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Abstract

Flapping-Wing Micro Air Vehicles (FWMAVs) are micro-drones bio-
inspired by birds and insects. They possess a unique way to generate lift
and thrust via flapping wing motions, which provide exceptional maneuver-
ability. This peculiar flight mechanism makes them suitable for tasks such
as search and rescue, surveillance and environmental monitoring. However,
it also introduces significant challenges in modeling their dynamics and
aerodynamics due to strong nonlinearities.
Given these complexities, developing effective control algorithms for FW-
MAVs is a challenging problem. Traditional control theory aims to compute
control sequences that guide a system along a desired trajectory. While
possible, applying these methods to highly nonlinear systems can be dif-
ficult. Alternatively, Reinforcement Learning (RL), subfield of machine
learning born in the 90s, focuses on learning a control policy with limited
or no prior knowledge of the system’s dynamics. Recent advances in RL
have led to Deep Reinforcement Learning (DRL), which employs neural
networks and other function approximators to learn complex control strate-
gies. However, training these models can be computationally expensive
and difficult to tune: while more complex architectures and algorithms
are being created, we wonder if simpler and more direct architectures can
perform comparably or even better in certain scenarios.
This work aims to evaluates the performance of Radial Basis Functions
(RBFs) as function approximators to model the control policy in two
test cases. In the first, simplified test case, the RBF-based controller
will be compared with a Linear Quadratic Regulator (LQR), designed
using optimal control theory. This scenario considers a one-dimensional,
averaged model of the drone’s motion, where the objective is to hover
at a fixed target position. The second test case is more realistic, relying
on the full nonlinear dynamics of the system and explores the learning
challenges faced by the RBF-based controller still within the context of
one-dimensional hovering control.
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Chapter 1

Introduction

1.1 Control System
In engineering and science, control problems involve designing strategies
or algorithms to govern the behavior of a dynamical system, ensuring that
it operates in a desired manner [1],[2]. The system, often governed by
complex physical or mathematical dynamics, interacts and responds to
inputs or actions from the controller. The challenge lies in determining
the optimal sequence of actions that achieve a specific objective while
respecting constraints and minimizing undesired outcomes.

At the core of a control problem is a feedback loop, where the system’s
state (e.g., position, velocity, temperature, ...) is monitored and used
to adjust control actions. The goal is often to drive the system toward
a desired target state, maintain stability, or optimize performance. For
instance, in robotics, control problems might involve making a robotic
arm precisely reach a target position, while in aerospace it could involve
stabilizing a drone in turbulent conditions while following a trajectory.

Formally, the control problem can be framed as an optimization task
where the objective is to minimize a cost or maximize a reward. This
reward can be defined in terms of how close the system’s state is to a
target or how efficiently the system achieves its goals. For example, the
cost might represent the squared error between the system’s current state
and a desired target state, while constraints could enforce limits on control
inputs or system behavior.

Controllers can be designed using various approaches, including classical
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Introduction

techniques like Frequency Response Analysis or modern strategies that
leverage machine learning and reinforcement learning. The latter consists
in learning control policies that can map system’s states to actions directly,
often through interaction with a simulated or real environment. These
methods, composing the field of Control Learning, are particularly useful
for complex, high-dimensional systems where deriving analytical solutions
is impractical and model-based methods are inaccurate due to model
limitations.
Finally, solving a control problem requires a balance between robustness,
precision and computational efficiency, in order to ensure that the system
performs reliably across a range of conditions.

1.2 FWMAVs
Flappin-Wing Micro Air Vehicles (FWMAV [3], [4]) are flying, bio-inspired
robots that reproduce the flight mechanism of birds and insects. Their
unique way of fly is characterized by the oscillatory motion of their wings
to generate both lift and thrust, enabling them to hover, glide, and
perform agile maneuvers in confined spaces. These micro-drones typically
have wingspans ranging from 1cm to 35cm, masses up to 80g and flight
ranges of up to 1km; thanks to their highly maneuverability, they’re
suitable for various task such as search and rescue missions, environmental
monitoring, surveillance, and planetary exploration. FWMAVs are built
with lightweight materials and flexible wings, along with advanced control
systems that help them adjust in real time for optimal flight. Challenges
include improving lift-to-weight ratios, creating efficient power sources and
strong controllers that can handle the unpredictable nature of flapping
flight. In fact, this particular way of flying introduces different non-
linearities (such as unsteady aerodynamics and strong coupling between
wing motion and body response) that lead to significant challenges in
modeling their dynamics and thus in developing efficient and suitable
control strategies. Modern control theory, which aims to find a correct
control sequence (with respect to some measure) to drive the system along
a certain trajectory, faces big challenges when dealing with this kind of
systems: as the non-linearities increase, classical laws become less effective
and modeling is more troublesome.

2



Introduction

Figure 1.1: Flapping-Wing Micro Air Vehicle, from Keennon et al. [4]

As technology improves, FWMAVs are likely to become important in
robotics, providing new solutions for tasks that require high flexibility
and adaptability in limited spaces.
In the context of control learning, it becomes interesting to see whether
machine learning methods can overcome non-linearity and uncertainties
and produce controllers capable of meeting the necessary requirements.

1.3 Goals
This thesis has two main goals: first, it aims to compare model based
control methodologies (Linear Quadratic Regulator optimal control) and
model-free approaches in terms of both optimality and robustness. To
do so, a first oversimplified test case based on averaged dynamics will
be used. This simplification enables the development of the model-based
framework while avoiding the troublesome non-linearities. On the other
hand, the model free controller will be directly optimized using a state-of-
art optimizer in conjunction with a particular neural architecture, known
as Radial Basis Function, to model the policy. These two approaches will
be compared in terms of performance and robustness to noise.
The second objective of this thesis is to assess the capabilities of the
model-free controller in a more realistic setting, by testing it against a full
flapping dynamics model that takes into account the aerodynamic effects
of flapping wing flight. To do so, the Radial Basis Function policy will be
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trained using model free reinforcement learning algorithms: in particular,
the ease of training this policy approximator will be investigated using
simplified versions of policy gradient methods.

1.4 Thesis outline
The thesis is organised as follows:

Chapter 2 addresses the methodologies. In this second section, the
control problem is first formally introduced and a taxonomy of con-
trol strategies presented. Then, the (modern) optimal framework
is discussed. Ultimately, we talk about reinforcement learning and
function approximators.

Chapter 3 describes the two test cases, the averaged and the full-
dynamics environments, and derives their equations of motion.

Chapter 4 analyzes the model-based approach, which involves the
development of an LQR controller.

Chapter 5 analyzes the model-free approach, focusing on the imple-
mentations of RBF controllers.

Chapter 6 presents the results.
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Chapter 2

Methodologies
In this section, the methodologies for this work are introduced. First,
the general statement of a control problem is given, together with some
notions about different types of control. Then, the two techniques used
(optimal control and reinforcement learning) are described.

2.1 Control problem statement
Starting with an ordinary differential equation (ODE)ẋ(t) = f(x(t)) (t > 0)

x(0) = x0
(2.1)

We are given the initial point x0 ∈ Rn and the function f : Rn → Rn.
The unknown is the curve x(t) : [0,∞)→ Rn, which we interpret as the
dynamical evolution of the state of some “system”. Supposing that f
depends also on some "control" variable u belonging to a set U ⊂ Rm so
that f : Rn × U→ Rn, we get a dynamical system that is subjected on u.
By considering u(t) : [0,+∞)→ U as function of time, we getẋ(t) = f(x(t),u(t)) (t > 0)

x(0) = x0
(2.2)

where the response or trajectory x(·) is subjected on the control u(·).
The goal, is to identify u so that the system follows the target trajectory,
defined as x∗ : [0,∞)→ Rn. There are two different approaches to do so:
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Open Loop: A type of system control that works without any feed-
back. It follows a predefined sequence of inputs u, without taking in
consideration the actual output or system state. By not using a feed-
back, it cannot correct its errors or compensate for any disturbances.

Controller System

Disturbances

r u y

Figure 2.1: Open loop diagram. r is the reference signal, u is the control,
y is the system’s output.

Closed Loop or feedback control: is a type of control that monitors
and adjust continuously its output based on a feedback e = r − ym
from the system that is controlling, reacting to disturbances and
changes in the environment.

Controller System

Disturbances

u

Measurements

r e y

−

ym

Figure 2.2: Closed loop diagram. e is the control error and ym is the
measured output.

While easier to design, open loop control can’t guarantee any form of
stability. Therefore we will focus on closed loop controls, which can also
be divided in:

Classic control: Classic or conventional control, focuses itself on
linear SISO (single-input, single output) system. It works primary in
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the frequency domain, with methods such as Laplace transforms and
transfer function. Common techniques are Root Locus [5] for stability,
Bode and Nyquist Plots to analyze performance and stability and
Proportional-Integral-Derivative1 (PID, [6]) for error correction.

Modern control: It extends to MIMO (multi-input, multi-output)
systems and it works in the time domain. Rather than transfer
function, it leverages on state-space representation and it’s useful for
non-linear system and optimal control application. While classical
controllers are still widely used in practice due to their simplicity
and effectiveness, modern control techniques offer a more general
framework for analyzing and designing controllers for complex, high-
dimensional, or uncertain systems.

In this work we will focus on the latter. Beside optimal control, discussed
in Section 2.2, modern techniques are:

Adaptive control: the control method used by a controller which
must adapt to a system with varying or initially uncertain parameters,
such as a flying aircraft which mass slowly decreases as result of fuel
consumption. A law that can adapt itself to such conditions is needed,
and differently from robust control it doesn’t need a priori informa-
tion about bounds or time-varying parameters: while robust control
guarantees that, under certain circumstances, the law doesn’t have
to be changed, adaptive control designs laws that change themselves.

Robust control: a control method that explicitly deals with un-
certainty, rather than adapting itself. This approach is designed to
function properly under the assumption that uncertain parameters
and/or disturbances are found within some set. Robust control aims to
achieve robust performances and stability in the presence of bounded
modelling errors. The most known example is H∞ loop-shaping [7]

1PID controllers are widely used in classical control due to their simplicity and
effectiveness in many industrial applications: they compute the control input as a
weighted combination of the system’s state error, its integral and its derivative. These
gains can be tuned with various techniques, even machine learning based, in order to
achieve stability, improve transient response and reduce steady-state error.
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which minimizes the system’s sensitivity over its frequency spectrum
and guarantees that the system will not deviate from expected trajec-
tories under disturbances. Sliding mode control (SMC) [8] is another
important technique, which ensures great stability properties while
possessing particular simplicity in its design.

