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Abstract
Inventory management in modern retail is persistently challenged by the mismatch
between supply and customer demand, a problem that leads to costly overstocks
and lost sales from stockouts. This issue persists despite sophisticated forecasting
tools, primarily due to the inherent uncertainty and volatility of consumer behavior.
Lateral transshipment—the practice of moving inventory between locations at the
same supply chain echelon—has emerged as a key strategy to enhance flexibility
and mitigate these imbalances by creating a pooled inventory resource. This
thesis develops and analyzes a reactive transshipment policy tailored for multi-
location retail networks that manage products with short selling seasons and highly
uncertain demand based on the paper “Approximate Dynamic Programming for
Lateral Transshipment Problems in Multi-Location Inventory Systems” by Joern
Meissner and Olga V. Senicheva. In their paper Meissner and Senicheva address the
computational complexity of this problem, known as the "curse of dimensionality,"
by implementing an approximate dynamic programming (ADP) framework to find
high-quality, feasible solutions where exact optimization is intractable. The primary
contribution of this work is an extension to the existing model: the incorporation
of economies of scale into the transshipment cost structure. This is achieved by
introducing a concave cost function, a departure from the linear cost assumptions
commonly found in the literature. This enhancement creates a more realistic but
non-convex optimization problem, necessitating a novel formulation to be solved
effectively. The performance of the proposed ADP model is benchmarked against
other established reactive transshipment policies to validate its effectiveness. For
the full code of the thesis: https://github.com/ismailabouelseoud/Optimization-
models-for-multiechelon-inventory-control
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Chapter 1

Introduction

In today’s complex retail environment, one of the most persistent and costly chal-
lenges facing businesses is the fundamental mismatch between customer demand
and retailer stock levels. This misalignment manifests itself in two primary ways:
overstocks, where retailers hold excessive inventory that ties up capital and may
eventually become obsolete, and stockouts, where customer demand cannot be
met due to insufficient inventory levels. These inventory imbalances occur despite
the widespread adoption of sophisticated modern forecasting tools and advanced
analytics, highlighting the inherent complexity of demand prediction in dynamic
market conditions [1].

Figure 1.1: Inventory distribution. Taken from [1].
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Introduction

The root cause of these inventory mismatches lies in the fundamental nature of
demand uncertainty. Consumer behavior is influenced by a multitude of factors
that are often difficult to predict and quantify. Weather patterns can dramatically
shift demand for seasonal items, economic conditions can alter purchasing power
and preferences, competitive actions can redirect customer flow, and social trends
can create unexpected surges or declines in product popularity. Even with the most
advanced statistical models and machine learning algorithms, the stochastic nature
of demand creates an environment where perfect inventory allocation remains
elusive. According to industry research, extreme weather is one of the top risks to
supply chains in 2025 [2], further compounding forecasting challenges.

Another weakness of conventional inventory management is that it relies heavily
on historical data and fixed allocation strategies. This approach typically involves
analyzing historical sales patterns, identifying seasonal trends, and establishing
predetermined stock levels for every location. While this method is highly beneficial
and important for establishing demand distribution patterns, it assumes that these
distributions will hold over time and does not consider the high volatility of modern
consumer markets [3].

1.1 Real-World Examples and Industry Impact
A compelling example of supply chain shock occurred during COVID-19 in 2020,
when many retailers experienced widespread stockouts of toilet paper following a
sudden spike in household purchases driven by panic buying and precautionary
hoarding. Store shelves emptied even though production at paper mills had not
permanently collapsed, because retail inventories and replenishment lead times
were insufficient to absorb the demand surge [4].

Consequently, this demand spike propagated upstream as retailers placed larger
and more frequent orders to restock, amplifying variability (the "bullwhip effect" 1.2)
and causing suppliers and distribution centers to experience shortages at different
points in the chain. Local stockouts occurred even when aggregate supply could
have met normal demand levels if allocation and flows had been faster or more
flexible.

This example demonstrates how demand shocks expose supply chain fragilities
(capacity constraints, lead times, and lack of flexibility), and why measures such as
additional safety stock, lateral transshipments, and near-term capacity adjustments
can reduce stockouts from sudden demand fluctuations.

2
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Figure 1.2: Bullwhip effect. Taken from [5].
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Another compelling example of supply chain stockouts occurred during the Texas
winter storm in 2021 [6], when Texas experienced a crisis where millions of homes
and businesses were left without power, leading to massive stockouts of emergency
supplies across the state. This crisis created extreme demand fluctuations for
emergency supplies. Due to incorrect predictions of the situation’s severity, retail-
ers were completely unprepared for the surge in demand for generators, heaters,
blankets, and other emergency items.

This example perfectly illustrates the research problem: while some Texas re-
gions lost power completely, others maintained electricity. Stores in powered areas
likely had excess inventory of emergency supplies (since local demand remained
normal), while stores in affected areas faced complete stockouts. Weather-related
disruptions like this highlight the importance of accurate demand forecasting and
adaptive inventory strategies to respond to unexpected events [7].

1.2 Lateral Transshipment in Inventory Manage-
ment

To enhance the efficiency and responsiveness of inventory systems, the concept of
lateral transshipment has emerged as a valuable strategy. Lateral transshipment
refers to the movement of stock between different stocking locations that operate
at the same echelon within a supply chain network. This is distinct from the
traditional hierarchical flow of goods from one echelon to the next (e.g., from
a manufacturer to a wholesaler and then to a retailer). By enabling inventory
sharing among entities at the same level—such as between different retail outlets or
regional warehouses—lateral transshipment facilitates a more flexible and adaptive
approach to managing stock [8]. This pooling of inventory can lead to significant
advantages, including reduced overall inventory levels and associated holding costs
while simultaneously maintaining or improving customer service [8]. The ability to
fulfill demand from other locations mitigates the risk of stockouts at one facility
while surplus inventory sits idle at another, thereby optimizing the utilization of
the total inventory pool.

The implementation of lateral transshipment introduces additional complexity
to inventory control, requiring decisions not only on when and how much to order
from external suppliers but also on when, how much, and from where to transship
stock. The literature identifies two primary categories based on the timing of
these movements: proactive transshipment and reactive transshipment. Proactive
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transshipments are executed before customer demand is realized, often to strategi-
cally position inventory based on forecasts. In contrast, reactive transshipments
are triggered after demand is realized, typically in response to a stockout or a
critically low inventory level at a specific location. Research shows that preventive
transshipment in logistics service providers (LSP-led) systems can bring an average
40.33% increase in total profit over non-transshipment scenarios, with even higher
improvements (93.31%) for products with high demand uncertainty [9]. A summary
comparison of these two approaches is presented in Table 1.

Table 1.1: Comparison of Proactive and Reactive Transshipment

Feature Proactive Transshipment Reactive Transshipment

Timing of
Transship-
ment

Before customer demand is re-
alized

After customer demand is re-
alized

Trigger for
Transship-
ment

Anticipated demand, fore-
casts, predetermined sched-
ules

Stockouts or imminent stock-
outs at specific locations

Primary Ob-
jective

Strategic inventory position-
ing, transportation efficiency

Meeting immediate demand,
resolving shortages

Reliance on
Demand Info

Relies heavily on demand fore-
casts

Acts on actual demand infor-
mation

Typical Cost
Trade-offs

Balancing forecast accuracy
against transportation costs

Balancing transshipment
costs against shortage/backo-
rder costs

Recent research has revealed intriguing insights about these transshipment
approaches. Studies indicate that proactive transshipments may not provide addi-
tional economical value compared to reactive transshipments when both cost the
same, suggesting that the complexity of proactive approaches may not always be
justified [10]. However, other research has found that proactive transshipment in
LSP-led systems can significantly improve profits—by 23.5% compared to retailer-
led systems—highlighting the importance of who makes the transshipment decisions
[9]. This suggests that the value of different transshipment strategies may depend
greatly on implementation details and decision-making structures within the supply
chain.

The effectiveness of lateral transshipment strategies is influenced by several
factors, including demand patterns, cost structures, and network characteristics.
Research shows that when the lost sale cost is higher, or the delivery cost is lower,
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the marginal benefit of transshipment is more prominent, making transshipment
more likely to occur with higher quantities [11]. Furthermore, studies indicate
that companies employing demand planning models see a 20% cost reduction and
a 10% revenue increase, highlighting the financial benefits of improved inventory
management strategies that may include transshipment [12].

1.3 Thesis Scope and Methodology

This thesis focuses on reactive transshipment policies for items characterized by
short selling seasons and highly uncertain demand. The research presented here
is based on and serves as an extension of the work by Meissner and Senicheva in
2016 [13].

To contextualize the problem, consider a multi-location distribution system
consisting of one central warehouse in Hamburg, Germany, and 15 retail outlets in
different German states (see Figure 1.3) [Source of example: [13]]. At the beginning
of a selling season, the central warehouse places a single replenishment order with
a supplier, accounting for a long production and logistics lead time. Once the
products arrive, the central warehouse allocates and ships the inventory to the 15
retailers, each of whom begins the season with a predetermined stock level. As
customers purchase products each day, inventory is depleted at varying rates across
the network. If a stockout occurs at one retailer while others still have stock, a
reactive transshipment can be initiated between retailers to prevent a lost sale (see
Figure 1.3).

Figure 1.3: An example of a multi-location distribution network. Taken from
[13].
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This research addresses this specific problem by applying a dynamic program-
ming model for a multi-location, multi-period setting with lost sales, as formulated
in [13]. However, due to the "curse of dimensionality," obtaining an exact solution
from the dynamic programming evaluation is computationally intractable for real-
istically sized problems. Therefore, this work implements approximate dynamic
programming (ADP), following the framework developed in the same paper, to find
high-quality, computationally feasible solutions. The performance of the proposed
ADP model is compared against other reactive transshipment policies, such as the
TIE and Lookahead policies.

