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Abstract 

Real-time Hardware-in-the-Loop (HIL) simulation is crucial for the comprehensive testing and 
validation of automotive Electronic Control Units (ECUs) before they are integrated into a 
vehicle. Robust HIL environments can easily interface with ECUs over Ethernet; however, 
critical components like Battery Management Systems (BMS) and sensors/actuators often rely 
on short-distance, low-latency protocols such as SPI. This thesis presents the design, 
implementation, and verification of a real-time communication bridge between Ethernet-based 
UDP protocols and full-duplex SPI interfaces, addressing the challenge of integrating such SPI-
based devices into Ethernet-based HIL simulators. Implemented on STM32F207ZG Nucleo 
boards configured in a Master-Slave topology, the Master board interfaces with an external HIL 
environment (dSPACE or a Python-based prototype) via Ethernet (UDP protocol). The Master 
board translates received UDP payloads into SPI transactions for the Slave board. The Slave 
board processes these SPI commands/data from the Master and returns the corresponding 
response. 

The development started with a Python-driven UDP-SPI echo prototype and upgraded into a 
reliable communication system, along with the key features being a custom SPI protocol with 
robust framing, software-based CRC-8 for data validity, and support for variable-length/type 
data transactions. The system utilizes DMA-based SPI transfers to achieve a deterministic 1-ms 
cycle time for SPI transactions. An important enhancement was the implementation of circular 
DMA on the Slave board for continuous data handling and response generation. On the Master, 
SPI transactions were triggered by incoming UDP packets and are supported by a polling 
mechanism for continuous data streams from the Slave. 

The implemented Ethernet-SPI Bridge was successfully integrated with the dSPACE 
SCALEXIO platform. Distinct Simulink models for echo verification and command-based 
sensor streaming were configured via dSPACE ConfigurationDesk. These models were 
deployed as real-time applications and controlled using dSPACE ControlDesk to generate UDP 
dynamic values or specific commands and subsequently receive/display the corresponding echo 
data or emulated sensor responses from the STM32 system. This hardware-software co-
simulation showed effective command handling for various sensor modes (Idle, Speed, Gyro, 
Accel) and accurate real-time data feedback to the HIL environment. 

The resulting solution demonstrates a stable and responsive Ethernet-SPI bridge capable of 
sustained 1-ms data exchange in the context of HIL simulation, with error detection and recovery 
mechanisms. This research provides a practical and flexible framework for real-time sensor 
emulation that can be directly applicable to industrial automotive HIL testing and lays a strong 
foundation for future integration with automotive ECUs and the development of ISO-compliant 
communication modules. 
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Introduction 

1.1 Context and Motivation 

Over the past few decades, the automotive industry has made vast steps in the improvement of 
communication between Electronic Control Units (ECUs), sensors, and actuators. In modern 
systems, all these must operate in tightly coordinated timing frameworks, as many of them are 
communicating across both physical and logical layers. Serial Peripheral Interface (SPI) is widely 
used for the short-range communication between microcontrollers and sensors/actuators because 
of its simplicity and low-latency characteristics. However, in distributed automotive systems and 
especially in autonomous electric vehicles, the communication generally begins in Ethernet or 
User Datagram Protocol (UDP)-based protocols at higher system levels and must be translated into 
lower-level bus protocols such as SPI or Controller Area Network (CAN) at the embedded layer. 

Hardware-in-Loop (HIL) platforms such as dSPACE SCALEXIO play a vital role in the 
development and testing of such systems. At Kineton s.r.l., for instance, there is extensive 
utilization of the dSPACE HIL simulator, where configuring Ethernet-based test scenarios is a 
well-established practice. However, a growing future requirement involves the comprehensive 
testing of various automotive Electronic Control Units (ECUs), such as Battery Management 
Systems (BMS), which predominantly communicate via the SPI protocol. Currently, directly 
interfacing numerous SPI-based ECUs with the existing Ethernet-centric HIL infrastructure 
presents a challenge. So, creating a reliable and flexible way to connect HIL-generated Ethernet 
(UDP) data with hardware that uses SPI is not just a technical challenge but also a key step for 
improving future testing, especially when aiming for real-time cycles of 1-ms. The work done in 
this thesis directly addresses this need. 
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1.2 Project Objective 

The primary and foremost goal of this thesis is to design and implement a reliable full-duplex 
communication system between an SPI-based embedded system using STM32 microcontroller 
boards and a dSPACE SCALEXIO HIL simulator. Specifically, the aim of this thesis is: 

 To develop and validate a foundational real-time Ethernet-to-SPI communication gateway, 
demonstrating its feasibility and performance for HIL testing, thereby providing a scalable 
framework to facilitate future integration and testing of SPI-interfaced automotive ECUs, 
such as BMS, within existing Ethernet-based dSPACE HIL environments. 

 Establish a real-time UDP-based communication between the STM32 microcontroller 
board with both the Python script, which is a prototype system, and packets generated by 
HIL-simulator. 

 Implement a full-duplex SPI protocol between two STM32 Microcontroller boards 
(Slave and Master) with robust framing, variable-length and variable-type data support, 
and software-based CRC-8 error detection. 

 Create a closed-loop where commands (e.g., speed values) transmitted via UDP are 
passed on to the slave as SPI and matching feedback is sent back via UDP, creating a 
round-trip communications path.  

 Offer scalability in the protocol through provision for differing data types and 
commands, for instance, float and integer types of value, and replicating responses of 
diverse sensor or actuator responses. 

 Everything must be brought together using Simulink and dSPACE ControlDesk to 
simulate sensor inputs, generate real-time UDP packets, and present responses, providing 
a platform for subsequent integration with real ECUs or automotive sensors. 

The prototype is a modular and scalable communication stack that can be used for SPI 
or other such protocols, enabling robust pre-validation in automotive software-in-the-loop and 
hardware-in-the-loop development cycles. 

1.3 Structure of the work 

The thesis is organized as follows: 

 Background and related work that addresses the theoretical background and past work done 
in the domain relevant to the thesis. It includes the overview of the protocols that are used 
in the automotive systems, the behavior of real-time systems, SPI technology, and the 
existing work done involving STM32 microcontrollers in HIL environments. 

 System Architecture presents a broad hardware and software outline of the proposed 
system. System Architecture covers STM32-based SPI communication setup, Ethernet 
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integration through LWIP middleware, and use of dSPACE SCALEXIO with Simulink 
and dSPACE ControlDesk for simulation and control. 

 Implementation and methodology adopted, which explain the development phase, 
starting from initial UDP communication using Python script till the full-scale 
development involving a full-duplex SPI interface, which involved CRC-based framing. 
It also includes how dSPACE ControlDesk and Simulink were integrated into the 
embedded systems. 

 Testing approaches adopted and the results obtained in order to do the system analysis 
are also covered. It includes results of Python simulations, Wireshark packet capture, and 
performance testing done on a real-time simulator using dSPACE ControlDesk. 

 Conclusion and Future Work summarizes the key results obtained in the project, 
evaluation of the system's abilities, and proposes potential improvements, such 
as additional command types, timing constraints, and integration with real automotive 
sensors/ECUs and SPI hardware transceivers. 
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Background and Related Work 

2.1 Automotive Communication Protocols 

Over the years, modern automotive systems have become heavily reliant on robust, low-latency 
communication protocols to ensure that the coordination between ECUs, sensors, and actuators is 
smooth. In this section, the primary focus is to cover the communication protocols that are relevant 
to the work done in the thesis.  

2.1.1 Ethernet Protocol 

Ethernet was originally developed in 1973 at Xerox PARC by Robert Metcalfe and his team to 
provide high-speed communication between computers over a shared medium [1]. Leveraging the 
ALOHAnet system, Ethernet evolved the Carrier Sense Multiple Access with Collision Detection 
(CSMA/CD) protocol to manage the transmission of data and avoid collisions. 
The initial Ethernet operated at 2.94 Mbps over thick coaxial cable. Digital Equipment 
Corporation, Intel, and Xerox (DIX) in 1980 released the initial Ethernet specification that was 
later standardized by the IEEE in 1983 as IEEE 802.3. 

Over the decades, Ethernet has been thoroughly enhanced to meet growing demands for higher 
bandwidth and more reliable communications [2]. 

 10BASE-T (1990): Took up twisted-pair cabling, facilitating easier installations. 
 100BASE-TX (1995): Known as Fast Ethernet, increasing speeds to 100 Mbps. 
 1000BASE-T (1999): Gigabit Ethernet over twisted-pair cables. 
 10GBASE-T (2006): It ensured 10 Gbps speeds running over copper cable. 
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 100GBASE-R (2010s): It increased the speeds up to 100 Gbps and above running over 
fiber optics cable. 

These innovations have played a key role in supporting intensive data applications and have 
ensured that Ethernet is one of the most widely used mediums in networking today. 
Ethernet generally operated at the lower layers of Open Systems Interconnection (OSI) model i.e. 
Layer - 1, which is the physical layer, and Layer – 2, which is the data link layer.  
 

7 Application Layer

6 Presentation layer

5 Session Layer

4 Transport Layer

3 Network Layer

2 Data Link Layer

1 Physical Layer

OSI 

Ethernet

IP

TCP/UDP

Ethernet

 
Figure 2-1: OSI Layer and Ethernet [3] 

a) Physical Layer: 

The main concern of this layer is transmission of raw bits over the physical medium. This layer 
defines the electrical characteristics, transmission medium, bit encoding/decoding methods, 
cables, and connector types.   
The most common cables used these days are twisted pair cables (CAT5, CAT6 and CAT7), and 
the latest one is CAT8 cable, which can operate up to the speed of 40 Gbps. These Ethernet twisted 
pairs use RJ-45 connectors to establish the link. Fiber optic cables are also used, which are capable 
of providing high-performance long-distance communication. These are widely used by data 
centers and for Wide Area Network (WAN). 
Ethernet PHY (Physical Layer Transceiver) is a dedicated chip that is used to handle functions 
required for the functioning of this physical layer. The functions carried out by PHY includes 
modulating/demodulating the electrical signals, encoding/decoding the bits, and auto-negotiation, 
which includes selection of the speed and duplex, i.e. Half Duplex, Full Duplex. The PHY 
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communicates with Medium Access Controller (MAC) via a digital interface, which generally 
comprises [2]: 

 Media Independent Interface (MII), which is typically used for data transfer rates of 10 
Mbps and 100 Mbps.  

 Reduced Media Independent Interface (RMII), which is used for data transfer rates of 10 
Mbps and 100 Mbps, but they have a reduced pin count compared to MII.  

 Gigabit Media Independent Interface (GMII), which is typically used for data transfer rates 
of 1000 Mbps.  

 Reduced Gigabit Media Independent Interface (RGMII), which is typically used for data 
transfer rates of 1000 Mbps.  

b) Data Link Layer: 

The OSI model's Layer 2, the Data Link Layer, is tasked with the task of secure node-to-node data 
transfer over a physical network. In Ethernet, that means the delivery of packets between two 
devices using MAC addressing and framing operations. Key data link layer functions are: 

 Framing: Wrap the payload (e.g., UDP, TCP data) with MAC addresses, length/type, and 
Frame Check Sequence (FCS) for error detection. 

 Addressing: Uses MAC addresses (48-bit unique hardware addresses) to identify the source 
and destination on a LAN. 

 Error Detection: Uses a Frame Check Sequence (usually CRC-32) to detect any 
transmission errors. 

 Media Access Control: It employed CSMA/CD in the classic Ethernet (shared media). In 
modern switched full-duplex Ethernet, contention is avoided and frames are transmitted 
forward directly. 

According to the IEEE 802 standard, the data link layer is divided into two sublayers: 

i. Logical Link Layer (LLC): 

Logical Link Control (LLC) Sublayer (IEEE 802.2): Originally designed to provide a common 
interface to higher-layer protocols and services like connectionless or connection-oriented 
communication. In IP-based networks, a minimal LLC is used, or it's avoided by the EtherType 
field. 

ii. Media Access Control (MAC): 

Media Access Control (MAC) Sublayer (IEEE 802.3): Framing (encapsulating data into Ethernet 
frames with MAC addresses and FCS), MAC addressing, and access to the physical medium 
management (e.g., CSMA/CD in old Ethernet or simply passing frames to the PHY in switched 
full-duplex systems). 
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Figure 2-2: Ethernet Frame Format [4] 

 Preamble: These are alternating 1s and 0s used for the clock synchronization. 
 Start Frame Delimiter (SFD): This is marked at the end of the preamble and before the start 

of the frame content. 
 Destination Address: It is the MAC address of the recipient device. 
 Source Address: It is the MAC address of the sending device. 
 Length/Type: It has a threshold for the values; if the value is > 1536 (0X0600), it is an 

EtherType field, which indicates the protocol of the encapsulated payload. If the value is < 
1500, it is the length field, which indicates the length of the payload.  

 Data: This is the size of the actual data being transmitted. If the data is less than 46 bytes, 
padding is done in order to meet the minimum size requirements. The maximum size is 
1500 bytes.  

 Frame Sequence Check: It is a 32-bit Cyclic Redundancy Check (CRC), which is 
calculated over the frame (starting from Destination MAC to Data) for error detection.   

c) Network/Internet Protocol layer 

The Internet Protocol (IP) is the fundamental communications protocol in the Internet protocol 
suite for delivering datagrams from one network to another. It has only one purpose, which is to 
deliver packets of data between a source host and a destination host based on their IP address. IP 
resides at the Network Layer (Layer 3) of the OSI model and the Internet Layer of the TCP/IP 
model. It is the backbone of the internet and most modern private networks, allowing inter-
networking of diverse physical networks, like Ethernet. The key concepts of this layer are depicted 
in the table below: 

Table 2-1: Network Layer Features 

Feature Description 

IP Address This is the 32-bit address (IPv4) identifying source/destination (e.g., 
192.168.1.100) 

Subnet Mask It defines the network boundary (e.g., 255.255.255.0) 

Gateway It is the route to other networks or subnets 

Time-to-Live (TTL) This is essential as it prevents packets from looping forever 
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Protocol Field It is used for the indication of next layer i.e. e.g., 0x06 for TCP, 0x11 
for UDP 

Checksum Header level error detection 

The Transport Layer (Layer 4) of the OSI model has the responsibility of providing end-to-end 
communication between applications on various networked systems. It provides mechanisms for: 

 Segmentation of application data into packets 
 Port addressing to differentiate services 
 Voluntary flow control, reliability, and error management 

Two major protocols used at this level are UDP (User Datagram Protocol) and TCP (Transmission 
Control Protocol)—both are run on top of the IP protocol (Layer 3) and below the application 
logic. These protocols are defined in the next subsections. 

2.1.1.1 User Datagram protocol (UDP) 
UDP is a stateless, connectionless, lightweight transport protocol defined in RFC 768. It is 
optimized for small overhead and low latency and hence suited for real-time and embedded 
systems applications.  

a) Key Characteristics 
Table 2-2: UDP Features 

Feature Description 

Connectionless There is no prior handshake before the data is sent. Each UDP 
datagram is an independent unit.  

Unreliable 

UDP does not guarantee that the datagram will arrive at the 
destination. It also doesn’t guarantee that the data will arrive in order 

or will arrive with duplication. There are no acknowledgements or 
retransmissions in UDP protocol. 

Datagram-Oriented  

UDP preserves message boundaries. Application messages are sent 
as independent datagrams. When a datagram is received, it's the 
whole message that the application dispatched (except perhaps if IP-
framed, but UDP itself deals with the whole messages). 

No Flow Control UDP never controls how fast data is sent from the sender to prevent 
overwhelming the receiver. 

No Congestion Control 
UDP never responds to network congestion by slowing down 
transmission. This can be an issue for overall network wellness if not 
controlled by the application. 
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Low Overhead  UDP adds a very small header to the data. 

b) UDP header 

The UDP header has a fixed size of 8-bytes, and it comprises the following segments shown in 
Figure 2-3: UDP Header below: 

UDP Header
(8-Bytes)

UDP Data

Source Port
(16-bits)

Destination Port
(16-bits)

Length
(16-bits)

Checksum
(16-bits)

 
Figure 2-3: UDP Header [5] 

 Source Port (16-bits): Identifies the sending process application within the source host. 
Optional; can be zero if responses are not received by the source. Port numbers range from 
0 to 65535, and port number 0 is reserved. 

 Destination Port (16-bits): It corresponds to the receiving application process on the target 
host. It is a required field. Its port range is 0 to 65535, and port number 0 is reserved. 

 Length (16-bits): Length of the UDP data plus the UDP header in bytes. Minimum of 8 
(for an empty UDP datagram). 

 Checksum (16-bits): An optional error-detection facility (in IPv4; mandatory when IPv6 is 
used). It encompasses the UDP header, the UDP data, and an IP "pseudo-header" 
(destination/source IP addresses, protocol number, and UDP length). When the IPv4 
facility is not utilized, it is set to zero. When the facility is calculated and is non-zero, zero 
is transmitted as all ones (0xFFFF). 

c) Working Principle  

When an application sends data through UDP, UDP simply takes the data and attaches its 8-byte 
header (with appropriate port numbers, length, and optional checksum) and then passes on the 
resulting datagram to the IP layer to be encapsulated and transmitted. The communication flow of 
UDP is shown in Figure 2-4: UDP Communication Flow below: 
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Request

Request

Response

Response

Sender Receiver

 
Figure 2-4: UDP Communication Flow [5] 

d) Advantages and Disadvantages 
Table 2-3: UDP Advantages vs. Disadvantages 

Advantages Disadvantages 

High speed and low latency because of no 
handshake/connection setup 

Unreliable as it does not have a mechanism for 
acknowledgment reception. Packet loss, 
duplication, and reordering must be handled by 
the application. 

Low header size therefore requires less 
processing time 

No Flow or Congestion control, which can lead 
to network problems if application sends the 
data too quickly without taking into account the 
capacity of the receiver or the network 
conditions 

It has a simpler design, so it is easy to 
implement   

Suitable for Multicast and Broadcast 
transmission as it has a connectionless nature  

Gives the application full control over timing 
and reliability, which is beneficial for real-
time systems 

 

Low Overhead   
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2.1.1.2 Transmission Control Protocol (TCP) 
TCP is a connection-oriented and reliable protocol specifically designed for guaranteed data 
transmission. Defined in RFC 793, it ensures that the packets are delivered in the correct order, 
retransmitted in case of loss/no acknowledgment and checked for integrity.  

a) Key Characteristics 
Table 2-4: TCP Features 

Feature Description 

Connection-Oriented 
There is a proper handshake between two TCP entities, using a 
“Three-way handshake” before one can send the data. The connection 
is terminated explicitly once the data has been transferred.  

Reliable Delivery 
TCP uses sequence numbers and acknowledgments (ACKs) to ensure 
that the data delivery is done properly from one end to another. The 
data that is lost or corrupted is retransmitted. 

Ordered Delivery  

TCP ensures that the data being delivered to the receiving application 
is in the same order as it was sent by the sending application. It uses 
sequence numbers, which reorder the segments that are out of 
sequence.  

Flow Control 
TCP uses a sliding window method, which prevents a fast sender 
from overwhelming a receiver that is slow in response. The receiver 
notifies with its available buffer space (receive window) 

Congestion Control 

TCP uses algorithms (e.g., slow start, congestion avoidance, fast 
retransmit, and fast recovery) to detect and respond to network 
congestion and reduce its sending rate to avoid overloading the 
network.  

Byte-Stream Oriented 

TCP treats data as a continuous stream of bytes rather than as an 
individual message or datagram. Message boundaries of an 
application are not necessarily preserved upon arrival unless the 
application layer employs framing of its own. 

b) TCP Header 

The TCP header has a minimum size of 20 bytes and a maximum size of up to 60 bytes. It 
comprises the following segments as shown in Figure 2-5: TCP Header below: 
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TCP Header
(20 to 60 Bytes)

TCP Data

Source Port
(16-bits)

Destination Port
(16-bits)

Sequence Number (32-bits)

Acknowledgment Number (32-bits)

Window Size
(16-bits)

DO
4-bits

Reserved Flags

Options

Checksum
(16-bits)

Urgent Pointer
(16-bits)

 
Figure 2-5: TCP Header [6] 

 Source Port (16-bits): Identifies the sending application process.  
 Destination Port (16-bits): Identifies the receiving application process 
 Sequence Number (32-bits): It specifies the amount of data that is sent during the TCP 

session. The sequence number is used to identify each byte of the data and ensure that the 
data is delivered in order and there are no duplications as well. 

 Acknowledgement Number (32-bits): When acknowledgement flag is set, this field holds 
the value of the next sequence number. This field is used by the receiver to acknowledge 
the data that has been received and subsequently request the next data. 

 Data Offset (4-bits): This field is used to determine the size of the TCP header. It refers to 
where the data starts.  

 Reserved (3-bits): it must be set to zero and is reserved for future uses.  
 Flags (9-bits): it contains several controlling bits that are useful for indicating the states of 

a TCP connection. These flags are Urgent Pointer Field (URG) which indicates urgent data, 
Congestion Window Reduced (CWR) which is sender reduced rate, ECE (ECN-ECHO) 
which means the receiver contains a packet with ECN congestion experienced set bit, 
Acknowledgment field significant (ACK) which is that the segment carries an 
acknowledgment, Push Function (PSH) which is to command the receiver to deliver the 
data to application in a rush, Reset the Connection (RST) which is used to reset the 
connection, Synchronize Sequence Number (SYN) which is used to synchronize a 
connection and Finish (FIN) which is used to close the connection when there is no more 
data to send. 
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 Window Size (16-bits): also known as flow control window. It is the amount of data 
octets from the one displayed in the acknowledgment field that this 
segment sender can accept (flow control). 

