fund, sostenuto da entrate provenienti dal

-

⁶ RED II, RED III, Gas & Hydrogen Package e il piano REPowerEU rappresentano dei particolari piani strategici che mirano a regolare ed accelerare la transizione energetica.

sistema ETS (EU Emissions Trading System), ha già cofinanziato circa 2,6 GW di elettrolizzatori, mentre gli aiuti IPCEI (Important Projects of Common European Interest) riescono a coprire l'intera catena produttiva dell'idrogeno, dalla produzione all'utilizzo, inclusa la mobilità.

Dal 2023, anche la Banca Europea dell'Idrogeno è operativa, riuscendo, tramite incentivi, a ridurre in determinate circostanze, il gap di costo esistente fra idrogeno verde ed idrogeno grigio (eur-lex.europa.eu).

La tassonomia verde dell'UE classifica la produzione e l'uso di idrogeno rinnovabile come attività sostenibili, facilitando l'accesso a capitali dedicati. Inoltre, le nuove regole ETS prevedono esenzioni specifiche (come assegnazioni gratuite) per gli elettrolizzatori, riducendone i costi operativi. Parallelamente, si promuove lo sviluppo di infrastrutture dedicate, come la dorsale europea dell'idrogeno, una rete di circa 6800 km prevista entro il 2030, e si rafforzano i rapporti internazionali per l'importazione di idrogeno da paesi extra-UE (eur-lex.europa.eu).

Dal punto di vista economico gli investimenti stimati sono superiori ai 320 miliardi di euro entro il 2030, attraverso cui si riuscirà ad ospitare in UE il 30% dei progetti mondiali in questo settore. Sono stati identificati oltre 840 progetti lungo tutta la filiera (eurlex.europa.eu) che consentiranno la produzione di circa 10 milioni di tonnellate di idrogeno verde che, a loro volta, eviteranno tra le 80 e le 100 milioni di tonnellate di CO₂ all'anno nell'UE. Nel lungo termine, l'idrogeno verde è visto come ponte per l'innovazione tecnologica, lo sviluppo industriale e l'occupazione, con un potenziale di vendite globali di tecnologie H₂ stimate in 630 miliardi di euro annui entro il 2050 (observatory.cleanhydrogen.europa.eu).

USA

La Strategia Nazionale degli Stati Uniti per l'Idrogeno Pulito, denominata *U.S. National Clean Hydrogen Strategy and Roadmap*, è stata pubblicata dal Dipartimento dell'Energia (DOE) nel giugno 2023. Essa rappresenta il primo documento strategico a livello federale incentrato sull'idrogeno a basse emissioni e nasce in attuazione dell'*Infrastructure Investment and Jobs Act* del 2021. (hydrogen.energy.gov).

Gli obiettivi fissati dal piano hanno come target una produzione pari a 10 milioni di tonnellate annue entro il 2030, 20 milioni al 2040 e 50 milioni al 2050. Questi valori rappresentano un'accelerazione importante rispetto alla produzione attuale di idrogeno verde, ancora molto limitata negli Stati Uniti (hydrogen.energy.gov). Uno degli obiettivi

principali è la riduzione del costo di produzione a un dollaro per chilogrammo di idrogeno entro il 2030, come previsto dall'iniziativa Hydrogen Shot promossa dallo stesso DOE, in modo da renderlo competitivo su scala industriale (resourcehub.bakermckenzie.com). I settori prioritari di utilizzo includono l'industria pesante (raffinazione, acciaierie, produzione di ammoniaca e fertilizzanti) i trasporti pesanti (autocarri, aviazione e navigazione) lo stoccaggio energetico e la produzione elettrica tramite turbine alimentate a idrogeno. L'obiettivo a lungo termine è contribuire, grazie all'idrogeno, a una riduzione del 10% delle emissioni totali statunitensi rispetto ai livelli del 2005 entro il 2050 (hydrogen.energy.gov).

Per raggiungere tali obiettivi, gli Stati Uniti hanno varato un pacchetto di strumenti economici e normativi molto ampio. *L'Infrastructure Investment and Jobs Act* ha stanziato 8 miliardi di dollari per la creazione di almeno quattro Hydrogen Hubs regionali, ovvero poli integrati di produzione e utilizzo dell'idrogeno pulito in diversi contesti industriali e geografici. I progetti selezionati nel 2023 comprendono filiere complete, dalla produzione (mediante elettrolisi alimentata da fonti rinnovabili, reforming del metano con cattura e stoccaggio del carbonio, o energia nucleare) fino agli usi finali. Questi hub avranno anche la funzione di dimostrare la fattibilità commerciale dell'idrogeno su larga scala e di gettare le basi per una rete nazionale dedicata (energy.gov).

Il pacchetto di misure è stato ulteriormente rafforzato dall'Inflation Reduction Act (IRA), approvato nell'agosto 2022, che introduce un credito d'imposta alla produzione di idrogeno pulito (Clean Hydrogen Production Tax Credit, 45V): per dieci anni i produttori possono ricevere fino a tre dollari per chilogrammo di idrogeno in base all'intensità carbonica del processo produttivo, con il massimo incentivo destinato ai processi che emettono meno di 0,45 kg di CO₂ per kg di idrogeno (energy.gov). Oltre a questo, l'IRA prevede anche crediti d'imposta per gli investimenti in elettrolizzatori e infrastrutture (pari al 30% del valore), nonché finanziamenti specifici per veicoli a celle a combustibile e progetti di transizione industriale. Sono inoltre previsti fondi aggiuntivi, superiori a 1,5 miliardi di dollari, per sostenere la ricerca e lo sviluppo di tecnologie innovative come gli elettrolizzatori avanzati. Anche a livello statale, alcune amministrazioni locali si stanno dotando di strategie proprie: tra queste la California ha adottato nel 2023 la California Hydrogen Market Development Strategy dove, grazie all'insieme di misure fiscali, investimenti pubblici e roadmap tecnica, si prevede una rapida crescita della capacità installata di elettrolizzatori e della produzione di idrogeno verde, con stime di 3-5 GW entro la metà degli anni 2020 e oltre 10 GW entro il 2030. I poli regionali contribuiranno a creare migliaia di posti di lavoro qualificati e a riqualificare aree industriali dismesse, in particolare ex distretti carboniferi (energy.gov). Entro il 2050, si prevede che una produzione di 50 milioni di tonnellate annue di idrogeno pulito possa coprire circa il 14% del fabbisogno energetico statunitense, sufficiente per alimentare interamente il settore dei trasporti pesanti, contribuendo in modo significativo agli obiettivi di neutralità carbonica (hydrogen.energy.gov). Già nel breve termine, l'entrata in funzione dei progetti finanziati da IRA e IIJA dovrebbe comportare una sostanziale riduzione delle emissioni di CO₂ e favorire la nascita di nuovi mercati per l'idrogeno, come le raffinerie a basse emissioni, la logistica a impatto zero e le acciaierie a riduzione diretta con idrogeno. In sintesi, gli Stati Uniti intendono posizionarsi come uno dei principali attori globali nella filiera dell'idrogeno verde, sfruttando la combinazione di incentivi, innovazione tecnologica e scala industriale per abbattere i costi e accelerare la transizione energetica (resourcehub.bakermckenzie.com).

CINA

La Cina ha adottato nel marzo 2022 il Piano di Sviluppo dell'Industria dell'Idrogeno 2021–2035, primo documento strategico nazionale dedicato all'idrogeno, pubblicato dalla Commissione Nazionale per lo Sviluppo e le Riforme (NDRC) e attualmente in vigore (csis.org). Il piano segue un approccio graduale con obiettivi fissati su più orizzonti temporali: entro il 2025 il paese punta a produrre tra 100.000 e 200.000 tonnellate di idrogeno verde all'anno, generate da fonti rinnovabili (reuters.com), e a mettere in circolazione circa 50.000 veicoli alimentati a celle a combustibile, tra autobus, camion e automobili (reuters.com). Sebbene questi traguardi siano relativamente modesti rispetto alla scala cinese, dove la produzione totale di idrogeno supera già i 33 milioni di tonnellate annue (per circa l'80% da carbone e gas fossile), rappresentano un segnale di apertura verso una maggiore sostenibilità (reuters.com).

In prospettiva, il piano prevede che entro il 2035 la Cina abbia sviluppato una filiera dell'idrogeno matura e integrata, con applicazioni diffuse nei settori della mobilità, dello stoccaggio energetico e dell'industria pesante.

Il piano nazionale fornisce linee guida generali ma l'approccio effettivo è decentralizzato: le province definiscono piani industriali propri e fissano obiettivi spesso più ambiziosi di quelli nazionali, con oltre 20 giurisdizioni regionali che includono l'idrogeno nei propri programmi di sviluppo (reuters.com). Il governo centrale stimola l'innovazione e coordina l'azione tramite meccanismi come il programma delle "città dimostrative" per i veicoli a celle a combustibile: in queste aree, consorzi tra province e aziende ricevono sussidi basati

sui risultati raggiunti, in sostituzione degli incentivi diretti all'acquisto dei veicoli (csis.org). Sono inoltre previsti finanziamenti per la ricerca e sviluppo su tecnologie critiche, tra cui elettrolizzatori e celle a combustibile, in particolare per colmare il divario tecnologico nelle celle PEM (csis.org). Grandi imprese statali, come Sinopec, già citata precedentemente, stanno già costruendo impianti di elettrolisi da 100 MW e investendo nella creazione di una rete di distributori di idrogeno (reuters.com). Altri strumenti di supporto includono agevolazioni fiscali e tariffe elettriche agevolate per i progetti legati all'idrogeno verde. L'impatto previsto della strategia cinese sull'idrogeno si inserisce in un quadro più ampio di obiettivi climatici e di sicurezza energetica, con il picco delle emissioni atteso entro il 2030 e la neutralità climatica entro il 2060. Nel breve termine, il contributo diretto in termini di riduzione delle emissioni sarà contenuto: la produzione di 200.000 tonnellate di idrogeno verde eviterebbe l'emissione di circa 1–2 milioni di tonnellate di CO₂ all'anno (csis.org). Tuttavia, l'avvio di una filiera solida e scalabile potrebbe permettere alla Cina di mitigare centinaia di milioni di tonnellate di CO2 nel lungo periodo. La messa in circolazione di 50.000 veicoli a celle a combustibile renderà la Cina il primo mercato mondiale per mezzi alimentati a idrogeno, rafforzando una leadership già consolidata nel segmento degli autobus e dei camion a fuel cell (csis.org). Entro il 2035, l'obiettivo è realizzare una "industria completa dell'idrogeno", con impianti di elettrolisi alimentati dalla crescente capacità rinnovabile cinese (che punta a raggiungere 1200 GW tra solare ed eolico al 2030), infrastrutture logistiche per la distribuzione e lo stoccaggio dell'idrogeno, e applicazioni su larga scala nei settori industriali, come la siderurgia e la chimica, in sostituzione del carbone. Considerata la posizione dominante della Cina nella produzione di apparecchiature a basso costo, è plausibile che il paese possa estendere la propria leadership anche alla manifattura di tecnologie per l'idrogeno, contribuendo alla riduzione globale dei costi. Il piano segnala chiaramente un forte impegno politico verso lo sviluppo dell'idrogeno, come dimostrato dal fatto che già nel 2022 erano in fase di sviluppo oltre 120 progetti di idrogeno verde nel paese (reuters.com). Pur adottando obiettivi iniziali cauti, la Cina ha avviato una strategia strutturata che mira a integrare l'idrogeno nel mix energetico nazionale. I benefici attesi riguardano sia la decarbonizzazione dell'economia, sia l'innovazione industriale e la creazione di nuova occupazione in un settore ad alto contenuto tecnologico.

ITALIA

L'Italia ha avviato il percorso verso una strategia nazionale sull'idrogeno con la pubblicazione, nel novembre 2020, delle prime linee guida da parte del Ministero dello Sviluppo Economico. Si trattava di un documento preliminare e non vincolante che delineava una visione iniziale per l'integrazione dell'idrogeno nella transizione energetica nazionale. Successivamente, nel biennio 2023–2024, il Ministero dell'Ambiente e della Sicurezza Energetica (MASE) ha elaborato una versione aggiornata della Strategia Nazionale Idrogeno (SNI), in collaborazione con il Gestore dei Servizi Energetici e altri attori istituzionali e industriali. Questa nuova strategia è stata presentata alla fine del 2024 e l'adozione formale è attesa a partire dal 2025 (rinnovabili.it). Nel frattempo, l'avvio degli investimenti nel settore è stato sostenuto attraverso i fondi del Piano Nazionale di Ripresa e Resilienza (PNRR).

Nella suddetta strategia, gli obiettivi sono molteplici, tra cui: raggiungere entro il 2030 3 GW di elettrolizzatori installati sul territorio italiano, in coerenza con il nuovo PNIEC (Piano Nazionale Integrato per l'Energia e il Clima). Entro il 2050, la domanda nazionale di idrogeno dovrebbe variare tra 6,4 e 11,9 Mtep⁷ all'anno; in tale scenario, l'idrogeno potrebbe coprire fino al 20% della domanda energetica finale. Per raggiungere questi volumi di produzione, l'Italia dovrebbe installare entro il 2050 tra i 15 e i 30 GW di elettrolizzatori, nel caso in cui decidesse di produrre internamente il 70% dell'idrogeno consumato (rinnovabili.it). I settori prioritari individuati per l'utilizzo dell'idrogeno entro il 2030 sono principalmente le industrie ad alta intensità energetica, come raffinerie, acciaierie e impianti per la produzione di ammoniaca e fertilizzanti, con un impiego iniziale dell'H₂ come sostituto del metano nei processi esistenti (mimit.gov.it).

Il supporto alla strategia si basa principalmente su fondi europei e nazionali. Il PNRR ha stanziato circa 3,19 miliardi di euro per lo sviluppo dell'idrogeno (euractiv.it), destinando risorse a progetti di produzione di H₂ verde in siti industriali dismessi (Hydrogen Valley regionali, 500 milioni di euro), all'introduzione dell'idrogeno nei trasporti (inclusi treni a idrogeno su sei linee del Sud e stazioni di rifornimento per strade e ferrovie, per un totale di 530 milioni di euro) (innovationpost.it), e a iniziative di ricerca e sviluppo per tecnologie innovative come elettrolizzatori ad alta efficienza e veicoli a fuel cell (160 milioni di euro).

⁷ 1 Mtep corrisponde a un milione di tonnellate equivalenti di petrolio, ossia alla quantità di energia che si otterrebbe bruciando un milione di tonnellate di petrolio. Questa unità di misura viene utilizzata per confrontare tra loro diverse fonti energetiche tramite un unico parametro standard.

CAPITOLO 3: Patent Landscape e Innovation Trends

3.1 Importanza dell'innovazione e dei brevetti

L'innovazione è lo sfruttamento economico di un'invenzione, ovvero è l'introduzione di una nuova invenzione sul mercato; rappresenta la forza trainante per favorire l'espansione economica, la competitività tra gli attori e in generale il progresso sociale. Proteggere il valore dell'innovazione rappresenta un qualcosa di fondamentale importanza per l'inventore e per le imprese in quanto, grazie alla salvaguardia dei loro investimenti in R&S, possono promuovere ulteriori sviluppi tecnologici. Dunque, specialmente in mercati caratterizzati da un elevato grado di specializzazione tecnologica, l'innovazione rappresenta un elemento cruciale per accaparrarsi un vantaggio competitivo sui competitors. Infatti, al giorno d'oggi, gli asset intangibili (in certi contesti anche più di quelli materiali) giocano un ruolo fondamentale nel mondo delle imprese; lo sfruttamento strategico di questi asset è un elemento cruciale per la creazione di valore.

Ci sono diversi modi per proteggere il valore di un'innovazione:

- Segreto industriale (pratica che consiste nel mantenere riservate informazioni proprietarie e segreti commerciali);
- Diritti di proprietà intellettuale (includono brevetti, marchi, copyright e design industriali):
- Curve di apprendimento (consistono nel mantenere un vantaggio rispetto ai concorrenti attraverso l'innovazione continua e la conservazione del know how acquisito);
- Sfruttamento dei complementary asset (ad esempio: capacità di produzione su larga scala, canali di distribuzione, accesso a risorse chiave);
- Lock-in dei clienti (sono dei meccanismi che creano vincoli per i consumatori, come esternalità di rete, elevati switching cost e standard de facto nel settore).

In questa trattazione ci focalizzeremo sui diritti di Proprietà Intellettuale (IP) e più nello specifico dei brevetti, per comprendere al meglio le dinamiche dell'innovazione della tecnologia in questione. In quanto asset dell'impresa, la proprietà intellettuale deve essere protetta attraverso la concessione di diritti esclusivi al suo titolare, anche se per un periodo di tempo limitato. Le imprese operanti in settori ad elevato livello tecnologico hanno: una forte posizione di mercato e godono di vantaggi competitivi, profitti tipicamente più alti e

considerevoli ritorni sugli investimenti fatti, ricavi aggiuntivi dovuti dalla concessione di licenze, ampio potere negoziale (in base all'importanza della tecnologia che si possiede) e una tutela legislativa maggiore. La proprietà intellettuale si riferisce alle creazioni dell'ingegno, come ad esempio invenzioni, opere letterarie e artistiche, o anche simboli nomi e immagini utilizzati in commercio. L'IP si divide in due categorie:

- Diritto d'autore (copyright): comprende le forme artistiche e creative, come opere letterarie, film, musica, opere d'arte (disegni, dipinti, fotografie e sculture) e design architettonici. Il copyright include anche i diritti relativi alle performance dal vivo degli artisti, alle registrazioni dei produttori musicali e ai programmi radiofonici o televisivi. Questo privilegio si applica automaticamente a tutte le opere inedite al momento della loro creazione.
- Proprietà industriale: include brevetti per le invenzioni, marchi, design industriali e
 indicazioni geografiche. A differenza del copyright, questo diritto non nasce
 automaticamente, ma prevede un processo di applicazione e pubblicazione per i
 brevetti e un processo di registrazione per marchi e design.

I Diritti di Proprietà Intellettuale (IPR), come qualsiasi altro diritto di proprietà, consentono ai creatori o ai proprietari di brevetti (o marchi) di trarre profitto dall'investimento effettuato o dal lavoro svolto nella creazione dell'opera. In particolare, l'autore ha il diritto di godere della protezione dei propri interessi morali e materiali derivanti da qualsiasi sua opera (Art. 27 Dichiarazione Universale dei Diritti Umani). Vi sono diversi motivi per promuovere e difendere i diritti di proprietà intellettuale: in primis, il progresso e il benessere dell'umanità dipendono dalla capacità di creare e innovare; in secondo luogo, come precedentemente accennato, la protezione di nuove invenzioni stimola e incentiva l'allocazione di ulteriori risorse per le innovazioni future. Un sistema efficace ed equo di protezione dell'innovazione può beneficiare tutte le nazioni favorendo la crescita economica e il benessere sociale e culturale. Infatti, il sistema di proprietà intellettuale serve a bilanciare gli interessi degli innovatori e quelli del pubblico, offrendo un ambiente protetto in cui la creatività e l'innovazione possano prosperare a vantaggio di tutti.

BREVETTI:

I brevetti rappresentano una delle principali forme di tutela della proprietà intellettuale e costituiscono uno strumento giuridico fondamentale per la protezione delle innovazioni tecnologiche. Un brevetto conferisce al titolare il diritto esclusivo di sfruttare

commercialmente l'invenzione per un periodo di tempo limitato, generalmente pari a venti anni a partire dalla data di deposito, all'interno dei confini territoriali in cui è stato concesso. Tale diritto esclusivo consente di impedire a terzi la fabbricazione, l'uso, la vendita o l'importazione dell'invenzione senza il consenso del titolare, offrendo così una protezione concreta agli investimenti effettuati in ricerca e sviluppo (treccani.it). Per questo motivo, il brevetto assume un valore strategico anche dal punto di vista economico e commerciale. In molti contesti, infatti, viene considerato una forma di "monopolio limitato", in quanto consente all'impresa di proteggersi dalla concorrenza e di mantenere un vantaggio competitivo grazie all'esclusività della tecnologia. Proprio per queste implicazioni legali e di mercato, conoscere quali soggetti detengano i brevetti e in quali settori tecnologici essi siano attivi diventa un elemento chiave per orientare le politiche industriali e le strategie aziendali. Inoltre, ottenere un brevetto comporta spesso un investimento significativo: si stima che i costi possano partire da circa 10.000 dollari per una singola domanda, fino a moltiplicarsi in modo rilevante per applicazioni più complesse o estese a più paesi. Di conseguenza, il fatto che un'organizzazione decida di brevettare una determinata tecnologia, soprattutto a livello internazionale, è solitamente indice di un forte interesse strategico e di un investimento concreto nello sviluppo di quell'area tecnologica (WIPO).

Affinché un'invenzione possa essere oggetto di brevetto, è necessario che rispetti determinate proprietà. In primo luogo, deve presentare il requisito della novità, ossia non deve essere stata divulgata al pubblico prima della data di deposito. In secondo luogo, deve implicare un'attività inventiva, ovvero non deve risultare ovvia per un esperto del settore tecnico di riferimento. A ciò si aggiunge il requisito dell'applicabilità industriale, che richiede che l'invenzione possa trovare concreta applicazione nei processi produttivi. Infine, l'invenzione deve essere lecita e conforme all'ordine pubblico e al buon costume, e deve essere descritta in maniera sufficientemente chiara e completa da permettere a un tecnico del settore di riprodurla (treccani.it; WIPO).

Il percorso per ottenere un brevetto si articola in diverse fasi: il primo passaggio è il deposito della domanda, che deve contenere una descrizione dettagliata dell'invenzione, eventuali disegni tecnici e almeno una rivendicazione che definisca l'ambito di tutela richiesto. Dopo il deposito, l'ufficio brevetti competente procede all'esame formale e sostanziale per verificare la sussistenza dei requisiti di brevettabilità. Se l'esito è positivo, la domanda viene pubblicata e il brevetto viene concesso, acquisendo efficacia giuridica nel territorio prescelto. Successivamente, il titolare dovrà provvedere al pagamento delle tasse di mantenimento annuali per conservare i diritti esclusivi sino alla naturale scadenza (WIPO).

A livello internazionale, la procedura può essere ulteriormente semplificata grazie al Patent Cooperation Treaty (PCT), un accordo multilaterale gestito dalla World Intellectual Property Organization (WIPO) che consente di depositare un'unica domanda internazionale valida in oltre 150 Paesi. Il PCT non sostituisce i procedimenti nazionali, ma permette di ottenere più tempo per decidere in quali giurisdizioni estendere la protezione, centralizzando la fase iniziale di esame tecnico e riducendo significativamente i costi iniziali, come quelli legati a traduzioni, tasse nazionali e rappresentanze legali. Dopo il deposito, la domanda viene sottoposta a una prima ricerca di anteriorità e a un parere scritto da parte di un'Autorità di Ricerca Internazionale (ISA), che fornisce un'indicazione preliminare sulla potenziale brevettabilità dell'invenzione. Il richiedente ha così fino a 30 mesi di tempo dalla data di priorità per decidere se procedere con l'ingresso nella cosiddetta fase nazionale, cioè avviare l'esame formale nei singoli Paesi in cui intende ottenere la protezione (WIPO).

Un aspetto spesso sottovalutato quando si analizzano i dati brevettuali è quello della cosiddetta "black window" o "finestra cieca". Si tratta di un intervallo temporale, tipicamente di 18 mesi, che intercorre tra il deposito di una domanda di brevetto e la sua pubblicazione ufficiale nei registri internazionali. In questo periodo, i contenuti della domanda rimangono riservati e non accessibili al pubblico. Di conseguenza, qualsiasi analisi brevettuale svolta in tempo reale non potrà tener conto di quelle innovazioni che sono già state registrate, ma che non sono ancora visibili. Per questo, quando si interpretano i dati più recenti, è buona norma considerare che l'apparente calo di attività innovativa potrebbe essere dovuto proprio a questa finestra cieca, più che a una reale contrazione dell'interesse tecnologico (WIPO).

Fondamentale per l'analisi dei brevetti, è anche il sistema di classificazione tecnologica utilizzato per ordinare e categorizzare i documenti brevettuali. La classificazione internazionale dei brevetti (IPC), sviluppata sotto il coordinamento della WIPO, suddivide i brevetti in otto sezioni principali (A-H), ulteriormente articolate in classi, sottoclassi e gruppi tecnologici, permettendo una catalogazione estremamente dettagliata di ogni invenzione. Ad integrazione dell'IPC, numerosi uffici brevetti, tra cui l'European Patent Office (EPO) e lo United States Patent and Trademark Office (USPTO), utilizzano la Cooperative Patent Classification (CPC), un'estensione più granulare che offre una maggiore precisione nel definire l'ambito tecnico delle invenzioni (WIPO).

3.2 Patent Landscape: metodologia

L'analisi dei brevetti, comunemente nota come *patent landscape*, riveste un ruolo strategico crescente sia in ambito accademico che industriale. Oltre a rappresentare un indicatore degli investimenti e delle direttrici di sviluppo tecnologico, i brevetti costituiscono anche un'importante fonte di informazione tecnica e scientifica spesso non reperibile altrove. Secondo stime storiche riportate dalla letteratura, si ritiene infatti che una quota significativa del contenuto informativo presente nei brevetti (fino all'80%) non sia mai pubblicata su riviste scientifiche o documentazione pubblica, ma rimanga accessibile unicamente tramite le banche dati brevettuali (WIPO). Proprio per questa unicità informativa, i brevetti permettono di analizzare in modo estremamente dettagliato lo stato dell'arte e i trend emergenti in specifici settori tecnologici, come quello dell'idrogeno, offrendo indicazioni preziose per il policymaking, le strategie industriali e le attività di investimento.

In questa prospettiva, l'analisi brevettuale rappresenta dunque uno strumento essenziale per osservare le dinamiche dell'innovazione, identificare i principali attori industriali e mappare lo sviluppo tecnologico globale.

3.2.1 Descrizione del perimetro di ricerca

L'obiettivo di questa tesi magistrale è fornire una panoramica completa dello stato attuale delle tecnologie legate alla produzione dell'idrogeno, attraverso l'analisi dei dati brevettuali. Per garantire un'analisi il più possibile completa ed esaustiva del panorama brevettuale legato alla produzione di idrogeno, sono state considerate diverse tecnologie, includendo sia quelle già affermate a livello industriale sia quelle più recenti ed emergenti. In particolare, l'analisi ha preso in esame:

- le **tecnologie consolidate**, quali la produzione di idrogeno grigio (principalmente tramite reforming del metano) e idrogeno blu (che associa il reforming alla cattura e stoccaggio (CCUS) della CO₂);
- le **tecnologie "green"**, la produzione di idrogeno verde in primis tramite elettrolisi alimentata da fonti rinnovabili (AEK, PEM, AEM, SOEC), in secundis anche tramite fotocatalisi:
- le **tecnologie emergenti**, come l'idrogeno turchese, prodotto per pirolisi del metano con generazione di carbonio solido anziché CO₂.

Tale impostazione consente di mettere a confronto le diverse traiettorie tecnologiche, valutando non solo il grado di maturità, ma anche l'evoluzione, la distribuzione geografica

e i principali attori coinvolti nello sviluppo delle varie soluzioni.

A supporto dell'analisi brevettuale è stato adottato come riferimento il report "Hydrogen Patents for a Clean Energy Future – A Global Trend Analysis of Innovation along Hydrogen Value Chains" (IEA, 2023), che fornisce una visione completa delle tecnologie brevettate lungo l'intera catena del valore dell'idrogeno. Data l'estrema ampiezza e frammentazione del panorama brevettuale legato all'idrogeno, risulta infatti complesso includere in modo sistematico tutte le tecnologie esistenti. Per garantire un'analisi il più possibile solida ed efficace, sono state prese in considerazione le tecnologie di produzione più rilevanti in termini di attività brevettuale, così come risultano dai risultati della piattaforma Lens.org, filtrati secondo una tassonomia costruita a partire dal benchmark fornito dal report IEA. L'obiettivo è quindi quello di fornire una panoramica chiara e mirata sulle tecnologie maggiormente rappresentative o emergenti nella produzione di idrogeno, con particolare attenzione sia a quelle già affermate su scala industriale, sia a quelle in forte sviluppo.

3.2.2 Identificazione del dataset

L'identificazione del dataset brevettuale è stata condotta attraverso la piattaforma Lens.org, un database avanzato e open source che offre un'ampia copertura delle giurisdizioni brevettuali a livello globale, tra cui lo United States Patent and Trademark Office (USPTO), l'European Patent Office (EPO), la World Intellectual Property Organization (WIPO) e l'Eurasian Patent Organization (EAPO). Questa ampia copertura ha permesso di includere un insieme eterogeneo di brevetti, garantendo una rappresentazione più completa del panorama brevettuale internazionale. La piattaforma offre inoltre una vasta gamma di filtri di ricerca che consentono un'indagine approfondita (Date range, Flags (Titolo/Abstract/Claims), Jurisdiction, Applicants, Owners, Legal status, Classificazione IPC o CPC, ecc.). Oltre a ciò, Lens.org include strumenti avanzati per l'esportazione agevolata dei dati brevettuali in formato Excel in locale. Infine, uno dei punti di forza di Lens.org è la sua interfaccia intuitiva e user-friendly, accompagnata da istruzioni chiare che facilitano la navigazione, rendendola accessibile anche a utenti con differenti livelli di esperienza nella ricerca brevettuale.

