’ [] []

Y S 5V Politecnico
Wy NI W di Tori

\."“l il e amna e Illll " I o rl no
W, 1ese J:’

Politecnico di Torino
DET - Department of Electronics and Telecommunications

MSc Mechatronic Engineering
A.a. 2024/2025
Graduation Session July 2025

Auto-Improving NIDS

Self-regulating Network Instrusion Detection System

Tutors: Candidate:
Prof. Rizzo Alessandro Davi Antony
Silvio Massimino $321940
Saverio Milo

N

@rain_
lechnologies

November 2024 - January 2025

Abstract

This project aims to develop a self-regulating Network Intrusion Detection System
(NIDS) using Wazuh, integrating automation and adaptive security responses. The work
is structured over a 300-hour internship, balancing research, development, and testing
phases.

Initial Phase:

e Problem definition and literature review, identifying key challenges in traditional
NIDS.

o Exploring self-improving mechanisms.

e Establishing a project roadmap with milestones from simulation setup to proto-
type validation.

Implementation Phase:
o Setting up a virtualized test environment.
e Defining detection rules.

e Developing an adaptive response mechanism.

Evaluation Phase:
o Testing system efficiency through controlled attack simulations.

e Leading to the first prototype demonstration and analysis of results.

This project relies on a multidisciplinary approach:
¢ Cybersecurity notions

o High-skilled programming

o Multi-agent systems

e Game theory concepts

e Generative Al

Tokens are used throughout the project. You can identify them using a TODOs extension
with appropriate metadata :

e ¥ BUG — Indicates a bug or malfunction that needs fixing.

. — Marks a workaround or temporary solution that may need revisiting.
. — A task or improvement to be completed.

e v TOHAVE — A desired feature or requirement to be implemented.

X TOREMOVE — A deprecated or unneeded section to be removed.

. — Indicates work-in-progress or notes not yet finalized.

Adaptiveness to Wazuh is only a cover; what matters is the adaptable structure to
any other field, having a self-modifying code that would reprogram itself to tackle
encountered issues.

Project is available on GitHub at the following link?.

“https://github.com/kOraty/master_thesis.git

https://github.com/k0raty/master_thesis.git

Table of Contents

1 Global Presentation of the Project

1.1 Analysis of the problem
1.1.1 Thesis Proposal
1.2 Main Tools Used in the Project
1.2.1 Wazuh
1.2.2 Example: Web-Attack Scenario
1.2.3 Setting Up the Virtual Environment using Vagrant
1.2.4 Simplifying and Automating the Process
2 Vagrant Environment
2.1 Structure of the Environment o000
2.1.1 Tree Structure
2.1.2 Top-Level Files
2.1.3 Top-Level Directories
2.2 Vagrantfileo
221 SSH Keys
2.2.2 Setting Up the Machines
2.2.3 Tests, scenarios and Cleaning
3 Core of the Software
3.1 Structure of the Project
3.2 Top-Level Files
3.3 VM Agents
3.3.1 VM Agents Structure
3.3.2 Vmagents L e
3.3.3 Onion View of a VM Agent,
334 Agent Types.
3.4 Usageo
3.4.1 [Initializing Machineso
3.4.2 Remotepy oL
34.3 XML Handler
3.4.4 Purpose of XML Files
3.4.5 Local Rules
3.4.6 Decoder
347 OSSEC.DY « « v v e e
3.4.8 Organization of Ossec.conf File
3.4.9 Methods and Structure of the Class
3.4.10 File Monitoring Class
3411 Yara.py oo
4 Provisioning of the vagrant environment
4.1 Cleaner e
4.2 Setup.
4.3 Wazuh Dashboardo
4.4 SSH Keys o o
4.5 Tests & Scenario L
4.5.1 Testing suricata and ssh connections
4.5.2 Wazuh scenario
4.5.3 Wazuh dashboard identification

O © ~1 U

Execution of the prototype

5.1 Unit Tests e e e e
5.1.1 Logs o
5.1.2 Ossec.conf e
5.1.3 Rules verification
5.1.4 File integrity monitoringo L
5.1.5 Xml modification
51.6 YARA . . .

5.2 Prototype
5.2.1 Content provided by the AT
0.22 Mainpy e

Conclusion

6.1 Project

6.2 Greetings L

6.3 Glossary
6.3.1 ARule
6.3.2 Active Response

Annexes

Overview

A.1 Timeline and project management

A.2 LLM enrichment tutorial

SSH Key Generation Procedure

Vagrant Provisionning

C.1 Cronjobs e

C.2 cleaner.sh

C.3 Execution
C.3.1 Ssh connection via Virtual Studio Code
C.3.2 SSH Tests e

Src folder
D.1 Overall Methods
D.2 Non-Developed Folders

Prototype execution

E.1 Yara installation logs Lo
E.2 FIM detail modificationo
E.3 FIMlogs o

1 Global Presentation of the Project

1.1 Analysis of the problem

The aim of this part is to assess the problematic and explain how it was tackled via explaining the
project overall and detailing the thinking process to end up to this solution.

1.1.1 Thesis Proposal

The objective of this thesis is to design a control software that allows for the monitoring of network

traffic.
After studying its behavior, the software should be simplified by optimizing the firmware and
enabling the following actions:

o Traffic monitoring.
» Reading signatures to identify any malicious events.
o Saving the communication header.

Thus, we can reformulate the question.
The objective is to create a Network-Based Intrusion Detection System (NIDS) capable of:

o Remembering headers and signatures of malicious packets.
» Being versatile and easy to set up within a company.

« Utilizing innovative and up-to-date tools.

Key Terms

« NIDS (Network Intrusion Detection System): Solutions that analyze traffic to detect
unusual activities such as scanning, intrusion attempts, lateral movements, exfiltration,
backdoors, command and control, etc.

« Signature: A recognizable pattern associated with an attack, such as a binary string in a
virus or a set of keystrokes used to gain unauthorized access to a system.

« Headers: Metadata of an instance, which can be an email, HI'TP request, etc.

Approach to Tackle the Issue

The NIDS is the foundation of the entire thesis, and to counter an attack using it, you
need to:

« Spot malicious activity through continuous monitoring and detection rules.
o Set up rules that accurately identify threats based on known patterns or behaviors.

« Configure active response commands to automatically mitigate threats and capture relevant
information for further analysis.

To achieve the objective, we rely on an innovative tool called Wazuh.

Steps

How

Why

a. Detection
of Unknown Pat-
terns

1. Use an ML or trained de-
tection tool to analyze data
and identify anomalies or
suspicious activities.

2. Use adapted tools lever-
aged via Wazuh.

Wazuh is tailored to detect known
patterns involving known headers and
signatures.

Without initial detection, a threat
cannot be monitored by an NIDS.
We must spot it at least once to include
it in the database.

This subject was part of another mas-
ter’s thesis, aiming to coordinate both
theses to create a sustainable system
capable of identifying unknown threats
and adapting correct measures without
human intervention.

b. Monitoring
and Detection

1. Wazuh continuously
monitors system logs, net-
work traffic, and other data
sources for suspicious activi-
ties.

2. Predefined or custom
rules in local rules.xml
are used to detect known
threats and anomalies.

Once the pattern is known, it can be in-
tegrated into Wazuh as local rules. This
allows Wazuh to trigger an appropriate
response to tackle the issue.

c. Implement-
ing an Active Re-
sponse

Upon detecting a threat,
Wazuh can trigger active
response commands config-
ured in ossec.conf.

This serves as a countermeasure against
the attack.

Table 1: Steps to Tackle the Objective

1.2 Main Tools Used in the Project

1.2.1 Wazuh

Braintech requested the use of Wazuh as a Network Intrusion Detection System (NIDS).
Wazuh can be divided into two main entities:

e« The Manager: Collects data from monitored endpoints to analyze and identify potential
issues.

o The Monitored Agents: Endpoints from which data is collected.

The NIDS is installed on a separate entity called the manager, not directly on the victim computer.

On the manager, we use the Kibana dashboard for ergonomic and visual purposes to monitor
traffic flow on our agents. It allows us to quickly spot any detected threats and the corresponding
active responses initiated.

= & B WAZUH v agens 8 =

STATUS DETAILS EVOLUTION
W Active Active sconnected ever connectes Agents coverage
M Disconnacte d -
I Never connocted 2 0 0 100.00%
Last registered agent Mot sctive agent
PC-B PC-A

Agents (2) +) Deploy new agent thy Export formatted

2
z
2

o Hame "® Groupis) s Wersi. Registrationd.. Last

] PC-A 192.168.43.40

[PC-B 19216843044 defauit Va1 2020/08/05 18 2020/08/05 17

Figure 1: Kibana Dashboard Interface

Wazuh relies mainly on two files:

o ossec.conf: The main configuration file defining rules, active responses, and operational
settings.

e local rules.xml: Defines custom rules for detecting specific patterns or anomalies.
local rules.xml

o Purpose: Defines custom rules for detecting specific patterns or anomalies.

« Rules: Specifies conditions and actions based on logs, FIM, and other data sources.

These rules are downloaded onto the manager, the XML file orchestrates them.

ossec.conf

e Purpose: Main Wazuh configuration file, defining rules, active responses, and operational
settings.

« Rules: Specifies applicable rules (e.g., local_rules.xml) and actions for matches.
« Active Responses: Configures automated threat mitigation commands.

Wazuh can handle various types of attacks , but for this thesis, the focus is on:
o Intrusion Detection: Detects rootkits and malware.

o Log Data Analysis: Collects and organizes logs from monitored systems, including
applications like Docker (e.g., from websites).

o File Integrity Monitoring: Monitors changes in predefined directories to detect unautho-
rized changes.

There exist various kinds of attacks and these considerations constrain us to focus only on specific
(althrough mainly common) attack cases. Howerver, handling an attack using wazuh rely always
on the same process.

Workflow Summary to Handle a Threat Using Wazuh
1. Identify the signature of the threat.

2. Define rules in local_rules.xml and download necessary files (rules, other enrichment
software).

3. Call associated active response in ossec.conf.

1.2.2 Example: Web-Attack Scenario

To illustrate the concept, let’s detail a basic cyber-defense procedure to counter a web attack*

using Wazuh and DVWA (Damn Vulnerable Web Application).
Below is a scheme of the several interactions between entities in case of a web — intrusion scenario.

Manager: =

Oversees security infrastructure and
configurations.

Configure the agent via installing teller
To get enriched logs regarding an attack

On the website @

Edit ossec.conf and local rules.xml
that match identified threat
signatures, enabling Wazuh to detect
specific types of attacks.

@ Edit ossec and local rule;

Initiate the active responge victim/ending point:

Implements additionnal
&l@ tection tool and run
Send logs regarding the current runn
website @

DVWA

the application

Running the website
On Docker

Attacker :
Simulates
attacks to test
and improve the
system's
defenses.

Attack the website
via nikto

Figure 2: Web-Intrusion Scenario with Wazuh

Comment:
o To implement a scenario, we need an orchestration between each unit.
o Logs are essential to understand the overall process.

o Without editing the ossec.conf and the local rules, there can’t be an active response.

This setup ensures that threats are effectively identified, appropriate rules are defined for detection,
and active responses are configured to mitigate threats using Wazuh.

*https://wazuh.com/blog/detecting-web-attacks-using-wazuh-and-teler/

7

https://wazuh.com/blog/detecting-web-attacks-using-wazuh-and-teler/

O UL i W N~

o0

= W N =

Beside the orchestration between elements, we can have a chronological perspective

<> > 3
Launching DVWA Installing teller Configuring the Installing nikto and Revealing the intrusion Blocking IP adress
On docker And its associated agent scanning the website And suspects actions of the suspect
Local rules to detect From the attacker On the wazuh manager
Suspicious activities
M 5
Defender < _:7 <
Attacker Active response ran by
Defining local rules attack The manager to counter

To spot an web attack The threat

Figure 3: Web-Intrusion chronological perspective

We retrieve the several steps highlighted during the theoretical analysis, in particular these two
steps that consist in defining the two XML files.

In local rules, we need to modify the file system so that the manager can decode the logs sent by
Teler from the agent consisting in adding an XML block of the form:

<group name="teler,">
<rule id="100012" level="10">
<mitre>
</mitre>
<description>teler detected $(category) against resource $(request_uri
) from $(remote_addr)</description>

</rule>
</group>

Listing 1: Local rules for Teller

In an identical way, we have to add a block for the ossec.conf file that will trigger the active
response once Teler detects a suspicious activity:

<localfile>
<log_format>syslog</log_format>
<location><PATH_TO_LOGFILE>/output.log</location>
</localfile>

Listing 2: Local file for Teller

The issue is that filling those two files manually each time a new threat is spotted can be tedious
and lead to mistakes.

Indeed, simply adding the block at the end of the file can lead to redundancies (having most of the
time the same active response for several anomalies, alias blocking the IP) or any other syntactical
mistakes.

This is why the main purpose of the thesis is to:

o Find a simple and efficient way to fill these two files.
» Permit a versatile approach to have an auto-adaptive system each time a new threat is found.
o Create a suitable environment to test the concept.

We finally retrieve the thesis problematic definition introduced above 1.1.1.

1.2.3 Setting Up the Virtual Environment using Vagrant

To test our program, a virtualized environment is necessary. This involves creating virtual machines
that can communicate efficiently with each other. The virtual environment must be suitably
configured to meet the constraints of an agency.

Why Vagrant? Vagrant was chosen for its benefits. Vagrant is an open-source tool for building
and managing virtualized development environments, primarily using simple configuration files.

Vagrantfile A Vagrantfile provisions virtual machines via VirtualBoz. It orchestrates their
security, memory allocation, and downloads essential packets for each entity. Once the machines
are provisioned, they can be launched via the command line using vagrant up.

% vagrant up Vagl'ant

Figure 4: Vagrant Configuration for Virtual Machines

The environment must assume several features:

o Scalability
» Portability
o Automated
« Suitable for testing purposes (communication between Python & Bash programs)

e C(Clear and structured
Arguments to Pass

e IP address of the server

o Number of agents

To meet these requirements, the following features were implemented:
e Secure communication
o Shared folder & file synchronization between VMs

o Centralized configuration on the host machine

/upda?u‘nl files
N

G |
E

Manager O== Host

fsh@es - -
o S -
O - echnologies

Figure 5: Vagrant Environment of the project

From this setup, we conclude:

e The host can connect to each machine, acting as a conductor to manage attack and defense
scenarios.