 Checksum (16-bits): It holds the checksum value, which is calculated over the TCP header, 
TCP data and IP pseudo-header.  

 Urgent Pointer (16-bits): If the URG flag is set, this 
field indicates the urgent pointer's current position as a positive offset from the sequence 
number in this segment. This is used to give priority to the data during processing.  

 Options: It is used to provide additional features or parameters and can include Maximum 
Segment Size (MSS), Selective Acknowledgments (SACK), Timestamps, Window Scale 
Factor, etc. 

c) Working Principle  

The connection is initialized when the client sends a SYN segment with an initial sequence number 
(ISN_C). In response, the server sends SYN-ACK segment, acknowledging the clients SYN (ACK 
= ISN_C+1) and provides its own ISN_S. The client, in response to this, sends ACK segment to 
acknowledge server’s SYN (ACK = ISN_S + 1). The connection is established and known as 
Three-Way Handshake. The data is sent in segments, and each segment has its own sequence 
number. The receiver acknowledges each data by sending ACK. If no ACK arrives for a segment 
within a stipulated timeout period, the sender retransmits the segment. Duplicate ACKs can also 
cause faster retransmissions. When data is transmitted, there is a connection termination, which is 
a Four-Way Handshake. One side sends a FIN segment, and the other side responds with an ACK 
to this FIN. The other side, when it is ready sends its own FIN, and the first side then ACKs the 
FIN of the other side.  
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Client Server

Connection Setup 
(Three-Way Handshake)

Data 
Transfer

Connection Close 
(Four-Way Handshake)

 
Figure 2-6: TCP Communication Flow [6] 

d) Advantages and Disadvantages 
Table 2-5: TCP Advantages vs. Disadvantages 

Advantages Disadvantages 

Reliable connection as data delivery is 
guaranteed  

Higher overhead and more connection 
management segments  

Data is delivered in the correct order 

Higher latency as it involves connection setup, 
sequence number processing, ACKs, 
retransmissions, and congestion control 
algorithms.  

It has a flow control mechanism that 
prevents receiver buffer overrun  

Retransmission and congestion control can lead 
to variations in packet arrival time, which is not 
good for real-time systems. 

It has a congestion control mechanism that 
helps maintain overall network stability 

More complexity to manage with respect to 
UDP connection 
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If any segment is lost and the subsequent 
segments is received correctly, it may be held in 
a buffer by the receiver’s TCP stack until the 
missing/lost is retransmitted and received. This 
leads to delay in delivery to the application 

2.1.2 Serial Peripheral Interface (SPI) 

Developed by Motorola in 1980s, SPI is a synchronous serial communication protocol used for 
short-distance communication, especially in embedded systems [7]. SPI has become a de facto 
standard widely adopted by most integrated circuit (IC) manufacturers for communication between 
microcontrollers and a variety of peripheral devices such as sensors, memory chips (Flash, 
EEPROM), analog-to-digital converters (ADCs), digital-to-analog converters (DACs), real-time 
clocks (RTCs), and other microcontrollers. Its ease of use, low hardware overhead, and 
high speed have also made it a staple in embedded system design. The architecture, operation, 
modes, advantages, and disadvantages of the SPI protocol will be discussed in this section. 

2.1.2.1 Architecture 
SPI employs a master-slave architecture, where the master device, which typically is a 
microcontroller. It initiates and controls the communication with one or more than one slave. The 
interface uses the following four logic signals [7]. 

 Serial Clock (SCLK): It is generated by the master to synchronize the data transmission. 
The data is shifted in or shifted out on the edges of the clock cycle. 

 Master Out Slave In (MOSI): This line carries the data from the master to the slave. 
 Master In Slave Out (MISO): This line carries the data from the slave to the master. 
 Slave Select/Chip Select (SS/CS): This line is activated by the master to select the specific 

slave device. This signal is active low, and when a slave line is pulled low by this, it 
activates the SPI interface, and the slave starts responding to the SCLK and MOSI signal.  

MASTER SLAVE

 
Figure 2-7: SPI Architecture [8] 
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The following are two architectural configurations of SPI: 

a) Independent Slave Configuration 

There is one clock, and MOSI and MISO are shared with all the slaves. Slaves are configured 
independently by the master, as all of them have an independent CS/SS line from the master. The 
master in this case has more than one CS/SS. It is the most commonly used architecture in SPI 
communication. The configuration is demonstrated in Figure 2-8: Independent Slave 
Configuration. 

MASTER SLAVE 1

SLAVE 2

SLAVE 3

 
Figure 2-8: Independent Slave Configuration [8] 

b) Daisy-Chain Configuration 

There is only one connection for MOSI in this configuration. MISO of the first slave is connected 
to the MOSI of the second slave, MISO of the second slave is connected to the MOSI of the third 
slave and MISO of the last (third in this example) is connected to the MISO of the master. The 
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advantage of this configuration is that the number of wires has been reduced. The configuration is 
demonstrated in Figure 2-9: Daisy-Chain Configuration. 

MASTER SLAVE 1

SLAVE 2

SLAVE 3

 
Figure 2-9: Daisy-Chain Configuration [8] 

2.1.2.2 Data Transfer Operation 
SPI communication is based on the synchronous shifting of data through shift registers in both the 
master and the selected slave. The master first selects a specific slave device by asserting its 
relative CS line (driving it low), and then it generates clock pulses on the SCLK line. On each 
clock cycle, the master shifts a bit out on the MOSI line to the slave's shift register. Meanwhile, 
the selected slave shifts a bit out on the MISO line to the master's shift register. This gives a full-
duplex data exchange because the data is exchanged from master to slave and slave to master 
simultaneously. Conceptually, it is as though the contents of two shift registers (one in the master, 
one in the slave) are exchanged. The number of clock pulses, which subsequently is the bits 
exchanged per transfer, is typically 8 bits (one byte) but can be of other lengths (i.e., 16 bits, 32 
bits, or even variable lengths) as defined by the specific slave device and configured in the master. 
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After the required number of bits has been transferred, the master de-asserts the CS line, resulting 
in the slave being deselected. 

2.1.2.3 SPI Modes: Clock Polarity (CPOL) and Clock Phase (CPHA) 
The timing relationship between the data bits and the clock signal is determined by two parameters, 
which are Clock Polarity (CPOL) and Clock Phase (CPHA). Both master and slave must be 
configured in the same mode in order for the communication to be effective. The two parameters 
give rise to four different modes of SPI, which are referred to as Mode 0, 1, 2, and 3.  

 CPOL (Clock Polarity): 
o CPOL = 0: SCLK is low when idle (between transfers). The leading edge of the clock 

is a rising edge, and the trailing edge is a falling edge. 
o CPOL = 1: SCLK is high when idle. The leading edge of the clock is a falling edge, and 

the trailing edge is a rising edge. 

 CPHA (Clock Phase): 
o CPHA = 0: The data is sampled on the first (leading) clock edge and is shifted out on 

the second (trailing) edge. 
o CPHA = 1: The data is shifted out on the first (leading) clock edge and is sampled on 

the second (trailing) edge. 

 The combination of these CPOL and CPHA provides four different SPI modes [9], which are: 

 Mode 0: CPOL = 0, CPHA = 0 
 Mode 1: CPOL = 0, CPHA = 1 
 Mode 2: CPOL = 1, CPHA = 0 
 Mode 3: CPOL = 1, CPHA = 1 
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Data  
Sampled

Data 
Shifted out

MODE 0:
CPOL = 0
CPHA = 0

Data 
Sampled

Data 
Shifted out

MODE 1:
CPOL = 0
CPHA = 1

Data 
Sampled

Data 
Shifted out

MODE 2:
CPOL = 1
CPHA = 0

Data 
Sampled

Data 
Shifted out

MODE 3:
CPOL = 1
CPHA = 1

SCLK is idle low

SCLK is idle low

SCLK is idle high

SCLK is idle high  
Figure 2-10: SPI Modes [9] 

2.1.2.4 Advantages and limitations 
SPI has several advantages that are the reasons for its popularity [8]: 

 The protocol is simple with minimal software and hardware overhead. There are no 
complex state machines or addressing schemes within the data stream. 

 SPI can run at very high data rates (tens of MHz, sometimes >100 MHz), but primarily 
limited by the maximum clock speed supported by the master and slave devices, and by 
PCB trace characteristics for signal integrity. 

 Data can be sent and received simultaneously, hence ensuring Full-Duplex communication. 
 Simple I/O structures, therefore, is power efficient compared to the other complex 

interfaces. 
 Unlike I²C, the lines are actively driven; hence, they generally don't need pull-up resistor. 
 Not restricted to 8-bit words thus allowing for flexible data frame sizes. 

Despite its advantages, SPI has some limitations as well [8]: 

 It requires more pins (at least four, plus one extra CS/SS if working with more than one 
slave). This can cause problems for microcontrollers with a limited number of I/O pins 
available. 

 There is no concept of acknowledgement, as the master sends data to the slave without any 
particular acknowledgement from the slave. Once the master selects the slave, it assumes 
that the slave is present and working. Error check relies on the software check at higher 
levels. 
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 The selection of slaves is handled using dedicated CS lines. 
There is no address function within the SPI data stream. 

 Only the master can generate the clock signal and initiate the communication; the slave 
cannot initiate transfer but can only hold the master via a separate “Slave Ready” line, 
which can be done in custom mode application. 

 SPI is intended for short-distance communication, typically on the same PCB or across a 
cable of short length. Signal integrity degrades very rapidly over distance at high speed due 
to line capacitance, impedance mismatches, and noise. 

 It has no built-in flow control. The master decides the speed, and the slave must be able to 
keep up to that pace. 

2.2 Real-time Systems (Hardware-in-the-Loop) 

The development and validation of complicated embedded systems, particularly considering the 
demanding automotive domain, rely heavily on the principles of real-time computing, like 
hardware-in-the-loop. Real-time systems ensure that the computations are performed within 
stringent time limits, which are a critical requirement for both safety and functionality in 
applications such as vehicle control. HIL simulation provides a robust framework for the 
verification of such real-time embedded components by creating a simulated platform that 
realistically mimics their operational conditions. 

2.2.1 Real-time Systems: Core Concept and Characteristics 

Real-time systems are such systems in which the correctness depends not only on the logical output 
but also on the time at which the output is produced [10].  

2.2.1.1 Definition and Guiding Principles 
"A real-time system is formally defined as one in which the correctness of the system depends not 
only on the logical result of computation but also on the time at which the results are produced." 
[11]. 

The primary guiding principle of real-time systems is that the operations are time-critical. It means 
that the validity of the operation’s result solely depends on the time at which it is delivered. It is 
not just about being fast but also being predictable with respect to the predefined time for the 
completion of the task. This has significant consequences with respect to the system design, 
focusing on the predictability, determinism, and worst-case execution time (WCET) analysis over 
average performance only. Key design concerns are the selection of scheduling methods, resource 
management policies, and system architectures that can commit to the timely response. Time 
criticality means that the system's correctness depends on meeting deadlines, responding to events 
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quickly, and ensuring stability, especially in control applications that are common in automotive 
HIL simulations. 

2.2.1.2 Classification of Real-Time Systems 
The stringency of the timing requirements leads to the different classifications of real-time systems 
which are [12]: 

 Hard Real-Time Systems: In hard real-time systems, failure to meet even a single 
deadline is considered a total system failure. These are often with catastrophic 
consequences. The system must ensure that all the critical tasks are completed within their 
assigned deadline under all the anticipated working conditions. Predictability and 
determinism are paramount in these systems. Examples of such systems are Flight Control 
systems, Anti-locking Braking systems (ABS) for automobiles, and industrial safety 
controllers. 

 Firm Real-Time Systems: In firm real-time systems, missing a deadline also renders the 
result of a computation useless, but the system itself doesn't necessarily fail. 
While the delayed result is meaningless (or significantly less valuable), the 
system itself can continue to work. Occasional missed deadlines can be tolerated, 
but frequent misses will lead to a significant degradation in the quality of service 
or responsiveness of the system. Examples of such systems include certain types of sensor 
data acquisition where the old or previous data is irrelevant and a financial trading system 
where a late trade execution can be considered as a missed opportunity. 

 Soft Real-Time Systems: In soft real-time systems, it is a desire to meet deadlines for 
optimal performance and for user satisfaction; however, missing them is not crucial to the 
system's core operation. The usefulness of the result decreases over time once its deadline 
has passed, but it may still have some value. The performance degrades gradually rather 
than leading to failure. Examples of such systems are multimedia streaming applications, 
where occasional frame drops can be tolerated, or some data logging systems where 
occasional delays in the data recording are acceptable. 

2.2.1.3 Characteristics of Real-Time Systems 
Real-time systems are defined by a set of characteristics that enable them to meet their timing-
related obligations, which are 

 Determinism: Determinism in a real-time system implies that given a set of inputs 
and an initial state, the system would produce the same outputs and follow the same 
sequence of state transitions, with operations taking a predictable amount of time. 
Temporal predictability is crucial in guaranteeing deadlines [13]. 

 Predictability: Predictability is the ability to establish, usually through analysis or formal 
methods before the deployment of the system, to check whether the 
system will consistently meet its specified deadlines for all anticipated 
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conditions, particularly the worst-case conditions. It involves bounding the execution times 
of the tasks and the behavior of system resources [14]. 

 Timeliness (Low latency & Jitters): Timeliness refers to the system’s ability to complete 

operations within their stipulated deadlines. This is often characterized by: 

o Low Latency: minimizing the delay between the occurrence of an event, for example, 
sensor inputs, interrupts, etc., and the system’s response to that. 

o Low Jitter: minimizing the variations in the latency for repeated instances of the same 
operation. Consistent timing is often as important as average speed [11]. 

 Concurrency and Schedulability: Real-time systems often manage multiple tasks 
running simultaneously, and each can have its own timing constraints. 

o Concurrency: The system must be designed to handle multiple activities or events that 
are running simultaneously. 

o Schedulability: It is the property of a set of tasks to be schedulable by an algorithm such 
that all of the tasks meet their requirements, i.e., deadlines. It is a formal process carried 
out to verify this [15]. 

 Reliability and Fault Tolerance: Reliability, usually being the important parameter in 
most of the systems, extends temporal aspects in real-time systems. The system must not 
only produce the correct logical output but also be able to do it in a certain time even in the 
presence of faults (within the specified limits). Fault tolerance strategies may include 
redundancy, error detection and correction, and recovery protocols that do not violate 
critical deadlines [16]. 

2.2.1.4 Real-Time Systems Implementation Challenges 
Successful implementation of a real-time system involves navigating some well-known challenges 
that are inherent in both software and hardware design. It is necessary to overcome these challenges 
to achieve the desired reliability that characterizes real-time operation. Following are some key 
generic challenges: 

 Timing uncertainties Management: There are some low-level system behaviors that can 
affect the precise timing of operations. The delay between a hardware interrupt signal and 
the execution of its interrupt service routine can introduce an event response [17]. 
Similarly, context switching overhead, which is the time consumed by the operating system 
to switch between the tasks, contributes towards non-application processing time that must 
be taken into account and be bounded.  

 Resource Contention and Synchronization: During multitasking, tasks often share 
resources such as CPU, memory, I/O peripherals, etc. These uncontrolled accesses to these 
tasks can lead to race conditions or latency. Synchronization mechanisms such as 
semaphores and mutexes are necessary, but they can introduce their own complexities, 
which can potentially lead to priority inversion, meaning that the task with high priority is 
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forced to wait for a task with low priority that is currently using the resource, hence making 
it difficult higher-priority task to meet the deadlines. 

 Non-Determinism in Standard Platforms: Many general-purpose computing platforms, 
which include operating systems, are not specifically designed for real-time determinism. 
Standard operating systems often employ schedulers that are optimized for average 
throughput that can lead to unpredictable task preemption times. Moreover, conventional 
network protocols like TCP/IP over standard Ethernet include mechanisms (e.g., TCP's 
congestion control and retransmissions) that introduce variable latencies, hence making 
them challenging for applications that require guaranteed timely data delivery [13]. 

 Impact of Modern Processor Architectures: Modern processors have advanced 
architectural features that can enhance the average performance but can cause 
complications to the predictability needed for real-time systems. Caches can alter the 
execution times based on miss/hit patterns, which leads towards difficulty in Worst-Case 
Execution Time (WCET) analysis. Similarly, instruction pipelines and branch prediction 
mechanisms can lead to mispredictions, introducing variability into task execution times 
[18]. 

 Complexity of Timing Analysis and Verification: Verifying that a system will meet all 
its deadlines under all possible conditions is a complex task. Worst-Case Execution Time 
(WCET) analysis of software components can be complex, especially for large codebases 
or for those with complex control flows. Moreover, testing and debugging real-time 
systems to identify and resolve timing-related faults (e.g., rare race conditions) requires 
specialized tools and techniques [19]. 

2.2.2 Hardware-in-the-Loop (HIL) Simulation: Principle and Applications 

Hardware-in-the-Loop (HIL) simulation is an important technique for designing and testing 
complicated real-time embedded systems for the automotive, aerospace, and industrial automation 
industries. It allows comprehensive testing by connecting the physical hardware units with a 
simulated environment that emulates their operational environment strictly. 

2.2.2.1 Definition and Primary Purpose 
HIL simulation is a testing methodology in which an actual component of an embedded system, 
also known as the Device Under Test (DUT), is connected to a real-time simulator. The simulator 
executes mathematical models that can represent the behavior of the plant or other components 
with which the DUT is designed to interact [20].  

The main purpose of HIL simulation is to enable automated and reproducible testing of embedded 
systems under realistic operating conditions. It is usually carried out early in the development 
phase, much before the possibility of full system integration. This enables early verification and 
validation of DUT’s performance and functionality. 
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2.2.2.2 Benefits of HIL Simulation in Automotive Development 
The application of HIL simulation in the automotive industry has many advantages that enhance 
the development process: 

 Early Fault Detection: The simulation allows us to identify and then rectify the design 
flaws in Electronic Control Units (ECU) and other associated components before they are 
physically integrated into a vehicle [21]. 

 Testing under Extreme Conditions: It allows safe testing of how a system responds in 
emergency situations, fault scenarios, or environmental extremes that would be highly 
risky to replicate if the testing were done with an actual vehicle.  

 Reduced Reliance on Physical Prototypes: It decreases the dependency on expensive and 
limited vehicle prototypes, especially during the early stages of development.  

 Increased Test Coverage and Automation: Helps in the execution of a wide range of 
tests, which also include regressive testing in an automated fashion, which leads to a 
thorough validation. 

 Accelerated Development Cycles: It enables parallel testing and development of systems, 
thus allowing new automotive features or systems to arrive in the market at very short 
notice.  

2.2.2.3 HIL Simulation Architecture 
A standard HIL simulation setup comprises the following interconnected components [22]: 

 Real-Time Target Computer: A high-performance platform for computations, i.e., 
dSPACE SCALEXIO, National Instruments PXI systems, which is responsible for 
executing the simulation models of the plant and the environment in real-time and also for 
managing the I/O operations of DUT. 

 Plant Models: These are the mathematical representations of the physical systems (i.e., 
vehicle dynamics, sensor features, and actuator responses) with which the DUT interacts. 
They are typically created using modeling tools such as MATLAB/Simulink and then are 
compiled on a real-time target computer for execution. 

 I/O Interface Hardware: These are the special-purpose hardware modules that are used to 
provide physical and electrical interfaces between the real-time target computer and DUT. 
It includes the capability to perform analog and digital signal acquisition/generation and 
interface for various communication buses such as Controller Area Network (CAN), Local 
Interconnect Network (LIN), FlexRay, Ethernet, and SPI. These interfaces ensure the 
simulator is able to send commands to the DUT and receive the desired response. 

 Device under Test (DUT): an actual embedded system such as an automotive ECU, sensor, 
or actuator, that is to be tested. It receives the signal/command from the real-time target 
computer and then sends the output/response via I/O interface hardware. 

 Host Workstation: A workstation/computer used for the overall management of the HIL 
system environment. The function of this computer is to develop plant models, configure 
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the real-time targets and I/O interfaces (for example, using tools like dSPACE 
ConfigurationDesk or NI VeriStand), design and execute the test scripts, monitor the 
execution in real-time (for example, using dSPACE ControlDesk or NI LabVIEW), and 
then perform post-test analysis and report.  

(Ethernet/Control)

HOST WORKSTATION
 Configuration (dSPACE ConfigurationDesk)
 Model Development (Simulink)

 Monitoring (dSPACE ControlDesk)

REAL-TIME TARGET
(HIL SIMULATOR)
 Plant Model Executed here

I/O INTERFACE HARDWARE
 Integrated within the Simulator as a plug and play 

devices, and connected via High speed I/O bus
 Signal Conditioning, Bus Interfaces (Analog, 

Digital, CAN, SPI, Ethernet etc.)

DEVICE UNDER TEST (DUT)
 Can be ECU, Sensor, actuator etc.

