
POLITECNICO DI TORINO

Master’s Degree in Mechatronic Engineer

Master’s Degree Thesis

A Modular LLM-Based Framework for
Semantic Navigation and Perception in

Mobile Robotics

Supervisors

Prof. Alessandro RIZZO

Ph.D. Pangcheng David CEN CHENG

Candidate

Giuseppe Antonio GENTILE

July 2025

Abstract

As robots become increasingly integrated into human environments, the ability to
interact intuitively through natural language has become a crucial goal. Traditional
robotic control systems require structured inputs and predefined behaviors, limiting
their adaptability in dynamic, real world environments. Recent advances in Large
Language Models (LLM) offer a new paradigm: harnessing language as a general
interface for reasoning, perception, and decision making. However, integrating
LLMs with embodied agents presents fundamental challenges, including grounding
instructions in physical space, ensuring safety, and linking symbolic language and
low-level robotic actions.

This thesis explores the integration of Large Language Models (LLMs) into
robotic systems for natural language-driven control and perception. The proposed
architecture connects a GPT-based reasoning agent with a ROS 2 navigation stack
and a visual pipeline comprising BLIP for visual question answering and YOLOv8
with depth sensing for object localization. Natural language instructions are parsed
into structured commands using prompt injection, verified for safety via an Abstract
Syntax Tree (AST) parser, and dispatched to the robot for execution.

The system is tested in a simulated environment with a TurtleBot4 platform.
Experimental results demonstrate reliable performance in goal navigation and
partial success in end-to-end instruction-to-verification tasks. While predefined
commands achieve a 100% success rate, semantically inferred goals reveal the
limits of symbolic mapping and perception coverage. Vision modules exhibit
strong accuracy on binary visual questions and acceptable spatial detection within
proximity thresholds.

This work contributes a modular, extensible framework for embodied LLMs,
validating its potential for grounded, multimodal interaction. Future extensions
are discussed to address real-time feedback integration, memory, and multi-turn
dialogue.

ii

Acknowledgements

First and foremost, I dedicate this thesis to my parents, whose unwavering love,
sacrifices, and encouragement have provided me with the invaluable opportunity
to pursue my studies and achieve this milestone. Their belief in my potential has
been a constant source of motivation and inspiration.

I am deeply grateful to my sisters, Anna and Micaela, whose endless support
and reassurance have carried me through challenging times. Their empathy, kind-
ness, and presence have truly made a difference, making difficult moments more
manageable and successes sweeter.

My heartfelt appreciation goes to Mariarosa, my other half, who has continually
encouraged me to persevere and strive for excellence. Her patience, understanding,
and relentless positivity have been pivotal in helping me reach the finish line with
confidence and pride.

A special thank you goes to my beloved nephews and nieces—Silvano, Sofia,
Francesco, Paolo, Anita, and little Andrea, who is yet to arrive. Their joy, innocence,
and affection have been a delightful source of inspiration, reminding me of the
beauty and simplicity of life’s most precious moments.

Finally, I wish to express my sincere gratitude to my lifelong friends, Donato,
Giorgio, Danilo, Mario and Michele. Having been by my side from the very first
year of university, they have provided constant friendship, humor, support, and
countless memorable experiences that have enriched my academic journey and my
personal growth.

iii

Table of Contents

List of Tables vii

List of Figures viii

Acronyms xi

1 Introduction 1

2 Literature Review 4
2.1 Large Language Models . 4
2.2 Prompting . 5
2.3 Robotics . 6

2.3.1 Mobile Robots . 7
2.3.2 Robot Operating System . 9
2.3.3 Simultaneous Localization and Mapping (SLAM) 10
2.3.4 Navigation Stack . 10
2.3.5 Behaviour Tree (BT) . 11

2.4 Robotics and AI . 12
2.4.1 Code as Policies Approach 13
2.4.2 NavGPT-2: Navigational Reasoning with Vision-Language

Models . 14
2.4.3 Limitations of LLM Models in Robotics 16

2.5 Visual Perception Modules . 17
2.5.1 BLIP for Visual Questions Answering (VQA) 18
2.5.2 YOLOv8 with Depth for Object Detection and 3D Localization 19