« Complex tasks (such as generating ossec.conf and rules, data analysis) are handled in
Python, while provisioning the machines is done in Bash using Vagrant (e.g., downloading
new packets, logs).

o A shared folder /vagrant facilitates file exchanges between the machines.

The last point is crucial as, when transitioning from a virtual environment to a test/real
environment, an SE'TP server will be required to ensure file exchanges between endpoints
and the manager.

1.2.4 Simplifying and Automating the Process

The primary challenge lies in the tedious process of setting up the agent and configuring the two
essential files.

Why is it Tedious?

o A preliminary analysis is required to identify the measures to be taken regarding the threat
after receiving the logs.

o The two main files to configure must adhere to a precise typography (ossec.conf and
local_rules.xml).

o Manual intervention between each machine is necessary as the manager, victim, and attacker
need to be set separately (during the testing phase).

10

To address this issue, a class-based Python program was developed on top of the Vagrant
provisioning scripts.
This approach offers several benefits:

o Allows the definition of unit tests and the use of Python to verify the application’s function-
ality.

o Facilitates the implementation of a multi-agent system coordinated by an evaluator.
o Generally simplifies the procedures.

Integration with Large Language Models (LLMs)
This approach is designed to accommodate the use of a Large Language Model (LLM) defined on
the host machine. With simple commands, the LLM can interact with the class-based functions to:

» Identify the threat via logs and determine the corresponding measures.
o Complete the two essential files.
e Set up the victim with the required packets.

This method was inspired by the following tutorial: Leveraging LLMs for Alert Enrichment A.2f

Based on this concept, the current project can parse new malware logs to a language model, allow
the LLM to make modifications via the class-based script, and prompt the owner to apply the
modifications based on test results.

This innovative approach may become prevalent in the industry, where:

o An Al modifies code using defined rules within a set environment.

« Modifications are rated and applied or rejected.

o The system targets self-improvement without human intervention.
The project relies on three main actors:

1. A virtual environment setting up a manager, victim, and attacker.

2. A host running this virtual environment, interacting with it using a class-based Python
script.

3. An LLM providing the host with the required actions to execute. *

The project is tested in the context of file modification but can be adapted to various other types
of attacks. It will simply require defining an appropriate script to parse logs from the targeted
field to the LLM.

"https://documentation.wazuh.com/current/proof-of-concept-guide/leveraging-11lms-for-alert-enrichment!
html

iThe last point wasn’t implemented, but is only theorical (yet feasible) as the two main points were already a
large work to implement in the case of master thesis using rigorous methods (300 hours).

11

https://documentation.wazuh.com/current/proof-of-concept-guide/leveraging-llms-for-alert-enrichment.html
https://documentation.wazuh.com/current/proof-of-concept-guide/leveraging-llms-for-alert-enrichment.html

A timeline of the project is available in Appendix A.1 and can be resumed as follows :

The ide sends logs gotten from wazuh
) IDE RUNNING n
— THEPYTHON
% SCRIPTS £ %_ @
HOST SYSTEM \a\ E
Host test the new configuration

No bugs
- Efficiently working
- Ask to the user for modification

Propose modification of the configuration files

VIRTUAL ENVIRONNEMENT %

Figure 6: Simple overview of the project

In summary, the project addresses the original problem by creating an environment that
allows a virtual manager to correct its configuration files and set up monitoring endpoints
(agents) using artificial intelligence.

We wanted a software able via Wazuh, to identify a threat and correct its system to adopt
corrective measures in case of a new encountering.

This AI analyzes logs sent by Wazuh, adapts to situations, and proposes modifications that

are tested for efficiency.
This versatile approach allows for:

e Choosing the number of agents and designing the configuration for any company.

o Being class-based, adding as many classes as needed to define agent types and handle
various attack types.

This represents the foundation of a self-sufficient system that, if well-designed, will not
become outdated as it relies on up-to-date tools.

12

00 ~J O UL = W N+~

= e b e e e
© 00 IO UL i W N~ O ©

2 Vagrant Environment

Since the project is divided into two parts, we first delve into the initial phase, which focuses on
designing the simulation environment and exploring its complexities.

2.1 Structure of the Environment

The structure of the environment is crucial for understanding the overall process that defines the
setup and operation of the virtualized system. This section provides a detailed overview of the
folder structure, top-level files, and directories involved in the Vagrant setup.

2.1.1 Tree Structure

The tree structure of the environment is illustrated in Figure 3. This structure helps in visualizing
the organization of various folders and files necessary for building and managing the Vagrant
environment.

[DIR] .vagrant

[DIR] backup

[DIR] common

[DIR] ephemere

[DIR] host

[DIR] src

[DIR] VM

[FILE] cleaner.sh

[FILE] debug.sh

[FILE] logging.sh

[FILE] make_executable.sh

[FILE] requirements_attacker.txt
[FILE] requirements_defender.txt
[FILE] requirements.txt

[FILE] setup_host.sh

[FILE] sourcer.sh

[FILE] utils.sh

[FILE] Vagrantfile

[FILE] variables.sh

Listing 3: Structure of the overall project

2.1.2 Top-Level Files

The top-level files are essential for the initial setup and debugging of the environment. These files
serve as headers in other bash scripts, ensuring consistency and simplifying the debugging process.

» logging.sh: Facilitates the display of logs with different verbosity levels (INFO, DEBUG,
WARNING, ERROR). This is crucial for debugging all bash scripts.

« make__executable.sh: Ensures that all bash scripts are executable at the start.
« utils.sh: Contains utility functions for various operations.
» variables.sh: Defines useful variables such as paths, IPs, and keys.

» sourcer.sh: Automatically imports essential scripts like logging.sh, utils.sh, and
variables.sh into lower-level scripts.

o Requirements.txt: Lists dependencies and packages to be installed on virtual machines or
the host.

13

We basically for every bash script :

e Source the sourcer

o Log information with the logger

e Use redundant functions via utils

Eventually create a backup in the backup folder

To do so , two templates are available in the code and can be used regarding the situation.

2.1.3 Top-Level Directories

The top-level directories are organized to manage different aspects of the environment, ensuring
a structured approach to handling backups, common provisioning scripts, and machine-specific
configurations. Below is a detailed description of each directory along with its tree architecture:

o .vagrant: This directory is automatically created by Vagrant and contains the virtual
machines. It is not meant to be modified manually.

.vagrant/

|- bundler/

| - machines/
|- wazagentl/
I \- virtualbox/
|- wazagent2/
I \- virtualbox/
\- wazidxl/

\- virtualbox/

\- rgloader/

« backup: Contains backups of important content, with timestamps for version control.

backup/
|- bin/
|- csv/
|- keys/
\- log/

o common: Includes common provisioning scripts, especially for testing connections between
the host and virtual machines.

common/
\- tests/

14

« ephemere: Stores session-specific content such as SSH keys, passwords, and 1P addresses,
which are regenerated with each session.

ephemere/
|- bin/
|- csv/
|- keys/
\- log/
|- bin.txt

\- credentials.txt

o Host: Contains scripts and configurations specific to the host machine.

Host/

|- configs/

|- localrules/

| - scenarios/

| |- alienvault/

| | |- attacker/
| | |- defender/
| | \- manager/
| |- brute force/
| | |- attacker/
| | |- defender/
| | \- manager/
| \- dvwa/

| |- attacker/
| |- defender/
| \- manager/
\- setups/

e VM: Includes installers and setup scripts for virtual machines, focusing on Wazuh agent
and server configurations.

M/
|- configs/
|- installers/
| |- install braintech.sh
| |- install node_exporter.sh
| |- install wazuh_agent.sh
| \- install wazuh server.sh
|- setups/
| |- logrotation/
| I |- setup_cron_job.sh
| I |- setup_log rotation.sh
| | \- setup_ssh_keys.sh
\- tests/
\- snort-scan.sh

This structured organization ensures that each component of the environment is easily accessible
and modifiable, facilitating efficient management and troubleshooting.

15

We can structure the setup into three main components:

o HOST : Contains all Bash scripts intended to run on the host machine during the virtual
machine creation process.

e VM : Includes scripts specifically designed to execute within each virtual machine.

e COMMON : Serves as a shared space for backups, credits, and scripts that facilitate
communication between the host and virtual machines.

2.2 Vagrantfile

The Vagrantfile is the core configuration file for setting up the Vagrant environment. It defines
the initial setup and provisioning of virtual machines.
It is inspired form Xavki gitlab tutorials® where key aspects include:

o Initial Setup vs. Usual Start: Distinguishes between the first-time setup and subsequent
starts. The initial setup involves creating and configuring virtual machines, while subsequent
starts activate already built VMs.

« Provisioning Scripts: Executed only once during the initial setup to configure the envi-
ronment.

o« SSH Keys: Generated and distributed to allow secure access to virtual machines.

The pseudocode for the Vagrantfile is illustrated in Appendix C.

2.2.1 SSH Keys

SSH keys are essential for secure communication between the host and virtual machines.
The setup involves generating key pairs and configuring them for user and root access, for more
info refer to Appendix B

« setup__host.py: Generates SSH keys for user access to virtual machines.
o setup__ssh__keys.sh: Generates SSH keys for root access to virtual machines.

o setup__host__ finish.py: Configures VSCode for connection to virtual machines.

The process of generating SSH keys is illustrated in Figure 17.

By default, Vagrant permits connection from the home user to its virtual machines. By executing
sudo vagrant ssh <nameVM> in the command line, we can access each of them individually.
The terminal screen used for accessing virtual machines is shown in Figure 8.

From this terminal, we are able to configure each virtual machine via command line.

However, this approach is not ideal, which is why we decided to configure Visual
Studio Code for remote access.

Shttps://gitlab.com/xavki/tutoriels-wazuh

16

 https://gitlab.com/xavki/tutoriels-wazuh

1) Server authentication:
Server proves its identity to the client

0, & .8

SSH client SSH server

. o

2) User authentication:
Client proves user’s identity to the server

Figure 7: Generating SSH keys for secure access.

2.2.2 Setting Up the Machines

The setup of virtual machines involves configuring the server and agents within the Vagrant
environment. This includes setting up the Wazuh server and agents, as well as configuring SSH
keys for secure access.

o Server Setup: Configures the Wazuh server on the manager virtual machine.

o Agent Setup: Configures Wazuh agents on the monitored virtual machines.

The configuration process is designed to be modular, allowing for easy management and scalability.
Below is an explanation of the key scripts and configurations used to set up the machines:

1. Setting Up the Server

As a reminder, it concerns the following script:

1 |if node[:type] == "server"

2 # Installation #

3 cfg.vm.provision :shell, :path => "VM/installers/install_wazuh_server.
sh"

4 ## HERE Pushing configuration files to server dedicated folder’s ##

) cfg.vm.provision :shell, :path => "VM/configs/manager/config_manager.
sh"

6 ## HERE Cron Jobs ##

7 #cfg.vm.provision :shell, :path => "VM/setups/setup_cron_job.sh"

8 ## HERE Cron Jobs ##

9 cfg.vm.provision :shell, :path => "VM/setups/setup_log_rotation.sh"

10 | end

11

We indeed need to configure the manager. This is done via config_manager.sh where also
we define agent . conf.

17

koraty@koraty:~$ I agent2:~$ systemctl statu

-03-30 14:18:54 UTC; 12min ago

Figure 8: Terminal screen for accessing virtual machines via command-line tool.

¥ agent.conf will set the machine to use the following tools:

e Suricata: A network threat detection engine.

o Teller: A tool for monitoring and alerting.

The aim is to test the system at the end of the provisioning to ensure that the environment
is working properly without using the /src code but simply by configuring the machine
manually.

We also set up cron jobs in setup_ cron_ jobs.sh that may be useful

This file is modular and other cron jobs can be added. (Appendix C.1)

We for instance ensure that the system is able to synchronize ossec.conf between the host
and the manager. Synchronization of files is crucial for the sake of the thesis, as later
modifications will be made on the host and synchronized on the VMs.

2. Setting Up the Agents

1 |if nodel[:type] == "agent"

2 # Installation #

3 cfg.vm.provision :shell, :path => "VM/installers/install_wazuh_agent.
sh"

4 ## HERE Configuration of the agent ##

) cfg.vm.provision :shell, :path => "VM/configs/agents/config_agent.sh"

6 ## HERE Agents tests ##

7 cfg.vm.provision "shell", inlimne: <<-SHELL

8 sudo /vagrant/VM/tests/snort-scan.sh #{node[:ip]}

9 SHELL

10 | end

11

Yagent.conf: The agent configuration file is identical to ossec.conf but only concerns the specified virtual
machine.

18

We first configure the endpoints as agents via install wazuh_agent.sh.
As for the manager, we configure the agents both for Wazuh and Suricatal.
2.2.3 Tests, scenarios and Cleaning

Once both the manager and agents are configured, we can run final tests and scenarios.

1. Setup Host Finish (setup__host_ finish.sh)

This script performs the final setup tasks, including copying SSH keys, running final tests,
and executing scenarios to ensure everything is functioning correctly.

1 |# HERE Running the final tests & scenarios for first configurations &
ensuring everything works fine #

2 |sudo -su $(hostname) $PATH_TO_TESTS_FILE

sudo -su $(hostname) $PATH_TO_SCENARIOS_FILE

w

These tests and scenarios are modular and can be enriched without issues

e Final Tests
The test folder contains scripts for testing SSH connections:

|- test_ssh VM to_host.sh
|- test_ssh_host_to_VM.sh
\- tests.sh

— tests.sh coordinates the tests run by the other two scripts:
% A connection attempt from VMs to host (not effective).
* A connection attempt from host to VMs.
— In case of failure, an error is logged, but provisioning does not stop.

e Scenarios

The main purpose of these scenarios is to demonstrate the orchestration by the host
system to coordinate each virtual machine using SSH commands. This serves as the
final phase of the Vagrant provisioning, acting as a prototype of the thesis but written
in Bash.

The scenario folder is structured as follows:

|- alienvault/
|- brute force/
|- dvwa/

\- scenarios.sh

— scenarios.sh coordinates the execution of each scenario.

— Each scenario follows a structured approach:

Inttps://documentation.wazuh.com/current/proof-of-concept-guide/integrate-network-ids-suricatal
html

19

https://documentation.wazuh.com/current/proof-of-concept-guide/integrate-network-ids-suricata.html
https://documentation.wazuh.com/current/proof-of-concept-guide/integrate-network-ids-suricata.html

|- attacker/
|- defender/
| - manager/
\- scenario_x.sh

— scenario_x.sh follows a pseudo-code structure:

(a) Initialization: Change to the working directory, check existence, define logs,
etc.

