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Abstract

This thesis investigates the long-term thermal and hydrological dynamics of five alpine
springs-Cheserod, Entrebin, Gabiet, Promiod, and Promise-located in the Aosta Valley
(Northwestern Italy) over a 14-year period (2010-2024). Using high resolution hourly
data, the study analyzes water temperature, water level, flow rate, and conductivity
to identify trends, seasonal behaviors, and inter-spring relationships in response to cli-
matic drivers.

The time series were first cleaned using Kalman filtering and interpolation techniques,
followed by sinusoidal modeling with linear trends. Results reveal that most springs
exhibit a subtle but consistent warming trend in water temperature, with varying rates
of increase. In contrast, water level trends are more heterogeneous, with some springs
showing slight declines. In particular, Gabiet and Cheserod, both used for municipal
supply, exhibit distinct patterns of variability.

Cross-correlation analyzes were performed between all spring pairs to evaluate tem-
poral dependencies and regional hydrological coherence. Strong atmospheric corre-
lations (e.g., air temperature r > 0.95) were found across all sites, while hydrological
linkage varied significantly. In particular, only some springs showed synchronous flow
or conductivity responses, indicating that even under shared climatic conditions, their
aquifer systems respond differently.

These findings highlight the influence of climate change on alpine groundwater sys-
tems and underscore the importance of site-specific analysis for sustainable water re-
source management in mountainous regions.



1. Introduction

1.1 Introduction and Research Objectives

Mountain aquifers are among the most important and valuable water resources in
northern Italy, crucial for supplying local populations. In recent decades, studies across
the Italian Alps and Apennines have documented several hydrological challenges, in-
cluding the gradual drying of many springs, reduced discharge during dry months,
and the transition of formerly perennial springs into seasonal ones (Cambi and Drag-
oni 2000; Fiorillo et al. 2007; Gattinoni and Francani 2010; Forestieri et al. 2018; Padu-
lano et al. 2019). These trends have been attributed to both the overexploitation of
groundwater resources and the impacts of climate change.

The Aosta Valley, located in the northwest Italian Alps, is characterized by a complex
hydrogeological environment where mountain springs are vital to regional water sup-
ply. Springs such as Cheserod, Entrebin, Gabiet, Promiod, and Promise serve as key
sources and are closely monitored for their hydrological behavior. Integrating hydro-
logical data from these springs with meteorological observations is essential to under-
standing the cause-and-effect dynamics within the hydro-meteorological system, pro-
viding valuable insights into how climatic factors influence spring responses over time.

Analyzing hydrological data from mountain springs presents several challenges that
complicate reliable interpretation. A primary issue is the frequent presence of gaps
and missing values within individual spring datasets, often caused by sensor malfunc-
tions, harsh weather conditions, or logistical difficulties in remote monitoring loca-
tions. These interruptions reduce data continuity and complicate time series analyses.
Additionally, the spatial separation between spring monitoring stations and meteoro-
logical measurement sites introduces uncertainty, as local climatic conditions may dif-
fer significantly over short distances and altitudinal gradients, limiting the accuracy of
correlating meteorological inputs with spring responses. Furthermore, the complex ge-
ological heterogeneity of alpine aquifers and the highly dynamic, localized responses
of springs to environmental factors demand advanced modeling approaches capable
of capturing non-linear and time-lagged interactions.

Finally, measurement noise and outliers inherent in field data require careful prepro-
cessing techniques such as Kalman filtering and interpolation to ensure data quality
and robustness of subsequent analyses. Addressing these challenges is critical to de-
velop a reliable understanding of hydrological behavior and the influence of climatic
variables on mountain springs.

The primary aim of this study is to analyze the hydrological variables of mountain
springs in the Aosta Valley by applying advanced data processing and mathematical



modeling techniques.

The study begins with detailed data cleaning, using methods such as Kalman filtering
to reduce noise and interpolation to fill missing values, ensuring high-quality and con-
tinuous time series for each spring. Following this, Fourier series combined with linear
trend models are fitted to temperature data to capture seasonal cycles and long-term
trends. The reliability of these models is evaluated through statistical metrics like the
coefficient of determination (R?). This modeling approach is then extended to other
hydrological parameters including electrical conductivity and flow rate, with the goal
of identifying consistent mathematical relationships that describe the behavior of mul-
tiple springs.

Finally, the study investigates correlations and time-lagged interactions between spring
variables and environmental factors such as precipitation and air temperature, to better
understand the dynamic relationships within the hydro-meteorological system gov-
erning alpine springs.

1.2 State of the Art

Mountain springs are vital components of alpine hydrological systems, serving as im-
portant freshwater sources and indicators of broader environmental changes. The hy-
drodynamics of springs, particularly those in complex geological settings such as the
Aosta Valley, have been extensively studied through hydrograph and time series anal-
yses, which provide insights into aquifer properties and groundwater flow dynamics.
Historically, hydrograph recession curve analysis has been a fundamental method to
characterize aquifer drainage and storage behavior, distinguishing fast conduit flows
from slower matrix flows in karst and porous aquifers (Lo Russo et al., 2014; Mangin,
1975; Atkinson, 1977). These approaches help understand the response of springs to
hydrological inputs such as rainfall and snowmelt, which are critical in mountainous
environments subject to seasonal variability.

Time series methods, including autocorrelation and cross-correlation analyses, have
been increasingly employed to evaluate the interrelationships among hydrological vari-
ables such as discharge, temperature, and electrical conductivity, as well as their re-
sponses to external meteorological drivers.

These statistical tools facilitate the detection of time-lags and coupling effects between
climatic inputs and spring behavior, which are essential for managing and predicting
spring flow regimes (Lo Russo et al., 2014; Padilla et al., 1994). However, most existing
studies have focused on individual springs or aquifer systems, often limited by the
availability and quality of continuous datasets.

In recent years, advances in data cleaning techniques, such as the application of Kalman
filtering for noise reduction and interpolation for gap filling, have improved the ro-
bustness of time series datasets. These preprocessing steps are crucial for accurate
modeling and trend detection in spring temperature and flow data (Gizzi et al., 2023).

Moreover, the fitting of mathematical models, including Fourier series with linear
trends, has enabled quantification of seasonal cycles and long-term changes, providing
a structured way to represent complex hydrological signals (Fiorillo, 2009).



Despite these methodological developments, challenges persist in fully understanding
the complex hydro-meteorological interactions in mountain spring systems. The spa-
tial variability among springs, often located in geologically heterogeneous and remote
terrains, complicates the generalization of findings. Data gaps and inconsistent moni-
toring intervals further hinder continuous analysis.

Additionally, the impacts of climate change on snowmelt timing, precipitation pat-
terns, and temperature regimes introduce non-stationarities that challenge traditional
modeling approaches (Barbieri et al., 2021; Duratorre et al., 2020).

Within the Aosta Valley, the combination of geological complexity and evolving cli-
matic influences necessitates comprehensive, data-driven approaches to discern the
correlations and causal links between spring variables and environmental factors. Au-
tomated and semi-automated tools for spring monitoring data analysis have emerged
to address the need for scalable and repeatable hydrogeological characterizations (Gizzi
et al., 2023).

Nonetheless, there remains a gap in integrating multiple parameters across different
springs to develop universal or transferable models that capture both local specificity
and regional trends.

In summary, the current state of knowledge reflects significant progress in spring hy-
drograph analysis, time series modeling, and data processing techniques, but also
highlights the need for integrated studies addressing multi-variable interactions and
the impacts of climate variability in mountain aquifers. This research contributes to
this gap by applying advanced data cleaning, mathematical modeling, and correlation
analyses to multiple springs in the Aosta Valley, aiming to identify underlying patterns
and interactions among hydrological variables in a changing environment.



2. Data and Methodology

2.1 Case Study

This research centers on five mountain springs in the Aosta Valley—Cheserod, En-
trebin, Gabiet, Promiod, and Promise—selected based on their hydrological relevance
and the availability of comprehensive monitoring data.

These springs are distributed across different parts of the valley, each situated within
distinct hydrogeological contexts characterized by varying lithologies, geological struc-
tures, and aquifer types. This spatial diversity provides a valuable cross-section of the
regional groundwater system, allowing for a robust examination of spring behavior
under different environmental and geological influences.

The hydrological variables measured at each spring include water level, water temper-
ature, electrical conductivity, and flow rate. These four parameters collectively charac-
terize the physical state and chemical properties of spring water, reflecting the response
of the underlying aquifer to climatic and hydrological inputs.

To contextualize the springs’ hydrological behavior within the broader climate sys-
tem, meteorological data were also collected from nearby weather stations. Key cli-
matic variables include precipitation, air temperature, and humidity, which influence
recharge processes, evapotranspiration rates, and snowmelt dynamics in this alpine
environment. The close spatial proximity of meteorological stations to the springs en-
hances the reliability of correlating hydro-meteorological interactions.

The monitoring period for this dataset spans from 2011 to 2024, encompassing multi-
ple years of continuous observations. This temporal coverage enables the analysis of
both short-term fluctuations and long-term trends, capturing seasonal cycles as well as
potential impacts from climate variability and anthropogenic pressures.

The data underwent rigorous quality control procedures including outlier detection,
gap filling using interpolation and Kalman filtering, and validation against physical
and statistical criteria. These preprocessing steps ensure the integrity and usability of
the data for advanced time series analysis and modeling.
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Figure 2.1: fiqure shows the geographic locations of the five springs and meteo stations the
Aosta Valley.