Connected via I/O Hardware Interface

 
Figure 2-11: General Architecture of a Hardware-in-the-Loop (HIL) Simulation Setup [22] 

2.2.3 Real-Time Constraints in HIL Systems 

The validity of the HIL simulation is dependent on the real-time performance of the simulation 
itself. The interaction between DUT and the simulation plant must follow the strict time constraints 
to model the real-world behavior correctly. 

2.2.3.1 Necessity of Real-Time operation in HIL 
For accurate representation of HIL simulation as the system's operational environment, the plant 
models' execution and occurrence of I/O operations must be synchronized with the real-world 
characteristics of the DUT. In the closed-loop interaction where the simulation’s output drives the 

DUT and the DUT's output influences the simulation, both must maintain temporal fidelity. Failure 
to operate in real-time can produce misleading results and instability in the simulated system [23]. 

2.2.3.2 Timing Accuracy in HIL for Automotive Systems 
Automotive systems have tightly coupled closed loops, and the processes involved in them are 
very fast, thus imposing strict timing demands on the HIL simulations [20]: 

 Accurate Simulation of Dynamics: Processes that involve power electronic switching, such 
as engine combustion events, occur at high frequency; therefore, they require that the 
model must be updated in correspondence to this high-frequency operation. 

 Precise Signal Timing: The generation of the sensor/actuator signals sent to/from the DUT 
must take place with precise timing and low latency. 

 Faithful Bus Communication: The simulation of automotive communication networks, i.e., 
CAN, LIN, FlexRay, etc., must accurately represent the protocol behaviors and timings in 
order to test the DUT's interfaces and functions correctly. 
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 Low Latency and Jitters: Data exchange between the simulator and the DUT should have 
low latency and minimum jitters to ensure that the DUT experiences conditions that 
represent its target application. Automotive sensors and actuators run at a very high speed; 
therefore, in order to simulate them accurately, these strict cycle times must be met [13]. 

2.3 Related Work 

Several efforts at the academic and industrial levels have been made to explore the integration of 
embedded systems and real-time communication protocols using HIL platforms. 

2.3.1 Hardware-in-the-loop testing for Embedded Systems 

Numerous resources are available where embedded systems have been tested using HIL; however, 
the research conducted by Short and Pont in [24] can be used as a reference for testing an embedded 
system using HIL. They evaluated the embedded automotive controller under realistic conditions, 
using the real-time HIL simulation. Their setup simulated a motorway scenario and evaluated the 
performance of the Adaptive Cruise Control (ACC) system. The system was implemented using a 
CAN-based microcontroller. While their platform used the Infineon hardware and time-triggered 
scheduling for the communication, the core concept of their research aligns with the work 
conducted in the thesis, which is real-time interaction between physical embedded hardware and 
the simulated environment. Unlike the approach adopted by them, the work done in this thesis uses 
dSPACE SCALEXIO simulator for the generation of real-time signals and focuses primarily on 
the low-level communication validation of Ethernet and SPI using STMicroelectronics boards. 
There is a contrasting similarity in the goal, which is validating the timing and robustness of an 
embedded system communication under deterministic constraints. 

2.3.2 Bridging Ethernet and SPI in Embedded Architecture 

Yao Tong, in his research [25] designed an FPGA-based gateway that converts several 
asynchronous serial (UART) interfaces to Ethernet communication. The work done by him mainly 
focused on Unmanned Aerial Vehicles (UAV) and used VHDL-based state machines for managing 
multiple and an RTL8019AS network controller to frame and send packets. Although their 
system's primary focus was towards serial-to-Ethernet conversion, the overall concept was to 
bridge low-level communication protocols with Ethernet, which is closely aligned with the work 
done in the thesis. The current project creates a bridge that connects Ethernet to SPI using 
STMicroelectronics boards and the LwIP stack, providing a flexible, high-performing, and 
affordable solution for the intended Hardware-in-the-Loop (HIL) application. This software-based 
implementation on an MCU facilitates the real-time communication critical for HIL and embedded 
sensor emulation in automotive validation environments. 
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2.3.3 Real-Time Networking with STM32 and LwIP  

Lightweight IP (LwIP) is a popular open-source TCP/IP stack for embedded systems where the 
use of a full-featured network stack is close to impossible because of limited resources. Zoican 
and Vochin, in their study [26], demonstrated successful use of LwIP on the Blackfin processors 
to implement an embedded client-server architecture for sensor networks, evaluating key 
performance parameters such as response time and buffer management. Their results obtained 
using Wireshark demonstrated that LwIP has acceptable latency and throughput even in the 
memory-limited real-time environments, which closely resemble the limitations encountered by 
the automotive embedded systems. Furthermore, another study conducted by Shang and Ding in 
their conference paper [27] presented the practical implementation of LwIP on the STM32F107 
platform. They integrated Ethernet communication via RMII and Direct Memory Access (DMA) 
and showed interrupt-based packet handling with the use of Ethernet Interrupt Request 
(ETH_IRQ) and dedicated packet parsing routines. Additionally, their design also showed how 
LwIP can operate well in a non-RTOS setup by using the periodic polling method and STM32Cube 
peripherals, which is a design that directly relates to the communication framework used in this 
thesis. These studies validate the feasibility of using LwIP for real-time UDP communication in 
embedded systems, particularly for the applications that involve HIL interfacing. Building on this 
sound foundation, the present thesis employs LwIP on STMicroelectronics board to develop a 
specialized Ethernet-SPI bridge, which focuses on a stringent 1 ms cycle time and the custom 
framing protocol required for the emulation of a real-time automotive sensor. 

2.3.4 Transport Protocols in Automotive Systems 

Transport protocols play a significant role in determining the responsiveness and reliability of in-
vehicle communication systems. Traditional automotive networks such as CAN and LIN are being 
replaced by Automotive Ethernet, which supports standardized IP-based communication stacks. 
TCP and UDP emerge as premier transport protocols in this context. Douss et al. [28] affirm that, 
although TCP allows for reliable communication, its complexity and latency make it less suitable 
for time-critical automotive applications. In contrast, UDP offers a lightweight, connectionless 
alternative, thus ideal for real-time applications such as Hardware-in-the-Loop (HIL) simulations. 
Kuo et al. [29] validated via OMNeT++ simulation that the performance of UDP is invariably 
superior to that of TCP in vehicular networks under real-time streaming conditions and offers 
better throughput and reduced delay. These findings align closely with the design choices made in 
this thesis, wherein UDP is used to interface with the STMicroelectronics board for fast, 
deterministic data transfer in a simulated automotive environment. 

2.3.5 SPI Framing, CRC, and Data Integrity Approaches 

When SPI is used in a demanding environment or when it is extended beyond its typical 
application, its data integrity and robust communication become major factors to be considered. 
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While SPI is a simple protocol and can operate at high speeds, it does not have a built-in capability 
of error detection. This point is also highlighted in studies like that of Karthick et al. [30], which 
emphasize incorporating error detection at the application level when the importance of data 
reliability is a must. To address this, Zitlaw et al. [31] conducted a comprehensive study to 
incorporate Cyclic Redundancy Codes (CRC) directly into SPI transactions. Various CRC 
polynomials and their trade-offs between error detection capabilities, computational overhead, and 
throughput impact were the main focus of their study. This led them to propose a specific Register-
Transfer Level (RTL) architecture for CRC generation and verification. This work highlights the 
importance of incorporating error detection within SPI communication, which is also adopted in 
this thesis through the implementation of a software-based CRC-8 mechanism for validating SPI 
data packets. 

Apart from error detection via CRCs, effective management of SPI data streams is benefited by 
using well-defined framing and synchronization strategies, especially in those cases that involve 
variable data types and require acknowledgments when bridged over a less reliable network like 
UDP. While describing SPI communication between MCUs, Lee et al. [32] emphasized the 
importance of synchronization methods, which included GPIO-based handshaking and checking 
of packet header information, in order to ensure data efficiency and prevent data loss. Their work 
pointed out the need for a mechanism that takes into account the readiness of the device and 
manages data integrity across transactions. The current thesis builds on similar principles by 
developing a custom framing protocol for all SPI communication between the STMicroelectronics 
boards. This protocol is designed to encapsulate variable-length SPI commands and data payloads 
(for example, like those emulating different types of sensors) and incorporates the software-based 
CRC for error checking. Furthermore, to enhance reliability over the UDP transport layer, concepts 
such as sequence identification and acknowledgment schemes, which are common in robust 
network protocol design, are considered within the application-level protocol of this thesis to 
manage data flow and detect packet loss. 

2.4 Tools and Middleware 

Several specialized tools and middleware platforms are integrated to develop and validate a real-
time Ethernet-to-SPI communication framework for embedded automotive systems. All these 
tools are used as support in different development stages, such as system design, low-level 
firmware development, protocol stack configuration, model-based simulation, and HIL testing. An 
overview of these tools and middleware platforms that form the foundation for such development 
efforts are provided below. 
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2.4.1 Microcontroller Development Ecosystem: STMicroelectronics STM32 

The STMicroelectronics STM32 family is based on ARM Cortex-M cores, and it offers a versatile 
platform for embedded applications [33]. It provides a balance of processing power and a set of 
integrated peripherals, including Ethernet MAC, SPI, DMA, and general-purpose I/O [34]. 
STMicroelectronics STM32 boards are commonly developed using Integrated Development 
Environments (IDEs), such as STM32CubeIDE. These IDEs facilitate the development, 
compilation, and debugging of C/C++ firmware. For simplification, graphical tools like 
STM32CubeMX are used for the generation of low-level initialization code and configuration of 
peripherals (like SPI, Ethernet, DMA, timers, GPIOs). Software interaction with the MCU 
hardware is managed via STMicroelectronics’ Hardware Abstraction Layer (HAL) drivers, which 
provide a standardized API for peripheral control. Programming and in-circuit debugging are 
mostly facilitated by hardware tools like the ST-LINK, but in some STMicroelectronics boards 
there are built-in debuggers used for it. 

2.4.2 Embedded Networking Middleware: LwIP 

LwIP is a well-known open-source TCP/IP (and UDP/IP) stack designed for embedded systems 
where memory and processing resources are limited [35]. Because of its small footprint, which 
provides support for network protocols such as UDP, and its portability, which makes it suitable 
for bare-metal (non-RTOS) operation through periodic polling mechanisms, it is a common 
strategy used for integration. STMicroelectronics includes LwIP within its CubeMiddleware 
packages, which simplifies its deployment on STM32 Microcontroller boards that have integrated 
Ethernet capabilities. They provide networking functionalities (IP, UDP, TCP, etc.) and are ported 
to the microcontrollers and the operating environment. 

2.4.3 Prototyping, Analysis and Verification Tools 

Developing and validating embedded systems often involves the use of a variety of auxiliary tools. 
These tools play a crucial role in prototype designing and detailed analysis. Python is a high-level 
scripting language that has extensive libraries for network socket programming which makes it 
helpful in prototype designing and testing. Python is employed to simulate communication 
endpoints and perform preliminary data processing. Python scripts can be executed within 
command-line environments such as Windows PowerShell. For verification of the results 
produced, network protocol analyzers, such as the widely used open-source tool Wireshark, can 
be used for capturing the packets and analyzing the network traffic. Their capability to decode the 
protocols and display packet information is very helpful for debugging purposes, packet arrival 
time, and data integrity. 
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2.4.4 Hardware-in-the-Loop (HIL) Simulation Environments 

HIL simulation is an important part of the testing of control systems, especially in the automotive 
industry. This environment typically consists of: 

 Configuration Management Tool: Software such as dSPACE ConfigurationDesk is used 
to configure the HIL setup; it maps the signals between the simulator and the DUT. It also 
manages different experimental configurations.  

 Model-Based Design Software: MATLAB/Simulink is widely used for creating, 
simulating, and verifying system models. These are integrated with HIL platform through 
special toolchains (e.g., dSPACE Real-Time Interface - RTI), which enable automatic code 
generation for real-time hardware.  

 Experimental and Control Software: dSPACE ControlDesk is a GUI-based software that 
allows you to manage HIL experiments, visualize the real-time data, and interact with the 
simulation. Moreover, it is also used to automate test procedures.  

 Real-Time Simulation Hardware: It is a powerful computing platform designed for 
executing mathematical models of the physical plant with deterministic timings. dSPACE 
SCALEXIO is one of the examples of the hardware used as a real-time simulator.  
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System Architecture 

3.1 Hardware Overview 

The hardware architecture of the system plays a vital role in enabling real-time communication, 
processing, and simulation for automotive testing applications. The work done in this thesis 
revolves around the integration of embedded microcontroller platforms with a real-time HIL 
simulation environment that is supported by high-speed communication Ethernet and SPI 
interfaces. Selection of all the hardware components is done considering their ability to meet the 
system's requirements for low latency and reliable data exchange. An overview of key hardware 
elements used in the implementation of this project is described in this section, which includes the 
STM32 microcontroller boards, communication interfaces, and the dSPACE processing unit 
within the SCALEXIO simulation platform. 

3.1.1 dSPACE HIL Simulation Platform 

HIL simulation functionality of this project was conducted using a dSPACE real-time simulation 
platform that is a widely recognized platform in the automotive industry for testing and validating 
embedded control systems. This platform provides the real-time processing power and I/O 
capabilities that are required to execute complex vehicle and environment models and interface 
with physical ECUs or, as in this thesis, custom embedded hardware. dSPACE associated 
hardware specifically used for this project is described as follows. 

3.1.1.1 dSPACE SCALEXIO LabBox Real-Time Chassis 
The HIL hardware platform utilized in this project is the dSPACE SCALEXIO LabBox. The 
SCALEXIO LabBox is a modular system that is specifically designed for laboratory use and 
provides a robust environment for HIL simulation and Rapid Control Prototyping (RCP) tasks 
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[36]. Specifically, an 8-slot version of the LabBox was employed that offers sufficient capacity to 
house the necessary processing and I/O hardware. It serves as the central chassis, providing power, 
cooling, and the high-speed I/O carrier network (IOCNET) for connecting the installed dSPACE 
boards, thereby forming a real-time simulation unit [36]. 

 
Figure 3-1: dSPACE SCALEXIO LabBox (8-slot version) [36] 

3.1.1.2 dSPACE DS6001 Processor Board 
Real-time processing capability within the SCALEXIO chassis was provided by the dSPACE 
DS6001 Processor Board. It is a high-performance, two-slot board that is designed for executing 
the real-time applications compiled from Simulink models [36]. The DS6001 processing unit is an 
Intel® Core™ I7-6820EQ multi-core processor used for running the simulation models. It also has 
an ARM® Cortex®-A9 dual-core coprocessor that is dedicated to manage the communication with 
the host PC [36]. 

 
Figure 3-2: DS6001 Processor Board [36] 
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With respect to this project, the DS6001 board is equipped with multiple Gigabit Ethernet 
interfaces. One Ethernet port is typically utilized for connection to the host PC to facilitate the 
model deployment, experiment control via dSPACE ControlDesk, and log data. A second 
dedicated Ethernet port, referred to as the "Ethernet Adapter 1 channel type," is available for 
connecting Ethernet-based I/O for direct communication with the DUT or an interface board like 
the STM32 Master board (as in this case) [36]. This second port, which supports 10BASE-T, 
100BASE-TX, and 1000BASE-T Ethernet standards, was configured to establish the UDP 
communication link with the STM32 Master board for transmitting real-time commands and 
receiving data. The system operates with a Linux-based real-time operating system on the DS6001 
[36]. 

Table 3-1: Technical Specification of DS6001 Processing Unit [36] 

Specification Description 

Processor Architecture Intel® x86, multi-core real-time capable 

Real-Time OS dSPACE RTOS (Proprietary, deterministic) 

Memory 16 GB DDR4 RAM (typical), with fast memory access 

Ethernet Interfaces Up to 4× Gigabit Ethernet ports (UDP/TCP) 

I/O Connectivity Compatible with I/O units via PXI or SFP extensions 

Model Execution Supports MATLAB/Simulink auto-code generation (RTI) 

Synchronization Support IEEE 1588 PTP, dSPACE clock modules 

3.1.2 Embedded Microcontroller Platform 

The core logic for the Ethernet-to-SPI bridging and the functionalities to emulate sensor is 
implemented using a pair of STMicroelectronics STM32F207ZG microcontrollers. These MCUs 
are hosted on Nucleo-144 development boards (e.g., NUCLEO-F207ZG [37]). It was selected for 
its Arm® Cortex®-M3 core operating up to 120 MHz, sufficient Flash and SRAM (up to 1 MB 
Flash, 128+4KB SRAM), and a comprehensive set of integrated peripherals that are crucial for 
this project, including an Ethernet MAC, multiple SPI interfaces, and DMA controllers [38]. The 
two boards are configured in a master-slave topology to implement the communication bridge. 
The key roles and peripheral utilization for each board are detailed in the table below. 
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Table 3-2: Hardware Role and Peripheral Utilization of STM32F207ZG Boards 

Feature Master STM32F207ZG Board Slave  STM32F207ZG Board 

Primary Role 

Ethernet-SPI Gateway: Receives 
UDP commands (from dSPACE or 
Python), initiates SPI to Slave, and 
sends UDP responses/echoes (to 
Python/Simulator). 

Sensor Emulator: Acts as SPI slave, 
processes commands from Master, 
returns emulated sensor data (Speed, 
IMU) over SPI. 

SPI Interface Configured as SPI Master – Full 
Duplex 

Configured as SPI Slave – Full 
Duplex 

Ethernet MAC Utilized for UDP/IP communication 
with dSPACE HIL and Python host. Not used in case of Slave board 

DMA 
Controller(s) 

Used for efficient full-duplex SPI 
data transfers (transmit and receive). 

Used for efficient full-duplex SPI 
data transfers (transmit and receive), 
configured in circular mode for 
continuous data handling. 

GPIO(s) 

Software-controlled Slave Select 
(NSS) output for SPI. PG4 used as 
GPIO output for Slave selection 
purpose 

Hardware NSS input for SPI slave 
selection. 

CRC 
Calculation 

Software-implemented CRC-8 for 
custom SPI frame integrity. 

Software-implemented CRC-8 for 
custom SPI frame integrity. 

Operating 
Environment 

Bare-metal (non-RTOS), main loop 
with event-driven logic (UDP 
reception triggering SPI) 

Bare-metal (non-RTOS), main loop 
with event-driven logic (SPI 
peripheral or EXTI for NSS 
assertion, triggering DMA and 
processing). 

3.1.2.1 Master Board (STM32F207ZG) 
The master STM32 board plays the most important role, which is to bridge the Ethernet network 
with the SPI-based slave device. It receives real-time commands encapsulated in UDP packets 
from the dSPACE HIL simulator or a Python test script (prototype) via its integrated Ethernet 
MAC. The master board upon receiving a UDP command, parses the command and initiates the 
full-duplex SPI transaction to the slave board. This involves constructing a custom-created SPI 
frame that includes the command and a software-based CRC-8 checksum. SPI communication is 
managed using one of the STM32F207ZG's SPI peripherals (SPI1) that is configured in master 
mode, with DMA channels assigned for both transmitting and receiving data to minimize CPU 
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load and to ensure timely data handling [34]. A general-purpose I/O pin (PG4) is used as GPIO 
output to implement a software-controlled Slave Select (NSS) signal for the SPI interface. After 
the SPI transaction with the slave is complete, the master board processes the received SPI 
response (e.g., echoed data or sensor values), verifies its integrity using CRC-8, and then, if 
required by the communication sequence, formulates and transmits a UDP packet back to the 
simulator or the Python host.  

3.1.2.2 Slave Board (STM32F207ZG) 
The slave STM32 board is used to emulate the behavior of an automotive sensor. It operates as a 
full-duplex SPI slave and its SPI1 peripheral is configured to respond to data received from the 
master board. The slave is configured in circular mode, with DMA channels assigned for both 
reception and transmission of the data. It handles the SPI data coming from the master board and 
then loads its transmit buffer with an appropriate response. After receiving a valid framed 
command from the master (after CRC-8 verification), the slave's application logic interprets the 
command. Based on the received command, it either prepares an acknowledgment or non-
acknowledgment (ACK/NACK) frame or generates emulated sensor data (such as vehicle speed, 
IMU gyroscope, or accelerometer values, as defined by the received sub-command). The response 
is also encapsulated in the custom SPI frame format with a CRC-8 checksum and is then made 
available in its SPI transmit buffer for the master to retrieve during a subsequent SPI transaction. 
The hardware NSS input pin of the slave's SPI peripheral is driven by the master board to enable 
communication. 

  
Figure 3-3: Top and Bottom view of STM32F207ZG Board [37] 
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3.1.3 Host Workstation and Prototyping PC 

3.1.3.1 dSPACE Host Workstation 
This PC is used for dSPACE software; MATLAB/Simulink for model design, dSPACE 
ConfigurationDesk for HIL setup, and dSPACE ControlDesk for experiment execution and 
monitoring. It is connected to the dSPACE SCALEXIO DS6001 processor board via Ethernet for 
deployment of the model and managing the HIL system. 

3.1.3.2 Prototyping and Test PC (Python Environment) 
This PC is used as a part of prototype testing. Python script is running on this PC and is used for 
initial system testing, sending UDP commands to STM32 master, and receiving/displaying echo 
responses. This PC is connected to the same network as the STM32 master.   

3.1.4 Physical Interconnects 

Proper operation of the developed systems heavily relies on the correct physical interconnections 
between its constituent hardware components. Details of these critical electrical and 
communication links are depicted below. 