L'identificazione delle *query* per trovare i brevetti per ciascun elemento della tassonomia ha richiesto più fasi e l'adozione di una strategia iterativa. Il processo è iniziato con una ricerca preliminare volta a identificare le parole chiave e i sinonimi più rilevanti per ciascuna tecnologia. Sulla base di tali elementi è stata modellata una query capace di includere le varie formulazioni possibili. Questo passaggio ha comportato un lavoro di tentativi e

correzioni, in cui sono stati valutati diversi criteri di ricerca e affinate progressivamente la query. Come schema per l'individuazione delle query, si è cercato di inserire *keyword* collegate alla tecnologia in questione cercando di restringere quanto più possibile il campo e non finire per eccedere il perimetro di competenza. Sono state analizzata tutte le tecnologie di interesse in ambito green hydrogen (elettrolizzatori (ALK, PEM, AEM, SOEC) e fotocatalisi), le principali tecnologie affermate nella produzione di idrogeno attuale (idrogeno grigio e idrogeno blu) con le altre tecnologie emergenti rilevanti (idrogeno turchese).

Per costruire le query definitive, come precedentemente accennato, è stato adottato un processo iterativo: ad ogni ciclo sono stati selezionati soltanto i termini che, nella ricerca brevettuale, restituivano brevetti (per quanto possibile) pienamente pertinenti, integrandoli poi nella ricerca definitiva. L'intero lavoro è stato guidato da un modello di query modellato con la seguente struttura:

- **Tecnologia principale** (per l'elettrolizzatore alkalino, ad esempio, abbiamo utilizzato ALK o Alkalin* o AEL);
- Processo o tecnologia associata;
- Obiettivo principale;
- Materie prime utilizzate (reagenti);
- Prodotti da ottenere (idrogeno molecolare);
- Esclusione dei risultati irrilevanti (sono state escluse parole come "Fuel cell", "ammonia" o "methanol" che avrebbero potuto compromettere la ricerca);

Uno degli aspetti più critici nella realizzazione di un patent landscape è rappresentato dal bilanciamento tra ampiezza della ricerca (recall) e pertinenza dei risultati (precision). Quando si definiscono le query di ricerca, infatti, si affronta il rischio di includere un elevato numero di documenti non pienamente rilevanti (rumore informativo), se la ricerca è troppo ampia, oppure di escludere documenti potenzialmente significativi, se i criteri sono troppo restrittivi.

Ad esempio, nel caso specifico delle tecnologie per l'elettrolisi alcalina dell'acqua (ALK), questa problematica emerge in modo evidente. Non sempre, infatti, nei documenti brevettuali vengono utilizzate espressioni generali come "green hydrogen" o "water splitting" che definiscono chiaramente il contesto applicativo della produzione di idrogeno a basse emissioni. Al contrario, molte domande di brevetto fanno riferimento unicamente a specifici aspetti tecnici, quali l'uso di elettroliti alcalini come il potassio o il sodio idrossido

(potassium hydroxide, sodium hydroxide) o il funzionamento di una electrolytic cell, senza necessariamente esplicitare la finalità legata alla produzione di idrogeno verde.

Inoltre, una parte rilevante dell'attività brevettuale in questo settore riguarda lo sviluppo di componenti specifici (come elettrodi, catalizzatori o membrane), i cui ambiti di applicazione possono essere molteplici e non sempre dichiarati esplicitamente nei testi brevettuali. In questi casi, l'invenzione può comunque risultare altamente rilevante per il dominio della produzione di idrogeno tramite elettrolisi alcalina, pur non contenendo nel testo le parole chiave strettamente associate al green hydrogen. Questa peculiarità, come accennato precedentemente, rende particolarmente complessa l'impostazione delle strategie di ricerca brevettuale in ambito tecnologico: una ricerca troppo restrittiva rischia di escludere invenzioni pertinenti che utilizzano terminologie diverse o più specialistiche; al contrario, una ricerca troppo generica finisce per restituire un elevato numero di documenti fuori ambito, appartenenti ad altri settori industriali. La costruzione delle query deve quindi trovare un equilibrio metodologico che permetta di catturare il maggior numero possibile di documenti rilevanti, limitando al contempo la presenza di rumore informativo.

Per quanto riguarda i filtri utilizzati nel processo di selezione delle query:

- Date range: orizzonte temporale di 20 anni (dal 01/01/2005 al 16/06/2025);
- Legal status (Active e Pending);
- Document type (patent application e granted patent)
- Document family (group by simple family, per ottenere direttamente il numero di famiglie brevettuali e andando in questo modo a "schiacciare" i dati);
- Filtri avanzati: per ridurre al minimo, per quanto possibile, il "rumore" presente nel dataset dovuto a brevetti i cui codici non appartenevano al dominio di queste analisi (es. codice "A"). [Metodologia generale: filtri avanzati → classification → IPCR codes → verificare la coereza tra il codice IPC di riferimento e il nostro dominio, utilizzando come strumento di supporto "classification explorer" di Lens.org, in cui si può verificare velocemente a quale campo appartiene quel preciso codice IPC. Successivamente, ci si sposta nella schermata "analysis" per verificare che gli applicant siano coerenti o se compare qualche azienda tra le principali che notoriamente non si occupa di elettrolizzatori (es. Canon), e la si va ad escludere dalla ricerca].

Si è deciso di non inserire all'interno delle query i codici IPC e CPC specifici come filtro in input, in quanto, in alcuni casi si rischiava di restringere eccessivamente il campo di ricerca;

tuttavia, questi codici sono ugualmente disponibili, per ogni ricerca, sia nella sezione successiva di questo elaborato, sia nella sezione ["Analisys" \rightarrow "Tecnologie"] del sito Lens.org (una volta inserita la query sulla piattaforma). In questa sezione il sito propone una suddivisione dei brevetti ricercati per codice identificativo (IPC e CPC). Inoltre, per ampliare la ricerca in ambiti tecnologici specifici, Lens.org permette di utilizzare la Classificazione Internazionale dei Brevetti (IPC). L'IPC è un sistema standard per la classificazione dei brevetti secondo il contenuto tecnico, organizzato in una struttura gerarchica che facilita la consultazione e il recupero delle informazioni brevettuali tra Paesi e uffici differenti. Grazie all'uso dei codici IPC (filtro "IPCR"), è stato possibile migliorare l'efficacia della ricerca in aree tecnologiche mirate, escludendo un numero maggiore di brevetti non pertinenti e accedendo a informazioni più "pulite" per l'analisi. La ricerca brevettuale è stata effettuata a livello globale, senza restrizioni sui codici Paese, quindi i brevetti identificati potevano essere stati depositati o concessi in qualsiasi giurisdizione.

Per le query sono stati utilizzati operatori booleani, quali AND, OR, NOT e operatori come * (asterisco) che vengono utilizzati per rappresentare qualsiasi serie di caratteri che segue

* (asterisco) che vengono utilizzati per rappresentare qualsiasi serie di caratteri che segue una radice di parola ("electrolys"* trova: electrolysis, electrolyzer, electrolytic). In determinati casi sono stati utilizzati anche operatori come ~ (tilde) chiamato anche operatore di prossimità. Quest'ultimo è utilizzato per trovare parole che appaiono vicine tra loro in un documento, indipendentemente dall'ordine in cui appaiono. Combinati adeguatamente, questi elementi, permettono una ricerca mirata e precisa durante la definizione delle query.

Tecnologia	Query – Lens.org	Totale brevetti	Famiglie brevettuali
ALK	(("alkalin*" OR "bacon" OR "potassium hydroxide" OR "sodium hydroxide" OR "AEL*" OR "AEC*") AND ("electrolyz*" OR "electrolys*" OR "electrodialys*" OR "electrolytic cell*") AND (("hydrogen*" OR "H2" OR "H") AND ("produc*" OR "generat*" OR "synthesis*" OR "creat*" OR "manufact*" OR "fabric*") OR ("water" AND ("split*" OR "decompos*" OR ("oxidat*" AND "reduct*") OR "electrodissociat*")))) AND NOT ("ammonia" OR "ammoniaca" OR "fuel" OR "methane" OR "methanol")	4844	2494
PEM	(("proton*" OR "exchang*" OR "membran*") OR "PEM*" OR "SPE*") AND (("electrolyz*" OR "electrolys*") OR	4312	2041

	("ammonia" OR "ammoniaca" OR "fuel" OR "methane" OR "methanol")		
SOEC	(("Solid Oxide" OR SOEC OR "High Temperature") AND (electrolyzer OR electrolyzers OR electrolysis OR electrodialysis OR "electrolytic cell") AND (Hydrogen OR H2 OR H) AND (production OR generation OR synthesis OR creation OR manufacturing OR fabrication OR splitting OR decomposition OR electrodissociation) AND (water OR splitting OR decomposition OR electrodissociation)) NOT ("fuel cell" OR "SOEC fuel cell" OR "Solid oxide fuel cell" OR "SOFC") NOT ("ammonia" OR "ammoniaca" OR "fuel" OR "methane" OR "methanol")	5453	2676
AEM	(("Anion* exchang*" OR "AEM" OR "Anion* exchang* membrane") AND ("electrolyz*" OR "electrolys*" OR "electrolytic cell*") AND (("hydrogen*" OR "H2" OR "H") AND ("produc*" OR "generat*" OR "synthesis*" OR "creat*" OR "manufact*" OR "fabric*")) OR ("water" AND ("split*" OR "decompos*" OR ("oxidat*" AND "reduct*") OR "electrodissociat*")))	1280	773
Fotocatalisi	(("Photocatalysis" OR "Photo-catalysis" OR	1335	1278
Idrogeno grigio	(("Grey Hydrogen" OR "Conventional Hydrogen" OR "Hydrogen from Natural Gas" OR "Hydrogen Production from Methane" OR "Steam Methane Reforming" OR "SMR") AND ("Methane Reforming" OR "CH4" OR "Steam Methane Reforming" OR "SMR" OR "Auto- Thermal Reforming" OR "ATR" OR "Natural Gas Reforming") AND (Hydrogen OR H2 OR "Molecular Hydrogen") AND (water AND (production OR generation OR synthesis OR creation OR manufacturing OR fabrication OR cracking OR gasification OR decomposition OR dissociation)))	8316	3709
Idrogeno blu	(("Blue Hydrogen" OR "Low Carbon Hydrogen" OR "Clean Hydrogen" OR "Hydrogen Production from Natural Gas" OR "Methane Reforming" OR "Steam Methane Reforming" OR "SMR" OR "Auto-Thermal Reforming" OR "ATR") AND ("Carbon Capture" OR "Carbon Sequestration" OR "Carbon Capture and Storage" OR "CCS" OR "Carbon Capture Utilization and Storage" OR "CCUS" OR "CO2 Capture" OR "CO2 Sequestration" OR "CO2 Storage" OR "Carbon Utilization") AND (Hydrogen OR H2 OR "Molecular Hydrogen") AND (production OR	2993	1472

	generation OR synthesis OR creation OR manufacturing OR fabrication OR splitting OR decomposition OR reforming OR sequestration OR storage OR utilization OR cracking))		
Idrogeno turchese	(("Turquoise Hydrogen" OR "Methane Pyrolysis" OR "Thermal Cracking of Methane" OR "Natural Gas Cracking" OR "Thermal Decomposition of Methane" OR "Methane Dissociation" OR "Molten Metal Pyrolysis" OR "Plasma Pyrolysis" OR "termal decomposition" OR "catalitic decomposition") AND (methane OR "natural gas" OR CH4 OR "therm* plasma" OR solar OR "molten metal") AND (pyrolysis OR cracking OR thermolysis OR decomposition OR dissociation) AND ("solid carbon" OR "carbon black" OR "carbon byproduct") AND (Hydrogen OR H2 OR "Molecular Hydrogen") AND (production OR generation OR synthesis OR creation OR manufacturing OR fabrication))	818	436

Figure 24: Elenco delle query utilizzate per il patent landscape e relativi output della ricerca (numero totale di brevetti e famiglie brevettuali).

La Figure 24 riporta le query di ricerca utilizzate per esplorare le tecnologie. La tabella include inoltre informazioni sul numero totale di brevetti e famiglie brevettuali rilevate per ciascuna tecnologia. In particolare, i brevetti individuali comprendono tutti i documenti e le voci associate a una domanda di brevetto o a un brevetto concesso. Le famiglie brevettuali, infine, raggruppano tutte le domande e i brevetti connessi a una stessa invenzione, basandosi sulla priorità comune. Se un richiedente deposita domande in diversi Paesi per la stessa invenzione, tali domande sono considerate appartenenti alla stessa famiglia. La visualizzazione per famiglia consente quindi di comprendere l'estensione territoriale e lo stato dei vari documenti correlati.

Come riportato nella Tabella 2, le query elaborate hanno permesso di identificare 29.351 domande di brevetto e 14.879 famiglie brevettuali riconducibili alle tecnologie di produzione dell'idrogeno. È importante notare che i risultati ottenuti possono contenere sovrapposizioni tra tecnologie, poiché un singolo brevetto può includere più rivendicazioni che fanno riferimento a tecnologie differenti. Pertanto, i numeri rilevati rappresentano un indicatore dell'ampiezza e della complessità del panorama brevettuale dell'idrogeno, riflettendo la varietà delle innovazioni oggi in sviluppo. Tali considerazioni verranno ulteriormente approfondite nel capitolo successivo.

3.2.3 Download, pulizia e raffinamento del dataset

Dopo aver identificato e perfezionato le query di ricerca per tutte le classi brevettuali, si è proceduto con l'esportazione del dataset da Lens.org a Excel. La procedura è così articolata: una volta raggiunto il livello di dettaglio desiderato su Lens, e dopo aver raggruppato le

singole domande di brevetto in "famiglie brevettuali", si clicca su "Export", dopodiché si seleziona il numero di brevetti da includere nell'esportazione (es. 10.000), il tipo di formato (CSV) e i campi che si desidera analizzare. Adesso, una volta su Excel, si vanno a trasformare questi dati in formato CSV in formato classico in modo tale da poterli analizzare adeguatamente. Una volta fatto questo, verrà in supporto la funzione "Power Query" di Excel in cui, si va a controllare se il formato in cui sono stati esportati i dati è esatto, si vanno ad eliminare eventuali righe vuote e infine il passaggio più importante: la pulizia in locale. In questa fase, ci si colloca sulla colonna IPC (o CPC) e si vanno a filtrare (ed eliminare) quei brevetti a cui sono associati codici che sono totalmente fuori dominio di competenza e che compaiono molte volte (a causa di inesattezze dovute alle keyword nella query). In particolar modo, in ogni singolo dataset analizzato, si è applicato il filtro per testo "non contiene A" in modo tale da eliminare tutti i brevetti che avrebbero causato un "rumore significativo" nella nostra analisi. È importante inoltre sottolineare l'importanza del Lens ID, in quanto è un identificatore univoco assegnato a una domanda di brevetto al momento del deposito, utile per tracciare e distinguere ogni singola applicazione nel tempo. Di norma, ogni domanda ha un solo Lens ID. In conclusione, a seguito di questa operazione, si è verificata complessivamente una perdita del 10,84% delle osservazioni iniziali. Come descritto, l'estrazione definitiva dal database Lens.org, successiva alle fasi di pulizia e raffinamento, ha portato all'identificazione di un campione finale costituito da 13.265 famiglie brevettuali.

3.3 Statistiche descrittive del Dataset

Una volta che il dataset è stato creato, ho analizzato, con un approccio top-down, i risultati ottenuti partendo in primo luogo con un confronto cross-sector quindi *tra* i vari "colori" dell'idrogeno in termini di numero totale di famiglie brevettuali, evoluzione temporale e distribuzione geografica. In secondo luogo, si procede ad analizzare nello specifico le tecnologie utilizzate per la produzione di idrogeno verde quali elettrolisi e fotocatalisi in termini di famiglie brevettuali, evoluzione temporale, principali applicants, codici CPC/IPC dominanti e paese di deposito prioritario. Infine, un paragrafo conclusivo in cui è stata condotta un'analisi comparativa e proposti degli spunti strategici.

3.3.1 Confronto tra tecnologie di produzione (cross-sector)

Per un'analisi comparativa preliminare sulle principali traiettorie tecnologiche, come precedentemente accennato, si è proceduto a suddividere il dataset nelle quattro categorie rappresentative delle principali tecnologie di produzione dell'idrogeno: idrogeno grigio, blu, turchese e verde. Questa classificazione ha permesso di mettere a confronto la relativa intensità brevettuale, l'evoluzione temporale dei depositi e la distribuzione geografica delle attività brevettuali.

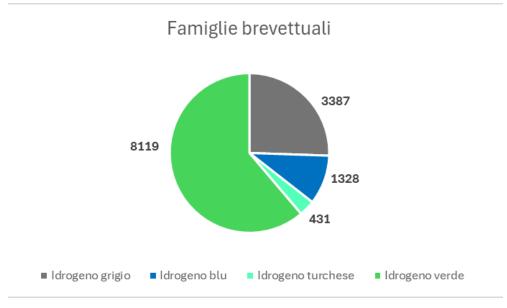


Figure 25: Numero di famiglie brevettuali per tipologia di tecnologia di produzione di idrogeno.

Il grafico a torta (Figure 25) mostra la distribuzione complessiva del numero di famiglie brevettuali tra le quattro tipologie analizzate. I risultati evidenziano chiaramente il predominio dell'**idrogeno verde**, che raccoglie 8119 famiglie brevettuali, pari a oltre il 60% del campione totale. Segue l'**idrogeno grigio** con 3387 famiglie, mentre le tecnologie di **idrogeno blu** e **turchese** risultano significativamente meno rappresentate a confronto, con rispettivamente 1328 e 431 famiglie brevettuali.

Questa ripartizione riflette una evidente intensità innovativa e un'attenzione crescente verso le tecnologie di produzione green, in linea con gli obiettivi di decarbonizzazione e la spinta regolatoria a livello internazionale. L'elevata quota dell'idrogeno verde è indicativa della sua maturità tecnologica emergente e della rilevanza strategica attribuita alla riduzione delle emissioni di CO₂ attraverso l'uso di fonti rinnovabili.

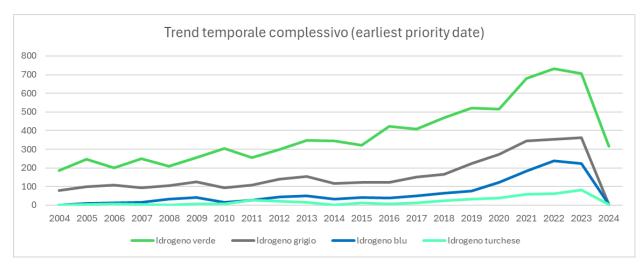


Figure 26: Trend temporale complessivo del numero di brevetti depositati. Ascisse: anni; Ordinate: numero brevetti.

La Figure 26 mostra il trend temporale, basato sulla *earliest priority date*, del numero di famiglie brevettuali depositate negli anni per ciascuna tecnologia. Il grafico evidenzia differenze significative nella dinamica evolutiva:

- Idrogeno verde presenta un andamento nettamente crescente, con un'accelerazione
 marcata dal 2015 in avanti, raggiungendo un picco tra il 2021 e il 2023.
 Questo evidenzia un forte slancio innovativo negli ultimi anni, correlato a politiche
 di incentivo, piani di transizione energetica e investimenti industriali su larga scala.
- Idrogeno grigio mostra un andamento complessivamente più stabile, con una crescita moderata e priva di accelerazioni significative. Questo dato conferma la maturità consolidata di processi produttivi basati su fonti fossili, che beneficiano di minori necessità di innovazione incrementale.
- La traiettoria dell'**idrogeno blu** è molto simile a quella dell'idrogeno grigio in termini di trend, confermando anche qui la consolidata maturità tecnologica; tuttavia, appare più piatta e quindi con volumi di deposito apparentemente inferiori.
- L'idrogeno turchese presenta un andamento che appare molto meno marcato e complessivamente piatto, con volumi di deposito notevolmente inferiori. Questo riflette una fase di sviluppo più precoce o più contenuta in termini di impegno brevettuale, coerente con una minore diffusione commerciale e investimenti più selettivi.

In sintesi, l'analisi temporale mostra come l'idrogeno verde si distingua non solo per volumi complessivi, ma anche per il suo trend di crescita recente, suggerendo un progressivo consolidamento della tecnologia come opzione prioritaria per la decarbonizzazione.

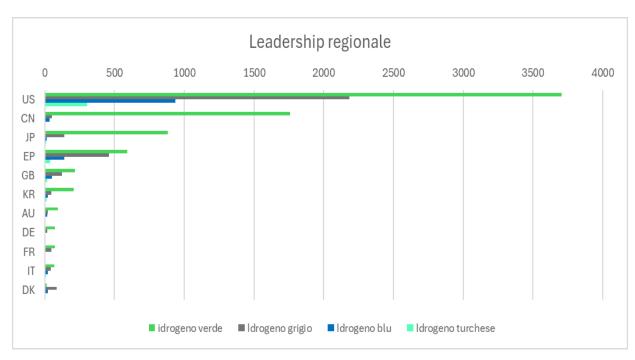


Figure 27: Leadership regionale rappresentata dal numero di brevetti depositati per la prima volta in un determinato paese. (Ascisse: numero di brevetti depositati; Ordinate: Paesi in cui vi è stato il deposito prioritario).

La Figure 27 fornisce una panoramica della distribuzione geografica dei *priority numbers* associati alle famiglie brevettuali, evidenziando la cosiddetta *leadership regionale*. In particolar modo, per estrarre questa informazione, si sono andate ad estrarre le prime due lettere della stringa che vanno ad indicare proprio il paese di provenienza (es. US 62648404 P).

- Gli Stati Uniti (US) emergono come la giurisdizione con il maggior numero di depositi prioritari in tutte le tecnologie, con particolare concentrazione nell'idrogeno verde. Questo evidenzia come la leadership sia ben salda negli USA e questo grazie certamente sia alle politiche favorevoli, ma anche grazie al florido ecosistema startup in quest'ambito che contribuisce in maniera cruciale all'innovazione.
- Seguono Cina (CN) e Giappone (JP), che mostrano volumi significativi e ben distribuiti tra le varie tipologie (con l'idrogeno verde che fa da padrone), confermando la rilevanza strategica dell'idrogeno nei rispettivi piani industriali.
- L'Unione Europea (rappresentata dai depositi EP) rivela un'intensità brevettuale inferiore ma comunque rilevante, specialmente sul fronte green. (N.B. nel momento in cui siamo in presenza della sigla "EP" vuol dire che il brevetto è stato esteso subito all'EPO (European Patent Office), senza far prima domanda al singolo stato).
- Altri paesi industrializzati come Gran Bretagna (GB), Corea del Sud (KR),
 Australia (AU), Francia (FR) e Germania (DE) mantengono una presenza più

contenuta ma non trascurabile. Infine, l'Italia (IT), seppur con numeri abbastanza contenuti, appare in una situazione alquanto equilibrata per quanto riguarda l'avanzamento nelle tecnologie di idrogeno blu, verde e grigio.

La mappa delle giurisdizioni suggerisce una concentrazione dell'innovazione nei grandi mercati tecnologici, con un ruolo trainante di Stati Uniti e Asia orientale nello sviluppo e nella tutela delle tecnologie a idrogeno. Tuttavia, se si considerano in maniera additiva tutti i paesi europei (in modo da creare un confronto equo in termini di dimensione geografica), si vede come anche l'Europa gioca un ruolo di prima fascia per quanto riguarda l'innovazione tecnologica (1157 brevetti), questo implica che il contributo tecnologico è sicuramente polarizzato verso gli USA ma distribuito equamente tra Asia orientale (Cina, Corea del Sud, Giappone) ed Europa. Questa distribuzione geografica riflette sia la strategia industriale dei player locali sia le politiche di supporto e finanziamento alla transizione energetica. In particolare, l'alta quota di depositi prioritari negli Stati Uniti conferma la volontà di posizionarsi come leader nell'economia dell'idrogeno verde, in particolare per la produzione.

L'analisi cross-sector evidenzia come la traiettoria di sviluppo dell'idrogeno sia tutt'altro che omogenea. L'idrogeno grigio, sebbene ancora rilevante in termini assoluti, mostra segnali di "stagnazione innovativa", coerenti con un mercato maturo e privo di spinte regolatorie al miglioramento tecnologico. Al contrario, l'idrogeno verde si afferma come segmento prioritario sia per intensità brevettuale totale sia per crescita temporale, riflettendo una transizione industriale già in atto verso tecnologie low-carbon.

3.3.2 Focus sulle tecnologie green hydrogen

Dopo aver effettuato l'analisi brevettuale sulle diverse metodologie esistenti per la produzione di idrogeno, si procede adesso sull'analisi specifica sull'idrogeno verde. In particolar modo, sui diversi tipi di tecnologie utilizzate; da quella più diffusa, l'elettrolisi a quella emergente, la fotocatalisi. Si procederà in primis con un'analisi dettagliata in cui, per ogni tecnologia, si andranno ad analizzare: il trend temporale brevettuale, i codici CPC/IPC dominanti, i top applicants e infine la distribuzione geografica in base ai priority numbers. A valle del paragrafo, si andranno invece ad effettuare delle osservazioni trasversali con dei grafici di confronto. Questa analisi, come già detto nei paragrafi precedenti, è riferita a un pezzo ben preciso della value chain dell'idrogeno, nonché il più critico: la produzione. Questo perché, affinché l'idrogeno diventi sostenibile dal punto di vista economico e quindi

affinché le aziende riescano ad effettuare economie di scala, è necessario abbattere il costo a monte trovando soluzioni efficienti e potenzialmente scalabili. Senza questa prerogativa, l'idrogeno, seppur una soluzione validissima per fronteggiare le criticità odierne, non vedrebbe mai una diffusione concreta.

Per iniziare, nel seguente pie chart (Figura 18), è visibile come si distribuiscono le famiglie brevettuali all'interno del segmento green hydrogen. Adesso si procederà con analizzare queste categorie singolarmente.

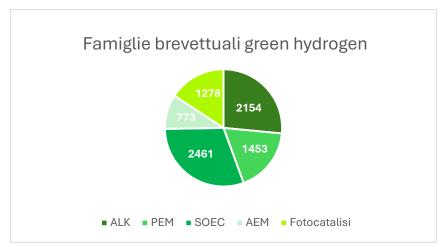


Figure 28: Distribuzione delle famiglie brevettuali all'interno del segmento green hydrogen.

Elettrolisi alcalina (AEL o ALK):

L'elettrolisi alcalina (AEL) è un processo che sfrutta il passaggio di corrente elettrica attraverso una soluzione alcalina, separando l'acqua nei suoi componenti primari, idrogeno e ossigeno, il processo è minuziosamente descritto nel capitolo 1.3.1 Dall'acqua all'energia: L'elettrolisi.

Pur avendo limiti legati alla densità di corrente e alla purezza del gas prodotto, resta oggi la tecnologia più diffusa e matura per progetti su scala industriale, rappresentando un riferimento consolidato anche dal punto di vista brevettuale.

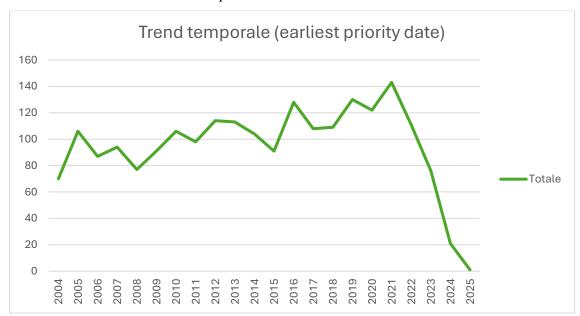


Figure 29: Trend temporale, basato sulla earliest priority date, relativo ai brevetti per l'elettrolisi AEL. Sulle ascisse sono rappresentati gli anni mentre sulle ordinate è rappresentato il numero totale di brevetti.

Il grafico (Figure 29) mostra l'andamento temporale dei brevetti relativi all'elettrolisi alcalina. Si osserva un trend generalmente stabile con oscillazioni moderate tra il 2005 e il 2015, seguito da una fase di crescita più marcata tra il 2016 e il 2021, quando il numero di depositi raggiunge un picco significativo. Questo andamento potrebbe riflettere il rinnovato interesse industriale e accademico verso la tecnologia, in parallelo alla crescente attenzione per l'idrogeno verde nelle strategie di transizione energetica.

Un ulteriore elemento che emerge dall'analisi è che, nonostante l'elettrolisi alcalina sia una tecnologia matura, la curva mostra una vitalità tra il 2016 e il 2021, periodo in cui si registra un picco di innovazioni brevettuali. Ciò suggerisce che la ricerca potrebbe essersi concentrata non soltanto sull'efficienza dei processi, ma anche su aspetti legati a scalabilità, riduzione dei costi e integrazione con fonti rinnovabili.

Come detto precedentemente nella trattazione la parte finale del grafico evidenzia il fenomeno della cosiddetta *black window*, ovvero l'apparente crollo dei depositi brevettuali

negli ultimi anni, dovuto non a un reale calo di interesse tecnologico ma ai tempi di pubblicazione (18–24 mesi) che rendono incompleti i dati più recenti.



Figure 30 : Distribuzione delle percentuali relative ai codici IPC dei brevetti relativi all'elettrolisi AEL

La precedente distribuzione (Figure 30) mostra una netta prevalenza della classe C (oltre il 40%), che comprende i settori della **chimica e metallurgia**, direttamente collegati ai processi elettrochimici di elettrolisi. Seguono le classi H (circa 20%), relativa all'**ingegneria elettrica** e quindi agli aspetti di componentistica e sistemica, e B (circa 17%), che riguarda le **tecniche industriali e i trasporti**, indicando possibili applicazioni in ambito produttivo e impiantistico.