3 Methodology 21
3.1 Experimental Setup . 21

3.1.1 Experimental Objectives . 22
3.2 Simulation Environment . 23

3.2.1 Detailed Software Components 24

v

3.2.2 Environment Configuration and Simulation Parameters . . . 26
3.2.3 Natural Language to Robotic Action Translation 29
3.2.4 Navigation and Perception Functionalities 32

3.3 Summary . 35

4 Experimental Results 36
4.1 Natural Language Understanding and Action Planning 36
4.2 ROS 2 Integration and Modular Communication 37
4.3 Autonomous Navigation and Goal Execution 37
4.4 Vision Agent Performance . 37

4.4.1 BLIP Evaluation . 38
4.4.2 YOLOv8 with Depth . 38

4.5 Fallback Execution Logic and AST-Based Safety 41
4.6 Full Pipeline Evaluation . 42

5 Conclusions and Future Work 46
5.1 Summary of Contributions . 46
5.2 Future Work . 47
5.3 Final Remarks . 48

Bibliography 49

vi

List of Tables

3.1 RViz2 and Simulation Parameters 28

4.1 End-to-End Evaluation of Natural Language Instruction Execution
and Verification . 45

vii

List of Figures

2.1 The encoder-decoder structure of the Transformer architecture [9] . 5
2.2 TurtleBot 4 Lite (left) and TurtleBot 4 Standard (right) [7] 8
2.3 Example of the “Code as Policies” paradigm: an LLM receives

instructions in natural language and generates Python code that
performs low-level robotic checks. The code includes logical struc-
tures, feedback loops, and API calls for direct interaction with the
environment. [2] . 14

2.4 Left: Besides performing effective navigation planning, NavGPT-2 is
capable of generating navigational reasoning in a human-interpretable
way. Right: NavGPT-2 can support multi-round interaction with the
user and plan according to the user’s intervention in the navigation
process, actively ask for help, and answer visual questions. [8] . . . 16

3.1 Block diagram of the proposed modular architecture. The system
is composed of a GPT-based reasoning node, a ROS 2 navigation
stack, and an external visual verification pipeline. Each module is
connected via structured ROS interfaces, enabling a flexible and
extensible instruction-to-action loop.) 22

3.2 Fallback execution logic implemented in the safe_exec_with_fallback()
function. This component analyzes the GPT-generated code using
Abstract Syntax Tree (AST) parsing to detect undefined functions.
If any are found, they are commented out before execution to ensure
safe and robust behavior. 30

3.3 Code excerpt from the extract_target_object() function in nat-
ural_language_nav.py. This method applies regular expression
matching to isolate the visual target entity mentioned in the user
instruction, enabling dynamic query generation for the visual pipeline. 31

3.4 Automated execution of the vision module via the run_vision_pipeline()
function. Both BLIP-VQA and YOLO+Depth modules are executed
in sequence to verify the task outcome and register the detected
object into the system’s knowledge base. The code is available at [25]. 33

viii

3.5 Logic for runtime updates to destination and API command files.
After object validation (distance ≤ 1.5 m), the system saves its global
coordinates into dynamic_destinations.json and injects a callable
command into dynamic_turtlebot4_api.json. This enables the
GPT node to reference the object symbolically in future tasks. . . . 34

4.1 BLIP – Exact Match Accuracy by Question Type on GQA (val_balanced)
split. The model achieves highest performance on binary questions
like “does” and “do”, while accuracy drops significantly on open-
ended ones like “what” and “who”. 38

4.2 Global distribution of absolute error in object distance estimation.
77.13% of predictions fall under 0.5 m, and 41.99% under 0.1 m, with
a mean absolute error of 0.36 m. 39

4.3 Distribution of absolute distance error across the 10 most populated
scenes in the SceneNet RGB-D dataset. Scene variability significantly
affects detection accuracy and depth estimation. 40

4.4 Distribution of absolute distance error across the 10 most frequently
detected object classes. Object shape and occlusion influence perfor-
mance. 40

4.5 Qualitative examples of object detection and depth-based bounding
boxes generated by YOLOv8 in the simulated environment. 41

4.6 Navigation example towards a predefined destination in a clear
scenario. Gazebo environment (left) and planned trajectory in RViz2
(right). 43