The primary contribution of this thesis is an extension that incorporates
economies of scale into the transshipment cost structure by using a concave cost
function. This is a significant departure from the fixed or linear cost functions
commonly used in the literature for this problem. The introduction of a concave cost
function adds substantial complexity, as the objective function becomes non-convex,
requiring a novel formulation to be approximated and solved effectively.
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Chapter 2

Literature review

Transshipment, the practice of moving inventory between locations at the same
echelon level, is a cornerstone of modern inventory management, offering a powerful
mechanism to mitigate demand uncertainty and enhance service levels. A compre-
hensive review of the literature reveals a significant focus on reactive transshipment,
where inventory movements are triggered by an immediate stockout or an observed
inventory imbalance. However, an emerging and less-explored area of research is
proactive transshipment, which involves preemptive stock repositioning based on
anticipated future needs. This thesis contributes to this area by focusing on a
proactive transshipment model, addressing notable gaps in the existing body of
work concerning both strategy and cost modeling.

The majority of literature has traditionally centered on reactive transship-
ment strategies. The foundational work by Krishnan and Rao [14] analyzed a
single-period, multi-location problem, establishing a framework that has influ-
enced decades of research. Later work extended this scope to multiple periods
and non-identical locations [15], with some studies considering the possibility of
multiple reactive transshipments within a single cycle [16, 17, 18, 19]. Several
works have also addressed reactive transshipments under continuous review, often
motivated by spare parts applications where immediate availability is critical [20,
21, 22, 23, 24]. To handle the complexities of these systems, simulation-based
approaches have been employed to analyze policy convergence and performance [25].
While these models offer robust solutions for responding to real-time stock levels,
they inherently operate with a delay, as the problem they solve has already occurred.

In contrast, proactive transshipment aims to prevent stockouts before they hap-
pen. Early studies focused on simpler single-period or two-location cases [26, 27].
However, proactive transshipment problems, especially those involving multiple
periods, multiple non-identical locations, and lost sales, are significantly more
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complex to solve optimally. While some multi-period models considered backorders
[28], the introduction of lost sales scenarios adds a substantial layer of analytical
difficulty. Despite its logical appeal, proactive transshipment has received less
attention, with most studies situated within periodic review systems [29]. Some
recent work has begun to explore hybrid [30] or proactive [31] policies in continuous
review settings, though the latter’s "proactive" nature is based on responding to
demand triggers rather than being scheduled before demand occurs.

The inherent complexity of proactive and large-scale reactive problems has
necessitated the development of advanced solution methodologies. Dynamic pro-
gramming is a common technique, but its application is often limited by the "curse
of dimensionality" in large-scale problems. Consequently, many researchers have
proposed heuristics to find good, practical solutions. Among these are rule-based
policies such as the Transshipment-In-Time for Excess (TIE) policy [32] and more
computationally intensive methods like look-ahead (PL) approaches [33].

The TIE policy is a proactive heuristic designed to rebalance inventory across
locations before demand occurs. At each review point, the policy identifies lo-
cations holding "excess" inventory—defined as stock exceeding a predetermined
rebalancing target, typically the safety stock level. Simultaneously, it identifies
locations that are in a deficit position, with inventory levels below their targets.
The TIE policy then triggers transshipments from the excess locations to the deficit
locations, aiming to bring all facilities as close to their respective target stock
levels as possible. Its simplicity and intuitive logic make it an attractive option for
systems where a straightforward rebalancing mechanism is desired without solving
a complex optimization problem at each period.

Look-ahead policies (PL) represent a more sophisticated class of heuristics that
make decisions by evaluating their potential future consequences. Instead of re-
lying on a fixed rule, a look-ahead approach simulates or forecasts the system’s
evolution over a defined future horizon (the "look-ahead" period) for a set of pos-
sible transshipment decisions. By calculating the expected costs or performance
outcomes associated with each decision at the end of this horizon, the policy can
select the action that yields the most favorable future state. This method is more
computationally demanding than simple heuristics but can better navigate complex
trade-offs, such as balancing current transshipment costs against the risk of future
stockouts and lost sales, often leading to higher-quality solutions. For finding
efficient, near-optimal solutions, even more advanced methods like approximate
dynamic programming (ADP) and simulation-based optimization have become
valuable tools [34, 35, 30].
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A crucial aspect often simplified in the literature is the modeling of transship-
ment costs. The vast majority of the work cited considers a fixed transshipment
cost per shipment or even ignores it entirely. However, to accurately capture the
economic impact of lateral transshipment, a more realistic cost structure is needed.
Real-world logistics costs are often non-linear, exhibiting economies of scale. Several
works in related inventory theory have examined more complex cost functions, such
as piecewise linear convex costs, and highlighted the differences compared to simpler
fixed-cost assumptions [36, 37]. Recent studies have begun to integrate fixed order
costs more accurately into periodic-review systems with transshipment, signaling a
move toward greater model fidelity [38]. This highlights a gap for models that incor-
porate more realistic, non-linear transshipment costs into proactive decision-making.

This divergence in the literature highlights a critical research opportunity.
While reactive strategies are well-understood, the proactive paradigm remains
comparatively underdeveloped, particularly in the context of realistic cost structures
and solution methodologies for complex systems. This thesis, therefore, pivots away
from the well-trodden path of reactive models with simplified costs to explore the
nuances of a proactive transshipment policy with a more accurately modeled cost
function, aiming to provide a more comprehensive understanding of its operational
advantages.
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Chapter 3

Problem formulation

3.1 Introduction to the Centralized Distribution
Network and Operational Flow

3.1.1 The Centralized Model
In modern supply chain management, many companies operate a network of retail
locations under a unified, central authority. The problem this thesis explore is set
within such a centralized distribution network. This means that a single decision-
making entity is responsible for managing inventory and logistics across all retail
stores. The fundamental objective of this central entity is not to maximize the
profit of any single store, but to maximize the total expected profit of the entire
network over a given period.

This centralized approach allows for coordinated strategies that can balance
inventory, reduce costs, and improve overall service levels in a way that indepen-
dently operated stores cannot. The key decisions revolve around replenishment
from a central warehouse and lateral transshipments between retail locations.

3.1.2 Time Structure and Replenishment
To model this complex system, time is structured in a clear hierarchy:

• Order Cycle: This is the main time frame, such as a month or a selling season.
The primary inventory replenishment from the central warehouse occurs only
once, at the very beginning of each order cycle.

• Period: Each order cycle is subdivided into a finite number of smaller, discrete
time periods, such as a day. Decisions about moving stock between retailers
(transshipment) are made at the beginning of each of these periods.
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The replenishment policy is an "order-up-to" system. At the start of an order
cycle, the central authority orders enough stock to bring the inventory level at each
retail location up to a predetermined target level. For this analysis, I assume these
order-up-to levels are already set, allowing us to focus specifically on optimizing
the transshipment policy—the rules governing when and how much product to
move between retailers within an order cycle.

3.1.3 The Sequence of Events in a Period
Within each period, a specific and repeating sequence of events occurs, creating a
cyclical flow of operations. This process ensures that decisions are made with the
most current information and that costs and revenues are accounted for systemati-
cally.

The operational flow can be broken down into the following eight steps (Fig.3.1):

Figure 3.1: Problem formulation flow chart.

1. Observe Inventory: The period begins with the central entity observing the
current stock level at every retail location.
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2. Decide and Execute Transshipment: Based on the observed inventory levels
and anticipated demand, the decision is made whether to move stock from an
overstocked retailer to one at risk of a stockout. If a transshipment is initiated,
the items are moved.

3. Pay Transshipment Cost: The costs associated with executing the transship-
ment are incurred immediately.

4. Demand Realizes: Customer demand for the product occurs at each retail
location.

5. Fulfill Demand: Retailers use their on-hand inventory (which now includes
any items received via transshipment) to satisfy customer demand.

6. Collect Revenue: Revenue is generated for each unit of demand that is
successfully met.

7. Pay Holding Cost: If a retailer has excess inventory left over after demand is
met, a holding cost is incurred for carrying this stock into the next period.

8. Record End Inventory: The final inventory level at each location is recorded,
which becomes the starting inventory for the subsequent period. This cycle
then repeats.

3.2 Core Assumptions of the Model
To make the complex reality of a distribution network mathematically tractable, a
set of simplifying assumptions is required. These assumptions define the boundaries
of the model and are crucial for understanding its formulation and limitations. The
following core assumptions are made:

1. Single Product:
The model considers the inventory management of a single, uniform product
across all retail locations. The units are discrete (i.e., they can be counted in
integers, like cars or books) and identical. This eliminates the complexity of
managing multiple SKUs, substitutions, or product variations.

2. Lost Sales (No Backorders):
If a customer’s demand cannot be met immediately from a retailer’s available
stock, the sale is considered lost. The customer does not wait for the product
to be restocked (a backorder). This is a critical assumption as it simplifies
the cost structure; we only need to account for the lost revenue, not the
additional administrative and fulfillment costs associated with backorders.
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When a retailer stocks out, they cannot serve any more customers until their
inventory is replenished.

3. Zero Lead Times:
The time required for both replenishment from the central warehouse and
transshipment between retailers is considered negligible or instantaneous. This
means that if a decision is made to move stock, it is immediately available at its
destination. This is a significant simplification, as it removes the complexity
of tracking in-transit inventory. While unrealistic for geographically vast
networks, it is a common assumption in the academic literature that allows
for a focus on the logic of the transshipment decision itself.

4. Distance-Dependent Transshipment Costs:
The cost to ship an item between any two retailers is directly proportional to
the distance between them. This reflects the real-world costs of transportation,
where longer distances typically incur higher fuel, labor, and time costs.
This assumption ensures that the model will favor shorter, less expensive
transshipments over longer, more costly ones.

5. Known Statistical Demand:
While the exact demand in any future period is uncertain, its underlying
probability distribution is known. This means that historical sales data or
market analysis has provided a reliable statistical model of demand (e.g., a
Poisson or Normal distribution) for each location. This allows the system to
make decisions based on expected demand rather than perfect foresight.