La classe G (circa 15%) riflette gli aspetti di **fisica e misurazioni**, collegati al controllo e al monitoraggio delle prestazioni dei sistemi elettrolitici. Le restanti classi (D, F, E) hanno un peso marginale, segnalando contributi minori rispettivamente nell'ambito dei tessili/cartiere, delle costruzioni meccaniche e delle tecnologie edilizie. Questa distribuzione conferma come lo sviluppo brevettuale nell'elettrolisi alcalina sia fortemente orientato verso gli ambiti chimico-elettrochimici ed elettrico-industriali, coerentemente con la natura della tecnologia.

Figure 31: Distribuzione percentuale dei codici C specifici relativi all'elettrolisi AEL.

La distribuzione dei codici della **classe** C (Figure 31) evidenzia una forte concentrazione in C25 (circa 17%), che riguarda l'elettrolisi e i processi elettrochimici, direttamente connessi

al cuore tecnologico (stack) dei sistemi di produzione di idrogeno. Seguono i codici C08 (polimeri e macromolecole organiche, circa il 12%) e C09 (coloranti, pitture, combustibili e lubrificanti, circa l'11%), che riflettono lo sviluppo di materiali avanzati e rivestimenti funzionali impiegati per elettrodi e membrane. Ulteriori quote sono rappresentate da C07 e C01 che rispettivamente rappresentano chimica organica e chimica inorganica, a conferma dell'attenzione verso nuove formulazioni di catalizzatori e reagenti. Altri codici di interesse includono C23 (trattamenti superficiali dei metalli, circa l'8%) e C12 (biotecnologie, circa il 6%), che suggeriscono approcci complementari nella modifica dei materiali e nello sviluppo di soluzioni innovative per aumentare l'efficienza o la durabilità degli impianti. I codici rimanenti, come C04, C22 e in misura minore C11, C03, C30, C21, mostrano un coinvolgimento marginale ma coerente con aspetti strutturali, metallurgici e di supporto tecnologico ai sistemi di elettrolisi.

La prevalenza di C25 conferma la centralità dell'elettrochimica nei brevetti sull'elettrolisi alcalina, mentre la diffusione su codici come C08, C09, C07 e C01 sottolinea l'importanza crescente della ricerca su materiali, catalizzatori e rivestimenti innovativi, orientati a ridurre i costi di produzione, al fine di rendere la tecnologia maggiormente competitiva rispetto ad altre soluzioni presenti sul mercato.

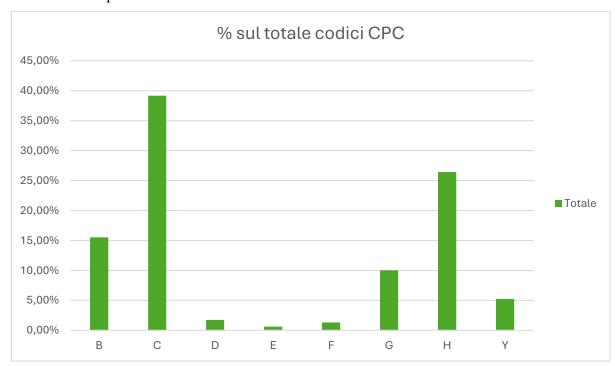


Figure 32: Distribuzione delle percentuali relative ai codici CPC dei brevetti relativi all'elettrolisi AEL

La distribuzione dei codici **CPC** evidenzia in Figure 32 una forte prevalenza della sezione C (Chimica e metallurgia), che rappresenta circa il 40% del totale. Questo risultato è coerente con la natura dei brevetti relativi all'elettrolisi alcalina, una tecnologia che si fonda

principalmente su processi chimici ed elettrochimici. Seguono la sezione H (Elettricità, circa il 25%), che riflette l'importanza dei sistemi elettrici, dell'alimentazione e della gestione dei flussi energetici, e la sezione B (Operazioni e trasporti, circa il 15%), legata alle tecniche ingegneristiche e impiantistiche. Anche la sezione G (Fisica, circa il 10%) ha un peso rilevante, riconducibile ai dispositivi di misurazione, controllo e monitoraggio delle prestazioni. Le altre sezioni (D, E, F, Y) hanno un'incidenza più ridotta (complessivamente inferiore al 10%), ma segnalano contributi specifici su materiali particolari, soluzioni costruttive e applicazioni trasversali. In particolare, la categoria Y raccoglie codici di uso speciale o emergente, indicando possibili innovazioni interdisciplinari. La distribuzione dei codici CPC, come quella degli IPC, mostra come i brevetti sull'elettrolisi alcalina siano concentrati sugli aspetti chimici ed elettrici, con contributi complementari provenienti da settori ingegneristici e fisici.

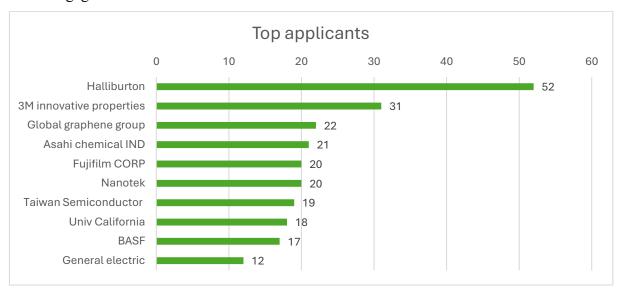


Figure 33: Top applicants dei brevetti relativi all'elettrolisi AEL.

Il grafico (Figure 33) mostra i principali richiedenti di brevetti legati all'elettrolisi alcalina. Halliburton si distingue come primo attore, con 52 brevetti depositati, seguita da 3M Innovative Properties con 31 brevetti, e dal Global Graphene Group con 22 brevetti. A breve distanza compaiono Asahi Chemical, Fujifilm, Nanotek, Taiwan Semiconductor, l'Università della California, BASF e General Electric, con valori compresi tra 12 e 21. Questa distribuzione evidenzia come la ricerca e lo sviluppo in questo campo non siano limitati al settore accademico, ma vedano un forte coinvolgimento sia di grandi multinazionali dell'energia e della chimica, sia di aziende altamente specializzate in materiali avanzati.

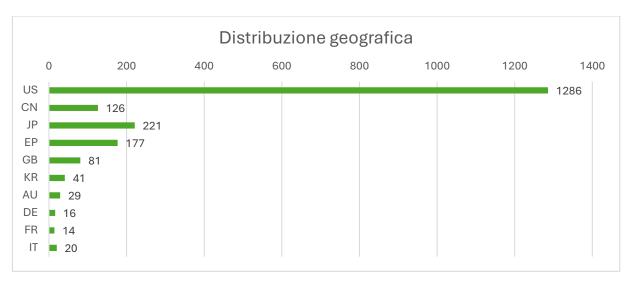


Figure 34: Distribuzione geografica applicants dei brevetti relativi all'elettrolisi AEL.

Il grafico mostra la distribuzione geografica dei brevetti analizzati nel settore dell'elettrolisi alcalina. Si evidenzia una netta predominanza degli **Stati Uniti**, con 1286 brevetti, che rappresentano da soli la quota maggioritaria del campione. Seguono il **Giappone** (221 brevetti) e **l'Ufficio Europeo dei Brevetti** – **EP** (177 brevetti), a testimonianza del forte coinvolgimento delle economie industrializzate e tecnologicamente avanzate.

La Cina si colloca al quarto posto con 126 brevetti, mentre nel contesto europeo spiccano il Regno Unito (81) e, con numeri più contenuti, Germania (16), Francia (14) e Italia (20). Sono inoltre presenti contributi significativi da parte della Corea del Sud (41) e dell'Australia (29).

Questa distribuzione evidenzia come la leadership nello sviluppo brevettuale sia fortemente concentrata negli Stati Uniti, seguiti da Giappone ed Europa, mentre la Cina e la Corea del Sud rappresentano poli emergenti. L'Europa mostra una presenza articolata, con l'Ufficio Europeo dei Brevetti che assume un ruolo centrale di coordinamento, ma con contributi disomogenei tra i diversi Paesi membri.

Elettrolisi con membrana a scambio protonico (PEM)

Nell'elettrolisi PEM, l'acqua viene scomposta facendo passare corrente elettrica attraverso una membrana polimerica a scambio protonico. La membrana consente il passaggio esclusivo dei protoni, separando i due gas e impedendo contaminazioni.

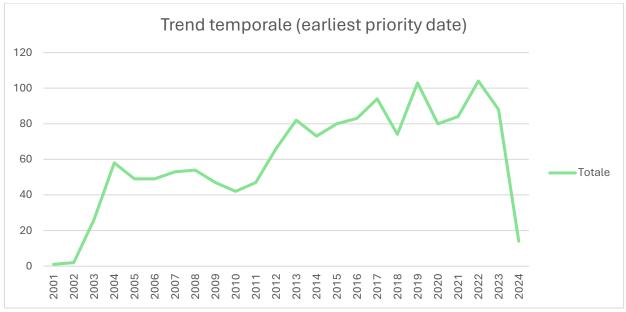


Figure 35: Trend temporale, basato sulla earliest priority date, relativo ai brevetti per l'elettrolisi PEM. Sulle ascisse sono rappresentati gli anni mentre sulle ordinate è rappresentato il numero totale di brevetti.

Nella Figure 35 è presente l'andamento temporale dei brevetti legati all'elettrolisi PEM nel periodo 2004-2024. Sebbene il trend risulti complessivamente stabile, a partire dal 2013 si osserva un incremento significativo dei depositi, riconducibile alla fase iniziale di adozione della tecnologia. Quindi, dopo una parte iniziale di consolidamento e upgrade l'interesse per l'elettrolisi PEM è aumentato significativamente.

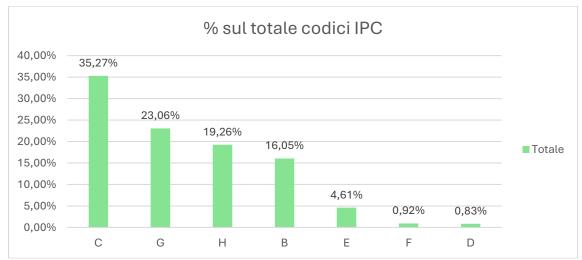


Figure 36: Distribuzione delle percentuali relative ai codici IPC dei brevetti relativi all'elettrolisi PEM.

Il grafico (Figure 36) riporta la distribuzione percentuale dei brevetti relativi all'elettrolisi in base ai codici IPC. La classe C è la classe dominante con il 35,27%, indicando la forte

rilevanza degli aspetti chimici e metallurgici. Seguono la classe G con il 23,06% e la classe H con il 19,26%, queste due classi rappresentano rispettivamente fisica, strumenti di misura e ingegneria elettrica.

La classe B, collegata a processi e operazioni industriali, rappresenta il 16,05% del totale. Percentuali più contenute si osservano nelle classi E ed F con il 4,61% e lo 0,92%.

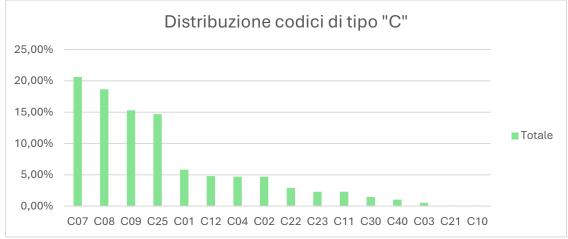


Figure 37: Distribuzione percentuale dei codici C specifici relativi all'elettrolisi PEM.

Il grafico (Figure 37) rappresenta la distribuzione dei codici IPC di tipo "C", la seguente classe rappresenta innovazioni che si riferiscono prevalentemente al campo chimico e metallurgico.

I codici C07 (chimica organica), C08 (composti macromolecolari) e C09 (coloranti, vernici, adesivi, ecc.) sono i più frequenti, con percentuali rispettivamente superiori al 20%, al 18% e al 15%. La distribuzione evidenzia che gran parte delle innovazioni brevettuali nell'ambito dell'elettrolisi si concentra su aree specifiche. Questo riflette l'interesse verso lo sviluppo di nuovi materiali e catalizzatori più efficienti, fondamentali per migliorare prestazioni e ridurre i costi delle tecnologie.

Figure 38: Top applicants dei brevetti relativi all'elettrolisi PEM.

In Figure 38 sono analizzati i principali richiedenti di brevetto legati alla tecnologia analizzata. Come per la tecnologia AEL per la tecnologia PEM il primo soggetto con il maggior numero di depositi è Halliburton con 45 brevetti. Subito dopo compare Schlumberger Technology Corporation con poco più di 40 e successivamente diverse istituzioni accademiche come University of California, con oltre 30 brevetti, e il Massachusetts Institute of Technology. Questo evidenzia una presenza bilanciata tra grandi multinazionali e istituzioni accademiche di eccellenza. Tale combinazione indica come la tecnologia si trovi a un livello di maturità collocato al confine tra ricerca e sviluppo.

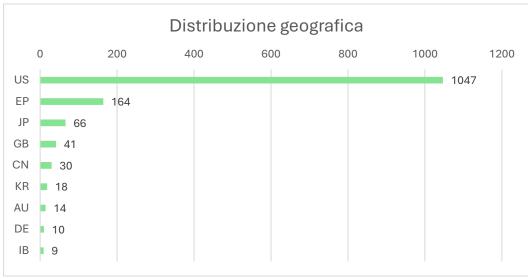


Figure 39: Distribuzione geografica applicants dei brevetti relativi all'elettrolisi PEM.

Il grafico (Figure 39) mostra la leadership geografica nei depositi brevettuali legati alla tecnologia PEM.

Gli **Stati Uniti** dominano nettamente con 1047 brevetti, confermandosi come il principale innovatore globale. Al secondo posto è presente **l'Europa** con quasi 1/6 dei brevetti registrati dagli stati uniti. Quote più ridotte appartengono al **Giappone** con 66, **Regno unito** con 41 e la Cina con 30. È evidente la leadership degli stati uniti per quanto riguarda la tecnologia PEM. La netta predominanza statunitense suggerisce una piena fiducia nella tecnologia.

Elettrolisi con membrana a scambio anionico (AEM)

La tecnologia **AEM** (**Anion Exchange Membrane**) per l'elettrolisi è una soluzione che combina alcuni vantaggi dell'elettrolisi alcalina e di quella a membrana polimerica a scambio protonico (PEM). In questo sistema l'acqua viene scissa utilizzando una membrana a scambio protonico che consente il passaggio degli ioni OH⁻.

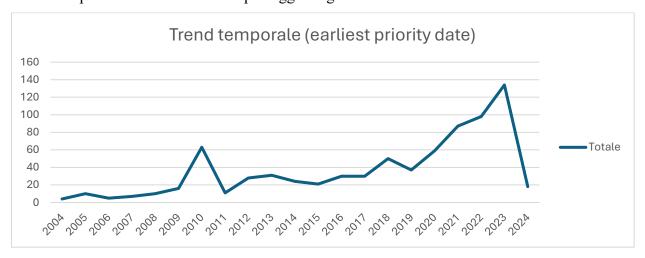


Figure 40: Trend temporale, basato sulla earliest priority date, relativo ai brevetti per l'elettrolisi AEM. Sulle ascisse sono rappresentati gli anni mentre sulle ordinate è rappresentato il numero totale di brevetti.

Nella Figure 40 è riportato il trend temporale dei brevetti relativi alla tecnologia AEM. Si osserva come, ad eccezione del picco del 2010, un reale interesse per questa tecnologia sia emerso soltanto a partire dall'inizio del 2023. Questo andamento indica con ogni probabilità un aumento degli investimenti, ma potrebbe anche riflettere il raggiungimento di una scoperta tecnologica in grado di rendere la tecnologia più competitiva, favorendo così la crescita del numero di brevetti.

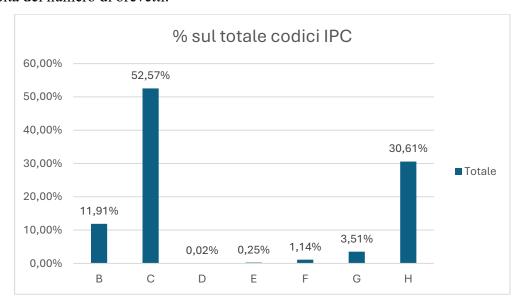


Figure 41: Distribuzione delle percentuali relative ai codici IPC dei brevetti relativi all'elettrolisi AEM.

Come per le altre tecnologie, la **classe** C risulta la più frequente. Essa comprende i brevetti relativi ad ambiti chimici e metallurgici, come processi e prodotti chimici o la lavorazione dei metalli. La seconda più rappresentata è la **classe** H, che raccoglie i brevetti riguardanti l'elettricità, ad esempio elementi e componenti elettrici di base, nonché la produzione, la conversione e la distribuzione dell'energia elettrica. Infine, la terza classe più presente è la **classe** B, che comprende i brevetti legati a processi industriali generali, come reazioni, separazioni o miscelazioni.

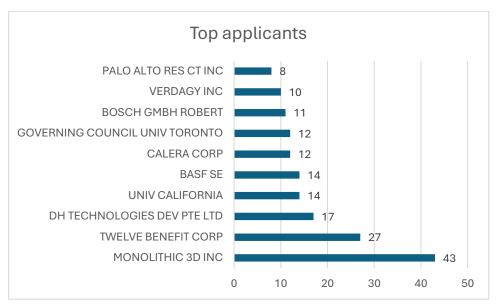


Figure 42: Top applicants dei brevetti relativi all'elettrolisi AEM.

Come per le precedenti tecnologie è fondamentale valutare quelli che sono i top applicants, il grafico (Figure 42) mostra i principali richiedenti di brevetti nel settore analizzato. Si distingue il ruolo preponderante di **Monolithic 3D Inc**, con 43 depositi, seguita da **Twelve Benefit Corp** con 27 brevetti e **DH Technologies Dev PTE Ltd** con 17. A valori intermedi si collocano BASF SE e l'University of California con 14 ciascuno, mentre altre realtà, tra cui Calera Corp, University of Toronto e Bosch GmbH Robert, presentano un numero compreso tra 11 e 12. In coda si trovano Verdagy Inc con 10 e Palo Alto Res CT Inc con 8 brevetti. La distribuzione evidenzia una forte concentrazione dei brevetti principalmente sul versante industriale rispetto a quello accademico, suggerendo un livello di maturità tecnologica intermedio-avanzato.

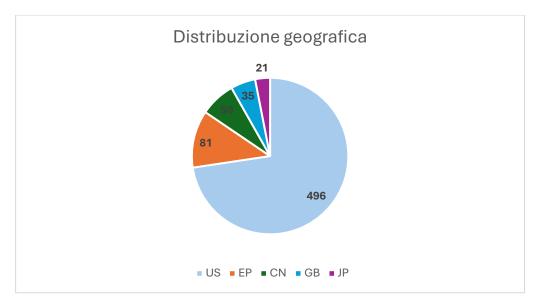


Figure 43: Distribuzione geografica applicants dei brevetti relativi all'elettrolisi AEM.

Il grafico (Figure 43) evidenzia, anche per questa tecnologia una chiara leadership **statunitense**, che concentra la maggior parte della proprietà intellettuale del settore, mentre **Europa**, **Cina**, **Regno unito** e **Giappone** contribuiscono con queste decisamente inferiori.

Elettrolisi ad ossidi solidi (SOEC)

La tecnologia SOEC (Solid Oxide Electrolysis Cell) è una tipologia di elettrolisi che permette, attraverso le alte temperature, di scindere il vapore acqueo in idrogeno puro ed ossigeno. Le alte temperature normalmente vengono raggiunte utilizzando calore esterno, che altrimenti andrebbe perso, generato da processi industriali o da reattori nucleari.

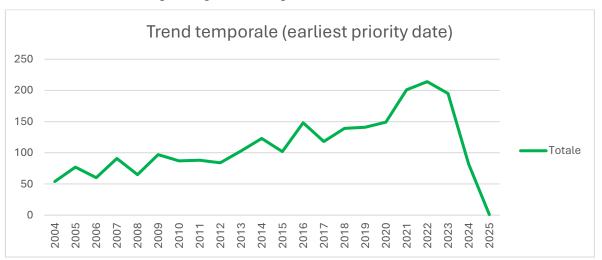


Figure 44: Trend temporale, basato sulla earliest priority date, relativo ai brevetti per l'elettrolisi SOEC. Sulle ascisse sono rappresentati gli anni mentre sulle ordinate è rappresentato il numero totale di brevetti.

Il grafico (Figure 44) mostra l'andamento temporale dei brevetti dal 2004 al 2025, evidenziando una fase iniziale caratterizzata da oscillazioni moderate e valori compresi tra i 50 e i 100 depositi fino al 2010. Successivamente, il trend si mantiene sostanzialmente

stabile fino al 2015, per poi registrare una crescita più significativa negli anni successivi, con un incremento costante che culmina nel 2022, anno in cui si osserva il picco massimo di oltre 210 brevetti. Nel complesso, il grafico riflette un progressivo rafforzamento della ricerca e dell'innovazione tecnologica, con un'accelerazione evidente a partire dalla seconda metà degli anni 2010.

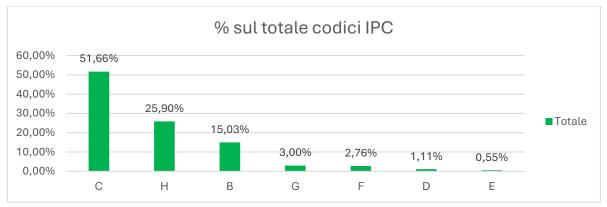


Figure 45: Distribuzione delle percentuali relative ai codici IPC dei brevetti relativi all'elettrolisi SOEC.

La precedente distribuzione mostra la percentuale dei brevetti in base ai codici IPC. La classe C emerge come nettamente dominante, raccogliendo oltre la metà del totale con il 51,66%, segno della forte rilevanza degli ambiti chimici e metallurgici nelle innovazioni considerate. Seguono la classe H, con il 25,90%, che comprende le tecnologie legate all'elettricità, e la classe B con il 15,03%, relativa a processi e operazioni industriali generali. Le restanti categorie hanno un peso molto più contenuto: la classe G si attesta al 3%, la classe F al 2,76%, la classe D all'1,11% e la classe E con appena lo 0,55%. Nel complesso, è determinante come solo l'area chimi e l'area elettrica rappresentino quasi l'80% del totale analizzato

Figure 46: Distribuzione percentuale dei codici C specifici relativi all'elettrolisi SOEC.

Per quanto riguarda invece la distribuzione dei brevetti classificati all'interno della classe C dell'IPC, evidenziando una forte concentrazione in alcuni codici specifici. Il più rappresentato è il C25 (processi elettrolitici ed elettroforici), che da solo raccoglie circa il

17% del totale, seguito dal **C01** (chimica inorganica) con oltre il 14% e dal **C22** (metallurgia) con poco più del 10%. Percentuali rilevanti si riscontrano anche nei codici **C07** e **C08**, rispettivamente chimica organica e composti macromolecolari, che insieme superano il 15%.

Altri codici, come C09 (coloranti, vernici, adesivi), C23 (trattamenti superficiali) e C12 (biochimica, microbiologia), mostrano una presenza significativa ma più contenuta, con valori compresi tra il 6% e l'8%. Le restanti sottoclassi, tra cui C02, C04 e C21, si collocano sotto il 5%, mentre altre categorie come C10, C30, C11 e le successive hanno un'incidenza marginale, inferiore al 2%. Complessivamente la distribuzione evidenzia come la maggior parte delle innovazioni brevettuali si concentri su aree relative ai processi elettrochimici alla base del processo di elettrolisi.

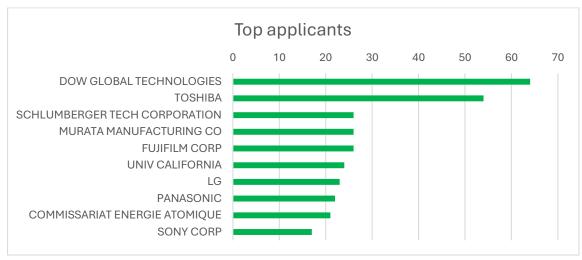


Figure 47: Top applicants dei brevetti relativi all'elettrolisi SOEC.

I principali richiedenti di brevetti nel settore analizzato sono: Dow Global Technologies che emerge come l'attore dominante, con circa 65 depositi, seguita da Toshiba, che supera i 55 brevetti. Le altre aziende e istituzioni presentano valori sensibilmente inferiori, collocandosi in un intervallo compreso tra i 20 e i 30 brevetti: tra queste figurano Schlumberger Technology Corporation, Murata Manufacturing Co, Fujifilm Corp, University of California, LG, Panasonic e il Commissariat à l'Énergie Atomique. Chiude la lista Sony Corp, con poco meno di 20 depositi.

Il grafico evidenzia un mercato brevettuale fortemente guidato da pochi grandi attori industriali, con Dow e Toshiba che si distinguono nettamente per capacità di innovazione, mentre le altre aziende e istituzioni, pur presenti, contribuiscono in misura più equilibrata e meno rilevante.

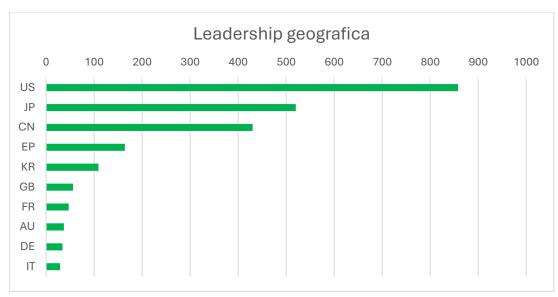


Figure 48: Distribuzione geografica applicants dei brevetti relativi all'elettrolisi SOEC.

Per quanto riguarda la distribuzione geografica dei brevetti, è presente, come per le altre tecnologie analizzate, una netta leadership degli **Stati Uniti**, che supera le 800 unità. Seguono il **Giappone** e la **Cina**, rispettivamente con valori prossimi alle 500 e 450 unità, a testimonianza del forte impegno di questi Paesi nello sviluppo tecnologico. L'**Ufficio Europeo dei Brevetti (EP)** si colloca su livelli molto più contenuti, intorno alle 150 unità, mentre la **Corea del Sud** si ferma sotto le 100. Ancora più marginali risultano le altre aree geografiche, come **Regno Unito**, **Francia**, **Australia**, **Germania e Italia**, tutte con valori decisamente inferiori.

Tecnologie emergenti: Fotocatalisi

La Fotocatalisi è un processo chimico che utilizza la luce, generalmente quella solare, per attivare un catalizzatore in grado di accelerare reazione chimiche, tra cui la riduzione dell'acqua che permette la produzione d'idrogeno.

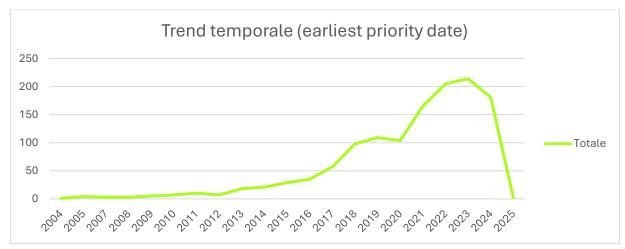


Figure 49: Trend temporale, basato sulla earliest priority date, relativo ai brevetti per la Fotocatalisi. Sulle ascisse sono rappresentati gli anni mentre sulle ordinate è rappresentato il numero totale di brevetti.

Il grafico (Figure 49) mostra l'andamento temporale dei brevetti tra il 2004 e il 2025, calcolato, come per le altre tecnologie analizzate, sulla base dell'earliest *priority date*. Fino al 2012 l'attività brevettuale appare piuttosto limitata e sostanzialmente costante, con valori prossimi allo zero. A partire dal 2013 si osserva una crescita graduale che diventa più marcata dal 2017, raggiungendo i primi valori significativi intorno al 2019. Il trend prosegue con un aumento costante fino a toccare il picco massimo tra il 2022 e il 2023, quando il numero dei depositi supera le 200 unità. Il grafico evidenzia una fase di forte accelerazione dell'attività innovativa a partire dalla fine degli anni 2010, segno del crescente interesse verso la tecnologia analizzata.

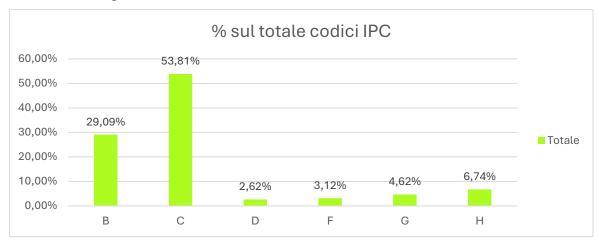


Figure 50: Distribuzione delle percentuali relative ai codici IPC dei brevetti relativi alla Fotocatalisi.

Per quanto riguarda la distribuzione percentuale dei brevetti in base ai codici IPC. La figura

sopra mostra come la categoria nettamente più rappresentata è la **classe C**, che raccoglie il 53,81% del totale e comprende i brevetti relativi alla chimica e alla metallurgia, a conferma del ruolo centrale di queste aree nello sviluppo tecnologico analizzato. La seconda classe più rilevante è la **B**, con il 29,09%, che si riferisce a processi industriali generali e operazioni meccaniche. Seguono a distanza le altre categorie: la **H** con il 6,74%, legata all'elettricità, la **G** con il 4,62% (fisica e strumenti di misura), la **F** con il 3,12% (ingegneria meccanica), e infine la **D** con il 2,62% (testili e carta). La distribuzione evidenzia una forte concentrazione dei brevetti in due sole aree, chimica/metallurgia e processi industriali, che insieme superano l'80% del totale, mentre le restanti classi hanno un peso marginale.

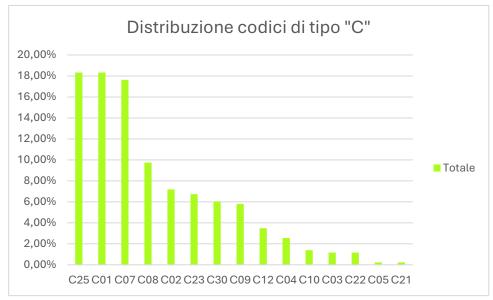


Figure 51:Distribuzione percentuale dei codici C specifici relativi alla Fotocatalisi.