3.1.4.1 Ethernet Network Connectivity 
The dSPACE DS6001 Processor board, the Master STM32F207ZG Nucleo board, and the PC used 
for prototype testing are interconnected via a standard 100/1000 Mbps Ethernet network. The 
Master STM32F207ZG Nucleo board is connected directly to the prototype PC via Ethernet cable 
(CAT5/6) for testing and command/response exchange. Similarly, for HIL setup, the Master 
STM32 board was connected directly to the Ethernet port on the dSPACE DS6001 Processor 
Board enclosed in the SCALEXIO chassis. Static IP addresses are configured on all these devices 
to ensure that the network paths between them for the UDP-based data exchange is reliable. 

3.1.4.2 SPI Interfaces (Master STM32 to Slave STM32) 
SPI link is established between the Master and Slave STM32F207ZG Nucleo board using their 
respective SPI1 peripheral for full-duplex communication. The specific pin connections are as 
follows: 

 SCK: Master STM32 pin PA5 (Nucleo CN7, D13/SPI_A_SCK) is connected to the Slave 
SMT32 pin PA5 (Nucleo CN7, D13/SPI_A_SCK). 

 MISO: Master STM32 pin PA6 (Nucleo CN7, D12 / SPI_A_MISO) is connected to the 
Slave SMT32 pin PA6 (Nucleo CN7, D12 / SPI_A_MISO). 

 MOSI: Master STM32 Pin PB5 (Nucleo CN7, D22 / SPI_B_MOSI, an alternate function 
for SPI1_MOSI) is connected to Slave STM32 Pin PB5 (Nucleo CN7, D22 / SPI_B_MOSI, 
configured as SPI1_MOSI input). This alternate MOSI pin (PB5) was selected on the 
Master board to avoid conflict with by default MOSI pin PA7 which is shared by Ethernet 
peripheral as well.  
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 NSS:  The Slave select mechanism is implemented using a software-controlled approach. 
A GPIO pin, PG4, on the Master STM32 board is connected to the hardware NSS input 
pin PA4 (Nucleo CN7, D24 / SPI_B_NSS) of Slave STM32 board. The Master firmware 
manages the assertion (active low) and de-assertion of its PG4 pin to enable and disable 
the SPI slave for each transaction. 

 Ground (GND) pins on both boards were also connected to ensure a common reference. 

3.1.4.3 Power Supply 
Both STM32F207ZG development boards (Master and Slave) were powered independently via 
their respective USB ST-LINK connections. They are provided power using the standard USB 
ports on personal laptops. The dSPACE SCALEXIO system and its DS6001 Processor Board were 
powered by their dedicated mains supply. 

(Ethernet)

HOST WORKSTATION
 Configuration (dSPACE ConfigurationDesk)
 Model Development (Simulink)

 Monitoring (dSPACE ControlDesk)

LABBOX (8-SLOT)
(HIL SIMULATOR)
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DS6001 Processor Board
 Integrated within the Simulator as a plug and play 
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Figure 3-4: Overall System Hardware Architecture 
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Figure 3-5: Prototype Hardware Architecture  
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3.2 Software Stack 

The functionality of the Ethernet-SPI bridging and the sensor emulation is carried out through 
firmware developed for the STMicroelectronics STM32F207ZG microcontrollers. This firmware 
manages all the peripheral interactions, network communication via LwIP, and the customized 
application layer protocol designed for real-time data exchange. A bare-metal (non-RTOS) 
approach was used for both the Master and Slave boards, which allows control of the hardware 
directly and minimizes the system overhead, thereby supporting the timing requirement for HIL 
simulation. Detailed hardware architectures of each board are presented as follows. 

3.2.1 Master STM32 Board: Software Architecture 

Master STM32 board’s firmware is designed to function as the central gateway. It manages the bi-
directional communication, receives UDP commands over Ethernet from the external environment 
(dSPACE HIL simulator or Python-based test scripts running over PC) and then communicates 
with Slave STM32 board via full-duplex SPI protocol. 

3.2.1.1 Operating Environment and Core Initialization 
The Master board is operated using a bare-metal approach, with system execution being managed 
through the main super-loop. Essential low-level initialization, which comprises system clock 
configuration, GPIO setup (including pins for software-controlled SPI NSS), DMA channels, the 
SPI1 peripheral (configured as master full-duplex), and the Ethernet MAC, is performed using 
STM32CubeMX-generated code and the STM32 HAL drivers. LwIP network stack is also 
initialized at the beginning to prepare for the network operations. Inside the main loop, periodic 
calls to LwIP's ethernetif_input() and sys_check_timeouts() ensure that the Ethernet interface is 
polled for incoming UDP packets and that LwIP's internal timing requirements are met. The main 
loop also includes the logic used for managing the state of SPI communication and handling 
potential transaction timeouts. 

3.2.1.2 LwIP Stack Integration and UDP Communication 
The LwIP stack is important for the Master board's functionality as it provides UDP/IP services 
over the STM32F207ZG's Ethernet MAC. A UDP Protocol Control Block (PCB) is established 
during initialization (udp_server_init_master) and is bound to listen to a predefined static IP 
address and UDP port (e.g., 50000) for incoming datagrams. 

A dedicated UDP receive callback function (udp_receive_callback) is listed with LwIP. When a 
UDP packet arrives on the designated port, this callback function is called by the LwIP stack. The 
callback function is responsible for parsing the payload, which may contain either raw data (such 
as floating-point speed values) or control commands (such as a 1-byte sub-command that indicates 
the type of data stream that the Slave should provide, e.g., idle, speed, IMU’s gyroscope, or IMU’s 

accelerometer data). The IP address and port of the UDP sender are read using (lastSenderAddr, 
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lastSenderPort) to enable subsequent transmission of responses or echoed data. Based on the UDP 
command and the current operational state of SPI (e.g., ensuring the SPI interface is currently idle 
via current_spi_state or awaitingAck flags), the Master prepares and initiates an SPI transaction 
to the Slave board. 

Based on the data received from the Slave, which can be sensor data or the acknowledgment/non-
acknowledgment (ACK/NACK) messages, the Master’s firmware constructs a response as an 

appropriate UDP payload. This payload at times also includes the data type identifier from the 
Slave's SPI response to facilitate the host so that it can make proper interpretation. LwIP's 
pbuf_alloc() and udp_sendto() functions are then used to send these datagrams to the sender IP 
address and port. 

3.2.1.3 SPI Master Control and Protocol Management 
The Master board's SPI1 peripheral is configured as master full-duplex and uses DMA 
(HAL_SPI_TransmitReceive_DMA) for non-blocking data transfer. The essential part of the SPI 
control logic is to manage the custom communication protocol that is designed for flexibility and 
robustness. 

This custom protocol comprises a defined frame structure (build_frame function) used for all SPI 
communication. Each frame includes a START_BYTE delimiter (e.g., 0xAA), a Length field 
(defines the length of the subsequent Type and Payload fields), a Type field (e.g., 
FRAME_TYPE_MASTER_DATA to send data/commands to the slave, or 
FRAME_TYPE_CMD_CONTROL_SLAVE for specific slave mode control), a variable-length 
Payload (which can contain actual data like speed values, or sub-commands for the slave, and 
might include a sequence ID like txSeqID), a software-calculated 8-bit Cyclic Redundancy Check 
(CRC-8 is generated by using crc8_calculate covering essential frame parts), and an END_BYTE 
delimiter (e.g., 0x55). 

SPI transactions is initiated based on the incoming UDP commands. Software-controlled Slave 
Select (NSS) that uses a dedicated GPIO pin (e.g., PG4), is asserted before each SPI DMA transfer 
and de-asserted upon completion or error. The function HAL_SPI_TxRxCpltCallback is called 
when a full SPI DMA transaction (both transmit and receive) completes. Inside this callback, the 
Master de-asserts NSS and analyzes the received SPI frame (rxFrame) from the Slave. During this 
analysis, it validates the frame structure (Start/End Bytes), verifies the CRC-8 checksum, and 
checks that whether the received frame type and sequence ID are as per the expected values or not. 
Depending on the received frame type (e.g., FRAME_TYPE_SLAVE_ECHO, an ACK like 0x04, 
or a NACK like 0x05), the Master either confirms successful configuration/data exchange 
(configAcked = true), notes a negative acknowledgment (configAcked = false), or prepares the 
received sensor data payload for echo transmission back to the UDP host. 

To ensure proper communication, the master implements time detection for SPI transactions. If an 
SPI completion (signaled by spiReady flag and HAL_SPI_TxRxCpltCallback) does not occur 
within the predefined time SPI_TIMEOUT_MS which is tracked via spiTxStartTick and 
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HAL_GetTick(), a timeout is declared. Retry logic (check_timeout_and_retry, configRetryCounter, 
MAX_RETRIES) is employed, in which the Master retries to send the CONFIG command or the 
last data command a few times before resetting its state or flagging an error. SPI hardware errors 
are detected by the HAL and are handled in the HAL_SPI_ErrorCallback, which typically aborts 
the current SPI operation, re-initializes the SPI peripheral, and resets the relevant state flags to 
allow for subsequent recovery attempts. 

3.2.2 Slave STM32 Board: Software Architecture 

Slave STM32 board’s firmware is designed to function as a responsive sensor emulator that reacts 
to the SPI commands received from the Master board and transmits the emulated data back as 
response to it. The design provides efficient, interrupt driven processing and continuous data 
availability through the use of circular DMA for SPI communication.  

3.2.2.1 Operating Environment and Core Initialization 
The Slave board is operated using a bare-metal approach, with system execution being managed 
through the main loop and the interrupt service routines. Essential low-level initialization, which 
comprises system clock configuration, Hardware SPI NSS, DMA channels, the SPI1 peripheral 
(configured as slave full-duplex), is performed using STM32CubeMX-generated code and the 
STM32 Hardware Abstraction Layer (HAL) drivers.  

The initialization involves configuring SPI1 peripheral in slave mode with hardware NSS input 
enabled. Doing so, SPI peripheral can be automatically enabled/disabled by the NSS signal 
provided by the Master board's GPIO. The DMA controller is configured with two streams 
dedicated to SPI1, one for reception (SPI1_RX) and one for transmission (SPI1_TX). Both DMA 
streams are programmed to operate in circular mode, which allows continuous data transfer 
between the SPI1 Data Register (SPI1_DR) and circular memory buffers (e.g., 
spi_rx_dma_circular_buf and spi_tx_dma_circular_buf) that are pre-allocated in the code. The 
size of these buffers is determined by MAX_FRAME_SIZE and NUM_BUFFERS_IN_CIRCULAR 
to support a ping-pong buffering scheme. 

To ensure correct operation of the circular DMA with distinct processing for each half of the 
buffer, specific DMA control register bits (such as CIRC for circular mode, MINC for memory 
increment, and HTIE/TCIE for half-transfer and transfer-complete interrupt enable in the 
DMA_SxCR register) are configured post-CubeMX generation via HAL functions or direct register 
access. The transmit circular buffer (spi_tx_dma_circular_buf) is pre-filled with a default valid 
SPI frame (e.g., an ACK frame or idle sensor data) during initialization. This ensures that the Slave 
always has data ready for transmission when the Master initiates an SPI transaction by asserting 
NSS and providing the clock. Following peripheral setup, the continuous 
HAL_SPI_TransmitReceive_DMA() in circular mode is initiated. 
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3.2.2.2 Interrupt-Driven SPI Data Processing via DMA Callbacks 
Data processing logic on the Slave board is event-driven, that is triggered by DMA interrupts when 
a new data from the Master is received. The STM32 HAL provides weak-aliased callback 
functions for DMA events and are implemented in the Slave's firmware [39]: 

 HAL_SPI_RxHalfCpltCallback(SPI_HandleTypeDef *hspi): This callback is called 
when the SPI1_RX DMA stream has filled the first half of its circular buffer. The firmware 
within this callback is able to access the first segment of the received data. 

 HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi): This callback is called when the 
SPI1_RX DMA stream has filled the second half of its circular buffer (this means that it 
has completed a full circular pass for that buffer from the DMA's perspective before it 
wraps around). The firmware within this callback is able to access the second segment of 
received data. 

A processing function (e.g., process_received_data_and_prepare_tx or handle_frame) is called 
within both these RX callbacks, and this function is responsible for analyzing the received SPI 
frame (validating start/end bytes, length, and CRC-8), interpreting the Master's command (which 
includes any sub-commands for sensor data type selection), and then preparing an appropriate 
response. The frame that is generated as a response is then placed into the corresponding half of 
the SPI TX circular DMA buffer, and then it is made ready for the DMA to transmit when the 
Master next clocks data from the Slave. This mechanism ensures that while one buffer half is being 
processed by the CPU, the other half is available for the DMA, ensuring continuous data flow. 

TX DMA completion callbacks (HAL_SPI_TxHalfCpltCallback, HAL_SPI_TxCpltCallback) are 
also defined by the HAL, and their role in this architecture is to signal that a transmit buffer 
segment has been sent [39]. The data itself is prepared in response to the RX events. 
The HAL_SPI_ErrorCallback handles SPI hardware errors detected by HAL [39], and it typically 
attempts to re-initialize the SPI and DMA peripherals and resets the internal state variables to 
ensure communication can recover. 

3.2.2.3 Custom SPI Frame Protocol and Sensor Emulation Logic 
The Slave board strictly follows the custom SPI frame protocol created for communication with 
the Master board. This includes a START_BYTE, Length, Type, variable Payload, software-
calculated CRC-8, and an END_BYTE. 

The Type field within a frame received from the Master controls the Slave's action. If the type 
indicates a control command from the Master (e.g., FRAME_TYPE_CMD_CONTROL_SLAVE 
with a specific sub-command in the payload), the Slave updates its internal state to decide which 
type of sensor data to emulate (e.g., SUB_CMD_SET_STREAM_IDLE, SPEED, GYRO, ACCEL). 
Slave then prepares a frame (FRAMETYPE_SLAVE_ACK), including the echoed sub-command 
and a status byte as its response. 
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If the Master initiates an SPI transaction to poll for data (by sending a generic command or a 
previously set control command again), the Slave, generates appropriate emulated sensor data 
based on its current internal state (current_data_stream_type_to_send). The sensor data are as 
follows: 

 Vehicle Speed: A floating-point value, framed as 
FRAME_TYPE_DATA_VEHICLE_SPEED. 

 IMU Gyroscope: Typically three 16-bit integer values, framed as 
FRAME_TYPE_DATA_IMU_GYRO. 

 IMU Accelerometer: Typically three floating-point values, framed as 
FRAME_TYPE_DATA_IMU_ACCEL. 

Each response frame sent by the Slave also includes a sequence ID (e.g., echoCounter or by 
echoing the Master's sequence ID if it is present in the command frame) and is protected by a CRC-
8 checksum. If an unrecognized or corrupt frame is received, the Slave prepares 
a FRAME_TYPE_SLAVE_NACK response. This entire response generation and framing process 
occurs within the logic called from the DMA RX callbacks, hence ensuring that the transmit buffer 
segment is ready before the Master clocks it out. A timeout mechanism 
(lastRxTick and SPI_TIMEOUT_MS) is also implemented; if no SPI activity (DMA callbacks) 
occurs for a defined period of time, the SPI and DMA are considered stalled and are re-initialized 
to a known state. 

3.2.3 Data Structures and Communication Flow 

Data structures and coordinated communication sequences define the reliable and efficient 
exchange of information between the HIL environment, the Master STM32 board, and Slave 
STM32 board. These elements ensure that the commands are correctly interpreted and the sensor 
data is accurately framed. 

3.2.3.1 Core Data Structures for SPI Communication 
Two primary data structures support the inter-microcontroller communication logic: the 
customized SPI frame format used for all master-slave exchanges and the internal C-language 
structures utilized to represent the sensor data payloads prior to framing or after parsing. 

Customized SPI frame structure depicted in Figure 3-6: Custom SPI Frame Structure. This frame 
is managed within uint8_t array buffers and is designed with distinct fields for clarity, error 
detection, and support for variable payloads. Each frame starts with a START_BYTE (e.g., 0xAA) 
as a preamble, followed by a LENGTH field (1 byte) that specifies the combined length of the 
subsequent TYPE and PAYLOAD fields. The TYPE field (1 byte) is crucial for distinguishing the 
frame's purpose, with different codes for Master-to-Slave commands 
(e.g., FRAME_TYPE_CMD_CONTROL_SLAVE), Slave-to-Master acknowledgments 
(e.g., FRAME_TYPE_SLAVE_ACK, FRAME_TYPE_SLAVE_NACK), or Slave-to-Master data 
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transmissions (e.g., FRAME_TYPE_DATA_VEHICLE_SPEED). The variable-
length PAYLOAD carries the main information: for control frames it includes a 1-byte sub-
command for Slave mode selection and for data frames, it contains the emulated sensor data, 
potentially including a sequence ID. To ensure data integrity, a software-calculated 8-bit Cyclic 
Redundancy Check (CRC-8) which is also covering the essential frame components, is appended 
before the concluding END_BYTE (e.g., 0x55). 

START_BYTE

(1 Byte)

(0xAA)

LENGTH

(1 Byte)

(Length = Payload 
+ 1)

TYPE

(1 Byte)

PAYLOAD

(0 to N Bytes, e.g., up to 
MAX_FRAM_SIZE – 5 

Overhead bytes)

CRC - 8

(1 Byte)

END_BYTE

(1 Byte)

(0x55)

 
Figure 3-6: Custom SPI Frame Structure 

The sensor data is internally managed using specific C struct definition, that is designed with 
packing attributes (e.g., __attribute__((packed))) to ensure direct memory compatibility with the 
SPI frame payload. Structures like VehicleSpeedData (containing a float), ImuGyroData 
(containing three int16_t values), and ImuAccelData (containing three float values) are included 
that represent the different types of sensor information the Slave can emulate. During the formation 
of the SPI payload, these structures combined with a sequence identifier facilitate organized data 
handling within the firmware. 

3.2.3.2 High-Level System Communication Sequence 
The end-to-end communication sequence is the interaction from the external host through the 
Master and Slave boards. A typical interaction cycle begins when the dSPACE HIL simulator or 
a Python test script sends a UDP packet to the Master STM32 board. The LwIP stack on the Master 
processes this packet, and its UDP receive callback extracts the command or data, storing the 
sender's network details. Subsequently, the Master firmware constructs the custom SPI command 
frame, including any necessary payload (like a sub-command or data for the slave), a sequence ID, 
and a CRC-8. The Master starts a two-way SPI DMA transaction by activating the NSS line using 
GPIO PG4 and sends this frame to the Slave. 

Slave when it detects the NSS assertion, receives the SPI frame through its circular DMA 
mechanism. DMA interrupt callbacks trigger the parsing of the received frame that includes the 
validation of CRC and the interpretation of the command. Based on the command received from 
the Master board, the Slave updates its internal state (e.g., the type of sensor data to stream) and 
prepares an appropriate SPI response. This response, whether an ACK/NACK frame or a data 
frame containing emulated sensor values (e.g., speed, gyroscope, accelerometer data), an echoed 
sequence ID, and a new CRC-8—is loaded into the Slave's circular SPI TX DMA buffer. This 
prepared data is then clocked out by the Master during the same or a subsequent SPI transaction 
initiated by the Master (common in polling or continuous data streaming scenarios). 



System Architecture 

 

44 

Upon completion of its SPI DMA transaction, the Master's SPI completion callback is called. It 
de-asserts NSS, parses the frame received from the Slave, verifies its integrity (CRC and sequence 
ID), and extracts the payload. If valid sensor data or an expected acknowledgment is received, this 
information is then packaged into a UDP datagram by the Master and transmitted back to the 
originating host; hence, in this way, the communication loop is completed. For continuous data 
acquisition, the Master may periodically send poll frames or resend control commands to the Slave, 
with internal timeout and retry mechanisms to handle potential SPI communication disruptions. 

HOST (Python / dSPACE) MASTER STM32 SLAVE STM32

sendUDP_Command(data)

[Process UDP]

 Build SPI_CMD_Frame

assert_NSS()

SPI Data In

[Process SPI CMD]

Emulate Sensor
Build SPI_RESP_Frame

SPI Data Out

deassert_NSS()

[Process SPI RESP]

 Build UDP_Echo

sendUDP_Echo(response_data)

 
Figure 3-7: High-Level Communication Sequence Diagram for a Command-Response Cycle 

3.3 Simulink and dSPACE Package 

The dSPACE HIL simulation, centered around the SCALEXIO platform and DS6001 processor 
board, was used to generate real-time UDP commands for the STM32 Master board and observe 
the behavior of the system. This simulation was achieved through a specifically designed Simulink 
model and then compiled into a dSPACE real-time application and was managed via a custom 
dSPACE ControlDesk interface. 
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3.3.1 dSPACE Real-Time Application Configuration and Deployment 

A new project was created in dSPACE ConfigurationDesk (e.g., named "Speed_Echo_CD," 
"Sensor_Mimic," or "Speed_Echo_Latency"). The SCALEXIO hardware platform was then 
defined within this project by adding a "SCALEXIO Rack" and subsequently a "LabBox (8-slot)" 
to mirror the physical setup to be used. 