2.1.1 Cheserod spring

Cheserod spring is located in the Gressan municipality at approximately 1095 meters
above sea level. Its geology is characterized by soluble Triassic carbonate rocks, in-
cluding carbonate breccias, gypsum. The spring area is overlain by glacial deposits
extensively reworked by eluvial and colluvial processes, which significantly influence
groundwater recharge and flow patterns. The spring is monitored continuously with
multi-parameter probes measuring water level, temperature, electrical conductivity,
and flow rate, providing valuable hydrogeological insights (Mondani et al., 2022).

2.1.2 Entrebin Spring

Entrebin spring situated near Arpuilles-Entrebin at an elevation of about 981 meters
above sea level, the Entrebin spring emerges from an aquifer mainly composed of
glacial detrital deposits resting on impermeable metamorphic bedrock. The spring’s
hydrological parameters are continuously recorded alongside meteorological data from
the nearby Roisan-Preyl weather station, helping characterize recharge processes influ-
enced by snowmelt and precipitation (Bolognini et al., 2010; Mondani et al., 2022).

2.1.3 Gabiet Spring

Gabiet spring is located in the Gressoney-la-Trinité area. It is positioned in a high
alpine basin at an elevation generally near 2300 to 2400 meters, where fractured meta-
morphic rocks and porous glacial sediments form a complex aquifer system. Monitor-
ing includes water level, temperature, conductivity, and flow rate measurements, sup-
ported by meteorological data on precipitation, temperature, and snowpack(Mondani



et al., 2022; Cerino Abdin et al., 2021).

2.1.4 Promiod Spring

The Promiod spring is situated near Chatilln municipality, with an elevation near 1600
to 1700 meters a.s.l. The hydrogeological context consists of fractured bedrock over-
lain by glacial deposits, influencing groundwater dynamics. It is paired with the Saint
Vincent meteorological station, which provides essential climate data such as precipi-
tation and temperature. Continuous hydrological monitoring of spring parameters in
conjunction with meteorological inputs enables evaluation of recharge and discharge
patterns under varying climatic conditions (Mondani et al., 2022).

2.1.5 Promise Spring

Promise spring is located in the La Thuile municipality. The spring sits at an eleva-
tion of approximately 1600 meters a.s.l., within a hydrogeological environment domi-
nated by quaternary glacial sediments atop metamorphic and carbonate bedrock. The
spring and meteorological stations collectively provide data essential for understand-
ing groundwater recharge influenced by snowpack dynamics and precipitation sea-
sonality (Mondani et al., 2022).

2.1.6 Meteorological Stations

The hydrogeological monitoring of the five springs in the Aosta Valley is supported
by data from several nearby meteorological stations strategically positioned to cap-
ture local climate variables. Each spring is paired with one or more meteorological
stations that provide continuous measurements of key parameters such as precipita-
tion, air temperature, relative humidity conditions. These stations are equipped with
a suite of sensors to continuously measure key atmospheric parameters. Precipitation
is recorded using tipping bucket rain gauges (non-heated), which accurately capture
rainfall amounts but do not melt snow, making snow measurement reliant on com-
plementary sensors. Air temperature is monitored with digital sensors designed for
precise atmospheric readings. Additionally, stations measure relative humidity, wind
speed, and wind direction, providing a comprehensive climatic dataset.

Table 2.1: Selected meteorological stations.

Meteorological Stations Springs | Longitude (WGS84) | Latitude (WGSS84) | Elevation (m)
Saint Vincent-Terme Promiod 7.6526 45.7495 626
La Thuile-Villaret Promise 6.95609 45.7095 1488
Gressoney-la-Trinité-Eselbode | Gabiet 7.82587 45.8306 1642
Roisan-Preyl Entrebin 7.31667 45.7819 935
Jovengan - Pompiod Cheserod 7.2653 45.7087 670




2.2 Data Description

The data used in this study were collected and managed by the Department of Envi-
ronmental, Land and Infrastructure Engineering (DIATI) at Politecnico di Torino. The
primary datasets consist of time series measurements of hydrological variables includ-
ing water level, water temperature, and electrical conductivity for each spring.

For each spring, measurements include:
¢ Water level (m)
¢ Temperature (degree Celsius)
¢ FElectrical conductivity (micros/cm)
Meteorological data collected from nearby weather stations include:
* Precipitation (mm)
¢ Air temperature (degree Celsius)

¢ Humidity (%)

2.2.1 Data file format

The raw data files are provided as plain text files, with each file corresponding to a
specific spring and variable. The files are structured as semicolon-separated values
(CSV) with three main columns:

e Date: The date of the measurement in DD/MM/YYYY format.
¢ Time: The time of the measurement in HH:MM:SS format.
¢ Value: The recorded measurement value.

The datasets span the period from 2010 to 2024, providing a comprehensive record for
the analysis. However, the Entrebin spring exhibits a notable data gap, with approxi-
mately two years of missing measurements between July 2014 and February 2016. This
interruption is attributed to sensor downtime or maintenance.

[L2/07/2011;01:00:00;———
12/07/2011;02:00:00; ———
12/07/2011;03:00:00; ——
12/07/2011;04:00:00; ——
12/07/2011;05:00:00; ——
12/07/2011;06:00:00; ———
12/07/2011;07:00:00; ——
12/07/2011;08:00:00; ———
12/07/2011;09:00:00; ———
12/07/2011;10:00:00; ——
12/07/2011;11:00:00;0.029
12/07/2011;12:00:00;0.030
12/07/2011;13:00:00;0.030
12/07/2011;14:00:00;0.030
12/07/2011;15:00:00;0.030

Figure 2.2: Example of the dataset



2.2.2 Instrumentation and Measurement Accuracy

Hydrological measurements were obtained using OTT CTD sensors, which simultane-
ously record water level (pressure), temperature, and electrical conductivity.
According to the manufacturer’s specifications, the water level sensors cover ranges
from 0 to 4 m up to 0 to 100 m, with a resolution as fine as 0.001 m and an overall
accuracy of +0.05% of full scale, accounting for linearity and hysteresis effects.

The temperature sensors operate reliably within a compensation range from -5 °C to
+45 °C (ice-free conditions) and can measure temperatures from -25 °C to +70 °C with
a resolution of 0.01 °C and an accuracy of +0.1 °C.

Electrical conductivity is measured within a range of 0.001 to 2.000 mS/cm or 0.10 to
100.00 mS/cm depending on the model, with a resolution of 0.001 mS/cm (or 0.01
mS/cm in some ranges) and an accuracy of £1.5% or £0.5% of the measured value,
with a minimum uncertainty of +0.001 mS/cm.

2.3 Data Filtering and Cleaning

Raw field data often contain errors, noise, and missing values due to sensor limitations,
environmental interference, or equipment malfunctions. Therefore, data cleaning is a
crucial step to ensure the reliability and accuracy of subsequent analyses.

The time series data for each spring and variable were preprocessed following a struc-
tured approach:

¢ Handling missing and invalid data: Initial cleaning involved converting the raw
measurements to numeric values and removing entries with missing or invalid
data points.

¢ Qutlier detection and smoothing: To reduce noise and correct for outliers, a
Kalman filter was applied to the cleaned time series. The Kalman filter assumes
the observed variable follows a nearly constant state model with small process
and observation noise, allowing it to smooth fluctuations while preserving un-
derlying trends.

¢ Interpolation: After filtering, polynomial interpolation of order two was applied
to fill remaining gaps caused by missing data or removed outliers. This step
ensures continuous time series suitable for further analysis.

The data were loaded from semicolon-separated text files with separate Date and Time
columns, which were combined and converted into a datetime index to facilitate time
series operations. These preprocessing steps were applied independently to each vari-
able, including water level, temperature, electrical conductivity, across all springs.

To address noise and outliers, a univariate Kalman filter was employed. The Kalman
filter is a recursive algorithm designed to estimate the true state of a dynamic system
from noisy measurements by modeling uncertainties in both the process and the ob-
servations. It operates in two steps at each time increment: prediction and update.

The Kalman filter was configured with a simple univariate model, where the system
state is assumed to remain nearly constant over time (random walk). This is reflected
by setting the state transition matrix to 1, indicating no change in the state between con-
secutive time steps. The observation matrix was also set to 1, meaning the observed



measurements directly correspond to the true state without any transformation.

The context of the Kalman filter, two key parameters govern the behavior of the al-
gorithm: the transition covariance, also known as process noise, and the observation
covariance, often called measurement noise. The transition covariance represents the
uncertainty in how the system evolves over time. It models the variability or random-
ness in the true state’s progression, capturing unpredictable changes that the under-
lying process may experience between time steps. A larger process noise implies the
system state can change more abruptly, while a smaller value assumes smoother, more
predictable dynamics.

On the other hand, the observation covariance quantifies the uncertainty in the mea-
surements themselves. It reflects the noise and errors inherent in the data collection
process, such as sensor inaccuracies or external disturbances. Higher measurement
noise indicates less reliable observations, prompting the filter to rely more heavily on
the predicted state rather than the raw measurements. Properly balancing these two
covariances is crucial for the Kalman filter’s effectiveness, as it determines the trade-off
between trusting the model’s prediction and the incoming observations.

24 Trend Analysis

To characterize the temporal behavior of the filtered environmental variables, a com-
bined sinusoidal and linear trend model was employed. This approach allows the
simultaneous capture of both periodic seasonal fluctuations and long-term systematic
changes within the time series. After data filtering and interpolation, the time series
were modeled using a Fourier series with an added linear trend component. The Fourier se-
ries decomposes the signal into a sum of sinusoidal functions at multiple frequencies,
which represent cyclical seasonal patterns of different periods. The linear trend term
accounts for any consistent increase or decrease over time.