(b) Node Processing: Read the CSV file for node information, determine node
type, and execute corresponding scripts via SSH. Handle errors by logging and
incrementing an error counter.

(c) Scenario-Specific Actions: Perform additional checks or actions specific to
the scenario.

(d) Completion: Log the completion status, indicating success or errors.

Directly related to the following GitLab repository: Wazuh Tutorials™ where the key
difference here is that instead of manually executing each action, the host system
orchestrates all simulation attack and defense procedures.

2. Cleaning (cleaner.sh)

If the machines need to be destroyed, this script is executed. It performs cleanup operations
to prepare the system environment, see Appendix C.2

This script ensures that:

e SSH configurations are backed up.
e Specific .txt and .pub files are cleared, with their contents appended to a central file.
o .tar files and log files are removed.

e The cleanup is marked as complete to prevent redundant executions.

**https://gitlab.com/xavki/tutoriels-wazuh

20

https://gitlab.com/xavki/tutoriels-wazuh

In conclusion this Vagrant environment is:
o Structured

— Harmonized templates of scripts.
— Rigorous coding practices: backups, logs, cleans, sourcing, etc.

— Logical and ergonomic folder structure.
« Consistent

— SSH connection between host and VMs.
— Tests ensuring proper functioning of VMs.
— Scenarios essential for the prototype described in the next steps (/src
folder).
e Modular

— Configurable Wazuh settings (version, number of VMs, IP).
— Configurable tests.

— Configurable scenarios.

This setup ensures a robust, modular, and consistent environment for testing and
deploying the NIDS.

21

CO J O UL W N+

e e G S S
TU W NN~ OO

3 Core of the Software

As the environment has been studied in detail, we will focus on the core of the software, this /src

folder is written in Python.
As presented in subsubsection 1.2.4, the aim of this software is to (in priority order):

— Simplify procedures to configure the Wazuh system
— Simulate scenarios

— Permit the integration of an LLM

A class-based system was implemented for this purpose. We will examine its architecture and

the reasoning behind this design, using a similar analysis as for the Vagrant environment.

3.1 Structure of the Project

The project has the following structure:

[DIR] agents_elements

[DIR] conf_files

[DIR] dependencies

[DIR] integrations

[DIR] vagrant_programs
[FILE] README

[FILE] agents.py

[FILE] command.py

[FILE] main.py

[FILE] remote.py

[FILE] requirements_python_VM.txt
[FILE] run_ssh_function.sh
[FILE] typography.py
[FILE] utils.py

[FILE] variables.py

Listing 4: Structure of the src folder

Some similarities exist such as requirements, utils, and variables, which serve the same purpose as

their Vagrant counterparts (see listing 3).

However, note that many Python files among them define a class, let’s define them hierarchically.

3.2 Top-Level Files

As we can see, these top-files permit setting up a rigorous bond between VMs and the host using

Python. We then have 4 classes required before reaching our machines:
Typography -> Command -> Agents -> Remote -> [VM’s and their tools].

22

Class Description Level
Typography.py Base class for logging and harmonization. Au- | Top class
tomatically applies the base_function dec-
orator to all methods and provides dynamic
logging setup.

Command.py A utility class for executing and managing | 2nd
shell commands. Automatically created via
Agents and applies logging via Typography.
Agents.py Superclass for managing different types of | 3rd
agents with logging and configuration capa-
bilities. An agent corresponds to a VM.

Remote.py Utility class for managing remote operations. | For VM’s agents.
Run_ssh_function.sh | To run utils functions (.py or .sh) on a VM | Depends on
using Python. Command class

Table 2: Top-Level Files and Their Descriptions

Without having a strict differentiation of each category, we can’t expect great performance as we
need:

o Clarity for debugging
» Low complexity to avoid latency
o Versatility to permit further improvement

Below is a summary on the workflow followed each time an Agent makes a move related to its
associated virtual machine.

Class based formulation about action to take
Cmd formulation

[9

Agent

\‘j

Remote

p
:

Command gpplied on the assgciated virtual machine

Figure 9: Workflow between the class-based agent and its VM’s homologue

23

3.3 VM Agents

We first had a look on how a VM agent may cooperate with the rest of its environment. We take
a deeper insight on the structure of the agent itself.

3.3.1 VM Agents Structure

This directory contains the main elements to define our virtual machines. Not developing the
subfolders, we get:

| -—agent_types

| | -—attacker

I | -—defender

I | -—evaluator

| \--manager

\--vmagents
\--vmagent

3.3.2 Vmagents
This class will define main characteristics related to our virtual machines.

\--vmagents

| log.py

| ossec_conf.py

| xml handler.py

| __init__.py

\--vmagent
fim.py
vmagent . py

yara.py
__init__.py

This part is important and defines the core of the system. On the same level than vm_agents
folder, the main motivations of these classes are:

« Log.py: To analyze logs sent by Wazuh for detecting and verification purposes.
o Ossec_conf.py: A utility class for managing ossec.conf configurations.

e Xml _handler.py: A utility class for managing XML configurations. This class provides
methods to add group and decoder sections to an XML file, ensuring that duplicates are
handled appropriately with warnings.

These classes are made in reference to the first part 1.2.1, as we sought to define a convenient way
to build the two main files required by Wazuh, which are:

e Localrules.xml

o Ossec.conf
In the vmagent folder, we have

« Vmagent class that by default imports every other class in this folder (modulable aspect).

» Latests correspond to a potential cyberfield as defined in here 1.2.1 and address adapted
tools.

24

We detail the pseudo-code for the vmagent class:

Configuration of the VM agents attributes

Class Vmagent (inherits Fim, Yara):
Initializes the Vmagent instance
Function __init__(kwargs):
Extract agent type and name from kwargs
Retrieve remote attributes (VM config path, remote name)
Retrieve OSSEC config attributes (OSSEC paths)

Calling classes for every handled cyberfield

Call parent class constructor with computed attributes
Call Fim._ _init__(self)

Call Yara._ _init__(self)

[... Any other cyberfield classes]

Those called classes are mainly inspired by these two links FIM'T and Yara*.
Yara is the class that will simulate the main scenario, and it needs FIM to work.

o FIM: Allow file monitoring and helps the manager to identify file changes.

e Yara: An advanced detecting tool for malware that works in pair with Wazuh by analyzing
file changes.

The objectives of these tools were covered in the first part A.2.

3.3.3 Onion View of a VM Agent

We can see this VM agent as the cell component of a broader complex system.
It has the possibility to:

o Get Wazuh logs

Generate logs
» Use specific tools in a cyber-security context
o Generate configuration files
Indeed, it has the keys to:
o Apply remote commands on its associated virtual machine
o Synchronize files of its VM to the host

This conception put into practice every component adopted earlier and is the bedrock of any
simulation or multi-role scenario.

tThttps://documentation.wazuh.com/current/user-manual/capabilities/file-integrity/index.html
Hhttps://documentation.wazuh.com/current/proof-of-concept-guide/detect-malware-yara-integration|
html

25

https://documentation.wazuh.com/current/user-manual/capabilities/file-integrity/index.html
https://documentation.wazuh.com/current/proof-of-concept-guide/detect-malware-yara-integration.html
https://documentation.wazuh.com/current/proof-of-concept-guide/detect-malware-yara-integration.html

VM AGENTS

L/@Q

Wazuh logs to analyze

VM AGENT

(]

Tools regarding the kind of attack

Malware scanner

((

E

[.OTHER TOOLS.. |
_A

Xml handler @

Ossec.conf

Agent type :
Defender,

Attacker,
Manager,

CFG

Figure 10: Onion View of a VM Agent to generate configuration files

3.3.4 Agent Types

| -—attacker

I attacker.py

|

| --defender

| defender.py

|

| -—evaluator

I evaluator.py

|

\--manager
manager . py

Agent types can be attacker, defender, evaluator, and manager.

o Evaluator isn’t a virtual machine but a neutral entity that can be used for further purposes
(ie : implementing a cost function regarding a proposed modification ...).

o Attacker, defender, and manager correspond to the roles of each virtual machines above and
depend on vmagents classes.

26

— O © 00 O Ui Wi -

— =

U W N~

These classes are the lowest developed classes in the hierarchy; they simply define the type of the
entity with associated methods so that for an attacker, we would have:

from ...vmagents.vmagent.vmagent import Vmagent

class Attacker (Vmagent):
def __init__(self, **kwargs):
super () . __init__ (x*kwargs, category=’attacker’)

def perform_attack(self):
pass

def list_attacks (self):
pass

Listing 5: Attacker class

A summary of the class architecture is available at the end of the thesis in figure 39.

3.4 Usage

3.4.1 Initializing Machines

Everything starts from the initialization code, this is where we define our elements with their
features. We also define their actions and defense mechanisms.

Manager Instance
manager = Manager (name=’wazidx1’, ip_address=’192.168.56.13")

Defender Instance
defender = Defender (name=’wazagentl’, ip_address=’192.168.56.147)

Listing 6: Agents definitions

In this way, it becomes simple to run scripts or commands for each instance via a simple line
command.

3.4.2 Remote.py

Attribute Description

self.remote_name Name of the Vagrant VM used for SSH and
remote actions

self. VM __conf path Path on the VM to the main configuration

file (default: /var/ossec/etc/ossec.conf)
self. VM local rules path | Path to the local rules file inside the VM
self.VMilocalidecoderipath‘ Path to the local decoder file inside the VM

Table 3: Attributes of Remote.py

These attributes are essential for the SSH connection to run without issues on the associated VM.

27

© 00 O Ui W N+

—_
o

A particular attention is allowed to the following methods:

Method Description
run_remote_command Runs a remote command
run_bash_script_on_remote_host | Runs a bash script on a remote host

Table 4: Methods of Remote.py

They allow executing bash scripts on our machines.

For instance:

Step 1: Defender downloads the fake malware script
print ("Defender downloading the fake malware script...")

Install YARA on the remote host

bash_script_name = ’copy_malware.sh’
defender .run_bash_script_on_remote_host(bash_script_name)
\end{verbatim}

In this way, the bash script will be executed on the remote machine (defender)

Those remote functions were already tested during the provisioning \ref{
provisionning_test}

Listing 7: Main remote’s class methods

3.4.3 XML Handler

Main attributes are:

Attribute Description

self.xml path Path to the XML file

self.vm_ local rules_path Path to the local rules file inside the VM
self.Vm_local_decoder_patm Path to the local decoder file inside the VM

Table 5: Attributes of XML Handler

Main methods to consider are:

Method Description

add_group_to_xml Adds a group to the XML file
add_decoder_to_xml Adds a decoder to the XML file
synchronize xml with_vm | Synchronizes the XML file with the VM

Table 6: Methods of XML Handler

In particular, the last method ensures that the XML file is syntactically correct. If errors occur,
no changes are made.

3.4.4 Purpose of XML Files

The purpose of these XML files, files that we discussed here, is to define custom rules and decoders
for Wazuh.

e Localrules.xml: Contains custom rules that are specific to the environment.

e Ossec.conf: Main configuration file for Wazubh.

28

U W N~

~N

3.4.5 Local Rules

Based on Wazuh’s documentation:

"Custom rules in Wazuh allow users to define specific conditions or patterns in log data that are
relevant to their unique environment, applications, or security requirements.”

While Wazuh comes with a set of default rules, these are custom and added by group tags. Groups
help you label and organize rules by functionality (sshd, syslog, authentication_failed, etc.) and
makes rules easier to manage and understand.

To add a new set of rules, we:

o Add a group tag in the local rules file that links rule IDs to their description.

o Download the associated rules as a folder.

 Define a decoder if necessary (used for specific rules).

o Test the overall system.

Taking the following example:

<group name="local,syslog,sshd,">
<rule id="100001" level="5">

<if sid>5716</if_sid>

<srcip>1.1.1.1</srcip>

<description>sshd: authentication failed from IP 1.1.1.1.</description

<group>authentication_failed ,pci_dss_10.2.4,pci_dss_10.2.5,</group>

</rule>
</group>

Listing 8: Group name example

Tag Purpose

<group name="..."> | Groups a set of rules into logical categories
<rule id="..." Defines a rule with a unique ID and severity
level="..."> level

<if sid> Links this rule to a previously triggered rule
<srcip> Limits rule to a specific source IP
<description> Provides a clear explanation of the alert
<group> (inside Classifies the rule itself (e.g., type, compliance
rule) tags)

Table 7: Tags and Their Purposes in Local Rules

In that way, add_group_to_xml as discussed with table 6 will add a group tag to the XML file
ensuring that this group doesn’t already exist. If it does, it adds only the new rules (ID).
This is a versatile approach that allows an agent to add rules content without having the fear of

conflicts due to redundancy.

We retrieve the rules in the dashboard once they are triggered by their associated action.

https://documentation.wazuh.com/current/user-manual/ruleset/rules/custom.html

29

https://documentation.wazuh.com/current/user-manual/ruleset/rules/custom.html

© 0 O UL i W N+

3.4.6 Decoder

As mentioned, we can also have to handle the decoder. based on this documentation.
A decoder is a component in Wazuh that:

o Parses raw log lines.
« Breaks them into structured fields (like srcip, dstip, user, etc.).
o Makes those fields usable by rules.

Without a decoder, rules can’t match specific parts of a log line because the log would be treated
as one big string.
Example:

<decoder name="example">
<program_name> example</program_name>
</decoder>

<decoder name="example">
<parent>example</parent>
<regex>User ’(\w+)’ logged from ’(\d+\.\d+\.\d+\.\d+) ’</regex>
<order>user, srcip</order>

</decoder>

Listing 9: Decoder example
We’re building a decoder chain:
1. The first decoder detects logs that come from a program called example.

2. The second decoder extracts specific fields (user and srcip) from the message content using a
regex.

Example log line this decoder would match: User ’admin’ logged from ’192.168.1.100°.
We use /var/ossec/bin/wazuh-logtest to verify that the decoder is working.
3.4.7 Ossec.py

This class is directly linked to the XML one. It uses its tools to allow configuration of the
ossec.conf and main attributes are:

Attribute Description
self.ossec__conf path | Path of the ossec.conf file on the VM
self.base conf path Path to a “basis” for this ossec.conf with

scripts that never change
self.excel _conf path | Path to an Excel conversion of the configura-
tion file

Table 8: Attributes of Ossec.py

https://documentation.wazuh.com/current/user-manual/ruleset/decoders/custom.html

30

https://documentation.wazuh.com/current/user-manual/ruleset/decoders/custom.html

3.4.8 Organization of Ossec.conf File

From Wazuh’s documentation:

"The ossec.conf file is the main configuration file on the Wazuh manager, and it also plays an
important role on the agents. It is located at /var/ossec/etc/ossec.conf both in the manager and
agent on Linux machines.”