Model Free: with the advent of machine learning, this new type
of control emerged. Model free methods do not require an explicit
mathematical model of the controlled system: it tries to learn control
policy directly from data instead with a trial-and-error approach.
This work will explore this type of methods in Section 2.3.

2.2 Optimal Control
Optimal control is a framework in which the control inputs are designed
to optimize a given objective, while satisfying the system’s dynamics and
sets of constraints. The problem is typically formulated as maximizing
(or minimizing) a cost functional J which measure performance, subject
to the system’s differential equation (2.2) and constraints on trajectories
and control. Different tools are available to solve optimal control prob-
lems, such as calculus of variations, dynamic programming and numerical
optimization. It’s widely applied in fields such as engineering, robotics
and economics, where system must function efficiently, and applications
range from energy-efficient control of industrial processes to autonomous
vehicles’ trajectory planning.

The development of optimal control theory has seen to two major
approaches:

the Pontryagin Maximum Principle [9], which provides necessary
conditions for optimality using the Hamiltonian and adjoint variables

the Hamilton-Jacobi-Bellman Equation, which offers a recursive,
dynamic programming-based approach to determine optimal control
strategies.

Both arises from the calculus of variations and give complementary per-
spectives on how to solve optimal control problems. While PMP is usually
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employed in open-loop solutions, HJB equation naturally suits closed-loop
strategies, making it very useful in modern control and reinforcement
learning and will be therefore explored in this work.

2.2.1 Dynamic Programming and the Principle of
Optimality

Dynamic programming [10] is a powerful technique, primarily used for
optimization problems, used to solve complex tasks by breaking them into
simpler and overlapping subtasks. Its foundation in the contest of optimal
control is given by Bellman’s Principle of Optimality, which states:

An optimal policy has the property that whatever the initial
state and decision are, the remaining decisions must constitute
an optimal policy with respect to the state resulting from the
first decision.

In mathematical terms, this principle leads to a recursive relationship
for an optimal cost-to-go function. To develop this equation, commonly
known as the Bellman equation, let’s recall the dynamical system from
(2.2):

ẋ(t) = f(x(t),u(x, t)), x(t0) = x0, (2.3)

where x(t) is the system state, u(t) is the control input, and f describes
the system dynamics.
The performance of a control input u(·) over the time interval [t0, t1] is
evaluated using the cost functional:

J(u) =
Ú t1

t0
J̃(t,x(t),u(t))dt+K(x(t1)), (2.4)

where J̃ is the running cost and K is the terminal cost. The goal is to
find a control policy u∗ that minimizes J .

2.2.2 The Hamilton-Jacobi-Bellman Equation
To address this minimization, we define the value function:
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V (t,x) = infu[t,t1]
J(t,x,u), (2.5)

which represents the optimal cost-to-go from state x at time t. The
boundary condition for V comes from the terminal cost:

V (t1,x) = K(x) (2.6)

By applying the principle of optimality over a small interval [t, t+ ∆t],
the dynamic programming equation is derived:

V (t,x) = infu[t,t+∆t]

Ú t+∆t

t
J̃(s,x(s),u(s))ds+ V (t+ ∆t,x(t+ ∆t)) (2.7)

Figure 2.3: Principle of optimality in continuous time.

Expanding V (t+ ∆t,x(t+ ∆t)) using a first-order Taylor expansion
and dividing by ∆t, we obtain:

∂V

∂t
+ min

u

è
J̃(t,x,u) +∇V · f(x,u)

é
= 0. (2.8)

This partial differential equation is the Hamilton-Jacobi-Bellman (HJB)
equation, which is a powerful tool for solving optimal control problems as
it characterizes the value function V (t,x) explicitly; both (2.7) and (2.8)
provide necessary and sufficient conditions for optimality.

10
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2.3 Reinforcement Learning
Three basic machine learning paradigms exists:

Supervised Learning: the learning is based on expert-labelled data,
which provide additional information to the algorithm. For instance,
this type of ML could be used to calculate a regression with a set
of data marked so as to correspond to a user-defined mathematical
criterion.

Unsupervised Learning: the data used to learn is not labelled
before-hand. Thus, some criteria have to be defined in order to extract
the features directly from data. This approach is used for example
for clustering and dimensionality reduction.

Reinforcement Learning (RL): aims to train an intelligent agent
to take actions in a dynamic environment in order to maximise (or
minimise) a certain reward (or cost); here the data is not available but
has to be generated by the agent interacting with the environment

The goal of a RL agent is to maximise expected reward over it’s lifetime.
What the agent experiences over it’s lifetime, i.e. rewards, states and ac-
tions defines it’s trajectory τ = (s0, a0, r1, s1, a1, ..., rT−1, sT−1, aT−1, rT , sT ).
The trajectories that an agent might experience depend on what actions
at it takes from any given state st following the policy π; thus the envi-
ronment evolves to a new state st+1 producing a reward rt+1.

Agent

Environment

action
At

St+1

Rt+1

state
St

reward
Rt

Figure 2.4: RL scheme.
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The policy π is a function that maps states into actions and models
the agent’s action selection process; it can be

deterministic: π : S → A, mapping from state space into action
space, the output is a parameter

stochastic: π : S x A → [0,1], the output is a parameter of a
probability density function.

The reward rt is obtained after each action taken by the agent. The goal
of the agent is to minimise the total reward obtained during a trajectory

RT =
TØ
t=0

rt. (2.9)

or its discounted version
RT =

TØ
t=0

γtrt. (2.10)

The term γt ensures that immediate rewards are preferred to future
ones. Furthermore, if the episode has infinite length (i.e. T =∞), this
term ensures that the total reward RT is still finite.

2.3.1 Model Based vs Model Free Reinforcement
Learning

There are two main branches in Reinforcement Learning, which differ if
the agent has access or learns a model of the environment (e.g. something
that can predict rewards and state transitions): if this model exists, the
algorithm is called model-based.
The main advantage of having a model is that it allows the agent to plan
in advance, knowing what would happen for a range of possible choices
and explicitly deciding between its options. Agents can then turn the
results of this planning into learning a policy. One particularly famous
example is AlphaGo [11], which was the first software to win against
a human without handicaps. When a model of the system is somehow
accessible, it can result in a substantial improvement in the efficiency
of sampling compared to model free methods. However, a ground-truth
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model of the environment is usually not available. If an agent wants
to use a model, it usually has to learn it purely from experience, which
creates several challenges as well. The biggest problem is that any bias
in the model can and will be exploited by the agent, resulting in good
performance with respect to the learned model and at least sub-optimal
(if not terrible) performance in the real environment, a phenomena called
over-fitting. Thus, model learning is hard and usually fail to pay off.
Algorithms that don’t use a model are called model-free: while losing the
potential gains in sample efficiency from using a model, they tend to be
easier to implement and tune. This kind of methods will be explored in
the thesis.
There are two main approaches to train agents within model-free RL:
Policy based and Value based algorithms.

2.3.2 Value based algorithm
The first tier of RL algorithm are the value-based one. In order to discover
the best policy, the idea is to learn some sort of function that tells how
good is to take a certain action in a certain state. This function is called
action-value function or q-function Q(s, a), and corresponds for the pair
(s, a) to the expected return taking action a starting from state s, and
from then on following policy π (thus considering the expectation of future
rewards):

Q(s, a) = E
 TØ
t=0

γtrt|s0 = s, a0 = a

 (2.11)

After estimating Q, the optimal policy is then obtained just by selecting
each state the action with the highest Q(s, a) in a setting known as ϵ-
greedy. One of the most known algorithm in this framework is Q-learning
which uses a table such as Figure 2.5 to store Q(s, a) and updates it every
step by using iteratively the Bellman equation:

Q(s, a)← Q(s, a) + α
5
r + γmax

a′
Q(s′, a′)−Q(s, a)

6
, (2.12)

where α is the learning rate, r is the reward obtained, γ is the discount
factor (2.10) and maxa′ Q(s′, a′) represents the highest expected value for
the state s′. This way, it’s possible to learn an accurate estimation of
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the actions’ values without explicitly knowing the environment, while the
optimality is ensured thanks to the Bellman equation.

Figure 2.5: Q-Table update for discrete action and state space.

An advantage is that these type of algorithms are off-policy, which
means that the policy improved during training is different from the one
used for action selection. However, a finite tabular representation works
only for discrete state and actions; when the state and/or action spaces
become continuous it is necessary to discretize, and when they’re too large
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using a table becomes impracticable. Therefore a different representation
for Q is needed, and here function approximators such as Neural Networks
(NN) come to play: Deep Q-Network (DQN, [12]) leverages on a deep
neural network in order to model Q(s, a). DQN training is done by
minimizing the square error between the network output for a pair (s, a)
and the target one computed using Bellman equation. In order to improve
stability and efficiency of training, there are different techniques such as
replay buffer, which stores past transitions for random sampling, and target
network, which is updated more slowly to provide stable targets. These
tricks have made the DQN a powerful tool for solving complex problems
such as those of video games, with results comparable or superior to those
of human beings in some cases.

2.3.3 Policy based algorithm
Policy based methods use stochastic policies, explicitly representing them
as probability distributions πθ(a|s) without modeling the action-value
function. This algorithms optimize the parameters θ either directly by
gradient ascent using the performance objective J(πθ), or indirectly, by
maximizing surrogates that usually give conservative estimates of how
much the performance objective J(πθ) will change after the update. Usu-
ally the optimization is carried out on-policy, which means that the data
used for each update are collected while acting according to the latest
version of the policy. While being computationally effective, this approach
is also dangerous: if the agent learns bad policies, it can be quite difficult
to recovery2 To face this problem a new family of algorithms, called trust
region methods, have been developed. Policy based algorithms are further
discussed in (5.1)

2.3.4 Actor critic framework
In the Actor-critic framework, policy optimization also involves learning
an approximator V ψ(s) for the on-policy value function V π(s). The idea,
represented in Figure 2.6, is to split the learning in two parts:

2This issue is called sub-optimal policy learning.
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the Actor has to model the agent’s behavior. It computes the action
taking in input the state, according to the specific algorithm that is
being used, thus learns either directly the policy or the q-function
Q(s, a).

the Critic has to learn Vx(s) and computes the value function through-
out the training. Its input is the action chosen and the output is the
value, which corresponds to its maximum future reward.