La Figure 51 mostra la distribuzione dei brevetti all'interno della **classe** C dell'IPC, evidenziando una forte concentrazione in pochi codici specifici. I più rappresentati sono C25 (processi elettrolitici ed elettroforici), C01 (chimica inorganica) e C07 (chimica organica), ciascuno con una quota vicina al 18% del totale. Subito dopo compare il C08 (composti macromolecolari, polimeri), che raccoglie circa il 17%, seguito a distanza dal C02 (trattamento delle acque) con il 9%. Altri codici, come C23 (trattamenti superficiali), C30 (composti organici contenenti metalli), C09 (coloranti, adesivi, rivestimenti) e C12 (biochimica, microbiologia), presentano valori compresi tra il 5% e il 7%, mentre le restanti sottoclassi, tra cui C04, C10, C03, C22, C05 e C21, hanno un'incidenza marginale inferiore al 4%.

La gran parte dei brevetti si concentra nelle aree della chimica di base, della chimica organica e dei processi elettrochimici, che risultano fondamentali per lo sviluppo delle tecnologie legate all'elettrolisi e alla produzione di idrogeno.

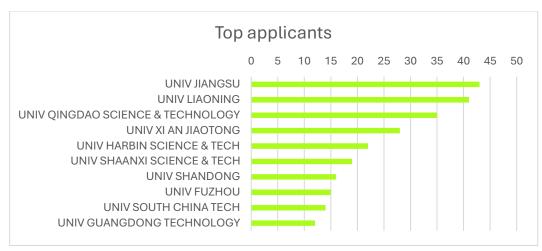


Figure 52: Top applicants dei brevetti relativi alla Fotocatalisi.

La Figure 52 mostra i principali richiedenti di brevetti nel settore analizzato, è evidente in questo caso la dominanza delle università cinese; infatti, **University of Jiangsu** e **University of Liaoning** guidano la classifica con circa 45 depositi ciascuna, seguite dalla **University of Qingdao Science & Technology** con poco più di 30. Valori compresi tra i 20 e i 30 brevetti caratterizzano altre istituzioni come la Xi'an Jiaotong University, la Harbin Science & Technology University e la Shaanxi Science & Technology University, mentre sotto i 20 depositi si collocano la University of Shandong, la University of Fuzhou, la South China University of Technology e la University of Guangdong Technology.

Il grafico evidenzia come l'attività brevettuale in questo ambito sia fortemente trainata dal sistema universitario cinese, a conferma del ruolo centrale delle istituzioni accademiche nazionali nello sviluppo e nella protezione della proprietà intellettuale legata alla tecnologia analizzata.

Figure 53: Distribuzione geografica applicants dei brevetti relativi alla Fotocatalisi.

Per ultimo è stata analizzata nel grafico (Figure 53) la distribuzione geografica dei brevetti, mettendo in evidenza una fortissima concentrazione in Cina, che da sola raccoglie 1.108

depositi, pari all'87% del totale. Le altre aree geografiche hanno un peso decisamente marginale: il Canada rappresenta circa il 5%, mentre gli altri Paesi e uffici, tra cui Australia, Repubblica Ceca, Ufficio Europeo dei Brevetti (EP), Spagna, Francia, Regno Unito, Grecia e Italia, incidono ciascuno per meno del 2%.

Il grafico evidenza una leadership assoluta della Cina che ad oggi rappresenta il maggior esponente per quanto riguarda le tecnologie legate alla fotocatalisi.

3.3.3 Analisi comparativa e discussione strategica

Per comprendere le traiettorie di sviluppo tecnologico legate alla produzione di idrogeno verde, è utile analizzare l'evoluzione dei brevetti relativi all'idrogeno verde nel tempo. È stata effettuata un analisi cross-sector in modo tale da rendere più intuitiva l'analisi dei dati effettuata.

La figura successiva mostra la distribuzione delle principali tecnologie, elettrolisi alcalina (AEL), elettrolisi a membrana a scambio protonico (PEM), elettrolisi a ossidi solidi (SOEC), elettrolisi a membrana a scambio anionico (AEM) e fotocatalisi, evidenziando le dinamiche di innovazione e i diversi gradi di maturità raggiunti nel corso degli ultimi due decenni.

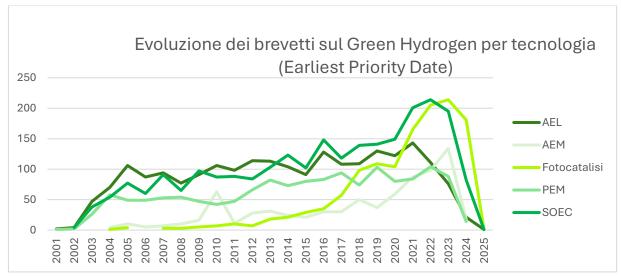


Figure 54: Trend temporale aggregato per quanto riguarda l'idrogeno verde

L'andamento comune evidenzia una crescita generale a partire dai primi anni 2000, con una forte espansone tra il 2015 e il 2021, seguita da un picco massimo nel biennio 2021–2022. A partire dal 2023 si osserva invece un calo significativo in tutte le tecnologie, che, come ampiamente detto è attribuito al fenomeno della *black window*, ossia all'incompletezza dei dati più recenti dovuta ai tempi di pubblicazione dei brevetti.

Tra le tecnologie, l'AEL e la PEM hanno mantenuto nel tempo un ruolo predominante, confermandosi come soluzioni più mature e consolidate per la produzione di idrogeno

tramite elettrolizzazione. Per quanto riguarda la SOEC ha mostrato una crescita costante e un deciso incremento negli ultimi anni, riflettendo l'interesse crescente verso tecnologie ad alta efficienza, sebbene ancora a uno stadio di sviluppo meno avanzato rispetto alle altre tecnologie.

Parallelamente, la fotocatalisi si distingue per un aumento marcato nel periodo più recente, segnale di una ricerca attiva su soluzioni di nuova generazione capaci di ridurre ulteriormente i costi e integrare fonti rinnovabili in modo diretto. L'AEM, pur rappresentando una quota minore, ha registrato un incremento progressivo, evidenziando l'emergere di approcci alternativi che cercano di coniugare i vantaggi di AEL e PEM.

Il grafico conferma come l'innovazione brevettuale sul green hydrogen sia stata trainata storicamente da AEL e PEM, ma con un crescente interesse negli ultimi anni verso tecnologie più emergenti come la SOEC e la fotocatalisi. Questa dinamica riflette la volontà del settore di esplorare soluzioni sempre più efficienti e competitive, in linea con gli obiettivi di decarbonizzazione.

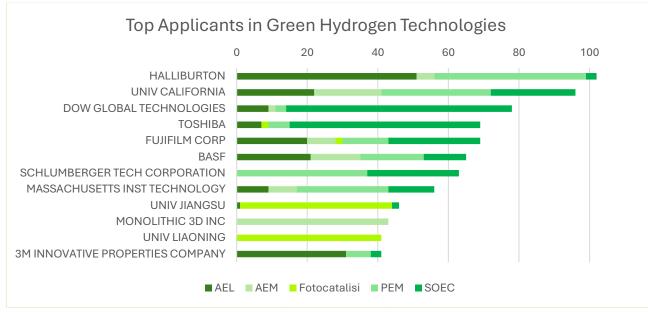


Figure 55: Top applicants per ogni tecnologia

Il grafico raffigura i principali applicants di brevetti relativi alle tecnologie per l'idrogeno verde, distinguendo tra le diverse tipologie di processo (AEL, AEM, PEM, SOEC e fotocatalisi).

Si osserva che Halliburton è l'attore con il numero complessivo più elevato di brevetti, distribuiti principalmente tra AEL e AEM, a conferma dell'interesse di una grande multinazionale dei servizi energetici verso la diversificazione tecnologica. Subito dopo si colloca l'Università della California, con una quota rilevante di brevetti soprattutto in SOEC,

che riflette il ruolo trainante del mondo accademico statunitense nella ricerca su soluzioni ad alta efficienza. Dow Global Technologies mostra invece una forte presenza bilanciata tra PEM e SOEC, coerente con la strategia di un colosso chimico focalizzato sui materiali e sull'integrazione industriale.

Altri attori di rilievo sono Toshiba e Fujifilm, che hanno investito in maniera significativa rispettivamente in fotocatalisi e SOEC, dimostrando l'interesse del settore industriale giapponese per tecnologie emergenti. BASF, leader mondiale nella chimica, presenta un portafoglio orientato soprattutto su AEL e PEM, in linea con le proprie competenze nei materiali e nei catalizzatori. Anche Schlumberger e il MIT compaiono tra i top applicant, segnalando il coinvolgimento di aziende e istituzioni con forti competenze tecnologiche di frontiera.

La presenza di università cinesi, come Univ Jiangsu e Univ Liaoning, evidenzia la crescente attenzione della Cina per lo sviluppo brevettuale nell'idrogeno verde, mentre la partecipazione di aziende come Monolithic 3D e 3M Innovative Properties indica l'apporto di attori specializzati in materiali avanzati e soluzioni ingegneristiche innovative.

La distribuzione dei brevetti conferma la complementarità tra mondo accademico e industria, con grandi multinazionali e università che contribuiscono in modo determinante all'avanzamento delle diverse tecnologie.

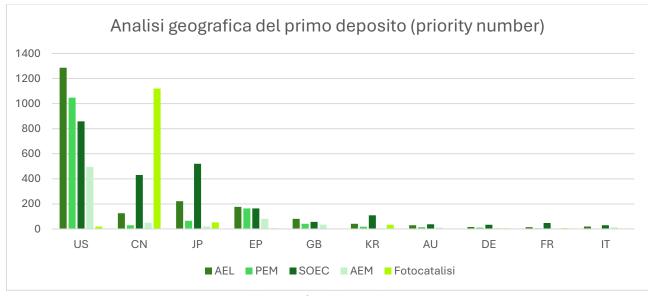


Figure 56: Analisi geografica del primo deposito

Gli **Stati Uniti** si confermano come principale polo di innovazione, con volumi particolarmente elevati in AEL e PEM, seguiti da un numero consistente di brevetti anche in SOEC e AEM, a dimostrazione di una strategia tecnologica diversificata.

La Cina emerge come secondo attore globale, con un portafoglio caratterizzato da una

concentrazione significativa in fotocatalisi e una quota rilevante in AEL. Questo dato riflette l'interesse della ricerca cinese per approcci emergenti e potenzialmente dirompenti, in grado di abbattere i costi di produzione dell'idrogeno.

Il **Giappone** si distingue per un contributo equilibrato, con un peso marcato in AEL e una presenza non trascurabile in SOEC e PEM, in linea con la strategia nazionale che da tempo punta sull'idrogeno come vettore energetico chiave.

L'Europa, rappresentata sia dall'EPO sia da singoli Paesi come Regno Unito, Germania, Francia e Italia, mostra una distribuzione più frammentata, con volumi inferiori ma un portafoglio che copre più tecnologie, soprattutto AEL e SOEC. In particolare, il Regno Unito e l'Ufficio Europeo dei Brevetti presentano un'attività significativa, mentre Germania, Francia e Italia hanno valori limitati.

La **Corea del Sud** presenta un numero discreto di depositi, principalmente concentrati su AEL, mentre l'Australia registra volumi più contenuti ma distribuiti su più tecnologie.

Il quadro complessivo conferma che gli Stati Uniti guidano lo sviluppo brevettuale con un approccio multilaterale, mentre la Cina mostra un orientamento più focalizzato verso la fotocatalisi. Il Giappone e l'Europa contribuiscono con strategie diversificate ma su volumi minori, mentre Corea del Sud e Australia si collocano come attori secondari.

Dopo aver delineato il panorama brevettuale delle principali tecnologie legate all'idrogeno verde, è necessario affiancare all'analisi grafico-descrittiva un approccio più strategico che consenta di valutarne il grado di concentrazione e l'andamento evolutivo delle tecnologie.

A questo scopo, verranno utilizzati due strumenti: l'Indice di Herfindahl-Hirschman (HHI) e l'analisi dei CAGR (Compound Annual Growth Rate).

Questa doppia prospettiva consente di confrontare la dimensione tecnologica con quella economica, riuscendo ad offrire una visione più completa dei fattori che influenzano l'adozione delle diverse soluzioni.

L'Indice di Herfindahl-Hirschman (HHI), noto anche come Herfindahl index, è una misura utilizzata per valutare il grado di concentrazione all'interno di un mercato o di un settore tecnologico. Nel contesto dell'analisi brevettuale, esso consente di comprendere quanto la proprietà intellettuale sia distribuita tra i diversi attori o, al contrario, accentrata in pochi soggetti dominanti. L'indice si calcola sommando i quadrati delle quote di mercato oppure, nel nostro caso, delle quote percentuali di brevetti detenute da ciascun attore:

$$HHI = \sum_{i=1}^{N} s_i^2$$

dove s_i^2 rappresenta la quota percentuale del soggetto i sul totale considerato. Il risultato ottenuto sommando i quadrati delle quote viene moltiplicato per 10.000.

L'interpretazione segue criteri standard: valori inferiori a 1500 indicano un settore frammentato, con numerosi attori che si dividono in modo equilibrato le quote; valori compresi tra 1500 e 2500 denotano una concentrazione moderata; valori superiori a 2500 segnalano invece un'elevata concentrazione, con pochi attori in posizione dominante. Un valore uguale a 10000 equivale ad un monopolio perfetto. Di seguito è stata effettuata un'analisi relativa all'HHI sulle diverse tecnologie analizzate:

Tecnologia	AEL	PEM	AEM	SOEC	FOTOCATALISI
ННІ	1344,6	1150,8	1357,7	1237,2	1200,3

Dall'analisi emerge che in nessuna delle aree tecnologiche considerate si riscontra un'elevata concentrazione. Al contrario, i valori inferiori a 1500 indicano una lieve frammentazione dei settori, riconducibile a una condizione di concentrazione moderata: non si è in presenza né di un mercato fortemente dominato da pochi attori, né di una situazione di elevata dispersione. Tra le tecnologie analizzate, l'AEL e l'AEM risultano le più concentrate, circostanza riconducibile al loro stato di maggiore maturità tecnologica e al consolidamento di alcuni player di riferimento. Al contrario, la fotocatalisi mostra l'HHI più basso, segnalando un settore ancora in fase di sviluppo e caratterizzato da un'elevata apertura competitiva, con ampi margini di ingresso per nuovi attori.

Un altro indicatore di particolare rilevanza per l'analisi delle tendenze tecnologiche e di mercato è il CAGR (Compound Annual Growth Rate). Esso rappresenta il tasso medio di crescita di una variabile lungo un determinato periodo temporale, assumendo che l'incremento avvenga in maniera costante e cumulativa anno dopo anno. A differenza di una semplice media aritmetica, il CAGR tiene conto dell'effetto della capitalizzazione composta, cioè del fatto che la crescita si accumula sugli incrementi precedenti, fornendo quindi una misura più realistica e comparabile della crescita nel tempo.

Il CAGR permette di valutare la dinamica di sviluppo di un settore, di confrontare la crescita di tecnologie differenti e di stimare la velocità con cui un mercato o un portafoglio brevettuale evolve. In particolare, applicato all'analisi brevettuale, il CAGR consente di individuare quali tecnologie mostrano un'accelerazione più marcata dell'attività innovativa e quali, invece, presentano un andamento più stabile o rallentato.

Il calcolo del CAGR si effettua tramite la seguente formula:

$$CAGR = \left(\frac{V_f}{V_i}\right)^{1/n} - 1$$

dove V_f indica il valore finale osservato, V_i il valore iniziale e n il numero di anni considerati. Ad esempio, se il numero di brevetti relativi a una tecnologia passa da 150 nel 2005 a 1500 nel 2025, il CAGR sarà pari a circa il 12%: ciò significa che, in media, l'attività brevettuale è cresciuta del 12% l'anno.

Tecnologia	AEL	PEM	AEM	SOEC	FOTOCATALISI
CAGR	15,91%	17,36%	30,11%	18,68%	33,42%

Elaborando i dati ottenuti da lens.com è stato possibile calcolare i tassi di crescita annuale composta (CAGR) relativi alle diverse tecnologie considerate. L'analisi evidenzia dinamiche eterogenee: i valori più elevati si riscontrano nella fotocatalisi (33,42%) e nella tecnologia AEM (30,11%), a conferma della natura emergente di questi ambiti negli ultimi anni. Tali risultati suggeriscono un forte interesse da parte della comunità scientifica e riflettono la fase iniziale di sviluppo, caratterizzata da una più intensa attività innovativa. Le tecnologie più consolidate, come l'AEL e il PEM, presentano tassi di crescita più contenuti ma comunque significativi. Questo andamento è coerente con il loro maggiore grado di maturità tecnologica, che implica una diffusione già ampia e una crescita più stabile. La tecnologia SOEC, invece, si colloca in una posizione intermedia, con un CAGR pari al 18,68%.

Nel complesso, emerge come le tecnologie più recenti siano contraddistinte da tassi di crescita più elevati, mentre le soluzioni già consolidate mostrano incrementi più graduali e regolari, a testimonianza della diversa fase di sviluppo in cui ciascuna tecnologia si colloca. Di seguito viene mostrata una tabella riassuntiva relativa alle diverse tecnologie trattate:

Tecnologie	AEL	PEM	AEM	SOEC	FOTOCATALISI
Famiglie	2494	2041	773	2676	1278
brevettuali					
IPC	Classe C (40%)	Classe C (35%)	Classe C (52%)	Classe C (51%)	Classe C (54%)
Dominanti					
CAGR	15,91%	17,36%	30,11%	18,68%	33,42%
ННІ	1344,6	1150,8	1357,7	1237,2	1200,3
Pease Leader	USA (46,6%)	USA (53%)	USA (64%)	USA (53%)	Cina (87%)
Тор	Halliburton	Halliburton	Monolithic 3D	Dow Tech	Univ. Jiangsu
Applicants	3M innovative	Schlumberger	Twelve Benefit	Toshiba	Univ. Liaoning
	G. G. group	Univ. California	DH Tech.	Schlumberger	Univ. Qingdao

Dalle analisi effettuate emerge chiaramente la presenza di tecnologie a diverso grado di maturità. Alcune, come l'AEL e il PEM, possono essere considerate mature e già ampiamente consolidate ed utilizzate attualmente. Altre, come l'AEM e la SOEC, risultano meno mature ma con la consapevolezza di aver già superato la fase accademica embrionale, avviandosi verso uno stadio di sviluppo intermedio. Infine, la fotocatalisi si colloca ancora in una fase iniziale di ricerca, come dimostrato dal CAGR particolarmente elevato e dal fatto che i principali richiedenti di brevetti appartengono al mondo accademico, a conferma del carattere ancora sperimentale di questa tecnologia.

Dal punto di vista geografico emerge con chiarezza la netta supremazia tecnologica e brevettuale degli **Stati Uniti**, che risultano i principali applicants in quattro delle cinque tecnologie analizzate. Un'eccezione è rappresentata dalla **fotocatalisi**, in cui la leadership appartiene invece alla **Cina**.

Questi dati evidenziano come le economie globali stiano compiendo significativi progressi nel campo dell'idrogeno verde. Sarà tuttavia necessario, attraverso l'innovazione tecnologica, superare i limiti e le barriere ancora presenti, quali gli elevati costi legati ai materiali utilizzati e le criticità connesse al trasporto e allo stoccaggio di un gas puro come l'idrogeno.

CAPITOLO 4: Casi studio start-up

4.1 Ecosistema start-up negli USA e in Europa

Questo capitolo fornisce una panoramica sull'evoluzione dell'ecosistema start-up idrogeno verde tra il 2005 e il 2025, con particolare attenzione al contesto europeo e statunitense, per poi concentrarsi su tre casi studio in particolare. La trattazione si concentra sull'analisi degli investimenti, la struttura degli stessi e sulle imprese attive in ciascuna fase della filiera: dalla ricerca e sviluppo di tecnologie per la produzione di idrogeno rinnovabile, alla sua produzione su scala industriale, fino alla distribuzione, allo stoccaggio e agli utilizzi finali. Nonostante l'idrogeno verde rappresenti man mano sempre di più un elemento centrale nelle strategie di decarbonizzazione, attualmente, costituisce una quota ancora marginale rispetto all'idrogeno totale prodotto, stimata intorno all'1%, a causa dei costi ancora elevati rispetto ai processi convenzionali con emissione di anidride carbonica.

Tuttavia, tra il 2000 e il 2025 si è registrato un crescente interesse globale accompagnato da un'intensa attività di investimento in tecnologie emergenti focalizzate su tecnologie a zero emissioni, da qui nascono i *Climate Tech Funding* ovvero l'insieme degli investimenti di capitale destinati a sostenere imprese, start-up e progetti che sviluppano tecnologie di questo genere. Generalmente una parte del *Climate Tech Fund* è riservata nello specifico all'idrogeno verde e le quote attribuite a ciascuna tecnologia variano da Paese a Paese.

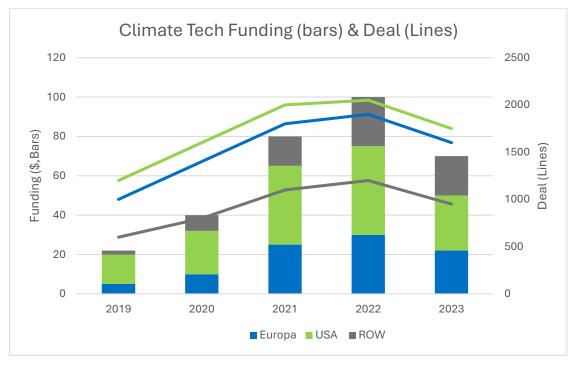


Figure 57: Climate Tech Funding e numero totale di Deal conclusi per nazione. Fonte: PWC 2023, Dealroom, Crunchbase.

Il grafico Figure 57 mostra l'andamento degli investimenti annuali destinati alle tecnologie orientate all'obiettivo delle zero emissioni, suddivisi in tre macroaree geografiche: Europa, USA e ROW (rest of the world). Oltre al volume complessivo dei capitali, rappresentati tramite barre, le linee colorate rappresentano il numero di operazioni concluse nel settore tra il 2019 e il 2023. Tra il 2021 e il 2022 si registra una significativa espansione sia dei capitali investiti sia del numero di operazioni, con l'eccezione degli Stati Uniti, dove si è concentrato un ammontare maggiore di risorse in un numero ridotto di operazioni. Gli Stati Uniti, come di consueto, mantengono un peso predominante rispetto alle altre aree considerate. Nel 2023 si osserva invece una contrazione generale, riconducibile al rallentamento del mercato del venture capital, probabile effetto delle ripercussioni economiche successive alla pandemia di Covid-19.

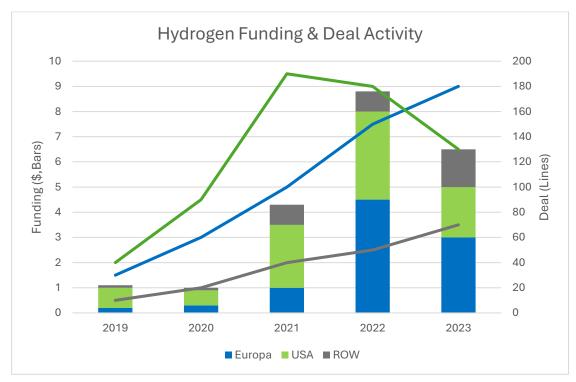


Figure 58: Investimenti solo in Idrogeno e deal conclusi per nazione. Fonte: PWC 2023, Dealroom, Crunchbase.

Entrando nello specifico del mercato degli investimenti in start-up dedicate all'idrogeno verde, la situazione in Figure 58 appare meno equilibrata e consente di individuare due attori principali: Stati Uniti ed Europa, mentre il resto del mondo mantiene un ruolo marginale, sebbene in crescita nel tempo. Un ulteriore elemento da considerare è la diversa strategia adottata dalle due aree dominanti: gli Stati Uniti tendono a concentrare volumi di capitale più elevati su un numero ridotto di start-up, mentre l'Europa, a parità di capitale complessivo, distribuisce gli investimenti in quote minori, realizzando così un numero più elevato di operazioni.

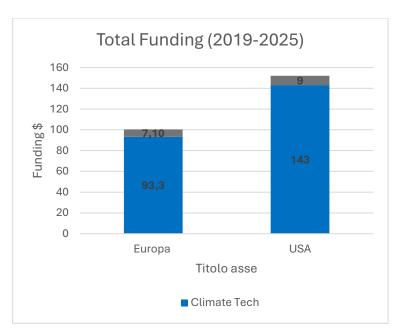


Figure 59: investimenti totali effettuati nel Climate Tech e più precisamente Nell'Idrogeno verde. Fonte: PWC 2023, Dealroom, Crunchbase.

Nella Figure 59 sono rappresentati la totarietà degli investimenti effettuati per l'Europa e per gli USA, è evidente che, sia per quanto riguarda gli investimenti in Climate Tech che per gli investimenti in Idrogeno verde gli Stati Uniti abbiano un volume maggiore rispetto all'europa e al resto del mondo, è però meno evidente la differenza inerente ai volumi d'investimento per l'idrogeno verde. Nella successiva Figure 60 gli investimenti di capitale dedicati sono divisi per tipo d'investimento: parliamo di *Equity, Venture Debt* e *Grant*.

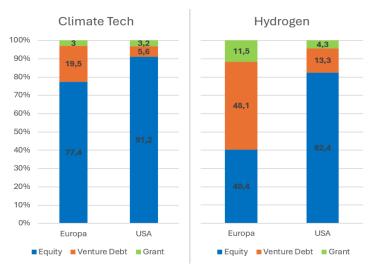


Figure 60: Investimenti in Climate tech e Idrogeno verde suddivisi percentualmente per equity, venture debt e grant per Europa e USA. Fonte: PWC 2023, Dealroom, Crunchbase.

Quando parliamo di investimenti in *equity* ci riferiamo all'acquisto di quote di capitale di una start-up, l'investitore diventa quindi socio e partecipa sia ai rischi sia agli eventuali utili relativi. Il *venture debt* rappresenta invece una forma di finanziamento ibrida che combina

caratteristiche del debito tradizionale con elementi tipici del venture capital: la start-up riceve capitale sotto forma di prestito, che dovrà essere rimborsato, ma in genere a condizioni più flessibili, spesso accompagnate da opzioni che consentono all'investitore di acquisire una quota di partecipazione futura. I grant, invece, sono contributi a fondo perduto erogati da enti pubblici o privati per sostenere lo sviluppo di progetti innovativi, non prevedono obbligo di restituzione né cessione di quote societarie, ma sono generalmente vincolati a specifici obiettivi o attività di ricerca e sviluppo (OpenVC).

Generalmente se in un mercato o in un settore viene utilizzato, come forma di finanziamento, più venture debt rispetto all'equity indica che gli investitori e le istituzioni finanziarie sono disponibili a concedere credito a start-up e imprese innovative senza richiedere un ingresso diretto nel capitale sociale. Questo può suggerire una maggiore fiducia nella solidità del modello di business e nella capacità delle aziende di generare flussi di cassa futuri sufficienti a rimborsare il debito. In secondo luogo, riflette una strategia di contenimento della diluizione azionaria, ovvero le start-up preferiscono indebitarsi piuttosto che cedere ulteriori quote di proprietà agli investitori, mantenendo così un maggiore controllo sull'impresa (OpenVC).

In terzo luogo, un ricorso più ampio al venture debt può essere segnale di un ecosistema in cui vi è forte supporto da parte di banche, fondi di credito specializzati o programmi di sostegno pubblico che facilitano l'accesso a strumenti di debito per l'innovazione. Infine, rispetto all'equity, il venture debt comporta minori rischi per l'investitore in termini di governance, ma maggiori rischi per l'impresa in caso di insuccesso, poiché il debito deve comunque essere rimborsato.

Nel periodo 2000–2010, il concetto di "economia dell'idrogeno" ha vissuto una prima fase di entusiasmo, con l'avvio di programmi pilota su veicoli a celle a combustibile e progetti dimostrativi di produzione da fonti rinnovabili. Tuttavia, l'immaturità tecnologica e gli alti costi frenarono la diffusione e determinarono il fallimento di molte giovani imprese, soprattutto dopo la crisi del Cleantech di fine anni 2000. A partire dalla seconda metà degli anni 2010, anche grazie all'Accordo di Parigi sul clima nel 2015 e alla progressiva riduzione dei costi delle energie rinnovabili, l'idrogeno verde è tornato al centro delle strategie energetiche come vettore abilitante per la decarbonizzazione. In questo contesto si sono moltiplicati i progetti dimostrativi, come parchi eolici accoppiati a elettrolizzatori e le prime flotte di veicoli a idrogeno, e sono nate start-up focalizzate sull'innovazione tecnologica nell'elettrolisi, nello stoccaggio e nelle applicazioni finali dell'idrogeno.

Dal 2020 in poi, il settore ha vissuto un'espansione importante soprattutto per quanto

riguarda gli investimenti e le iniziative industriali. L'Unione Europea ha adottato la Strategia per l'Idrogeno (2020), integrandola nei piani di ripresa post-Covid e nei programmi IPCEI (Importanti progetti di comune interesse Europeo). Negli Stati Uniti, il DOE ha lanciato il programma Hydrogen Shot e, successivamente, l'Inflation Reduction Act ha introdotto incentivi fiscali rilevanti per la produzione di idrogeno verde (impactloop.com).