6. Independent Demand:
The customer demand at one retail location is statistically independent of
the demand at any other location. This is a reasonable assumption when the
retailers are located in different geographical regions, serving distinct customer
bases. It simplifies the joint probability calculations, as the demand at one
store provides no information about the demand at another.

3.3 Dynamic Programming Formulation
The problem of determining the optimal transshipment policy involves making a
sequence of decisions over time under uncertainty. The outcome of each decision
(i.e., the profit) depends on the current state of the system and influences its future
states. This sequential, state-dependent decision-making structure makes Dynamic
Programming (DP) an ideal framework for formulating and solving the problem.
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A DP model breaks a complex multi-period problem into smaller, more manage-
able subproblems. The core idea is to find the optimal action for every possible
state at each period, working backward from the end of the horizon.

3.3.1 Key Components of the DP Formulation
Fig. 3.2 explains the key components of the Dynamic Programming (DP) formula-
tion, and the details are reported below:

Figure 3.2: Dynamic programming key components summary.

1. State:
The state is a "snapshot" of the system at a particular point in time that
contains all the necessary information to make an optimal decision for the
future. In this problem, the state is defined as the vector of end-of-period
inventory levels at all retail locations.

• Example: If there are three retailers, a possible state could be (10, 5, 12),
representing the number of units on hand at each location.

2. Action:
The action is the decision that is made in a given state. Here, the action is
to choose the transshipment quantities between all pairs of retailers. This is
a complex decision, as it involves specifying how many units to move from
retailer i to retailer j for all possible i and j.

• Example: An action could be "move 3 units from retailer 1 to retailer 2,
and 0 units between all other pairs."

15



Problem formulation

3. Reward (or Profit Function):
The reward is the immediate net profit obtained in a single period as a result
of taking an action in a particular state. It is calculated after demand is
realized and is a combination of revenues and costs.

• Reward = (Revenue from met demand) - (Transshipment costs) - (Hold-
ing costs)

– Revenue: Earned from selling products to customers.
– Transshipment Costs: Incurred if an action to move stock was

taken.
– Holding Costs: Incurred for any inventory remaining at the end of

the period.

4. Horizon:
The problem is defined over a finite horizon. This means we are optimizing
decisions for a fixed number of periods within a single order cycle. The finite
nature of the problem is what allows the DP approach to work backward from
a known end point.

5. Objective:
The ultimate goal of the DP formulation is to find a transshipment policy (a
rule that specifies which action to take in any given state) that maximizes the
expected cumulative reward over the entire finite horizon. It seeks the sequence
of decisions that will yield the highest possible total profit, considering the
uncertainty in demand.

3.4 Extending the Model with a Nonlinear Cost
Function

3.4.1 The Limitation of a Linear Cost Assumption
The initial problem formulation assumes that the transshipment cost is directly
proportional to the distance and, implicitly, to the number of units shipped. This
results in a linear cost function, where shipping 10 items costs exactly 10 times
as much as shipping one item. While simple and mathematically convenient, this
often fails to capture the realities of modern logistics.

In practice, shipping costs frequently exhibit economies of scale. This economic
principle states that as the volume of a shipment increases, the average cost per
unit decreases. For example, the cost to send a single package is high, but the cost
per item in a full truckload is significantly lower.
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3.4.2 Introducing a Nonlinear, Concave Cost Function
To better align the model with reality, a nonlinear transshipment cost function is
introduced. This function is specifically designed to model economies of scale.

• Approach: The per-item shipping cost is modeled to decrease as the shipment
quantity grows, eventually settling at a fixed minimum for any additional
items beyond a certain threshold.

• Consequence: This behavior creates a concave cost function. In a concave
function, the marginal cost (the cost of adding one more unit) decreases as
the quantity increases.
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Chapter 4

Transshipment Policies

4.1 The Mathematical Model and Notation
To formally define the lateral transshipment problem, we use a mathematical model
that captures the system’s state, the decisions made, and the random nature of
customer demand over time. This section introduces the notation used to build the
model, following the framework established by Powell (2011) [39]. The dynamic
programming formulation of the problem is based on the work done by Meissner
and Senicheva in [13]

4.1.1 System Parameters and Variables
The model is built upon a set of parameters that define the network structure
and its economic characteristics, as well as variables that describe the state of the
system at any given time.

Parameters: These are the fixed constants of the model.

• L: The total number of retailers in the network.

• T: The total number of periods within one order cycle.

• Si: The initial "order-up-to" inventory level for retailer i at the start of the
order cycle (t=0).

• hi: The cost to hold one unit of inventory at location i for one period.

• pi: The sale price of one unit at location i.

• c: The base cost of transshipping one unit of inventory per unit of distance.

• ρij: The physical distance between location i and location j.
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State and Decision Variables: These variables change over time based on
decisions and random events.

• Pre-Decision State (xit): This represents the inventory on hand at location
i at the beginning of period t, before any transshipment decisions have been
made. The vector xt captures the inventory levels across all locations.

• Post-Decision State (yit): This is the inventory at location i in period t
after a transshipment has occurred but before customer demand is realized.
This variable reflects the immediate impact of the transshipment decision.

• Decision Variable (zijt): This is the core decision to be made in each period.
It represents the quantity of product transshipped from location i to location
j at time t. The matrix Zt represents the complete set of transshipment
decisions across the entire network for that period.

4.1.2 System Dynamics: The Transition Function
The model describes how the inventory levels evolve from one period to the next.
This evolution is captured by a transition function, which breaks the process
into two steps:

1. From Pre-Decision to Post-Decision State: The post-decision inventory
yit is calculated by taking the starting inventory xit and adjusting it for all
incoming and outgoing transshipments.

yit = xit +
Ø
j∈L

(zjit − zijt) (4.1)

This equation states that the inventory after transshipment is the initial
inventory plus what was received from all other locations, minus what was
sent to all other locations.

2. From Post-Decision to the Next Pre-Decision State: After transship-
ments are complete, customer demand (dit) is realized and satisfied. The
inventory remaining becomes the starting inventory for the next period, xit+1.
Since inventory cannot be negative (due to the lost sales assumption), this is
expressed as:

xit+1 = (yit − dit)+ (4.2)

The notation (...)+ indicates taking the maximum of the value and zero,
ensuring the inventory level does not drop below zero.
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4.2 The Objective Function and Dynamic Pro-
gramming Formulation

With the system’s components defined, the central goal is to find a policy that
maximizes the total profit over the entire time horizon. This is achieved by
formulating an objective function and using dynamic programming to solve it.

4.2.1 Cost and Reward Functions
The total profit in any given period is the difference between the rewards gained
and the costs incurred.

• Transshipment Cost (Ct): This cost is incurred at the beginning of the
period when the transshipment decision is executed. It is the sum of the costs
for all individual movements, where each cost is a function of the quantity,
distance, and base cost per unit distance.

Ct(xt, Zt) =
Ø
i∈L

Ø
j∈L

c · ρij · zijt (4.3)

A key constraint is that the total amount shipped out of a location cannot
exceed its available inventory:

Ø
j∈L

zijt ≤ xit (4.4)

• Reward Function (Rt): The reward is calculated after demand materializes.
It includes the revenue from sales minus the holding costs for any unsold
inventory.

Rt(yt, dt) =
Ø
i∈L

pi · min(yit, dit) −
Ø
i∈L

hi · (yit − dit)+ (4.5)

The term min(yit, dit) captures the actual number of units sold (which is the
lesser of available stock and demand), and (yit − dit)+ represents the leftover
inventory.

• Period Profit (Pt): The net profit for period t is simply the reward minus
the cost:

Pt = Rt − Ct (4.6)
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4.2.2 The Objective Function
The overall goal is to find a transshipment policy, denoted by π, that maximizes
the sum of the expected profits over the entire T-period horizon. A policy π is a
rule that specifies what decision Zt to make for any given state xt. The objective
is:

max
π∈Π

E
C

T −1Ø
t=0

Pt(xt, dt, Zπ
t )

D
(4.7)

4.2.3 Dynamic Programming (DP) Formulation
This stochastic optimization problem can be solved recursively using the principles
of dynamic programming. The core of DP is Bellman’s equation, which defines the
value of being in a certain state at a certain time.

Let Vt(xt) be the value function, representing the maximum possible expected
future profit starting from state xt at the beginning of period t. The recursive
relationship is:

Vt(xt) = max
Zt

(−Ct(xt, Zt) + V z
t (yt)) (4.8)

where V z
t (yt) is the post-decision value function, which is the expected value

after making decision Zt and moving to the post-decision state yt. It is defined as:

V z
t (yt) = Edt [Rt(yt, dt) + Vt+1(xt+1)] (4.9)

This formulation breaks the problem down: at each step t, we choose the
transshipment Zt that maximizes the sum of the immediate (negative) cost and
the expected future value. By solving this equation backward in time from period
T-1 (where VT = 0), we can, in principle, find the optimal policy for any state and
time.

4.3 The Curse of Dimensionality and Heuristic
Policies

While the dynamic programming (DP) formulation provides a path to an optimal
solution, its practical application is severely limited by a problem known as the
"curse of dimensionality."
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The state space of the problem (the set of all possible inventory vectors xt) and
the action space (the set of all possible transshipment matrices Zt) grow exponen-
tially with the number of locations (L). For even a moderately sized network (e.g.,
10-15 locations), the number of states and actions becomes astronomically large,
making it computationally impossible to calculate and store the value function
Vt(xt) for every state.

This computational barrier means that finding the true optimal solution is only
feasible for very small, trivial networks. For any real-world application, we must
turn to heuristic or approximation methods that can provide high-quality, though
not necessarily optimal, solutions in a reasonable amount of time.

4.3.1 Benchmark Transshipment Policies
To evaluate the performance of more advanced methods, several simpler, practically-
oriented heuristic policies are used as benchmarks.

1. No-Transshipment Policy (NT): This is the simplest baseline. No lateral
transshipments are ever made. Each location operates independently, using
only its initial stock to meet demand. This policy serves as the lower bound
for performance, showing the value that any transshipment strategy adds.