The main tags to consider in case of a modification are:

o Commands Settings

— <command>: Contains command configuration settings.
— <name>: Specifies the name of the command.

— <executable>: Specifies the executable for the command.
e Ruleset Settings

— <ruleset>: Contains ruleset configuration settings.
— <group>: Specifies the group for the ruleset.

— <decoder>: Specifies the decoder for the ruleset.
e Active Response Settings

— <active-response>: Contains active response configuration settings.
— <command>: Specifies the command for the active response.

— <rules_id>: Specifies the rule IDs for the active response.
e Localfile Settings

— <localfile>: Contains local file configuration settings.
— <log_format>: Specifies the log format for the local file.

— <location>: Specifies the location of the local file.

These tags cover a wide range of configurations needed to integrate a new feature into the
ossec.conf file. Depending on the specific feature, additional tags and settings may be required.
To avoid any conflict, each time a modification is done which implies adding an active response,
localfile, or new commands, the system verifies to:

o Avoid any duplicates

o If a similar tag is added, it adds only extra attributes

e Restructure in the right order the file after modification

o “Compress” tags by putting in the same row all rules IDs, paths, and so more.
To compress any tags, it is necessary to include it in:

TAG_TO_COMPRESS = {
’syscheck’: {’tags’: [’ignore’, ’directories’]},
’global’: {’tags’: [’white_list’]}, # NOT USED
}

Compressing it will add all paths on the same line:

<list>etc/lists/amazon/aws-eventnames,etc/lists/audit-keys,..</list>

https://documentation.wazuh.com/current/user-manual/reference/ossec-conf/index.html

31

https://documentation.wazuh.com/current/user-manual/reference/ossec-conf/index.html

© 0 O UL i W N+

— =
= O

3.4.9 Methods and Structure of the Class

Main methods to consider are:

Method Description

add_section_tag to_conf file Adds a section tag to the configuration file

synchronize _df with_conf file Synchronizes the dataframe with the configu-
ration file

verify conf file via_bash Verifies the configuration file via bash

Table 9: Main Methods of Ossec.py

To add a section tag, the following instructions are necessary:

active_response_to_add = """

<active-response>
<command>isolate_infected_system</command>
<location>local</location>
<rules_id>100003</rules_id>

</active-response>
nmn

Step 3: Manager updates the ossec.conf and local_rules.zxml
print ("Manager updating ossec.conf and local_rules.xml...")
manager .add_section_tag_to_conf_file(active_response_to_add)

Listing 10: Example of an active response

We can implement a same process for agent.conf files on each VM to add extra custom
rules.

Summurizing Ossec.py in one picture :

Virtual machine

I —
~
I3 Hostsstem
Generated
onfiguration file
> S -
e
onverting the
CFG modulable part to
excel
Basis cfg that will be concatenated
N A |
= Y A
CFG s

New generated conf file

% .
e e @

converted content Added tag

Figure 11: Principle of Ossec.py

32

In one line, the system will:
o Recognize the type of tag,
o Add it gracefully,

» Synchronize the host version with the manager version — if the new ossec. conf is receivable.

This core class is essential, relying on the strategic idea of applying a transformation from a
configuration file to its corresponding Excel representation.

To keep transformations manageable, the final configuration file is built by combining a generated
configuration with a predefined base, as mentioned in 3.4.7.

With the ability to modify key configuration files — namely local_rules, decoders, and
ossec.conf as presented in subsection 1.2.1 — we are now equipped to address our first cyberse-
curity focus: File Integrity Monitoring.

3.4.10 File Monitoring Class
What is File Monitoring?

According to the Wazuh’s documentation, file integrity monitoring aims at monitoring specific
files or folders to highlight any changes. Any modifications will then be logged and mentioned on
the dashboard.

Main methods are:

Method Description
check_fim_change Checks for file integrity changes
configure_audit Configures audit settings
manage_ip_in_hosts_allow Manages IP in hosts allow
simulate_file_change Simulates file change
test_who_data Tests who owns data

Table 10: Main Methods of File Monitoring Class

This allows configuring the file monitoring system and to get enhanced logs about modification,
we also need to configure who data and audit.
Those tools provide more information on who did the changes.

Example : Let’s say we want to monitor two specific folders and check for consistency; the
following test will do it.
We need to:

o Configure ossec.conf

o Modify a file in the folder as another user
o Check for file change locally

o Check if Wazuh has detected it.

https://documentation.wazuh.com/current/user-manual/capabilities/file-integrity/index.html
https://documentation.wazuh.com/current/user-manual/capabilities/file-integrity/
advanced-settings.html

33

https://documentation.wazuh.com/current/user-manual/capabilities/file-integrity/index.html
https://documentation.wazuh.com/current/user-manual/capabilities/file-integrity/advanced-settings.html
https://documentation.wazuh.com/current/user-manual/capabilities/file-integrity/advanced-settings.html

Step 1: Define directory tags

Define directory tags
directory_tag wdata = {’text’: monitored path wdata, ’check all’: ’yes’, ...H
directory_tag = {’text’: monitored_path, ’check_all’: ’yes’, ’whodata’: ’yes’}

Step 2: Initialize Manager and Defender instances

INITIALIZATION ------————-————————-

Manager Instance

manager = Manager (name=’wazidxl’, ip_address=’192.168.56.13")

Defender Instance

defender = Defender (name=’wazagentl’, ip_address=’192.168.56.14°)

print("Starting FIM setup...")

Add FIM configuration

defender.add fim configuration(
monitored_paths=[directory_tag, directory_tag_wdatal,
do_synchronize_with_VM=True,
conf_path=PATH_TO_OSSEC_AGENT_BASE_DEFENDER

Step 4: Test FIM detection

Test FIM

print ("Testing FIM...")
defender.run_function_on_remote_host(’simulate_file_change’, monitored_path)|
manager.run_function_on_remote_host(’check_fim_change’, monitored_path)

Step 5: Test Who-Data tracking

Test Who-Data

print("Testing audit...")

defender.run_function on remote host(’test_who _data’)
manager.run_function_on_remote_host(’check_fim_change’, monitored_path_wdata)

print ("FIM and Who-Data setup completed successfully.")

3.4.11 Yara.py

The Yara class is designed to enhance malware detection using YARA integration and is common
to every VM agent. Designed inspired by its related documentation.

The YARA Active Response module scans new or modified files whenever the Wazuh FIM module
triggers an alert.

This modulable malware detector would recognize new detected threats once the signature of it is
added. It needs every component presented before in figure 10 : Ossec, Xml and Fim classes.

https://documentation.wazuh.com/current/proof-of-concept-guide/detect-malware-yara-integration,

html#detecting-malware-using-yara-integration

34

https://documentation.wazuh.com/current/proof-of-concept-guide/detect-malware-yara-integration.html##detecting-malware-using-yara-integration
https://documentation.wazuh.com/current/proof-of-concept-guide/detect-malware-yara-integration.html##detecting-malware-using-yara-integration

To configure Yara, we write simply:

Step 1: Start YARA setup

print ("Starting YARA setup...")

Configure audit on the manager
manager.configure audit()

Step 2: Install YARA on the defender

Add YARA configuration on the defender
defender.check_and_install_yara(conf_path=PATH_TO_OSSEC_AGENT_BASE_DEFENDER)

Configure manager with XML sections
group_section_str = """...

nnn

decoder_section_str = """...
nn

Command_tag = """ ... """
manager.synchronize_xml with_VM(decoder_sections_str, group_sections_str)

Step 4: Modify configuration dataframes

——— TEST 3: MODIFY DATAFRAMES ---——------————————-
print ("Loading existing ossec.conf configuration...")
dict_dfs = manager.dataframe from conf(file_path)

print ("Modifying configuration dataframes...")

Ossec Section

Section_tag = """ ... """
manager.add_section_tag to_conf file(section_tag)

Step 5: Generate new configuration file

print ("Updating...")
manager .synchronize_df with_conf_ file(dict_dfs, conf_path)

Step 6: Simulate the attack and finish

Processing the attack
defender.run_bash_script_on_remote_host (NAME_MALWARE SCRIPT)

ommmmmm TEST COMPLETED —-------=-—=-—-—-=-—-=
print ("All tests completed successfully!")

7

This kind of script demonstrates how easily a new tool can be configured across multiple
entities to address a specific cybersecurity domain — in this case, File Integrity Monitoring
(FIM).

35

By grouping these methods under a structured header, a large language model (LLM) can
autonomously generate the corresponding configuration script without difficulty.

We will explore in the practical section 5 how, in this scenario, the LLM is capable of recognizing
new threats in a straightforward way and reconfiguring the system automatically.

A simple way to generate such a header for the LLM — to help it understand the software’s
configuration — is to use the following function:

save_hierarchy to_file(Manager, ’methods.txt’)

This function produces a hierarchical tree that organizes all available methods (see tab 11 in
appendix), which can then be used directly as an header for the LLM.
Below is the ultimate scenario that is simulated on the main.py script:

Manager

/
v
[N

Host archestrates via running the provided %
Script of the 1A, /].

Host transmits usefull information + header to
ensure a suitable designed response.

Figure 12: Ultimate Scenario

Conclusion

As a conclusion, the architecture of the system helps to achieve:
o An elaborate architecture that progresses from low-level to high-level comprehension.
» An easy-to-set-up virtual machine (VM) system.
« A modular configuration of critical files (OSSEC and local files).

These concepts allow for a straightforward approach to address various cyber fields, and
in our particular case: malware detection. By using file integrity monitoring coupled with
YARA, we were able to design a simple scenario.

This scenario configures machines and indicates malware detection, ultimately generating
an active response.

36

To Go Further

Consider the following points for further exploration:
o The possibility of configuring machines analogously for other cyber situations.

» The capability to generate a header to feed to a Large Language Model (LLM) each
time a significant modification of the system is made.

o The necessity to clearly define the system’s scope of action and its ability to modify
the code.

The following sections are the most significant, serving as concrete evidence of both the theoretical
and practical explanations provided earlier.

o We proceed with the analysis of the two phases previously defined in Sections 2 and 3.

o Command outputs are examined and cross-referenced with information displayed on the
Wazuh dashboard to ensure consistency and verify authenticity.

37

4 Provisioning of the vagrant environment

The environment is quite tedious to set up and can take hours if you're not used to a Linux
environment.

To install Vagrant and VirtualBox, guidelines are indicated in the README.
It is important to find a matching version between Vagrant, VirtualBox, and the mainline kernel.

o VirtualBox generates the VM.

» Vagrant orchestrates this generation via a program.

Our configuration is:
o Vagrant version 2.4.3
« VirtualBox version 7.1
o Kernel version 8.6.51

Once the host is configured, we need to ensure that the environment is cleared from previous
configurations.

4.1 Cleaner

To do so: sudo vagrant destroy
More than destroying existing VMs, it will also execute cleaner.sh.

==> wazidxl: VM not created. Moving on...
wazidxl: Running action triggers after destroy ...
idx1l: Running trigger...
: Inline script

Figure 13: Output of the cleaner script showing the cleanup process.

Every previous information will be thrown to bin.txt, where a CLEARED tag will be written so
that from the next sudo vagrant up, the cleaner won’t be executed anymore :

5D6UWN+tVmTB pr7L antony.davi@centrale.centralelille.fr

isn't any confl
None

CLEARED
CLEARED
CLEARED

Figure 14: Content of bin.txt after cleanup.

38

4.2 Setup

We can then run a sudo vagrant up. As the environment was cleared, the system will understand
that no machine was provisioned and will execute setup.sh as a first step (initial script type 2.2)
to ensure executability of programs, folders existences ...

=> wazidxl: Running trigger...
Inline script

Figure 15: Output of the setup script showing initialization steps.

Comment: As written above, this will ensure the existence of necessary folders for further steps,
and if not existent, it will create them. It will also add a SETTED tag to the bin.txt file to
indicate that the setup was done before provisioning the first machine.

After this step, provisioning initiates, and a shortened version of all the logs during the execution
is accessible in the Appendix C.3.

vagrant » ephemere

Mode: host - IP: - SSH IP: None

Node: wazidxl - IP: 192.168.56.12 - SSH IP:127.0.2.1
indexer username: 'admin'
indexer password: ‘'LuNsU*yr7fGOD6AX1.fLs*Qmc7ril4yF
api username: ‘wazuh'

api password: 'rJI8Hy64BtSF20COuEwBXvESDEFL1.Y5L"
// Please, check the IP's to ensure there isn't any conflict
Mode: host - IP: 192.168.56.1 - S5H IP: None
Node: wazagentl - IP: 192.168.56.14 - SSH IP:127.0.2.1
// Please, check the IP's to ensure there isn't any conflict
Mode: host - IP: 192.168.56.1 - S5H IP: None
Node: wazagent2 - IP: 192.168.56.15 - SSH IP:127.8.2.1

Figure 16: Content of credentials.txt with login information.
We can have a look at the credentials.txt that reunites every necessary information for login

39

IP addresses or SSH IP of every entity.

4.3 Wazuh Dashboard

As initial scripts occured and installed wazuh on the manager and endpoints (mentioned here
2.2.2), we are now ready to have a look to the Wazuh Dashboard. This one can be reached using

https://IPmanager.

After logged in using credentials.txt , we can indeed see the presence of a manager and two
agents:

« c QO A https://192.168.56.13/app/endpoints-summary#/agents-preview; oW ® ©® & =
= W Endpoints. . °

AGENTS BY STATUS ToP 508 TOP 5 GROUPS

@ Active (2) @® ubuntu (2) ® default (2)
@ Disconnected (0)
Pending (0)

@ Never connected (0)

Agents (2) X Show only outdated (2) @ Deploy new agent C Refresh 4 Export formatted More v)

status=active waqL
DT Name 1P address Group(s) Operating system Cluster node Version Status Actions
001 wazagent1 192.168.56.14 default 4 Ubuntu 22.045 LTS node01 V482 ® ® active ®

002 wazagent2 192.168.56.15 default A Ubuntu 22.045LTS node01 vag2 e ® active ©

[
v

Rows per page: 10 <

This dashboard gives a visual aspect of ongoing scenarios between elements , attacks - active
responses or warning and further more.