Mathematically, the model can be expressed as:

n
y(t) = ZA,- sin(Bjt +C;) +mt +¢ (2.1)
i=1

where A;, B;, and C; are amplitude, frequency, and phase shift parameters of the i-th
sinusoidal term, respectively; m is the slope of the linear trend; c is the intercept; and ¢
is time expressed in days since the start of the measurement period.
The model parameters were estimated by nonlinear least squares curve fitting, using
initial guesses based on expected seasonal frequencies (e.g., annual, semiannual, multi-
year cycles) and a linear trend near zero slope. The curve fitting procedure minimized
the residual sum of squares between observed data and the model output.
The goodness of fit was evaluated through the coefficient of determination (R?), con-
tirming the model’s ability to represent the main patterns in the data accurately. The
linear trend slope parameter (m) was converted into an annual change rate by multi-
plying by 365 days, providing a quantitative measure of long-term trends.
After fitting the model, residuals were computed as the difference between the ob-
served values and the modeled outputs. These residuals were then analyzed to evalu-
ate model adequacy and to assess whether the model sufficiently captured the seasonal
and long-term structure of the data. A horizontal reference line was added to indicate

10



the zero level, allowing easy identification of potential over- or under-fitting. This step
helped identify any systematic patterns or abrupt deviations not accounted for by the
model.

2.5 Correlation Analysis

Understanding the relationships among hydrological variables across different springs

is essential for uncovering potential shared recharge mechanisms and climatic influ-
ences. Accordingly, both non-parametric correlation and time-lagged cross-correlation
analyses were conducted on daily-resolved data from all five springs: Cheserod, Promiod,
Gabiet, Entrebin, and Promise.

Data Preprocessing and Resampling

Raw time series data for each variable and spring were initially processed to ensure
temporal alignment and consistency. The steps included:

¢ Combining separate date and time columns into a unified datetime format.

¢ Converting variable values to numeric, removing non-numeric and missing en-
tries.

* Resampling the cleaned time series to daily mean values using a fixed calendar
day.

* Merging the resulting daily series for all variables into a common dataframe,
aligned on the datetime index.

This standardized format facilitated direct pairwise comparison of variables across dif-
ferent springs.

Spearman Correlation Analysis

To evaluate the general monotonic relationships among all variables, the Spearman
rank correlation matrix was computed. This non-parametric method is robust to out-
liers and non-linear associations, making it particularly appropriate for environmental
time series data.

The resulting matrix highlights variable pairs that tend to increase or decrease concur-
rently over time, regardless of the magnitude or precise functional relationship. Both
intra-spring (within a single spring) and inter-spring (across different springs) correla-
tions were considered in the analysis.

Correlation coefficients were visualized using a heatmap, where warm colors repre-
sent strong positive associations, cool colors indicate negative associations, and neutral
tones correspond to weak or no correlation. This visualization facilitated the identifi-
cation of springs exhibiting similar temporal patterns for specific variables.

11



Cross-Correlation Analysis

Although Spearman correlation is useful for identifying relationships that occur at the
same time, it doesn’t reveal whether one variable might influence another with a delay.
To explore these possible time-lagged connections, a cross-correlation analysis was car-
ried out for all variable pairs across the springs. This helped examine whether a change
in one variable could lead or lag behind a corresponding change in another.

For each pair, the cross-correlation function (CCF) was calculated using a lag window
of 30 days. Before performing the analysis, all time series were standardized through
z-score normalization to make them directly comparable. From the CCF, the highest
absolute correlation and its associated time lag were identified and documented.

The resulting matrix presents a broad picture of the most significant delayed inter-
actions between the variables. These patterns help highlight possible causal links or
delayed reactions, which could reflect differences in subsurface flow paths, recharge
timing, or storage behavior among the springs.

To deepen the analysis, some of the cross-correlation curves were plotted, allowing for
a closer look at how these lagged relationships play out over time and making it easier
to spot meaningful peaks and trends.

12



3. Results

3.1 Data Quality and Preprocessing

The raw datasets collected from the five monitored springs exhibited, several com-
mon issues typical of environmental time series: missing values, abrupt outliers, and
sensor-related noise. These problems were caused by harsh alpine conditions, instru-
ment malfunctions, and interruptions in power or data logging.

To ensure the integrity and usability of the temperature and water level time series, a
structured preprocessing pipeline was applied. First, invalid and missing entries were
removed. Then, a univariate Kalman filter was implemented to smooth the data and
reduce measurement noise, while preserving underlying seasonal trends. After filter-
ing, second-order polynomial interpolation was used to reconstruct missing segments,
resulting in continuous time series for each spring.

To assess the statistical distribution of the temperature and water level data and the im-
pact of the cleaning process, Q—Q plots were generated for all springs (Figure 3.1). As
illustrated for the Cheserod spring, deviations from the reference line indicate a non-
normal distribution, particularly at the tails—a pattern observed across all springs (see
Appendix A). These characteristics are consistent with bounded, seasonally driven hy-
drological variables.

Q-Q Plot of Cleaned Water level Data - Cheserod Spring Q-Q Plot of Cleaned Temperature Data - Cheserod Spring
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Figure 3.1: Q-Q plot of cleaned temperature and water level data — Cheserod spring.

Following this, a comparison between the original and cleaned temperature and water
level series was performed to visually validate the effectiveness of the filtering and
interpolation steps. As shown in Figure 3.2, the cleaned data follows the original signal
closely while eliminating noise and filling gaps. This preprocessing ensured that the
time series were suitable for trend analysis, modeling, and correlation studies.
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Original vs Cleaned Water level Time Series - Cheserod Spring

Original vs Cleaned Temperature Time Series - Cheserod Spring
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Figure 3.2: Comparison of original and cleaned temperature and water level time series.

3.2 Hydrological Trend Analysis

Figure 3.3 presents the time series of water level and temperature measurements for
the five springs studied in the Aosta region. These plots illustrate the seasonal pat-
terns and long-term variations observed between 2010 and 2024.
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Each temperature graph is based on cleaned and filtered data, enabling clear visu-
alization of trends without the interference of noise or outliers. The plots exhibit the
expected annual cyclic behavior, with higher temperatures during the summer months
and lower values in winter. In addition to this seasonal pattern, subtle interannual fluc-
tuations are visible, potentially reflecting the influence of broader climatic variability
over the study period.

Each water level plot is similarly derived from pre-processed data and captures both
seasonal variations and long-term trends in spring discharge from 2010 to 2024.

Water Level Trend Analysis - Cheserod Spring Water Temperature Trend Analysis - Cheserod Spring
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Figure 3.3: Observed and fitted water level and temperature time series for springs, showing
seasonal oscillations and the trend.

3.2.1 Residual Analysis

To further evaluate the performance of the sinusoidal model with linear trend, resid-
ual analysis was carried out. Residuals were computed as the difference between the
observed water level and the model prediction for each time step. Figure A.1 in the Ap-
pendix shows the residual time series for the Cheserod spring. The residuals fluctuated
closely around zero throughout the observation period, with no clear long-term bias,
indicating a satisfactory model fit. Occasional deviations, visible as spikes in the resid-
ual series, were observed during abrupt changes in water level. These may correspond
to short-term recharge events (e.g., snowmelt or rainfall) that are not fully captured by
the relatively smooth Fourier model. A red dashed line was used as a visual reference
for the zero-residual level, facilitating the identification of over- or under-estimation
periods.

Overall, the residuals support the model’s ability to represent the main seasonal and
trend dynamics in the water level of the Cheserod spring, while also highlighting its
limitations in capturing high-frequency or irregular variations. Residual plots for other
springs and variables are provided in Appendix A to support broader evaluation of
model performance across the dataset.

Residuals of the Fitted Water level Model - Cheserod Spring
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Figure 3.4: Residuals between observed and modeled water level and temperature for the
Cheserod spring. The red dashed line indicates the zero-residual reference level.
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3.3 Cross-Correlation Results

Cross-correlation analysis was performed between all available hydro-meteorological
variables within each spring. The time series were first resampled to daily means, and
pairwise cross-correlations were computed over a lag range of +30 days.
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Figure 3.5: Observed cross correlation for each spring

To better understand the delayed responses of the springs to climatic and hydrologi-
cal influences, a cross-correlation analysis was conducted to identify the time lags be-
tween key variable pairs. For each combination, the correlation was computed across
arange of lags, and the lag corresponding to the highest absolute correlation was iden-
tified. The resulting plots illustrate how correlation values change with varying lags.
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A positive lag indicates that the first variable precedes the second in time. The find-
ings demonstrate that the springs do not respond instantaneously to external factors;
instead, their reactions are often delayed. For example, in the Entrebin spring, the
water level exhibited the strongest correlation with flowrate at a lag of 0 days, with a
coefficient of 0.99.

Cross-Correlation in Entrebin: water_level vs flowrate

—— water_level vs flowrate
Best Lag: 0 days
~=" Corr: 0.99

-30 -20 -10 0
Lag (days)

Figure 3.6: Time-lagged cross-correlation plots between spring variables. The red dashed line
marks the lag with the strongest correlation.

3.3.1 Cross-Correlation Between Springs

Cross-correlation analysis was performed between identical variables measured at dif-
ferent springs. All time series were resampled to daily means to ensure temporal align-
ment. For each pair of springs and variables, the cross-correlation was computed over
a lag range of +30 days, and the maximum absolute correlation coefficient and its cor-
responding lag were recorded.

The results are summarized in a heatmap (Figure 3.6), where each cell indicates the
highest correlation value observed between a pair of springs for a given variable. This
format provides a visual overview of the degree of similarity in hydrological behavior
across the different springs.