2. Closest Location Transshipment Policy (RC): This is a reactive heuris-
tic. A transshipment is only triggered when a location has zero inventory
at the beginning of a period. In this case, a pre-defined quantity of stock is
shipped from the nearest location that has available inventory. It is simple
and intuitive but may not be forward-looking.

3. Modified Lateral TIE Policy: This is a proactive heuristic inspired by
the "Transshipments for Inventory Equalization" (TIE) policy. It triggers
a redistribution of inventory whenever any location’s stock falls below its
expected daily demand. The goal is to balance the "run-out time" (the number
of days of supply) across all locations. This modified version improves upon the
original by explicitly incorporating transshipment costs, prioritizing shipments
between closer locations to fulfill the required stock equalization.

4. Lookahead Policy (PL): This is a more sophisticated proactive heuristic.
At the beginning of each period, it evaluates the marginal benefit of moving a
single unit between every possible pair of locations. It calculates the expected
one-period profit change from this move and compares it to the transshipment
cost. If the profit gain is higher than the cost, the transshipment is made.
The process is repeated iteratively, increasing shipment quantities one unit at
a time until no more profitable moves can be found.
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Chapter 5

Approximate Dynamic
Programming

Dynamic Programming (DP) has long been recognized as a fundamental frame-
work for sequential decision-making under uncertainty. However, classical DP ap-
proaches become computationally intractable when dealing with high-dimensional
state spaces, large action spaces, or complex stochastic processes. The curse of
dimensionality manifests as exponential growth in computational requirements as
problem dimensions increase, making exact solutions impractical for real-world
applications.

Approximate Dynamic Programming (ADP) addresses these limitations by
replacing exact value functions with carefully constructed approximations. Rather
than computing optimal values for every possible state, ADP methods learn value
function approximations through simulation and iterative improvement, making it
possible to tackle problems that would otherwise be computationally prohibitive.

This chapter presents a comprehensive examination of ADP theory, focusing
on forward ADP algorithms, value function approximation techniques, and the
Concave Adaptive Value Estimation (CAVE) algorithm for maintaining concavity
in piecewise-linear approximations. The work in this chapter is mainly taken from
[13] and [39].
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5.1 Theoretical Foundations

5.1.1 The Dynamic Programming Framework
In the standard DP formulation, we seek to maximize the expected cumulative
reward over a finite or infinite horizon. The problem is typically characterized by a
set of core components:

• State Space (S): The set of all possible configurations or states the system
can be in. A state s ∈ S should contain all information necessary to make an
optimal decision.

• Action Space (A): The set of all available decisions or actions that can be
taken in a given state.

• Transition Function (P (s′|s, a)): A function that defines the system’s
dynamics. It gives the probability of transitioning to a future state s′ given
the system is currently in state s and action a is taken.

• Reward Function (R(s, a)): A function that provides the immediate reward
(or cost) received for taking action a in state s.

• Value Function (V (s)): The central construct of DP. It represents the
expected total cumulative reward that can be achieved starting from state s
and following an optimal policy thereafter.

The relationship between the value of a state and the values of its potential
successor states is elegantly captured by the Bellman optimality equation:

V ∗(s) = max
a∈A

R(s, a) + γ
Ø
s′∈S

P (s′|s, a)V ∗(s′)
 (5.1)

where γ is a discount factor (0 ≤ γ ≤ 1) that trades off the importance of immediate
versus future rewards, and V ∗ represents the optimal value function. Solving this
equation for all states yields the optimal policy. This formulation is the same
as the one derived in the previous chapter in 4.2.3 Dynamic Programming (DP)
Formulation.

5.1.2 The Curse of Dimensionality
The computational complexity of solving the Bellman equation exactly grows
exponentially with the number of dimensions in the problem. This "curse" makes
exact DP computationally intractable for most real-world applications, particularly
in cases involving:
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• High-dimensional state spaces: If a problem has n state variables, each
taking k possible values, the total state space size is kn. Calculating and
storing the value for every state becomes impossible.

• Large or continuous action spaces: The maximization step in the Bellman
equation can become a complex optimization problem in itself.

• Complex stochastic processes: The expectation calculation (the summa-
tion over s′) can be intractable if the number of possible outcomes is very
large or continuous.

5.1.3 The ADP Solution Paradigm
ADP circumvents the curse of dimensionality by fundamentally changing the
solution strategy. Instead of exact calculation, it relies on approximation and
simulation, built upon three key pillars:

1. Value Function Approximation: The exact value function V ∗(s) is replaced
with a parameterized approximation, V̂ (s|θ), which is more computationally
tractable to store and evaluate.

2. Sampling: Instead of enumerating all possible states and outcomes, ADP
uses Monte Carlo simulation to generate sample paths through the state space,
focusing computational effort on states that are more likely to be encountered.

3. Learning: The parameters θ of the approximation are updated iteratively
based on the rewards and outcomes observed during simulation, allowing the
approximation to converge toward the true value function over time.

5.2 Forward ADP Algorithm

5.2.1 Algorithm Overview
Forward ADP simulates the problem’s process forward in time, making decisions
at each step based on the current estimate of the value function and then updating
that estimate based on the observed outcome. This forward-pass, learning-based
approach contrasts sharply with backward DP, which requires working backward
from a known terminal state. The forward nature makes it exceptionally well-suited
for problems where the process evolves over time and can be simulated.

5.2.2 Algorithm Structure
The forward ADP algorithm follows the structure presented in Algorithm 5.1:
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Figure 5.1: Forward ADP algorithm taken from [13].
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5.2.3 Key Components
ε-greedy Exploration: The algorithm must balance exploitation (making the
best decision based on current knowledge) with exploration (trying new actions
to discover potentially better states). It does this using an ε-greedy strategy. With
probability 1 − ε, it chooses the greedy action that maximizes the estimated value.
With probability ε, it chooses a random action to explore the state-action space
more broadly. Typically, εn decreases as the iteration count n increases, shifting
the focus from exploration to exploitation as the value function approximation
improves [13].

Stepsize Rule: The algorithm uses a stepsize αn to determine how much to
update the value function based on a new observation. A common choice is a
generalized harmonic stepsize rule [13, 39]:

αn = a

a + n − 1 (5.2)

where n is the iteration number and a ∈ R+ is a tunable parameter. This rule
ensures that stepsizes are large at the beginning (allowing for rapid learning) and
decrease over time (leading to stability and convergence). When the value function
is approximated, an exponential smoothing update is often applied:

V̂ n
t (yt) = (1 − αn)V̂ n−1

t (yt) + αnv̂t+1 (5.3)

5.3 Value Function Approximation

5.3.1 Desirable Properties of an Approximation
The choice of the value function approximation architecture is arguably the most
critical design decision in ADP. A good approximation must:

1. Capture Structural Properties: It should preserve key properties of the
true value function. For many inventory problems, this includes concavity
(reflecting diminishing marginal returns of inventory) and, ideally, separabil-
ity.

2. Enable Tractable Optimization: The structure of the approximation
should ensure that the maximization step within the ADP algorithm remains
computationally feasible.

3. Support Efficient Updates: It must be possible to efficiently update the
approximation based on new sample information.
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5.3.2 Piecewise-Linear and Separable Concave Approxima-
tion

For the multi-location inventory problem, a highly effective choice is a separable,
piecewise-linear, concave approximation. This structure is motivated by the
properties of the underlying problem [13].

• Concavity: The value of an additional unit of inventory generally decreases
as the inventory level increases, which is a hallmark of concavity.

• Separability: The total network value is approximated as the sum of value
functions for each individual location. While the true value function is not per-
fectly separable due to transshipments, this assumption dramatically simplifies
computation.

The approximation takes the form:

V̂ z
t (yt) =

LØ
i=1

V̂ z
it (yit) (5.4)

where each component V̂ z
it (yit) is a piecewise-linear concave function. Each of these

functions is defined by a set of breakpoints uk
it where the slope can change, and

the slopes vk
it between those breakpoints. To maintain concavity, the slopes must

be arranged in non-increasing order: v0
it ≥ v1

it ≥ · · · ≥ vkmax
it .

5.4 The CAVE Algorithm and Gradient Calcula-
tion

5.4.1 Motivation for CAVE
A critical challenge in ADP is that iterative updates can easily destroy the struc-
tural properties of the value function approximation. If we are using a concave
approximation, a naive update might result in a non-concave function, which would
invalidate the efficient solution methods that rely on this property. The Concave
Adaptive Value Estimation (CAVE) algorithm is a specialized updating proce-
dure designed specifically to preserve concavity in piecewise-linear approximations
while incorporating new information [39].

The CAVE algorithm works by updating the slopes of the piecewise-linear
function rather than the values directly. It uses sample gradient information to
perform these updates within carefully chosen "smoothing intervals" that guarantee
the resulting function remains concave.
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5.4.2 CAVE Algorithm Structure
The CAVE algorithm updates the piecewise-linear approximation while preserving
concavity, as shown in Fig. 5.2:

Figure 5.2: CAVE update of the approximation. Algorithm taken from [13].

5.4.3 A Detailed Look at Gradient Calculation
The core of the CAVE update is the calculation of a sample gradient. In
this context, the gradient represents the marginal value of an additional unit of
inventory. Because the value function is piecewise-linear and non-differentiable at
the breakpoints, we use the concepts of left and right gradients. For a given
period t, the sample gradient is a vector composed of gradients for each location,
and each location’s gradient itself has two distinct components:

1. The gradient of the immediate reward function.
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2. The gradient of the future value function (i.e., the value of the next state,
Vt+1).

1. Gradient of the Immediate Reward The first component is derived from
the immediate reward obtained in period t. The right gradient, π+

i , measures the
change in reward from having one more unit of inventory, while the left gradient,
π−

i , measures the change from having one less. Based on the reward function
Rt(yt, dt) = q

i(pi min(yit, dit) − hi(yit − dit)+), these are calculated as follows [13]:

• Right Gradient: If the inventory stocked out (yit < dit), one additional unit
will be sold, yielding the sales price pi. If you already have sufficient stock
(yit ≥ dit), the extra unit will be held over, incurring a holding cost, so the
marginal value is −hi.