4.7 Navigation example demonstrating obstacle avoidance. The robot
dynamically updates its trajectory to safely bypass obstacles, as
visible in both Gazebo (left) and RViz2 (right). 44

ix

Acronyms

LLM
Large Language Model

ROS
Robot Operating System

SLAM
Simultaneous Localization and Mapping

IMU
Inertial Measurement Unit

RGB-D
Red Green Blue + Depth

CoT
Chain of Thought

ToT
Tree of Thought

PLM
Pre-trained Language Model

RNN
Recurrent Neural Network

LSTM
Long Short-Term Memory

xi

TF
Transform Library (for coordinate frames in ROS)

LiDAR
Light Detection and Ranging

SLAM Toolbox
Simultaneous Localization and Mapping Toolbox

vSLAM
Visual Simultaneous Localization and Mapping

GPS
Global Positioning System

AMCL
Adaptive Monte Carlo Localization

Nav2
Navigation 2 (ROS 2 Navigation Stack)

BT
Behaviour Tree

FSM
Finite State Machine

AI
Artificial Intelligence

CaP
Code as Policies

VLM
Vision-Language Model

VQA
Visual Question Answering

xii

ViT
Vision Transformer

BLIP
Bootstrapped Language-Image Pretraining

YOLOv8
You Only Look Once version 8

xiii

Chapter 1

Introduction

The integration of natural language understanding with robotic control represents
one of the most promising frontiers in the field of embodied Artificial Intelligence
(AI). As robots increasingly enter human-centered environments such as homes,
hospitals, and warehouses, the ability to interpret and act upon natural language
commands is essential for intuitive and seamless Human-Robot Interaction (HRI).

Traditional robotic systems rely on pre-programmed behaviors and constrained
user interfaces, often requiring technical expertise or structured inputs. In contrast,
Large Language Models, such as GPT-3.5 and GPT-4 [1], offer a new paradigm
where high-level tasks can be described using natural language and automatically
translated into executable code or symbolic actions.

However, integrating LLMs into robotics presents non-trivial challenges. These
include ambiguity in user instructions, real-time constraints, safety verification,
and the need to ground abstract reasoning in concrete sensory data and robot
capabilities [2, 3].

Recent advancements in LLMs have demonstrated their capabilities not only in
natural language processing (NLP) tasks, but also in semantic reasoning, action
planning, and code generation [4]. These characteristics suggest the potential for
LLMs to serve as high-level controllers in robotic architectures, where they interpret
natural language and generate structured plans executable within frameworks like
Robot Operating System 2 (ROS 2) [4].

This thesis investigates how such models can be used to enhance autonomous
robot behavior by bridging language and control. The goal is to create a system
where a robot can navigate and perceive its environment based solely on human
instructions, without requiring pre-defined scripts or hard-coded logic.

Despite the recent progress, several key questions remain open:

• Can an LLM reliably interpret human language and produce executable robotic
plans?

1

Introduction

• How can symbolic goals be mapped from natural language and executed in a
ROS 2-based robotic pipeline?

• To what extent can a robot autonomously verify the success of an instruction
using visual perception?

This work proposes a hybrid framework that couples a GPT-based reasoning
module with a ROS 2 navigation stack and visual perception agents including
BLIP [5](Bootstrapping Language-Image Pre-training) and YOLOv8 [6].

The primary objectives of this thesis are:

• To design a modular architecture for robotic systems capable of understanding
and executing natural language commands;

• To integrate a LLM-based reasoning agent into a ROS 2 simulation environment
using TurtleBot4 [7];

• To implement a vision pipeline based on Visual Question Answering (VQA)
with BLIP and 3D object localization using YOLOv8 and depth data;

• To ensure robustness and safety through static code validation (via Abstract
Syntax Tree parsing);

• To evaluate the system performance through a series of end-to-end tasks
involving navigation, perception, and language understanding.

The architecture developed in this thesis leverages GPT-3.5 to generate ROS-
compatible Python code in response to user instructions. This code is validated and
executed in a simulated environment using ROS 2 and Ignition Gazebo. Navigation
is handled by the Nav2 stack [8], while visual verification is performed by two
agents: BLIP for semantic scene understanding and YOLOv8 with depth sensing
for spatial localization.