Inside the "Signal Chain" view of dSPACE ConfigurationDesk, the necessary function blocks for 
Ethernet-based UDP communication were added, as shown in Figure 3-8: dSPACE 
ConfigurationDesk Function Blocks for UDP-Based Interaction. This included an "Ethernet 
Setup" block, a "UDP Transmit" block, and a "UDP Receive" block. The "Ethernet Setup" block 
was configured with the local IP address 169.254.32.8 and subnet mask 255.255.0.0 for the 
DS6001 board and was mapped to its physical Eth0_1 Ethernet port. The "UDP Transmit" block 
was configured to send data to the STM32 Master board at IP address 169.254.32.100 on UDP 
port 50000, with a maximum vector size (e.g., 4 bytes for simple speed data or 1 byte for sub-
commands). The "UDP Receive" block was configured to listen on local port 50000 for data from 
the STM32 Master, with an appropriate vector size (e.g., 4 bytes for echoed speed or up to 13 bytes 
for structured sensor data). The "Model port data type" under "Propagation" was set to "Inherited" 
for both UDP Transmit and Receive blocks in order to ensure that the data exchanged with the 
subsequent Simulink model interface would be as a uint8[] byte array. 

Once these hardware function blocks were configured in the Signal Chain, all these blocks were 
selected, and a Simulink model was created using the "Generate New Simulink Model Interface" 
option. This automatically created a new Simulink model file (which, for e.g., was named 
"Speed_Echo.slx"). This generated model contained the basic blocks (e.g., "UDP Receive (1)," 
"UDP Transmit (1)_Out," and "UDP Transmit (1)_In") as depicted in Figure 3-9: Simulink Model 
automatically created via dSPACE ConfigurationDesk, which serve as the bridge between the 
logical model to be implemented and the physical I/O defined in dSPACE ConfigurationDesk. 
This auto-generated file is then used as a starting point for implementing specific tests in Simulink. 
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Figure 3-8: dSPACE ConfigurationDesk Function Blocks for UDP-Based Interaction 

 
Figure 3-9: Simulink Model automatically created via dSPACE ConfigurationDesk 

3.3.2 Simulink Models for UDP-Based Interaction 

The HIL simulator’s functionality is implemented using a MATLAB/Simulink model. This model 

is designed to emulate the external system that sends input commands to the STM32 Master board 
and also receive and process data returned from the STM32 system via UDP. Once this base 
Simulink model interface was created by dSPACE ConfigurationDesk, several Simulink models 
were developed to test the objectives for the Ethernet-SPI Bridge. These models were saved with 
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specific names (e.g., "Speed_Echo_Latency.slx", "Speed_Echo_CD.slx" and 
"Sensor_Mimic.slx") and subsequently integrated back into the dSPACE ConfigurationDesk 
project. 

3.3.2.1 Model 1: (Speed_Echo_Latency) – Internal Speed Generation and Echo Latency 
Verification 
The model was not only designed for the end-to-end verification of UDP paths but also to perform 
a real-time measurement of the round-trip time (RTT). Its purpose was to generate dynamic speed 
data, transmit it to the STM32-based Ethernet-SPI Bridge, receive the corresponding echo, and 
precisely calculate the communication latency within the HIL environment. The model 
architecture comprises three main functional paths which are data transmission path, data reception 
path, and latency calculation path. 

For data transmission, a MATLAB function block, GenerateSpeed, was implemented to produce 
random floating-point speed values (e.g., within a range from 60.0 to 80.0 kph). The output of 
GenerateSpeed was then connected to another MATLAB function, PackFloatToBytes, which 
converted the single-precision float into a 4-element uint8 vector. This byte vector was connected 
to the "Data Vector" Inport of the "UDP Transmit (1)_Out" interface block. A constant block 
providing the vector size (e.g., 4 for the float data, which is 4 bytes) was connected to the "Vector 
Size" input of this UDP Transmit (1)_Out interface block. 

For data reception, the "Data Vector" outport from the "UDP Receive (1)” that outputs the received 

uint8 array is connected to a MATLAB function block named "UnpackBytesToFloat.” This 

function converted the received 4-byte array back into a single-precision float, and its output, 
which represented the speed echoed, was connected to a Data Store Write block (Speed_Echo) for 
storing values and real-time visualization. 

For calculating the communication latency, a MATLAB function block named 
“ComputeLatencyWithBuffer” was utilized. This function was designed for RTT measurement and 

takes three inputs: the original "sentSpeed" from the “GenerateSpeed” block, the 
received “echoSpeed” from the “UnpackBytesToFloat” block, and “t_now,” a timestamp provided 

by a Simulink Clock block. The function maintains a continuous circular buffer of recent sent 
values along with their timestamps. Upon receiving an echoSpeed, it searches this buffer for a 
matching sentSpeed and calculates the latency. The resulting latency output, in milliseconds, was 
connected to a Data Store Write block named EchoLatency_ms to make it accessible for real-time 
monitoring in dSPACE ControlDesk. This model is depicted in Figure 3-10: Simulink Model for 
Randomly Generated Speed Values and Latency Calculation. 
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Figure 3-10: Simulink Model for Randomly Generated Speed Values and Latency Calculation 

3.3.2.2 Model 2: (Speed_Echo_CD) – dSPACE ControlDesk Driven Speed Control and 
Monitoring 
The model shown in the Figure 3-11: Simulink Model for Controlling Speed and Monitoring in 
ControlDesk shows how we can control Speed_Input using a slider/knob in dSPACE ControlDesk. 
A constant of type “Single” and value “1” can be accessed in dSPACE ControlDesk to attach a 
knob/slider to change the Speed_Input values on our own. The output function 
“UnpackBytesToFloat” is connected to the “Data Store Write” block that is linked with the “Data 
Store Memory” block, which can store the values in a variable called “Speed_Echo.” This variable 
can be accessed in dSPACE ControlDesk to attach a graph, display, etc., to it for monitoring the 
values received. 
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Figure 3-11: Simulink Model for Controlling Speed and Monitoring in ControlDesk 

3.3.2.3 Model 3: (Sensor_Mimic) – dSPACE ControlDesk Driven Speed Control and 
Monitoring 
This Simulink model was designed to allow a user to send different commands to the STM32 
Master via dSPACE ControlDesk GUI. These are 1-byte sub-commands that are used to direct the 
STM32 Slave, which emulates a multi-functional sensor, to switch between different data 
streaming modes (e.g., Idle, Vehicle Speed, IMU Gyroscope, and IMU Accelerometer). The 
Simulink model then receives the UDP data packets as a response from STM32 Slave via STM32 
Master, parses this information, and formats it into a human-readable string for real-time display 
in dSPACE ControlDesk. 

A Simulink constant block named SubCmd Control is configured to send a uint8 value and can be 
connected to a ON/OFF-button or drop-down menu bar to trigger a specific sub-command such as 
SUB_CMD_SET_STREAM_IDLE (0x00), SUB_CMD_SET_STREAM_SPEED 
(0x01), SUB_CMD_SET_STREAM_GYRO (0x02), or SUB_CMD_SET_STREAM_ACCEL 
(0x03)). These commands from this constant block are connected to the "Data Vector" input of the 
"UDP Transmit (1)_Out" interface block. Another constant block with data type Boolean and value 
“1” is connected to the "Vector Size" input of the "UDP Transmit (1)_Out" block, ensuring only 
the single command byte is transmitted as the UDP payload. 

The "UDP Receive (1)" interface block in Simulink is configured with a "Vector size" sufficient 
enough to accommodate the largest possible UDP payload received from the STM32 Master (e.g., 
13 bytes, comprising a 1-byte Slave SPI Frame Type + 12 bytes for IMU Accelerometer float 
data). The output of this UDP receive block (Data Vector) is connected to a MATLAB function 
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block named UnpackFrame, which interprets the raw byte data (uint8) received from the STM 32 
Master board. That data contains frame type identifier (First Byte) and a payload (e.g. float Speed, 
int16 Gyro, float Accel). This function checks for the type of data the frame holds and based on 
that they are then converted to int32 (to make Simulink codegen-friendly), and passed out as out1, 
out2, and out3 to another MATLAB function block named FormatResponse. This 
FormatResponse function builds a displayable message by manually assembling text using fixed-
size uint8 arrays. The logic performed by these functions are as follows: 

 Extracted the first byte of the received UDP payload as the Slave_SPI_Frame_Type (e.g., 
0xA1 for Speed, 0xA2 for Gyro, 0xB0 for ACK, etc.). 

 Based on this Slave_SPI_Frame_Type, it parsed the subsequent bytes of the UDP payload 
into their respective data types: 
o For FRAME_TYPE_DATA_VEHICLE_SPEED (0xA1): The next 4 bytes were typecast 

to a single-precision float (speed in kph). 
o For FRAME_TYPE_DATA_IMU_GYRO (0xA2): The next 6 bytes were typecast to three 

int16_t values (raw gyro x, y, z). 
o For FRAME_TYPE_DATA_IMU_ACCEL (0xA3): The next 12 bytes were typecast to 

three single-precision floats (accel x, y, z in g). 
o For FRAME_TYPE_SLAVE_ACK (0xB0) or FRAME_TYPE_SLAVE_NACK (0xB1): 

The next 2 bytes were interpreted as the echoed sub-command and a status byte. 
 This parsed data is then formatted into a string which can be read by human (e.g., "Speed: 

XX.YY kph", "Gyro: X=..., Y=..., Z=...", "ACK: SubCmd=0xZZ Status=OK/FAIL", or 
"Unknown Frame: Type=0xAA Payload=...") as a fixed-length uint8 array. This formatting 
was done using array manipulations and ASCII conversions for codegen compatibility, 
avoiding non-embeddable string functions. 

This uint8 array string output was connected to a Gain block (unity gain) and the output as the 
Slave_Response for display. The output of the function “FrameResponse” can be accessed in 
dSPACE ControlDesk variable array, display, etc., for monitoring the data received.  
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Figure 3-12: Simulink Model for Slave as a multi-functional sensor 

3.3.3 Real-Time Application Build and Deployment 

After the development and saving of the respective Simulink, the workflow returned to dSPACE 
ConfigurationDesk to integrate these models and build the final real-time application. In “Models” 

tab of Signal Chain, the Simulink model was selected and was updated within dSPACE 
ConfigurationDesk by clicking “Analyze”. By doing so, the logical implementation done in the 
Simulink file were mapped within dSPACE ConfigurationDesk as well. This mapping step is 
crucial as it establishes the direct data flow between the Simulink model's computational logic and 
the physical Ethernet I/O of the SCALEXIO system. The execution rate of the real-time 
application, set as 1-ms, is configured in the Task Configuration settings within dSPACE 
ConfigurationDesk.  

 
Figure 3-13: dSPACE ConfigurationDesk - Task Configuration 

With the model-function mapping and task configuration done, the real-time application was 
generated using the "Start Build (CTRL+ALT+B)" command from dSPACE ConfigurationDesk. 
This process compiled the Simulink model and integrated it with the dSPACE ConfigurationDesk 
hardware and tasking settings, producing the necessary executable files (.rta), interface definitions 
(.sdf), and dSPACE ControlDesk layout files (.a21) for deployment on the SCALEXIO DS6001 
processor board. The successful build was confirmed by reviewing the build log and the generated 
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artifacts in the project browser as shown in Figure 3-14: dSPACE ConfigurationDesk Build 
Results. 

 
Figure 3-14: dSPACE ConfigurationDesk Build Results 

3.3.4 Experiment Control with dSPACE ControlDesk 

The final stage of the HIL application setup involves utilizing dSPACE ControlDesk to load and 
execute the compiled real-time application—the .sdf file that was created using dSPACE 
ConfigurationDesk and Simulink—on the SCALEXIO platform. dSPACE ControlDesk serves as 
the primary Human-Machine Interface (HMI) that provides a user-friendly environment that 
allows for interactive experiment control and real-time data visualization of the application, which 
is crucial for comprehensive HIL testing and validation. 

The process of creating the dSPACE ControlDesk interface begins after the Simulink model is 
built and its variables are available within the dSPACE ControlDesk environment. As shown in 
Figure 3-15: dSPACE ControlDesk Layout - Variable and Instrument Selector Pane, the 
"Variables" pane (highlighted in the green box) lists the accessible signals and parameters from 
the loaded real-time application (e.g., "Sensor_Mimic.sdf", "Speed_Echo_Latency.sdf" or 
"Speed_Echo_CD.sdf"). This includes a parameter named Speed_Input (configured as a constant 
in Simulink) and a measurement Speed_Echo (configured as a Data Store Write in Simulink for 
displaying echo output). The "Instrument Selector" tab (highlighted in the red box) provides the 
list of the instruments that can be dragged onto the layout and connected to these variables. 
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Figure 3-15: dSPACE ControlDesk Layout - Variable and Instrument Selector Pane 

For the Speed_Echo test, the dSPACE ControlDesk layout was designed for controlling 
Speed_Input and Speed_Echo (Data Store Write) variables. A slider and a numeric display were 
dragged and dropped from the Instrument Selector into the layout, with the Speed_Input variable 
assigned to the slider, and the "Data Store Write" variable assigned to the number display, as shown 
in Figure 3-16: dSPACE ControlDesk Layout - Variable and Instrument Integrated. This layout 
allowed the operator to vary the speed value (via slider) that is being sent via UDP to the STM32 
system and visualize the echoed speed value in the numerical display. 

For the Speed_Echo_latency test, additional instruments were added in the dSPACE ControlDesk 
layout to perform the analysis. In addition to visualizing the sent and echoed speed signals, 
dedicated instruments were added for latency monitoring. A numeric display was connected to the 
EchoLatency_ms "Data Store Write" variable to show the instantaneous RTT value, while a time-
plot graph was also linked to this variable to demonstrate the latency over time. This layout enabled 
the observation of latency, jitter, and the system's overall response. 

Similarly, for the Sensor_Mimic test, the dSPSACE ControlDesk layout was designed to use the 
instruments like ON/OFF-button, radio buttons or pushbuttons. This instrument is to be linked to 
the variable SubCmd Control, which allows the user to send the 1-byte sub-commands to command 
the STM32 Slave to stream different types of sensor data. The resulting responses from the Slave, 
processed and formatted by the Simulink model into a displayable string (e.g., FrameResponse 
function output), would be either displayed in the dSPACE ControlDesk or stored in the form of 
a .csv file. 

 
Figure 3-16: dSPACE ControlDesk Layout - Variable and Instrument Integrated 
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Implementation and Methodology 

4.1 Ethernet Phase: STM32 UDP Communication 

The initial development phase was to establish a robust UDP communication capability using a 
single STM32F207ZG board, which later on served as the Master in the complete system. This 
development phase involved configuring the LwIP stack for bare-metal operation, which led to the 
development of the firmware to handle both UDP server and client functionalities. These tests 
were carried out using Python scripts running over the Windows PowerShell in the PC and a 
network utility application, Packet Sender. The stepwise implementation of the Ethernet 
development phase is as follows. 

4.1.1 STM32 as a UDP Server: Command Reception and Processing 

Initially, the STM32F207ZG board was configured to operate as a UDP server so that its UDP 
reception capabilities could be validated. This setup involved the initialization of the LwIP stack 
inside CubeMX for the bare-metal environment, and firmware was implemented to listen to the 
incoming UDP packets at a predefined static IP address (e.g., 169.254.32.100) and UDP port (e.g., 
50000). The core of this server was inside the udp_server_init function, which established the UDP 
Protocol Control Block (PCB), and a dedicated udp_receive_callback function, which was 
triggered by the LwIP stack upon the arrival of a UDP packet on the designated port.  

4.1.1.1 Basic Data Reception and Display 
The aim of the first test was to confirm basic data reception and parsing. A Python script was 
developed to send variable-length UDP packets having data type string to the STM32 board. Inside 
the udp_receive_callback function of STM32 code, these incoming payloads were extracted from 
the pbuf structure. To ensure safe handling and prevent buffer overflows, the received data was 
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copied into an array of local characters that null-terminated the string. This processed string, often 
appended with a packet counter for sequence verification, was then displayed on a serial terminal 
(Tera Term, connected via UART) for immediate visual confirmation of successful reception and 
data integrity. Besides that, Wireshark was also used on the PC to monitor the UDP traffic, 
verifying packet transmission and reception at the network level. 

 

 
Figure 4-1: Basic UDP Transmission (Top) and Reception (Bottom) 

4.1.1.2 Command Processing and Acknowledgment (LED Control) 
The firmware was enhanced to simulate command-response interaction, and this functionality was 
achieved by sending specific string commands for controlling on-board hardware. These 
commands were sent using the Python script or a network utility like "Packet Sender." Commands 
such as "Turn RED LED ON" or "Turn BLUE LED OFF" were transmitted to the STM32 server. 
String comparison logic (e.g., using strcmp) was added to the udp_receive_callback function so 
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that these commands could be parsed. After receiving a valid command, the firmware would 
set/reset the appropriate GPIO pins to control the state of these STM32 board's LEDs (e.g., LD1 - 
Green, LD2 - Blue, LD3 - Red). Subsequently, a response string such as "RED LED TURNED 
ON" or "Invalid Command" was transmitted back to the sender via UDP as an acknowledgment 
of the action taken or an error status. This test validated not only command parsing but also the 
STM32's ability to act on commands and send UDP responses. 
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Figure 4-2: UDP Command and Response (Wireshark Capture and Tera Term Display) 

4.1.1.3 Handling Numerical Data and Echoing (Car Speed Simulation) 
For the scenario that involved numerical data, a test was conducted where the STM32 server 
received UDP packets containing simulated car speed values. These speed values (floating-point 
numbers) were randomly generated by a Python script and were converted to string format before 
being transmitted. The udp_receive_callback in the STM32 code parsed the received string packets 
back into numerical values by using strtod (convert to a double). The received numerical speed 
was then displayed on the Tera Term serial terminal for verification, and the same value was 
echoed back to the Python script as an acknowledgment. This was tested with sequences of 100 
and infinite packets at a 1-ms interval to assess the responsiveness and data handling capacity of 
the LwIP stack under high-frequency traffic. The successful reception and acknowledgment of 
these packets confirmed the system's ability to handle string-to-numerical data conversion and 
maintain integrity at a higher rate. 
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Figure 4-3: UDP Numerical Data Transmission and ACK (Tera Term, Python and Wireshark) 

4.1.2 STM32 as a UDP Client: Data Transmission 

Apart from functioning as a UDP server, the STM32F207ZG board's capability to act as a UDP 
client and initiate data transmission was also verified. This step was essential to confirm the 
potential of the STM32 board to perform bidirectional communication. For this test, firmware was 
developed to send a burst of formatted string messages, ranging from 100 to infinite in number, 
from the STM32 board to a designated IP address and port on a host PC. In this scenario, the 
STM32 board responded in a way where an embedded device might continuously send status 
updates, logged data, or alerts to a monitoring system. 

Within the STM32 firmware, important steps were taken to carry out the implementation of the 
board as a UDP client. A dedicated function named send_multiple_udp_packets was created to 
manage the communication with the client side. Inside this function, a new UDP Protocol Control 
Block (PCB) was allocated using udp_new(). Moreover, instead of binding this PCB to a local port 
for listening (as was done in the server configuration), it was connected to the target PC's IP address 
(e.g., 169.254.65.249) and a specific UDP port (e.g., 50000) using udp_connect(). By doing so, it 
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established a connection for the outgoing packets that allowed LwIP to handle the necessary 
routing. 

An initial "ARP Trigger Packet" was transmitted on the PBUF_LINK layer right after the 
udp_connect() function to guarantee correct network resolution, particularly with respect to 
Address Resolution Protocol (ARP) for mapping the target IP to a MAC address. A small delay 
(e.g., HAL_Delay(1000)) was then added that allowed time for any ARP exchanges to complete 
before starting the main data transmission sequence. Following this, a loop was executed ranging 
from one hundred times to infinite. In each iteration, a string message, typically "Packet X from 
STM32," where X was the packet number, was dynamically formatted using sprintf. This message 
was then encapsulated within a pbuf allocated using pbuf_alloc(PBUF_TRANSPORT, ...), and 
transmitted using udp_send(). After each udp_send(), a small delay and calls to 
ethernetif_input(&gnetif) and sys_check_timeouts() were included to facilitate LwIP's internal 
processing and actual packet dispatch over the Ethernet link. After completion of the loop, the 
UDP PCB was disconnected using udp_disconnect() and then removed with udp_remove() to free 
up resources. 

Successful transmission of these packets was verified on the host PC, which used a Python UDP 
receiver script and Wireshark to receive these packets and capture the network traffic. The 
Wireshark logs clearly showed these 100 UDP packets sent from the STM32's IP address and 
received by the configured PC IP and port that confirmed the STM32's capability to initiate and 
manage UDP communication. 
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Figure 4-4: STM32 as UDP Client 

4.1.3 LwIP Stack Configuration 

The Lightweight IP (LwIP) stack is an open-source TCP/IP suite designed for embedded systems. 
It is essential for enabling Ethernet communication on the STM32F207ZG microcontroller. Proper 
configuration of LwIP is necessary for optimizing the performance of the application, as this 
configuration allows for the proper resource utilization that suits the hardware constraints. Several 
key parameters were adjusted in the lwipopts.h configuration file so that this project can be 
operated using a bare-metal (non-RTOS) approach. 

The core setting for the bare-metal system was NO_SYS = 1, which configured LwIP to run without 
relying on an operating system. By doing so, network events are processed using the main loop 
pooling mechanism. Since the focus of this project was solely on UDP communication, TCP 
support was disabled by setting LWIP_TCP to 0. To ensure that the STM32's Ethernet MAC 
capabilities are fully utilized, tasks such as checksum generation and verification of IP and UDP 
protocols were offloaded from the CPU, and this was done by setting 
CHECKSUM_BY_HARDWARE to 1. 