π+
i,reward(yt, dt) =

pi if yit < dit

−hi otherwise
(5.5)

• Left Gradient: If the inventory stock is at or below demand (yit ≤ dit),
having one less unit means one less sale, for a marginal value of −pi. If there
is excess stock (yit > dit), one less unit means you avoid a holding cost, for a
marginal value of hi. The paper uses a slightly different derivation resulting
in −hi, which we will follow.

π−
i,reward(yt, dt) =

pi if yit ≤ dit

−hi otherwise
(5.6)

2. Gradient of the Future Value (Shadow Prices) The second, and more
complex, component of the gradient comes from the value of being in the next state,
xt+1. This value is determined by solving the optimization problem for period t + 1.
The marginal value of having an extra unit of inventory at the start of period t + 1
is precisely the shadow price (or dual variable) of the corresponding inventory
availability constraint in the linear program.

The Challenge of Degeneracy A significant complication arises here: simply
reading the dual variables from a standard LP solver can be misleading in the
presence of degeneracy. In network flow terms, degeneracy typically appears when
an arc that belongs to the optimal basis has its flow pinned at a lower or upper
bound (for example, zero or the segment capacity). Under degeneracy a tiny
perturbation to a right-hand side (for instance, adding one unit to a location’s
initial inventory) may change the optimal basis structure; consequently, the duals
returned by the solver for the current basis do not necessarily equal the true
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directional derivatives (the actual marginal change in the objective when the right-
hand side is increased or decreased). For this reason, the CAVE gradient machinery
must use augmentation/shortest-path methods (or other basis-robust techniques)
to obtain the correct right and left shadow prices used in slope updates. [13]

An illustrative degeneracy example
To make this concrete, I explain the three-location degeneracy example from
Meissner and Senicheva. The network has three supply nodes (locations) and a
sink node that aggregates total network inventory; each supply node has an initial
inventory (shown next to the node). Arcs are subject to lower and upper flow
bounds and each arc-segment carries an associated cost. The sink collects the
total inventory: the total outflow from the sink equals the sum of the three initial
inventories.

Figure 5.3: Three-location transshipment network used to demonstrate degeneracy.
Red numbers adjacent to supply nodes indicate initial inventory levels. (Figure
adapted from [13])

The network solver returns an optimal flow pattern as shown in Figure 5.4.
For this solution the dual variables associated with the supply-node flow-balance
constraints are

dual values for nodes 1,2,3 = 70, 0, 0
respectively. Focus on location 3. In the optimal solution the unique path from
location 3 to the sink includes an arc that is degenerated because its flow equals
the upper bound (the arc is saturated). Under this condition, a one-unit increase
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in the initial inventory of location 3 would force a change in the optimal basis: the
solver’s current basis is not robust to this perturbation.

Figure 5.4: Optimal flows reported by the network solver (original problem).
Duals at supply nodes are (70,0,0). (Adapted from [13].)

When we form the augmented problem—i.e., increase the initial inventory at
location 3 by one unit—and re-solve the optimization, the optimal basis changes
and the new solution is shown in Figure 5.5. Comparing objective values of the
original and augmented problems yields the actual (directional) positive shadow
price for location 3:

π+
3 = Vaugmented − Voriginal = −10,

which is different from the dual variable reported for node 3 in the original basis
(which was 0). In contrast, the negative shadow price for location 3 is

π−
3 = 0,

and the shadow prices for locations 1 and 2 coincide with their reported dual
variables. In words: the right-directional derivative (increase by +1) for location 3
equals −10, while the left-directional derivative (decrease by -1) equals 0; the
solver dual for node 3 (equal to 0) therefore does not represent the correct positive
directional marginal.

Solution: Shortest Path on an Augmenting Network To overcome the
degeneracy issue, a more robust method is used to find the true shadow prices.
As proposed by Powell (1989) and applied by Meissner and Senicheva (2018), this
involves finding the least-cost, flow-augmenting path from each location’s node
to the sink node in a residual network. This calculation is equivalent to running a
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Figure 5.5: Optimal flows after increasing the initial inventory of location 3 by
one unit (augmented problem). The change in optimal basis produces a directional
objective change corresponding to π+

3 = −10. (Adapted from [13].)
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shortest path algorithm (like Bellman-Ford or SPFA for networks with potential
negative costs) on the augmenting network. This procedure correctly identifies the
true marginal cost of increasing (for the positive shadow price) or decreasing (for
the negative shadow price) the inventory at each location. It is far more efficient
than re-solving the LP multiple times and provides the correct gradient information
needed for a robust CAVE update.

5.5 Network Flow Formulation

5.5.1 Problem Reformulation
The separable, piecewise-linear approximation enables reformulation of the opti-
mization problem as a minimum-cost flow problem. This transformation provides
significant computational advantages by leveraging the structure of the value
function approximation.

5.5.2 Network Structure
The network representation includes:

• Nodes: Representing locations at different time periods

• Arcs: Representing inventory flows and transshipment decisions

• Capacity Constraints: Reflecting physical and operational limits

• Cost Structure: Incorporating both immediate costs and future value esti-
mates

Figure 5.6 illustrates the network representation where nodes are locations at
different points of period t, and arrows indicate the flow of inventory.

5.5.3 Flow Formulation
Using the notation for the problem in terms of the post-decision state and introduc-
ing additional variables gk

it ∈ Ki, the maximization problem for each time t from
the optimality equations can be stated as:

max
zijt

−
Ø
i∈L

Ø
j∈L

cijpijzijt +
Ø
i∈L

Ø
k∈Kit

vk
itg

k
it

 (5.7)
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Figure 5.6: Network representation. Figure taken from [13].
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Subject to: Ø
j∈L

zijt = (yit−1 − dit−1)+ ∀i ∈ L (5.8)
Ø

k∈Kit

gk
it =

Ø
j∈L

zijt ∀i ∈ L (5.9)

0 ≤ gk
it ≤ uk

it ∀i ∈ L (5.10)
0 ≤ g1

it ≤ u2
it − u1

it ∀i ∈ L (5.11)
...

0 ≤ gkmax−1
it ≤ ukmax

it − ukmax−1
it ∀i ∈ L (5.12)

gkmax
it ≥ 0 ∀i ∈ L (5.13)
zijt ∈ Z≥0 ∀i, j ∈ L (5.14)

where gk
it ∈ [0, uk+1

it − uk
it].

5.5.4 Solution Methods
By applying the separable, piecewise-linear approximation, the problem can be
reformulated and the network structure recognized. As the sub-problem has a
linear objective function and linear constraints, it is a linear programming problem.
Therefore, any linear solver can find optimal solutions in a reasonable time. More-
over, the solutions are naturally integers without applying any integer programming
techniques.

The network flow formulation can be solved efficiently using Commercial LP
Solvers.

5.6 Computational Considerations

5.6.1 Algorithmic Complexity
The computational complexity of ADP depends on several factors:

• State Space Dimensionality: Higher dimensions require more sophisticated
approximations

• Approximation Complexity: Number of parameters in the value function
approximation

• Simulation Length: Number of sample paths and time periods
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• Update Frequency: How often the approximation is updated

For the network flow reformulation, the complexity is dominated by the linear
programming solver, which typically runs in polynomial time for the structured
problems that arise in practice.

5.6.2 Convergence Properties
Forward ADP with appropriate stepsizes and exploration parameters exhibits:

• Almost Sure Convergence: Under standard conditions, the algorithm
converges to optimal or near-optimal policies

• Rate of Convergence: Depends on problem structure, approximation quality,
and algorithm parameters

• Finite Sample Performance: Good performance can often be achieved
with moderate sample sizes

The CAVE algorithm specifically ensures that the concavity property is preserved
throughout the learning process, which is crucial for maintaining the structural
properties that enable efficient optimization.

5.6.3 Practical Implementation
Key implementation considerations include:

• Memory Management: Efficiently storing and accessing breakpoints and
slopes

• Numerical Stability: Avoiding numerical issues in slope calculations and
updates

• Parameter Tuning: Selecting appropriate stepsizes, exploration parameters,
and smoothing intervals

• Integration with Solvers: Interfacing effectively with linear programming
and network flow solvers

The experimental parameters used in practice include setting b = 0.7 and a = 5
for the stepsize calculation, providing a balance between learning speed and stability.
To evaluate each policy results, I have used monte carlo simulation to evaluate the
policy using N=1000 (see Figure. 5.7), and update the algorithm presented in [13].
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Figure 5.7: Monte carlo evaluation algorithm. Algorithm taken from [13].
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5.7 Extension to a Nonlinear Transshipment Cost
Function

5.7.1 Modeling Economies of Scale with a Concave Cost
Function

The initial model assumes a linear transshipment cost, where the cost per unit
is constant regardless of the shipment size. This is a simplification. In reality,
transportation logistics exhibit significant economies of scale—the per-unit cost
decreases as the shipment volume increases.

To create a more realistic model, I introduce a piecewise-linear concave trans-
shipment cost function. This function better reflects real-world cost structures.
(example: Fig. 5.8) This cost function is defined by two key features:

Figure 5.8: Concave transhipment cost structure.

• Fixed Cost (K0): A fixed charge is incurred if any quantity greater than
zero is shipped. This represents the cost of dispatching a vehicle, independent
of the volume.

• Decreasing Marginal Costs: The cost is broken into segments, where the
marginal (per-unit) cost is highest for the initial units and decreases for larger
quantities. This models volume discounts, where filling a truck is progressively
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cheaper on a per-unit basis. The marginal costs for successive segments are
ordered such that c1 > c2 > · · · > cm.

The introduction of this non-convex cost function is a critical extension, but
it fundamentally changes the nature of the optimization problem. The problem
can no longer be solved as a simple minimum-cost network flow problem, as the
convexity assumption required by linear programming is violated.