Figure 2.6: Actor-Critic scheme.

Different function approximator can be used to model both the Actor
and the Critic (see Section 2.3.5); the training of the nets is performed
separately and the weights (in this work θ for the Actor and ψ for the
Critic) are updated at each time step. Among the most popular Actor-
Critic methods there are Deep Deterministic Policy Gradient DDPG [13],
Soft Actor-Critic SAC [14], Advantage Actor-Critic A2C [15] and Proximal
Policy Optimization PPO [16].

2.3.5 Neural network and approximators
Depending on the algorithm, different tools are to be used in order to
model the Q-function, the value function or the policy. For instance in
Q-learning, when dealing with simple and discrete state-action space, the
q-table is sufficient but when the state space is continuous, it is necessary
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to employ a more sophisticate way to model it.
For this purpose different function approximators can be used, whereas
artificial neural networks are the most common choice.

ANN: Artificial neural networks are the fundamental building blocks
of deep learning. They are multi-layered networks of neurons, mathe-
matical functions that take some inputs x, weight them and then sum
them up to produce an output y. Mathematically, a neuron reads:

y = f

Ø
i

wixi + b

 (2.13)

The input received through the input layer of each neuron, summed
and weighted, are processed throughout the activation function f
(which usually is a sigmoid or an inverse tangent) to produce the
output. Then, different neurons are put together forming a hidden
layer, that takes in input the output of the previous one (or the
input layer itself) and produces outputs for the next one. Neural
networks are universal "black-box" approximators, since any function
can be modeled and approximated by a neural network with the proper
structure. Thus different structures exist, such as MLP, LTSM, Neural
ODE, and serve different purposes.

b

x1

xi

q
f y

w1

wi... Sum

Activation Function

Output

Figure 2.7: Generic neuron ϕ
(n)
j representation.

MLP: Multilayer Perceptron [17] is a type of feedforward artificial
neural network that possess at least three layers: one input layer,
one or more hidden layers, and one output layer. Each layer is fully
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connected to the next one, which means that each neuron in the
previous layer is connected to every neuron in the next layer. MLPs
use nonlinear activation functions (like ReLU, and sigmoids), and are
able to learn complex mappings between inputs and outputs. They
are widely applied in tasks like regression, image classification, and
time series forecasting.
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Figure 2.8: MLP schematics.

LTSM: Long Short-Term Memory [18] is a recurrent neural network
(RNN) architecture specifically suited to handle sequential data and
overcome the vanishing gradient problem3 that is often encountered
when using traditional RNNs. LSTMs introduce elements like memory
cells and gates (input, forget, and output gates) that are able to
regulate the flow of information, enabling them to remember or
forget specific pieces of information over long time periods. They are
widely used in applications like natural language processing, speech

3It occurs when, through back propagation, gradients become extremely small, making
it difficult for a neural network to update its weights effectively. This often leads to slow
learning or completely stalled training.
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recognition, and time series prediction.

RBF: Radial Basis Function [19], [20] is type of neural network that
uses radial basis functions as activation functions. These networks are
characterized by their simplicity and ability to approximate complex
functions. The RBF network consists of an input layer, a single hidden
layer where the radial basis function is applied, and an output layer.
Each hidden neuron computes a radial basis function based on the
distance between the input and a center vector, and the results are
linearly combined to produce the output. RBF networks are effective
in applications like function approximation, pattern recognition, and
control problems [21].

Gaussian Processes: A non-parametric model used for regression
and classification tasks. It defines a distribution over functions,
allowing for flexible modeling of uncertainties. Each function is
modeled as a collection of random variables, any finite subset of
which follows a multivariate Gaussian distribution. GPs rely on
kernel functions to measure similarity between data points and are
particularly known for providing accurate uncertainty estimates. They
are commonly applied in fields such as Bayesian optimization, time-
series analysis and spatial modeling [22].
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Chapter 3

Test Cases

3.1 Averaged Dynamics Environment
The first test case studies the vertical one dimensional motion of a Flapping-
Wing Micro Aerial Veichle (FWMAV). This enviroment, which will be
referred as Averaged Dynamics Environment (ADEnv) considers the case
of a cycle-averaged motion of the drone, assuming that the natural fre-
quency of the body is much lower than the flapping-wing frequency and
thus neglecting flapping wing effects [23].
A drone of mass m, modeled as a point mass, aims to fly from initial
position x0 to the target position xtarget in the shortest possible time and
then hover in that position. The episode starts from t = 0 and ends at
t = tf .
Within this approximation, the bird is subject only to air drag, gravita-
tional force, and a thrust force that corresponds to the lift generated by
its wings. In general the lift is proportional to the air velocity impacting
the wing; in this case, considering the absence of wind effects, this velocity
corresponds only to the flapping velocity (i.e. rate of change of the flapping
angle ϕ).
The system is governed by the equation

mẍ = Fp −D − Fg (3.1)

where:

Fp = cp = cpϕ̇
2 (3.2)
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D = 1
2Sρẋ

2cD(ẋ) (3.3)

Fg = mg (3.4)
This second-order equation can be rewritten as a first-order system:

ẋ = dx
dt

=
C
ẋ
ẍ

D
=
C
ẋ1
ẋ2

D
. (3.5)

Here x = [x, ẋ]T = [x1, x2]T are the system states and u = [A, f ]T =
[u1, u2]T are the control inputs, where A is the flapping amplitude and
f is the flapping frequency, that drive the flapping angle ϕ and thus
the flapping velocity ϕ̇. The effect of the control inputs, along with the
treatment of the averaged motion, is described in Section 4.2.
The system can be written as

ẋ(t) =
C
ẋ1(t)
ẋ2(t)

D
= f(x1, x2, ϕ̇) =

C
x2(t)

1
m(Fp(ϕ̇)−D(x2)− Fg)

D
(3.6)

Regarding the drag, the drone is approximated as a blunt body with two
wings; therefore the drag coefficient cD = cd,body + 2cd,wing can be defined
as:

cd,body = 24
Rebody

+ 6
1 +

ñ
Rebody

+ 0.4 (3.7)

cd,wing = 7ñ
Rewing

. (3.8)

The body and wing’s Reynolds number are then defined as:

Rebody = |ẋ|Lbody
ν

(3.9)

Rewing = |ẋ|S/R
ν

. (3.10)

where ν is the kinematic viscosity of air, S is the wing surface and R is
the wing span.
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Figure 3.1: 1D motion schematics.

The problem parameters are shown in Table 3.1.

Parameter Value
Mass m 0.05 kg
Air density ρ 1.225 kg m−3

Kinematic viscosity ν 1.460 × 10−5 m2 s−1

Body length Lbody 0.1 m
Thrust coefficient cp 10−3.5

Wing area S 5 × 10−4 m2

Wing span R 0.05 m

Table 3.1: ADEnv simulation parameters.
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3.1.1 Noise
The robustness of the controllers is tested against two different types
of noise: Gaussian (white) noise and OU (Ornstein–Uhlenbeck process)
correlated noise. The noise w(t) is added to the states during simulation
as:

ẋ = f(x + w(t),u) (3.11)
and takes the form:

Gaussian noise: w(t) = η(t) ∼ 1
σ

√
2π exp

3
− (t−µ)2

2σ2

4
where η(t) represents a probability distribution with mean µ = 0 and

standard deviation σ = 1.

OU noise: dw(t)
dt = −θw(t) + σoη(t)

where η(t) follows a Gaussian noise distribution, the parameter θ > 0
is the mean reversion rate (which controls how fast the process reverts to
w(t)) and σo > 0 is the volatility, which scales the magnitude of the noise.

Figure 3.2: Gaussian noise (top) and OU noise (bottom).
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3.2 Full Dynamics Environment
This second test case considers the control of FWMAV which seeks to
move from one position to another in one dimensional motion and comes
from the work of Poletti et al. [24]. Unlike the previous case, this model
accounts for the full flapping-wing dynamics, rather than using an averaged-
motion approximation, and will be therefore referred as Full Dynamics
Environment or FDEnv. Considering the complexity of developing model-
based controllers for such dynamics, this test case is addressed exclusively
by using a model-free control approach, as detailed in Section 5.2.2.
The drone, initially at x0 = [x0, ẋ0] = [0,0] is requested to move to
xtarget = [xtarget, ẋtarget] = [5, 0] as fast as possible, and then hover in that
position by continuously adapting its flapping wing motion.

3.2.1 Flapping motion modeling
The 1D trajectory is characterized by the vector x defined in the ground
frame (x, y, z). A moving frame (the body frame) (x′, y′, z′) is attached to
the body with no rotational freedom. Then, three Euler angles (βw, ϕ, α)
and three reference frames identify the wing kinematics (Figure 3.3 and
Figure 3.4). The wings always flap symmetrically, so the position of
one wing is defined by the other one. The body frame is then pitched
by a stroke plane angle βw(t) along y′ to define the stroke plane frame
(x′′, y′′, z′′).

The wing tips flap in the stroke plane (x′′, y′′), which flaps along the
normal z′′. The third frame (flapping frame (x′′′, y′′′, z′′′)) follows the
rotational motion and identifies the flapping angle ϕ(t) located between
the wing symmetry axis y′′′ and the lateral direction y′′ as in Figure (3.4).
The last frame (ξ, γ, ζ) is the wing-fixed one that results from the pitching
rotation along the wing symmetry axis. Then the pitching angle α(t) is
defined between the ξ chord-normal direction and the stroke plane axis
x′′′. A more comprehensive treatment of the flapping-wing kinematics is
available in [25].

The angles ϕ and α are parameterized by the harmonic functions:

ϕ(t) = Aϕcos(2πft), α(t) = Aαsin(2πft), (3.12)
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Figure 3.3: Drone schematic going from x0 to the final position xtarget.
Reproduced from Poletti et al. [24]

Figure 3.4: Stroke plane that contains three frames (stroke frame
(x′, y′, z′), flapping plane (x′′, y′′, z′′) and the wing-fixed frame (ξ, γ, ζ)),
from Poletti et al. [24]

where at beginning of the stroke (t = 0) the flapping amplitude
is maximal and the stroke plane is perpendicular to the chord plane
(ϕ(t) = Aϕ and α(t) = 0◦). It is assumed that the pitching amplitude
Aα is fixed, as well as the stroke plane angle βw, since the motion is one
dimensional.
As in the previous test case, the flapping amplitude Aϕ and the flapping
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frequency f are selected as control parameters; while in reinforcement
learning terminology the control input equivalent is called action and
would be denoted by a = [Aϕ, f ], we continue to use u = [Aϕ, f ] for
consistency with the previous test case.