4.4 SSH Keys

One crucial aspect is the effective working of SSH connections between the host and machines.
We saw above an example of an SSH connection from the host (home user) to the virtual machine.
However, the most used SSH connection is from the root host to the root user on the VM and this
will permit:

o Full control of the VM from an IA agent.

e Connect via VSCode to do code modifications easily.

As this procedure undergoes on each VM, below is an example of the parameterization of a key on
the server:

Comment: We can see the key created and copied to the host system to be handled at the end of the
provisioning to allow us to connect to each machine via VsCode as presented in the Appendix C.3.1.

40

==> wazidx1l: Running provisioner: shell...
wazidxl: Running: inline script

Figure 17: SSH key generation process.

In this way, we can also have a greater look at the disk organization of each VM, in particular, we
highlight the presence of the shared Vagrant folder between each entity.

To Go Further

While the Vagrant folder contains all the running code, a critical issue persists: it grants
virtual machines unrestricted access to this code.

As a priority, complementary work should address managing VM access to specific files
or folders, ensuring that only designated resources can be modified while others remain
protected

4.5 Tests & Scenario

Above a running manager and its agents, the provisioning also defines some tests to mention
possible issues.

4.5.1 Testing suricata and ssh connections

We test ssh connections between host and machine , terminal logs results are visible in Ap-
pendix C.3.2.

The provisionning also installs Suricata, we do an Nmap scan to ensure its correct functioning:

41

ossec.conf - vagrant [SSH: wazidx1] - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER «++ les.sh a local_rules.xml ossec.conf X

~ VAGRANT [S5H: WAZIDX1]

grant

Fil

TERMINAL

/vagrant#

utils.py

Figure 18: Vagrant folder (on the left) accessible from Wazidx1

Nmap Scan initiation

Starting Nmap 7.80 (https://mmap.org) at 2025-03-30 14:22 UTC
Nmap scan report for wazagent2 (192.168.56.15)

Host is up (0.000046s latency) .

Not shown: 3304 closed ports

PORT STATE SERVICE
22/tcp open ssh
80/tcp open http

Nmap done: 1 IP address (1 host up) scanned in 6.12 seconds

Starting Nmap 7.80 (https://mnmap.org) at 2025-03-30 14:22 UTC
Nmap scan report for wazagent2 (192.168.56.15)

Host is up (0.000046s latency) .

A1l 3306 scanned ports on wazagent2 (192.168.56.15) are unfiltered

Nmap done: 1 IP address (1 host up) scanned in 6.13 seconds

42

Comment: The Nmap scan successfully identified open ports on the target system, including
SSH and HTTP services. The scan results indicate that the network configuration is working
correctly and that the Suricata installation is running. The latency and response times are within
acceptable ranges, confirming the efficiency of the network setup.

4.5.2 Wazuh scenario

After connection between host and machine have been tested , we define three scenario where the
principle is to address an attack from agent2 towards agentl.

The manager needs to spot it and generates an active response (blocking the IP) once the attack
is detected.

During the provisioning, 3 scenarios are executed as mentioned above: Alienvault , Bruteforce, and
DVWA.

For convenience, we focus only on the brute force scenario.

Installation & Configuration

[2025-03-30 17:28:48] DEBUG: crunch installed successfully.
[2025-03-30 17:28:48] DEBUG: Generating password list using crunch...
[2025-03-30 17:28:51] DEBUG: Password list generated successfully.

Checking Reachability of the Victim

[2025-03-30 17:28:51] DEBUG: Checking reachability of 192.168.56.14...
PING 192.168.56.14 (192.168.56.14) 56(84) bytes of data.

64 bytes from 192.168.56.14: icmp_seq=4 ttl=64 time=0.638 ms

--— 192.168.56.14 ping statistics ---

4 packets transmitted, 1 received, 75} packet loss, time 3174ms

rtt min/avg/max/mdev = 0.638/0.638/0.638/0.000 ms

[2025-03-30 17:29:04] DEBUG: 192.168.56.14 is reachable.

Attacking the Victim

[2025-03-30 17:29:04] DEBUG:Starting SSH brute force attack using hydra
Hydra v9.2 (c) 2021 by van Hauser/THC & David Maciejak

Hydra starting at 2025-03-30 17:29:04

[DATA] attacking ssh://192.168.56.14:22/

[STATUS] 20.00 tries/min, 20 tries in 00:01h, 1 to do in 00:01h, 4 active
1 of 1 target completed, O valid password found

Hydra finished at 2025-03-30 17:30:21

[2025-03-30 17:30:21] DEBUG: SSH brute force attack completed.

43

[2025-03-30 17:30:21] DEBUG: Checking reachability of 192.168.56.14...
PING 192.168.56.14 (192.168.56.14) 56(84) bytes of data.

--- 192.168.56.14 ping statistics ---

4 packets transmitted, O received, 100% packet loss, time 3085ms
[2025-03-30 17:30:34] DEBUG: Target is no more reachable.

Checking Logs of the Manager

[17:30:34] DEBUG: Cleaning up password list file...

[17:30:34] DEBUG: Password list file deleted successfully.
[17:30:34] INFO: Brute force attack successfully realized.
[19:30:34] INFO: Retrieving manager logs:
/var/ossec/logs/alerts/alerts.log and Rule ID: 5763

[17:30:35] INFO: Last log retrieved at time: 17:29:15

[17:30:35] INFO: Active Response: active-response/bin/firewall-drop
[17:30:35] INFO: Agent ID: 001

[17:30:35] INFO: Attack Technique: Brute Force

[17:30:35] INFO: Frequency: 8

[17:30:35] INFO: Script executed successfully: scenario_brute_force.sh

4.5.3 Wazuh dashboard identification

We can see that brute force scenario was run successfully and spot the attack using the Wazuh
dashboard to ensure coherence between time, logs, and the type of attack:

Top 10 Alert groups evolution

syslog

80 dpkg
config_changed

0 @ sshd
authentication_failed

active_response

Count

40 authentication_succ..-
ossec
20 @ pam

adduser

. N A .

17:30:00 17:31:00 17:32:00 17:33:00 17:34:00 17:35:00 17:36:00
timestamp per 10 seconds

Figure 19: Overall alert on the Wazuh dashboard.

We spot the pic attack at 17:32 with syslog, sshd, and authentication failed as alert groups.
More than a graph, we can spot the written logs that we try to retrieve after each kind of attack:

At the last line, we highlight the brute force attack with its associated rule ID and corresponding
time.

44

a @

= w MITRE ATT&CK wazagent!
Dashboard Intelligence Framework Events (@) wazagent1 (001) X
[E v Search DAL B~ Mar 30, 2025 @ 17:20:08.681 > now

manager.name: wazidx! || rule.mitre.id: exists || agentid:001 | & + Add filter

Count

timestamp per 5 seconds

11 hits
Mar 30, 2025 @ 17:29:08.681 - Mar 30, 2025 @ 17:34:42.279

 Export Formated i@ 490 columns hidden & Density ¢ 1fields sorted [Full screen

v timestamp ~ agentname v rule.mitre.id ~ rule.mitre.tactic ~ rule.description ~ rulelevel v ruleid v
[@ Mar 30,2025 @ 17:30:36.702 wazagent T1078 Defense EvasionPersistencePrivile.. PAM: Login session opened 3 5501
[@ Mar 30,2025 @ 17:30:36.702 wazagent1 T1078 Defense EvasionPersistencePrivile.. PAM: Login session opened 3 5501
[@ Mar 30,2025 @ 17:30:36.685 wazagent T1078 T1021 Defense EvasionPersistencePrivile... sshd: authentication success. 3 5715
[Mar 30,2025 @ 17:29:17.122 wazagent1 T1110.001 T1021.004 Credential AccessLateral Movement sshd: authentication failed 5 5760
@ Mar 30,2025 @ 17:29:17.122 wazagent1 T1110.001 T1021.004 Credential AccessLateral Movement sshd: authentication failed. 5 5760
[@ Mar 30,2025 @ 17:29:17.117 wazagent! TIM0 Credential Access sshd: brute force trying to get acce... 10 5763

Figure 20: Brute force attack spoted on the dashboard

4.5.4 Logs

The logs were reported in a dedicated folder, which facilitates debugging. They are classified by
scripts, and this method of classification aids in the debugging process. The logs report errors,
warnings, and additional information, especially when the logs are too long to be displayed in the

terminal.

as: nmap pl- - ap_scan.log

) are unfiltered

IP addr (1 host up) a o seconds

] WARNING: nikto is not installed. Installing nikto...
1 ERROR: : .56, is not r

Figure 22: Error log indicating issues encountered during the the dvwa scenario

Comment: For instance, the last log indicates that one scenario during provisioning did not
proceed as expected. The running website was not reachable and the attack did not occur. This
makes sense because in a previous scenario the same IP was blocked by the manager (the victim’s
[P) as an active response. A potential solution would be to introduce a delay between each scenario

to allow the IP to become reachable again.

45

Conclusion

o The script execution involved a systematic approach, starting with a clean setup of
the environment.

o This was followed by the installation and configuration of necessary tools, including
the Wazuh dashboard for monitoring.

o SSH keys were managed to ensure secure communication between machines.

» Various tests and scenarios were conducted to validate the setup, ensuring robustness
and reliability throughout the process.

After the provisionning of the machines and their successful tests , we are now able to run the
core of the software.

46

5 Execution of the prototype
This last part is divided into two:

o A unit test section that covers each crucial feature and ensures its correct functioning. All of
these features were presented theoretically before in the section 3.

o A second part that puts these unit tests into practice in a first prototype, serving as the
final product encompassing all elements, from provisioning to the software itself.

5.1 Unit Tests

Unit tests are run via unitest.py, those are about the following. The associated pseudocode is
detailed in appendix E.1

Ossec.conf (see Subsubsection 3.4.7)

FIM setup (see Subsubsection 3.4.10)
o XML handling (see Subsubsection 3.4.3)

« YARA configuration (see Subsubsection 3.4.11)

Note :

To ensure that tests aren’t corrupted, we remove at the initialization any leftovers from previous
manipulations to have pristine configuration files. We then ensure that these configuration files
were well modified and that they efficiently work.

5.1.1 Logs

As the project is quite extensive, managing logs effectively is crucial. Analogous to the Vagrant
provisioning in Subsection 4.5.4, Python logs are managed as follows:

o Each error is assigned to an unique ID.

e When an error is reported, a general log entry is created with minimal details, including

only the associated method and error ID writen in general.log were every other logs are
reported (INFO/DEBUG/WARNING).

o The detailed error information is logged in the file associated with the Virtual Machine or
entity where it occurred, which in our case can be either : Manager.log, Attacker.log, or
Defender.log.

Below is an example of debugging using those logs where in the general logs, we can see an error
with ID 4028733 from the manager, occurring in the function synchronize with_ VM.

We can then obtain more details on the following error by referring to the manager.log. Indeed,
an extra argument has been parsed.

In this way, maintaining a detailed record of logs and errors from every machine aids in debugging
and ensures the coherency of scenarios when implemented across multiple actors.

47

mand Error:

n <module>

T
Error
Error
Error ID: Functior
Error ID: Functior
Error ID: , Function:
g ed for
INFO, r in d for
INFO,

d argument '

: synchronize alerts, Error:

line . 1h wrapper

ERROR,

. in check fim change

: synchr

Figure 24: Detailed error in manager.log showing an unexpected argument.

5.1.2 Ossec.conf

This unit-test aims at verifying satisfaction of the criteria presented in subsubsection 1.2.4 where
we aims at automating the process of updating configuration files.
This unit-test performs the following steps:

o It adds a section tag with commands, local file configurations, and active responses necessary
for FIM configuration to the ossec.conf file , tags mentioned here 3.4.8.

o It then applies methods to add the section tag, converts it to an Excel file, and converts it
back to an XML tag.

« Finally, it ensures the presence of the added tag using assertEqual.

48

© 0 O Ui W N+

10

Testing to add a section tag to an ossec_conf file
result = self.manager.add_section_tag_to_conf_file(section_tag)

Load dataframes back from the Excel file
print ("Reloading configuration data from Excel...")
dict_dfs = self.manager.dataframe_from_conf (PATH_TO_OSSEC_AGENT_TEST_MANAGER)

Retrieving the command added in the ossec conf file
is_subset_command = expected_command.apply(lambda row: dict_dfs[’command’]..)

Assertions to verify if ossec has been correctly modified
self .assertEqual (is_subset_command, True)

Listing 11: Adding and Verifying Section Tag in ossec.conf

Excel Projection

Below is the Excel projection of the configuration file on an Excel board. The following Excel file
is divided into tables for each tag:

wazuh_library > conf_files

auth cluster syscheck command localfile ruleset rule_test
Figure 25: Excel architecture of ossec conf
As we can see, this excel file is divided in several sheets that are related to the modifiable tags.

We focus on the localfile section and compare both excel files of the first version and the
modified version of osse.conf.

49

A B = D

log_Format command location
‘command'}] 'df-P'}]

tat -tulpn | sec al... | [{ '360') [tstat listening ports'}]

1

W o N s W N -

Figure 26: Original localfile section in the Excel projection.

N O Uk Wi

<localfile>
<log_format>syslog</log_format>
<command>syslog</command>
<frequency>360</frequency>
<location>/var/log/syslog</location>
<alias>syslog</alias>

</localfile>

Listing 12: New localfile Section to add

B c D E
log_format command frequency location alias
] 'df -]

-

'netstat listening ports'}]

W m ;B W N

-
(=]

Figure 27: Updated localfile section in the Excel projection.

Additionally, the active-response section:

O U W N~

<active-response>
<command>firewall -drop</command>
<location>local</location>
<rules_id>5763,5886 ,5447</rules_id>
<timeout>180</timeout>
</active-response>

Listing 13: Original active-response Section

becomes:

A B C D

L command location rules id timeout
2 | ['text": 'firewall-drop'}] [{'text": 'local’l | [{'text":'s 5,5447'}] [{'text":"1...

Figure 28: Updated active-response section in the Excel projection.

20

CO J O UL i W N+

5.1.3 Rules verification

To ensure that rules are correctly triggered when a related event occurs, we rely on a verification
mechanism implemented in the log.py classes. This process includes:

e Synchronizing the alerts. json file located on the Wazuh manager with the host machine.

o Parsing the log file to search for a specific Rule ID and extract relevant event information.