Execution safety is ensured through an AST-based fallback logic [2], which
blocks hallucinated or invalid code before runtime. The robot dynamically builds
and updates its internal symbolic map as it explores and verifies visual entities.

Thesis Structure
The remainder of this thesis is organized as follows:

• Chapter 2 introduces the fundamental concepts and presents a literature
review on large language models, prompting techniques, ROS 2-based robotic
architectures, and visual perception models such as BLIP and YOLOv8.

2

Introduction

• Chapter 3 details the methodology adopted in the project, including the
software components, simulation environment, prompt engineering strategies,
and the modular pipeline for language-driven robot control and visual feedback.

• Chapter 4 presents the experimental results, analyzing the system’s per-
formance in understanding instructions, executing navigation plans, and
validating tasks through multimodal perception, with quantitative evaluation
across several test cases.

• Chapter 5 discusses the final conclusions and outlines future directions for
extending the current framework, including real-world deployment, interactive
dialogue support, and integration of persistent memory and real-time sensory
feedback.

3

Chapter 2

Literature Review

2.1 Large Language Models
Large language models are neural network-based systems trained on huge corpora
of textual data to perform a wide range of natural language understanding and
generation tasks. Their development has marked a milestone in the field of artifi-
cial intelligence, enabling machines to perform not only classic natural language
processing (NLP) tasks, such as text classification and question answering, but also
complex reasoning, summarization, and multi-turn dialogues. LLMs are primarily
built on the Transformer architecture, which employs self-attention mechanisms to
process and generate sequences efficiently and in parallel [9].

The Transformer architecture, is based on self-attention mechanisms that allow
efficient and parallel processing of sequences. A block diagram illustrating the
Transformer model is shown in Figure 2.1.

The evolution of LLMs can be traced through four main stages: statistical
language models (e.g., n-grams), early neural language models (e.g., RNN, LSTM),
pre-trained language models (PLM, such as BERT [10] and RoBERTa [11]), and the
current generation of LLMs, which includes models such as GPT-3 [1], PaLM [12],
and LLaMA [13]. These models typically contain billions of parameters and are
trained using unsupervised or self-supervised learning paradigms on large-scale
corpora from the web.

What distinguishes LLMs from previous PLMs is not only their scale, but also
their emerging capabilities. These include contextual learning, the ability to learn
new tasks from examples at inference time, following instructions, the ability to
respond accurately to natural language commands, and multi-step reasoning, i.e.,
the ability to solve tasks through intermediate logical steps. These properties have
led to the use of LLMs as a fundamental component of general-purpose AI agents.

In robotics, the integration of LLMs enables natural language interfaces that

4

Literature Review

translate human instructions into robotic actions, a capability explored in this
thesis. LLMs such as GPT-3.5 and GPT-4 can support reasoning about spatial
navigation, sequential planning, and perceptual grounding when combined with
real-time sensory input and environmental context. Despite their capabilities,
LLMs still face challenges such as hallucinations, lack of real-time memory, and
limited robustness in dynamic environments, which are active areas of research and
development.

In the context of this thesis, LLMs are used as high-level planners to interpret
user instructions and decide on robotic actions within a simulated environment,
highlighting their role in connecting human language and robotic control.

Figure 2.1: The encoder-decoder structure of the Transformer architecture [9]

2.2 Prompting
Prompting is the process of creating input text in such a way as to guide a
large language model to produce the desired output. It is a fundamental interface
mechanism that allows users to leverage the capabilities of LLMs without modifying
their internal weights or retraining them. Prompting has become particularly
important with the advent of instruction-following models such as InstructGPT

5

Literature Review

and ChatGPT, which rely on prompts to perform a wide variety of tasks through
natural language interaction.

Prompting strategies can be divided into three main categories: zero-shot, few-
shot, and instruction-optimized prompting. In zero-shot prompting, the model
is given a task without any examples and is expected to generalize from its pre-
training. Few-shot prompting includes a handful of input-output examples within
the prompt to demonstrate the task. These techniques have been popularized
by models such as GPT-3 [1], which have demonstrated excellent performance in
few-shot settings across multiple benchmarks.