Spring pairs with strong correlations appear with warmer colors, while low or negative
correlations are represented with cooler tones.
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Figure 3.7: Heatmap showing the maximum absolute cross-correlation values between identi-
cal variables across different springs. Colors represent correlation strength; values are computed
over a £30 day lag window.

3.3.2 Time Lag Analysis Between Springs

To evaluate the delayed influence between different springs, cross-correlation analysis
was performed on their key variables. For each pair, the correlation was calculated
across a range of time lags and the lag with the highest absolute correlation was iden-
tified. A positive lag indicates that variations in the first spring precede those in the
second. Results show that springs do not respond simultaneously; instead, changes in
one may appear in another after several days.
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4. Discussion and Conclusion

4.1 Interpretation of Results

This study analyzed 14 years (2010-2024) of hydrological data from five alpine springs
in the Aosta Valley—Gabiet, Promiod, Promise, Entrebin, and Cheserod—using ad-
vanced time series modeling and correlation analysis. The primary goal was to under-
stand the temporal trends and inter-variable relationships affecting spring behavior
under the influence of environmental drivers.

Temporal Trends and Long-Term Changes

sinusoidal models with linear trend components were applied to all spring’s variables.
For temperature in the Cheserod spring, the model demonstrated a strong fit, with a
coefficient of determination of R? = 0.953, indicating that the seasonal and linear trend
components explain a substantial portion of the temperature variability. The estimated
rate of temperature change was approximately 0.0120 °C per year, resulting in a total
increase of about 0.1637 °C over the 4967 days observation period (approximately 13.6
years). This reflects a subtle but consistent warming trend in the thermal behavior of
the spring.

For water level, the model achieved a moderate fit, with a coefficient of determination
of R? = 0.7060, suggesting that the seasonal and trend components account for a sig-
nificant portion of the variability in the data. The estimated rate of change in water
level was —0.0003 m per year, leading to a total decrease of approximately —0.0041 m
over the same period. This indicates a very slight but consistent decline in water level
during the monitoring period.

For temperature in the Entrebin spring, the model demonstrated a strong fit, with a
coefficient of determination of R* = 0.9502, indicating that the seasonal and trend com-
ponents explain most of the temperature variability. The estimated rate of tempera-
ture change was 0.0349 °C per year, corresponding to a total increase of approximately
0.4792°C over the full observation period of 5012 days (about 13.7 years).

For water level, the model also showed a good fit, with a coefficient of determination
of R?> = 0.8132, suggesting that seasonal fluctuations and the linear trend account for a
substantial portion of the observed variability. The estimated rate of change in water
level was 0.0004 m per year, resulting in a total increase of approximately 0.0050 m over
the same observation period. This suggests a slight but steady rise in water level.

For temperature in the Gabiet spring, the model fit was considerably weaker compared
to other springs, with a coefficient of determination of R*> = 0.3021. This suggests that
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the seasonal and linear trend components only partially explain the observed variabil-
ity in temperature, indicating the presence of additional factors or a higher degree of
short-term variability in the thermal signal. Despite the lower model performance, the
estimated rate of temperature change was 0.0177 °C per year, resulting in a total tem-
perature increase of approximately 0.2246 °C over the observation period of 4641 days
(around 12.7 years).

For water level, the model similarly exhibited a weak fit, with a coefficient of deter-
mination of R? = 0.3099. This low value indicates that the model captures only a lim-
ited portion of the observed variability, pointing to the influence of irregular or non-
seasonal factors, such as glacial melt pulses or anthropogenic impacts. The estimated
rate of change in water level was —0.0038 m per year, corresponding to a total decrease
of approximately —0.0485 m over the same period. This reflects a slight but persistent
decline in water level over time.

For temperature in the Promiod spring, the model exhibited a strong fit, with a coeffi-
cient of determination of R? = 0.9576, indicating that the seasonal and long-term trend
patterns account for most of the variability in the observed data. The estimated rate
of temperature change was 0.0063 °C per year, corresponding to a total increase of ap-
proximately 0.0860 °C over the full observation period of 5017 days (about 13.7 years).
This reflects a minor but steady warming trend in the thermal behavior of the spring.
For water level, the model showed a moderate fit, with a coefficient of determination
of R? = 0.6991, indicating that the seasonal and trend components explain a consider-
able portion of the variability in the water level data. The estimated rate of change was
—0.0004 m per year, resulting in a total decrease of approximately —0.0058 m through-
out the observation period.

For temperature in the Promise spring, the model achieved a moderate fit, with a coef-
ficient of determination of R? = 0.7213, suggesting that while seasonal and trend com-
ponents explain a substantial part of the variability, other environmental or hydroge-
ological factors may also influence the temperature dynamics. The estimated rate of
temperature change was —0.0023 °C per year, indicating a slight cooling trend over the
observation period. The total change amounted to approximately —0.0298 °C across
4745 days (around 13 years).

For water level, the model also achieved a moderate fit, with a coefficient of determina-
tion of R? = 0.5474, indicating that seasonal and trend components explain a fair por-
tion of the variability, though other factors may contribute to water level fluctuations.
The estimated rate of change was —0.0001 m per year, resulting in a total decrease of
approximately —0.0017 m over the same observation period. This suggests a very slight
but consistent declining trend in water level at the Promise spring.

Intra-Spring Correlation Analysis

To better understand the internal hydroclimatic dynamics of each spring, correlation
matrices were computed among the key measured variables: water level, flow rate,
water temperature, conductivity, air temperature, and precipitation. This analysis
provided insight into the dominant interactions between environmental drivers and
spring responses within each system.

22



For the Cheserod spring, strong positive correlations were observed between water
level and flow rate, consistent with their shared dependence on aquifer recharge con-
ditions. A significant correlation was also found between water temperature and air
temperature, indicating a thermal sensitivity to atmospheric conditions. Conductivity,
on the other hand, showed a weak negative correlation with water level and precipita-
tion, suggesting a dilution effect during high-recharge periods. These patterns reflect a
system where surface inputs and atmospheric conditions directly influence both quan-
tity and quality indicators.

For the Entrebin spring, the correlation between water temperature and air temper-
ature was particularly strong, supporting the findings from the trend analysis that
this spring exhibits high thermal responsiveness. Flow rate and water level were
also highly correlated, suggesting efficient and immediate hydrological connectivity.
Conductivity exhibited a moderate negative correlation with both water level and
flow rate, further supporting the hypothesis of dilution effects during high-discharge
events.

In the Gabiet spring, correlation patterns were more complex and generally weaker.
While a positive relationship between water level and flow rate was still evident, cor-
relations involving temperature and conductivity were more variable and less pro-
nounced. This may reflect the influence of non-linear processes such as glacial melt
inputs or variable recharge mechanisms, which introduce irregularities in the hydro-
logical and thermal signals.

The Promiod spring displayed relatively strong and consistent correlations. Flow rate
and water level were again tightly linked, while temperature and air temperature were
moderately correlated. Notably, conductivity showed a positive correlation with flow
rate, which may indicate mineral mobilization during higher flows, suggesting differ-
ent geochemical dynamics compared to other springs.

Finally, the Promise spring presented an unusual pattern: a negative correlation be-
tween water temperature and water level, indicating that higher discharge periods
may be associated with colder water inputs — possibly from snowmelt or deeper
groundwater. While flow rate and water level remained positively correlated, other
relationships were weaker or more variable, pointing to more complex or isolated hy-
drological behavior.

Overall, the intra-spring correlation analysis highlights the diversity of spring behav-
ior even within a relatively small geographic region, reflecting differences in aquifer
properties, recharge sources, and exposure to climatic forcing.

Cross-Correlation Analysis Between Springs

The cross-correlation analyses performed between the various springs across the Aosta
Valley provide a detailed understanding of the spatial coherence and hydrometeoro-
logical interactions among the monitored sites. By examining the relationships be-
tween key environmental variables—such as temperature, flowrate, water level, pre-
cipitation, conductivity, and humidity—the study revealed both atmospheric synchrony
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and hydrogeological divergence among the springs.

The cross-correlation analysis between Cheserod and Entrebin springs reveals strong
atmospheric coherence and moderate hydrological connectivity. The most prominent
correlation is observed between the air temperature at both sites, with a near-perfect
correlation coefficient of r = 0.99, indicating that both springs are exposed to virtually
identical climatic conditions. Additionally, Cheserod’s air temperature is strongly cor-
related with Entrebin’s flow rate r = 0.66 and water temperature r = 0.65, suggesting
that climatic variability at Cheserod may have a direct and almost synchronous influ-
ence on the hydrological and thermal response at Entrebin.

Conductivity values at both springs also show a relatively strong positive correlation
r = 0.81, pointing to similar geochemical influences or shared recharge sources with
comparable mineral content. However, correlations between flow rate and water level
variables are generally weaker (typically below r = 0.25), indicating only partial syn-
chronization in aquifer response or differing recharge dynamics.

The cross-correlation matrix between Cheserod and Gabiet springs highlights a high
degree of atmospheric coherence and modest hydrological connectivity. The strongest
correlation is observed between air temperature at the two sites, with a coefficient of
r = 0.97, indicating almost identical thermal conditions. This is consistent with both
springs being located in similar climatic zones and exposed to the same synoptic-scale
weather patterns.