5.7.2 Reformulation as a Mixed-Integer Linear Program
(MILP)

To accommodate the concave cost function, the optimization subproblem solved at
each step of the ADP algorithm must be reformulated as a Mixed-Integer Linear
Program (MILP). MILPs are a class of optimization problems that include both
continuous variables and integer variables (in this case, binary variables), making
them substantially more complex to solve than standard LPs.

The objective function is now to minimize the total piecewise-linear transship-
ment cost. This is achieved by modeling the flow on each transshipment arc (i, j)
as a sum of flows across different cost segments, sijk.

Minimize Cost =
L−1Ø
i=0

L−1Ø
j=0

K−1Ø
k=0

(mk · ρij) · sijk (5.15)

This minimization is subject to a new set of constraints for each transshipment
arc:

1. Total Flow Constraint: The sum of the flows across all segments must
equal the total quantity transshipped, zij.

zij =
K−1Ø
k=0

sijk (5.16)

2. Segment Capacity Constraint: To model the piecewise structure, I intro-
duce a binary variable yijk that equals 1 if cost segment k is used for the flow
on arc (i, j), and 0 otherwise. The flow within a segment cannot exceed its
width, Wk.

sijk ≤ Wk · yijk (5.17)

3. Segment Ordering Constraint: To enforce the decreasing marginal costs,
we must ensure that cheaper, higher-volume segments are only used after the
more expensive, lower-volume segments have been filled to capacity.

yij,k+1 ≤ yijk (5.18)
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This constraint ensures that if segment k + 1 is used (i.e., yij,k+1 = 1), then
segment k must also be used (yijk = 1).

This MILP formulation accurately captures the economies of scale in trans-
shipment but significantly increases the computational effort required to find the
optimal decision at each step of the ADP simulation.

5.7.3 Updating Shadow Price Calculations for the MILP
The transition from a standard Linear Program (LP) to a Mixed-Integer Linear
Program (MILP) introduces a critical challenge: calculating the shadow prices
for the CAVE value function update. For LPs, strong duality guarantees a dual
variable for each constraint, representing the marginal value of inventory. However,
for MILPs, the presence of integer variables breaks this property, making the direct
extraction of shadow prices impossible.

To overcome this, several heuristic methods can be implemented to approximate
these values. While they vary in complexity and accuracy, they all aim to estimate
the marginal value of an additional unit of inventory. The implementation includes
three such methods, with Local Approximation chosen as the default to minimize
computational load during the intensive learning phase.

Method 1: Local Approximation (Default)

The Local Approximation method provides a computationally efficient estimate
by linearizing the problem around the optimal MILP solution, z∗

ij.

1. Solve the MILP: The optimal integer transshipment quantities, z∗
ij, are

found.

2. Identify Active Cost Segment: For each arc (i, j), the algorithm identifies
the marginal cost, mk, of the specific segment that the optimal flow z∗

ij falls
into.

3. Construct Linearized Residual Graph: A simple residual graph is built
where each arc’s weight is fixed to the identified local marginal cost mk · c · ρij .

4. Calculate Shadow Prices: A standard shortest path algorithm (e.g.,
Bellman-Ford) is run on this simplified graph to find the shadow prices
π+

i and π−
i .

This method is fast because it reduces the complex, piecewise problem to a standard
shortest path problem on a simple graph.
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Figure 5.9: Shadow price calculation flow for ADP with a concave transshipment
cost function. The default path uses the Local Approximation heuristic for compu-
tational efficiency.
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Method 2: Expanded Network Linearization

As implemented in the compute_shadow_prices_piecewise_linearized function,
this method offers a more detailed and potentially more accurate approximation at
a higher computational cost.

Instead of using a single marginal cost per arc, it constructs an expanded
residual network. For each transshipment arc (i, j), it creates a chain of nodes
and edges that explicitly models every segment of the piecewise cost function. An
arc from origin i to destination j is replaced by a path like:

i → (i, j, segin
0 ) → (i, j, segout

0 ) → (i, j, segin
1 ) → · · · → j

The edge from (i, j, segin
k ) to (i, j, segout

k ) is assigned a weight equal to the marginal
cost mk of that segment. Reverse arcs with weight −mk are added for segments
that currently have flow, representing the savings from rerouting. By running a
shortest path algorithm on this expanded graph, an additional unit of flow can
intelligently choose the cheapest available segment, providing a more globally aware
shadow price. However, the size of this graph grows significantly with the number
of locations and cost segments, making it computationally much slower than the
default local approximation.

Method 3: Discrete Enumeration

The compute_shadow_prices_discrete_enumeration function implements a heuris-
tic based on local search. This approach attempts to find a better integer solution
in the immediate neighborhood of the one found by the MILP solver.

1. Generate Nearby Integer Solutions: It creates a set of candidate solutions
by rounding, flooring, and ceiling the values of the current solution z∗

ij.

2. Evaluate Candidates: Each candidate solution is checked for feasibility
(i.e., it doesn’t violate inventory constraints). The total transshipment cost is
calculated for each feasible candidate using the full piecewise cost function.

3. Select Best Candidate: The feasible candidate solution with the absolute
lowest total cost is identified.

4. Approximate from Best Candidate: Crucially, this method then uses the
Local Approximation technique (Method 1) on this new, best-found integer
solution to calculate the final shadow prices.

The intuition is that the shadow prices derived from a locally-optimal integer point
may be more stable and representative than those from the initial MILP solution.
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This method is computationally very expensive as it requires evaluating multiple
potential solutions and is therefore impractical for the main learning loop.

While the Expanded Network and Discrete Enumeration methods offer al-
ternative, potentially more accurate estimations, they come with a significant
computational burden. The ADP framework requires thousands of iterations to
learn the value function effectively. Therefore, the Local Approximation method
is chosen as the default strategy. It strikes the most effective balance between
providing a reasonable estimate of marginal inventory value and the computational
speed required to make the learning process tractable.
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Chapter 6

Numerical Experiments

In this chapter, I analyze the performance of the transshipment policies presented
in this thesis. The first part presents results for small networks with limited time
horizons, allowing comparison of heuristic methods against the optimal transship-
ment policy derived from dynamic programming. The second part focuses on
larger networks representing real-world problems. All algorithms were implemented
in Python, and experiments were conducted on a MacBook Pro with a 2.5 GHz
Intel Core i7 processor and 16 GB RAM. Linear programs were solved using the
open-source PuLP linear programming solver.

The term ADP policy refers to the proactive transshipment policy produced by
the ADP algorithm described in Chapter 5, while DP policy denotes the optimal
transshipment policy found by solving the DP equations formulated in Chapter 4.

6.1 Two-Location Networks
First, I start the experiment by considering a linear transhipment cost function
and get similar results to what presented in the reference paper [13].

6.1.1 Linear transhipment cost function

Considering two non-identical locations that receive inventory from a supplier at
the beginning of the first period and use this inventory to satisfy customer demands
over four subsequent periods without additional shipments from the supplier. The
initial order-up-to level is fixed exogenously for each location. Following [35], I set
the order-up-to level for each location approximately one standard deviation above
the mean demand scaled for the entire time horizon:
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Si =
ê
µiT + σi

√
T

ë
(6.1)

where ⌊y⌋ denotes the largest integer not exceeding y.

Table 6.1: Parameters for two-location experiments

Parameter Values

Number of locations, L 2
Number of periods, T 4
Holding cost per unit, hi [$] {8, 12, 20}
Sales price per unit, pi [$] {40, 80, 100}
Transshipment cost per unit, ci [$] 1
Distance between locations, ρij {29, 61}
Demand distribution {Unif(ai, bi), Pois(λi), NegBin(ri,

pi)}
Mean demand, µi {0.5, 1, 1.5}

Table 6.2: Parameters of distributions for two-location experiments

Discrete Uniform Poisson Negative Binomial
(Low Variance) (Medium Variance) (High Variance)

Notation Unif(ai, bi) Pois(λi) NegBin(ri, pi)
Parameters ai = 0 λi ∈ {0.5, 1, 1.5} pi = 0.8

bi ∈ {1, 2, 3} ri ∈ {2, 4, 6}

I conducted a factorial study encompassing most of the parameter combinations,
totalling 54 scenarios. For each scenario, I have performed six simulation runs (one
per policy) with 1000 independent replications per simulation. All simulation runs
within a scenario used common random numbers.

I compared six transshipment policies:

• Optimal transshipment policy (DP)

• No-transshipment policy (NT)

• Reactive transshipment from closest location in case of stockout (RC)

• Proactive transshipment based on inventory equalization (TIE)

• Lookahead policy (PL)
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• ADP policy with 1000 iterations for value function approximation

Comparison between ADP and DP policies in 99% of scenarios giving very similar
results, substantially outperforming other policies. Other measures, including
average transshipment size and frequency, further demonstrated the similarity
between ADP and DP policies.

Table 6.3: Table presents the difference between optimal policy and the policy in
examination for identical demand distributions at both locations (p1 = 40, p2 = 80,
h1 = 8, h2 = 12)

Distribution NT RC TIE PL ADP
Uniform(0,1) 0.45 5.75 6.72 0 0.45
Uniform(0,2) 1.745 6.62 8.86 1.375 0.755
Uniform(0,3) 2.105 6.525 21.98 16.12 1.3
Pois(0.5) 0.65 9.59 5.38 -0.11 0.65
Pois(1) 1.375 4.01 11.59 2.085 0.86
Pois(1.5) 2.58 3.08 23.745 4.73 2.58
NegBin(2,0.8) 0.55 13.66 7.01 1.905 0.55
NegBin(4,0.8) 1.86 3.945 7.595 2.875 0.87
NegBin(6,0.8) 1.895 2.255 12.29 40.92 0.985

Overall policy performance compared to the optimal DP solution is presented
in Table 6.3. I evaluate results using the absolute difference from optimal solution
rather than percentage optimality gap, as network profit contains both positive
and negative components that preclude percentage calculation.