In questo nuovo scenario, diverse start-up sono cresciute rapidamente, fino a raggiungere la fase di scale-up o la quotazione in borsa. Ad esempio, la francese **Lhyfe**, fondata nel 2017, si è quotata nel 2022 raccogliendo circa 110 milioni di euro (renewablesnow.com). Negli Stati Uniti, **Electric Hydrogen**, fondata nel 2019, ha chiuso un round da 198 milioni di dollari nel 2022 (news.crunchbase.com) e ha successivamente raccolto 380 milioni di dollari nel 2023, diventando la prima start-up dell'idrogeno verde valutata oltre 1 miliardo di dollari (enapter.com).

Parallelamente, anche i grandi gruppi industriali e i fondi corporate hanno cominciato a investire attivamente nel settore. Nel 2025, compagnie energetiche come **Shell**, **BP** e **OMV** hanno partecipato a diversi round di finanziamento in start-up emergenti: **Shell Ventures** ha co-finanziato un round da 18 milioni di dollari nella britannica **Supercritical**, **BP Ventures** ha investito nella statunitense **Advanced Ionics** e nella francese **Snowfox**, attiva nell'estrazione di idrogeno naturale (globalventuring.com).

Questi sviluppi segnano il passaggio dell'idrogeno verde da tecnologia emergente a pilastro strategico della transizione energetica globale, con un ecosistema imprenditoriale sempre più maturo e integrato lungo l'intera filiera.

Le startup dell'idrogeno verde operano lungo l'intera catena del valore. In generale, si possono distinguere tre macrocategorie di attività:

- Tecnologie per la produzione di idrogeno verde: startup che sviluppano nuovi processi e apparecchiature per produrre H₂ in modo più efficiente ed economico (elettrolizzatori innovativi, nuovi catalizzatori, processi di separazione dell'acqua alternativi, ecc.).
- Produzione e fornitura su scala industriale: imprese focalizzate sulla realizzazione e gestione di impianti per produrre idrogeno verde in grandi quantità (spesso integrati con impianti eolici o solari) e sulla vendita/distribuzione dell'idrogeno prodotto ai diversi utilizzatori finali.
- Distribuzione, stoccaggio e utilizzo finale: startup che affrontano le sfide della logistica dell'idrogeno (trasporto, distribuzione e immagazzinamento in forma gassosa, liquida o chimica) e lo sviluppo di applicazioni finali, ad esempio celle a

combustibile per i trasporti (automobili, camion, aeronautica, navale) o per usi stazionari (generatori, sistemi di backup energetico, ecc.).

Nei paragrafi seguenti analizziamo ciascuna di queste categorie.

Startup per la Produzione di Idrogeno Verde:

La produzione di idrogeno verde avviene principalmente tramite elettrolisi, un processo energivoro su cui, attualmente, c'è ampio margine di miglioramento tecnologico. Molte startup si sono dedicate a innovare questo campo con l'obiettivo di ridurre il costo per kg di H₂ e aumentare l'efficienza energetica dei sistemi. Le direzioni di Ricerca & Sviluppo includono: nuovi tipi di elettrolizzatori, utilizzo di nuovi materiali catalizzatori (meno rari e costosi del platino/iridio) e design che consentano la produzione su larga scala modulare. In Europa, uno dei pionieri è Sunfire una start-up fondata in Germania nel 2010, che sviluppa elettrolizzatori alcalini pressurizzati e ad ossidi solidi (SOEC) ad alta efficienza per applicazioni industriali. Grazie alla maturità della sua tecnologia, Sunfire ha attratto ingenti finanziamenti e supporto pubblico: ad esempio ha ricevuto un investimento di €100 milioni dal programma europeo InvestEU e un finanziamento di €200 milioni da un consorzio di banche nel 2025 (impactloop.com), risorse destinate a scalare la produzione e realizzare nuovi impianti produttivi in Germania. Un altro caso di successo europeo è **Hystar**, start-up Norvegese fondata nel 2020, che ha sviluppato un design innovativo di elettrolizzatore PEM con membrane ultrasottili (capaci di aumentare la produzione di H₂ di circa il 10% a parità di energia fornita). Hystar si è affermata come storia di successo europea ottenendo €26 milioni di finanziamento dal Fondo Innovazione UE nel 2024 per costruire una fabbrica di elettrolizzatori da 4 GW ad Oslo (impactloop.com), e chiudendo un round Series C da €31,4 milioni nel 2025 (impactloop.com) per portare la tecnologia alla produzione su scala commerciale. Per quanto riguarda il Regno Unito, ITM Power, fondata nel 2001, è stata una delle prime startup il cui focus fosse sull'idrogeno verde: specializzata in elettrolizzatori PEM, ha siglato partnership strategiche con Linde e raccolto capitali importanti, ad esempio £172 milioni nel 2020, inclusi £30 milioni investiti dalla società infrastrutturale Snam (itmpower.com), che le hanno permesso di inaugurare nel 2021 una "Gigafactory" da 1 GW/anno di elettrolizzatori a Sheffield (UK). In Francia, McPhy Energy, fondata nel 2008, produce elettrolizzatori alcalini e sistemi di rifornimento: nel 2020 ha stretto alleanze strategiche con il produttore criogenico Chart Industries e con TechnipFMC, accompagnate da un aumento di capitale di circa €150 milioni (globenewswire.com) destinato a scalare la capacità produttiva (nuovo stabilimento a Belfort) e sviluppare elettrolizzatori di grande taglia (>100 MW) e stazioni di rifornimento di idrogeno di elevata capacità (globenewswire.com).

Anche diverse startup italo-tedesche stanno innovando la tecnologia degli elettrolizzatori. Enapter, fondata nel 2007 in Germania, ha introdotto elettrolizzatori AEM modulari, compatti e facilmente scalabili. Dopo anni di sviluppo, ha avviato la produzione in piccola serie: oltre 1200 elettrolizzatori sono stati consegnati ai clienti nel solo quarto trimestre del 2023 (enapter.com), e la società ha ricevuto un finanziamento di \$10 milioni nello stesso anno per accelerare la crescita (enapter.com). Enapter sta costruendo "l'Enapter Campus", un impianto produttivo di importanti dimensioni in Germania sostenuto anche da fondi europei, per produrre stack AEM su larga scala. Negli USA, Advanced Ionics, fondata nel 2017, sta sviluppando un elettrolizzatore a vapore ad alta temperatura (chiamato *Symbion*): sfruttando calore di scarto industriale per generare vapore, il sistema riduce il fabbisogno di elettricità per produrre idrogeno. Nel 2023 Advanced Ionics ha ottenuto un investimento Series A da \$12,5 milioni guidato da BP Ventures (con partecipazione di Mitsubishi Heavy Industries e Clean Energy Ventures) (turbomachinerymag.com), destinato a portare la sua tecnologia verso impianti pilota anche in collaborazione con operatori industriali. Un altro caso statunitense fondamentale per lo sviluppo dell'ecosistema è Electric Hydrogen Co., fondata nel 2019 in America, che progetta elettrolizzatori PEM su scala 100 MW per applicazioni all'industria pesante. In pochi anni è diventata la prima startup "unicorno" dell'idrogeno verde: nel 2023 ha raccolto \$380 milioni (Series C) raggiungendo una valutazione superiore al miliardo di dollari (enapter.com). Questi fondi finanzieranno una "Gigafactory" negli USA per la produzione di elettrolizzatori e hanno consentito di ottenere i primi ordini commerciali di rilievo (enapter.com).

Accanto all'elettrolisi convenzionale, alcune startup esplorano percorsi alternativi per ottenere idrogeno a basse emissioni. La britannica HiiROC, fondata nel 2019, ha sviluppato un processo termo-plasmatico che converte metano, biogas o altri idrocarburi in idrogeno, producendo come residuo carbonio solido anziché CO₂ aeriforme. HiiROC sostiene che il suo processo è più efficiente e conveniente dell'elettrolisi tradizionale (impactloop.com), e punta a utilizzare il carbonio solido come sottoprodotto vendibile. La società ha già siglato accordi pilota con la cementiera Cemex e con Siemens per applicazioni industriali, e ha annunciato un progetto per un impianto a Hull (UK) in partnership con il gruppo PX (impactloop.com). HiiROC ha raccolto circa €30 milioni nel 2021 nel suo primo round di venture capital, con investitori come Melrose Industries e HydrogenOne.

Sul fronte della fotoproduzione di idrogeno, la belga Solhyd, fondata nel 2023, sta

sviluppando pannelli solari che producono direttamente idrogeno dall'umidità dell'aria anziché energia elettrica; mentre la statunitense **SunHydrogen Inc.** lavora su celle fotoelettrochimiche nano-strutturate per produrre H₂ sfruttando la luce solare (tecnologia ancora in fase di ricerca). In parallelo, si sta affacciando un filone di ricerca sull'idrogeno naturale: startup francesi come **45-8 Energy** (2017) e **Mantle8** (2024) stanno esplorando la possibilità di estrarre idrogeno bianco da giacimenti geologici sotterranei. In particolare, 45-8 Energy, nata inizialmente come produttore di elio, ha ottenuto €20 milioni (Series B) nel 2023 e licenze di esplorazione nell'ovest della Francia, con il supporto di investitori istituzionali (Bpifrance) e venture corporativi di major energetiche come TotalEnergies (impactloop.com). Nonostante l'idrogeno naturale non rientri nella definizione di verde, queste iniziative mirano a fornire H₂ privo di carbonio sfruttando risorse ancora poco conosciute.

La seconda categoria comprende le startup che producono direttamente idrogeno verde, sviluppando impianti dedicati spesso in prossimità di fonti rinnovabili, di utilizzatori industriali o per la mobilità. Queste aziende fungono da operatori di impianti e forniscono H₂ come prodotto, spesso in partnership con utility o grandi imprese energetiche per condividere investimenti e mercato. L'obiettivo è aumentare la disponibilità di idrogeno verde su scala significativa, riducendo allo stesso tempo i costi unitari grazie a impianti più grandi e integrando la produzione con l'offerta ai clienti finali (industrie, reti di distributori di carburante, ecc.).

In Europa, un esempio di spicco è la Francese **Lhyfe** fondata nel 2017: è stata la prima startup ad avviare, nel settembre 2021, una produzione industriale continuativa di idrogeno verde direttamente collegata a un parco eolico onshore (un impianto da 2,5 MW in Vandea, Francia) (renewablesnow.com). Da allora Lhyfe ha ampliato le operazioni: entro il 2024 contava già 4 siti produttivi tra Francia e Germania (lhyfe.com) e sta sviluppando numerosi progetti in tutta Europa, inclusi impianti *offshore* (ha realizzato un progetto pilota galleggiante nel Mare del Nord, primo al mondo nel suo genere). La crescita di Lhyfe è alimentata da importanti investimenti: la società ha raccolto €17 milioni in un round iniziale nel 2020 e si è quotata in borsa nel 2022 con un IPO da €110 milioni (renewablesnow.com), per finanziare l'espansione a 200 MW entro il 2026 (renewablesnow.com). Lhyfe ha stretto partnership strategiche con operatori di rilievo: ad esempio la utility EDP Renováveis (EDPR) ha investito €25 milioni come Cornerstone nell'IPO (renewablesnow.com); inoltre la startup collabora con la statunitense Plug Power (che fornirà 50 MW di elettrolizzatori PEM) e insieme svilupperanno 300 MW di impianti H₂ in Europa (ir.plugpower.com). A

riconoscimento del suo ruolo, Lhyfe ha ottenuto nel 2025 un sussidio record dal governo francese di €149 milioni per realizzare un maxi-impianto di produzione (100 MW, 34 tonnellate/giorno) a Le Havre, in Normandia, nell'ambito dei progetti IPCEI europei (lhyfe.com).

Altri attori europei seguono modelli simili. La danese **Everfuel** (2019), spin-off del produttore di elettrolizzatori Nel ASA, sta sviluppando un'infrastruttura integrata in Scandinavia: produce idrogeno verde localmente e lo distribuisce tramite proprie stazioni di rifornimento. Everfuel ha avviato la costruzione di un hub H₂ da 20 MW a Fredericia (Danimarca), con elettrolizzatori forniti da Nel (everfuel.com), e gestisce una rete crescente di stazioni di rifornimento in Danimarca, Norvegia e Paesi Bassi. In Norvegia, la società **Greenstat** (startup pubblico-privata) investe in progetti locali di produzione di idrogeno verde destinati al trasporto marittimo e all'industria pesante, spesso in collaborazione con utilities municipali e con il supporto del governo norvegese.

Negli Stati Uniti, l'approccio prevalente tra le startup produttrici è la decentralizzazione: realizzare impianti medio-piccoli distribuiti sul territorio, per servire direttamente mercati locali (trasporto, industrie, reti di stazioni). La startup americana BayoTech (2015) ad esempio propone moduli compatti per la produzione on-site di idrogeno (tramite reforming del gas naturale o biogas con cattura della CO2), offrendo l'idrogeno come servizio in loco (Gas-as-a-Service). BayoTech ha ricevuto un investimento equity di \$157 milioni a inizio 2020 (cottonwood.vc) per accelerare la crescita e sta costruendo una serie di hydrogen hub locali: il primo è entrato in funzione a Wentzville, Missouri, nel 2023, e la società prevede di aprire altri due hub in California nel 2024, con un piano complessivo di 12 siti in sviluppo negli USA (enapter.com). Per integrare la filiera, BayoTech ha acquisito la società IGX Group (specializzata in bombole e logistica di gas compressi), potenziando la propria capacità di consegna di idrogeno (oltre 700 moduli di trasporto ad alta pressione forniti a clienti) (enapter.com). Un'altra giovane impresa, la californiana SGH2 Energy (2018), sta realizzando un impianto innovativo a Lancaster, CA, che produrrà idrogeno verde tramite gassificazione di rifiuti biogenici (biomasse e plastiche non riciclabili): il progetto, sostenuto dal comune di Lancaster e da investitori privati, mira a generare circa 11.000 kg di H2 al giorno utilizzando l'energia solare in un processo termochimico.

Da notare che anche alcune startup *outside* EU/USA stanno influenzando il mercato con progetti di produzione su scala: ad esempio la canadese **HydrogenPro** (2013) ha consegnato più di 40 elettrolizzatori per uno dei maggiori hub H₂ al mondo (il progetto ACES Delta in Utah) ed è partner con Andritz per localizzare la produzione di elettrolizzatori in Europa

(enapter.com). In Svezia, la neoimpresa **H2 Green Steel** (2020) sta integrando la produzione diretta di acciaio con elettrolizzatori (circa 800 MW previsti) per generare in sito l'idrogeno necessario alla riduzione del minerale di ferro, avendo raccolto oltre €500M da investitori pubblici e privati entro il 2022. Questi esempi indicano come, a partire dal 2020, le startup dell'idrogeno verde abbiano cominciato a realizzare impianti di dimensioni considerevoli, spesso in partnership con big player o come parte di consorzi, contribuendo a creare una capacità produttiva di H₂ pulito che fino a pochi anni prima era inesistente.

L'ultima categoria da analizzare riguarda le startup che puntano ad innovare nella logistica dell'idrogeno (trasporto e stoccaggio) e nelle applicazioni finali a celle a combustibile per diversi settori. La distribuzione dell'idrogeno pone sfide tecniche notevoli a causa della bassa densità energetica per volume dell'H₂ e delle sue proprietà fisiche (molecola molto piccola, che può infiltrarsi e indebolire alcuni materiali). Sono quindi necessarie soluzioni ad hoc per trasportare grandi quantità di idrogeno in modo efficiente e sicuro.

Distribuzione via pipeline e vettori liquidi:

Una soluzione è riutilizzare infrastrutture esistenti come i gasdotti adattandoli all'idrogeno. La startup statunitense Smartpipe Technologies ha sviluppato rivestimenti interni in materiale composito per condotte, capaci di rendere ermetiche e resistenti all'idrogeno anche pipeline datate, evitando perdite. Nel 2023 Smartpipe ha ottenuto investimenti dal colosso Enbridge e ha completato test con il Dipartimento dell'Energia, dimostrando la fattibilità del trasporto di H₂ in condotte riconvertite (enapter.com). Per il trasporto su lunghe distanze, diverse startup puntano su vettori chimici liquidi che portino l'idrogeno in forma densa senza necessità di compressione estrema o liquefazione criogenica. La tedesca Hydrogenious LOHC Technologies (2013) è leader in questo ambito: utilizza un olio termico (es. benziltoluene) come carrier per legare l'idrogeno, consentendo di immagazzinarlo e spostarlo in cisterne similmente a un carburante liquido convenzionale (impactloop.com). Una volta a destinazione, l'H2 viene rilasciato dal liquido tramite un reattore dedicato. Questa tecnologia evita evaporazione, boil-off e perdite diffuse che affliggono l'idrogeno liquido, sfruttando infrastrutture esistenti (serbatoi, autobotti). Hydrogenious ha già applicato la sua soluzione e ha convinto investitori globali: ha raccolto €50 milioni in un round 2021 guidato da JERA (utility giapponese) e €17 milioni addizionali a inizio 2025 (impactloop.com), per finanziare la costruzione in Germania del più grande impianto commerciale al mondo di stoccaggio LOHC (capacità prevista circa 1.800 ton/anno di H₂ legato) che sarà operativo entro il 2027 (impactloop.com). La tecnologia LOHC è

considerata promettente per l'import-export di idrogeno (ad es. trasporto via nave dall'Australia all'Europa) e Hydrogenious è infatti coinvolta in consorzi internazionali per corridoi di idrogeno (ad es. progetto H2Gate per l'import via LOHC nei porti del Nord Europa). Altri vettori liquidi studiati includono l'ammoniaca (NH₃): startup come la statunitense **Starfire Energy** stanno sviluppando reattori modulari sia per produrre ammoniaca verde da H₂, sia per "crackare" l'ammoniaca in idrogeno al luogo di utilizzo. L'idea è sfruttare l'infrastruttura esistente dell'ammoniaca (navi cisterna, serbatoi, oleodotti) per trasportare grandi quantità di idrogeno in forma chimica stabile. Anche Fortescue Future Industries e altri attori stanno investendo su ammoniaca e metanolo come vettori H₂, spesso collaborando con startup specializzate nella catalisi e nei processi di sintesi. In parallelo, si sta costruendo l'**infrastruttura di rifornimento** per utilizzare l'idrogeno nei trasporti. Negli USA, la californiana FirstElement Fuel (2013) ha realizzato la più estesa rete retail di stazioni a idrogeno, sotto il marchio TrueZero: oltre 30 stazioni di servizio in California che riforniscono veicoli fuel cell (auto Honda e Toyota, autobus e presto camion), finanziate con il supporto di case automobilistiche (Toyota, Honda) e contributi statali. In Europa, startup come la francese HRS (Hydrogen Refueling Solutions) e la britannica Element 2 stanno installando decine di stazioni di rifornimento H₂, mirando soprattutto al rifornimento di camion e bus lungo le tratte stradali principali (autostrade, interporti). Ad esempio, HRS, si è aggiudicata contratti per fornire stazioni H₂ in Francia, Paesi Bassi e Germania (anche nell'ambito dei progetti IPCEI Hydrogen), mentre Element 2 prevede 30 stazioni nel Regno Unito entro il 2025. Queste infrastrutture sono spesso sviluppate in partenariato con produttori di elettrolizzatori o distributori di gas (nel caso di Element 2, in JV con ITM Power per l'UK). L'espansione della rete di distribuzione è considerata un fattore chiave per stimolare la domanda di idrogeno nei trasporti.

Utilizzo finale e celle a combustibile:

Sul fronte degli usi finali, molte startup si concentrano sull'integrazione dell'idrogeno in applicazioni mobili e stazionarie tramite celle a combustibile. Nei trasporti pesanti, le già citate **Nikola** e **Hyzon**, due startup statunitensi, sono state apripista nei camion a idrogeno. **Nikola Motor** (2015) ha sviluppato motrici per camion a lunga distanza alimentate da celle a combustibile PEM da 200 kW; ha raccolto capitali ingenti tramite una fusione nel 2020 e avviando una partnership strategica con IVECO, che nel 2019 ha investito \$250 milioni nella startup come lead investor del round D (iveco.com) e ha costruito con Nikola uno stabilimento europeo in Germania per produrre i camion Nikola Tre a zero emissioni. **Hyzon**

Motors (2020) si è quotata nel 2021 e ha iniziato a consegnare camion e autobus funzionanti ad H₂: in particolare ha fornito camion da 40 tonnellate per la raccolta rifiuti a Groningen (Paesi Bassi) e bus a idrogeno per operatori in California, grazie anche a joint venture esercitate in Europa, Cina e Australia. In ambito ferroviario, pur non essendo startup, va citato il ruolo pionieristico di Alstom, che con il supporto di piccole aziende innovative ha lanciato nel 2018 il primo treno regionale a celle a combustibile (Coradia iLint, in servizio in Germania), aprendo un nuovo mercato che diverse giovani imprese (es. Hydrogen Rail in UK) stanno iniziando a esplorare per convertire locomotive diesel.

Nel settore aeronautico, alcune startup stanno cercando di portare l'idrogeno nei cieli. La più avanzata è **ZeroAvia** (2017, base in California e UK), che ha sviluppato powertrain elettrici a idrogeno per aerei di piccole dimensioni. Nel gennaio 2023 ZeroAvia ha effettuato il primo volo di prova di un aereo regionale da 19 posti (Dornier Do-228) equipaggiato con una cella a combustibile e motore elettrico su un'ala, ottenendo risultati positivi. La società ha accumulato oltre \$150 milioni di finanziamenti (Series A, B e C) da investitori, tra cui Breakthrough Energy Ventures, British Airways, United Airlines e il fondo sovrano dell'Arabia Saudita (zeroavia.com). ZeroAvia mira a certificare entro il 2025 un motore H₂ da 600 kW per aeromobili fino a 20 posti, e ha già ricevuto preordini per oltre 2.000 motori (potenziale >\$10 mld di valore) (electrek.com).

Anche nel campo delle applicazioni stazionarie ci sono start-up che hanno introdotto soluzioni innovative. Un esempio è rappresentato dalla britannica GeoPura (2019), che ha sviluppato generatori elettrici mobili a idrogeno da 250 kW, denominati Hydrogen Power Unit (HPU). Si tratta di sistemi progettati per fornire energia pulita in contesti temporanei o isolati, come cantieri, eventi, set cinematografici o data center mobil, che oggi dipendono in gran parte da generatori diesel. Ogni HPU integra celle a combustibile alimentate da idrogeno verde (fornito tramite bombole) e può erogare simultaneamente elettricità e calore senza emissioni. In collaborazione con Siemens Energy, GeoPura ha già testato le proprie soluzioni in progetti pilota di rilievo, tra cui l'alimentazione di set televisivi della BBC e il supporto alla rete elettrica del National Grid UK durante delle esercitazioni. Nel 2023 l'azienda ha chiuso un round Serie A da 36 milioni di sterline, guidato da GM Ventures e Barclays, con la partecipazione di Siemens Energy Ventures e SWEN Capital Partners (home.barclays); a ciò si è aggiunto un finanziamento da 30 milioni di sterline da parte della UK Infrastructure Bank (geopura.com). Le nuove risorse saranno destinate all'espansione della produzione di HPU, anche tramite l'acquisizione di asset e personale dalla danese Green Hydrogen Systems, e alla realizzazione di un impianto di elettrolisi dedicato presso il sito dell'ex centrale a carbone di Marnham, nell'ambito del progetto HyMarnham (geopura.com).

Un altro esempio significativo proviene dalla californiana **H2U Technologies** (2019), che sta sviluppando piccoli generatori domestici a celle a combustibile reversibili, capaci sia di produrre energia dall'idrogeno sia di effettuare elettrolisi in presenza di surplus rinnovabile. Questa soluzione mira al mercato dell'alimentazione di emergenza residenziale e alle comunità rurali off-grid. Accanto ai sistemi di generazione, rivestono un ruolo cruciale anche le tecnologie abilitanti, come i sensori di idrogeno e i sistemi di sicurezza, fondamentali per garantire affidabilità e operatività su larga scala. La californiana **H2Scan** è specializzata in sensori avanzati per il rilevamento di fughe di idrogeno in diversi contesti, dai trasformatori elettrici alle linee gas: nel 2023 ha ottenuto un contratto nell'ambito dei progetti GRIP del DOE per migliorare la resilienza delle reti energetiche attraverso l'impiego dei suoi sensori a stato solido (enapter.com). Oltre a queste, numerose altre piccole imprese contribuiscono allo sviluppo della filiera fornendo componenti critici, come valvole, compressori innovativi e software di monitoraggio, che risultano essenziali per l'ottimizzazione e la diffusione delle applicazioni a idrogeno.

Tra il 2005 e il 2025 l'ecosistema startup idrogeno ha compiuto un notevole salto di qualità, passando da poche iniziative pionieristiche a un vivace tessuto di imprese che coprono tutte le fasi della filiera produttiva. In risposta alle esigenze della transizione energetica, queste startup hanno sviluppato soluzioni innovative per produrre H2 senza emissioni (dai nuovi elettrolizzatori ad altissima efficienza (impactloop.com), per distribuirlo e stoccarlo in modo sicuro e per utilizzarlo efficacemente. I finanziamenti ricevuti, spesso decine o centinaia di milioni di euro/dollari per singolo progetto, e le partnership strette con attori di primo piano testimoniano la crescente fiducia nel ruolo dell'idrogeno verde. Questo periodo ha visto anche i primi esempi di progetti su larga scala guidati da startup, come impianti da decine di MW e reti di distribuzione dedicate, segnando il passaggio dell'idrogeno verde dalla fase dimostrativa a quella pre-commerciale. Permangono sfide importanti: la riduzione dei costi (\$/kg), il potenziamento delle infrastrutture, il superamento di barriere normativocommerciali e lo sviluppo di una domanda consistente. Tuttavia, le basi gettate configurano un ecosistema in procinto ad essere pronto per la scalata industriale. Con il supporto continuo di investimenti pubblici e privati, e con l'ingresso di queste tecnologie nella maturità commerciale, l'idrogeno verde potrebbe svolgere un ruolo di primo piano nella decarbonizzazione globale nei decenni a venire.

4.2 Plug-power: la prima Scale-up nel settore

Plug Power è un'azienda statunitense leader nel settore dell'idrogeno verde, considerata una scale-up di successo nel panorama dell'energia pulita. Fondata alla fine degli anni '90, ha sviluppato un ecosistema integrato di soluzioni a idrogeno, dalle fuel cell agli elettrolizzatori, con l'obiettivo di rivoluzionare il settore energetico in chiave sostenibile. Questo sotto-capitolo esamina il percorso di Plug Power dalle origini alla sua posizione attuale di leadership, analizzando la storia aziendale, il modello di business, le tecnologie core, le strategie industriali e commerciali, i progetti recenti e le prospettive future nell'ambito dell'idrogeno verde.

4.2.1 Le origini di Plug Power: Fondazione, primi passi e investimenti

Plug Power Inc. viene fondata nel 1997 come joint-venture tra la utility DTE Energy e la società di tecnologia Mechanical Technology Inc., con sede a Latham, nello stato di New York.

Fin dall'inizio la missione dichiarata dell'azienda era sviluppare sistemi a celle a combustibile a membrana a scambio protonico (PEM) per la generazione di energia in situ, immaginando applicazioni residenziali e commerciali capaci di fornire elettricità in modo più efficiente e pulito rispetto alla rete tradizionale (researchanalyst.com). Alla fine degli anni '90 l'idrogeno e le fuel cell erano visti come tecnologie rivoluzionarie, e Plug Power ambiva a diventare un pioniere di questa "economia dell'idrogeno" nascente.

Nel 1999, in pieno boom tecnologico, Plug Power effettuò la sua offerta pubblica iniziale (IPO) al NASDAQ, raccogliendo capitali significativi per finanziare la crescita (researchanalyst.com). In quell'epoca la collaborazione con General Electric (GE) diede grande visibilità alla start-up: GE selezionò Plug Power come fornitore esclusivo di sistemi a fuel cell per applicazioni residenziali e commerciali sotto i 35 kW, creando anche una joint venture (GE Fuel Cell Systems) per commercializzare tali sistemi (researchanalyst.com). Le aspettative erano altissime: nel prospetto informativo depositato nel 1999 si prevedeva di lanciare le prime fuel cell residenziali nel 2001 e di arrivare a vendere 100.000 sistemi all'anno entro il 2003 (researchanalyst.com). Questa visione rispecchiava la convinzione che l'elettricità prodotta con le fuel cell PEM di Plug Power potesse essere meno costosa, più affidabile, più efficiente e più pulita dell'energia di rete tradizionale (researchanalyst.com). Tuttavia, come molte start-up del settore in quegli anni, Plug Power incontrò notevoli difficoltà nel trasformare queste promesse in realtà commerciale. Dopo un breve picco

iniziale, il titolo in borsa subì un drastico ridimensionamento (dal massimo storico toccato nel 1999 il valore scese di oltre l'80% nei successivi anni). Inoltre, nel 2000 la società affrontò una class action legale da parte degli azionisti, accusata di aver sovrastimato le proprie capacità tecnologiche e le relazioni commerciali con GE; la controversia si concluse nel 2004 con un accordo (researchanalyst.com). In sostanza, i primi anni 2000 furono caratterizzati da perdite elevate e vendite esigue per Plug Power (researchanalyst.com), segno delle difficoltà nel trovare un mercato sostenibile per le sue fuel cell in un contesto di costi ancora troppo alti.

Nonostante queste battute d'arresto iniziali, l'azienda mantenne la sua visione originaria. La cultura interna di Plug Power era ed è permeata da uno spirito pionieristico e dalla convinzione di poter trasformare il settore energetico in chiave sostenibile (sec.gov). Questa ha guidato Plug Power attraverso la fase difficile post-IPO, spingendo il team a esplorare nuove applicazioni e mercati dove le fuel cell potessero offrire un valore concreto.