A notable secondary correlation is seen between Cheserod’s conductivity and Gabiet’s
conductivity r = 0.78, suggesting potentially similar geological substrates or shared
mineral sources within the recharge area. However, water-related parameters—such
as flow rate and water level—exhibit generally low to negative correlations (typically
between r = —0.27 and r = 0.23), indicating that despite similar atmospheric input, the
two springs operate within hydraulically distinct systems. This is further supported
by the weak correlation between temperature series at the two sites r = 0.43, implying
differences in thermal buffering or groundwater residence time.

The cross-correlation matrix between Cheserod and Promiod springs shows a very
high level of climatic similarity and weak-to-moderate hydrological coupling. The
strongest observed relationship is between air temperatures at the two sites, with a
correlation coefficient of r = 0.99, confirming an almost identical thermal regime. Ad-
ditionally, Cheserod’s air temperature is highly correlated with Promiod’s temperature
r = 0.89, flowrate r = 0.62, and water level r = 0.61, suggesting that atmospheric forc-
ing at Cheserod influences the hydrological dynamics at Promiod with relatively little
delay or attenuation.

Other parameters show limited connectivity. For instance, conductivity and humidity
variables present generally weak correlations (mostly r < 0.30), while precipitation at
Cheserod is only modestly correlated with Promiod’s precipitation r = 0.65, hinting at
spatial variability in rainfall distribution or localized recharge characteristics. Corre-
lations between flow and water level are also low r = 0.20, indicating that while both
springs may respond to common meteorological inputs, their aquifer systems behave
independently.

The cross-correlation matrix between Cheserod and Promise reveals a weaker overall
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relationship compared to other spring pairings, particularly in hydrological parame-
ters. The highest correlation is between air temperature at Cheserod and air tempera-
ture at Promise r = 0.95, confirming a shared climatic regime in terms of atmospheric
conditions. Additionally, Cheserod’s temperature shows moderate correlations with
Promise’s conductivity r = 0.50 and temperature r = 0.43, indicating a partial align-
ment in thermal and geochemical behavior.

On the other hand, water-related parameters show very weak or even negative corre-
lations. For instance, Cheserod’s water level and flowrate exhibit negative correlations
with Promise’s corresponding variables (e.g., r = —0.37 for water level and r = —0.35
for flowrate), suggesting distinct aquifer dynamics and response characteristics be-
tween the two sites. Correlations for precipitation and humidity are generally close to
zero, reflecting either a lack of shared meteorological forcing or localized variations in
precipitation distribution and infiltration behavior.

The cross-correlation matrix between Entrebin and Gabiet reveals strong synchroniza-
tion in several hydrometeorological and physicochemical variables, suggesting a po-
tential hydraulic or climatic linkage between the two springs. The highest correlation
is observed between air temperature at Entrebin and Gabiet r = 0.98, indicating nearly
identical atmospheric conditions, possibly due to geographic proximity and similar el-
evation.

Flow-related variables show notable alignment as well: Entrebin’s water level and
flowrate correlate strongly with Gabiet’s water level r = 0.63 and r = 0.64 and moder-
ately with Gabiet’s flowrate r = 0.50 and r = 0.52. These results suggest shared recharge
timing or connected aquifer systems responding similarly to climatic inputs.
Entrebin’s temperature also shows a relatively high correlation with Gabiet’s conduc-
tivity r = 0.76, possibly reflecting similar geochemical evolution processes influenced
by temperature-driven mineral dissolution. Additionally, Entrebin’s temperature cor-
relates moderately with Gabiet’s temperature r = 0.48 and flowrate r = 0.48, reinforcing
the notion of thermal and hydrological synchronization.

In contrast, humidity and precipitation correlations are weak to moderate across the
matrix, suggesting these parameters may be more localized or affected by microcli-
matic differences.

The cross-correlation analysis between Entrebin and Promiod springs indicates strong
climatic consistency and moderate hydrological synchronization. The most dominant
correlation is found between the air temperatures at both sites r = 0.99, demonstrating
a nearly identical atmospheric temperature profile. Furthermore, Entrebin air temper-
ature is also strongly correlated with Promiod’s temperature r = 0.89, flowrate r = 0.61,
and water level r = 0.60, suggesting a shared seasonal response to climate variability.
Water-related variables, such as Entrebin’s flowrate and water level, also correlate
strongly with Promiod’s temperature r = 0.77 and r = 0.79, respectively, indicating
that temperature fluctuations may drive comparable hydrological responses in both
springs. These patterns suggest a possible similarity in recharge timing or aquifer be-
havior.

Interestingly, Entrebin’s humidity is highly correlated with Promiod’s humidity r =
0.92, reinforcing the notion of a shared microclimatic environment. In contrast, the
correlation for other variables such as conductivity and precipitation remains low to
moderate (r < 0.30 in most cases), which could reflect localized differences in subsur-
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face properties or rainfall distribution.

The cross-correlation matrix between Entrebin and Promise reveals mixed patterns of
interaction, with strong climatic agreement but weaker hydrological and geochemical
correlations. The most significant relationship is seen in air temperature, where Entre-
bin and Promise exhibit a very strong correlation r = 0.98, indicating nearly identical
atmospheric temperature variations and confirming regional climatic coherence.
Water level and flowrate correlations are moderately strong: Entrebin’s flowrate and
water level show good agreement with Promise’s air temperature r = 0.67 and r = 0.66,
respectively, implying that air temperature plays a key role in driving hydrological re-
sponses across both springs. However, the direct correlations between corresponding
hydrological variables (e.g., flowrate-to-flowrate or water level-to-water level) remain
weak or near zero, suggesting distinct aquifer characteristics or local recharge behav-
iors.

One particularly notable correlation is between Entrebin’s humidity and Promise’s hu-
midity r = 0.85, reinforcing the consistency of microclimatic conditions across the two
sites. In contrast, correlations involving conductivity, temperature, and precipitation
are generally weak r < 0.40, reflecting either localized geochemical evolution or differ-
ences in catchment-specific meteorological inputs.

The cross-correlation matrix between Gabiet and Promiod springs highlights strong
atmospheric consistency, with moderate to high hydrological alignment and weaker
geochemical connectivity. The air temperature at Gabiet is highly correlated with that
of Promiod r = 0.97, confirming synchronized seasonal temperature patterns across the
two locations. Additionally, strong correlations are observed between Gabiet air tem-
perature and Promiod temperature r = 0.89, flowrate r = 0.61, and water level r = 0.60,
implying that rising air temperatures likely drive similar hydrological responses at
both springs.

Hydrological indicators such as water level and flowrate also show significant cross-
correlations. Gabiet’s water level strongly aligns with Promiod’s flowrate r = 0.71, wa-
ter level r = 0.68, and temperature r = 0.58, suggesting a parallel seasonal response or
possibly similar aquifer recharge timing. Gabiet flowrate also correlates notably with
Promiod’s flowrate r = 0.61 and water level r = 0.60, further emphasizing this connec-
tion.

Promiod precipitation demonstrates a strong correlation with Gabiet precipitation r =
0.82, reinforcing the notion of shared climatic input. On the other hand, Gabiet con-
ductivity exhibits weak or negative correlations with all Promiod variables (as low as
r = —0.42), suggesting distinct geochemical characteristics or different lithological in-
fluences between the two catchments.

The cross-correlation matrix between Gabiet and Promise springs shows a clear align-
ment in atmospheric conditions, but weaker hydrological and geochemical links. The
air temperature at Gabiet is almost perfectly correlated with that of Promise r = 0.99,
highlighting synchronized regional temperature variations. A moderate correlation
also appears between precipitation values from both springs r = 0.58, reinforcing the
presence of shared meteorological patterns.

Gabiet’s water level demonstrates a moderate correlation with Promise air temperature
r = 0.58, which may reflect temperature-dependent effects on evapotranspiration or
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snowmelt recharge. Similarly, Gabiet’s flowrate r = 0.50 and temperature r = 0.51 show
moderate correlations with Promise air temperature, suggesting parallel seasonal re-
sponses driven by regional atmospheric forcing.

However, other variable pairs show notably weaker or inconsistent relationships. For
instance, conductivity values are generally uncorrelated or weakly associated, and Ga-
biet’s conductivity even shows a slight negative correlation with Promise air temper-
ature r = —0.20. Flowrate, water level, and temperature at Gabiet do not show strong
direct associations with the corresponding hydrochemical variables in Promise, with
most correlations falling below r = 0.10.

The cross-correlation matrix between Promiod and Promise springs reveals strong at-
mospheric synchronization but weak hydrogeochemical connectivity. The air temper-
atures of the two springs are highly correlated r = 0.95, consistent with regional climate
forcing. Promiod temperature also shows a strong correlation with Promise air tem-
perature r = 0.87, reinforcing the dominant influence of shared seasonal patterns across
the region.

A moderate relationship is observed between Promiod humidity and Promise humid-
ity r =0.70, suggesting similar atmospheric moisture conditions. Promiod water level
and flowrate both show moderate correlation with Promise air temperature r = 0.56,
possibly reflecting indirect climatic influence on local hydrology. However, their rela-
tionships with Promise’s own water level and flowrate are near zero or even slightly
negative, highlighting localized hydrogeological processes at each spring.
Precipitation correlations are generally modest. Promiod precipitation shows a moder-
ate correlation with Promise precipitation r = 0.54, aligning with shared meteorologi-
cal input. However, most hydrochemical variables—including conductivity and water
temperature—exhibit weak or negative correlations, indicating divergent geochemical
behaviors between the two sites.

In summary, while the region exhibits high atmospheric synchrony, hydrological and
geochemical responses are far more heterogeneous and reflect the influence of local
hydrogeological settings. These results underscore the importance of considering both
climatic drivers and subsurface properties when evaluating spring behavior and man-
aging groundwater resources in mountainous regions.