As mentioned before, in this test case the action is generated by a
model free controller trained using a reinforcement learning algorithm (see
Section 5.2.2). To make the training process more stable and efficient, it
is necessary to normalize both the states (positions) and control actions
to specified domains. In this implementation, Min-Max normalization is
used for both states and actions:

normalize : [min,max]→ [a, b] (3.13)
denormalize : [a, b]→ [min,max]. (3.14)

For instance the control action u = [Aϕ, f ] is produced by the policy π,
which outputs values in the normalized range [−1, 1]; then, before being
applied to the environment, this output is denormalized into the original
control range. Thus, the Min-Max functions take the form:

normalize(u, umin, umax,−1, 1) = 2 u− umin
umax − umin

+ 1 (3.15)

denormalize(u, umin, umax,−1, 1) = 1
2(u+ 1)(umax − umin) + umin.

(3.16)
Since the policy is stochastic (see Section 5.2.2), the output could exceed
the [−1,1] bounds. Therefore, to ensure valid control action, the action
vector is then clipped:

u =
clip(Aϕ, Aϕ,min, Aϕ,max)clip(f, fmin, fmax)

(3.17)

The state variables are also normalized, and the error state e = [e, ė]
reads:

x− xtarget
xtarget

= e (3.18)

ẋ− ẋtarget
ẋval

= ė (3.19)
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where ẋval = 5 is a value selected for normalization, corresponding to half
of the maximum velocity reached during simulations. Normalizing x0 and
xtarget, we get e0 = [−1, 0] and etarget = [0, 0].

We consider a drone with mass mb = 3g, while the stroke plane angle
βw is fixed at 0◦. The flapping amplitude is bounded within the range
[Aϕ,min, Aϕ,max] = [10◦, 88◦] while the frequency varies in [fmin, f,max] =
[10 Hz, 40 Hz].
The drone’s wings are assumed to be rigid and semi-elliptical, with a span
R = 0.05 m and a mean chord c̄= 0.01 m. The wing roots are offset by
R0 = 0.0225 m from the body’s barycenter, which is also the center of
rotation of the wings. Their motion is decoupled from the body, which
means that the body motion is not influenced by the wing’s inertia. This
assumption simplifies the body dynamics, which is reduced to a function
of the aerodynamic forces produced by the wings and the gravitational
force. It is assumed that the forces act on the body’s barycenter, treated
as a material point as in the previous test case. Considering the one
dimensional motion, the force balance gives again

mbẍ = Fw −mbg −Db (3.20)

where the subscript w refers to wing related quantities and the subscript
b refers to body quantities. The aerodynamic force produced by the
flapping wings is Fw and Db is the magnitude of the drag force acting on
the body, computed as

Db = 1
2ρSbCD,bẋ

2
b (3.21)

where ρ is the air density, Sb = 0.0005m2 is the body’s cross-sectional
area, CD,b = 1 is the body’s drag coefficient, and ẋ is the relative velocity
between the drone body and the wind.
To compute the wing force, the semi-empirical quasi-steady approach of
Lee et al. [26] is followed. This approach provides a reasonable balance
between accuracy and computational cost for the case of smooth flapping
kinematics in near hovering conditions. The approach is based on the
Blade Element Momentum theory (BEMT), which approximates the wings
as blades and partitions them into infinitesimal elements (Figure 3.5). An
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infinitesimal aerodynamic force is produced by each element, then this
force is integrated along the span to get the total lift and drag: for smooth
flapping motions, the flapping-generated forces dominate all the other
physical effects. Hence, the lift Lw and drag Dw expressions are

Lw(t) = 1
2ρCL,w(α)

Ú R

∆R
U2
w(t, r)c(r)dr (3.22)

Dw(t) = 1
2ρCD,w(α)

Ú R

∆R
U2
w(t, r)c(r)dr (3.23)

Figure 3.5: Illustration of a semi-elliptical wing, from Poletti et al. [24]

where CD,w and CL,w are the drag and lift coefficient of the wing and
Uw is the magnitude of the relative velocity between the wing, the body
and the wind. This velocity Uw(r, t,u) = [Uw,x,Uw,y,Uw,z] depends on
the span-wise coordinate r of the wing section (see Figure 3.5) and is
computed as

Uw =

R2(α)


0
0
ϕ̇


×


0
r
0

 + R2(α)R3(ϕ)R2(βw)


ẋ
0
0

 (3.24)

Here the first term is the wing’s linear flapping velocity, while the
second term accounts for the velocity of the body. These terms are then
projected in the wing frame using the rotation matrices:

R2(x) =


cos(x) 0 sin(x)

0 1 0
− sin(x) 0 cos(x)

 R3(x) =


cos(x) sin(x) 0
− sin(x) cos(x) 0

0 0 1

 (3.25)

28



Test Cases

where R2(βw) transform velocities from (x′, y′, z′) to (x′′, y′′, z′′) frame,
R3(ϕ) from (x′′, y′′, z′′) to (x′′′, y′′′, z′′′), R2(α) from (x′′′, y′′′, z′′′) to (ξ, γ, ζ).

The coefficients CL,w and CD,w are modeled similarly to Lee et al. [26]:

CL,w = a sin(2αe) (3.26)
CD,w = b+ c(1− cos(2αe)) (3.27)

where the coefficient [a, b, c] = [1.71, 0.043, 1.595], as in Poletti et al. [24]
and Lee et al. [26] for semi-elliptical wings. This parameterisation models
the influence of the Leading Edge Vortex (LEV), generated at a high
pitching angle due to flow separation and stably attached on the suction
side (as can be seen in Sane [27]). Then the force coefficients CD,w and
CL,w depend on the effective angle of attack defined as

αe = arccos( Uw,z
||Uw||2

) (3.28)

between the relative velocity of the wing Uw and the chord direction ζ.
The forces in equations (3.22) (3.23) are computed in the reference wind
frame (ξ′, γ′, ζ ′), which rotates the wing frame by αe along γ. The drag
Dw is aligned with ξ′ and perpendicular to the lift (Figure 3.6). Finally
the forces are transformed into the wing and then into the body frame
and the force Fw is retrieved.

Figure 3.6: αe on a chord section of the wing, taken from Poletti et al.
[24]

The problem parameters are summarized in Table 3.2
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Parameter Value
Mass m 0.003 kg
Air density ρ 1.225 kg m−3

Body drag coefficient CDb
1.0

Body cross-section area Sb 0.0005 m2

Stroke plane angle βw 0°
[Aϕ,min, Aϕ,max] [10°, 88°]
[fmin, fmax] [10 Hz, 40 Hz]
Wing span R 0.05 m
Mean chord c̄ 0.01 m
Wing root offset R0 0.0225 m

Table 3.2: FDEnv simulation parameters.
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Model Based control
For the model based approach, in order to perform optimal control, a
time-discrete Linear Quadratic Regulator (LQR), initially introduced by
Rudolf Kalman in 1960 [28], will be used. This theory employs a quadratic
cost function and quadratic terms for state and control variables. The
behavior of the controller is shaped by weighting matrices, allowing for
the prioritization of states and control inputs to achieve the desired per-
formance. To compute the controller, the Riccati equation is solved, and
then different techniques are applied to obtain the necessary control gains
for the controller design. The LQR demonstrates its ability to stabilize
unstable systems by minimizing a cost function. However, variations in
system parameters can affect the control gains, prompting the use of opti-
mization techniques to adjust them for stability and optimal performance
despite changes.

4.1 LQR
Consider a discrete-time linear system in state-space form

xk+1 = Axk + Buk (4.1)

with states xk, controls uk and weight matrices Q and R. The finite-
horizon cost function used to stabilize the system at the origin is defined
as:

J =
tfØ
k=t0

xTk Qxk + uTkRuk, Q = QT ⪰ 0,R = RT ≻ 0 (4.2)
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where the first term of the sum penalizes deviation from the desired state,
while the second term penalizes control effort. Following the Bellman
optimality principle, the goal is to minimize the cost-to-go given by

J(xk−1,uk−1) = Jk−1 = xTk Qxk + uTkRuk + J(xk,uk) (4.3)

The optimal cost-to-go has to be quadratic, and it’s chosen to be of the
form

J(xk) = Jk = xTk Pkxk, Pk = PT
k ≻ 0. (4.4)

Plugging (4.4) back into equation (4.3) and considering (4.1) we get

Jk−1 = xTk Qxk+uTkRuk+xTk ATPkAxk+uTkBTPkBuk+2xTk ATPkBuk =

= xTk−1Pk−1xk−1. (4.5)

To find the optimal control u∗
k we minimize (4.5) with respect to uk:

we take its derivative with respect to uk and we set it to zero

2Ruk + 2BTPkAxk + 2BTPkBuk = 0 (4.6)

and we solve it for uk, obtaining the optimal closed loop feedback control
law:

u∗
k = −(R + BTPkB)−1BTPkAxk = −Kxk (4.7)

where K is the gain matrix. Substituting (4.7) into (4.5) we obtain the
discrete time Riccati equation (DARE):

Pk−1 = Q + ATPkA− (ATPkB)(R + BTPkB)−1(BTPkA), Pkf
= 0
(4.8)

where the terminal condition Pkf
= 0 is assigned under the assumption

that there is no terminal cost (i.e. Jkf
= 0). By solving (4.8) for Pk,

it is possible to compute the gain matrix needed for optimal control law u∗
k.

4.1.1 Weight Matrices
One of the major hurdles of LQR control is the selection of weighing
matrices Q and R. The conventional approach deals with a trial and error
approach: for example, by assigning large values to R matrix we can
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penalize the control effort heavily. Similarly, assigning large values to Q
matrix penalizes the deviation from reference states. To choose Q and
R, the simplest choice is Q = I and R = ρI and then to vary ρ to get
something that has good response.
Alternatively, one can use diagonal weights:

Q =


q1

. . .
qn

 R = ρ


r1

. . .
rn

 (4.9)

and then choosing each term qi, ri as a "measure of badness". The un-
derlying principle is to choose each weight such that qix2

i = 1 when xi
equals its acceptable error: this way, all terms in the cost function are
normalized, reflecting equivalent penalty contributions (the same principle
applies to riu2

i = 1 for the control effort).