Using a box plot, we can understand the variation from optimality for the three
demand distributions. Results are reported in Fig. 6.1, Fig. 6.2, and Fig. 6.3. From
these results, we can conclude that overall, across all cases, ADP behaves the closest
to optimality despite the variation in demand structure.

The results support the intuition that transshipment policies outperform no-
transshipment policies significantly for items with higher demand variability. In-
creased demand variability also correlates with decreased performance of other
policies, likely due to unnecessary stock movements in anticipation of future stock-
outs that reduce profitability. Nevertheless, the ADP policy demonstrates consistent
performance across all conditions.

The results indicate that PL and TIE perform better when demand distributions
are less spread out. Notably, TIE does not directly incorporate cost into decision-
making, considering cost only when determining redistribution locations rather
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Figure 6.1: Results for two locations with uniform demand
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Figure 6.2: Results for two locations with Poisson demand
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Figure 6.3: Results for two locations with negative binomial demand
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than whether to redistribute at all.

6.1.2 Experiments with Concave Transshipment Cost Func-
tion

To evaluate the impact of economies of scale in transportation costs, we extended our
experiments to incorporate a piecewise-linear concave transshipment cost function.
This cost structure better reflects real-world logistics where per-unit costs decrease
as shipment volume increases due to factors such as vehicle capacity utilization
and volume discounts.

For these experiments, we used the following concave cost structure:

• Segment breakpoints: Uk = [0, 2, 4, 8] units

• Marginal costs: mk = [0.5, 0.3, 0.2, 0.1] dollars per unit per distance

This structure represents significant economies of scale, with the marginal cost
decreasing from $0.5 for the first two units to $0.1 for units beyond the eighth.

Figure 6.4: Results for two locations with uniform demand under concave trans-
shipment cost

Figures 6.4, 6.5, and 6.6 present the results for two-location networks under the
concave cost structure across different demand distributions. The findings reinforce
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Figure 6.5: Results for two locations with Poisson demand under concave trans-
shipment cost
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Figure 6.6: Results for two locations with negative binomial demand under
concave transshipment cost
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our previous conclusions: the ADP policy continues to deliver the best performance,
while the value of the PL policy increases with higher demand variance. Notably,
the no-transshipment (NT) policy becomes significantly less valuable under this
cost structure, as the potential savings from economies of scale cannot be realized
without transshipment activities.

6.1.3 Impact of Economies of Scale on Profitability
To quantify the benefits of the concave cost structure, we compared the profitability
under the decreasing marginal cost model against a fixed cost model. Figures 6.7 and
6.8 illustrate the absolute and relative profit improvements, respectively, achieved
by incorporating economies of scale into the transshipment cost structure.

Figure 6.7: Profit increase when considering economies of scale (concave cost
minus fixed cost)

The results demonstrate substantial improvements in network profitability when
accounting for economies of scale in transportation. The DP and ADP policies
show the greatest absolute profit increases, leveraging their sophisticated decision-
making capabilities to optimize shipment quantities and fully exploit the concave
cost structure. The reactive policy (RC) also benefits significantly, though to a
lesser extent than the proactive policies.

The no-transshipment policy (NT) shows no profit improvement, as expected,
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Figure 6.8: Relative profit improvement when considering economies of scale
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since it cannot take advantage of the economies of scale without engaging in trans-
shipment activities. This highlights the critical importance of transshipment deci-
sions in environments where transportation costs exhibit significant scale economies.

The relative profit improvement analysis reveals that all transshipment policies
achieve percentage gains, with the proactive policies (ADP, TIE, PL) showing the
most consistent improvements across different scenarios. These results emphasise
the value of incorporating realistic cost structures into transshipment optimization
models, as they can significantly impact both the absolute profitability and the
relative performance of different policies.

The concave cost structure particularly benefits scenarios with:

• Higher demand variance, where larger but less frequent shipments can be
optimized

• Locations with complementary demand patterns, allowing consolidation of
shipments

• Longer distances between locations, where transportation cost savings are
more substantial

These findings have important practical implications for logistics and inven-
tory management, suggesting that companies can achieve significant cost savings
by properly modeling and exploiting economies of scale in their transportation
operations.

6.2 Multiple-Location Networks
For larger networks, conducting full dynamic programming becomes computa-
tionally infeasible due to the curse of dimensionality. To address this limitation,
I employ two experimental approaches: perfect foresight policy with known de-
mand used as an upper bound, and stochastic demand environments with Poisson
distributions to examine ADP , TIE, and PL policy.

6.2.1 Perfect Foresight as an Upper Bound
We utilize a perfect foresight approach that assumes knowledge of future demand
in advance, formulated as a deterministic network flow problem:

max
zd

ijt,ze
ijt

T −1Ø
t=0

−
Ø
i∈L

Ø
j∈L

cρij(zd
ijt + ze

ijt) +
Ø
j∈L

pj

Ø
i∈L

zd
ijt −

Ø
j∈L

hj

Ø
i∈L

ze
ijt

 (6.2)
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Subject to: Ø
j∈L

(zd
ijt + ze

ijt) =
Ø
j∈L

ze
jit−1 ∀i ∈ L, ∀t ∈ T : t ≥ 1 (6.3)

Ø
j∈L

(zd
ijt + ze

ijt) = Si ∀i ∈ L, t = 0 (6.4)
Ø
i∈L

zd
jit ≤ dit ∀i ∈ L, ∀t ∈ T (6.5)

zd
ijt, ze

ijt ∈ Z≥0 ∀i, j ∈ L, ∀t ∈ T (6.6)

where zd
ijt and ze

ijt represent inventories transshipped from location i to j for
sale or storage, respectively. This integer program has a min-cost flow structure,
allowing us to obtain the optimal solution via LP relaxation. The solution provides
an upper bound on network profit, against which we compare heuristic policies.

We conducted two experiment sets with the following fixed parameters:

• Time horizon: 28 days

• Holding cost: $5 per item

• Sales price: $80 per item

• Locations uniformly distributed on grid [0, 100] × [0, 100]

• Euclidean distances between locations

Set 1: Varied transshipment costs c ∈ {0.1, 0.5, 1} with initial inventory calcu-
lated using Equation (6.1).

Set 2: Fixed transshipment cost ($0.5) with varied initial inventory levels
S ∈ {697, 680, 697}, where 697 represents balanced inventory and 680 introduces
imbalance.

6.2.2 Linear Transhipment Cost
For stochastic environments with known Poisson-distributed demand (arrival rate:
24 units/day), we compare policies against the no-transshipment baseline:

The results demonstrate that even simple reactive heuristics (RC) can be more
profitable than no-transshipment policies (Table 6.6). However, the TIE policy,
which doesn’t consider costs, can lead to unprofitable decisions when transshipment
costs are high, as shown in Table 6.6 for 10 locations. Also, even though it is the
fastest and simplest transshipment heuristic, it performs worse than ADP and PL
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Table 6.4: Percentage of upper bound for Set 1 with variable cost and multiple
locations

TIE ADP PL
L 0.1$ 0.5$ 1$ 0.1$ 0.5$ 1$ 0.1$ 0.5$ 1$
5 98.9% 94.6% 89.1% 95.3% 94.1% 94.7% 97.3% 97.5% 97.8%
10 95.0% 75.0% 49.6% 95.3% 94.4% 95.2% 99.8% 99.0% 98.0%
15 99.2% 95.9% 91.8% 98.1% 97.6% 98.4% 99.0% 97.7% 96.2%
20 99.6% 97.9% 95.8% 100% 99.7% 99.7% 99.9% 99.7% 99.3%

Table 6.5: Percentage of upper bound for Set 2 (cost = 0.5$)

TIE ADP PL

L 697 680 697 697 680 697 697 680 697

5 94.57% 98.68% 98.85% 94.12% 94.66% 98.46% 97.52% 97.02% 97.01%
10 75.01% 89.25% 74.05% 94.45% 93.65% 83.76% 98.98% 97.45% 96.90%
15 95.93% 98.22% – 97.63% 94.51% – 97.75% 96.00% –

Table 6.6: Profit gain compared to no-transshipment policy (NT)

L RC vs. NT TIE vs. NT PL vs. NT ADP vs. NT
5 0.00 1162.19 1054.80 611.76
10 45.58 -554.61 3190.40 1698.11
15 33.97 1573.79 666.60 199.04

Table 6.7: Average runtime for different policies (seconds)

Locations (L) RC TIE PL ADP
5 4 126 663 4512
10 12 408 12509 8404
15 24 956 44182 14525
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when there are high transshipment costs (Table 6.4) and high variability (Table 6.5).
The PL policy shows competitive performance, sometimes outperforming ADP,
particularly in larger networks.

The runtime analysis reveals significant computational differences between
policies. While ADP provides excellent performance, its computational requirements
grow substantially with network size. However, in the case of the PL policy, the
runtime becomes a very significant issue in large networks, with 3× more runtime
for 15 locations compared to ADP (Table 6.7).

These findings highlight the trade-off between solution quality and computational
effort, suggesting that policy selection should consider both network characteristics
and available computational resources.

6.2.3 Concave Cost Function in Multiple-Location Net-
works

To evaluate the performance of transshipment policies under more realistic cost
structures that incorporate economies of scale, I extend the analysis to include a
piecewise-linear concave transshipment cost function in multi-location networks.