4.2 Impact of Climate Change

The results of this study reveal subtle but persistent trends consistent with the ex-
pected impacts of climate change on mountainous hydrological systems. Across all
springs, long-term temperature trends indicate a gradual warming, with estimated
rates of change ranging from approximately 0.0063 °C to 0.0177 °C per year. This re-
gional warming is further supported by the nearly perfect cross-correlation of air tem-
perature between all springs (r > 0.95), highlighting a shared climatic signal likely
driven by broader atmospheric trends such as increasing air temperatures and altered
seasonal patterns.

These thermal changes have potential cascading effects on spring hydrology. Slight but

consistent declines in water levels were observed in several springs—most notably Ga-
biet and Promiod—suggesting a possible reduction in recharge or a shift in snowmelt
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timing. While individual flowrate and water level correlations between springs are
often modest, the overall pattern points to more irregular and localized hydrological
responses, potentially exacerbated by climate-driven changes in precipitation distribu-
tion, evapotranspiration, and snowpack dynamics.

Moreover, the limited synchronization in geochemical parameters such as conductiv-
ity suggests that warming may be influencing subsurface water-rock interactions in
spring-specific ways, driven by variations in groundwater residence times, flow paths,
or recharge sources. As climate change continues to affect temperature and precipi-
tation regimes in alpine environments, such diverging spring behaviors may become
more pronounced, necessitating locally adapted monitoring and management strate-
gies.

In conclusion, the data support the hypothesis that climate change is already exert-
ing measurable influence on both the thermal and hydrological dynamics of alpine
springs, emphasizing the importance of long-term, high-resolution monitoring for fu-
ture water resource planning and ecological conservation in mountainous regions.

4.3 Limitations of the Study

While this study provides valuable insights into the thermal and hydrological dynam-
ics of alpine springs in the Aosta region, several limitations must be acknowledged.
First, the analysis is based on available historical data from 2010 to 2024, which, despite
its multi-year span, may not fully capture the long-term variability or rare extreme
events that can strongly influence hydrological systems. Additionally, some variables
(e.g., humidity) were missing for Gabiet, limiting the completeness and consistency of
cross-correlation analyses.

Second, while sinusoidal models with linear trends and Kalman filtering were effec-
tive for identifying seasonal and long-term patterns, they assume relatively smooth
and regular behavior. These methods may not fully capture sudden changes, nonlin-
ear trends, or multi-scale variability that could arise from shifts in climate, land use,
or hydrogeological disturbances. Furthermore, while cross-correlation analyses offer a
valuable view of synchronous and lagged relationships, they do not establish causality,
and are sensitive to data gaps, outliers, and autocorrelation in the time series.

Third, the spatial representativeness of the selected springs may be limited. Although
the five springs studied are distributed across different parts of the Aosta Valley, they
may not reflect the full diversity of hydrogeological conditions in the region. Local
geological heterogeneities, anthropogenic influences, or site-specific recharge mecha-
nisms may introduce behaviors not generalizable to other locations.

Finally, this study does not include direct modeling of future climate scenarios or water
demand projections. As a result, while current trends are highlighted, their future im-
plications under different climate trajectories remain uncertain. Future research could
benefit from the integration of physically-based hydrological models, coupled climate-
hydrology simulations, and the inclusion of socioeconomic factors affecting water use
and management.
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4.4 Recommendations for Future Research

This study has demonstrated the value of high-resolution (hourly) data in capturing
seasonal, interannual, and cross-spring hydrological dynamics. Building on these re-
sults, future research could further enhance temporal analysis by integrating addi-
tional environmental variables such as snow depth, evapotranspiration, or groundwa-
ter level from deeper observation wells. Such additions would provide a more com-
prehensive view of the processes governing spring dynamics.

Future studies should also consider coupling the statistical models used here with
physically-based hydrological models (e.g., MODFLOW, MIKE SHE, or SWAT) to sim-
ulate flow paths, recharge dynamics, and responses to extreme weather events. This
would help move from descriptive analysis toward process-based understanding and
prediction.

Expanding spatial coverage to include more springs with varied geological and topo-
graphic settings would strengthen the regional interpretation of results. Incorporating
hydrochemical or isotopic tracers could also provide insight into groundwater resi-
dence times and mixing processes—key factors in understanding system resilience to
climate change.

Finally, integrating climate projection data and land-use change scenarios would allow
for forecasting how alpine spring systems may evolve under future environmental
pressures. This would support adaptive water resource planning, especially in regions
where spring-fed water is critical for ecosystems and human consumption.
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Appendix A

This appendix contains the plots referenced in the main chapters.

Residuals of the Fitted Water level Model - Entrebin Spring

Residuals of the Fitted Temperature Model - Entrebin Spring
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Figure 4.2: Residuals of the fitted model springs
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Figure 4.1: Q-Q plot of cleaned data springs
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Appendix B

B.1: Importing Packages and Extracting Data

The following script imports the required Python libraries, extracts ZIP data contain-
ing the spring measurements, and defines a list of spring names used throughout the
analysis.

import pandas as pd
import numpy as np

sl import matplotlib.pyplot as plt

import os
import glob

o import zipfile

from numpy.polynomial.polynomial import Polynomial
from scipy import stats

zip_file_path = ’/content/springs-data.zip’

with zipfile.ZipFile(zip_file_path, ’r’) as zip_ref:
zip_ref.extractall ()

B.2: Cleaning and Fitting Temperature Data

The following Python script performs data cleaning and modeling for the Cheserod
spring temperature and water level time series. It applies a Kalman filter, interpolates
missing values, fits a Fourier series with a linear trend, generates visualizations (Q-Q
plots, residuals, trend), and computes performance metrics such as the coefficient of
determination (R?).

Note: The data cleaning, interpolation, Fourier modeling, and residual analysis were
performed using the same method for all springs. For clarity and brevity, only the full
Python script for the Cheserod spring temperature and water level analysis is included
in this appendix.

!pip install pykalman
from scipy import stats

s)from scipy.optimize import curve_fit

from pykalman import KalmanFilter
from sklearn.metrics import r2_score

s from google.colab import files

from scipy.stats import norm

from statsmodels.graphics.gofplots import qqplot
import matplotlib.pyplot as plt

import numpy as np

34




32

33

34

35

36

43

44

45

46

cheserod_temperature = [’/content/springs-data/cheserod/
Cheserod_0002.txt’]

def fourier_series_with_trend(t, *params):
n_terms = (len(params) - 2) // 3

result = np.zeros_like(t)

for i in range(n_terms):

A = params[i * 3]
B = params[i * 3 + 1]
C = params[i * 3 + 2]

result += A * np.sin(B * t + C)

# Add the linear trend (slope * t + intercept)

trend_slope = params [-2]

trend_intercept = params[-1]

result += trend_slope * t + trend_intercept # Trend: slope *
t + intercept

return result

# Loop through each file and plot the data on separate subplots
for i, path in enumerate(cheserod_temperature):
# Read the data from the file
original_data = pd.read_csv(path, sep=’;’, names=[’Date’, ’
Time’, ’Temperature’])

# Convert ’Date’ and ’Time’ columns to datetime and set as

index

original_datal[’Datetime’] = pd.to_datetime(original_datal’
Date’] + 7’7 + original_datal[’Time’], format=’%d/%m/%Y_ %H:%
M:%S?)

original_data.set_index(’Datetime’, inplace=True)

# Convert ’Temperature’ column to numeric, handling errors
original_datal[’Temperature’] = pd.to_numeric(original_datal’
Temperature’], errors=’coerce’)

# Drop rows with missing temperature values
df = original_data.dropna(subset=[’Temperature’])

kf = KalmanFilter (

transition_matrices=[1], # No change in state
observation_matrices=[1], # Direct observation
transition_covariance=[[0.00000001]] ,# Small transition noise
observation_covariance=[[0.00001]] # Small observation noise
)

smoothed_data, _ = kf.filter(df[’Temperature’].values)

# Store smoothed data back into the dataframe

df .loc[:, ’Temperature’] = smoothed_data
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# Interpolation
df .loc[:, ’Temperature’] = df[’Temperature’].interpolate(
method=’polynomial’, order=2)

# Initial guesses for Fourier terms + trend (slope * t +
intercept)

0 =1[
6,
* np.pi / (365%5),
5,
* np.pi / (365%4),
4,
* np.pi / (365%3),

* W

=]
e}

-

# A (first sine term)
np.pi / 365, # B (first sine term frequency)
, # C (first sine term phase shift)
# A (second sine term)
np.pi / (365/2), # B (second sine term frequency)
# C (second sine term phase shift)
# Initial guess for slope (trend slope)
np.mean (df [’ Temperature’]) # Initial guess for intercept (
trend intercept)

* N

¥ =

-

O ONOONOONOONOONOONOT

-

# Convert datetime index to numerical values (days since
start) before curve_fit

df .loc[:, ’Time_Num’] = (df.index - df.index[0]).
total_seconds () / (3600 x* 24)

# Fit the model

params, = curve_fit (fourier_series_with_trend, df [’Time_Num

’], df[’Temperature’], pO=p0, maxfev=10000)

# Calculate all_time based on original_data’s index
all_time = (original_data.index - original_data.index[0]).
total_seconds () / (3600 * 24) # Recalculate all_time

# Predict temperature using the fitted model (Fourier
components + trend)

original_data[’Predicted_Temperature’] =
fourier_series_with_trend(all_time, *params)