For instance, considering a system similar to (4.1), we aim to impose
the same relative effort to control different state variables. Considering
the ADEnv, where the state variable x1 represents a position in meters
and x2 a velocity in millimeters per second, and assuming acceptable
errors of 1 cm and 1 mm/s for x1 and x2 respectively, we get:

acceptable error of 1 cm → q1 = 1
(0.01)2 m−2

acceptable error of 1 mm/s → q2 = 1
(0.001)2 (m/s)−2

This ensures each term contributes equally when the state reaches its
respective acceptable error. Moreover, the tuning factor ρ can be used to
adjust the control/state cost balance.
Finally, with the advent of machine learning optimization techniques,
hyper parameters tuning became more effective thanks to algorithms like
Particle Swarm Optimization [29] and Bayesian Optimization [30].

4.2 Trajectory tracking
Suppose we are given a system ẋ = f(x,u) and a feasible trajectory
(x∗,u∗). The goal is to design a controller of the form u = u(x,x∗,u∗)
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such that limt→∞(x− x∗) = 0. This is known as the trajectory tracking
problem; this trajectory (x∗,u∗) can also consist of a single point (such as
in this work) and it’s called operating point.
The tracking problem is very well suited when we are dealing with a non
linear system such as the first environment: in fact, in order to use LQR
theory, it’s necessary to reduce the non linear system in (3.1) to a linear
one of the form xk+1 = Axk + Buk.
Assuming to have an operating point (x∗,u∗), first we define a local
relative coordinate system To design the controller, it is necessary to
construct the error system by defining a local relative coordinate system:

∆x = x− x∗, ∆u = u− u∗ (4.10)

and therefore ∆ẋ = ẋ− ẋ∗ = f(x,u)− f(x∗,u∗). Now, assuming that x̄
is small (so the controller is doing a good job), it’s possible to linearize
the system around (x∗,u∗) using first-order Taylor expansion:

∆ẋ ≈ f(x∗,u∗) + ∂f(x∗,u∗)
∂x

(x− x∗) + ∂f(x∗,u∗)
∂u

(u−u∗)− f(x∗,u∗) =

= Ã∆x + B̃∆u (4.11)
In the most general case, by designing a state feedback controller K(x∗)
for each x∗ (K is a function of the trajectory) we can regulate the system
using the feedback

∆uk = −K(x∗)∆xk ⇒ uk − u∗ = −K(x∗)(xk − x∗) (4.12)

This form of controller is called a gain scheduled linear controller with
feed forward u∗.
If we consider a linear system and an operating point as trajectory, the
matrix K becomes constant. Considering the ADEnv, by choosing as
operating point the hovering position x∗ = xtarget = [2, 0], u∗ = [A∗, f∗]
we get

Ã =
 ∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2


x∗,u∗

=
0 1
0 ∂D

∂x2


x∗,u∗

B̃ =
 ∂f1
∂u1

∂f1
∂u2

∂f2
∂u1

∂f2
∂u2


x∗,u∗

=
 0 0
∂F̄p

∂u1

∂F̄p

∂u2


x∗,u∗

(4.13)
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with

F̄p = cpu
2
1u

2
2 = cpA

2f2 (4.14)
∂F̄p
∂u1

= ∂F̄p
∂A

= 2cpAf2 (4.15)

∂F̄p
∂u2

= ∂F̄p
∂f

= 2cpA2f (4.16)

and

D = 1
2Sρẋ

2cD(ẋ) (4.17)
∂D

∂x2
= ∂D

∂ẋ
= 1

2Sρ
A

2ẋcD + ẋ2∂cD
∂ẋ

B
(4.18)

∂cD
∂ẋ

= cd,body = 24
Rebody

+ 6
1 +

ñ
Rebody

+ 0.4 (4.19)

D = 1
2Sρẋ

2cD(ẋ)

cD = (cd,body + 2cd,wing) reads as follow:

cd,body = 24
Rebody

+ 6
1 +

ñ
Rebody

+ 0.4

cd,wing = 7ñ
Rewing

where

Rebody = |ẋ|Lbody
ν

(4.20)

Rewing = |ẋ|Swing/Rwing
ν

. (4.21)

To obtain the discrete-time matrices we compute
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A = Ãdt+ I
B = B̃dt

(4.22)

and the resulting controller reads

u∗
k = u∗ −K(xk − x∗). (4.23)
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Chapter 5

Model Free control

5.1 Policy gradient
As already said, the goal of a reinforcement learning agent is to maximise
expected reward over it’s lifetime. For a random variable x, the expected
value defines what is expected to happen on average; thus, the expectation
operator E is introduced:

discrete case: E[x] = qN
i=0 xi · pi

continuous case: E(x) = s
x · p(x)dx

which is the average of all possible values that x can assume, weighted by
its probability pi. For the continuous case, the discrete probability pi is
replaced by a probability density function p(x).

The trajectory τ = ⟨s0, a0, r0, s1, a1, r1, . . . , sT ⟩ is defined by the se-
quence of states, actions, and rewards collected during the interactions
between the agent and the environment. The agent selects actions accord-
ing to a policy π(at|st), and the environment responds by transitioning
to a new state st+1 and giving a reward rt; each state st+1 depends on
the previous state st and action at through the environment’s transition
dynamics. Let πθ denote a policy with parameters θ, and J(πθ) denote
the expected finite-horizon1 undiscounted return of the policy over τ

1the episode ends at T, thus each trajectory τ is a finite set
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J(πθ) = E
τ∼πθ

[R(τ)] =
Ú
τ
R(τ) · p(τ |πθ) (5.1)

that is, for continuous policies, the reward expectation over the tra-
jectories. When dealing with discrete-sampled environment (but still
continuous policies), the expectation becomes:

E
τ∼πθ

[R(τ)] = 1
N

NØ
i=1

R(τi) · p(τi|πθ) (5.2)

We want to find the parameters that maximise this objective, and hence
find an optimal parameterisation for π.

5.1.1 Vanilla Policy Gradient
Considering a stochastic policy πθ(a|s), the key idea underlying policy
gradients is to modify the parameters θ in order to push up the probabilities
of actions that lead to higher return, and push down the probabilities of
actions that lead to lower return, until you arrive at the optimal policy.
To do so, we find the parameters θ that maximise the objective J trough
gradient ascent; thus it’s necessary to have some sort of expression of the
gradient ∇θJ with respect to the parameters. This expression is derived
analytically in the appendix (A.1) and reads:

∇θJ(πθ) = 1
N

NØ
i=1
∇θ log πθ(τ)R(τ). (5.3)

The "vanilla" policy gradient, also called REINFORCE (REward Increment
= Nonnegative Factor x Offset Reinforcement x Characteristic Eligibility
[31]), works by updating policy parameters via gradient ascent based on
the policy performance:

θk+1 = θk + α∇θJ (5.4)

Equations (5.3) and (5.4) tell that the policy parameters θ are shifted
in the average direction that increases the log probability of taking a
trajectory proportionally to how large was the reward r(τ) along that
trajectory (times a learning rate α). This way the bigger R for some τ
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was, the more likely those trajectories are to be chosen again.

5.1.2 Exploration vs Exploitation
REINFORCE trains in an on-policy way a stochastic policy, meaning that
it explores by sampling actions according to the latest version of its policy.
The randomness in its action selection depends on both initial conditions
and the training process. Over the course of training, the policy usually
becomes progressively less random, as the update rule encourages it to
exploit rewards that it has already found (even if it may cause to get
trapped in local optima).
However, this algorithm is subject to large variance and doesn’t work in
practice. Considering our test cases (see Section 5.2.2), the total reward
accumulated over each trajectory is always negative. As a result, the
log-probability of any trajectory, regardless of whether it was better or
worse, will be reduced by the updates: this impacts learning, as the
algorithm cannot distinguish between good and bad behaviors by only
accounting for absolute returns.
To avoid this, a baseline b(s) can provide a reference value that allows the
algorithm to assess how good a particular trajectory is relative to others,
rather than in absolute terms:

∇θJ(πθ) = 1
N

NØ
i=1
∇θ log πθ(τ)[R(τ)− b(s)] (5.5)

The baseline b(s) does not depend on the current trajectory (i.e. it depends
only on states) and weights the influence of the trajectory on the gradient,
centering the distribution of rewards across trajectories around zero. A
standard baseline could be the average over trajectories:

b(s) = 1
N

NØ
i=1

r(τi)

Even though we adjust the objective by subtracting a baseline, the ex-
pected value of the gradient is not affected. This is because the baseline
does not depend on the action (only on the state) and, as shown in (A.2),
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its expected contribution to the gradient is zero. This way, the base-
line helps reduce variance without altering the direction of the expected
gradient.

5.1.3 Causality
It is important to consider which rewards an action should be held ac-
countable for: intuitively, a reward obtained prior to the execution of a
given action cannot be attributed to that action. Therefore, the evaluation
of an action’s effectiveness should only consider the rewards obtained from
the time the action is taken onward. Rewards received prior to the action
are not attributable to it and should therefore not influence its likelihood
of being selected in the future.
This leads to a modified version of the policy gradient, where ∇θJ(πθ) is
weighted by the return from the current time step onward:

∇θJ(πθ) = ∇θ
1
N

NØ
i=1

TØ
t=0

log πθ(ait|sit)
 TØ
t′=t

r(ait′, sit′)
 (5.6)

where i is the subscript for the trajectories, t is the timestep in an episode
and the sum over t′ is to take in account only future rewards.
This sum of rewards could be also discounted of a factor γ, thus obtaining
the q-value

Qt = Q(at, st) =
TØ
t′=t

γt
′
r(at′, st′) (5.7)

5.1.4 Advantage Function
Many algorithms used today (PPO, SAC, A2C,...) share the idea of
dividing into value and advantage, forming the family of actor-critic
algorithms. The advantage function is basically an estimate of the relative
value for a selected action and tries evaluate whether a specific action of
the agent is better or worse than some other possible action in a given
state.
Remembering the notions of value function V π and action-value function
Qπ for a policy π, we denote the advantage for the policy πθ as Aπθ : this
advantage can be in general defined as A(s, a) = Q(s, a)− V (s), where Q
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corresponds to the discounted sum of rewards (the total weighted reward
for the completion of an episode as in (5.7) ) and V is the baseline estimate.
The relation between V and Q is:

Q(st, at) = r(st, at) + γV (st+1) (5.8)

If the output of this function is positive (A > 0), it means that the sampled
return of the action is better than the expected return from experience, so
the possibilities of selecting that specific action will increase through the
update rule (for instance Eq (5.5) ); if A < 0, the actual return is worse
and the probability of selecting that action will diminish.
The advantage function is calculated after the completion of each episode
by recording its outcome to evaluate Q (5.7) and V from the value function.
Once Q and V are computed, the advantage function can be calculated
by subtracting the baseline estimate V from the actual discounted return.
However, the baseline corresponds to the value function that outputs the
expected discounted sum of an episode starting from the current state:
because there aren’t rules or models to derive it, it has to be modeled
as well, and thus learned, with some function function approximator,
typically via regression on mean-squared error (5.13). If the learning is
done on-policy, such as in PPO the baseline estimate will be noisy (with
some variance) as the policy function itself.
It’s important to note that there are different ways to calculate the
advantage other than the action-value Q function such as Direct Advantage
Estimator (DAE) [32], Generalized Advantage Estimator (GAE) [33] and
others. Typically, policy gradient implementations compute advantages
estimates using the infinite-horizon discounted return, despite otherwise
using the undiscounted finite-horizon policy gradient equation.