This is achieved through the following private method _get_rule_id:

def _get_rule_id(self, rule_id: str = 550) -> dict:
""" Fetch the most recent alert matching a given rule ID. """

if not os.path.isfile(self.log_wazuh_path): return {}

last_log = None
with open(self.log_wazuh_path, ’r’) as file:
for line in file:
alert = json.loads(line)
if alert.get("rule", {}).get("id") == rule_id:
last_log = line

return json.loads(last_log) if last_log else {}

Listing 14: Simplified rule verification method

Description: This method retrieves the most recent alert that matches the specified rule’s id.

It ensures that the detection mechanism is functioning correctly and that the alert contains the
expected metadata, such as timestamps, source IPs, and event types.

An example of the extracted output is referenced in subsubsection 4.5.2.
This verification mechanism allows us to programmatically confirm that a rule has been triggered
and that Wazuh is effectively monitoring and responding to relevant events

51

[ENEUCR NG

0 J O Ot

10
11
12
13
14

5.1.4 File integrity monitoring

During this unit-test we address the following steps:

« Configure the file monitoring system by adding the monitored path to the ossecc.conf file
as mentioned in this subsection.

o We then simulate a file change on this monitored path and check if an alert has been raised.
o We do the same regarding the who-data tool as explained in subsubsection 3.4.10.

To do so, we run the following explained test.

print("Starting FIM setup...")

Add FIM configuration

self .defender.add_fim_configuration(monitored_paths=[directory_tag,
directory_tag_whodatal, do_synchronize_with_VM=True, conf_path=
PATH_TO_OSSEC_AGENT_BASE_DEFENDER)

Test FIM

print("Testing FIM...")

self .defender.run_function_on_remote_host(’simulate_file_change’,
monitored_path)

self.assertEqual (self .manager.check_fim_change (monitored_path), True)

Test Who-Data

print("Testing audit...")
self.defender.run_function_on_remote_host(’test_who_data’)

self.assertEqual (self .manager.check_fim_change(monitored_path_who_data), True)

This gives the following alert on the dashboard:

= W. Endpoints wazagentl a @
Threat Hunting File Integrity Monitoring Configuration Assessment More... v (9 wazagentl (001) X [& Inventory data =i Stats ! Configuration
ID Status IP address Version Groups Operating system Cluster node Registration date Last keep alive
001 ® active @ 192168.56.14 Wazuh v4.8.2 default A ubunt 22045LTs node01 Mar 30, 2025 @ 16:15:22.000 Apr 6,2025 @ 17:55:32.000

Last 24 hours ~

. A
MITRE R Compliance PCIDSS v FIM: Recent events =
[E4
ATT&CK) Time <\ Path Action Rule description Rulelev.. Ruleld
‘ ® 10.2.5 (250
Top Tactics , @ 10.61(190) :‘;]rsizzgfszs@ fetc/hosts.allow modified Integrity check... 7 550
Defense Evasion 169 @ 11.5(69)
Privilege Escalation 142 ® 10.2.2(33) ?;Jrsiuzfizf [test/test.txt modified Integrity check... 7 550
10.2.6 (29) B
Persistence 108
nitial A - ?5;550252586@ [test/test.txt modified Integrity check... 7 550
nitial Access 07 22U
Impact 35
:‘?2322?526@ fetc/subgid- modified Integrity check... 7 550
:‘53:2;55? fetc/subuid- modified Integrity check... 7 550

Figure 29: Alert on the dashboard indicating file modification.

We indeed spot the file modification of test.txt at 17h55m matching with the logs detailed in
appendix. We also find the who-data alert that indicates connection of another user to our agentl.
We can go in further detail by clicking on it as presented in appendix E.3.
Wazgentl was modified and it raises the rule id 550 that then was spotted by the software to
ensure consistency with the rule description “Integrity checksum changed”.

52

DN —

O O W

Who-Data

During the test, another user has attempted to connect to our victim ‘agentl’. We can correlate
the output logs with the time of connection.

Thanks to Who-Data, we can obtain more information about the attacker.

/etc/hosts.allow

Table JSON Rule

t _index wazuh-alerts-4.x-2025.04.27
t agent.id 001

t agent.ip 192.168.56.14

t agent.name wazagent1

t decoder.name syscheck_integrity_changed
t full_leg File ‘fetc/hosts.allow’ modified Mode: whodata Changed attributes: mtime Cld modification time was: '1743954825', now it is '1745783683'
toid 1745783683.1333349

t input.type log

t location syscheck

t manager.name wazidx 1

t rule.description Integrity checksum changed.
rule.firedtimes 2

Figure 30: Detailed information on the modifier.
There are two kinds of OSSEC configurations: one for the agent and the other for the manager.

Their structures are slightly different, as are the associated checking tools. To monitor file
modifications, we need to modify the OSSEC configuration of the endpoint, which is
the victim.

As in any other process, in E.3, we always follow the same procedure:
« Back up the files to be modified.
o Check the consistency of the new OSSEC configuration.
o Test it by applying a file modification.
o Retrieve the logs.

The ruleset added during the configuration of Who-Data was:

<ruleset>
<list>etc/lists/amazon/aws-eventnames ,etc/lists/audit-keys,etc/lists/
blacklist-alienvault ,etc/lists/security-eventchannel</list>
<decoder _dir>etc/decoders ,ruleset/decoders</decoder_dir>
<rule_dir>etc/rules,ruleset/rules</rule_dir>
<rule_exclude>0217-policy_rules.xml</rule_exclude>

</ruleset>

Listing 15: Original Ruleset for Who-Data
It will be translated into:

A B = F

group decoder is decoder_... rule_dir rule_excl...

[{'text": "etc/lists/amazon 2ntnames, ek audit- s/blacklist-alienvault,etc; security-eventchannel'}] {'text": 'et... | [{'text""et... | [{'tex

Figure 31: Updated ruleset for Who-Data in the Excel projection.

23

This ruleset is added to ossec.conf and requires to verify ossec configuration. Below is the logs
generated to test audit where :

e« We create an user Smith

o We log in as Smith to the machine.

Who-Data logs test

Testing audit...

WHODATA

2025-04-06 17:55:11,005 - DEBUG - Running function configure_audit.
2025-04-06 17:55:11,005 - DEBUG - Checking if package ’auditd’ is installed.|
[CONFIGURING AUDIT]

2025-04-06 17:55:11,030 - INFO - Checking if ’wazuh_fim’ rule is applied.
2025-04-06 17:55:20,925 - DEBUG - wazuh-agent restarted successfully.
2025-04-06 17:55:23,014 - DEBUG - auditd restarted successfully.

2025-04-06 17:55:25,021 - DEBUG - ’/etc’ configured for audit and rule wazuh fim.|
2025-04-06 17:55:25,023 - DEBUG - User ’smith’ already exists.

2025-04-06 17:55:25,051 - DEBUG - Password for user ’smith’ set to ’wazuh’.
2025-04-06 17:55:25,073 - DEBUG - Successfully logged in as ’smith’.

[... 17:55:25,073] - IP address ’192.168.32.° rewritten in /etc/hosts.allow.
[... 17:55:30,367] -INFO - Directory ’/etc’ was modified as per rule ID 550.|
It occurred at file /etc/hosts.allow.

5.1.5 Xml modification

This unit test is straightforward. It ensures that local rules and decoders are updated correctly by
running the following commands:

—H O © 00 O Uik Wi~

_ =

def test_xml_handling(self):

nnn

Configuring manager XML for YARA.

Add the group section to the local_file XML

self .manager.add_group_to_xml(self.group_section_str)

Add the decoder section to the decoder XML

self .manager.add_decoder_to_xml(self.decoder_section_str)

Synchronize the XML with the VM
result = self.manager.synchronize_xml_with_VM(decoder_sections_str=self.
decoder_section_str, group_sections_str=self.group_section_str)

13
14

Check for successful modification of newly added rules

self.assertEqual (result, True)

Listing 16: Unit Test for XML Handling

An important aspect is the decoder, as mentioned in Section 3.4.6, we will analyze the decoding
process to ensure the consistency of the file.

The test_group_sections function is designed to test multiple group sections in a given XML
string using the wazuh-logtest tool. This function generates testing logs based on the provided
XML configuration, writes these logs to a temporary file, and then executes the wazuh-logtest
command remotely to validate the logs against the configured rules.

54

—_

O © 0O Ui W -

Here is a brief overview of the function:

o Input: The function takes an XML string containing multiple group sections and a temporary
path for saving the XML file.

e Process: It generates testing logs, writes them to a temporary file, and runs the wazuh-logtest
command.

e Output: The function returns an exit status indicating whether all rules matched successfully.

In the unitest, we consider the following XML configuration for a YARA decoder:

<group name="yara_decoders">
<decoder name="yara_decoder">
<prematch>wazuh-yara:</prematch>
</decoder>
<decoder name="yara_decoderl">
<parent>yara_decoder</parent>

<regex>wazuh-yara: (\S+) - Scan result: (\S+) (\S+)</regex>
<order>log_type, yara_rule, yara_scanned_file</order>
</decoder>

</group>

Listing 17: YARA Decoder Configuration

Given the log entry wazuh-yara: INFO - Scan result: rulel filel, the wazuh-logtest
output look like this:

Wazuh-Logtest Output

**¥Phase 1: Completed pre-decoding.
full event: ’wazuh-yara: INFO - Scan result: rulel filel’
timestamp: ’Apr 28 12:00:00°
hostname: ’localhost’
program_name: ’wazuh-yara’

**Phase 2: Completed decoding.
decoder: ’yara_decoder’
log_type: ’INFO’
yara_rule: ’rulel’
yara_scanned_file: ’filel’

**Phase 3: Completed filtering.
Rule id: ’100001°
Level: ’3’
Description: ’Yara scan result matched.’

In case of success , the xml files are updated on the manager.

95

=W N

© 00 g O Ut

11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26

5.1.6 YARA

In the previous sections, we configured file monitoring, local rules files, and decoders. The next
steps are:

o Install YARA on the endpoint.
« Configure the ossec.conf on the manager.
o Simulate a download of known malware.

This leads to the following test:

def test_yara_configuration(self):
nnn
Detecting malware using YARA integration.
[https://documentation.wazuh.com/current/proof-of-concept-guide/detect-
malware-yara-integration.html#detecting-malware-using-yara-integration]

print ("Configuring ossec.conf for YARA")

Install YARA on the endpoint
self .defender.check_and_install_yara(conf_path=
PATH_TO_OSSEC_AGENT_BASE_DEFENDER)

Add YARA configuration to ossec.conf
section_tag_yara = """
<command >

</command >
<active-response>

</active-response>

nnn

self .manager.add_section_tag_to_conf_file(section_tag=section_tag_yara,
file_path=PATH_TO_OSSEC_AGENT_TEST_MANAGER)

Simulate malware download
self .defender.run_bash_script_on_remote_host (NAME_MALWARE_SCRIPT)

Verify alerts
self .assertEqual (self .manager.check_alerts(’100300°’), True)

Listing 18: YARA Configuration Test

This test ensures that the YARA configuration is correctly set up and that the system can detect
malware downloads.

YARA Rules

One important aspect is the installation and configuration of the YARA rules. This process can
be challenging and typically requires the following:

e The YARA tool.
e The associated rules.

Both need to be downloaded, correctly installed, and placed in the appropriate directory. This is
automated using the yara_setup.sh script, which is summarized below:

96

© 00~ Tk W+

Check if YARA is already installed
if command -v yara >/dev/null 2>&1; then
log "YARA is already installed. Checking for rules..."

Check if YARA rules file is present
if [-f "\$YARA_RULES_FILE"]; then
log "YARA rules already exist. Skipping installation."

exit O
else
log "YARA rules not found. Proceeding to download rules..."
fi
else
log "YARA not found. Proceeding with installation.'
fi

Listing 19: YARA Setup Intro

Once the rules are installed, their presence and functionality can be verified on the dashboard, as
shown in the following image:

Rules (4)
From here you can manage your rules

[0 Manage rules files @ Add new rules file G Refresh why Export formatted

yara waL Custom rules
DA Description Groups Regulatory compliance Level File Path

100300 File modified in /tmp/yara/malware/ directory. syscheck 7 local_rules.xml etc/rules

100301 File added to /tmp/yara/malwaref directory. syscheck 7 local_rules.xml etc/rules

108000 Vara grouping rule yara 0 local_rules.xml etc/rules

108001 File "yara_scanned file " is a positive match. Yara rule: yara_rule yara 12 local_rules.xml etc/rules

Rows per page: 10 - <

[
“

Figure 32: YARA rules configuration on the dashboard.

The dashboard displays the following key information for each rule:
o ID: The unique identifier for the rule.
o Description: A brief description of the rule’s purpose.
e Groups: The group to which the rule belongs (e.g., syscheck, yara).
« Regulatory Compliance: Indicates whether the rule is related to regulatory compliance.
o Level: The severity level of the rule.
o File: The file in which the rule is defined.
o Path: The path to the rule file.

We retrieve the elements defined in the associated active response. This ensures that the YARA rules
are correctly configured and operational, allowing for effective malware detection and compliance
monitoring.

Downloading Malware

Once YARA is configured, it’s time to start an attack simulation. The victim is forced to download

malicious packets into the monitored folder. This is done using the malware downloader.sh
script. The following logs indicate the successful download of the malware samples:

o7

Malware Download Script Output

WARNING: Downloading Malware samples, please use this script with caution.
Mirai: https://en.wikipedia.org/wiki/Mirai_(malware)
Downloading malware sample. ..

Done!

Xbash: https://unit42.paloaltonetworks.com/. ..
Downloading malware sample...

Done!

VPNFilter: https://news.sophos.com/en-us/...
Downloading malware sample...

Done!

WebShell: https://github.com/SecWiki/WebShell-2/. ..
Downloading malware sample...

Done!

The overall logs are accessible in the appendix E.1.
Dashboard Analysis

Once the attack is complete, we can retrieve YARA logs that indicate the scan output and the
associated active response (e.g., blocking the IP).

Top 5 alerts Top 5 rule groups Top 5 PCI DSS Requirements
@ File modified in fimpy syscheck 115
‘ @ File ™5 aposiive m._. yara 1025
@ File “/nplyara/malw assec 106.1
@ File added to tmpya. @ syscheck_eniry_dele. 1026
‘ Fle deeted @ syscheck file
Security Alerts
Time Technique(s) Tactic(s) Description Level Rule ID
, Jan22,2025@ File "/tmp/yara/malware/webshell" is a positive match. Yara rule: " 108001
17:00:04.167 Webshell_worse_Linux_shell_1_RID320C
, Jan22,2025@ File "/tmp/yara/malware/webshell" is a positive match. Yara rule: 1 108001
17:00:04.186 Webshell_Worse_Linux_Shell_php_RIN3323
Jan 22,2025 @ File "/tmp/yara/malware/vpn_filter" is a positive match. Yara rule: " 108001
17:00:04.185 MAL_ELF_VPNFilter_3_RID2D6C

Figure 33: YARA attack spotted on the dashboard with rule ID 108001.