A notable advancement in prompting is the Chain-of-Thought (CoT) method,
which encourages the model to generate intermediate reasoning steps before pro-
ducing a final response [14]. CoT prompting improves performance particularly in
tasks that require logical reasoning or arithmetic operations. Another emerging
method is Tree-of-Thought (ToT) prompting, in which the model explores multiple
lines of reasoning in parallel before selecting the most coherent solution [3].

Prompt engineering has evolved into a discipline in its own right. Modern
prompting techniques include self-consistency (in which multiple outputs are sam-
pled and aggregated), reflection prompting (in which the model is asked to critique
or revise its own response), and expert prompting (in which the model is asked to
assume the role of a domain expert to provide more accurate or context-sensitive
responses).

In the context of this thesis, prompting plays a central role in translating
natural language instructions provided by the user into executable commands for a
robotic agent. Carefully designed prompts enable the LLM to interpret tasks such
as navigation, object recognition, or action planning and to produce structured
actions or sub-goals that can be executed by the underlying robotic system.

2.3 Robotics

Robotics is a multidisciplinary field that encompasses the design, construction,
operation, and control of autonomous or semi-autonomous machines capable of
interacting with the physical environment. In recent years, the convergence of
robotics with artificial intelligence has enabled the development of systems capable
of more flexible, context-sensitive, and intelligent behavior. These capabilities are
particularly relevant for mobile robots operating in dynamic environments, such as
homes, offices, or simulation platforms.

At the core of robotic systems are several key components: perception, local-
ization, mapping, planning, and control. Perception allows robots to interpret
sensor data (e.g., camera, LiDAR), while localization and mapping allow them to

6

Literature Review

determine their position within an environment and construct a spatial representa-
tion of it. Planning and control translate high-level goals into executable motor
commands.

A key enabler for modern robotics research and development is the Robot
Operating System, an open-source middleware framework that facilitates the
integration of hardware and software components. The latest version, ROS 2,
is designed for real-time performance, distributed systems, and safety features
essential for complex and scalable robotic applications [4].

In this thesis, we use ROS 2 to build a modular control system for a mobile robot
capable of interpreting and executing natural language instructions. This robot
leverages standard robotic software stacks, including Simultaneous Localization
and Mapping (SLAM) [15] to autonomously explore and localize itself in unknown
environments, and the Navigation Stack to plan and follow trajectories while
avoiding obstacles.

In addition, the robot’s control logic is supported by behavior trees, a hierarchical
framework commonly used in robotics for action selection, which offers modularity
and reusability. This structure facilitates the integration of high-level decisions
from LLMs with low-level control primitives in ROS.

2.3.1 Mobile Robots

Mobile robots are autonomous or semi-autonomous systems capable of moving
within an environment to perform tasks such as navigation, inspection, transport,
or interaction with objects and people. Unlike fixed robotic arms, mobile robots
must actively perceive and interpret their surroundings in order to make real-time
decisions about movement and behavior.

Mobile robots can be classified according to their locomotion system: wheeled,
legged, tracked, or aerial. In this thesis, the focus is on wheeled robots, particularly
differential drive platforms, which offer simplicity and efficiency for indoor naviga-
tion tasks. A representative example is the TurtleBot4, widely used in research
due to its integration with ROS 2 and support for various sensors and autonomy
modules [7].

7

Literature Review

Figure 2.2: TurtleBot 4 Lite (left) and TurtleBot 4 Standard (right) [7]

Key capabilities of mobile robots include:

• Localization: Estimating the pose (position and orientation) of the robot
within a known or unknown environment.

• Mapping: Constructing a representation of the surrounding environment, in
the form of an occupancy grid, topological graph, or semantic map.

• Path planning and obstacle avoidance: Calculating collision-free paths
to reach a destination, reacting to dynamic changes in the environment.

• Sensor fusion: Combining data from multiple sources (e.g., LiDAR, IMU,
RGB-D camera) to improve perception and decision-making.

Mobile robots are often used as test beds for the integration of higher-level AI
components, including LLMs. In this thesis, the robot interprets user instructions
provided in natural language, reasons about feasible trajectories, and executes
commands via ROS 2. This high-level control is decoupled from low-level motion
execution, ensuring modularity and enabling seamless integration with LLMs for
human-robot interaction.