Memory management was carefully done within the LwIP CubeMX settings. MEM_ALIGNMENT 
was set to 4 bytes, which is standard for 32-bit microcontrollers. The total heap memory available 
to LwIP (MEM_SIZE) was set to a suitable value (e.g., 50KB), as this provided a balance to the 
needs of network buffers and other LwIP internal structures against the available SRAM. The 
number of packet buffers (MEMP_NUM_PBUF and PBUF_POOL_SIZE) and their sizes 
(PBUF_POOL_BUFSIZE, e.g., 1600 bytes) were adjusted to handle the expected UDP packet 
sizes and traffic volume without excessive memory usage. Especially for UDP, the number of 
active UDP Protocol Control Blocks (MEMP_NUM_UDP_PCB) was set (e.g., to 6) to 
accommodate the server-client operations. Few other parameters, such as ARP table size 
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(ARP_TABLE_SIZE) and some timeout values, were generally kept at their default values to ensure 
that there is stable network operation with respect to the HIL simulator or PC communication. 
Collectively, these configurations provided a functional network stack that can be used for real-
time UDP messaging. 

4.1.4 Integration with dSPACE SCALEXIO for UDP Echo Testing 

An important milestone in the Ethernet phase was the integration and testing of UDP 
communication between the STM32F207ZG board and the dSPACE SCALEXIO HIL simulator. 
This step was crucial as it verified the network connectivity and data exchange pipeline before 
implementing the SPI bridging concept. For this test, the STM32 board was configured as a UDP 
server, just like the firmware described in Section 4.1.1.3, where it was programmed to listen for 
incoming UDP packets, parse a floating-point number from the payload, and then echo this 
numerical value back to the sender (Python script). 

The dSPACE SCALEXIO system, running a real-time application, acted as the UDP client. The 
dSPACE SCALEXIO system was configured to send UDP packets containing floating-point 
numbers to the STM32 Master's IP address (192.168.1.22) and port (44000). The same model 
running on dSPACE SCALEXIO system was also configured to receive the echoed UDP packets 
from the STM32 on IP address (192.168.1.21) and port (e.g., 44001). 

The successful execution of this test was verified by observing the data flow in real-time. As shown 
in the Figure 4-5: UDP Communication with SCALEXIO Simulator, the data values sent from the 
dSPACE ControlDesk interface via a slider named "PID Controller/y" were received by the 
STM32 board. In response to this, the STM32 board processed and displayed these values on its 
serial terminal (Tera Term). Subsequently, it echoed the same values back to the dSPACE real-
time application, which monitored these values within the dSPACE ControlDesk via a display 
screen, "Ethernet Receive/RxValue" and a graph. This end-to-end test successfully demonstrated 
basic real-time UDP connectivity and data exchange between the embedded STM32 platform and 
the dSPACE HIL simulation environment, which was a breakthrough as it paved the way for more 
complex system integration. 
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Figure 4-5: UDP Communication with SCALEXIO Simulator 

4.2 SPI Phase: Inter-STM32 Board Communication 

After successfully establishing the Ethernet UDP functionality on a single board, the next target 
was to develop a robust SPI communication link between two STM32F207ZG boards, where one 
was considered the Master and the other the Slave. This phase was important for creating a reliable, 
high-speed, full-duplex data transfer mechanism using Direct Memory Access (DMA), which 
would form the core data pipe for the sensor data emulation and the Ethernet-SPI bridging. The 
development progressed through various stages, starting from a basic data exchange and then step 
by step adding synchronization, framing, error detection, and more complex data handling 
capabilities. 



Implementation and Methodology 

 

63 

4.2.1 Basic SPI DMA Configuration and Full-Duplex Transfer 

The initial setup involved configuring the SPI1 peripheral on both STM32 boards for 
communication. The Master board's SPI1 peripheral was set to Master mode with hardware NSS 
output functionality enabled on its designated NSS pin (PA4). Subsequently, the Slave board's 
SPI1 peripheral was set to Slave mode with hardware NSS input on its designated NSS pin (PA4). 
This ensured that the Slave device would be automatically selected and deselected by the Master's 
NSS signal. Both peripherals were set up for 8-bit data size, CPOL 0, and CPHA 1Edge (SPI Mode 
0). The APB2 peripheral clock was 48 MHz; hence, selecting the baud rate prescaler as 32 resulted 
in an SPI clock speed of 1.5 Mbits/sec ((48 MHz/32) = 1.5 Mbits/sec). Full-duplex communication 
was carried out by employing DMA for both transmission and reception on each board, 
utilizing HAL_SPI_TransmitReceive_DMA(). 

Table 4-1: SPI Full-Duplex Pin configuration 

Function STM32 Pin Nucleo board Pin Name Connector Pin Number 

SCK PA5 SPI_A_SCK CN7 D13 (Pin 10) 

MISO PA6 SPI_A_MISO CN7 D12 (Pin 12) 

MOSI PB5 SPI_A_MOSI CN7 D11 (Pin 14) 

NSS PA4 SPI_B_NSS CN7 D24 (Pin 17) 

The initial testing involved the Master board sending a fixed string, “Hello SPI,” to the Slave board 

at an interval of 1 second using the HAL_Delay(1000) command. The slave board was 
programmed to echo back the same string to the master board. The results were verified visually 
on the serial terminals (Tera term) of both Master and Slave boards. These early tests showed 
successful basic data exchange using SPI with DMA. However, there were some challenges related 
to synchronization when the code was run for a longer period of time and when the data sending 
rate was increased (for example, from a 1-second interval to a 100-ms interval). This indicated that 
though the basic data transfer was functional, the Slave could halt or miss data without a more 
robust timing and proper handshake, especially in the case where the Master initiated transactions 
when the Slave was not ready. 

4.2.2 GPIO and Timer-Based Synchronization for 1ms SPI Transactions 

To address the synchronization issue and perform a reliable SPI transaction at a faster rate (e.g., 1 
ms), a GPIO-based handshake mechanism was introduced. GPIO in PG5 of the Master board was 
set as an EXTI (external interrupt rising edge triggered) in pull-down configuration to detect the 
“ready” signal from the Slave. GPIO pin PG4 on the Master board was configured as output push-
pull to send a “master ready” signal to the slave. Similarly, PG4 of Slave board was configured as 
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an input (with pull-down) to detect the “master ready” signal from Master board, and PG5 was 
configured as an output push-pull to send the “ready” signal to the Master board. The Slave, upon 

detecting the “master ready” signal, would prepare its response and then pulse its PG5 for a short 

period, which triggers the EXTI on the Mater. The Master’s EXTI service routine would then 

initiate the HAL_SPI_TransmitReceive_DMA() operation. 

 

 
Figure 4-6: Master Board SPI Handshake GPIO Configuration 

The Slave board’s Handshake GPIO configuration is as shown in Figure 4-7: Slave Board SPI 
Handshake GPIO Configuration. 
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Figure 4-7: Slave Board SPI Handshake GPIO Configuration 

While the EXTI-based GPIO handshake improved synchronization and responsiveness, further 
refinement were done for consistent 1-ms polling by the Master. This led to the implementation of 
a hardware timer, and TIM4 was selected as it is a 16-bit general purpose timer, well suited for 
this application. TIM4 on the Master board was configured to generate an interrupt every 1-ms 
and the calculations for selecting an appropriate prescaler (PSC) and counter period (auto-reload 
register (ARR)) value was carried out using the following formula. 

While the EXTI-based GPIO handshake approach improved synchronization and responsiveness, 
further enhancement was done for consistent 1-ms polling by the Master. This led to the 
implementation of a hardware timer, and TIM4 was selected as it is a 16-bit general-purpose timer, 
well suited for this application. TIM4 on the Master board was configured to generate an interrupt 
every 1-ms and the calculations for selecting an appropriate prescaler (PSC) and counter period 
(auto-reload register (ARR)) value were carried out using the following formula. 
 

𝑈𝑝𝑑𝑎𝑡𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
𝑇𝐼𝑀 𝐶𝑙𝑜𝑐𝑘

𝑃𝑆𝐶 + (𝐴𝑅𝑅 + 1)
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Timer TIM4 is linked with the APB1 clock, which is 48 MHz; hence, selecting PSC as 47 and 
ARR as 999 resulted in Update Frequency = 1000 Hz, which is 1-ms. 
The HAL_TIM_PeriodElapsedCallback function then became responsible for initiating the SPI 
DMA transaction. It provided the Slave indicated readiness (e.g., by the Master checking the state 
of its PG5 input, which was connected to the Slave's PG5 output). The Slave board, in this 
configuration, continued to use its PG5 pin as an output to signal when it was ready for a 
transaction, and it monitored the Master's signal “master ready” (PG4 from Master connected to 

Slave's PG4) for SPI transaction initiation. This timer-driven approach on the Master along with 
the "slave ready" signal, provided a more deterministic 1-ms SPI polling interval. 

 
Figure 4-8: Master Board Timer (TIM4) Configuration for SPI 

4.2.3 Implementation of Custom SPI Framing and CRC-8 for Data Integrity 

To enhance robustness and support variable data types and lengths, a customized SPI framing 
protocol was implemented on Master and Slave communication. Each frame (as detailed in Section 
3.2.3 and depicted in Figure 3-6: Custom SPI Frame Structure) consisted of 
a START_BYTE (0xAA), a 1-byte LENGTH field (indicating the length of TYPE + PAYLOAD), a 
1-byte TYPE field, a variable-length PAYLOAD, a software-calculated 8-bit Cyclic Redundancy 
Check (CRC-8) that covered the TYPE and PAYLOAD, and an END_BYTE (0x55). 
The build_frame function was developed to construct these frames, and subsequent parsing logic 
was implemented on the receiving side to validate the frame structure and extract the payload. The 
CRC-8 implementation was done using a polynomial (0x07) that provided a mechanism for 
transmission error detection over the SPI link. All SPI DMA transactions were set to transfer a 



Implementation and Methodology 

 

67 

fixed maximum frame size (e.g., 32 bytes), whereas the actual frame content and length were 
determined by the parsing logic based on the frame's LENGTH field. 

4.2.4 Slave Sensor Emulation and Packet Integrity Checks 

The firmware of the slave STM32 board was enhanced to emulate the behavior of a sensor (e.g., 
an inertial measurement unit (IMU)). Initially, this was implemented as Slave sending back static 
framed data but was later upgraded to include variable data types (e.g., int16_t, float, uint8_t) and 
randomly generated values (e.g., IMU's accelerometer and gyroscope reading) for these data types 
to simulate a real sensor's output. A packet counter (packetCbadFrameCountounter on the Slave, 
echoed and checked as expectedCounter on the Master) was incorporated within the payload of 
data frames. This allowed the Master to detect lost packets by comparing the received counter 
value with its expected sequence. If a mismatch occurred, the number of lost packets was 
calculated and displayed on the serial display of Master. Furthermore, robust error-handling 
mechanisms, which included SPI timeout detection (SPI_TIMEOUT_MS, lastRxTick) and a 
tracker, were implemented on both Master and Slave boards. If multiple consecutive invalid frames 
were received or if an SPI transaction timed out, the respective board would attempt to re-initialize 
its SPI peripheral to recover the communication link. 

 

 
Figure 4-9: Master and Slave Full-Duplex Communication - Sensor Data 

The Figure 4-10: Master board's UART output showing detected SPI packet loss shows total 
packets lost and packets detected.  
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Figure 4-10: Master board's UART output showing detected SPI packet loss 

4.3 Ethernet-SPI Bridge Implementation and Prototyping 

This is the critical integration phase where the previously validated Ethernet UDP interface 
(Section 4.1) and the refined SPI communication link (Section 4.2) were combined. The Master 
board was developed to act as a bridge between Ethernet and SPI link. This integration phase was 
termed the prototype system, where a Python script, complimented with a Tkinter-based Graphical 
User Interface (GUI), was used to mimic the role of the dSPACE HIL simulator. The script was 
used to send UDP-based commands to the Master STM32, which then forwarded these commands 
to the Slave STM32 via SPI. Slave, which is emulating a multi-functional sensor, processed these 
commands and returned a response (i.e., ACK/NACK frames, randomly generated speed, and 
IMU’s simulated gyro and acceleration value). This SPI-based response was then received by the 
Master, which forwarded it as a UDP packet to the Python application for display and analysis. 
This prototype allowed end-to-end testing of the entire communication pipeline and running logic 
before transitioning it to the actual dSPACE simulator. 

4.3.1 Master Board: Bridging Logic and State Management 

The firmware for the Master STM32 board was designed to manage the bidirectional flow of data 
and commands between the Ethernet (UDP) and SPI interfaces. A major aspect of this design was 
the implementation of robust state management to handle the running network and peripheral 
operations. 
After getting initialized, the Master board configured its LwIP stack and started a UDP server to 
listen to the incoming commands from the Python application on a predefined IP address and port. 
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The udp_receive_master_command_callback function was responsible for parsing these incoming 
UDP packets. These UDP packets contained a 1-byte sub-command from the Python GUI, 
dictating the Slave to send the desired data stream (e.g., stream idle, speed, gyro, or accelerometer 
data). Once such a command is received, the callback function updates a global variable 
named target_sub_command_for_slave and sets a flag, new_control_command_to_send_to_slave, 
to signal the main loop that a new control directive was pending for the Slave. 

The Master's main loop included logic for managing SPI transactions that was driven by a polling 
interval (SPI_POLL_INTERVAL_MS set as 1-ms and managed using HAL_GetTick()). When the 
SPI interface was idle (current_spi_state == SPI_STATE_IDLE) and the polling interval had 
elapsed, the Master would prepare an SPI transaction. If the 
new_control_command_to_send_to_slave flag was set, the Master would construct an SPI frame 
of FRAME_TYPE_CMD_CONTROL_SLAVE, incorporating the target_sub_command_for_slave 
as its payload. This allowed the Python GUI to actively change the Slave's behavior. If no new 
control command was pending but a data stream was expected from the Slave (i.e., 
target_sub_command_for_slave != SUB_CMD_SET_STREAM_IDLE), the Master would send a 
generic "poll" command (a FRAME_TYPE_CMD_CONTROL_SLAVE frame with a special 
payload like 0xFF) to evoke the Slave for data. Before initiating each SPI DMA transfer 
(HAL_SPI_TransmitReceive_DMA), the Master asserted the software-controlled NSS line (GPIO 
PG4) connected to the Slave's hardware NSS input. 

Once HAL_SPI_TxRxCpltCallback signals the completion of an SPI transaction, the Master de-
asserts the NSS line immediately. The received SPI frame from the Slave (spi_rx_frame_buf) is 
then parsed using the parse_spi_frame function, which validates the frame’s structure (start/end 

bytes) and data integrity (CRC-8 checksum). If the frame was valid, its TYPE field was analyzed. 
For responses such as FRAME_TYPE_SLAVE_ACK or FRAME_TYPE_SLAVE_NACK, the 
Master updates its internal state (e.g., configAcked) to indicate that the Slave has acknowledged 
the control command. If the frame contained simulated sensor data 
(e.g., FRAME_TYPE_DATA_VEHICLE_SPEED, FRAME_TYPE_DATA_IMU_GYRO, FRAME_
TYPE_DATA_IMU_ACCEL), the Master then extracted the payload (which included the emulated 
sensor values and probably a sequence counter from the Slave). This payload, prefixed by the 
Slave's original SPI frame type byte for context, was then packaged into a new UDP packet and 
transmitted back to the Python application using the stored IP address and port 
(remote_data_dest_ip, remote_data_dest_port) of the GUI. 

The HAL_SPI_ErrorCallback function (for hardware-level SPI errors) and a timeout-and-retry 
mechanism (check_timeout_and_retry function) were used to enhance the robustness of the SPI 
transaction. If the expected acknowledgment or data frame was not received within a defined time 
(ACK_TIMEOUT_MS,) the Master would attempt to resend the last command up to a specified 
number of times (MAX_RETRIES) before it raises the error flag or resets the SPI state, ensuring 
resilience against transient communication glitches. 
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4.3.2 Slave Board: Sensor Emulation and Circular DMA Implementation 

The Slave STM32 board's firmware was designed to emulate a multi-functional sensor that 
responds to the SPI commands from the Master and in response to them, it provides continuous 
data streams. A key challenge in achieving reliable high-frequency (1-ms interval) data exchange 
was managing the SPI data flow efficiently. Initial implementations that used normal DMA mode 
for SPI transactions on the Slave encountered issues such as data blackouts, duplicated or very late 
acknowledgments, and significant packet loss, especially when the firmware was run for a longer 
period of time. The primary reason for these problems was that in normal DMA, the CPU had to 
explicitly re-arm the DMA for every single SPI transaction, and if the Master initiated a new 
transaction before the Slave was ready, data coherency was lost. 

In order to counter these limitations, a circular DMA buffering scheme was implemented for both 
SPI reception (RX) and transmission (TX) on the Slave. Two buffers named 
spi_rx_dma_circular_buf and spi_tx_dma_circular_buf were created, and each of them was 
capable of holding NUM_BUFFERS_IN_CIRCULAR (typically 2 for ping-pong buffering) 
instances of MAX_FRAME_SIZE. The DMA controller for the peripheral SPI1 was configured in 
circular mode in CubeMX. However, this required manual configuration of DMA control register 
bits, which was beyond the standard CubeMX generation. CIRC (circular mode enable) and MINC 
(memory increment enable) and HTIE (Half-Transfer Interrupt Enable) and TCIE (Transfer 
Complete Interrupt Enable) which are used for the SPI_RX DMA stream, were set in the "DMA 
stream x configuration register (DMA_SxCR)." These interrupt settings ensured that the CPU was 
notified when either the first half or the second half of the circular RX buffer was filled. 

SPI communication on the Slave was initiated by the Master asserting the NSS line. The Slave's 
Hardware NSS pin (PA4) was connected to the Master's GPIO pin (PG4), configured as GPIO 
output with an initial high level. When the Master asserted this line (driving it LOW), the Slave's 
SPI peripheral was automatically enabled and allowed it to receive data clocked in by the Master 
and simultaneously transmit data from its TX buffer. 

The data processing and response generation logic of the Slave board was interrupt-driven, as it 
relied on the DMA transfer complete callback functions that are associated with the circular RX 
buffer. The STM32 HAL provides distinct callback functions for half-transfer and full-transfer 
completion in circular DMA mode. The HAL_SPI_RxHalfCpltCallback(SPI_HandleTypeDef 
hspi) function is called by the DMA controller when the first half of the spi_rx_dma_circular_buf 
has been filled with the data received from the Master. Similarly, the 
HAL_SPI_RxCpltCallback(SPI_HandleTypeDef hspi) function is called when the DMA has filled 
the second half of the buffer. This marks the completion of a full circular pass over that particular 
segment. 

Both of these RX completion callback functions invoke a common processing function called 
process_received_data_and_prepare_tx. This function is responsible for accessing the data within 
the completed segment of the spi_rx_dma_circular_buf. This initial step involves analyzing the 
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received SPI frame by using the function called parse_spi_function. This function validates the 
frame structure by checking the START_BYTE and END_BYTE fields, verifies the frame's 
LENGTH field, and confirms the data integrity by using a software-implemented CRC-8 
checksum. 

A 1-byte sub-command from the Master's payload was extracted if a valid frame was received and 
identified as a FRAME_TYPE_CMD_CONTROL_SLAVE. This sub-command (e.g., IDLE, Speed, 
Gyroscope, or Accelerometer) was then used to update the Slave's internal state variable called 
current_data_stream_type_to_send. In response to such a control command, the Slave firmware 
then constructs an acknowledgment frame, FRAME_TYPE_SLAVE_ACK (or 
FRAME_TYPE_SLAVE_NACK if the sub-command was valid but could not be acted upon for 
some reason), and echoes back the sub-command and a status byte (e.g., 0x01 for OK, 0x00 for 
FAIL) as its payload. 

If the incoming frame from the Master was a generic poll (e.g., a 
FRAME_TYPE_CMD_CONTROL_SLAVE with a special 0xFF sub-command payload, which the 
Slave interprets as a request for sending the current data rather than a mode change) or any other 
setting (non-mode) but validly framed SPI packet, the Slave would proceed to generate sensor data 
based on the current_data_stream_type_to_send state. This involved creating emulated vehicle 
speed (as a float), IMU gyroscope data (as three int16_t values), or IMU accelerometer data (as 
three float values). These sensor values were generated with slight random variations around base 
figures to simulate real sensors and also included an incrementing packet counter for diagnostic 
purposes by the Master. This emulated sensor data was then framed with its corresponding frame 
data type identifier (FRAME_TYPE_DATA_VEHICLE_SPEED, 
FRAME_TYPE_DATA_IMU_GYRO or FRAME_TYPE_DATA_IMU_ACCEL) and a new CRC-8. 

The fully constructed response frame, whether it is an ACK/NACK or a sensor's data frame, is 
immediately written into the corresponding half of the spi_tx_dma_circular_buf. Since the 
SPI1_TX DMA stream was also configured in circular mode and had been initiated once at startup 
via calling the single HAL_SPI_TransmitReceive_DMA(), this prepared data in the TX buffer 
segment would be automatically clocked out by the Master during the ongoing or subsequent SPI 
clock cycles, typically at the same time while the RX DMA was filling the other half of its circular 
buffer. 