98

We can also obtain detailed information about the attack:

Security Alerts

Time Technique(s) Tactic(s) Description T Level Rule ID

an 22, 2025 @
v Jlsv%, 29 335@ File " is a positive match. Yara rule: 12 108001

Table JSON Rule

@timestamp 2025-01-22T15:49:29.3362

_id APK0jpQB46WIghSZVCMZ

agent.id 001

agent.ip 192.168.56.14

agent.name wazagentl

decoder.name yara_decoder

full_log wazuh-yara: INFO - Scan result: MAL_ELF_LNX_Mirai_Oct10_2_RID2F3A /tmp/yara/malware/mirai
id 1737560969.643763

input.type log

location var/jossec/logs/active-responses.log
manager.name wazidx1

rule.description File ™ is a positive match. Yara rule:
rule.firedtimes 3

rule.groups yara

rule.id 108001

rule.level 12

rule.mail true

timestamp 2025-01-22T15:49:29.336+0000

Figure 34: Detailed view of the YARA attack.

This analysis demonstrates the powerful capabilities of YARA. With just a few lines of configuration,
we were able to set up a machine to detect and respond to malicious downloads effectively.

During provisioning, as mentioned in subsubsection 2.2.3, initial tests and scenarios were con-
ducted to ensure that Python-side software errors would not be related to misconfigurations
in the Vagrant environment.

With these unit tests successfully completed, we can now write a simple scenario to demon-
strate the power of automating processes using a multi-agent system enhanced by generative
Al particularly for malware downloading. Detailed logs and error records from each machine
aid in debugging and ensure scenario coherence across multiple actors.

The following unit tests were performed to ensure system robustness:
e XML unit test: Verified that local rules and decoders were updated correctly.
e Ossec conf unit test: Verified that configuration file was updated correctly.

 File Integrity Monitoring (FIM): Configured the file monitoring system, simulated
file changes, and verified alerts.

e Yara unit test

These tests confirm our system’s reliability and readiness for more complex scenarios.

29

5.2

Prototype

5.2.1 Content provided by the AI

As mentioned in the introduction, the real lever of such a system would be to get a reactive
response in the case of an unidentified packet. Main.py implements a scenario where a Defender
agent downloads a fake malware script, and a Manager agent adds a new YARA rule to detect and
respond to the malware. The process involves several steps to ensure the system can automatically
detect and isolate infected systems. This scenario was presented visually in the figure 12. Main
aspects to consider are :

w 00 ~J O UL~ W N+

0O ~J O UL W N+

e e el el el e
© 00 IO UL i W N — O ©o

Fake Malware Script: A fake malware script is defined to simulate malicious behavior,
such as creating suspicious files and modifying system files.

fake_malware_script = """

#!/bin/bash

echo "This is a fake malware script!"

touch /tmp/suspicious_file

ping -c 4 nonexistentdomain.com

echo "127.0.0.1 fake.malware.domain" >> /etc/hosts
echo "Suspicious command executed"

Listing 20: Fake Malware Script

Intervention of the AI: The AI provides the YARA rule, the associated active response
and local rules to detect the fake malware script.

response = 1llm_api.generate (prompt="Provide a YARA rule and signature to
detect the following malware behavior:\n" + fake_malware_script)

new_yara_rule = response[’yara_rule’]

active_response_to_add = response[’active_response’]

local_rules_to_add = response[’local_rules’]

Listing 21: Request YARA Rule and Signature from LLM

Active Response and Rules: The agent generates an active response and local rules to
be added to the OSSEC configuration and new YARA rule is also defined to detect the fake
malware script.

active_response_to_add = """

<active-response>
<command>isolate_infected_system</command>
<location>local</location>
<rules_id>100003</rules_id>

</active-response>

local _rules_to_add = """
<group name="yara,malware'">
<rule id="100003" level="10">
<decoder >yara</decoder >
<options>no_full_log</options>
<match>yara.rule=DetectFakeMalware </match>
<description>Fake malware detected by YARA rule</description>
<group>yara,malware</group>
</rule>
</group>

Listing 22: Active Response and Local Rules provided by the Al

60

1 |new_yara_rule = """

2 |rule DetectFakeMalware

3|4

4 meta:

5 description = "Rule to detect the fake malware script"

6 author = "Your Name"

7 date = "2023-10-01"

8

9 strings:

10 \$malware_stringl = "This is a fake malware script!"

11 \$malware_string2 = "Creating a suspicious file..."

12 \$malware_string3 = "Simulating network activity..."

13 \$malware_string4 = "Simulating modification of a system file..."

14 \$malware_stringb = "Simulating execution of a suspicious command
n

15

16 condition:

17 any of (\$malware_stringx)

18 |}

19 e

Listing 23: New YARA Rule Provided by Al

5.2.2 Main.py

manager = Manager (name=’wazidxl’, ip_address=’192.168.56.13")
defender = Defender (name=’wazagentl’, ip_address=’192.168.56.14°)

Step 1: Defender Downloads Fake Malware Script / Class Remote

defender.run_bash_script_on_remote_host(’copy_malware.sh’)

Step 2: Check for Path Modified / Class Log

Get the last log entry for rule ID 550

alert = manager. get rule_id("550")

if alert:
Extract the path from the alert
path = alert.get("syscheck", {}).get("path")

61

Step 3: Intervention of the Al / Class Evaluator

Request YARA rule and signature from the LLM

Read the content of the file at the monitored path
with open(path, ’r’) as file:
file content = file.read()

Request YARA rule and signature from the LLM
response = 1llm_api.generate(prompt=f"Provide a YARA rule and
signature to detect the following malware behavior:\n{file_content}")

new_yara_rule = response[’yara_rule’]
active_response_to_add = response[’active_response’]
local _rules_to_add = response[’local_rules’]

Step 4: Manager Adds New YARA Rule / Class Yara

manager .add_yara_signature(new_yara_rule)

Step 5: Manager Updates Configuration Files / Class XML

manager.add_section_tag to_conf file(active_response_to_add)
manager.add_group_to_xml(local rules_to_add)

Step 6: Defender Downloads Script Again

defender.run_bash_script_on_remote_host(’copy_malware.sh’)

Step 7: Check Rules and Active Response / Class FIM

assert(manager.check_alerts(’100300’), True)

In summary, this scenario demonstrates the integration of all previously discussed compo-
nents:

o It utilizes the Agent classes, specifically the Manager and Defender, to orchestrate the
process. The Remote class facilitates the execution of scripts on remote systems, while
the Log class monitors logs generated by the Manager on the Wazuh dashboard. The
Evaluator class, though not fully developed, plays a role in the evaluation process.

e The XML and Ossec classes handle the configuration of necessary files. The FIM class
is employed to monitor specified paths and detect changes, and the Yara class, though
less detailed, is used to add signatures for newly detected malware.

« As mentioned earlier, these classes follow a hierarchical order, and calling one may
invoke several others (see Appendix 39).

62

6 Conclusion

6.1 Project

Conclusion

Thanks to a provisioned Vagrant environment and a well-structured Python class system,
we were able to address the initial thesis problem with only a few lines of code (Main.py, as
introduced in Section 1.1.1.

The host running this environment is capable of:
e Detecting malware
o Scanning it and requesting signatures and headers from an Al module
« Making autonomous modifications to the system

o Testing and verifying those modifications

The thesis explores:
e An analysis of the problem
o A theoretical explanation of the Vagrant provisioning and supporting software

o The execution of the full environment with detailed logs and screenshots from the
dashboard

Moreover, this architecture can be adapted to other contexts. Its strength lies in its
versatility and self-healing capability, potentially marking the beginning of a new era in
automated frameworks.

To Go Further

To improve the system, we could consider the following enhancements:

o Configure the Evaluator Class: Define predefined prompts for the Al and include
attributes such as an HEADER that would include configuration files and class
methods. This will enable the creation of complete scripts that can orchestrate
additional scenarios (e.g., adding tools) and provide a versatile response to various
threats.

« Generate PDF Reports: Implement the capability to generate PDF reports (scans)
detailing the proposed scripts and the modifications that will be made.

e Dynamic Orchestration: Enhance the evaluator to orchestrate scenarios in the
context of game theory (highlighted in appendix D.2). Currently, scenarios are
script-based, but in a more advanced configuration, the system can become dynamic.
Agents can operate with autonomy and modify their content independently, putting
real game theory concepts into practice.

63

6.2 Greetings

A special thanks to Saverio Milo, who served as my tutor during this thesis at Braintech.
His availability and expertise were invaluable in helping me meet deadlines and overcome various
challenges.

He was particularly helpful in:

o Introducing me to core concepts of cyber-security. As a mechatronic engineer with a
background in development and Python programming, I had never previously ventured into
this domain.

o Assisting with debugging advanced issues beyond my knowledge, especially those involving
low-level programming.

His dedication to students and his friendly demeanor were deeply appreciated.

I would also like to thank Silvio Massimino, my project manager, who allowed me to
complete the thesis in time, scheduling regular meetings, and ensured I always worked under
suitable conditions during my time at the company.

Finally, my gratitude goes to the entire Braintech staff, whose cheerfulness and sense of
team cohesion made this experience enjoyable and productive.

6.3 Glossary
6.3.1 A Rule

In Wazuh, it is a key component used to detect specific patterns or conditions in monitored data,
such as logs or events. When these conditions are met, the rule triggers alerts or actions, helping
to identify security threats or policy violations. Rules can be customized, grouped, and assigned
severity levels to prioritize responses. They are essential for automating security monitoring and
integrating with other security tools. It is mainly related to signatures or headers of threats.

6.3.2 Active Response

An active response is an automated action taken by a security system to mitigate threats or
anomalies. It involves predefined steps like blocking traffic or isolating systems to contain risks
and gather forensic data. These responses are customizable and integrated into Wazubh.

64

7 Annexes

A Overview

A.1 Timeline and project management

The project spanned over 4 operational months , 2 weeks of preliminary work and a 1 month
equivalent to do the report (after JAN).
It and can be divided into 3 main parts :

Preliminary work Vagrant environment Class-based program Main script
Understanding wazuh and - Logs for debug - Typography And LLM simulation
Cybersecurity concepts - Vagrantfile - Most versatile approach | Final tests

- Basic tests - Basic scenarios
MID SEPTEMBER OCT-MID NOV MID NOV - DEC JAN

Figure 35: Project Timeline and Management

o The preliminary work was necessary to understand the main concepts in cybersecurity,
despite having a background in programming.

e Setting up the Vagrant environment required significant learning time as this concept was
new.

e Developing the Python class-based software was complex and required strategic planning
rather than just knowledge. In January, unit tests and the main script were designed,
consisting of a small scenario where the software corrects itself to handle a specific attack
effectively.

o The subsequent sections will provide a more detailed approach to each part of the project.

65

A.2 LLM enrichment tutorial

In this tutorial, the focus is on LLM enrichment regarding file modifications (FIM) using a tool
called YARA, which detects malicious packets. The logs from YARA are parsed to a language
model like ChatGPT, which provides a detailed response on the malware and proposes a solution.

Aug 12, 2024 @ 14:46:26.884 DESKTOP-LFI2083 File "c:\users\wazuh\downloads\mirai" is a positive match for YARA rule: MAL 18 188081
ELF_LNX_Mirai_Oct18_2_RID2F3A

[Expanded document View surrounding documents View single document
Table JSON
t _index wazuh-alerts-4.x-2624.08.12
t agent.id 801
t agent.ip 10.6.3.15
t agent.name DESKTOP-LFT2083
@ data.YARA.api_customer demo

data.YARA.chatgpt_response

The Mirai malware. an ELF (Executsble and Linkable Format) virus, primarily targets IoT (Internet of Things) devices such
as IP cameras and home routers by exploiting their default or weak security credentials to integrate them into a botnet. T
his botnet is then used to launch powerful Distributed Denial of Service (DDoS) attacks, causing substantial disruptions t
o internet services and infrastructure. To mitigate the impact of Mirai and related malware, it is crucial for both indivi
duals and organizations to change default credentials on all ToT devices, regularly update firmware to patch vulnerabiliti
es, and ensure robust network security measures such as firewalls and intrusion detection systems are in place. Additional
ly, implementing network segmentation can minimize the extent of network infiltration, while educating users about the imp
ortance of cybersecurity can further safeguard against such attacks.

@ data.YARA.f1ile_hash falB18e75750319748a5dedd14d4358db234165e28c31c8d5878¢cc58887881c9

@ data.YARA.log_type INFO

Figure 36: LLM Enrichment Process

B SSH Key Generation Procedure

The following steps outline the procedure for creating and using SSH keys:

1. Generate SSH Keys: Use the ssh-keygen command to create a private and public key
pair.

ssh-keygen -t rsa -b 4096 -C "your_email@example.com"

This command generates a private key (e.g., id_rsa) and a public key (e.g., id_rsa.pub) in
the .ssh directory.

2. Copy the Public Key to the Remote Server: Add the public key to the remote server’s
/ .ssh/authorized_keys file.

ssh-copy-id user@remote_host

Alternatively, manually append the public key to the authorized_keys file on the remote
server.

3. Authenticate Using the Private Key: When logging in, the server uses the public key
to encrypt a challenge, which your private key decrypts to authenticate.

4. Secure Access: Keep your private key secure and consider using a passphrase for added
security.

5. Manage Keys: Regularly update and manage your keys to maintain security.

66

C Vagrant Provisionning

Vagrantfile pseudocode

1. SET configuration variables:

PARAMS

MANAGER, CPUS MANAGER, MEM MANAGER, CPUS AGENT,
MEM_AGENT, MANAGER, NAME, AGENT1 NAME, AGENT2 NAME

2. SET UP the host machine:

Installing necessary packages on the host.

3. SET Vagrant box to "ubuntu/jammy64"

4. DEFINE list of nodes with parameters:

PARAMS

NODES = [MANAGER, AGENT1, AGENT2]

5. ASSIGN IPs to nodes:

Each VM has its own IP, careful to not choose an already taken IP.