8

Literature Review

Simulated environments such as Gazebo, classical and ignition, provides a
realistic and flexible framework for testing the behavior of mobile robots under
controlled conditions. These tools allow researchers to replicate indoor environments
and validate robotic systems before implementing them in the real world.

2.3.2 Robot Operating System
ROS is an open-source framework designed to facilitate the development, integration,
and execution of software for robotic systems. Despite its name, ROS is not a
traditional operating system, but rather provides a structured communication layer
above the host OS that enables distributed processing among multiple software
modules (nodes) in a robotic system [4].

ROS is based on a publisher-subscriber architecture, in which nodes communicate
through topics for streaming data, services for synchronous interactions, and actions
for long-running tasks. This modularity and flexibility have made ROS the standard
in both academic and industrial robotics.

The latest generation, ROS 2, introduces significant improvements over ROS 1,
including:

• Real-time capabilities, which are essential for control loops and sensor
processing;

• DDS-based communication middleware, which enables scalable and
secure data exchange;

• Improved support for multi-robot systems and embedded devices;

• Cross-platform support, including Linux, Windows, and microcontrollers.

ROS 2 supports a wide range of robotic capabilities, from low-level motor control
to high-level autonomy frameworks such as the Navigation Stack and MoveIt for
motion planning. Its integration with tools such as RViz (for 3D visualization),
Gazebo (for simulation), and TF (for coordinate transformations) provides a rich
ecosystem for creating, testing, and deploying robotic applications.

In this thesis, ROS 2 acts as middleware to connect the perception, planning,
and control components with the natural language interface powered by a LLM.
This integration allows the user to give instructions in natural language, which
are interpreted and transformed into ROS-compliant commands that control the
simulated robot in Gazebo. Communication between the GPT-based reasoning
node and the ROS system is handled via arguments, enabling seamless real-time
interaction.

By leveraging ROS 2, the system remains modular, extensible, and suitable for
implementation in both simulation and on physical platforms such as TurtleBot4,
which natively support ROS 2 [4, 7].

9

Literature Review

2.3.3 Simultaneous Localization and Mapping (SLAM)
SLAM is a fundamental feature for autonomous mobile robots, allowing them to
build a map of an unknown environment and simultaneously estimate their position
within it. SLAM is particularly important in scenarios where GPS is not available,
such as indoor environments.

The problem of SLAM is to fuse data from multiple sensors, such as LiDAR,
cameras, inertial measurement units (IMU), and wheel encoders, to incrementally
build a coherent representation of the environment (the map) and estimate the
robot’s trajectory over time (localization). SLAM methods are typically classified
into the following categories:

• Visual SLAM (vSLAM) – relies on cameras and computer vision techniques
(e.g., ORB-SLAM2, RTAB-Map);

• LiDAR-based SLAM – uses laser scans for more accurate metric mapping
(e.g., Cartographer, GMapping);

• RGB-D SLAM – combines visual features with depth data from sensors
such as Intel RealSense or OAK-D.

SLAM algorithms are integrated into the ROS 2 ecosystem as modular packages.
For example, SLAM Toolbox is a widely used ROS 2-compatible package that
supports both online mapping and offline optimization of pose graphs [15]. It
provides immediate compatibility with simulation environments such as Gazebo
and is suitable for 2D indoor mapping tasks, making it ideal for the scope of this
thesis.

In the simulated pipeline implemented here, SLAM allows the robot to build an
internal map of the environment as it explores it. This map is used in conjunction
with the navigation stack to generate global and local plans, ensuring that the
robot can reach specified destinations via natural language commands. The robot’s
ability to reason about positions depends on this spatial understanding, obtained
through topological annotations or integration with a semantic layer.

SLAM also facilitates higher-level capabilities such as dynamic goal setting,
object anchoring, and updating the environment map based on new observations,
all of which are essential when combining robotics with LLMs that reason about
space and context.

2.3.4 Navigation Stack
The Nav2 provides a comprehensive framework for enabling autonomous navigation
of mobile robots in both simulated and real-world environments. It is responsible for

10

Literature Review

calculating paths from a robot’s current position to its desired position, dynamically
avoiding obstacles and accounting for environmental changes [4].