# Reconstruct full signal

original_datal[’Final_Temperature’] = original_datal’
Temperature’].fillna(original_data[’Predicted_Temperature’
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# Only compare on valid (non-NaN) entries
mask = “np.isnan(original_datal[’Temperature’]) & “np.isnan(
original_data[’Predicted_Temperature’])

# Compute R

r2 = r2_score(original_data.loc[mask, ’Temperature’],
original_data.loc[mask, ’Predicted_Temperature’])

print (f"R for_ {cheserod_temperature[0].split(’/’) [-2]1}: {r2:.4f
)

trend_slope = params[-2] # The second-to-last parameter is the
slope (trend_slope)

change_per_year = trend_slope * 365 # Temperature change per
year

print (f"Change_ intemperature peryyear for, {path.split(’>/’) [-1]}:
u{change_per_year:.4f}, C /year")

total_days = (original_data.index[-1] - original_data.index[0]) .
days

total_change = trend_slope * total_days # Total temperature
change

print (f"Total change in temperature, for {path.split(’/’) [-1]1}:_ {
total_change:.4f}, C Lover_,{total_days},days")

# Plot results

plt.figure(figsize=(10, 5))

plt.plot(df.index, df[’Temperature’], ’rx’, markersize= 1, label=
>cleaned data’)

plt.plot(original_data.index, original_datal’
Predicted_Temperature’], color= ’blue’, label=’Fitted_ Trend’)

plt.xlabel(’Year’)

plt.ylabel (’Temperature, ( C )’)

plt.legend ()

plt.grid(True)

plt.title(f’Water_ Temperature Trend Analysis uCheserod Spring’
)

plt.savefig(f’/content/springs-data/Cheserod_temperature_plot. jpg
>, dpi=300, bbox_inches=’tight’)

plt.show ()

plt.close ()

#Q-Q Plot

qqplot (df [’ Temperature’], line=’s’)

plt.title(’ Q Q Plotyof, Cleaned Temperature Data, -, Cheserod
Spring’)

| plt.grid (True)

save_path = ’/content/springs-data/Cheserod_Q-Q_plot.jpg’
plt.savefig(save_path, dpi=300, bbox_inches=’tight’)
plt.show )
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13| #0riginal vs Cleaned data

3| plt . figure (figsize=(10, 5))

135 plt .plot (original_data.index, original_datal[’Temperature’], color
=’green’, marker=’0’, linestyle=’None’, markersize=3, label=’
original data’)

16| plt .plot (df .index, df[’Temperature’], color=’red’, marker=’o’,
linestyle=’None’, markersize=1, label=’cleaned;data’)

17| plt.title(’0riginal vs Cleaned Temperature Time Series L
CheserodSpring’)

55| plt . xlabel (’Year’)

1| plt.ylabel (’ Temperature,( C )’)

0| plt.legend (loc="upper left’)

| plt.grid ()

2| save_path = ’/content/springs-data/Cheserod_temperature_plot. jpg’
15| plt . savefig(save_path, dpi=300, bbox_inches=’tight’)

14| plt . show ()

145
46| #Residuals

w7|residuals = df [’Temperature’] - fourier_series_with_trend(df[’
Time_Num’], *params)

us|plt . figure (figsize=(10, 3))

| plt.plot (df.index, residuals, color=’gray’)

50| plt.axhline (0, color=’red’, linestyle=’--7)
51| plt.title (’Residuals of ,the Fitted Temperature Model - ,Cheserod,
Spring’)

12| plt.xlabel (’Year’)

53| plt.ylabel (’Residual’)

154 plt . grid (True)

155 save_path = ’/content/springs-data/Cheserod_residuals_plot.jpg’
56| plt . savefig(save_path, dpi=300, bbox_inches=’tight’)

57| plt . show ()

50 # Plot to visually confirm

| df [’ Temperature’].isna().sum() # Count of missing values
161
| plt.figure(figsize=(10, 5))

15 plt.plot (original_data.index, original_data[’Temperature’], color
=’green’, markersize=1,)

164 plt . title (’Visual Inspection of yMissing, ,Values in Temperature
Time_Series - ,Cheserod Spring’)

65| plt . xlabel (’Year’)

6| plt . ylabel (’ Temperature, ( C )’)

7| plt . grid ()

65| save_path = ’/content/springs-data/
Cheserod_missing_values_temperature. jpg’

10| plt.savefig(save_path, dpi=300, bbox_inches=’tight’)

170l plt . show ()
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B.3: Extracting Cleaned Data for Correlation Analysis

The following script extracts cleaned spring datasets from a compressed archive and
prepares them for further analysis, such as correlation evaluation. It loads the neces-
sary Python libraries and unzips the data files into the working directory.

N

N

w

=

&

®

import zipfile
import os

sl import glob

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

from datetime import datetime

# Unzip the folder
zip_path = ’/content/springs_cleaned_data.zip’
extract_path = ’/content’

with zipfile.ZipFile(zip_path, ’r’) as zip_ref:
zip_ref .extractall (extract_path)

B.4: Loading and Organizing Spring Data for Analysis

This script collects all cleaned variable data files (temperature, water level, conductiv-
ity, etc.) from the five springs and organizes them into a structured Python dictionary.
The script handles different delimiters, parses datetime fields, and maps variable codes
to readable names.

# Define paths to each spring

Cheserod = "/content/springs_cleaned_data/Cheserod"
Gabiet = "/content/springs_cleaned_data/Gabiet"
Entrebin = "/content/springs_cleaned_data/Entrebin"
Promiod = "/content/springs_cleaned_data/Promiod"
o/ Promise = "/content/springs_cleaned_data/Promise"

# Collect all .txt files from each spring directory
variable_files = (
glob.glob(f"{Cheserodl}/*.txt") +
glob.glob(f"{Gabiet}/*.txt") +
glob.glob(f"{Entrebin}/*.txt") +
glob.glob(f"{Promiod}/*.txt") +
glob.glob(f"{Promisel}/*.txt")

)
7| # Mapping of variable codes to names
variable_map = {
’0001’: ’water_level’,
’0002’: ’temperature’,
’0004’: ’conductivity’,
’0005?’: ’flowrate’,
’0006’: ’precipitation’,
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’0007’: ’air_temperature’,
0008’ : ’humidity’

def load_custom_txt(file_path, variable_name):
# Detect delimiter using the first line
with open(file_path, ’r’, encoding=’IS0-8859-1’) as f:

first_line = f.readline()
sniffer = csv.Sniffer ()
try:
dialect = sniffer.sniff(first_line)
delimiter = dialect.delimiter
except csv.Error:
delimiter = ’;°’ # fallback if detection fails

# Read the file, skipping the first row (header or metadata)
df = pd.read_csv(file_path, sep=delimiter, skiprows=1,
encoding="IS0-8859-1’, header=None)

# If not enough columns, raise an error
if df.shape[1l] < 4:
raise ValueError (f" File {file_path} has_ only_ {df.shape
[1]1} . column(s), expected at_ least 4.")

# Assign column names
df .columns = [’datetime’, ’date’, ’time’, ’variable’]

# Convert ’datetime’ to datetime object
df [’datetime’] = pd.to_datetime(df[’datetime’], errors=’
coerce’, dayfirst=True)

return df

# Initialize dictionary with all springs
dataframes_dict = {

>Cheserod’: {7},

’Gabiet’: {7},

’Entrebin’: {7},

’Promiod’: {},

>Promise’: {}

# Process each file

sifor file in variable_files:

filename = os.path.basename(file)
variable_code = filename.split(’_’)[-1].split(’.’) [0]

if variable_code in variable_map:
variable_name = variable_map[variable_code]
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# Identify the spring name from the file path
for spring in dataframes_dict.keys():
if spring in file:
source = spring
break
else:
print (£" ,Could not_ determine source for {filel}")
continue

print (£" Reading {file} as {variable_name} from, ,{sourcel}"
)
df = load_custom_txt(file, variable_name)
dataframes_dict [source][variable_name] = df
else:
print (£"Skipping {file} jasyit, doesynot match any known
variable codes.")

B.5: Cross-Correlation Analysis for Spring Variables

import pandas as pd
import matplotlib.pyplot as plt

3 import seaborn as sns

from google.colab import files

for spring_name, variable_dict in dataframes_dict.items():
print (f"\nProcessing, {spring_namel}")
merged_data = pd.DataFrame ()

# Merge variables daily
for var_name, df in variable_dict.items():
df = df.dropna(subset=[’datetime’])
af df .set_index(’datetime’)
df _daily = df[’variable’].resample(’D’).mean().rename (
var_name)

if merged_data.empty:
merged_data = df_daily.to_frame ()
else:
merged_data = merged_data.join(df_daily, how=’outer’)

clean_data = merged_data.dropna()

if clean_data.shape[0] < 100:
print (£"Skipping, {spring_namel} uNot enough datay ({
clean_data.shape [0]} rows)")
continue

variable_names = clean_data.columns.tolist ()
for i, varl in enumerate(variable_names):
for j, var2 in enumerate(variable_names):
if i >= j:
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continue # skip duplicates & self-correlation

seriesl = clean_datal[vari]
clean_datal[var?2]

series?2

lags, corr = cross_correlation_with_lags(seriesi,
series2, max_lag=MAX_LAG)

if np.all(np.isnan(corr)):
print (£"Skipping, {varl} vs,{var2}, L
insufficient datagoverlap")
continue

best_idx = np.nanargmax (np.abs(corr))
best_lag = lags[best_idx]
best_corr = corr[best_idx]

# Plotting

plt.figure(figsize=(10, 4))

plt.plot(lags, corr, label=f’{varl} vs_ {var2}’)

plt.axvline(best_lag, color=’red’, linestyle=’--’,
label=f’BestLag: ,{best_lag}, days\nCorr:

{best_corr:.2f}’)
plt.title(f’Cross-Correlation,in {spring_namel}: {varl
Yuvsy{var23}’)

plt.xlabel (’Lag,(days)’)

plt.ylabel (’Cross-Correlation’)

plt.legend ()

plt.tight_layout ()

plt.show ()

MAX_LAG

= 30 # max lag in days

def cross_correlation_with_lags(seriesl, series2, max_lag=30):

lags

= np.arange (-max_lag, max_lag + 1)

correlations = []

for

lag in lags:

if lag < O:
shifted_seriesl = seriesl.shift(-lag)
shifted_series2 = series?2

else:
shifted_seriesl = seriesl

shifted_series2 = series2.shift(lag)

valid = shifted_seriesl.notna() & shifted_series2.notna()
if valid.sum() < 30: # require minimum overlap
correlations.append(np.nan)
else:
corr = shifted_seriesi[valid].corr(shifted_series2[
validl)
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correlations.append(corr)
return lags, correlations

OUTPUT_DIR = "cross_correlation_heatmaps"

5os.makedirs (OUTPUT_DIR, exist_ok=True)

7l for spring_name, variable_dict in dataframes_dict.items():

print (f"\nProcessing {spring_name}")

# Merge data for all variables
merged_data = pd.DataFrame ()
for var_name, df in variable_dict.items():
df = df.dropna(subset=[’datetime’])
df = df.set_index(’datetime’)
df _daily = df[’variable’].resample(’D’) .mean().rename (
var_name)

if merged_data.empty:
merged_data = df_daily.to_frame ()
else:
merged_data = merged_data.join(df_daily, how=’outer’)

clean_data = merged_data.dropna()
if clean_data.shape[0] < 100:
print (£"Skipping, {spring_namel}, uNot enough datay ({
clean_data.shape [0]} rows)")

continue

variable_names = clean_data.columns.tolist ()
n_vars = len(variable_names)

# Prepare matrices to store best correlation and lag

best_corr_matrix = pd.DataFrame(np.nan, index=variable_names,
columns=variable_names)
best_lag_matrix = pd.DataFrame(np.nan, index=variable_names,

columns=variable_names)

for i, varl in enumerate(variable_names):
for j, var2 in enumerate(variable_names):
if i == j:
best_corr_matrix.locl[varl, var2] = 1.0
best_lag_matrix.loc[varl, var2] = 0
continue

seriesl = clean_datal[vari]
clean_datal[var?2]

series?2

lags, corr_values = cross_correlation_with_lags/(
seriesl, series2, max_lag=MAX_LAG)
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if all(np.isnan(corr_values)):
continue

# Get index of max absolute correlation
best_idx = np.nanargmax(np.abs(corr_values))
best_corr = corr_values[best_idx]

best_lag = lags[best_idx]

best_corr_matrix.loc[varl, var2] = best_corr
best_lag_matrix.loc[varl, var2] = best_lag

# Plot correlation heatmap

plt
sns

plt
plt
plt
plt
plt

plt
plt

.figure(figsize=(10, 8))

.heatmap(best_corr_matrix, annot=True, cmap=’coolwarm’,
center=0, vmin=-1, vmax=1,

linewidths=0.5, fmt=".2f")
.xticks(rotation=90)
.yticks(rotation=0)
.title(f’Cross-Correlation Matrix, -, {spring_namel}’)
.tight_layout ()
.savefig(os.path.join (QUTPUT_DIR, f"{spring_namel}

_best_correlation_heatmap.png"), dpi=300)

.show ()
.close ()

B.6:Cross-Correlation Analysis between Spring Variables

Note: The following procedure is identical for all springs. For illustration purposes,
we show the full code for Cheserod-Gabiet.

N

w

&

import zipfile

import os

import glob

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
7l import seaborn as sns

s from datetime import datetime

N

# Unzip the folder
zip_path = ’/content/springs_cleaned_data.zip’
extract_path = ’/content’

with zipfile.ZipFile(zip_path, ’r’) as zip_ref:
zip_ref.extractall (extract_path)

import pandas as pd

w

import matplotlib.pyplot as plt
import seaborn as sns
from google.colab import files
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for spring_name, variable_dict in dataframes_dict.items():

print (f"\nProcessing, ,{spring_name}")
merged_data = pd.DataFrame ()

# Merge variables daily
for var_name, df in variable_dict.items():
df = df.dropna(subset=[’datetime’])
df df .set_index (’datetime’)
df _daily = df[’variable’].resample(’D’) .mean().rename (

var_name)

if merged_data.empty:
merged_data = df_daily.to_frame ()
else:
merged_data = merged_data.join(df_daily, how=’outer’)

clean_data = merged_data.dropna()

if clean_data.shape[0] < 100:
print (f"Skipping ,{spring_namel} uNot enoughdata ({
clean_data.shape [0]} rows)")
continue

variable_names = clean_data.columns.tolist ()
for i, varl in enumerate(variable_names):
for j, var2 in enumerate(variable_names):
if i >= j:
continue # skip duplicates & self-correlation

seriesl = clean_data[varil]
series?2 clean_data[var2]

lags, corr = cross_correlation_with_lags(seriesi,
series2, max_lag=MAX_LAG)

if np.all(np.isnan(corr)):
print (£"Skipping {varl} vsy{var2}, U
insufficient data overlap")
continue

best_idx = np.nanargmax (np.abs(corr))
best_lag = lags[best_idx]
best_corr = corr[best_idx]

# Plotting
plt.figure(figsize=(10, 4))
plt.plot(lags, corr, label=f’{varl} vs {var2}’)
plt.axvline (best_lag, color=’red’, linestyle=’--’,
label=f’BestLag: ,{best_lagl}, days\nCorr:
{best_corr:.2f}’)
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plt.title(f’Cross-Correlation, in {spring_name}: {varl
Yuvsy{var2}?’)

plt.xlabel (’Lag,(days)’)

plt.ylabel (’Cross-Correlation’)

plt.legend ()

plt.tight_layout ()

plt.show ()

import numpy as np
import pandas as pd

sl import matplotlib.pyplot as plt

import seaborn as sns
import os

MAX_LAG = 30 # max lag in days
def cross_correlation_with_lags(seriesl, series2, max_lag=30):
lags = np.arange(-max_lag, max_lag + 1)

correlations = []

for lag in lags:

if lag < O:
shifted_seriesl = seriesl.shift(-lag)
shifted_series2 = series?2

else:
shifted_seriesl = seriesl

shifted_series2 = series2.shift(lag)

valid = shifted_seriesl.notna() & shifted_series2.notna()
if valid.sum() < 30: # require minimum overlap
correlations.append(np.nan)
else:
corr = shifted_seriesl[valid].corr(shifted_series2|[
valid])
correlations.append(corr)

return lags, correlations

OUTPUT_DIR = "cross_correlation_heatmaps"
os.makedirs (OUTPUT_DIR, exist_ok=True)

slfor spring_name, variable_dict in dataframes_dict.items():

print (f"\nProcessing, {spring_namel}")

# Merge data for all variables
merged_data = pd.DataFrame ()
for var_name, df in variable_dict.items():
df = df.dropna(subset=[’datetime’])
df df .set_index(’datetime’)
df _daily = df[’variable’].resample(’D’) .mean().rename (
var_name)
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3 if merged_data.empty:

u merged_data = df_daily.to_frame ()

45 else:

16 merged_data = merged_data.join(df_daily, how=’outer’)
47

18 clean_data = merged_data.dropna()

50 if clean_data.shape[0] < 100:

51 print (£"Skipping ,{spring_namel} uNot enough data ({
clean_data.shape [0]} rows)")

52 continue

54 variable_names = clean_data.columns.tolist ()

55 n_vars = len(variable_names)

56

57 # Prepare matrices to store best correlation and lag

58 best_corr_matrix = pd.DataFrame (np.nan, index=variable_names,

columns=variable_names)
59 best_lag_matrix = pd.DataFrame(np.nan, index=variable_names,
columns=variable_names)
60

61 for i, varl in enumerate(variable_names):

62 for j, var2 in enumerate(variable_names):

& if i == j:

64 best_corr_matrix.loc[varl, var2] = 1.0
65 best_lag_matrix.loc[varl, var2] = 0

66 continue

68 seriesl = clean_datal[vari]

69 series2 = clean_datal[var2]

70

71 lags, corr_values = cross_correlation_with_lags(

seriesl, series2, max_lag=MAX_LAG)

73 if all(np.isnan(corr_values)):
74 continue

76 # Get index of max absolute correlation

77 best_idx = np.nanargmax (np.abs(corr_values))
78 best_corr = corr_values[best_idx]

79 best_lag = lags[best_idx]

81 best_corr_matrix.loc[varl, var2] = best_corr

82 best_lag_matrix.loc[varl, var2] = best_lag

83

84 # Plot correlation heatmap

85 plt.figure(figsize=(10, 8))

86 sns.heatmap (best_corr_matrix, annot=True, cmap=’coolwarm’,

center=0, vmin=-1, vmax=1,
87 linewidths=0.5, fmt=".2f")

47




88

89

90

93

94

plt
plt
plt
plt
plt

plt
plt

.xticks(rotation=90)

.yticks(rotation=0)

.title(f’Cross-Correlation Matrix,-,{spring_namel}’)
.tight_layout ()

.savefig(os.path. join (OUTPUT_DIR, f"{spring_name}
_best_correlation_heatmap.png"), dpi=300)

.show ()

.close ()
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