The HAL_SPI_ErrorCallback function was implemented to handle hardware-level SPI errors. 
After detection of such errors, this callback function re-initializes the SPI peripheral and its related 
DMA streams by calling HAL_SPI_Abort(), HAL_SPI_DeInit(), and MX_SPI1_Init(), and then it 
prepares the circular DMA buffers with default ACK frames. Moreover, the SPI re-initialization 
would also be triggered if the badFrameCount logic (which increments upon receiving a corrupt 
frame) exceeds the threshold of consecutive errors. Implementation of circular DMA and the 
interrupt management mechanism facilitated achieving continuous high-speed and reliable data 
exchange in the Ethernet-SPI bridge prototype. 
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4.3.3 Python GUI for Command and Control 

To emulate the command interface of a HIL simulator, a Python application was developed that 
utilized the Tkinter library for its GUI. This user-friendly application enabled the user to send 
specific 1-byte UDP-based sub-commands to the Master STM32, hence allowing it to control the 
data stream requested from the emulated Slave sensor. The GUI had specific buttons, each 
corresponding to a different sensor mode (e.g., "Stream Idle," "Stream Speed," "Stream Gyro," 
"Stream Accel"). Clicking a button makes the Python script send the associated sub-command 
(e.g., 0x00, 0x01, 0x02, 0x03) in a UDP packet to the Master STM32. 

The Python script also implemented a non-blocking UDP receiver in a separate thread. This 
receiver specifically listened only for the UDP packets sent back from the Master STM32. Upon 
receiving a packet, it parsed the first byte to determine the frame type using SlaveFrameType (e.g., 
ACK/NACK, Speed, Gyro, Accel) and then unpacked the corresponding payload as per the 
expected format for that frame type. It could unpack status bytes for ACK/NACKs, a 4-byte float 
for speed, three 2-byte integers for raw gyroscope data, or three 4-byte floats for accelerometer 
data. The received and parsed information, along with a calculated Round-Trip Time (RTT) for 
acknowledged commands or data, was displayed in a text log area within the GUI and also printed 
to the PowerShell console. This setup demonstrated how an operator might interact with the system 
via a dSPACE ControlDesk interface that allowed sending commands and real-time observation 
of the system's responses. 

 
Figure 4-11:  Python Tkinter GUI for Sending Commands and Displaying Responses 

4.3.4 Performance and Robustness Observations of the Prototype System 

Extensive testing was done using the Python GUI to send commands and receive data through the 
Ethernet-SPI Bridge. The system's performance was evaluated based on Round-Trip Time (RTT) 
for acknowledged data and overall data integrity (packet loss). Initial implementations done using 
normal DMA on the Slave and simpler polling or EXTI-based synchronization mechanisms on the 
Master did not show fruitful results, i.e., data blackout periods, reception of duplicated or delayed 
acknowledgments, and notable packet loss, particularly when attempting 1-ms data intervals. 
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These issues were mostly related to the synchronization mismatches and the overhead due to DMA 
re-initialization for each SPI transaction on the Slave. 

The introduction of circular DMA on the Slave board along with the framing protocol, CRC-8 
calculation, and robust error handling showed significant improvements in the results. Due to these 
enhancements, the system demonstrated much more stable and reliable communication. Tests 
involving the transmission of 100,000 or more packets at 1-ms intervals showed successful 
reception rates around 99%. While occasional packet loss still occurred, the system was generally 
able to self-recover from transient errors and was able to maintain a continuous data flow for 
extended periods of time. The RTT, in this context, measured the complete loop from Python 
sending a UDP command to Python receiving the UDP packet containing the Slave's data. 
Furthermore, the analysis done with Wireshark indicated that while the immediate SPI turnaround 
on the microcontrollers was very fast, a significant portion of the observed RTT in the Python 
application was due to the network stack and OS scheduling delays on the PC running the Python 
script. 

4.4 HIL Phase 

After the extensive development and validation of the Ethernet-SPI Bridge using the Python-based 
prototyping environment (as explained in Section 4.3), the system was shifted to the dSPACE 
SCALEXIO Hardware-in-the-Loop (HIL) platform. The aim of this phase was to verify the 
system's functionality, real-time performance, and stability within a HIL simulation environment, 
utilizing the real-time application and dSPACE ControlDesk interface. 

4.4.1 Deployment of the Real-Time Application on SCALEXIO 

After the successful generation of the necessary build files (including the .sdf interface definition 
and .rta real-time application files, as depicted in Figure 3-14: dSPACE ConfigurationDesk Build 
Results) from the dSPACE ConfigurationDesk environment, the subsequent phase involved 
deploying this application onto the SCALEXIO HIL platform for testing. This required 
configuring the personal computer as a host workstation and establishing a reliable network 
connection with the HIL simulator. 

To ensure proper communication, the host workstation's Ethernet network interface was assigned 
with a static IP address that was 192.168.140.11 and a subnet mask of 255.255.255.0. This 
configuration was chosen to place the host PC on the same network as the dSPACE SCALEXIO 
HIL simulator, which had an IP address of 192.168.140.10. This shared network setup is essential 
for the host workstation to connect to and deploy the real-time application onto the SCALEXIO 
target. Connectivity between the host PC and the HIL simulator was verified by successfully 
pinging the simulator's IP address (192.168.140.10) from the Windows command prompt on the 
host workstation. 
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With the confirmation of the network connectivity, a new project was created in dSPACE 
ControlDesk. This project was utilized for loading the real-time application and managing the HIL 
experiment. The steps followed in the creation of this project are enlisted as: 

 A new project was initiated, for example, named "Sensor_Mimic_001" (as shown in the 
"Name of the project" field in Figure 4-12: dSPACE ControlDesk – Project Creation Steps, 
top). 

 Within this project, a new experiment was defined, which can be the same as the project's 
name or a distinct identifier. 

 The SCALEXIO platform was selected as the target hardware for the experiment (Figure 
4-12: dSPACE ControlDesk – Project Creation Steps, middle, shows "SCALEXIO" 
selected under "Supported Platform/Device Types"). 

 The crucial step involved linking the experiment to the compiled real-time application by 
selecting the appropriate Variable Description File (.sdf). As shown in Figure 4-12: 
dSPACE ControlDesk – Project Creation Steps (bottom), the "Sensor_Mimic_001.sdf" file 
(generated during the build process detailed in Section 3.3.3) was imported. This file 
contains all the information about the real-time application's variables, parameters, and 
signals that can be accessed and manipulated via dSPACE ControlDesk. 
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Figure 4-12: dSPACE ControlDesk – Project Creation Steps 

Upon successful creation and configuration of the dSPACE ControlDesk project, the real-time 
application was loaded onto the SCALEXIO platform when going "online." The variables defined 
within the Simulink model (such as Speed_Input, Speed_Echo, SubCmd_Control, and “y” from 

MATLAB function FrameResponse, as described in Section 3.3.2) became accessible in the 
"Variables" pane of dSPACE ControlDesk (as depicted in Figure 3-15: dSPACE ControlDesk 
Layout - Variable and Instrument Selector Pane), ready to be linked to HMI instruments for 
experiment control and data visualization. This completed the deployment of the real-time 
application, setting the stage for test execution. 

4.4.2 Test Execution Methodology using dSPACE ControlDesk 

Once the real-time application was deployed on SCALEXIO, dSPACE ControlDesk was utilized 
to execute the Simulink models described in section 3.3.2 by interacting with the HMI layouts 
specifically designed for them. 

For the "Speed_Echo_CD" test scenario, the primary objective was to transmit dynamically 
generated speed values to the STM32 system at 1ms intervals and observe the echoed values 
returned through the UDP-SPI-UDP bridge. The dSPACE ControlDesk layout featured a slider 
instrument assigned to the Speed_Input variable that is defined as a 'Parameter' of type 'single' in 
the Simulink model. This allowed the operator to vary the speed input, and the slider range was 
adjusted to generate these values, typically within a range of 0 to 120 km/h. The numerical value 
from the slider was processed by the MATLAB Function block (PackFloatToBytes) within the 
real-time application to convert the single-precision float into a 4-element uint8 array before UDP 
transmission. A display instrument in dSPACE ControlDesk was assigned to the Speed_Echo Data 
Store Write variable (a 'Measurement' of type 'single'), which received its value from the output of 
the MATLAB Function block (UnpackBytesToFloat) after processing the UDP echo from the 
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STM32 Master. Furthermore, dragging the Speed_Echo variable onto the layout automatically 
generated a time-plot graph, allowing for the visualization of the echoed speed values against time. 
Activating the "start measurement" function in dSPACE ControlDesk initiated the data flow, 
allowing for real-time observation of the system's response to varying inputs from the slider, both 
on the numerical display and the time-plot graph. 

 
Figure 4-13: dSPACE ControlDesk interface for the Speed Echo test 

For the "Speed_Echo_Latency" test scenario, which ran independently inside the Simulink model 
as described in Section 3.3.2.1, it continuously sends the dynamic speed values and calculates the 
round-trip time for each successful echo. The objective of this methodology was to capture a long-
duration data set of the RTT performance under a sustained 1-ms cycle time. As described in 
Section 3.3.4, the dSPACE ControlDesk layout was configured to monitor the live 
EchoLatency_ms signal both numerically and graphically, allowing verification of the system's 
real-time communication characteristics. 

 
Figure 4-14: dSPACE ControlDesk interface for the Speed Echo Latency test 
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For the "Sensor_Mimic" test scenario, the dSPACE ControlDesk layout was designed to send 1-
byte sub-commands for the reception of the emulated sensor's data from the Slave board. An 
ON/OFF button was used for this purpose, as its characteristics allow it to send only one command 
at a time, which aligns with the STM32 system's working operational logic. This instrument allows 
the operator to send a specific "On" value when pressed and then revert to a default "Off" value. 
Three buttons were configured for "Stream Speed," "Stream Gyro," and "Stream Accel," with their 
respective "On" values set to the sub-commands 0x01, 0x02, and 0x03. Moreover, the "Off" value 
for all buttons was set to 255 (0xFF), which the Master STM32 firmware interprets as a generic 
"poll" command. This setup allowed an operator to send a single mode-change command by 
clicking a button, after which the HIL would automatically and continuously poll the Slave for 
data in that newly set mode. Inherently, the ON/OFF-button instrument allows transmission of two 
signals, either button 1 or button 2. However, this button was configured for transmitting up to 
three signals (one at a time), corresponding to values 1 through 3, to represent "Stream Speed," 
"Stream Gyro," and "Stream Accel" modes, respectively. The desired variable, SubCmd_Control 
(variable type "Parameter" and data type uint8), was assigned to the ON/OFF-button. As 
mentioned in section 3.3.2.3, the responses from the STM32 system were handled by the 
MATLAB function blocks called UnpackFrame and FormatResponse in the Simulink model. 
Numerical displays were linked to the intermediate outputs of this UnpackFrame block 
(frameType, out1, out2, out3) to observe the raw received frame type and unpacked data 
(hexadecimal or decimal format). This allowed for immediate verification that the Slave first sent 
a FRAME_TYPE_SLAVE_ACK (0xB0) in response to the command and subsequently began 
streaming the correct data type (0xA1, 0xA2, or 0xA3). The final formatted string from the 
FormatResponse block was displayed in a "Variable Array" instrument for a more human-readable 
output. This methodology facilitated step-by-step verification of command handling, 
acknowledgment, and data reception for each emulated sensor mode. 

 
Figure 4-15: dSPACE ControlDesk interface for the Sensor Mimic test 
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The successful execution of these tests by utilizing dSPACE ControlDesk provided a reliable 
method for validating the proper functionality and real-time behavior of the Ethernet-SPI 
communication bridge. 
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Testing and Results 

5.1 Prototype Testing: Python-Driven Ethernet-SPI Bridge 

The initial and thorough testing phase used a Python application to mimic the HIL simulator and 
carefully check the end-to-end functionality of the Ethernet-SPI Bridge. This approach provided 
precise control over the test conditions and allowed rapid iteration with detailed logging. The 
Master STM32 board received UDP commands from the Python script, processed them, and then 
sent them over to the Slave STM32 board via the custom SPI protocol and then relayed the Slave's 
responses back to the Python application via UDP. This setup facilitated the analysis of command 
handling, data integrity, SPI frame parsing, CRC validation, sequence management, error 
recovery, and communication latency (round-trip time—RTT). 

5.1.1 Python Application Analysis 

The Python application, equipped with a Tkinter GUI for interactive command sending and 
displaying the output log, is used as a main tool for performing the functional testing of the 
prototype. 

5.1.1.1 Basic UDP-SPI Echo and Latency Testing 
The foundational tests focused on verifying the simplest end-to-end data communication path, 
where a Python script is used to send a floating-point "speed" value via UDP. The Master STM32 
receives this speed value and transmits it to the Slave STM32 via SPI, then the Slave echoes this 
value back to the Master via SPI, and finally the Master sends this echoed speed value back to the 
Python application via UDP. These tests were conducted at sending intervals of 1-ms and 
subsequently 0.5-ms from the Python script to evaluate the system's responsiveness and basic data 
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handling capacity. The Python application logged the sent speed, the received echoed speed, and 
calculated the RTT for each transaction. 

The system was tested for a 1-ms sending interval, and it demonstrated successful echo of speed 
values. RTTs were logged that provided initial benchmarks for the communication loop. Packet 
loss was observed but was much less than 0.1 percent. The average RTT value for these 
transactions done at 1-ms was around 2.5-ms. Results of these tests conducted at a sending rate of 
1-ms are hereby depicted in Figure 5-1: Prototype Basic UDP Communication Results at 1-ms 
(Python Console). 

  
Figure 5-1: Prototype Basic UDP Communication Results at 1-ms (Python Console) 

The same setup was also tested for a 0.5-ms sending interval, and it demonstrated successful echo 
of speed values. RTTs were logged that provided initial benchmarks for the communication loop. 
More packet loss was observed but was less than 2 percent. The average RTT value for these 
transactions done at 0.5-ms was around 2-ms. Results of these tests conducted at a sending rate of 
0.5-ms are hereby depicted in Figure 5-2: Prototype Basic UDP Communication Results at 0.5-ms 
(Python Console). Overall, pushing the interval to 0.5-ms stressed the system, and the packet loss 
increased.  
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Figure 5-2: Prototype Basic UDP Communication Results at 0.5-ms (Python Console) 

Table 5-1: Prototype Basic UDP Communication Results summarizes the results achieved for the 
tests conducted for basic UDP communication.  

Table 5-1: Prototype Basic UDP Communication Results 

Sending Rate Packets sent Matched Echoes Packet Loss (%) Avg RTT (ms) 

1-ms 
100000 99932 0.068 2.53 

100000 99988 0.012 2.46 

0.5-ms 
100000 98947 1.053 1.64 

100000 98069 1.931 2.76 

5.1.1.2 Validating Custom SPI Protocol with Framing and CRC-8 
After the initial echo tests, the custom SPI protocol, incorporating framing (START_BYTE, 
LENGTH, TYPE, END_BYTE) and software-implemented CRC-8, was integrated into both Master 
and Slave firmware. The same Python application was used to send floating-point speed values. 
The Master now framed this speed data with the customized protocol 
(e.g., FRAME_TYPE_MASTER_DATA) before SPI transmission to the Slave. The Slave, upon 
receiving and validating the framed data (including CRC check), would frame its echo response 
(e.g., FRAME_TYPE_SLAVE_ECHO) similarly. The Master then parsed the Slave's framed 
response, validated its CRC, and forwarded the payload to Python via UDP. Tests were again 
conducted at 1-ms and 0.5-ms sending intervals. 

Tests conducted at 1-ms sending interval showed almost the similar results like the basic UDP 
communication tests. The average RTT and the percentage of packets lost lied in the same range 
like the tests conducted without the implementation of customized SPI protocol and software-
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based CRC-8. Figure 5-3: Prototype Echo Test (Custom SPI + CRC-8) Results at 1-ms (Python 
Console) shows the results conducted of the tests conducted at 1-ms. 

  

  
Figure 5-3: Prototype Echo Test (Custom SPI + CRC-8) Results at 1-ms (Python Console) 

Tests conducted for the custom SPI with CRC system at a sending interval of 0.5-ms showed 
significant packet loss compared to the test conducted for the basic UDP communication. The 
average RTT lay in the range of 1.7 to 1.9-ms, but the packet loss was more than 10 percent. Figure 
5-4: Prototype Echo Test (Custom SPI + CRC-8) Results at 0.5-ms (Python Console) shows the 
results conducted of the tests conducted at 0.5-ms.  
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Figure 5-4: Prototype Echo Test (Custom SPI + CRC-8) Results at 0.5-ms (Python Console) 

Table 5-2: Prototype Echo Test (Custom SPI + CRC-8) Results summarizes the results achieved 
for the tests conducted on the prototype setup with custom SPI and CRC-8 implemented. From the 
results we can deduce that the overheads added by framing and CRC-8 calculations led to the 
significant loss in packets in the case of tests conducted at a 0.5-ms sending interval.  

Table 5-2: Prototype Echo Test (Custom SPI + CRC-8) Results 

Sending Rate Packets sent Matched Echoes Packet Loss (%) Avg RTT (ms) 

1-ms 

100000 99894 0.106 2.53 

100000 99926 0.074 2.59 

100000 99933 0.067 2.59 

1000000 999778 0.022 2.52 

0.5-ms 

100000 77145 22.86 1.95 

100000 87906 12.09 1.72 

100000 80319 19.68 1.87 

5.1.1.3 Commanded Sensor Data Streaming and ACK/NACK Handling 
The most comprehensive prototype tests involved the Python GUI sending 1-byte sub-commands 
to the Master to control the type of data stream emulated by the Slave (Idle, Speed, Gyro, Accel). 
The Master relayed these commands via SPI using FRAME_TYPE_CMD_CONTROL_SLAVE. 
The Slave responded with either FRAME_TYPE_SLAVE_ACK / FRAME_TYPE_SLAVE_NACK 
or, if a data stream was active and the Master sent a poll (0xFF sub-command), with the 
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corresponding sensor data frame (e.g., FRAME_TYPE_DATA_VEHICLE_SPEED). The Master 
forwarded these structured responses (prefixed with the Slave's frame type) to the Python GUI. 
The Python GUI successfully demonstrated the ability to switch between different sensor data 
streams: 

 The GUI's log area displayed ACK/NACK responses from the Slave, confirming command 
reception and processing. 

 Continuously updating Speed (float), Gyroscope (3x int16_t), and Accelerometer (3x float) 
data when those respective streams were active. 

 Time taken per packet received was demonstrated on the Python console for all the 
emulated sensors data. 

Figure 5-5: UDP Command-Response Prototype Testing Results shows command response results 
of the prototype system receiving data at an interval of 1-ms per transaction. 
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Figure 5-5: UDP Command-Response Prototype Testing Results 

5.1.2 Wireshark Analysis (Integrated Prototype Tests) 

Network traffic between the PC running the Python application and the STM32 Master board was 
captured and analyzed using Wireshark to validate the UDP communication aspects of the 
integrated prototype. 

5.1.2.1 Packet structure 
Wireshark captures confirmed that the UDP packets sent from Python script to the Master STM32 
board contained 1-byte sub-commands. The sequence followed on the GUI for enabling specific 
data streams is shown in Figure 5-6: Python GUI sequence for Wireshark Capture demonstration.  

 
Figure 5-6: Python GUI sequence for Wireshark Capture demonstration 
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The first command sent via GUI is “Stream Idle” having length = 1 and 0x00 as its payload, and 
it can be seen in Figure 5-7: Wireshark - GUI sending Stream Idle. 

 
Figure 5-7: Wireshark - GUI sending Stream Idle 

The next command sent was “Stream Speed,” having length = 1 and 0x01 as its payload. Figure 
5-8: Wireshark - GUI sending Stream Speed demonstrates the pattern followed once the command 
is sent via GUI. The top portion of the figure shows the command sent having data = 0x01 and a 
length of 1. The center part of the figure shows ACK/NACK: 3 bytes total UDP payload 
([SlaveFrameType (0xB0/0xB1), SubCmdEcho, Status]). The bottom part of the figure shows 
speed data having a UDP payload of 5 bytes ([SlaveFrameType (0xA1), float_kph]).  