5.1.5 Proximal Policy Optimisation
Actor-critic methods still face two drawbacks:

While reducing the variance with respect to vanilla policy gradient,
the learning process is still ineffective: depending on the learning
rates, it’s usually either too slow or it misses the best policies and
trajectories.
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On-policy algorithm are data-inefficient: the data gathered is lost
every policy update, resulting in slow learning.

In order to improve training stability, a family of algorithms called Trust
Region Methods was developed (such as Trust Region Policy Optimisation,
TRPO [34]), where constraints are imposed on how much the policy can
deviate from the previous one each time is updated. Belonging to this
family, Proximal Policy Optimization (PPO, Schulman et al. [16]) was
introduced by OpenAI in 2017 and was designed to keep the stability and
performance benefits of TRPO while simplifying its implementation and
reducing computational cost, emerging as one of the most widely used RL
algorithms.

At the core of PPO is the idea of constraining policy updates using
a clipped objective function, without explicitly measuring the distance
between policies. Instead of relying on computationally expensive diver-
gence metrics (such as in TRPO), PPO directly limits the change in action
probabilities using a policy ratio, defined as:

r̃θ = πθ(at|st)
πθ,old(at|st)

(5.9)

which compares the likelihood of taking action at in state st under the
new and old policies. Then, this ratio is kept in a certain proximal range
defined by a parameter ϵ: to ensure that r̃θ does not deviate too far from
1 (thus preventing large and potentially harmful updates), PPO clips it
within the bounded range [1− ϵ,1 + ϵ]. The goal is to avoid large step in
the parameter space that may overshoot regions of quick improvement
and enter areas where the policy becomes degenerate: since the policy
is used to sample training data (i.e. on-policy learning), recovery from
such regions could be difficult. Instead, taking smaller steps increases the
chances that the policy continues to improve monotonically.
To implement this, two surrogate objective functions that approximate
the policy improvement are introduced:

surrogate 1: Jsurr1 = r̃θA
πθ(st, at) (5.10)

surrogate 2: Jsurr2 = clip(r̃θ,1− ϵ, 1 + ϵ)Aπθ(st, at). (5.11)
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These represent the product between the advantage Aπθ and either the
policy ratio r̃θ or its clipped value. By comparing the updated policy to
the previous one, the clipped objective JCLIP (θ) accounts the minimum
between these two surrogates and corresponds to its expected value:

JCLIP (θ) = E[min(r̃θAπθ(st, at), clip(r̃θ,1− ϵ, 1 + ϵ)Aπθ(st, at))] (5.12)

By choosing the minimum value between the two surrogates, we are taking
small steps only when the advantage suggests improvement: if we are
fixing an issue with the policy where the ratio is smaller than 1 (which
means that the old policy assigns a greater probability to a beneficial
action than new one) the step is unbounded and we can move as far as
indicated by the calculation in the negative direction.
As for the value network that models V π, the loss function often corre-
sponds to the mean squared error (MSE) between actual and predicted
values: recalling the definition of Qt (5.7), this function reads

JV (ψ) =
TØ
t=0

(Qt − V π
t (ψ))2. (5.13)

During training, the overall objective function is usually the linear com-
bination of three term: JCLIP from 5.12, JV from equation 5.13 and an
entropy term S added to promote exploration (see Schulman et al. [16]).

5.2 Radial Basis Function

In this work Radial Basis Function (RBF) will be used as function ap-
proximator, which takes the form of ŷ(x) = qN

i=1 ϕi(x− xi)wi +w0 where
ϕ is the so called radial basis function.
An approximator of this kind can be seen as a simple neural network,
consisting in only one hidden layer and one output layer:
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Figure 5.1: RBF neural network.

This type of function is radial in the sense that it depends only on the
distance from the point in which is collocated, called center; the distance
is usually Euclidean distance (|| · ||2), but other metrics can be used. The
bases ϕk are used as collection {ϕk}k = Φ forming a basis for a function
space, hence the name. They are particularly useful because, other than
being infinitely differentiable, they are easier to implement and understand
compared to other neural architectures.
Multiple bases can be used, some examples are:

ϕ(r) =
ñ

1 + (ϵr)2 Multiquadratic Radial Basis

ϕ(r) = 1
1+(ϵr)2 Inverse Radial Basis

ϕ(r) = 1√
1+(ϵr)2

Inverse Multiquadratic Radial Basis

ϕ(r) = exp(−ϵr2) Gaussian Radial Basis

ϕ(r) = exp(−(ϵr)2)((ϵr)2 + 3(ϵr) + 3) Matern C4 Radial Basis
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where r is the radius (i.e. ||x− xc||2) and ϵ is a positive constant. Four of
them are represented in Figure 5.2.

Figure 5.2: RBF with different kernels.

To model the policy in this work, the Gaussian RBF was selected. In
particular, considering the bi-dimensional state space of our test cases,
the basis reads

ϕ(x− xi) = exp( −ϵ2(x− xi)2 ) = e−( ϵ2x(x−xi)2+ϵ2ẋ(ẋ−ẋi)2 ) (5.14)

where ϵ,x,xi ∈ R2 , x = [x, ẋ]T ; xi = [xi, ẋi]T are the centers distributed
along the two dimensions and ϵ = [ϵx, ϵẋ] is the shape parameter (or
sensitivity) with respect to each dimension. In Figure 5.3, it’s shown the
influence of ϵ since all the other parameters (centers, weights) are the same.

To define the policy, first we define the bounds for each dimension
(xmin, xmax, ẋmin and ẋmax). Now, considering the sets x = [xmin, ..., xmax] ⊂
Rn and ẋ = [ẋmin, ..., ẋmax] ⊂ Rm, the elements of the product x× ẋ ⊂
Rn×m constitute the centers of the multidimensional RBF (represented
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Figure 5.3: 2D gaussian RBF, influence of shape parameter ϵ.

in Figure 5.3).
The equation for the RBF network reads as equation (5.15):

ŷ = w0 +
nØ
i=1

mØ
j=1

ϕ(x− xij)wij = Φ(x)w (5.15)

Φ(x) =


1 ϕ(x− x11) ϕ(x− x12) ϕ(x− x13) . . . ϕ(x− x1n)
1 ϕ(x− x21) ϕ(x− x22) ϕ(x− x23) . . . ϕ(x− x2n)
... ... ... ... . . . ...
1 ϕ(x− xm1) ϕ(x− xm2) ϕ(x− xm3) . . . ϕ(x− xmn)



w =


w01 w02 w03 . . . w0m
w11 w12 w13 . . . w1m

... ... ... . . . ...
wn1 wn2 wn3 . . . wnm


w0 =

mØ
i=1

w0i

5.2.1 ADEnv - RBF Implementation
In this test case, the policy πθ = πθ(x) = [πA(x), πf(x)] is represented by
two separate RBF networks of the form (5.15), one for each control input
(amplitude and frequency). Thus

u(x) = πθ(x). (5.16)
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The two RBFs share the same number of centers. The centers’ position xi,
sensitivities ϵ and weights w \ {w0} (excluding the bias term w0) of each
RBF are learnable parameters, and the bias term w0 is fixed to stabilize
the learning process. The parameters are presented in the Results section,
in Table 6.1.

As mentioned before, in the averaged test case we design the model
free controller by direct optimization using the Adam optimizer. This
optimizer was developed by Kingma and Ba [35] and combines the ben-
efits of momentum and adaptive learning rates. It estimates the mean
and the uncentered variance of the gradients, along with bias correction
terms. It also incorporates momentum by using an exponentially decaying
average of past gradients, improving convergence stability and speed in
high-dimensional, noisy, and sparse settings. In particular, in this work we
used the PyTorch’s version, which incorporates the differentiation chain
rule through automatic differentiation system (Autograd), enabling stable
and efficient parameter updates.

Finally, the reward function used during optimization penalizes both
the distance and velocity errors from the target state and is defined as:

R = −
TØ
t=0
||∆x||22 + 0.01||∆ẋ||22 (5.17)

where the coefficient (0.01) weights the importance of the velocity penalty.

5.2.2 FDEnv - RBF Implementation
While the smooth dynamics of ADEnv allowed the use of direct optimiza-
tion via Adam, the dynamics of FDEnv are significantly more complex.
This environment exhibits higher nonlinearity, temporal dependencies and
explicit frequency-related effects, which make it poorly suited to direct
optimization methods that typically perform better in static or smooth
settings. In the FDEnv, the absence of the averaging assumption exposes
the flapping frequency effects, which not only increase the system’s dy-
namical complexity but also introduce a rapidly varying control input. As
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a result, the control process becomes highly dynamic and less suited to
the method used in the simplified test case.
By contrast, reinforcement learning algorithms are better equipped to
handle such challenges. Their ability to manage stochasticity, delayed re-
wards and complex time-dependent interactions makes them more suitable
for environments like FDEnv, where these properties are more pronounced.