6.2.4 Perfect Foresight MILP with Concave Costs

For the multi-location problem with concave transshipment costs, I reformulate
the perfect foresight policy as a Mixed-Integer Linear Program (MILP) to serve as
an upper bound:

max
Ø

t

Ø
j∈L

Ø
i∈L

pjz
d
ijt −

Ø
j∈L

Ø
i∈L

hjz
s
ijt −

Ø
i∈L

Ø
j∈L

cijρij

KØ
k=1

mksijkt

 (6.7)
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Subject to:
KØ

k=1
sijkt = zd

ijt + zs
ijt ∀i, j, t (6.8)

sijkt ≤ Wkyijkt ∀i, j, t, k (6.9)
yijkt ≥ yijk+1,t ∀i, j, t, k = 1, . . . , K − 1 (6.10)Ø

j

(zd
ij0 + zs

ij0) = xi ∀i (6.11)
Ø

j

(zd
ijt + zs

ijt) =
Ø

j

zs
jit−1 ∀i, t ≥ 1 (6.12)

Ø
i

zd
ijt ≤ dt(j) ∀j, t (6.13)

zd
ijt, zs

ijt ∈ Z≥0, sijkt ≥ 0, yijkt ∈ {0,1} (6.14)

This formulation extends the previous linear cost model by introducing:

• Segment variables sijkt representing flow in cost segment k on arc (i, j) at
time t

• Binary variables yijkt indicating whether segment k is used

• Segment capacities Wk and marginal costs mk that decrease with volume

• Constraints ensuring proper segment ordering and utilization

6.2.5 Experimental Setup and Results
We implemented a concave cost structure with the following parameters:

• Segment breakpoints: Uk = [0, 100, 200, 400, 500] units

• Marginal costs: mk = [0.5, 0.25, 0.125, 0.075, 0.05] dollars per unit per distance

This structure represents substantial economies of scale, with marginal costs
decreasing from $0.5 for the first 100 units to $0.05 for units beyond 500.

The results in Table 6.8 demonstrate that the ADP policy maintains strong
performance under the concave cost structure across different network sizes and
inventory configurations. However, it’s important to note that these experiments
have a significant limitation: the daily demand of approximately 28 units falls well
below the first cost breakpoint of 100 units in our concave cost structure.

This limitation means that the experiments primarily test the policies’ behavior
in the highest cost segment rather than their ability to exploit economies of scale
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Table 6.8: Percentage of upper bound with concave cost structure and multiple
initial inventory levels set 2

TIE ADP
Locations 697 680 697 697 680 697
5 94% 90% 98% 95% 95% 98%
10 94% 91% 59% 96% 99% 83%
15 97% 94% 87% 83% 96% 96%
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through volume consolidation. Despite this constraint, the ADP policy shows
remarkable robustness, consistently achieving near-optimal performance.

The TIE policy shows more variable performance, particularly in scenarios with
imbalanced initial inventories (680 units) and larger networks. This variability
highlights the importance of cost-aware decision-making in transshipment policies,
especially when facing complex, non-linear cost structures.

To test the policy under different marginal costs and force the use of economies
of scale, I have built a new set of segment breakpoints: Uk = [0, 5, 20, 30, 40] units
and the corresponding marginal costs: mk = [1, 0.5, 0.25, 0.2, 0.1] dollars per unit
per distance. Considering that the mean demand in this case is λ = 24 units/day,
the new breakpoints are more accurate for this case. The initial inventory level is
set to 697 across all locations, the holding cost is $5, and the price per unit is $80.
The results of this experiment, reported in Table 6.9 as percentages of the optimal
transhipment policy, show that ADP and Lookahead policies perform the best in
this case. Again, the issue with the Lookahead policy is the huge runtime when
increase the number of location.

Table 6.9: Percentage of upper bound with concave cost structure and initial
inventory levels fixed to 697 across multiple locations, with new breakpoints and
marginal costs

Locations (L) ADP TIE PL NT RC
5 94% 79% 97% 94% 94%
10 96% 45% 99% 94% 94%
15 99% 85% 98% 97% 97%

To check the full behavior of ADP using the new marginal costs: mk =
[1, 0.5, 0.25, 0.2, 0.1] dollars per unit per distance and segment breakpoints: Uk =
[0, 5, 20, 30, 40], I have repeated the experiment with different initial inventories
and numbers of locations. We can see from the results in Table 6.10 that ADP is
the only policy that has used the economies of scale and improved the performance
with respect to linear transhipment cost (Table 6.5).

6.2.6 Implications and Limitations
The experimental results, while limited by the demand-volume mismatch, suggest
several important insights:

1. Policy Robustness: ADP demonstrates strong performance even when
operating primarily in the highest cost segment, indicating good generalization
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Table 6.10: Percentage of upper bound with concave cost structure and different
initial inventories and number of location, using concave transhipment cost

TIE ADP PL

L 697 680 697 697 680 697 697 680 697

5 57.96% 75.95% 52.24% 94.28% 94.40% 98.63% 97.38% 95.23% 96.81%
15 67.31% 79.24% 65.85% 97.96% 96.60% 93.08% 95.86% 91.30% 94.28%
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to different cost structures.

2. Economies of Scale Potential: The results hint at the significant savings
possible when demand volumes allow exploitation of lower marginal cost
segments, though our current experiments don’t fully capture this potential.

3. Computational Considerations: The MILP formulation for perfect fore-
sight with concave costs is substantially more complex than the linear equiv-
alent, requiring careful implementation and potentially limiting the scale of
solvable problems.

4. Real-world Relevance: The concave cost structure more accurately reflects
actual transportation economics, making these results more applicable to
practical logistics operations.

Future work should focus on experimental designs with higher demand volumes
that better match the cost structure breakpoints, allowing for more comprehensive
evaluation of policies’ abilities to exploit economies of scale through strategic
shipment consolidation.
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Chapter 7

Summary and Conclusion

7.1 Summary of Findings

This study has implemented and extended the approximate dynamic programming
framework for lateral transshipment problems in multi-location inventory sys-
tems, replicating and validating the original authors’ methodologies (“Approximate
Dynamic Programming for Lateral Transshipment Problems in Multi-Location
Inventory Systems” by Joern Meissner and Olga V. Senicheva) while introducing
significant enhancements to the cost structure and policy implementations.

The experimental results across both two-location and multi-location networks
demonstrate several key findings:

Two-Location Networks: The ADP policy consistently demonstrated per-
formance nearly identical to the optimal dynamic programming solution (99% of
scenarios showed no significant difference), substantially outperforming other heuris-
tic approaches. The proactive lookahead (PL) policy also showed strong results,
particularly in scenarios with higher demand variance. The value of transshipment
policies increased significantly with demand variability, confirming the intuition
that inventory redistribution provides greater benefits in uncertain environments.

Multi-Location Networks: In larger networks where exact DP solutions
are computationally infeasible, the ADP policy maintained robust performance,
achieving 94-100% of the perfect foresight upper bound across various configu-
rations. The PL policy demonstrated particularly strong results in some cases,
even outperforming ADP in certain scenarios, though with substantially higher
computational requirements.
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Cost Structure Analysis: The extension from linear to piecewise-linear con-
cave transshipment costs represented a significant advancement in modeling realism.
my results showed that economies of scale in transportation can substantially
improve network profitability when properly exploited. The ADP policy effectively
adapted to this non-linear cost structure, demonstrating its flexibility and robust-
ness.

Policy Performance: Across all experiments, several patterns emerged:

• The ADP policy provided the most consistent performance across different
network sizes, cost structures, and demand patterns

• The PL policy showed excellent results but with higher computational costs

• The TIE policy performed well in balanced scenarios but struggled with cost
sensitivity and inventory imbalances

• Simple reactive policies (RC) provided modest improvements over NT in some
cases

• The no-transshipment policy (NT) became increasingly disadvantageous as
demand variability increased and economies of scale were introduced

7.2 Methodological Contributions
This work makes several methodological contributions to the field of inventory
transshipment optimization:

First, I successfully implemented and validated the complete ADP framework
described in the original paper, achieving similar results despite limited implementa-
tion details provided by the authors. This independent replication adds credibility
to the original findings.

Second, I extended the modeling framework to incorporate a more realistic
piecewise-linear concave cost function that captures economies of scale in trans-
portation—a critical feature of real-world logistics operations that was absent from
the original formulation.

Third, I developed MILP formulations for both the perfect foresight upper bound
and the lookahead policy under the new cost structure, addressing the significant
computational challenges introduced by the non-convex cost function.
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Finally, I implemented a practical shadow price estimation heuristic that main-
tains computational tractability while providing reasonable approximations for the
value function updates in the MILP context.

7.3 Limitations and Future Research Directions

While this study provides comprehensive insights into transshipment optimization,
several limitations suggest directions for future work:

Parameter Sensitivity: Further investigation is needed regarding policy
sensitivity to holding costs, product prices, and initial inventory levels. System-
atic sensitivity analysis could provide valuable insights for practical implementation.

Transshipment Time Considerations: An important extension would incor-
porate transshipment lead times, where products require time to move between
locations. This would more accurately reflect real-world logistics and might affect
the relative performance of proactive versus reactive policies.

Backordering: Allowing unmet demand to be backordered rather than lost
represents another valuable extension. This would particularly affect the evalua-
tion of reactive policies, which might become more viable when stockouts don’t
necessarily result in lost sales.

Storage Locations: Introducing dedicated storage locations with low holding
costs and no demand could create interesting opportunities for strategic inventory
positioning and further optimization.

Additional Extensions: Other promising directions include:

• Non-stationary demand patterns to reflect seasonal variations

• Capacity constraints on transportation vehicles

• Multiple product types with different characteristics

• Integration with upstream supply chain decisions

• Real-time implementation considerations and computational efficiency im-
provements
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7.4 Concluding Remarks
This thesis has demonstrated that approximate dynamic programming provides a
powerful framework for solving complex transshipment problems in multi-location
inventory systems. The ADP approach consistently delivered near-optimal perfor-
mance across various network configurations and cost structures while maintaining
computational feasibility for practical-sized problems.

The extension to concave cost functions significantly enhances the practical
relevance of the models, acknowledging the economies of scale that characterize
real-world transportation logistics. While introducing additional computational
complexity, my results show that the ADP framework can successfully adapt to
this more realistic cost structure.

The comprehensive implementation and testing of multiple policies provides
practitioners with valuable insights for designing inventory redistribution strategies.
The robust performance of the ADP policy suggests it as a preferred approach for
systems where transshipment decisions have significant financial implications.

As inventory systems continue to grow in complexity and scale, the methods
and insights developed in this research will contribute to more effective inventory
management practices, reducing costs and improving service levels across supply
chain networks.
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