 



Testing and Results 

 

89 

 

 
Figure 5-8: Wireshark - GUI sending Stream Speed 

The next command sent was “Stream Gyro,” having length = 1 and 0x02 as its payload. Figure 
5-9: Wireshark - GUI sending Stream Gyro demonstrates the pattern followed once the command 
is sent via GUI. The top portion of the figure shows the command sent having data = 0x02 and a 
length of 1. The bottom part of the figure shows gyro data having a UDP payload of 7-byte 
([SlaveFrameType (0xA2), 3x_int16_gyro]). 
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Figure 5-9: Wireshark - GUI sending Stream Gyro 

The next command sent was “Stream Accel,” having length = 1 and 0x03 as its payload. Figure 
5-10: Wireshark - GUI sending Stream Accel demonstrates the pattern followed once the command 
is sent via GUI. The top portion of the figure shows the command sent having data = 0x03 and a 
length of 1. The bottom part of the figure shows acceleration data having a UDP payload of 13-
byte ([SlaveFrameType (0xA3), 3x_float_accel]). 
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Figure 5-10: Wireshark - GUI sending Stream Accel 

The next command sent for the verification of the Wireshark capture was “Stream Gyro,” and 

Figure 5-11: Wireshark Capture for Command Verification shows the pattern of shifting from 
receiving acceleration data to receiving gyro data.  
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Figure 5-11: Wireshark Capture for Command Verification 

5.1.2.2 Timing Analysis 
Wireshark timestamps were used to analyze the timing of UDP packet exchanges. This helped in 
verifying the RTTs measured by the Python application and provided in-depth analysis of the 
network-level latencies. Figure 5-12: Wireshark Capture of Packet Sent at 0.5ms Sending Interval 
shows the time taken between consecutive packets that are captured by Wireshark. The packet at 
capture number 199829 shows time 0.000625 seconds, and its echo is received at capture number 
199835; that can be verified from Figure 5-13: Wireshark Capture of Echo Received at 0.5ms 
Sending Interval (Echo Test). If you add the times of all the captures in between, it sums up to 
around 2-ms, which is what we got on the Python script as well.   

 
Figure 5-12: Wireshark Capture of Packet Sent at 0.5ms Sending Interval (Echo Test) 
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Figure 5-13: Wireshark Capture of Echo Received at 0.5ms Sending Interval (Echo Test) 

5.1.2.1 IP Address and Port Confirmation 
The captures consistently showed UDP packets correctly addressed to and from the configured IP 
addresses (e.g., Python PC at 169.254.32.8, STM32 Master at 169.254.32.100) and UDP port 
(50000 for Master listening, Python listening on its bound port for responses). This can be verified 
from Figure 5-14: Wireshark Capture with IP and Port Filter Applied, where the filter is applied 
(ip.addr == 169.254.32.8 && udp.port == 50000) for the IP address of the PC running the Python 
script and the port number used. Moreover, the details of the packet selected also show the name 
of the source (Src: STMicroelect_00:00:00) and the destination (Dst: HP_56_5f:9c), along with 
the port number used (src port: 50000 and dst port: 50000). 

 
Figure 5-14: Wireshark Capture with IP and Port Filter Applied 
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5.2 Real-Time Simulator Testing: dSPACE ControlDesk 

After the successful validation of the Ethernet-SPI Bridge with the Python-based prototype testing 
environment, comprehensive testing was undertaken within a Hardware-in-the-Loop (HIL) setup. 
The developed real-time applications were deployed and executed on the dSPACE SCALEXIO 
platform and were facilitated by dSPACE ControlDesk for interacting and monitoring. These HIL 
experiments were designed to verify a range of system capabilities, from fundamental end-to-end 
data echo under dynamic conditions and real-time latency measurement to the more complex 
command-driven emulation of multi-modal sensor data streams. 

5.2.1 HIL Validation of Dynamic Speed Echo Functionality 

As discussed in Section 3.3.2.2, the Simulink model "Speed_Echo_CD.slx" was designed for 
dynamically changing the input and verification of the echo. This model was deployed on the 
SCALEXIO platform. The dSPACE ControlDesk HMI layout (similar to Figure 4-13: dSPACE 
ControlDesk interface for the Speed Echo test, with the results depicted in Figure 5-15: dSPACE 
ControlDesk Interface during the Dynamic Speed Echo Test) allowed for real-time interaction. 

The test methodology involved dynamically adjusting the Speed_Input value within the Simulink 
model using a slider instrument in dSPACE ControlDesk, with values adjusted to range from 0 to 
120 km/h. This input was converted to a byte array by the PackFloatToBytes MATLAB function 
and transmitted via UDP to the STM32 Master. The Master relayed this to the Slave via SPI; the 
Slave echoed the data back via SPI; and the Master then forwarded the final echo via UDP to the 
SCALEXIO application. The echoed speed, unpacked by the UnpackBytesToFloat function, was 
displayed in dSPACE ControlDesk as "Speed_Echo/In1". 

Figure 5-15: dSPACE ControlDesk Interface during the Dynamic Speed Echo Test illustrates the 
interface during this dynamic echo test. The right-hand graph (green trace) plots the Speed_Input 
value as it was varied over time using the dSPACE ControlDesk slider instrument, while the left-
hand graph (red trace) plots the corresponding Speed_Echo/In1 value received back from the 
STM32 system. A relation between Speed_input and Speed_Echo is observed, where the echoed 
speed (red trace) follows the trend of dynamically changing input speed (green trace) very closely. 
The numerical display instrument, assigned to the echoed speed (Data Store\Write\In1), provides 
the instantaneous value. The continuous and responsive updates of the echoed speed confirmed 
the functional correctness of the data path and the system's ability to handle dynamically changing 
inputs in the HIL environment. 
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Figure 5-15: dSPACE ControlDesk Interface during the Dynamic Speed Echo Test 

5.2.2 Real-Time Latency (RTT) Measurement within dSPACE Environment 

As discussed in Section 3.3.2.2, the Simulink model "Speed_Echo_Latency.slx," incorporating the 
ComputeLatencyWithBuffer MATLAB function, was utilized to access the communication latency 
within the HIL setup. This model autonomously generated random speed values at 1-ms intervals, 
transmitted them to the STM32 system, received the echo, and calculated the RTT for each 
successfully matched send-receive pair. 

The dSPACE ControlDesk layout for this experiment (depicted in the screenshot of Figure 5-16: 
dSPACE ControlDesk Interface during the Speed Echo Latency Test, focusing on the latency 
display) included a numerical display and a time-plot graph linked to the EchoLatency_ms output 
variable from the Simulink model. Figure 5-16: dSPACE ControlDesk Interface during the Speed 
Echo Latency Test shows an instance of this test, where the numerical display for 
EchoLatency_ms/In1 indicates an instantaneous RTT of approximately 2.93-ms. The 
accompanying time-plot graph for latency (top-right in the figure) visually demonstrated the jitter 
in RTT values over the test duration, with fluctuations observed, for example, between 
approximately 2.9-ms and 3.2-ms. This direct RTT measurement within the dSPACE environment, 
reflecting the entire dSPACE UDP send → STM32 bridge → dSPACE UDP receive cycle, 
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provided crucial data on the real-time performance characteristics of the system. The consistent 
calculation and display of RTT values confirmed the system's stability and its ability to maintain 
the communication loop under continuous 1-ms data exchange. 

 

 
Figure 5-16: dSPACE ControlDesk Interface during the Speed Echo Latency Test 

5.2.3 HIL Validation of Commanded Sensor Data Streaming 

The final and most comprehensive HIL validation involved testing the "Sensor_Mimic" real-time 
application. The objective was to verify that the system could correctly process specific commands 
sent from the dSPACE ControlDesk GUI, switch the emulated sensor's data stream on the Slave 
board accordingly, and relay the structured sensor data back for real-time monitoring. The test 
procedure, as described in the section 4.4.2, used On/Off-buttons to send 1-byte sub-commands to 
the Slave board for "Stream Speed," "Stream Gyro," and "Stream Accel." 

The results of this test confirmed the successful and robust operation of the command-driven 
sensor emulation. The dSPACE ControlDesk layout provided detailed insight into the received 
UDP packets by displaying both the raw, unpacked data from the UnpackFrame MATLAB 
function and the final formatted response array from the FormatResponse function. 
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Figure 5-17: dSPACE ControlDesk layout - Speed (Sensor_Mimic) Command and Response 
demonstrates the system's response after the "Stream Speed" command (0x01) was sent via the 
ON/OFF-button. After the reception of the ACK (0xB0) along with the echoed back subcommand 
(Unpack Frame (Data)/out1) and the okay status (Unpack Frame (Data)/out2), the numeric 
display Unpack Frame (Data)/frameType shows the value 0xA1, which correctly identifies the 
incoming frame as FRAME_TYPE_DATA_VEHICLE_SPEED. The “out1” numeric display shows 
a dynamically changing 32-bit floating-point value (represented as a hexadecimal integer in the 
figure), while “out2” and “out3” are zero, which, as expected, is the speed payload (single float). 
The SubCmd Control/Value numeric display shows the value 255 (0XFF) for continuous polling 
of the selected sensor's data. On the right side of the figure, the FrameResponse [y[100] array 
shows the ASCII output. The first few bytes correspond to the ASCII codes for "Speed: " (83, 
112, 101, 101, 100, 58), followed by the continuously changing numerical value of the speed, 
further verifying that the FormatResponse function is working correctly. 

 

 
Figure 5-17: dSPACE ControlDesk layout - Speed (Sensor_Mimic) Command and Response 

  



Testing and Results 

 

98 

Figure 5-18: dSPACE ControlDesk layout - Gyro (Sensor_Mimic) Command and Response shows 
the system's state after the "Stream Gyro" command (0x02) was sent. After successfully receiving 
the ACK (0xB0) and the Gyro subcommand echoed back (Unpack Frame (Data)/out1) along with 
the okay status (Unpack Frame (Data)/out2), the frame type display correctly shows 0xA2 
(FRAME_TYPE_DATA_IMU_GYRO). In this case, the UnpackFrame function shows result on all 
three output ports (out1, out2, out3) with the received raw 16-bit integer values for the x, y, and z 
gyroscope axes. The Frame Response array on the right again displays the corresponding formatted 
ASCII string "Gyro: X=... Y=... Z=...". 

 

 
Figure 5-18: dSPACE ControlDesk layout - Gyro (Sensor_Mimic) Command and Response 

Finally, Figure 5-19: dSPACE ControlDesk layout - Accel (Sensor_Mimic) Command and 
Response depicts the response to the "Stream Accel" command (0x03). The frame type is identified 
as 0xA3 (FRAME_TYPE_DATA_IMU_ACCEL). Similar to the gyroscope data, the three out ports 
are populated with the raw 32-bit floating-point values for the x, y, and z accelerometer axes. The 
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Frame Response array reflects this data in its formatted string output. In all test cases, the system 
demonstrated the ability to seamlessly switch between data streams upon command from the 
dSPACE ControlDesk GUI and to correctly parse, process, and display the corresponding 
structured data packets received from the Slave sensor via the Ethernet-SPI Bridge. The continuous 
and correct updating of these values confirmed the functional integrity and real-time 
responsiveness of the complete sensor emulation system. 

 

 
Figure 5-19: dSPACE ControlDesk layout - Accel (Sensor_Mimic) Command and Response 

5.3 Performance Metrics Summary and Discussion 

An amalgamation of key performance metrics derived from the major Python-led prototype tests 
as well as from the dSPACE SCALEXIO HIL validation phase is given below. The key metrics 
comprised Round-Trip Time (RTT), data integrity (packet loss), system stability, and qualitative 
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responsiveness, which are collectively utilized to characterize the real-time behavior of the 
implemented Ethernet-SPI Bridge. 

During the Python-based prototype testing phase. RTT measurements were conducted extensively.  

 Initial UDP-SPI bridge echo tests, operating at 1ms send interval, resulted in average RTTs 
typically in the range of 2.46 ms to 2.53 ms, with observed packet loss remaining well 
below 0.1% (Table 5-1). When the data transmission interval was reduced to 0.5ms, 
slightly higher average RTTs (around 1.64 ms to 2.76 ms) were observed with an increase 
in packet loss of approximately 1-2%. 

 The integration of the custom SPI protocol, complete with framing and software-based 
CRC-8 (Table 5-2), resulted in similar average RTTs for tests conducted at a send rate of 
1-ms (around 2.52 ms to 2.59 ms) and maintained low packet loss (0.02% to 0.1%). When 
the data transmission interval was reduced to 0.5-ms, the computational overhead 
associated with framing and CRC likely contributed to a more notable increase in packet 
loss, ranging from approximately 12% to 23%. Nevertheless, the measured RTTs for 
successfully transmitted and echoed packets remained low, typically around 1.72 ms to 
1.95 ms. 

 For the advanced prototype configuration involving commanded sensor data streaming and 
circular DMA on the Slave board, sensor data was streamed at near 1-ms intervals per 
value. 

The dSPACE SCALEXIO HIL validation phase provided additional details regarding the actual 
time operation of the system under an industrial-grade simulation. 

 Dynamic speed echo tests (explained in detail previously in 5.2.1) confirmed functional 
correctness and qualitative responsiveness. Echoed speed values displayed in dSPACE 
ControlDesk closely followed dynamically changing inputs commanded via the HMI, with 
updates appearing in reasonable time. 

 Quantitative RTT values measured from the "Speed_Echo_Latency" Simulink model 
(described in 5.2.2) indicated that under steady 1ms cycles of data exchange, RTTs in the 
dSPACE environment typically ranged from roughly 2.9-ms to 3.2-ms, with an average of 
roughly 3-ms. This slight increase in average RTT compared to the Python prototype would 
likely be explained by the processing overheads and network stack response characteristic 
of the dSPACE real-time operating system and hardware platform. The observed jitter of 
approximately 0.2-0.3-ms is considered acceptable for many HIL applications. 

 For the "Sensor_Mimic" HIL test, functional verification confirmed that the system 
correctly handled command-driven mode switching. The reception and display of 
structured data for three distinct sensor types (Speed, Gyro, Accel) were validated in real-
time, as shown in Figures 5-17, 5-18, and 5-19. The system maintained continuous data 
flow and responsiveness while switching between these modes, affirming the robustness 



Testing and Results 

 

101 

of the implemented protocol and the Slave's sensor emulation logic within the dSPACE 
HIL environment. 

Overall, the performance testing on both the dSPACE HIL board and the Python-based prototype 
showed consistent real-time performance of the Ethernet-SPI Bridge. Round-trip time analysis 
confirmed that effective processing with end-to-end latencies was suitable for 1-ms cycle 
operations. While the Python prototype offered extensive RTT values between 2.0-ms and 2.5-ms 
on average, dSPACE HIL system verifications confirmed the low-latency characteristics with 
measured RTTs around 3-ms, including system jitter. Packet loss remained low (<1%) for 1-ms 
intervals in robust configurations, though testing done at higher frequencies or with the inclusion 
of CRC processing highlighted performance trade-offs. The sustained data throughput and stability 
observed in the dSPACE HIL tests, especially for dynamic data echo and commanded sensor 
streaming, affirm the bridge's suitability for demanding real-time HIL applications. 
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Conclusion and Future Work 

6.1 Validation 

The functional capability of the system was demonstrated through the successful implementation 
of the Ethernet-to-SPI Bridge on the Master STM32 board. The Master board efficiently received 
UDP commands from both the Python-based prototype and, most importantly, from the dSPACE 
SCALEXIO HIL simulator using Simulink models controlled via dSPACE ControlDesk. These 
commands—whether they were a simple echo request for floating-point speed values or a specific 
1-byte sub-command for selecting the emulated sensor data—were correctly translated into SPI 
transactions. Reliable data exchange with the slave STM32 board was ensured by utilizing the 
customized SPI protocol that employed a robust frame (start/end bytes, length, and type fields) 
and a software-implemented CRC-8 checksum. 

In response, the Slave board accurately sent the echo back or emulated the behavior of the multi-
functional sensor. Specifically in the case of the emulated sensor, it efficiently processed the SPI 
commands received from the Master, and on the basis of these commands, it returned an 
appropriate response. These responses included sending ACK/NACK frames for control 
commands or streaming emulated sensor data such as vehicle speed (float), IMU gyroscope data 
(3x int16_t), and IMU accelerometer data (3x float). Circular DMA on the Slave board was an 
essential optimization, as it facilitated low-latency and continuous data handling and response 
generation, which was needed to obtain the desired 1-ms SPI interaction cycle time. 

A key validation point was the real-time performance. The system consistently achieved the target 
1-ms cycle time for SPI data exchange. Round-Trip Time (RTT) analysis, done on the Python-
based prototype, indicated efficient processing, and the RTTs observed for the entire UDP-SPI-
UDP loop fell within the range of 1 to 2.5 ms. The system's real-time capabilities were further 
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validated after it was integrated with the dSPACE SCALEXIO platform. The model that was 
designed for dynamically controlling the speed values sent from the dSPACE ControlDesk via a 
slider successfully received the echoed-back value from the STM32 system and displayed it in 
real-time within the dSPACE ControlDesk environment. Similarly, the model created for 
performing command-response functionality demonstrated selection of different sensor data 
streams from dSPACE ControlDesk via ON/OFF button, and the corresponding emulated sensor 
data was received and displayed accurately. These simulations done using dSPACE tools 
confirmed effective command handling and timely data feedback. 

Data integrity and the robustness of the system were validated through the consistent operation of 
the CRC-8 error detection mechanism and the implemented timeout and recovery protocols on 
both Master and Slave boards. The prototype testing done on the system that incorporated these 
mechanisms resulted in some packet loss when tested for high frequency (e.g., 0.5-ms intervals), 
but when tested for 1-ms intervals, the system demonstrated high success rates (>99%) even during 
extended runs. The successful and sustained operation within the dSPACE HIL environment 
further proves the stability and reliability of the designed Ethernet-SPI Bridge. This validated 
framework provides a practical solution for real-time sensor emulation that can meet the 
demanding requirements of automotive HIL testing. 

6.2 Improvements 

While the developed Ethernet-SPI communication bridge successfully meets its primary objectives 
for real-time sensor emulation in an HIL context, several avenues for potential improvements and 
future work have been identified. These enhancements could further increase the system's 
performance, robustness, flexibility, and applicability to a broader range of automotive testing 
scenarios. 

One of the significant areas for future enhancement is master board determinism and real-time 
performance optimization. As discussed earlier, the current bare-metal implementation relies on 
a main polling loop for managing LwIP network events and SPI transactions. Switching the Master 
board's firmware from this bare-metal implementation to a Real-Time Operating System (RTOS), 
such as FreeRTOS, could offer potential benefits. An RTOS would enable preemptive multitasking 
that allows the creation of dedicated, high-priority tasks specifically for UDP packet processing 
and SPI interface management. This could lead to the reduction in latency jitter and improvement 
in the system's overall response, especially when managing simultaneous processes or moving 
towards more complex communication demands. Furthermore, while the current firmware 
implements software-based CRC-8 to ensure data integrity, it also introduces a processing 
overhead. In the future, STM32's integrated hardware CRC peripheral could be utilized that 
provides a compatible standard polynomial—or could use a custom polynomial—hence, it will 
offload CRC computation from the CPU and free up the resources for other critical tasks. This 
gives the possibility of increasing the SPI baud rate, which could lead to further throughput gain. 
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The communication protocol can be enhanced with the addition of advanced features. The 
current system primarily uses ACK frames from the Slave for command acknowledgment. 
Improving the NACK (Negative Acknowledgment) mechanism to provide more refined error 
codes from both the Slave (for unrecognized commands or internal errors) and the Master (for SPI 
transaction failures after retries) back to the HIL simulator would ensure detailed diagnostics. 
Moreover, providing the HIL simulator with the provision to dynamically configure SPI 
parameters (such as clock speed or SPI mode) on the Master board via UDP commands would 
offer greater flexibility when testing multiple SPI-based slave devices that have different 
communication requirements from each other. 

Considering system scalability, the current design focuses on a single Master-Slave SPI link. 
Enhancement in the capability of the Master board's software architecture to manage 
communication with multiple SPI slave devices simultaneously will be a valuable addition. This 
would require more sophisticated NSS line management (potentially requiring additional GPIOs 
or an SPI NSS multiplexing scheme) and more complex command routing and data acquisition 
logic within the Master firmware. Acquiring and handling this variable or large amount of data 
from multiple sources would require proper buffer management, and processing capacity must also 
be considered. 

Lastly, for enhanced testing capabilities, future work could focus on integrating the bridge with 
standardized automotive communication protocols. This integration can be done by translating the 
simulated sensor data into formats like SOME/IP (Scalable service-Oriented MiddlewarE over IP) 
or DDS (Data Distribution Service) before transmitting it over UDP, or by bridging with other 
automotive buses like CAN or LIN, which can be interfaced with the Master STM32 board 
physically. Developing a fault injection mechanism that allows the dSPACE environment to 
command the Master to introduce a specific error (e.g., flipping bits, adding time delays, dropping 
packets) into the SPI communication will allow for a rigorous testing of the connected slave device. 

6.3 Vision 

The successful implementation and testing of this Ethernet-SPI communications bridge provides 
an effective and functional solution for the integration of the SPI-based components with the 
modern, Ethernet-based HIL test setups. This work done corresponds to the future needs in the 
automotive industry, particularly for companies conducting large-scale HIL testing of ECUs like 
Battery Management Systems (BMS), advanced sensors, and actuators that commonly utilize SPI 
for low-latency, high-bandwidth local communication. 

The deployed framework offers a cost-effective and flexible solution to solely proprietary HIL 
interface solutions, utilizing STM32 commercially available microcontrollers everywhere and 
open-source LwIP. The same underlying principles and techniques employed—custom framing, 
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software CRC, circular DMA for high-speed data transfer, and robust error recovery—can be 
utilized for bridging Ethernet to any other embedded bus protocols. 

Eventually, this research effectively contributes toward comprehensive HIL testing 
methodologies. By facilitating seamless data exchange between the simulated environment and 
actual SPI devices, it allows for earlier detection of integration issues, more thorough verification 
of component performance under realistic conditions, and faster development cycles for complex 
automotive systems. The foundation laid by this thesis can be extended toward developing 
standardized, reusable gateway modules and supporting the evolving landscape of automotive E/E 
architectures and ISO-compliant communication protocols. 
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