As the previous test case, the policy πθ = πθ(x) = [πA(x), πf(x)] is
again represented by two separate RBF networks of the form (5.15).
To assess the capabilities of this policy approximator, training was first
attempted using the simplest policy gradient algorithm (REINFORCE,
see Section 5.1.1). The goal was to determine whether the simplicity
of the RBF architecture would allow such a basic algorithm to solve
the control problem. Due to unsatisfactory results, the approach was
upgraded to a minimal implementation of Proximal Policy Optimization,
as described in Algorithm 1. This second method essentially corresponds
to an actor-critic implementation of REINFORCE, enhanced by a clipped
surrogate objective to improve training stability.
The reward function for this environment, is defined as:

R = − 1
T

TØ
t=0

rt = − 1
T

TØ
t=0
||et||22 + 0.01||ėt · h(xt)||22 (5.18)

where h(xt) is a Gaussian function with mean xf and standard deviation
0.71

h(xt) =
x2
target

2 exp
−1

2

A
xtarget − xt

0.71

B2 (5.19)

This function is null when far from the target position and unitary when
the drone reaches it: the role of this second term is to penalize large
velocities once the goal is approached by the drone.
The discounted reward-to-go to compute the advantage is defined as

R̂t = − 1
T

TØ
k=t

γkrk with [0, ..., t, ..., T ] (5.20)

(note that for t = 0, R̂0 = R corresponds to the reward for the whole
trajectory).
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Now, considering a critic network Vψ, the algorithm reads as shown in
Algorithm 1.
Since this algorithm deploys a stochastic policy, the output of each RBF

Algorithm 1 Policy gradient algorithm
1: Input: initial policy parameters for policy θ0 and value function ψ0
2: for k = 0, 1, 2 ... do
3: Collect a set of trajectories Dk = {τi} by running the policy
πk = π(θk) in the environment

4: Compute reward-to-go R̂t and policy ratio r̃θ
5: Compute advantage estimate using the current value function Vψk

:
At = Vψk

(st)− R̂t

6: Compute surrogate losses Jsurr1 and Jsurr2
7: Compute clipped objective

JCLIP (θk) = E[min(Jsurr1 , Jsurr2 )]

8: Update policy parameter θk via Adam gradient ascent on JCLIP (θk)
9: Fit value function parameter ψk via regression on mean-squared

error (gradient descent):

ψk+1 ← arg min
ψ

1
T |Dk|

Ø
τ∈Dk

TØ
t=0

1
Vψk

(st)− R̂t

22

end for

defines the mean of a Gaussian distribution with variance σ2. Actions are
thus sampled from the distribution

u(x) ∼ N (πθ(x), σ2I) (5.21)

and together, the two RBFs form the Actor Network; similarly to the
previous test case, they possess same number of centers and weights. The
Critic Network is also implemented as an RBF network with parameters ψ,
which takes in input the state and outputs the value function V π = Vψ(x).
All the parameters are trainable except the bias terms w0, as depicted in
Table 6.2.
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Simulations and Results

6.1 ADEnv
The goal of the first part of this project is to compare the performance
of the model based and model free controllers in the first simplified
one dimensional dynamical system (ADEnv). This problem involves the
control of the micro-drone assumed to be a dimensionless point mass,
subject to lift/thrust, air drag and gravitational force.

6.1.1 Model Based simulation
The operating point (x∗,u∗) is chosen to be ([2, 0]T , [A∗, f∗]T ) where

A∗ = 60◦ f∗ = 40 Hz. (6.1)

and thus the controller tries to stabilize the error system (∆x,∆u) =
(x− x∗,u− u∗) at (0,0).
The matrices A and B come from equations (4.13) and (4.22), while Q
and R are chosen according to the diagonal weight rule (4.9):

Q =
C
10 0
0 0.1

D
R = 0.01

C
10 0
0 5

D
(6.2)

Since we are considering an operating point, the LQR gain K is constant
throughout the trajectory and is obtained by solving the algebraic Riccati
equation with the set of matrices (A,B,Q,R).
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Figure 6.1 shows the trajectory of the model based simulation in the
error coordinate system (∆x0 = [−2,0]T and ∆x∗ = [0,0]T ). As expected,
the controller stabilizes the system around the operating point within
approximately 1 s and then hovers at nominal conditions. The controls
follow an optimal trend: they start at a higher values, decrease to a
minimum, and then return to nominal conditions. The step-wise behavior
of the controller is due to the fact that frequency and amplitude change
only at the end of each cycle and therefore remain constant throughout it.

Figure 6.1: Model Based Trajectory

In Figure 6.2 the controller’s performance can be further appreciated,
by plotting each control input (∆u = u − u∗) over state variable. The
general trend is the same: the controller manage to stabilize the system
at (∆x,∆u) = (0,0), successfully completing its task.
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Figure 6.2: Control input ∆u over state ∆x

6.1.2 Model Free simulation
The model free controller uses two RBFs to model the policies [πA, πf ],
initialized as shown in Table 6.1 where Init. indicates the initial value
and LR indicates the learning rate. Here, the two biases A0 and f0 are
the same as u∗ = [A∗, f∗]T used in the model based simulation.

As mentioned earlier, in the ADEnv environment training involved
directly optimizing the RBFs parameters using the Adam optimizer (with
learning rates listed in Table 6.1), while varying the initial conditions (i.e.
starting points x0 = [x, 0]) to encourage broader exploration and optimize
over a wider range of positions. Since the simulations start from different
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πA πf

Parameter Init. LR Init. LR
centers along x n = 100 0.25 · 10−4 n = 100 0.25 · 10−4

centers along ẋ m = 100 0.25 · 10−4 m = 100 0.25 · 10−4

ϵx 2 10−5 2 10−5

ϵẋ 2 10−5 2 10−5

w 0 deg 0.5 · 10−3 0 Hz 0.5 · 10−3

w0 A0 0 f0 0

Table 6.1: ADEnv RBF Parameters

positions, presenting a standard learning curve would not be meaningful,
as the rewards after each episode (which depend on the trajectory) vary
significantly. The training process is therefore illustrated in Figure 6.3,
where the final distance reached (on the y-axis) is plotted against the
number of episodes. The first quarter of optimization shows the controller
is still exploring and adapting, while after approximately 50 episodes, it
begins to stabilize. Convergence to the target distance of 2 m at the end
of each simulation is achieved after around 150 episodes.
After training, the RBF policies resemble those in Figure 6.4.

It’s important to note that here the control inputs πA and πf are
absolute values, unlike the ∆u used in the MB simulation. The biases A0
and f0 are used only to initialize the optimization: to compute F̄p as in
equation (4.14), we use directly u(x) = [πA(x), πf(x)].
The model free trajectory in Figure 6.5 (in the error coordinate system
∆x0 = [−2,0]T and ∆x∗ = [0,0]T ) shows the drone reaching its target and
hovering, while Figure 6.6 displays the control variables against states.

Similarly to the model based case, the controller manages to stabilize
the system to the desired point.
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Figure 6.3: Final distance over episode

Figure 6.4: ADEnv: trained RBF policies
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Figure 6.5: Model Free Trajectory

6.1.3 Comparison
Both controllers produce similar trajectories, reaching the target in ap-
proximately 1 s and stabilizing the system in similar times. The model
free controller optimized a policy that approximates the model based
optimal one, though small differences exist:

The model free controller shows more variation in the control inputs,
especially in the early phase.

The hovering conditions differs: considering the equation of F̄p (4.14),
infinitely many pairs of [A, f ] can produce the thrust needed to hover
(i.e. balancing drag and gravitational force), and during training one
such pair is randomly selected. Furthermore, while the LQR cost

55



Simulations and Results

Figure 6.6: Control input π over state x

function (4.2) penalizes both states and control inputs, the model-free
reward function (5.17) considers only the state variables.

Noise robustness was also tested by introducing white (Gaussian) and
correlated (OU) noise. The noisy input signal was generated by evaluating
u(x + w) to produce the control, where w is the noise, as explained in
Section 3.1.1. In the discrete-time setting, the noise is defined as:

White: wt = σ0η

Correlated: wt+1 = −θwt + σ0η
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All simulations were conducted by increasing the parameter σ0, with 20
episodes executed for each value of σ0, and evaluating the mean reward
at the end to assess performance.
The reward function used in this test is defined as

R =
TØ
t=0
∥∆x∥2

2 + 0.01∥∆ẋ∥2
2 (6.3)

where a lower reward indicates closer adherence of the controller to the
reference trajectory.
Figure 6.7 illustrates the results with white noise, showing that the model
based controller exhibits higher robustness and lower initial cost compared
to the model free.

Figure 6.7: White noise robustness

Figure 6.8 shows the controllers’ behavior with correlated noise: again,
the trend is similar and the model based controller outperforms the model
free one.

6.2 FDEnv
The goal of this section is to evaluate whether the RBF policy can
learn to control the more complex environment using non-state-of-the-art
algorithms such as REINFORCE and its enhanced version (Algorithm 1).

The RBF parameters are listed in Table 6.2. Using the normalizing
function defined in (3.15), the bias terms A0 and f0 correspond to a
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Figure 6.8: Correlated noise robustness

πA πf V π

Parameter Init. LR Init. LR Init. LR
centers along x n = 200 0.25 · 10−5 n = 200 0.25 · 10−5 n = 200 0.25 · 10−5

centers along ẋ m = 200 0.25 · 10−5 m = 200 0.25 · 10−5 m = 200 0.25 · 10−5

ϵx 1.43 10−5 1.43 10−5 1.43 10−4

ϵẋ 1.43 10−5 1.43 10−5 1.43 10−4

w 0 0.25 · 10−4 0 0.25 · 10−4 0 10−4

w0 A0 0 f0 0 0 0

Table 6.2: FDEnv RBF Parameters

normalized amplitude of 50◦ and normalized frequency of 30 Hz:

A0 = normalize(50, Aϕ,min, Aϕ,max)◦

f0 = normalize(30, fmin, f,max)Hz.

As before, the learnable parameters are the shape factors ϵ, the centers xi
and the weights w. Due to the complexity of this environment, training
with varying initial positions resulted in poorer performance and slower
convergence: this is likely due to the on-policy nature and naivety of
the algorithm, which struggled to discover effective action sequences in
a consistent way, leading to high variance in the returns. Thus, training
was conducted with a fixed initial position. The goal is to reach the target
point xtarget = [5, 0] starting from x0 = [0, 0], which after normalization
and in the error coordinate system read etarget = [0, 0] and e0 = [−1, 0].
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6.2.1 Training and Results

The first algorithm tested was Vanilla Policy Gradient. Despite the sim-
plicity of the RBF approximator, the agent did not succeed to learn due
to the high variance of policy gradient updates: Figure 6.9 shows how
even after 1000 episodes, training did not even start to stabilize. This
behavior is likely to the fact that the rewards were always negative, causing
the probability of each action to be consistently reduced (see Section 5.1.2).