The navigation pipeline typically consists of the following main components:

• Global Planner – calculates a high-level path from the current position to
the desired position using a static or SLAM-generated map;

• Local Planner – continuously generates short-term speed commands to follow
the global path while reacting to local obstacles;

• Costmaps – represent the environment as a 2D grid with obstacle inflation
to facilitate collision avoidance. Separate costmaps are maintained for global
and local planning;

• Fallback behaviors – define recovery strategies in case of navigation failure,
such as spinning in place or reversing.

ROS 2 implements this architecture through Nav2, a modular and extensible
navigation framework that replaces the original move_base node of ROS 1 [16].
Nav2 supports plugins for different planning and control algorithms (e.g., Dijkstra,
A*), and can be easily integrated with SLAM systems (such as SLAM Toolbox),
adaptive Monte Carlo localization (AMCL), and behavior tree-based decision
making.

In this thesis, the Navigation Stack is used to connect high-level natural language
instructions with robot motion. When the LLM interprets a command such as
“go to the desk” or “approach the kitchen,” it translates it into a semantic or
metric goal. This goal is then passed to the Navigation Stack, which autonomously
handles both path planning and execution.

Nav2 also supports simulated environments via Ignition Gazebo, enabling re-
alistic testing of trajectories and obstacle handling. This capability is critical
for validating LLM-based control in a safe, repeatable setting before moving to
real-world hardware.

By leveraging the ROS 2 Navigation Stack, this thesis ensures a robust and
responsive level of motion that allows the robot to execute complex instructions in
dynamic environments, while maintaining modularity between planning, control,
and high-level reasoning.

2.3.5 Behaviour Tree (BT)
BTs are a formalism used to model decision-making processes in autonomous agents,
particularly in robotics and game AI [17]. They offer a modular, hierarchical, and
reactive structure for organizing complex behaviors into manageable and reusable

11

Literature Review

components. In contrast to traditional FSMs, BTs provide better scalability and
maintainability through clear separation of control flow and action execution [18].

A typical BT consists of:

• Control Nodes, such as Selector, Sequence, and Parallel, which determine
the flow of execution;

• Decorator Nodes, which modify the behavior of a subtree (e.g., repeat until
success);

• Leaf Nodes, including Action and Condition nodes, which interface with the
robot’s actuators or sensory data.

BTs are executed top-down and left-to-right, allowing dynamic switching of
actions based on real-time feedback. This makes them particularly effective in
robotic applications where the system must respond to changing conditions or
failures (e.g., re-planning when an obstacle is detected) [19].

In ROS 2, BTs are commonly used with the Nav2, where they serve as the
backbone of the robot’s high-level control strategy. Nav2’s BT Navigator allows
developers to define navigation policies using XML-based BT descriptions. This
provides flexibility to implement recovery behaviors, conditional movement, or
multistep tasks [16].

By combining LLM-based reasoning with BT-based execution, this architecture
enables the robot to perform structured tasks with a balance of autonomy and
interpretability, while maintaining robustness in uncertain environments.

2.4 Robotics and AI
The integration of artificial intelligence, particularly LLMs, into robotics represents
a transformative shift in how autonomous systems perceive, reason, and act in
complex environments. While traditional robotic systems rely on rule-based controls,
(FSMs), or supervised learning pipelines, AI-based approaches aim to generalize
across different tasks using data-driven knowledge and reasoning capabilities [1, 14,
3].

Recent advances in LLMs have enabled intuitive human-robot interaction
through natural language interfaces. These models are capable of interpreting
instructions, reasoning about action sequences, and generating responses that guide
robot behavior without requiring explicit programming for each individual task [1].

In robotic applications, LLMs can be used for:
• Semantic grounding: associating words such as “kitchen” or “cup” with

physical locations or objects;

• Goal inference: interpreting vague or high-level user requests;

12

Literature Review

• Task decomposition: breaking down complex instructions into executable
steps;

• Error recovery reasoning: suggesting alternative plans in case of failures.
To make this integration operational, LLMs must be combined with real-time

robotics frameworks such as ROS 2 [4]. This requires a hybrid architecture, in
which the LLM handles high-level planning and reasoning, while ROS nodes execute
concrete actions (e.g., navigation, manipulation). Communication typically occurs
via structured messages or topic publishing mechanisms, ensuring that natural
language decisions can trigger low-level robotic behaviors.