6. FOR EACH node IN NODES:

USUAL

o DEFINE Vagrant VM configuration
o« CONFIGURE VirtualBox provider settings
« PROVISION common requirements
« GENERATE and DISTRIBUTE SSH keys
o IF node type is "server":

— Configure the manager on Wazuh
o [F node type is "agent":

— Configure the agent on Wazuh

\.

7. DEFINE specific triggers to run after destroying or upping a VM

67

C.1 Cron jobs

The following cron job has been implemented to ensure synchronization between agent.conf on
the host and on the manager:

O U W N~

source sourcer.sh variables.sh

LOG_FILE=$PATH_TO_CRON_JOB_LOGS

Synchronize agent.confs between host and server

check_file_existence $LOG_FILE

* % * *x * root inotifywait -m -e modify "$PATH_TO_VICTIM_AGENT_CONF_FILE"
| while read; do synchronize_file "$PATH_TO_VICTIM_AGENT_CONF_FILE" "
$PATH_TO_SERVER_VICTIM_AGENT_CONF_FILE" >> "$PATH_TO_CRON_JOB_LOGS" 2>&1;

o

11
12
13

© 00~ O Tk W+~

— e e
=W N = O

15
16
17
18
19
20
21
22
23
24

done

Add additional cron jobs here as needed

SURICATA

sudo tee /etc/cron.d/config_customs_rules_update.sh <<EOF

0 3 * x *x root /vagrant/VM/configs/config_customs_rules_update.sh
EQF

Listing 24: Cron job

C.2 cleaner.sh

Cleaning script: cleaning.sh

#!/bin/bash

Ensure the script runs only once
if [-f "CLEARED"]; then
echo "Cleanup already performed.
exit O
fi

echo "Backing up SSH configurations...
cp -r ~/.ssh /path/to/backup/

echo "Clearing specific files..."

find /path/to/keys -name "*.txt" -o -name "*.pub" -exec cat {} \; >> /path
/to/central_file
find /path/to/keys -name "*.txt" -o -name "*.pub" -exec rm {} \;

echo "Removing .tar files..."
rm -f /path/to/logs/*.tar
echo "Deleting log files..."
rm -f /path/to/logs/*.log

echo "Cleanup complete."
touch "CLEARED"

Listing 25: cleaner.sh

68

DN —

O U W

o

10
11
12

13

C.3 Execution

C.3.1 Ssh connection via Virtual Studio Code

template_VM.sh - master_thesis - Visual Studio Code - o x

File Edit Selection View Go Run Terminal Help

BUG_LEVEL $VERBOSE_INFO "Retrieving manager

_id

"$log_file_path” "srule_id

COUNT + 1))

T TERMINAL PORTS

ogs

File Edit Selection View Go Run Terminal Help

$PATH TO ALERT LOGS and Rt -

OUTLINE
TIMELINE
% SSH:wazagent2 @ 0

ant A 4+~ @ W -

OUTLINE
> TIMELINE
3¢ S5H: wazagent1

Figure 37: VSCode connection to virtual machines.

C.3.2 SSH Tests

.ssh [SSH: wazagent2] - Visual Studio Code

wazagent2:
wazagent2:

wazagent2:
wazagent2:
wazagent2:
wazagent2:

[2025-04-06
[2025-04-06

[2025-04-06
[2025-04-06
[2025-04-06
[2025-04-06

wazidxl1..

wazagent2:
wazagent2:
wazagent2:

SSH connection

17:
17:

17:
17:
17:
17:

[2025-04-06 17:
[2025-04-06 17:
waagentl...

wazagent2: SSH connection

wazagent2: [2025-04-06 17:

wazagent2: [2025-04-06 17:
waagent2...

wazagent2: SSH connection

26:54] DEBUG: Current Machine hostname: koraty
26:54] INFO: Testing SSH connection from both sides
26:54] INFO: Check for logs in /vagrant/log
26:55] DEBUG: The NODES are wazidx1

26:55] INFO: VM hostname found: wazidx1l

26:55] INFO: Testing SSH connection from root to
successful from root to wazidxl

26:55] INFO: VM hostname found: waagentl

26:55] INFO: Testing SSH connection from root to
successful from root to waagentl

26:55] INFO: VM hostname found: waagent?2

26:55] INFO: Testing SSH connection from root to

successful from root to waagent2

Listing 26: Testing ssh connection

69

D Src folder

D.1 Overall Methods

Class

Methods

Manager (Level 0)

__init

Vmagent (Level 1)

_create _ossec_conf attributes,
_create_remote_attributes,
_create_xml _handler_attributes

Fim (Level 2)

check_fim_change, configure audit,
manage_ip_in_hosts_allow,
simulate_file_change, test_who_data

Log (Level 3)

check_alerts, extract_time,
get_rule_id, is_time_consistent,
parse_rule_id

Remote (Level 4)

check remote file, remove remote file,
restart, run function on remote host,
run_remote_ command,
synchronize_with_ VM

Agents (Level 5)

_create_instance, _detect_valid_types,

get_all instances, get_attacker,
get_defender, get_evaluator,
get _manager, initialize,

interact_with_l1lm, modify_ossec, start,
stop

Command (Level 6)

_run_subprocess, _sanitize command,
check_and_install_ packages,

kill related_subprocesses,
run_command, run_command_with_pipe

Typography (Level 7)

to_dataframe

Ossec__conf (Level 3)

add_active_response, add_command,
add_fim, add_fim_configuration,
add_local file, check_in_tag,
compress_elements, compress_tree,

compress_xml, create_nested_elements,
dataframe from conf, extract section,
extract_wodle_section,
generate_ossec_conf,

load_dataframes, print_node_text,
process_element, save_dataframes,
synchronize_df _with_conf file,

verify conf_file_via_bash

Xml_handler (Level
4)

_format save xml, validate xml file,
add_decoder_to_xml, add_group_to_xml,
load xml file, save_xml file

Yara (Level 2)

check_and_install_yara

Table 11: Overall Methods

70

D.2 Non-Developed Folders

These folders weren’t developed but can be a great prospect for further development.

[DIR] integrations
\- mininet_integration.py

To integrate other actors in the system that may not be virtual machines but simply stranger
entities that could create noise and simulate a more realistic environment.

[DIR] dependencies

|- __init__.py

|- graph.py
\- 1lm_integration.py

For further improvements:

« To have a graph representation of the system

e To integrate an LLM

E Prototype execution

E.1 Yara installation logs

Yara installation

[2025-04-28 16:04:11] DEBUG: Downloading YARA source code...

[2025-04-28 16:04:14] DEBUG: Extracting YARA archive...

[2025-04-28 16:04:14] DEBUG: Starting YARA build process...

[2025-04-28 16:05:21] INFO: YARA build process completed successfully.
[2025-04-28 16:05:21] DEBUG: libyara.so.9 found.

[2025-04-28 16:05:21] DEBUG: Verifying YARA installation...

[2025-04-28 16:05:21] DEBUG: YARA installed successfully. Version: 4.2.3
[2025-04-28 16:05:21] DEBUG: Downloading YARA detection rules...

% Total % Received % Xferd Average Speed Time Time Time Curren
Dload Upload Total Spent Left Speed
100 3298k 100 3298k 100 93 352k 9 0:00:10 0:00:09 0:00:01 488K

[2025-04-28 16:05:31] INFO: YARA rules downloaded successfully.

[2025-04-28 16:05:31] DEBUG: Copying yara.sh file to the correct location.. .|
[2025-04-28 16:05:31] DEBUG: Changing yara.sh ownership and permissions...
[2025-04-28 16:05:31] DEBUG: yara_setup.sh completed successfully.

71

Y

Unit Test Pseudocode

o Initialize Manager and Defender instances.
« Set path to ossec testing conf file.
o Define section tags and raw XML strings for testing.

« Remove section tags from ossec.conf file before testing to ensure a clean
state.

TEST OSSEC CONF HANDLING

o Test conversion from tag to dataframe.

o Assert expected output matches the result.

Test adding a section tag to ossec.conf file.

Reload configuration data from Excel.

o Assert ossec.conf has been correctly modified.

TEST FIM SETUP

» Define monitored paths and directory tags.
o Add FIM configuration.

o Test FIM and Who-Data functionality.

TEST XML HANDLING
o Add group and decoder sections to XML.

o Synchronize XML with VM.

o Check for working modification of new added rules.

TEST YARA CONFIGURATION

| \

o Configure ossec.conf for YARA.

o Add YARA configuration on the endpoint.

Generate updated ossec.conf XML.
e Run bash script on remote host.

e Check alerts.

RUN TESTS

7
| L

o Create a test suite with specific methods.

e Run the test suite.

72

E.2 FIM detail modification

Document Details

t

Table JSON

_index
agent.id
agent.ip
agent.name
decoder.name

full_log

id

input.type
location
manager.name
rule.description
rule.firedtimes
rule.gdpr
rule.gpgi3
rule.groups
rule.hipaa

rule.id

Figure 38

View surrounding
documents

View single
document 2

wazuh-alerts-4.x-2025.04.06
oom

192.168.56.14

wazagentl
syscheck_integrity_changed

File '(test/test.txt’ modified Mode: realtime Changed attributes: size, mtime,

md5,5hal,sha256 Size changaed from "36' to "24' Old modification time was: '
1743954902, now it is 1743954904" Old md5sum was: "294d0248adf713b3
153844292cf3689" Mew mdosum is : '22d3cfdchb9537708679822h533b7e
REf Old shalsum was: "7cfélcda33el4a30ce7b4590bcd 3ccflbda3gsfd’ Me

w shalsum is : 'be74c83b37db615balef19e/761268c881ba23537" Old sha2s
Bsum was: 'fafRhe? R4 3cchBfefScafedldf 7R 1o 3hafd5dd35a103a06f0741

1743954904.336430

log

syscheck

wazidxl

Integrity checksum changed.

18

[_5.1.f

41

ossec, syscheck, syscheck_entry_modified, syscheck_file
164.312.¢1,164.312.c.2

550

: Detailed view of the file modification alert.

73

E.3 FIM logs

FIM Setup Logs

Starting FIM setup...

17:54:52,526 - Generating ossec.conf from provided dictionaries.
17:54:52,527 - Redundant entries found in tag ’directories’ with attributes
frozenset ({(’check_all’, ’yes’), (’whodata’, ’yes’)}). Removed duplicates.
Saving dataframes to Excel file: conf_files/ossec_agent_base.xlsx.

Backup saved to conf files/backup/ossec_agent_base.xlsx.20250406175452
Removed old backup: conf files/backup/ossec_agent base.xlsx.20250406173117
17:54:52,653 - Saving ossec.conf to conf_files/ossec_agent_base.conf.
Successfully saved the .conf file at conf_ files/ossec_agent_base.conf
17:54:52,661 - Synchronizing with VM. ..

Verifying change of ossec before making the changes.

[17:54:53] Received conf_file path: /vagrant/src/conf_files/ossec_agent_base.qd
[17:54:53] Verifying configuration with: wazuh-logcollector
[17:54:53] Command ’wazuh-logcollector’ verified successfully.
[17:54:53] Verifying configuration with: wazuh-modulesd
[17:54:53] Command ’wazuh-modulesd’ verified successfully.
[17:54:53] Verifying configuration with: wazuh-agentd
[17:54:53] Command ’wazuh-agentd’ verified successfully.
[17:54:53] Verifying configuration with: wazuh-syscheckd
[17:54:53] Command ’wazuh-syscheckd’ verified successfully.

[17:54:53] Successfully synchronized /vagrant/src/conf_files/ossec_agent_base.
/var/ossec/etc/ossec.conf - see

[17:54:53] Restarting service...

[17:55:01] Successfully restarted wazuh-agent.
[17:55:01] Service restarted successfully

Simulating a Change

17:55:04,779 - Checking if directory ’/test’ was modified regarding rule ID 58
17:55:09,785 - Starting VM synchronization for file: log/alerts.json to
wazidxl:/var/ossec/logs/alerts/alerts. json.

17:55:10,347 - Synchronization successful:

17:55:10,347 - Running function _get_rule_id for rule ID 550
17:55:10,355 - Directory ’/test’ was modified as per rule ID 550.

It occurred at file /test/test.txt.

74

onf

conf wit

0.

Figure 39: Overall class-based configuration of the system

Typography: defining logs of the software and rule of coding.

Command: to execute bash command from python.

Agents: Mother class of any kind of agents (VM or no ie: Evaluator, Attacker etc).

Remote: Remote functions to monitor VM.

Log: Handle logs from Wazubh.

Xml_handler: Generate useful xml files (ie rules/decoder).

Ossec.conf: Gen¢rate ossec_ conf.

Fim: File integrity monitoring.

Vmagent.

_

Manager.
Attacker.

75

	Global Presentation of the Project
	Analysis of the problem
	Thesis Proposal

	Main Tools Used in the Project
	Wazuh
	Example: Web-Attack Scenario
	Setting Up the Virtual Environment using Vagrant
	Simplifying and Automating the Process

	Vagrant Environment
	Structure of the Environment
	Tree Structure
	Top-Level Files
	Top-Level Directories

	Vagrantfile
	SSH Keys
	Setting Up the Machines
	Tests, scenarios and Cleaning

	Core of the Software
	Structure of the Project
	Top-Level Files
	VM Agents
	VM Agents Structure
	Vmagents
	Onion View of a VM Agent
	Agent Types

	Usage
	Initializing Machines
	Remote.py
	XML Handler
	Purpose of XML Files
	Local Rules
	Decoder
	Ossec.py
	Organization of Ossec.conf File
	Methods and Structure of the Class
	File Monitoring Class
	Yara.py

	Provisioning of the vagrant environment
	Cleaner
	Setup
	Wazuh Dashboard
	SSH Keys
	Tests & Scenario
	Testing suricata and ssh connections
	Wazuh scenario
	Wazuh dashboard identification
	Logs

	Execution of the prototype
	Unit Tests
	Logs
	Ossec.conf
	Rules verification
	File integrity monitoring
	Xml modification
	YARA

	Prototype
	Content provided by the AI
	Main.py

	Conclusion
	Project
	Greetings
	Glossary
	A Rule
	Active Response

	Annexes
	Overview
	Timeline and project management
	LLM enrichment tutorial

	SSH Key Generation Procedure
	Vagrant Provisionning
	Cron jobs
	cleaner.sh
	Execution
	Ssh connection via Virtual Studio Code
	SSH Tests

	Src folder
	Overall Methods
	Non-Developed Folders

	Prototype execution
	Yara installation logs
	FIM detail modification
	FIM logs