Figure 6.9: REINFORCE unsuccessful training

Therefore, Algorithm 1 was employed. Figure 6.10 shows the learning
curve over 2500 episodes. It can be observed that after approximately
1500 episodes convergence occurs, with limited performance improvements
in the remaining iterations.
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Figure 6.10: Learning curve - 2500 episodes

Although training was relatively slow and sample inefficient, the goal
was not efficient training but rather to test the effectiveness of RBF-based
policy representation. Several factors contributed to the long training
time:

The algorithm used is relatively naive, as it does not consider entropy
regularization, experience buffer replay, or batch learning.

The learning process was on-policy, making it intrinsically sample
inefficient.

Hyper-parameter tuning was not performed: given the simplicity of
RBFs, a trial-and-error approach was sufficient to obtain satisfactory
results. However, it is well known that implementation details and
parameters such as learning rates significantly impact training stability
and convergence speed (see Engstrom et al. [36]).

In the ADEnv, due to the averaging effect, the influence of the
flapping frequency appears in the system’s equation only through
the control input. In contrast, the FDEnv explicitly models the
instantaneous wing forces (directly dependent on flapping frequency)
which continuously influence the drone’s trajectory during each cycle.
As a result, changes in frequency have a much stronger and direct
impact on the FDEnv’s dynamics and influence more the learning
process.
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The evolution of the policy during training, together with the corre-
sponding trajectory, is presented in Section 6.2.2, where Figure 6.18 shows
the final trained policy. A trajectory from a 2.5 s simulation is presented in
Figure 6.11, demonstrating successful target reaching and stable hovering
at almost null velocity. As expected, the control inputs exhibit a behavior
similar to that observed in the ADEnv environment (Figure 6.5): they
start at higher values, gradually decrease and eventually stabilize during
hovering. Figure 6.12 shows the Action-State relationship where, again,
the controller manage to stabilize the drone near the target position.

Figure 6.11: Trajectory after training

6.2.2 RBF updates
This section illustrates the evolution of RBF policies across different
episodes within a single training session. Beneath the RBFs, the curve
shows the drone’s phase-space trajectory in the error coordinate system
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Figure 6.12: Control input π over state x

(e0 = [−1, 0]T and etarget = [0, 0]T ); black dots indicate the end of each
flapping cycle, when a new action is generated by the policy πθ. It can be
appreciated how similar are Figures 6.17 and 6.18, especially in terms of
trajectory.
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Figure 6.13: RBFs initialization

Figure 6.14: RBFs after 300 episodes
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Figure 6.15: RBFs after 500 episodes

Figure 6.16: RBFs after 1000 episodes
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Figure 6.17: RBFs after 1500 episodes

Figure 6.18: RBFs after 2500 episodes
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Robustness

Robustness was tested using the same method as in the first test case:
noise disturbances were introduced, and the agent’s performance was
assessed under these conditions. Results are depicted in Figure 6.19:

Figure 6.19: Second test case robustness: white noise (on the left) and
OU noise (on the right)

While increasing the σ0 parameter, the controller manages to obtain
satisfactory result, without significantly compromising the performances.
To further test generalization capabilities, considering that training was
performed starting from the same point, the trained policy was also
evaluated from different initial positions x0 = [x0, ẋ0]T :

x0 =
IC
−1.5

0

D
,

C
0.7
0

D
,

C
2.2
0

D
,

C
3.7
0

D
,

C
6.3
0

D
,

C
7.1
0

DJ
(6.4)

Figure 6.20 presents the corresponding trajectories in the nominal coor-
dinate system, where the controller successfully reaches to the target in
all cases. Simulations lasting 8s were required for initial states above the
target to reach it, due to constraints on flapping amplitude (Aϕ,min = 10◦)
which prevented immediate free fall and thus required more time.
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Figure 6.20: Trajectories with different initial points
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Chapter 7

Conclusions

This thesis explored the applicability of model free controller, whose policy
is modeled using Radial Basis Functions, to the one dimensional motion
of Flapping-Wing Micro Air Vehicles. First, a cycle averaged model
was developed, allowing the model free optimization of the RBF and its
comparison with traditional LQR controller. Then, with a more complex
model, the RBF policy was successfully trained using basic reinforcement
learning algorithms.

The simulations demonstrate that RBF-based policies can effectively
learn control strategies for complex environments, even when directly
optimized or trained using basic policy gradient methods.
Hyper-parameter selection was relatively straightforward: given the sim-
plicity of the function approximator and knowing its physical meaning,
selecting bias terms and weight magnitudes was intuitive.

In the averaged dynamics test case, the RBF controller successfully
optimized nearly-optimal policy after only 150 episodes, achieving similar
performances to the model based controller.

In the more challenging non-averaged (full dynamics) test case, the
policy gradient algorithm converged after 1500 episodes, where a model
based approach such as LQR would have been troublesome to implement,
considering the non-linearities and modeling problems.
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Conclusions

The controllers achieved stable hovering behavior and demonstrated
robustness against both noise and varying initial conditions. However,
performance is limited due to the inefficiency of the learning algorithm,
and the controller is not yet suited for real world application. Future
improvements may include:

Entropy regularization, to reduce variance

Adaptive learning rates, to achieve faster convergence

Hyper parameter tuning

State-of-art, sample efficient reinforcement learning algorithms inte-
gration.

Nonetheless, these result confirm that RBFs can serve as a viable alter-
native to neural networks for reinforcement learning in low-dimensional
control tasks.

69



Appendix A

Appendices

A.1 Policy Gradient Theorem
The policy gradient theorem gives a fundamental tool in reinforcement
learning, describing how the expected return’s gradient depends on the
policy parameters.

Considering a stochastic policy πθ(a | s) parameterized by θ, with states
s and actions a, the objective function is the expected return:

J(θ) = E
τ∼πθ

[r(τ)] =
Ú
τ
pθ(τ)R(τ)dτ., (A.1)

where pθ(τ) is the probability distribution over trajectories induced by
the policy and environment dynamics1.

Differentiating J(θ):

∇θJ(θ) = ∇θ
Ú
τ
pθ(τ)R(τ)dτ. (A.2)

Using the identity

∇log(x) = ∇x
x

(A.3)

we get

1thus the probability of a trajectory τ = (s0, a0, s1, a1, . . . , sT , aT ) under the policy
πθ
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∇θpθ(τ) = pθ(τ)∇θ log pθ(τ) (A.4)

and, by plugging it back into (A.2) and exchanging integration and
derivation

∇θJ(θ) =
Ú
τ
pθ(τ)R(τ)∇θ log pθ(τ)dτ. (A.5)

Rewriting as expectation:

∇θJ(θ) = E
τ∼πθ

[R(τ)∇θ log pθ(τ)] . (A.6)

we now expand pθ(τ) in terms of state-action transitions

pθ(τ) = p(s0)
T−1Ù
t=0

πθ(at | st)p(st+1 | st, at), (A.7)

we get2

log pθ(τ) = log p(s0) +
T−1Ø
t=0

log p(st+1|st, at) +
T−1Ø
t=0

log πθ(at|st) (A.8)

and, differentiating with respect to θ:

∇θ log pθ(τ) =
T−1Ø
t=0
∇θ log πθ(at|st) +

T−1Ø
t=0
∇θ log p(st+1|st, at). (A.9)

Now, considering that the environment dynamics does not depend on θ
(thus also p(st+1|st, at)):

∇θ log p(st+1|st, at) = 0 (A.10)

∇θ log pθ(τ) =
T−1Ø
t=0
∇θ log πθ(at|st). (A.11)

Substituting (A.11) into (A.6) leads to the standard policy gradient
theorem:

2using log(ab) = log(a) + log(b)
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∇θJ(θ) = E
τ∼πθ

T−1Ø
t=0
∇θ log πθ(at|st)R(τ)

 . (A.12)

Having an expression for the gradient, it’s now possible to leverage on
standard gradient based optimization techniques (such as gradient ascent
for REINFORCE) to optimize policy parameter. It’s important to note
also that the theorem (such as the algorithm) is agnostic to the function
approximator used to model πθ(a | s), which makes it a very powerful
tool.

A.2 Introducing a baseline b

In order to reduce variance in policy gradient estimates, it is possible to
introduce a baseline function b = b(s); it is important that this baseline
depends only on the states and not on the actions. To prove that intro-
ducing b does not change the results of the policy gradient theorem, we
start from (A.12) and we substitute R(τ) with R(τ)− b(s) obtaining the
modified expectation

∇J(θ) = E
τ∼πθ

T−1Ø
t=0
∇θ log πθ(at|st)(R(τ)− b)

 . (A.13)

By being the expectation operator linear, it is possible to rewrite it as:

∇J(θ) = E
τ∼πθ

T−1Ø
t=0
∇θ log πθ(at|st)R(τ)

− E
τ∼πθ

T−1Ø
t=0
∇θ log πθ(at|st)b


(A.14)

where first term is the original policy gradient. Focusing on the second
term, considering that b does not depend on action at, it’s possible to
factor it out:

E
τ∼πθ

T−1Ø
t=0

b∇θ log πθ(at|st)
 = b E

τ∼πθ

T−1Ø
t=0
∇θ log πθ(at|st)

 . (A.15)

Now, remembering (A.11) we get that the second term reads
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b E
τ∼πθ

[∇θ log pθ(τ)] . (A.16)

By definition of expectation

b
Ú
τ
pθ(τ)∇θ log pθ(τ)dτ (A.17)

and, remembering the Log-derivative rule in (A.4) we obtain

b
Ú
τ
∇θpθ(τ)dτ = b∇θ

Ú
τ
pθ(τ)dτ.3 (A.18)

By definition of probability distribution, sτ pdτ = 1 therefore

b∇θ
Ú
τ
pθ(τ)dτ = b∇θ1 = 0 (A.19)

and the second term vanishes

E
τ∼πθ

T−1Ø
t=0
∇θ log πθ(at|st)b

 = 0, (A.20)

obtaining the same result as (A.12). Thus, introducing a baseline does
not change the expectation of the policy gradient, while helping to reduce
its variance.

3exchanging integration over τ and derivation over θ
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