Per finanziare la sua crescita, Plug Power ha inizialmente fatto affidamento sia sui capitali dei soci fondatori che sull'accesso ai mercati azionari. L'IPO del 1999, avvenuta in un periodo di grande entusiasmo per le tecnologie a idrogeno, ha rappresentato un'importante iniezione di liquidità che ha permesso all'azienda di potenziare la ricerca e sviluppo e di avviare le prime produzioni. (researchanalyst.com). Successivamente, negli anni 2000, Plug Power ha attratto ulteriori investimenti strategici: ad esempio, nel 2006 il conglomerato russo Interros (in partnership con il produttore di nichel Norilsk Nickel) propose un investimento di 217 milioni di dollari in Plug Power, riconoscendo il potenziale delle sue tecnologie a idrogeno (sec.gov). Questo investimento, poi effettivamente finalizzato, diede a Plug Power l'opportunità di rafforzare la propria strategia espandendo le attività di vendita, marketing e sviluppo prodotto, anche grazie ai network internazionali dei partner coinvolti (sec.gov). In parallelo, l'azienda sviluppò in quegli anni numerose partnership commerciali e tecnologiche (con aziende come Honda, Vaillant, Engelhard e istituti come IFC e DOE) per condividere competenze e accedere a mercati esteri (sec.gov). Questa rete di collaborazioni ha esteso la presenza di Plug Power già nei primi anni di attività, con distributori e progetti pilota in Nord America, Europa, Giappone e Sudafrica (sec.gov).

4.2.2 Modello di business e soluzione tecnologica

Dal punto di vista del modello di business, Plug Power ha dovuto negli anni adattare e riposizionare la propria strategia commerciale per trovare applicazioni profittevoli per le proprie fuel cell. Inizialmente l'attenzione era rivolta ai sistemi di generazione stazionaria di piccola taglia, come gruppi di continuità e backup per telecomunicazioni e utility (i prodotti GenCore® e GenSys®) (sec.gov), ma la domanda in quei segmenti si è rivelata limitata. Intorno alla metà degli anni 2000, l'azienda ha individuato un settore di nicchia ad alto potenziale: quello dei carrelli elevatori elettrici per la movimentazione di materiali all'interno di magazzini e centri logistici. In questo contesto, le celle a combustibile potevano sostituire vantaggiosamente le tradizionali batterie al piombo, offrendo rifornimenti molto più rapidi e potenza costante durante l'operatività. Nel 2007 Plug Power ha compiuto mosse decisive in questa direzione acquisendo due aziende specializzate (Cellex Power e General Hydrogen) e integrandone le soluzioni: ciò ha segnato l'ingresso nel mercato dei forklift a idrogeno, ponendo le basi per il primo mercato commerciale realmente praticabile per la tecnologia fuel cell (plugpower.com).

Questa svolta ha portato allo sviluppo di un modello di offerta integrato, concepito per abbattere le barriere di adozione per i clienti industriali. Nel 2014 Plug Power lancia infatti GenKey, un pacchetto "chiavi in mano" che include *tutti* gli elementi necessari all'implementazione di carrelli elevatori a idrogeno: le celle a combustibile (moduli GenDrive) da installare nei muletti al posto delle batterie, le infrastrutture per il rifornimento di idrogeno onsite (serbatoi, erogatori, unità di produzione o stoccaggio di H₂, il sistema GenFuel) e i servizi di assistenza e manutenzione (GenCare) (plugpower.com). Attraverso GenKey, Plug Power non vende semplici prodotti ma un servizio completo, assicurando ai clienti performance garantite e rifornimenti di idrogeno continui, in cambio di contratti pluriennali. Questo approccio integrato ha aumentato la fiducia degli utilizzatori e creato flussi di entrate ricorrenti per l'azienda, riducendo allo stesso tempo il costo totale per i clienti.

Un esempio emblematico di come Plug Power abbia raccolto investimenti strategici legati al proprio modello di business è dato dalle partnership con giganti della logistica come Walmart e Amazon. Nel 2017 entrambe queste aziende hanno adottato su larga scala le soluzioni a fuel cell di Plug Power per le flotte di muletti nei loro centri di distribuzione, stringendo accordi di fornitura pluriennali. Per incentivare tali collaborazioni, Plug Power ha offerto a Walmart e Amazon diritti per acquisire quote azionarie dell'azienda, a fronte di volumi d'acquisto crescenti delle sue soluzioni a idrogeno (plugpower.com). Ad esempio, l'accordo con Walmart prevedeva che il retailer potesse acquistare fino a circa 55 milioni di azioni Plug Power, con tranche che maturavano al raggiungimento di ogni \$50 milioni spesi in prodotti e servizi (plugpower.com). Parallelamente, Amazon siglò un accordo simile che

poteva portarla ad acquisire fino al 23% di partecipazione in Plug Power in cambio di investimenti fino a \$600 milioni nelle tecnologie a idrogeno dell'azienda. Questi accordi innovativi hanno fornito a Plug Power capitali aggiuntivi e soprattutto hanno "bloccato" due clienti di primissimo piano, accelerando la diffusione su scala delle soluzioni GenKey. Alla fine del 2016 Walmart aveva già operativi 5.500 carrelli a fuel cell Plug Power in 22 centri logistici (ir.plugpower.com), diventati oltre 6.600 nel 2017, questa rappresentava la più grande flotta al mondo di veicoli elettrici alimentati a idrogeno (ir.plugpower.com). L'esperienza positiva di Walmart (e successivamente di Amazon) ha validato il modello di Plug Power, dimostrando come le fuel cell potessero aumentare la produttività nei magazzini riducendo i costi operativi e le problematiche ambientali legate alle batterie tradizionali (ir.plugpower.com).

Il vantaggio competitivo di Plug Power risiede in un portafoglio tecnologico completo che copre sia la produzione di idrogeno verde sia il suo utilizzo tramite celle a combustibile, includendo anche le infrastrutture di stoccaggio e distribuzione. Si parla di celle a combustibile a idrogeno (fuel cell PEM), elettrolizzatori per la generazione di idrogeno verde, e le componenti infrastrutturali dell'"ecosistema" idrogeno (dai serbatoi ai distributori fino alla liquefazione e trasporto). Le celle a combustibile di Plug Power sono basate su tecnologia PEM, in cui l'idrogeno gassoso (H2) viene combinato con l'ossigeno dell'aria per generare elettricità, con acqua pura come unico prodotto di scarto. Questo processo elettrochimico converte l'energia chimica direttamente in energia elettrica senza combustione, ottenendo efficienze maggiori rispetto ai motori a combustione interni e agli impianti termoelettrici tradizionali (researchanalyst.com).

Figure 61: Fuel cell prodotta da Plug Power per un carrello elevatore.

Ad esempio, nelle applicazioni di movimentazione di materiali, i moduli fuel cell **GenDrive** di Plug Power possono erogare potenza costante ai carrelli elevatori per tutta la durata dell'operazione, garantendo prestazioni superiori a quelle delle batterie (che invece calano di rendimento man mano che diminuisce la carica). Un vantaggio cruciale è il tempo di rifornimento: anziché ore per ricaricare una batteria, un muletto a fuel cell può fare il pieno di idrogeno in pochi minuti, assicurando maggiore operatività e produttività nei magazzini. Oltre ai GenDrive per i veicoli industriali, Plug Power ha sviluppato la linea **ProGen** ovvero moduli di celle a combustibile modulari destinata ad alimentare veicoli elettrici stradali (come furgoni per le consegne, autobus o altri mezzi) e sistemi mobili di varie dimensioni (ir.plugpower.com). Le celle a combustibile vengono inoltre impiegate in soluzioni stazionarie: ad esempio il sistema GenSure fornisce energia di backup o di emergenza per siti telecom, data center e altre infrastrutture critiche, sfruttando l'idrogeno come combustibile di riserva al posto dei generatori diesel (sec.gov). In tutti questi campi, l'innovazione di Plug Power consiste nell'aver reso commercialmente praticabile la tecnologia PEM in applicazioni quotidiane, progettando sistemi affidabili, compatti e in grado di integrarsi nelle piattaforme esistenti (i pacchi GenDrive sono dimensionati per entrare negli alloggi batterie dei muletti standard). Le soluzioni fuel cell di Plug Power operano con emissioni zero in loco, generano solo vapore acqueo e calore, e contribuiscono quindi sia alla decarbonizzazione sia all'eliminazione di altri inconvenienti delle batterie (come la gestione di acidi e metalli pesanti). Per alimentare le proprie fuel cell con idrogeno verde, Plug Power utilizza e commercializza elettrolizzatori PEM di propria progettazione. Un elettrolizzatore è un sistema che, come spiegato ampiamente nel capitolo 1, applicando energia elettrica, scinde le molecole d'acqua (H2O) nei loro componenti: idrogeno e ossigeno. Gli elettrolizzatori di Plug Power adottano la tecnologia PEM analoga a quella delle fuel cell (ma operata in modalità inversa) e sono concepiti come sistemi modulari e scalabili, ottimizzati per produrre idrogeno in modo efficiente direttamente presso il punto di consumo (plugpower.com). Ciò consente, ad esempio, di installare elettrolizzatori accanto a parchi fotovoltaici o eolici per convertire l'energia eccedente in idrogeno. Plug Power ha sviluppato una gamma di elettrolizzatori PEM denominata GenEco, con moduli standardizzati da 1 MW e fino a 5 MW di potenza elettrica assorbita (ir.plugpower.com). Questi sistemi possono essere collegati in serie per realizzare impianti di maggiori dimensioni; infatti, l'architettura modulare consente una relativa facilità di scaling a seconda della domanda di idrogeno. Un esempio concreto del livello di maturità tecnologica è dato dall'impianto realizzato presso il campus "The Green Box" nei Paesi Bassi: qui Plug Power ha installato e reso operativi nel 2025 un elettrolizzatore PEM da 5 MW e uno da 1 MW, utilizzati per dimostrazioni pratiche ai clienti europei (ir.plugpower.com). La tecnologia GenEco di Plug Power si distingue per la flessibilità di utilizzo in diversi settori industriali emergenti riuscendo, attraverso gli elettrolizzatori, a fornire ai clienti soluzioni per produrre in proprio idrogeno verde, riducendo la dipendenza dai fornitori tradizionali e integrando verticalmente la filiera dell'idrogeno.

4.2.3 Plug power oggi

Nel 2024 la società ha conseguito 629M di dollari di fatturato ed opera con uffici e stabilimenti in Nord America, Europa e Asia. La sede centrale resta a Latham (New York, USA), ma sono attivi altri poli strategici: uno stabilimento a Rochester (NY) che funge da "gigafactory" per la produzione in serie di stack di elettrolizzatori PEM e di celle a combustibile (il primo impianto al mondo con capacità multi-gigawatt per queste tecnologie) (resources.plugpower.com); un nuovo impianto a Slingerlands (NY) dedicato all'assemblaggio di sistemi fuel cell di grande potenza (multi-MW) per applicazioni stazionarie; siti produttivi e di rifornimento di idrogeno in vari stati. In Europa, oltre al centro di eccellenza di Veghel (Paesi Bassi) derivante dall'acquisizione di Frames Group, Plug Power ha inaugurato il già citato centro demo Green Box in Olanda per supportare le vendite di elettrolizzatori (ir.plugpower.com). La joint venture con Renault dispone di un impianto in Francia dove vengono assemblati i veicoli HYVIA e integrati i sistemi fuel cell. La joint venture con Acciona ha sede a Madrid e svilupperà impianti in Spagna e Portogallo (acciona.com). In Asia, la partnership con SK Group prevede la creazione di un'entità con base a Seoul per servire il mercato coreano e quelli limitrofi.

L'impatto di questa espansione globale si riflette nei numeri: ad oggi Plug Power ha distribuito oltre 72.000 sistemi a celle a combustibile a clienti in tutto il mondo e installato più di 275 stazioni di rifornimento a idrogeno (ir.plugpower.com), affermandosi come leader mondiale di settore. Il portafoglio clienti di Plug Power è ormai di caratura internazionale e settoriale: include colossi della grande distribuzione (Walmart, Amazon, Home Depot), dell'automotive (BMW, Renault), dell'energia (BP) e altri ancora (ir.plugpower.com), a testimonianza di come le soluzioni a idrogeno stiano facendo breccia in diversi ambiti industriali.

Plug Power attualmente si trova in una posizione singolare come precursore e leader industriale nell'ambito dell'idrogeno, frutto di oltre due decenni di esperienza e di una serie di scelte strategiche coraggiose. L'azienda ha costruito un ecosistema che spazia dalla

produzione di idrogeno alla sua utilizzazione in molteplici settori, incarnando un modello per la transizione verso l'idrogeno. Se riuscirà a eseguire con successo il proprio piano industriale, incrementando la capacità produttiva, entrando in nuovi mercati geografici e soprattutto raggiungendo la sostenibilità economica, Plug Power potrà diventare uno degli attori cardine della futura economia decarbonizzata.

4.3 Caso studio: Supercritical

4.3.1 Descrizione generale e Mission

Supercritical Solutions è una startup deep-tech britannica fondata nel 2020 in piena pandemia da Covid-19. Nasce come spin-off di Deep Science Ventures (DSV), un ventur builder focalizzato su sfide scientifiche globali, con la missione dichiarata di rendere la produzione di idrogeno verde più economica dell'idrogeno da fonti fossili (supercritical.solutions). Il progetto imprenditoriale è stato avviato da Gaël Gobaille-Shaw (ricercatore DSV e ideatore del concept) che ha riunito un team di co-fondatori con competenze complementari: Mike Russ (PhD in Ingegneria Aerospaziale, esperto di elettrochimica e reattori, ora CTO) (supercritical solutions), Matt Bird (manager con più di 25 anni di esperienza in grandi aziende e startup, ora CEO), Luke Tan (ingegnere chimico, 8 anni nel settore dell'idrogeno presso Johnson Matthey, ora CPO) e Gaël Gobaille-Shaw stesso in qualità di Chief Scientist (PhD in catalisi e processi di elettrolisi di CO₂ e H₂O, con background in ricerca industriale presso Johnson Matthey). Questa combinazione di competenze, tecniche, commerciali e manageriali, ha fatto sì che ci siano le basi ideali per guidare la startup sin dalle prime fasi, assicurando un focus sia sulla ricerca innovativa sia sul valore commerciale dell'idea. Il contesto che ha motivato la nascita di Supercritical è la crescente esigenza di idrogeno verde nei settori industriali difficili da decarbonizzare. Nel biennio 2020-2021, oltre il 99% dell'idrogeno mondiale era prodotto da fonti fossili, generando emissioni di CO2 comparabili a quelle dell'intero settore dell'aviazione (supercritical solutions). I fondatori di Supercritical hanno riconosciuto in questa disparità un'enorme opportunità: sviluppare una tecnologia in grado di produrre idrogeno a costi più bassi e con maggiore efficienza, per accelerare la transizione dai processi che utilizzano fonti fossili a processi che permettono di produrre idrogeno a zero emissioni. Sin dal primo giorno, la visione dell'azienda è stata dunque orientata a raggiungere la parità di costo con i combustibili fossili, condizione ritenuta cruciale per l'adozione massiccia dell'idrogeno pulito nell'industria. Questa chiara focalizzazione commerciale, unita al supporto metodologico di DSV, ha distinto Supercritical da molte spin-off accademiche: invece di partire da una soluzione in cerca di applicazione, l'azienda è nata identificando un problema concreto di mercato (il costo elevato dell'idrogeno verde) e lavorando sulla tecnologia per risolverlo (supercritical.solutions).

In termini di forma societaria, Supercritical Solutions Ltd. è stata costituita a Londra nel giugno 2020. La sede operativa e i laboratori sono situati nell'area di Londra, dove il team ha potuto sviluppare i primi prototipi. La cultura aziendale, improntata alla trasparenza, alla collaborazione e alla sperimentazione, riflette questa consapevolezza: ogni fallimento è considerato un'opportunità di apprendimento verso la soluzione finale. Sin dall'inizio, Supercritical ha cercato partnership strategiche e supporto esterno per colmare le inevitabili lacune tecniche e accelerare lo sviluppo. Come si vedrà, queste collaborazioni, con investitori, enti pubblici e aziende industriali, hanno giocato un ruolo fondamentale nel percorso della startup.

4.3.2 Soluzione tecnologica e mercato target

Il cuore dell'innovazione di Supercritical Solutions è un elettrolizzatore senza membrana ad acqua supercritica⁸, progettato per operare ad alta temperatura e pressione, producendo idrogeno verde ad altissima efficienza e direttamente alla pressione richiesta dall'industria. Dal punto di vista tecnico, la soluzione di Supercritical rappresenta una nuova classe di elettrolizzatore che combina vantaggi delle tecnologie esistenti introducendo al contempo caratteristiche inedite (supercritical solutions). Di seguito ne descriviamo il funzionamento e i principali elementi distintivi rispetto agli elettrolizzatori convenzionali di tipo alcalino, PEM e SOEC.

Utilizzando calore e pressione aggiuntivi oltre alla corrente elettrica, il sistema sfrutta le proprietà uniche dell'acqua supercritica per facilitare la reazione di elettrolisi. In termini semplici, l'energia termica fornisce una parte del fabbisogno entalpico per dissociare le molecole di H₂O, permettendo di ridurre l'energia elettrica richiesta (analogia concettuale con gli elettrolizzatori ad alta temperatura, ma spingendosi alla fase supercritica).

⁸ L'acqua supercritica si ottiene quando la temperatura supera i 374 °C e la pressione i 22,1 MPa, in cui non esiste distinzione tra liquido e vapore. In queste condizioni l'acqua assume proprietà uniche, combinando densità da liquido e diffusività da gas.

Figure 62: a sinistra il prototipo, a destra come e quanto riesci ad ottimizzare la produzione di idrogeno rispetto agli elettrolizzatori PEM comuni. Fonte: Supercritical.solutions

L'ossigeno e l'idrogeno prodotti sono entrambi in fase fluida pressurizzata; grazie al particolare design dell'apparecchiatura, essi vengono separati senza l'uso di una membrana física (supercritical.solutions). Il layout interno è brevettato e prevede una struttura di cella innovativa e un assemblaggio di elettrodi che negano la necessità di una membrana ionicamente selettiva. Ciò consente un funzionamento continuo in singola fase (senza alternanza liquido/gas) e la generazione di gas compressi in un unico step. L'idrogeno in uscita dall'unità ha purezza fino al 99.999% in volume e pressione di circa 220 bar, idoneo per essere immesso direttamente nei processi industriali a valle o nello stoccaggio senza ulteriori compressioni. Anche l'ossigeno, prezioso sottoprodotto, viene rilasciato a elevata pressione, circa 220 bar, e purezza, rendendolo utilizzabile per applicazioni industriali o medicali senza le complessità dei compressori di ossigeno. Grazie al contributo del calore e all'assenza di cadute di pressione tra cella e uscita, l'elettrolizzatore Supercritical raggiunge efficienze impianto di circa il 95%. In termini di consumo elettrico, ciò si traduce in circa 42 kWh per produrre 1 kg di H₂, includendo già l'energia per ottenere H₂ compresso a 220 bar. Si tratta di un valore estremamente competitivo: per confronto, gli elettrolizzatori alcalini o PEM tradizionali tipicamente consumano 50-60 kWh/kg per produrre idrogeno a bassa pressione (circa 30 bar) (esgtoday.com), a cui va aggiunto il costo energetico della successiva compressione fino a più di 200 bar per usi industriali. La soluzione supercritica impiega 20-30% di energia elettrica in meno rispetto a questi sistemi convenzionali, pur erogando un gas già compresso ad alta pressione. Il raggiungimento di efficienze del 99% a livello di stack è un obiettivo dichiarato a regime (supercritical.solutions), possibile attraverso ottimizzazioni dei materiali e del design cellulare. Questo parametro, da confrontare con efficienze intorno al 75-80% degli attuali elettrolizzatori alcalini/PEM,

rappresenta un vero salto di qualità, dal momento che il costo dell'elettricità è la componente dominante nel costo finale dell'idrogeno verde.

Un contributo determinante deriva dall'eliminazione delle perdite dovute alla differenza di fase: nei sistemi tradizionali, la formazione di bolle di gas negli elettroliti e la necessità di separare H₂ e O₂ comportano inefficienze e dissipazioni. Nel design supercritico, operando in singola fase fluida e senza membrana, queste perdite sono minimizzate. Inoltre, l'integrazione del calore, proveniente ad esempio da sorgenti di scarto industriale o dal recupero del calore di compressione interno, consente di spostare parte del carico energetico dal lavoro elettrico al calore, più economico se disponibile da fonti rinnovabili termiche. Questo approccio ibrido ricorda il principio dei SOEC (Solid Oxide Electrolysis Cells) che operano a 700–800 °C; tuttavia, la tecnologia Supercritical presenta alcune differenze chiave discusse più avanti. Uno degli aspetti più innovativi dell'elettrolizzatore Supercritical è la totale assenza di membrane polimeriche o diaframmi separatori nella cella (supercritical solutions). Nelle celle alcaline classiche, un diaframma microporoso separa anodo e catodo per evitare il rimescolamento dei gas, mentre nelle celle PEM una membrana a scambio protonico (tipicamente Nafion, un polimero fluorurato) funge da elettrolita solido e separatore. Entrambe queste soluzioni presentano limiti: le membrane sono componenti costosi, soggetti a degrado chimico e termico, e spesso rappresentano il punto debole dell'intero stack (la prima parte a guastarsi) (supercritical.solutions). Il team Supercritical ha sviluppato un cell design proprietario in cui l'anodo e il catodo sono disposti in modo tale da permettere la separazione fisica dei gas prodotti senza un setto membranoso.

Dal punto di vista dei catalizzatori ed elettrodi, Supercritical ha scelto di utilizzare materiali abbondanti e non strategici. L'elettrolisi PEM richiede metalli nobili rarissimi (Iridio per l'ossidazione anodica dell'acqua, Platino per la riduzione a catodo). Al contrario, la tecnologia Supercritical impiega metalli industriali di larga produzione, evitando sia i catalizzatori nobili (Ir, Pt) sia le terre rare e i metalli speciali. È plausibile che vengano usati elettrodi a base di nichel, cobalto o altri materiali comuni nelle celle alcaline, opportunamente ingegnerizzati per resistere alle alte temperature e pressioni. Inoltre, non facendo uso di membrane polimeriche, l'elettrolizzatore non contiene PFAS (sostanze perfluoroalchiliche), che oltre a essere costose costituiscono un potenziale problema ambientale ("forever chemicals" soggetti a futura regolamentazione restrittiva). L'intero design è metallico e riciclabile a fine vita: tutti i componenti possono essere smaltiti attraverso normali filiere metallurgiche, recuperando i metalli per produrre nuovi elettrolizzatori senza generare rifiuti tossici (supercritical.solutions). Questa attenzione

all'uso di materiali sostenibili è parte della filosofia "planet first" dell'azienda: l'idea è di evitare che una tecnologia "pulita" come l'idrogeno introduca a sua volta esternalità negative. Supercritical Solutions propone quindi un approccio innovativo basato sull'elettrolisi ad acqua supercritica, con l'obiettivo di affrontare in maniera mirata le principali criticità elencate precedentemente legate all'idrogeno verde.

Nonostante le diverse soluzioni proposte permangono tuttavia diverse sfide, tra cui la necessità di garantire una durata pluriennale dei materiali in condizioni operative estreme e la capacità di scalare la produzione dei sistemi su larga scala. I risultati preliminari appaiono comunque promettenti. In particolare, i mercati target prioritari identificati dall'azienda includono:

Produzione di ammoniaca (fertilizzanti)

è il singolo maggior consumatore di idrogeno a livello mondiale (circa 33 milioni di tonnellate di H₂ all'anno) e comporta emissioni di CO₂ stimate di 450 Mt/anno (catf.us). La tecnologia Supercritical è ideale per questo settore per due ragioni:

(1) L'H₂ per l'ammoniaca va comunque compresso a circa 150–200 bar per alimentare il processo Haber-Bosch, quindi poter disporre di idrogeno già a pressione riduce drasticamente il costo di impianto (niente compressori) e migliora l'efficienza complessiva. (2) L'efficienza elevata riduce il costo per kg di H₂, che è fondamentale dato che l'idrogeno incide circa 1'80% sul costo di produzione dell'ammoniaca verde. Supercritical, in partnership con ScottishPower e Proton Ventures, ha dimostrato con GreeNH3 che il suo sistema può abbassare del 21% il costo dell'ammoniaca verde rispetto a uno scenario con elettrolisi PEM (supercritical.solutions). Ciò rende più concreta la prospettiva di fertilizzanti a zero emissioni competitivi entro pochi anni. L'azienda vede nelle grandi società produttrici di fertilizzanti (Yara, CF Industries, ecc.) potenziali clienti/partner, e sta orientando lo sviluppo per fornire soluzioni su misura per impianti di ammoniaca che richiederanno elettrolizzatori da centinaia di MW. In prospettiva, la produzione di ammoniaca verde non solo decarbonizzerà i fertilizzanti, responsabili indiretti della sicurezza alimentare globale, ma aprirà anche la strada all'ammoniaca come vettore energetico (es. combustibile per navi o fuel per turbine a gas miscelato, oppure come forma di trasporto dell'idrogeno stesso). In tutti questi scenari, l'elettrolizzatore Supercritical fornisce un vantaggio chiave: idrogeno efficiente già pressurizzato che semplifica anche la sintesi e il trasporto di ammoniaca.

Raffinazione del petrolio e produzione di combustibili sintetici

il settore della raffinazione utilizza idrogeno in vari processi ed emette tra 240 e 380 Mt CO₂/anno a causa dell'idrogeno SMR (Steam Methane Reforming) impiegato. Man mano che la domanda di carburanti fossili declinerà in un percorso di decarbonizzazione, molte raffinerie stanno pensando di convertirsi in *hub* di produzione di combustibili sostenibili, ad esempio biocarburanti o e-fuels. Questi processi richiedono grandi quantità di idrogeno verde. Supercritical può posizionarsi come fornitore di elettrolizzatori per le bioraffinerie del futuro. Un caso specifico è il sustainable aviation fuel (SAF): per produrre carburante avio sintetico servono idrogeno e CO₂ catturata; idrogeno a basso costo e alta pressione facilita questa produzione. Anche l'upgrading della biomassa (es. pirolisi + idrogenazione di bio-olio per produrre biocombustibili avanzati) è un campo dove il know-how delle raffinerie unito alla tecnologia di elettrolisi efficiente di Supercritical può creare filiere zero-carbon.

Acciaio e settori ad alta temperatura (vetro, cemento)

questi settori oggi non utilizzano idrogeno su larga scala, ma sono considerati hard-to-abate per la decarbonizzazione. L'idrogeno verde può diventare un vettore per decarbonizzare la produzione di acciaio attraverso il processo DRI (Direct Reduced Iron) e per fornire calore di processo in cementifici e vetrerie. Sebbene ad oggi l'impiego di idrogeno in questi settori sia embrionale, Supercritical guarda al medio termine in cui verranno costruiti forni a idrogeno o convertiti impianti esistenti. In tali applicazioni, il consumo di idrogeno sarebbe enorme, ad esempio, decarbonizzare l'intera produzione mondiale di acciaio con idrogeno eviterebbe fino a 2-3 Gt CO₂/anno (lo steelmaking produce circa 7% delle emissioni globali), ma richiederebbe idrogeno verde a costi ultra-competitivi. Il target di Supercritical di scendere sotto £1/kg è pensato proprio per rendere economicamente praticabile l'uso dell'idrogeno in sostituzione dei combustibili tradizionali in questi settori. Inoltre, la fornitura di idrogeno ad alta pressione può agevolare lo stoccaggio di H₂ in caverne o serbatoi per garantire l'operatività 24/7 di stabilimenti come quelli siderurgici, dove la continuità è fondamentale: idrogeno compresso può essere immagazzinato più facilmente rispetto all'idrogeno a bassa pressione, riducendo l'ingombro dello stoccaggio per grandi quantità (supercritical.solutions). Supercritical ha evidenziato che per far funzionare impianti industriali ad H₂ 24/7 lo storage è inevitabile, e l'alta pressione aiuta a contenerne lo spazio necessario. Dunque, anche se l'acciaio non è un mercato immediato, rientra nella visione di lungo termine in cui l'idrogeno verde a basso costo diventa il combustibile pulito per forni e caldaie industriali.

Come detto precedentemente uno dei traguardi più ambiziosi dichiarati da Supercritical è produrre idrogeno verde a un costo inferiore a £1 per kg entro la fine del decennio. Questo valore, circa 1,2 € o 1,3 \$ per kg, coincide con i target delle politiche pubbliche come il programma DOE, di cui abbiamo discusso nel capitolo 2, che mira a \$1 per 1 kg in 1 decennio. Raggiungere valori minori uguali a £1/kg significherebbe poter offrire idrogeno rinnovabile a un prezzo comparabile (o inferiore) a quello derivato da gas naturale senza cattura (oggi attorno a 1-2 \$/kg prima degli aumenti recenti). I fattori che concorreranno a questo risultato sono: (a) Efficienza energetica, che riduce la componente OPEX. (b) Economia di scala nella produzione degli stack e dei Balance of Plant, riducendo il CAPEX per MW. (c) Bassi costi di installazione e integrazione grazie all'eliminazione di componenti ausiliari (compressori, grandi serbatoi, ecc.). (d) Possibile integrazione con fonti di calore di scarto per migliorare 1'efficienza (ad esempio recupero calore da processi industriali collegati).

Supercritical sta lavorando su tutti questi fronti, con il supporto dei partner industriali che forniranno feedback da test sul campo.

4.3.3 Finanziamenti e risultati raggiunti

Nei primissimi mesi dopo la fondazione, Supercritical ha ottenuto supporto finanziario sia da investitori privati sia da enti pubblici.

Un primo round seed angel nel 2020 è stato raccolto grazie a Deep Science Ventures e ad alcuni business angel, con il contributo significativo di una società del FTSE-100, oggi denominata Valterra Platinum (in precedenza Anglo American Platinum).

Parallelamente, la start-up ha cercato finanziamenti competitivi per validare la propria tecnologia. Nell'agosto 2020 la startup è stata selezionata dall'Oil & Gas Technology Centre (OGTC) di Aberdeen, ottenendo un primo grant nell'ambito del programma *TechX Pioneer*. L'OGTC (oggi *Net Zero Technology Centre*) è un acceleratore focalizzato sull'innovazione energetica: il fatto che Supercritical sia stata riconosciuta tra le "tecnologie emergenti" da tenere d'occhio ha evidenziato il potenziale applicativo del loro elettrolizzatore anche per l'industria petrolifera e del gas (supercritical solutions). Questo finanziamento, ottenuto solo pochi mesi dopo la fondazione, ha fornito risorse per esplorare l'adattamento della tecnologia al contesto oil&gas (ad es. produzione in loco di H2 per piattaforme offshore). Inoltre, l'invito al programma TechX ha dato a Supercritical accesso a mentor industriali e visibilità presso le aziende energetiche del Regno Unito. Un altro impulso decisivo è arrivato

all'inizio del 2021dove la start-up ha partecipato e vinto un bando del Department for Business, Energy & Industrial Strategy (BEIS) britannico dedicato alla decarbonizzazione delle distillerie ("Green Distilleries Competition"). In gennaio 2021, la startup si è aggiudicata un finanziamento di £53.000 per uno studio di fattibilità denominato WhiskHy, volto a valutare l'impiego del suo elettrolizzatore nel settore del whisky scozzese (supercritical solutions). In collaborazione con il gigante degli alcolici Beam Suntory (proprietario di varie distillerie), il Centro per l'Innovazione dei Processi (CPI) e altre società di ingegneria (Xodus Group, DNV GL, Flex Marine Power), Supercritical ha analizzato come produrre idrogeno direttamente presso una distilleria e usarlo per alimentare le caldaie, riducendo drasticamente l'uso di combustibili fossili. Il concept prevedeva di sfruttare l'energia rinnovabile e il calore di scarto della distilleria per alimentare l'elettrolizzatore Supercritical, producendo idrogeno verde ad altissima efficienza da impiegare nel processo produttivo del whisky (supercritical.solution). Questo progetto ha portato due benefici: da un lato ha fornito un primo banco di prova settoriale (il whisky) per la tecnologia, dall'altro ha accresciuto la credibilità della startup grazie al coinvolgimento di partner industriali di primo piano. Il progetto WhiskHy ha prodotto un rapporto di fattibilità (pubblicato nel Q2 2021) e ha gettato le basi per futuri impianti pilota in distillerie, qualora fossero stanziati fondi addizionali da BEIS per la fase dimostrativa. Nella prima metà del 2021 Supercritical ha continuato a raccogliere consensi e fondi competitivi. Innovate UK, l'agenzia britannica per l'innovazione, ha assegnato a giugno 2021 un importante finanziamento attraverso il programma Smart Grant. Supercritical è risultata tra il 5% di progetti selezionati ottenendo oltre £320.000 a fondo perduto (supercritical.solutions). Il progetto finanziato, dal nome acronimo AHEAD (Affordable Hydrogen from Electrolysis Accelerating Decarbonisation), con un valore complessivo di circa £500k, è co-finanziato al 70% da Innovate UK. Questo grant ha permesso di progettare, costruire e testare, entro 18 mesi, il primo modulo multicella operativo al mondo in grado di operare oltre il punto critico dell'acqua. Si tratta di un traguardo tecnico fondamentale: passare dalla singola cella di laboratorio a un modulo multiplo per dimostrare la scalabilità della tecnologia. Questo finanziamento ha inoltre consentito all'azienda di raddoppiare il proprio organico assumendo nuovi ingegneri e ricercatori in UK. All'inizio del 2022, conclusa con successo la fase di prototipazione preliminare, Supercritical ha richiamato l'interesse di investitori di venture capital internazionali. In gennaio 2022, la startup ha chiuso un seed round da \$3,6 milioni guidato dalla canadese Jericho Energy Ventures (società di investimento focalizzata sull'idrogeno e le energie pulite). Jericho ha investito circa \$1,78M, affiancata dal fondo americano Lowercarbon Capital e da New Energy Technology (un veicolo di investimento nel settore energia) (renewablesnow.com). Hanno partecipato anche gli investitori esistenti, tra cui Anglo American e lo stesso venture builder Deep Science Ventures, a testimonianza della fiducia nel progresso tecnico compiuto. Questo round ha rappresentato un punto di svolta: con quasi 3 milioni di sterline raccolti, Supercritical ha potuto accelerare lo sviluppo verso un sistema pilota integrato. Nel marzo 2025 Supercritical Solutions ha concluso un round di finanziamento Series, raccogliendo 14 milioni di sterline. L'operazione è stata co-guidata da Shell Ventures e Toyota Ventures, a conferma del forte interesse da parte di attori industriali di primo piano nel sostenere lo sviluppo e la scalabilità della tecnologia.

FASE / ROUND	DATA	IMPORTO	INVESTITORI CHIAVE
PRE-SEED / ANGEL	2020	£200k	Deep Science Ventures, Anglo
GRANT PUBBLICI	2020–2021	£400k	American plc. OGTC TechX (£60k), BEIS Green Distilleries (£53k), Innovate UK Smart (£320k).
SEED VC	Gen 2022	£3.6M	Jericho Energy Ventures (lead, \$1.78M); Lowercarbon Capital (USA) New Energy Technology (NL); Anglo American Platinum; DSV.
SERIE A VC	Mar 2025	£14M	Shell Ventures (co-lead); Toyota Ventures (co-lead); Existing: Lowercarbon, Anglo American Platinum (follow-on); New: Al Mada (MA), Blackfinch (UK), Kibo (NL), Niterra/Global Brain (JP), TOP/Thai Oil (TH), Earth Ventures, Alumni Ventures (USA).

I capitali sono stati destinati principalmente all'ampliamento dei laboratori, all'acquisizione di attrezzature per test in condizioni supercritiche e all'assunzione di figure tecniche senior (es. ingegneri meccanici e dei materiali) necessarie per portare il prototipo a uno stadio precommerciale.

Sul fronte delle partnership strategiche, il biennio 2021-2022 ha visto Supercritical impegnata a validare la tecnologia in vari use-case industriali. Oltre al citato progetto WhiskHy nel settore distillerie, la startup ha avviato collaborazioni nel settore fertilizzanti/ammoniaca e in quello minerario:

• In ambito ammoniaca verde, Supercritical ha condotto uno studio con ScottishPower (utility scozzese parte del gruppo Iberdrola) e Proton Ventures (società olandese specializzata in impianti per ammoniaca) per valutare la produzione di ammoniaca

da idrogeno verde ad alta pressione (progetto GreeNH3). I risultati, pubblicati ad aprile 2023, indicano che l'impiego dell'elettrolizzatore supercritico potrebbe ridurre il Levelised Cost of Hydrogen (LCOH) di oltre il 35% (nel caso di idrogeno consegnato a più di 200 bar) rispetto alle tecnologie convenzionali, e abbattere il costo livellato dell'ammoniaca verde di circa il 21%. Ciò evidenzia un forte potenziale di risparmio sia nella produzione di idrogeno pressurizzato sia nel processo Haber-Bosch, aprendo la strada a fertilizzanti sintetici a zero emissioni con costi più competitivi. I partner hanno anche stimato benefici macroeconomici: centinaia di nuovi posti di lavoro e opportunità di export di ammoniaca verde dal Regno Unito, se la tecnologia venisse scalata industrialmente.

In ambito estrattivo e minerario, la startup ha esplorato il ruolo dell'idrogeno verde decarbonizzare operazioni come l'estrazione e la frantumazione, tradizionalmente ad alta intensità energetica. Anglo American, in qualità di investitore strategico, ha interesse a utilizzare idrogeno verde (prodotto in situ con elettrolisi) per alimentare ad esempio camion da miniera a celle a combustibile o processi di riscaldamento nei siti estrattivi. Supercritical ha quindi elaborato il concetto Zero Mining, in cui l'idrogeno verde ad alta pressione fornito dal suo sistema potrebbe alimentare l'attrezzatura mineraria pesante riducendo drasticamente le emissioni di CO₂ nel settore minerario. Questa applicazione resta finora esplorativa, ma conferma la versatilità del core tecnologico verso molteplici settori difficili da elettrificare direttamente.

Verso la fine del 2024, Supercritical si presentava ormai come uno dei leader emergenti nell'innovazione dell'idrogeno in UK, forte di una serie di traguardi tecnici e di un'ampia rete di sostenitori finanziari e industriali. Tutto ciò ha creato le premesse per un sostanzioso round di Serie A, finalizzato ad entrare nella fase di scala pilota e preindustriale, come si discute nella prossima sezione.

4.4 Caso studio: H2site

4.4.1 Descrizione generale e Mission

Come precedentemente detto nella trattazione la diffusione su larga scala dell'idrogeno verde incontra sfide significative soprattutto per quanto riguarda il trasporto e la distribuzione.

L'idrogeno molecolare è leggero, a bassa densità e tende a diffondere facilmente, rendendo costoso e complesso il suo trasporto in forma pura. Dall'analisi di questi problemi nasce la

start-up H2SITE, la quale ha incentrato la propria missione proprio sulla risoluzione di queste tematiche, sviluppando tecnologie che rendono il trasporto dell'idrogeno più efficiente e accessibile, abbattendone i costi logistici (hy24partners.com). H2SITE si propone come anello "midstream" nella catena del valore dell'idrogeno, cioè come facilitatore tra produzione e utilizzo, consentendo di produrre o estrarre idrogeno on-site a elevata purezza a partire da composti o miscele più facili da movimentare. In questo capitolo verranno analizzate le origini della start-up, la natura della sua tecnologia brevettata, il modello di business e la strategia adottati, i finanziamenti raccolti sin dalle fasi iniziali e le prospettive future di H2SITE nel contesto dell'economia dell'idrogeno verde.

H2SITE nasce ufficialmente nel 2020 a Bilbao, in Spagna, come spin-off di due importanti centri di ricerca europei: TECNALIA (il maggiore centro privato di R&S in Spagna) e la Eindhoven University of Technology (TU/e) nei Paesi Bassi (hy24partners.com). La fondazione della società è il frutto di oltre un decennio di ricerca congiunta: circa 13 anni di sviluppo tecnologico nel campo dei reattori a membrana portato avanti dai ricercatori di TECNALIA e TU/e (engieventures.com). Questi istituti avevano sviluppato nuovi reattori integrati con membrane speciali (membrane reactor), capaci di effettuare in un solo step la produzione in situ di idrogeno da materie prime convenienti, con l'obiettivo di ridurre i costi di fornitura dell'idrogeno rinnovabile.

La multinazionale dell'energia ENGIE è stata coinvolta fin dall'inizio: tramite il suo centro R&D CRIGEN, ENGIE ha contribuito alla realizzazione della versione commerciale del reattore a membrana e ha supportato la creazione di H2SITE trasferendo alla nuova società la proprietà intellettuale sviluppata nei progetti di ricerca (engieventures.com). ENGIE New Ventures, il venture capital di ENGIE, è infatti entrato come primo investitore industriale di H2SITE, affiancando i partner accademici nel lancio della start-up. Alla guida di H2SITE è stato chiamato Andrés Galnares, imprenditore con esperienza nel settore energetico, in qualità di CEO e co-fondatore. Nel ruolo di presidente figura Asier Rufino, CEO di Tecnalia Ventures, a testimonianza del forte legame con il centro di ricerca originatore della tecnologia. La scelta di localizzare la sede a Bilbao, nel País Vasco, non è casuale: i Paesi Baschi puntano a diventare un hub dell'idrogeno (come dimostra la nascita del consorzio BH2C: Basque Hydrogen Corridor) e hanno fornito sostegno istituzionale alla nuova impresa. H2SITE ha potuto così nascere con un solido know-how scientifico alle spalle, il supporto di un colosso industriale e l'ecosistema favorevole di un territorio impegnato nella transizione all'idrogeno. Il cuore dell'innovazione H2SITE è la sua tecnologia proprietaria di reattore a membrana in lega di palladio (Pd-alloy membrane reactor). Questa tecnologia

consente di produrre e separare idrogeno ad alta purezza direttamente sul sito di utilizzo, partendo da materie prime o vettori di idrogeno facili da trasportare o stoccare. In pratica, invece di spostare grandi volumi di idrogeno gassoso, H2SITE propone di trasportare composti ricchi di idrogeno (come ammoniaca, metanolo, biogas ecc.) attraverso infrastrutture esistenti, per poi estrarre l'idrogeno quando e dove serve mediante i suoi reattori a membrana. Allo stesso modo, l'idrogeno può essere immesso in miscele gassose (ad esempio miscelato al gas naturale nelle tubazioni esistenti) e recuperato in purezza a valle tramite i separatori H2SITE.

4.4.2 Soluzione tecnologica e mercato target

Come funziona un reattore a membrana H2SITE? In un singolo modulo compatto avvengono simultaneamente due processi: la decomposizione catalitica del vettore chimico contenente idrogeno (o la reazione di separazione dall'eventuale miscela), e la filtrazione selettiva dell'idrogeno prodotto attraverso speciali membrane metalliche. Le membrane in lega di palladio sono selettive per l'idrogeno: permettono il passaggio delle sole molecole di H2, trattenendo altri gas e impurità. Grazie a questa integrazione, il sistema è in grado di erogare direttamente idrogeno puro (fuel cell grade), soddisfacendo gli stringenti requisiti di qualità per l'uso in celle a combustibile e processi industriali (businesswire.com). I sistemi H2SITE riescono a ottenere una purezza dell'idrogeno superiore al 99,9%, pronta all'uso senza ulteriori step di purificazione.

Figure 63: Strumentazione H2SITE necessaria per scindere idrogeno da miscele.

Dal punto di vista delle prestazioni, la soluzione presenta vantaggi importanti rispetto ai metodi tradizionali. Ad esempio, nel caso del cracking dell'ammoniaca, il reattore a membrana H2SITE opera a temperature di circa 400–450 °C, ben inferiori ai 600–800 °C

richiesti dai cracker d'ammoniaca convenzionali, con un conseguente minor consumo energetico. L'integrazione tra reazione chimica e separazione consente inoltre un'elevata efficienza complessiva, che si traduce in un costo livellato dell'idrogeno (LCOH) più basso ottenibile dall'ammoniaca rispetto alle tecnologie concorrenti. Il design è compatto e modulare, pensato per installazioni decentralizzate vicino ai centri di domanda, senza bisogno di grandi impianti centralizzati. In sintesi, H2SITE sfrutta l'economia di trasporto di composti energetici densi, come l'ammoniaca, un vettore già movimentato in oltre 20 milioni di tonnellate l'anno via nave (businesswire.com), e la capillarità delle reti gas esistenti, per rendere disponibile idrogeno verde ovunque serva, on-demand, minimizzando nuove infrastrutture dedicate.

Vale la pena notare che questa tecnologia è flessibile rispetto alle fonti di idrogeno: può ricavare H₂ da diverse materie prime come ammoniaca, metanolo, bio-syngas, oppure separarlo da miscele a bassa concentrazione (ad esempio dal biogas, o da gas naturale con pochi percento di H₂) (businesswire.com). Ciò significa che H2SITE può inserirsi in vari segmenti della filiera dell'idrogeno verde: dagli hub portuali fino ai depositi geologici (estrazione di idrogeno naturale o stoccato in caverne saline). In tutti i casi, la filosofia è decentralizzare la produzione di idrogeno, portando il processo vicino all'utilizzatore finale, per abbattere i costi di trasporto e di storage, nonché le emissioni e dispersioni associate. Questa visione tecnologica allinea H2SITE con le esigenze emergenti dell'economia dell'idrogeno: soluzioni efficienti per il trasporto dell'idrogeno low-carbon, complementari alla produzione da energie rinnovabili e all'uso finale nei settori difficili da decarbonizzare. La strategia di H2SITE è strettamente collegata alla sua proposta tecnologica. Invece di vendere semplice "capacità produttiva" di idrogeno, l'azienda offre soluzioni chiavi in mano per l'approvvigionamento on-site di idrogeno, posizionandosi come fornitore di tecnologie midstream. Questo approccio comporta un modello di business ibrido: da un lato H2SITE fornisce gli impianti (reattori a membrana e separatori) progettati su misura per il cliente, dall'altro instaura con esso un rapporto continuativo tramite la fornitura pluriennale di membrane di ricambio e supporto tecnico. In pratica, i reattori a membrana vengono installati presso il sito del cliente (ad esempio un impianto industriale o una stazione di rifornimento H₂) e H2SITE stipula un accordo di servizio multi-annuale per rimpiazzare periodicamente le membrane ed assicurare che l'idrogeno erogato mantenga costantemente la purezza e la portata contrattuale (startup-energy-transition.com). Questo garantisce all'utente finale prestazioni affidabili nel tempo e genera per H2SITE un flusso di entrate ricorrenti legato al consumo di membrane. Dal punto di vista del mercato target, H2SITE adotta una strategia focalizzata inizialmente su nicchie ad alto valore e con immediata necessità di soluzioni. Tra queste rientrano:

- Trasporti pesanti e mobilità a idrogeno: ad esempio rifornimento di autobus o camion a fuel cell, dove l'idrogeno può essere prodotto in loco a partire da ammoniaca o da miscele con il gas naturale. Un caso concreto è il progetto pilota a Birmingham (UK), dove H2SITE fornirà un'unità per trasformare ammoniaca in idrogeno per alimentare una flotta di autobus (engieventures.com). Questa applicazione sfrutta la possibilità di trasportare ammoniaca liquida (più densa di H2) e generare sul posto l'idrogeno necessario ai mezzi, riducendo i costi logistici per la creazione di infrastrutture di rifornimento.
- Stazioni di rifornimento e piccoli hub locali: H2SITE ha ottenuto incarichi per convertire biogas in idrogeno per stazioni di rifornimento H2 in Spagna e Francia, dimostrando la versatilità nell'utilizzare gas rinnovabili locali per produrre idrogeno pulito da destinare ai trasporti. In questo scenario la tecnologia funge da "microimpianto" di upgrading del biogas: estrae l'idrogeno dal gas di sintesi prodotto, fornendo un combustibile pulito e valorizzando residui organici.
- Integrazione con reti gas esistenti: un filone strategico è la collaborazione con i gestori di infrastrutture gas per sfruttare la rete esistente come vettore di idrogeno. Ad esempio, H2SITE collabora con SNAM (Italia) in un progetto innovativo supportato da ARERA, dove un separatore a membrana H2SITE verrà utilizzato per estrarre idrogeno puro da una miscela contenente solo il 2-10% di H2 in metano. Questo consente di iniettare una piccola percentuale di idrogeno nella rete di gas naturale e recuperarlo in siti strategici per alimentare specifici utilizzatori, realizzando una prima integrazione concreta tra infrastruttura gas tradizionale e nuova economia dell'idrogeno.
- Settore industriale e chimico: molte industrie (raffinerie, ammoniaca, acciaierie) richiederanno idrogeno verde per decarbonizzare i loro processi. H2SITE punta a fornire unità decentrate che possano generare idrogeno direttamente presso lo stabilimento industriale, magari utilizzando vettori come l'ammoniaca verde trasportata via nave o pipeline dedicate. La decentralizzazione evita la dipendenza da un'unica fonte centrale di H2 e conferisce flessibilità: l'idrogeno viene prodotto in tempo dove serve, riducendo costi di stoccaggio e trasporto.
- Applicazioni marittime: un ambito emergente è l'utilizzo di ammoniaca come efuel per navi oceaniche (in celle a combustibile o motori dual-fuel). H2SITE

intravede opportunità sia per installazioni portuali (cracker di ammoniaca nei porti per rifornire navi con idrogeno o ammoniaca riconvertita) sia per soluzioni on-board. Infatti, l'azienda sta valutando applicazioni di reattori a membrana compatti installati direttamente sulle navi, capaci di convertire ammoniaca del serbatoio in idrogeno per alimentare celle a combustibile di bordo. Ciò permetterebbe alle navi di imbarcare carburante liquido (NH₃) e consumare idrogeno senza dover stoccare H₂ allo stato gassoso ad alta pressione durante i viaggi.

Per perseguire queste strategie, H2SITE lavora a stretto contatto con partner industriali e finanziari di rilievo. La presenza di investitori strategici come Engie, Equinor e Enagás (gestori di infrastrutture energetiche), o la collaborazione con utility come Snam, offre alla start-up un accesso privilegiato a progetti dimostrativi e a potenziali clienti sin dalle prime fasi. In parallelo, l'azienda ha investito nelle capacità produttive interne per assicurarsi un vantaggio competitivo sulla componentistica chiave, le membrane. Nel novembre 2022 H2SITE ha inaugurato il suo primo stabilimento produttivo di membrane a Loiu (Biscaglia), in cui ha investito oltre 3 milioni di euro (h2eg.com). Questo impianto all'avanguardia è in grado di produrre decine di migliaia di membrane in lega di palladio all'anno, e l'azienda prevede di aumentare ulteriormente tale capacità negli anni successivi. La produzione inhouse delle membrane è un elemento strategico: storicamente queste membrane erano costose e difficili da fabbricare su larga scala, rappresentando un possibile collo di bottiglia. H2SITE, invece, puntando sulla verticalizzazione e sull'automazione della produzione, conta di industrializzare il processo e abbattere i costi unitari man mano che i volumi crescono.

In sintesi, la strategia di H2SITE è quella di diventare fornitore leader di tecnologie per il trasporto efficiente dell'idrogeno, occupando uno spazio unico nel mercato: né a monte (produzione di H2) né a valle (utilizzo finale), ma nel mezzo, facilitando il collegamento. Questa posizione di first mover nel segmento dei "carrier e separatori di idrogeno" potrebbe rivelarsi cruciale, dato che una delle chiavi per abilitare l'idrogeno verde su larga scala sarà proprio la capacità di distribuirlo capillarmente e a costi sostenibili.

4.4.3 Finanziamenti e risultati raggiunti

Sin dalla sua creazione, H2SITE ha attirato l'interesse di investitori di primo piano nell'ambito dell'energia pulita, assicurandosi capitali e partnership strategiche utili a sviluppare la tecnologia e portarla sul mercato. Di seguito si riepilogano le principali tappe di finanziamento della start-up:

- 2020, Fondazione e seed funding: H2SITE nasce con il supporto diretto di ENGIE New Ventures, che diventa il primo investitore industriale e partner attivo già nelle fasi iniziali. Assieme a ENGIE, partecipano al capitale iniziale anche i soci fondatori TECNALIA e TU Eindhoven (conferendo la proprietà intellettuale e supporto tecnico) e fondi locali baschi attraverso programmi di trasferimento tecnologico (ad es. Tecnalia Ventures). Questo finanziamento seed ha permesso di costituire il team, acquisire i brevetti dai centri di ricerca e costruire i primi prototipi industriali.
- 2022, Serie A (€12,5 milioni): Dopo aver validato la tecnologia a livello pilota, H2SITE chiude un importante round Serie A da 12,5 milioni di euro (annunciato a giugno 2022). Lead investor del round è Breakthrough Energy Ventures (BEV-E), il fondo per l'energia pulita fondato da Bill Gates e sostenuto dalla Commissione Europea, e BEI, a riprova dell'alto potenziale della soluzione H2SITE in termini di impatto climatico. Al round partecipano anche Equinor Ventures (fondo corporate della multinazionale norvegese Equinor), lo stesso ENGIE New Ventures (rafforzando la sua posizione) e i fondi sovrani dei Paesi Baschi (EZTEN FCR gestito da SPRI, e Société de Chimie de Bilbao (SCB)) che co-investono per sostenere la crescita locale (engieventures.com). Questo consorzio di investitori, che unisce venture capital privati e capitali pubblici regionali, ha portato in dote non solo fondi ma anche competenze e opportunità di progetto. Ad esempio, Equinor vede applicazioni dirette per H2SITE nei suoi futuri progetti sull'idrogeno e gas naturale decarbonizzato, mentre ENGIE ha integrato la tecnologia in alcune sue stazioni di rifornimento sperimentali. Il finanziamento Serie A è stato destinato a scale-up industriale: H2SITE ha infatti utilizzato parte di quei fondi per costruire l'impianto di produzione membrane a Bilbao e aumentare la capacità di consegna di unità commerciali.
- 2025, Serie B (€36 milioni): Forte dei primi contratti e di una tecnologia ormai validata, H2SITE ha annunciato nel gennaio 2025 la chiusura di un round Serie B da 36 milioni di euro. Il round è stato co-guidato da Hy24, il maggiore fondo globale dedicato all'idrogeno pulito, tramite il suo Clean Hydrogen Equipment Fund, e da SC Net Zero Ventures, fondo venture capital specializzato in tecnologie per la decarbonizzazione industriale e della mobilità (gestito da Suma Capital). Oltre ai lead investors, sono entrati nuovi finanziatori di profilo internazionale: Enagás Emprende (fondo corporate del TSO gas spagnolo Enagás), MassMutual Ventures (fondo VC statunitense) e Exergon (investitore orientato alle clean-tech). Hanno

inoltre partecipato pro-quota i principali investitori già presenti dal round A, a partire da Breakthrough Energy Ventures, Equinor Ventures e il fondo regionale EZTEN FCR, che hanno così confermato la fiducia nell'azienda (hy24partners.com). La presenza di Hy24 come co-lead è particolarmente significativa: Hy24 è il più grande gestore di fondi dedicati all'idrogeno al mondo (nato da una joint venture tra Air Liquide e altri partner finanziari), e il suo coinvolgimento conferisce a H2SITE una visibilità globale e accesso a un vasto ecosistema di attori dell'idrogeno a livello internazionale. Analogamente, l'ingresso di Enagás porta la prospettiva strategica di un operatore di infrastrutture gas, potenzialmente aprendo la strada all'adozione della tecnologia H2SITE nella rete spagnola e nei progetti di hydrogen blending.

Oltre ai round di venture capital, H2SITE ha ottenuto nel 2025 un importante finanziamento pubblico dall'Unione Europea tramite l'EIC Accelerator. In particolare, a metà 2025 la società è risultata vincitrice di un grant europeo per realizzare un progetto dimostrativo di cracker di ammoniaca da 1 tonnellata/giorno in un porto dell'Europa nord-occidentale (businesswire.com). Questo finanziamento supporta la costruzione di un'unità su scala industriale basata sui reattori a membrana H2SITE, finalizzata a dimostrare la fattibilità commerciale e operativa della tecnologia in un contesto reale di importazione di ammoniaca verde. La Commissione Europea, tramite l'EIC, ha quindi riconosciuto il valore strategico di H2SITE per gli obiettivi di decarbonizzazione, in linea con la volontà di sviluppare soluzioni per il trasporto efficiente dell'idrogeno. Dalla fondazione ad oggi H2SITE ha raccolto oltre 50 milioni di euro di capitali, bilanciando venture capital internazionali specializzati (VC Cleantech), partner industriali nel settore energetico, e sostegni pubblici europei e locali. Questa combinazione di investitori fornisce all'azienda risorse finanziarie, credibilità nel mercato dell'idrogeno e opportunità di collaborazione su progetti concreti (pilota e commerciali) in diversi paesi.

Nonostante la sua giovane età, H2SITE vanta già una serie di risultati tangibili che validano il suo approccio tecnologico e gettano le basi per l'espansione futura. Di seguito alcuni dei traguardi e progetti chiave raggiunti dalla start-up fino al 2025:

• Progetti pilota e prime installazioni: H2SITE ha realizzato 15 progetti dimostrativi in Europa occidentale entro il 2024, coprendo diverse applicazioni. Oltre ai già citati impianti per bus a Birmingham e per stazioni di rifornimento in Spagna/Francia, la tecnologia H2SITE è stata impiegata in progetti di separazione dell'idrogeno da miscele H2-metano in infrastrutture gas esistenti. Diversi di questi progetti, in collaborazione con gestori di gasdotti, mirano a testare l'estrazione di idrogeno da

gas naturale arricchito (ad es. con 5-10% H₂) in punti specifici della rete. Tali iniziative sono precursori cruciali per dimostrare che le reti esistenti possono veicolare idrogeno in modo capillare, sfruttando i separatori a membrana per rifornire utenti finali con H₂ puro. Complessivamente, questi progetti pilota hanno confermato la versatilità del concetto H2SITE in contesti reali: dall'ambito mobilità a quello infrastrutturale e industriale. Ogni progetto ha fornito feedback per migliorare la tecnologia e ha contribuito a guadagnare la fiducia di clienti e stakeholder.

- Impianto produttivo di membrane e scaling industriale: Come accennato, a fine 2022 H2SITE ha inaugurato il primo stabilimento al mondo dedicato alla produzione industriale di membrane a doppio strato per idrogeno. L'impianto, sito a Loiu (Bilbao), rappresenta un notevole passo avanti verso la scalabilità commerciale: dispone fin da subito di capacità per migliaia di membrane/anno, con possibilità di espansione tramite linee addizionali. Ciò ha permesso all'azienda di iniziare nel 2023 a evadere ordini commerciali su scala più ampia, non più solo singole unità prototipali. Inoltre, la produzione interna consente a H2SITE di controllare la qualità e di sperimentare migliorie nei materiali di membrana per incrementare le prestazioni. Secondo il presidente Asier Rufino, grazie a questa industrializzazione H2SITE è riuscita a ridurre significativamente i costi del processo a membrana rispetto allo stato dell'arte, aprendo la strada a nuovi casi d'uso prima impraticabili per ragioni economiche.
- Riconoscimenti e visibilità nel settore: H2SITE ha ottenuto visibilità internazionale partecipando a competizioni e network di settore. Ad esempio, è stata selezionata tra le 100 start-up energetiche del SET100 (Start Up Energy Transition) e nominata Finalist nel concorso SET Award di categoria Clean Energy & Storage. Queste vetrine le hanno permesso di presentare la propria tecnologia a investitori e partner globali, evidenziando l'unicità della soluzione di membrane reactor per il trasporto dell'idrogeno. Anche la stampa specializzata in idrogeno ha dedicato spazio all'azienda: ad esempio H2-View, importante rivista di riferimento nel settore, ne ha raccontato la storia e gli sviluppi, definendo H2SITE uno "pioniere" nelle apparecchiature per l'idrogeno.
- Collaborazioni industriali strategiche: Oltre ai rapporti con gli investitori, H2SITE ha stretto partnership tecniche con aziende chiave. Abbiamo citato la collaborazione con Snam in Italia e con vari operatori di infrastrutture in Europa. In

Spagna, H2SITE è parte attiva del Corridor Basco dell'Idrogeno (BH2C), un'iniziativa che coinvolge imprese come Petronor-Repsol, Iberdrola, Enagás e istituzioni locali per sviluppare un ecosistema dell'idrogeno nei Paesi Baschi. Tali collaborazioni le permettono di essere presente nei progetti dimostrativi finanziati dal PNRR e dai programmi UE (ad esempio progetti per usare idrogeno nelle raffinerie o nelle acciaierie a Bilbao e dintorni). Anche a livello internazionale, grazie all'investimento di Hy24 e Enagás, H2SITE è ora connessa ai principali consorzi di infrastrutture per idrogeno in via di pianificazione, il che potrebbe tradursi in un ruolo diretto in futuri corridoi dell'idrogeno transnazionali.

In pochi anni H2SITE è passata da start-up emergente a realtà semi-industriale con una quindicina di installazioni all'attivo, un proprio stabilimento produttivo, e una presenza in importanti progetti europei. Questo inizio costituisce una base su cui costruire le prossime fasi di crescita.

Guardando al futuro, H2SITE si trova in una posizione privilegiata per sfruttare l'accelerazione degli investimenti nell'idrogeno verde a livello globale. Gli importanti capitali raccolti nel 2025 le forniscono le risorse per scalare la tecnologia e crescere sui mercati internazionali. In particolare, con il round Serie B da 36 milioni l'azienda ha dichiarato di voler finanziare le prossime fasi di industrializzazione e commercializzazione, puntando a obiettivi ambiziosi entro i prossimi 2-3 anni. Uno di questi traguardi è la realizzazione di reattori a membrana di scala significativamente maggiore, capaci di produrre multi-tonnellate al giorno di idrogeno. H2SITE intende avere in esercizio i primi sistemi dell'ordine di vari tonnellate/giorno entro il 2026. Si tratta di un salto di scala rispetto agli impianti attuali, reso possibile sia dai fondi disponibili sia dall'esperienza maturata con l'impianto demo da 1 tonnellata/giorno co-finanziato dall'UE.

Aumentare la taglia degli impianti aprirà alla start-up l'accesso a mercati dell'idrogeno di massa, come ad esempio gli hub portuali per l'import di ammoniaca verde o i grandi utilizzatori industriali che richiedono decine di tonnellate al giorno di H₂.

Parallelamente allo scale-up tecnico, H2SITE mira ad espandersi geograficamente oltre l'Europa. Ha già annunciato di avere in sviluppo i primi progetti su larga scala in Nord America, UE e Asia-Pacifico, in collaborazione con partner locali (hy24partners.com). Ciò implica potenzialmente la creazione di filiali o joint-venture in quei mercati. Ad esempio, la menzione di progetti negli Stati Uniti legati all'idrogeno naturale suggerisce il coinvolgimento di H2SITE in iniziative per estrarre idrogeno da giacimenti sotterranei scoperti recentemente (un tema di ricerca attuale negli USA) (hy24partners.com). Nel

settore marittimo, l'azienda potrebbe sfruttare il suo dimostratore per proporre soluzioni di rifornimento di ammoniaca e idrogeno nei principali porti europei e asiatici, contribuendo alla decarbonizzazione del trasporto navale. Anche l'ingresso di Enagás e la collaborazione con Snam indicano opportunità di business nei futuri corridoi dell'idrogeno del Mediterraneo: H2SITE potrebbe fornire la tecnologia di separazione negli snodi tra pipelines e utilizzatori finali, consentendo per esempio all'idrogeno nordafricano trasportato via tubo di essere estratto in purezza in Italia o Spagna per alimentare industrie locali.

Un altro fronte su cui H2SITE concentrerà gli sforzi è il miglioramento continuo dell'efficienza e la riduzione dei costi delle sue soluzioni. L'azienda è consapevole di dover competere sia con le modalità tradizionali di fornitura di idrogeno (trasporto di bombole, liquefazione, nuove pipeline) sia con eventuali tecnologie concorrenti (ad es. altri sistemi di cracking dell'ammoniaca o Liquid Organic Hydrogen Carriers).

Per mantenere un vantaggio competitivo, H2SITE investirà in R&D sulle membrane e in automazione per produrle in massa a costi decrescenti (h2eg.com). Già oggi la società afferma di poter fornire soluzioni di separazione a costi di circa 0,5 \$/kg di H2, costo in linea con gli obiettivi di costo del trasporto di idrogeno al 2050, e prevede di abbassarli ulteriormente con le economie di scala (engieventures.com). Se riuscirà in questo intento, la proposta di valore per i clienti diventerà estremamente competitiva: significa aggiungere solo pochi centesimi al costo per kg di idrogeno verde per risolvere completamente la distribuzione e consegna finale. Ciò eliminerebbe uno dei colli di bottiglia principali per l'adozione diffusa dell'idrogeno.

Le prospettive di mercato per una tecnologia come quella di H2SITE appaiono ampie. Secondo il Hydrogen Council, a livello globale sono stati annunciati oltre 1.500 progetti legati all'idrogeno al 2024, con investimenti complessivi di decine di miliardi di dollari. La maggior parte di essi riguarda la produzione di idrogeno verde e i suoi usi finali, ma sempre più attenzione si sta spostando sul trasporto e stoccaggio, riconosciuti come anelli mancanti della catena.

L'Europa, in particolare, ha fissato target ambiziosi (come importare 10 milioni di tonnellate di H₂ verde entro il 2030 e miscelare idrogeno nella rete gas al 5-10%).

Tecnologie come i reattori a membrana di H2SITE potrebbero diventare ingredienti fondamentali per realizzare questi obiettivi senza attendere la costruzione di nuove infrastrutture dedicate. Anche in Asia e Nord America, dove le distanze sono grandi, l'idea di sfruttare vettori come l'ammoniaca per trasportare energia e poi convertirli on-site sta guadagnando terreno. La recente creazione di fondi specializzati (come Hy24) e l'interesse

di società energetiche tradizionali verso H2SITE confermano che la separazione e il cracking decentrati sono visti come soluzioni promettenti e scalabili globalmente.

H2SITE si avvia verso una fase di forte crescita in cui dovrà passare dallo status di start-up innovativa a quello di fornitore globale di tecnologia per l'idrogeno. Le sfide non mancano, dovrà dimostrare la tenuta dei suoi sistemi su scala commerciale, gestire la concorrenza e costruire un'organizzazione internazionale, ma la start-up Basca sembra avere dalla sua parte i fattori giusti: una tecnologia unica frutto di 20 anni di ricerca, un gruppo imprenditoriale capace e supportato da partner industriali, capitali adeguati e un mercato in rapida espansione in cerca di soluzioni. H2SITE potrà ritagliarsi un ruolo fondamentale nel render concreta la transizione all'idrogeno verde, eliminando uno degli ostacoli pratici e contribuendo a costruire un'economia dell'idrogeno efficiente, capillare e decarbonizzata.

CONCLUSIONI

Con l'ultimo capitolo si conclude la presente trattazione, Il cui obiettivo è stato di analizzare il ruolo dell'idrogeno, e in particolare dell'idrogeno verde, all'interno del più ampio processo di transizione energetica. La scelta di approfondire questo tema nasce dalla crescente centralità che l'idrogeno sta assumendo nelle strategie nazionali e internazionali per la decarbonizzazione, nonché dal dinamismo dell'ecosistema innovativo che ruota intorno a questo mondo. L'intento è stato quello di valutare le potenzialità e i limiti dell'idrogeno, osservandone l'evoluzione sia dal punto di vista tecnologico e industriale, sia dal punto di vista economico e di mercato, con una particolare attenzione al contributo delle start-up e alle tendenze d'innovazione.

Le domande di ricerca che hanno guidato la stesura della seguente tesi si possono sintetizzare in tre direttrici principali: Qual è lo stato dell'arte delle tecnologie legate all'idrogeno? In che modo il mercato globale e gli investimenti stanno influenzando lo sviluppo di un'economia dell'idrogeno competitiva? Quale ruolo rivestono le start-up e le tendenze d'innovazione nel delineare il futuro di questo settore?

Per rispondere a tali interrogativi, la trattazione è stata strutturata in quattro capitoli, ciascuno dei quali ha affrontato un aspetto chiave della tematica. Nel primo capitolo è emerso come l'idrogeno, pur essendo da tempo utilizzato in diversi settori industriali, stia oggi acquisendo una nuova centralità dovuta ai nuovi metodi di produzione recentemente sviluppati. Infatti, l'analisi delle tecnologie legate all'idrogeno verde ha permesso di approfondire i processi di produzione e i possibili utilizzi, evidenziando al contempo le criticità della supply chain, che, attualmente, incidono in maniera decisiva sulla competitività complessiva del settore. Tali limiti si configurano come uno dei principali ostacoli all'adozione su larga scala, poiché condizionano sia i costi finali sia la possibilità di integrazione dell'idrogeno verde nei sistemi energetici esistenti.

Nel secondo capitolo l'analisi si è concentrata sul mercato, mettendo in evidenza come negli ultimi anni si sia registrata una crescita produttiva esponenziale nel settore idrogeno, con un'accelerazione particolarmente significativa per quanto riguarda l'idrogeno verde. Solo tra il 2023 e il 2024 la produzione mondiale di idrogeno verde è infatti aumentata di oltre il 100%. A conferma di tale tendenza, l'analisi ha posto l'attenzione anche su alcune filiere già operative, come quelle di Puertollano e di Kuqa, che rappresentano esempi concreti di implementazione industriale su scala reale.

Il terzo capitolo ha consentito di approfondire il tema dell'innovazione attraverso l'analisi

dei dati brevettuali ottenuti su Lens.org. Tali informazioni hanno permesso di delineare il patent landscape in modo tale di individuare le principali traiettorie tecnologiche relative ad ogni tecnologia analizzata. L'indagine ha evidenziato lo strapotere brevettuale detenuto dagli stati uniti e come alcune tecnologie, in particolare l'elettrolisi alcalina (AEL) e quella a membrana a scambio protonico (PEM), abbiano raggiunto un livello di sviluppo più avanzato e orientato all'industrializzazione, con conseguenti miglioramenti nei processi produttivi. Al contrario, soluzioni come l'elettrolisi ad ossidi solidi (SOEC) e la fotocatalisi risultano ancora in una fase iniziale di carattere prevalentemente accademico.

Per concludere, il quarto capitolo ha analizzato l'ecosistema start-up operanti nel settore, evidenziando come negli ultimi dieci anni si sia registrata una crescita significativa degli investimenti a livello globale. L'indagine, condotta attraverso un confronto tra Stati Uniti ed Europa, ha confermato ancora una volta la supremazia innovativa statunitense, mentre l'approfondimento di tre casi studio esemplificativi ha permesso di comprendere in modo concreto i modelli di business adottati, le strategie di finanziamento implementate e le applicazioni tecnologiche sviluppate nel settore. Il caso di Plug Power ha mostrato come una start-up in un mercato, all'epoca (1997), in fase iniziale possa trasformarsi in leader mondiale grazie a un ecosistema integrato che copre produzione, stoccaggio e utilizzo dell'idrogeno, supportato da partnership con attori globali e da una rete industriale capillare. Supercritical, invece, rappresenta un esempio di start-up capace di proporre una soluzione radicalmente innovativa con un elettrolizzatore ad acqua supercritica, puntando a ridurre drasticamente i costi di produzione e ad eliminare la dipendenza da materiali rari. H2Site ha infine dimostrato come la sfida della distribuzione possa essere affrontata attraverso tecnologie modulari e decentralizzate, capaci di generare idrogeno puro direttamente in loco a partire da vettori più facilmente trasportabili, come ammoniaca o metanolo.

Nel corso della ricerca è emerso come l'idrogeno verde possa rappresentare un componente della transizione energetica, ma allo stesso tempo permanga attualmente un divario significativo tra ambizioni e realtà. Il mercato globale è in forte espansione e le previsioni indicano una crescita di valore da alcune decine di miliardi di dollari nel 2024 a oltre sessanta miliardi entro il 2030. Tuttavia, l'ostacolo principale rimane l'elevato costo di produzione, soprattutto per l'elettrolisi, che richiede un approvvigionamento costante di energia rinnovabile a basso costo e una tecnologia sempre più efficiente e scalabile. Tuttavia, attraverso l'analisi brevettuale si è confermata l'intensità innovativa che caratterizza il settore, mettendo in luce come l'idrogeno verde, rispetto agli altri colori, sia l'area più dinamica in termini di crescita di famiglie brevettuali e come la ricerca si concentri in

particolare sulle diverse tipologie di elettrolisi e sulle tecnologie emergenti di fotocatalisi. Complessivamente, l'analisi svolta evidenzia come l'idrogeno verde si collochi oggi al centro di un settore caratterizzato da una fase di intensa innovazione e da rilevanti flussi di investimento. Pur permanendo limiti significativi legati ai costi di produzione e alle infrastrutture, il settore sta progressivamente costruendo basi solide grazie alla combinazione di politiche pubbliche di sostegno, all'incremento dell'attività brevettuale e allo sviluppo di iniziative imprenditoriali ad alto contenuto tecnologico. Le esperienze delle start-up analizzate confermano che la diffusione dell'innovazione e la capacità di sperimentare modelli differenti rappresentano le leve principali per rafforzare la competitività dell'idrogeno verde e ridurre il divario tra potenzialità e applicazioni concrete. Sarà tuttavia fondamentale che gli Stati proseguano nel percorso normativo intrapreso, che finora ha favorito il settore con miliardi di dollari, al fine di garantire le condizioni necessarie a rendere questo vettore energetico pienamente competitivo anche sul piano economico.

Blibliografia

Nicola Armaroli, Elisa Bandini, Andrea Barbieri. 2023. Il vettore idrogeno: vincoli e opportunità.

IUPAC. 2021. Atomic Weights of the Elements 2021 (IUPAC Technical Report). International Union of Pure and Applied Chemistry.

International Energy Agency. 2023. Towards Hydrogen Definitions Based on Their Emissions Intensity. Paris: IEA.

N. Armaroli, V. Balzani, ChemSusChem, 2011, 4, 21.

2018, Comprehensive Energy Systems. Ibrahim Dincer, ... Maan Al-Zareer.

Kumar, S. Shiva, and Hankwon Lim. 2022. "An Overview of Water Electrolysis Technologies for Green Hydrogen Production." *Energy Reports* 8: 13793–13813.

Howarth R. W., Jacobson M. Z. (2021). Energy *Science and Engineering. How green is blue hydrogen?*

Victor Joseph Aimikhe and Oghenegare Emmanuel Eyankware (2023). Journal of Energy Research and Reviews Volume 13, Issue 4, Page 64-79, 2023; Article no. JENRR.99222; ISSN: 2581-8368.

IEA, Global Hydrogen Review 2024.

S. Shiva Kumar a, Hankwon Lim. *An overview of water electrolysis technologies for green hydrogen production*. 2022.

K.W. Harrison, R. Remick, and G.D. Martin. *Hydrogen production fundamentals and case study summaries*. 2010.

Ama Dahanayake, Chamila A. Gunathilake, Achala Pallegedara and Piumal Jayasinghe. *Recent Developments in Noble Metal-Free Catalysts for a Photocatalytic Water Splitting Process—A Review*. 2023.

Nan Ma a, Weihua Zhao b, Wenzhong Wang b, Xiangrong Li b, Haiqin Zhou. *Large scale of green hydrogen storage: Opportunities and challenges*. 2023.

Miao Yang, Ralf Hunger, Stefano Berrettoni, Bernd Sprecher and Baodong Wang. *A review of hydrogen storage and transport technologies*. 2023.

Appl, Michael. 2006. "Ammonia." In *Ullmann's Encyclopedia of Industrial Chemistry*. Weinheim: Wiley-VCH.

Department for Energy Security and Net Zero, *Hydrogen Transport and Storage Cost Report* (London: UK Government, 2023).

Patonia, Aliaksei, e Rahmatallah Poudineh. 2022. *Cost-Competitive Green Hydrogen: How to Lower the Cost of Electrolysers?* EL 47. Oxford: Oxford Institute for Energy Studies.

Hydrogen Council and McKinsey & Company.2023. *Hydrogen Insights: An Update on the Global Hydrogen Economy*. Brussels: Hydrogen Council.

Mazzocchi, Luigi, Francesca Cappelletti, Maria Gaeta, Alberto Gelmini, Andrea Rossetti, Mauro Scagliotti, Carmen Valli, e Claudio Zagano. *Idrogeno: Un vettore energetico per la decarbonizzazione*. Milano: RSEview, 2021.

Sitografia

U.S. Department of Energy. *Hydrogen Production: Natural Gas Reforming*. Disponibile su: https://www.energy.gov/eere/fuelcells/hydrogen-production-natural-gas-reforming.

Toppy. *Supply Chain Integrata: Guida Completa*. Disponibile su: https://toppy.it/it/supply-chain/supply-chain-integrata-guida-completa/.

Endress+Hauser. *Idrogeno Derivante da Gas Naturale*. Disponibile su: https://www.ch.endress.com/it/soluzioni-sostenibilita-ndustria/produzione-idrogeno/idrogeno-derivante-gas-naturale#toc20.

Geopop. Cos'è l'idrogeno bianco: Il gas naturale nel sottosuolo che servirebbe per la transizione energetica. Disponibile su: https://www.geopop.it/cose-lidrogeno-bianco-il-gas-naturale-nel-sottosuolo-che-servirebbe-per-la-transizione-energetica/.

De Nora. *The Evolution of Traditional Alkaline Water Electrolysis*. Disponibile su: https://energytransition.denora.com/it/content/news-the-evolution-of-traditional-alkaline-water-electrolysis.

Simplifhy. *Elettrolizzatori AEM per la Produzione di Idrogeno*. Disponibile su: https://simplifhy.com.

Alibaba Reads. *Electrolyzer Prices: What to Expect*. Disponibile su: https://reads.alibaba.com/it/electrolyzer-prices-what-to-expect/.

WIKA. *Elettrolisi: Soluzioni e Strumenti di Misura*. Disponibile su: https://www.wika.com/it-it/elettrolisi.WIKA?utm.

Australian Manufacturing. "Sparc Hydrogen Advances Green Hydrogen Innovation with Pilot Plant Build." 2023. Disponibile su:

https://www.australianmanufacturing.com.au/sparc-hydrogen-advances-green-hydrogen-innovation-with-pilot-plant-build/.

Mecalux. *Supply Chain: Cos'è e Come Funziona*. Disponibile su: https://www.mecalux.it/blog/supply-chain-cos-e.

Sparc Hydrogen. *Sparc Hydrogen Official Website*. Disponibile su: https://www.sparchydrogen.com/.

IEEE Smart Grid. "Batteries: Comparing to Hydrogen Fuel Cells." 2023. Disponibile su: https://smartgrid.ieee.org/bulletins/february-2023/batteries-comparing-to-hydrogen-fuel-cells#:~:text=End%20to%20End%20efficiency.

AutoScout24. *Auto a Idrogeno: Prezzo e Caratteristiche in Vendita in Italia*. Disponibile su: https://www.autoscout24.it/informare/consigli/migliori-auto/auto-a-idrogeno-prezzo-caratteristiche-in-vendita-italia/.

QualEnergia. Bus Elettrici Più Efficienti e Convenienti di Quelli a Idrogeno. Disponibile su: https://www.qualenergia.it/articoli/bus-elettrici-piu-efficienti-convenienti-quelli-idrogeno/.

Airswift. *Hydrogen Insights and Reports*. Disponibile su: https://www.airswift.com/.

Baker McKenzie. *Resource Hub – Clean Hydrogen Incentives in the United States*. Disponibile su: https://resourcehub.bakermckenzie.com/.

Canary Media. *Clean Hydrogen and Renewable Projects*. Disponibile su: https://www.canarymedia.com/.

Center for Strategic and International Studies (CSIS). *China's Hydrogen Development Plan 2021–2035*. 2022. Disponibile su: https://www.csis.org/.

Energy.gov. *Clean Hydrogen Hubs and IRA Incentives*. 2022. Disponibile su: https://www.energy.gov/.

Eur-Lex. EU Legal Documents: RED II, RED III, Gas & Hydrogen Package, REPowerEU. Disponibile su: https://eur-lex.europa.eu/.

Euractiv Italia. PNRR e Idrogeno. Disponibile su: https://www.euractiv.it/.

Iberdrola. Green Hydrogen Projects. Disponibile su: https://www.iberdrola.com/.

Innovation Post. *Progetti Idrogeno e PNRR*. Disponibile su: https://www.innovationpost.it/.

International Energy Agency (IEA). *Hydrogen*. 2024. Disponibile su: https://www.iea.org/topics/hydrogen.

International Energy Agency (IEA). *Global Hydrogen Review*. 2024. Disponibile su: https://www.iea.org/reports/global-hydrogen-review-2024.

Observatory for Clean Hydrogen. *EU Clean Hydrogen Observatory*. Disponibile su: https://observatory.clean-hydrogen.europa.eu/.

PR Newswire. "Sinopec Launches Kuqa Green Hydrogen Project." 2023. Disponibile su: https://www.prnewswire.com/.

REN21. *Renewables 2022 Global Status Report*. 2022. Disponibile su: https://www.ren21.net/.

Reuters. *Hydrogen and Clean Energy Reports*. 2022–2024. Disponibile su: https://www.reuters.com/.

Rinnovabili.it. Strategia Nazionale Idrogeno. Disponibile su: https://www.rinnovabili.it/.

Sinopec Group. *Sinopec Official Site*. Disponibile su: http://www.sinopecgroup.com/group/en/.

S&P Global. *Hydrogen Market and Project Reports*. Disponibile su: https://www.spglobal.com/.

U.S. Department of Energy (DOE). *U.S. National Clean Hydrogen Strategy and Roadmap*. 2023. Disponibile su: https://www.hydrogen.energy.gov/.

Ministero delle Imprese e del Made in Italy (MIMIT). *Strategia Nazionale e PNIEC*. Disponibile su: https://www.mimit.gov.it/.

SteelAtlas VC. *The Hydrogen Investment Blindspot*. 2023. Disponibile su: https://www.steelatlas.vc/the-hydrogen-investment-blindspot/.

ESG Today. Sunfire Raises \$340 Million for Clean Hydrogen Production Tech. 2023. Disponibile su: https://www.esgtoday.com/sunfire-raises-340-million-for-clean-hydrogen-production-tech/.

FuelCellsWorks. *Sunfire Secures €200M Guarantee Financing*. 2025. Disponibile su: https://fuelcellsworks.com/2025/01/07/green-investment/sunfire-secures-200-million-guarantee-financing.

Lhyfe. *Lhyfe Launches Its Initial Public Offering (IPO) on the Regulated Market of Euronext in Paris*. 2022. Disponibile su: https://www.lhyfe.com/press/lhyfe-launches-its-initial-public-offering-ipo-on-the-regulated-market-of-euronext-in-paris-to-become-a-leading-european-green-hydrogen-producer/.

ITM Power. *ITM Power Announces Successful £250m Fundraise*. 2021. Disponibile su: https://itm-power.com/news/itm-power-announces-successful-250m-fundraise.

H2 View. *UK Is Starting to Gain Traction: ITM Electrolysers Tapped for Two Unnamed Hydrogen Projects*. 2024. Disponibile su: https://www.h2-view.com/story/uk-is-starting-to-gain-traction-itm-electrolysers-tapped-for-two-unnamed-hydrogen-projects/2128131.article/.

Hydrogen Insight. "Articoli vari su Electric Hydrogen." Disponibile su: https://www.hydrogeninsight.com.

IonAnalytics Community. *Green Growth: Europe's Nascent Hydrogen Market Gains....* 2023. Disponibile su: https://community.ionanalytics.com/green-growth.

Unione Europea. *European Green Deal*. 2019. Disponibile su: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_it.

Commissione Europea. *EU Hydrogen Strategy*. 2020. Disponibile su: https://energy.ec.europa.eu/topics/energy-system-integration/hydrogen_en.

U.S. Department of Energy (DOE). *Hydrogen Shot Initiative*. 2021. Disponibile su: https://energy.gov/eere/fuelcells/hydrogen-shot.

U.S. Congress. *Inflation Reduction Act*. 2022. Disponibile su: https://www.congress.gov/bill/117th-congress/house-bill/5376.

International Energy Agency (IEA). *Global Hydrogen Review*. 2023. Disponibile su: https://www.iea.org/reports/global-hydrogen-review-2023.

IRENA. *Green Hydrogen: A Guide to Policy Making*. 2022. Disponibile su: https://www.irena.org/Publications/2022/Dec/Green-hydrogen-A-guide-to-policy-making.

BloombergNEF. Hydrogen Market Outlook. 2023. Disponibile su: https://about.bnef.com.

Plug Power. Sito ufficiale. Disponibile su: https://www.plugpower.com/.

Plug Power. *Investor Relations*. Disponibile su: https://ir.plugpower.com/.

Plug Power. Resources / Library. Disponibile su: https://resources.plugpower.com/.

U.S. Securities and Exchange Commission (SEC). *Filings relativi a Plug Power Inc.* Disponibile su: https://www.sec.gov/.

ResearchAnalyst.com. *Archivio articoli e schede su Plug Power*. Disponibile su: https://researchanalyst.com/.

ACCIONA. Sito ufficiale. Disponibile su: https://www.acciona.com/.

Supercritical Solutions. Sito ufficiale. Disponibile su: https://supercritical.solutions/.

ESG Today. *Coverage su elettrolizzatori ed efficienze di riferimento*. Disponibile su: https://www.esgtoday.com/.

Clean Air Task Force (CATF). *Hydrogen—analisi settoriali e dati emissioni*. Disponibile su: https://www.catf.us/.

Renewables Now. *Notizie e round VC nel cleantech (Supercritical seed 2022)*. Disponibile su: https://renewablesnow.com/.

HY24. *Hy24 Partners – Clean hydrogen funds e comunicati*. Disponibile su: https://hy24partners.com/.

ENGIE New Ventures. *Portfolio e comunicati su H2SITE*. Disponibile su: https://engieventures.com/.

Business Wire. *Comunicati stampa su H2SITE e progetti ammoniaca/Cracker*. Disponibile su: https://www.businesswire.com/.

H2EG. *H2EG / H2-related industry updates (impianto membrane a Loiu)*. Disponibile su: https://h2eg.com/.

Start Up Energy Transition (SET). *Database e premi (H2SITE)*. Disponibile su: https://www.startup-energy-transition.com/.

ScottishPower. *Sito ufficiale (progetti H₂ e partnership)*. Disponibile su: https://www.scottishpower.com/.

Proton Ventures. *Sito ufficiale (GreeNH₃, ammoniaca verde)*. Disponibile su: https://protonventures.com/.

HAMR Energy. *Sito ufficiale (progetti e-methanol)*. Disponibile su: https://hamrenergy.com/.

Frames Group. *Sito ufficiale (acquisizione/centro di eccellenza in NL)*. Disponibile su: https://www.frames-group.com/.

Toyota Ventures. *Sito ufficiale*. Disponibile su: https://toyota.ventures/.

Shell Ventures. *Corporate ventures (idrogeno e power)*. Disponibile su: https://www.shell.com/energy-and-innovation/ventures.html.

Jericho Energy Ventures. Sito ufficiale. Disponibile su: https://jerichoenergyventures.com/.

Lowercarbon Capital. *Sito ufficiale*. Disponibile su: https://lowercarbon.com/.

Net Zero Technology Centre (ex-OGTC). *TechX/programmi grant*. Disponibile su: https://www.netzerotc.com/.

Innovate UK. Smart Grants. Disponibile su: https://www.ukri.org/councils/innovate-uk/.

BEIS (UK) – Green Distilleries Competition (storico). *Program overview (archivio)*. Disponibile su: https://www.gov.uk/government/collections/green-distilleries-competition.

CPI – Centre for Process Innovation. *Sito ufficiale*. Disponibile su: https://www.uk-cpi.com/.

Xodus Group. Sito ufficiale. Disponibile su: https://www.xodusgroup.com/.

DNV. Sito ufficiale. Disponibile su: https://www.dnv.com/.

OpenVC. Sito ufficiale. Disponibile su: https://www.openvc.app/blog/funding-stages-pre-seed-series-a

HubSpot. Sito ufficiale. Disponibile su:

https://www.hubspot.com/startups/fundraising/preseed-vs-seed-funding.

PwC. *State of Climate Tech 2024*. Sito ufficiale. Disponibile su: https://www.pwc.com/gx/en/issues/esg/climate-tech-investment-adaptation-ai.html pwc.com