In this thesis, we explore such an architecture: the robot receives textual
instructions from a user, interprets them via an LLM (e.g., ChatGPT or similar
model), and executes the inferred actions in a ROS 2-based simulated environment.
This allows the robot to understand requests such as “check if there is an object on
the table in the living room” and to autonomously navigate and verify the presence
of the object, combining language understanding with spatial and visual reasoning.

This fusion of robotics and AI not only increases the autonomy and adaptability
of robotic agents, but also lays the foundation for more general embodied intelligence
systems capable of learning and acting in diverse domains.

2.4.1 Code as Policies Approach
The Code as Policies (CaP) approach is a paradigm in which high-level reasoning
and task execution in robotics are delegated to a LLM that generates executable
code as output. Rather than relying on predefined policies learned from data or
manually designed (FSMs), the robot receives natural language instructions, and
the LLM translates them into interpretable low-level commands or Python-like
scripts that serve as policies governing behavior [2].

Introduced in the context of LLMs such as GPT-3 and Codex, this method
leverages the model’s ability to:

• Understand task objectives from human language;

• Generate control logic structures (e.g., if...else, loops, sequences);

• Compose and adapt code that calls functions from a robotics API;

• Generalize to unseen instructions by reusing programming patterns.

This approach offers several advantages:

• Interpretability: each decision step is made explicit through code;

• Composability: tasks can be broken down into modular sub-functions;

13

Literature Review

• Extensibility: new skills can be added by expanding the available API.

In the context of this thesis, the CaP methodology supports the integration of
natural language navigation commands with ROS 2-based control logic. The LLM
acts as a reasoning engine that produces structured instructions or logical blocks,
which are either executed directly or translated into ROS messages to control the
robot in the simulated environment.

However, some challenges remain. The LLM must be restricted to generating safe
and valid code. Moreover, the dynamic nature of real-world environments requires
robust runtime monitoring and error handling, which static code generation may
not be able to fully anticipate. To mitigate this issue, the generated policies can
be executed in a loop with feedback from the environment, in line with interactive
agent-based strategies such as ReAct or other LLM-powered agent frameworks [20].

Figure 2.3: Example of the “Code as Policies” paradigm: an LLM receives
instructions in natural language and generates Python code that performs low-level
robotic checks. The code includes logical structures, feedback loops, and API calls
for direct interaction with the environment. [2]

2.4.2 NavGPT-2: Navigational Reasoning with Vision-
Language Models

NavGPT-2 represents an advanced approach that blends the capabilities of large-
scale language models with visual perception to facilitate navigational reasoning.

14

Literature Review

Unlike text-only systems, NavGPT-2 leverages multimodal inputs, combining
natural language instructions with visual data from cameras or other sensors, to
generate context-aware navigation plans [8].

Fundamentally, NavGPT-2 is designed to solve two key challenges:

• Semantic interpretation of the visual context: By processing images
alongside textual commands, the model builds a contextual understanding
of the environment. This vision-language integration enables it to associate
semantic labels with corresponding spatial features.

• Dynamic navigation reasoning: Thanks to enriched contextual information,
the model is able to reason about complex navigation tasks involving object
detection, obstacle avoidance, and goal inference. For example, a command
such as “find and approach the red door” is converted into a series of navigation
sub-goals using information derived from both the visual feed and the linguistic
prompt.

The process follows a three-level framework:

1. Multimodal input fusion: The system first encodes visual observations
(typically using pre-trained vision-language encoders) together with natural
language instructions. This fused embedding captures both the spatial and
semantic aspects of the scene.

2. Contextual reasoning: Similar to CoT prompting approaches, NavGPT-2
uses contextual reasoning by iteratively generating intermediate navigation
steps. The model “thinks aloud” by breaking down the problem into manage-
able segments (e.g., “locate the door”, “plan a trajectory to avoid obstacles”,
“validate the door’s location”) before issuing the final navigation command.

3. Action generation and execution: The final navigation plan is then
translated into executable commands. These commands can be incorporated
into a ROS 2 framework, where they trigger specific control actions such as
movement, turning, or sensor re-evaluation. This hybrid execution benefits
from NavGPT-2’s multimodal reasoning capabilities, relying on standard
robotics middleware to handle low-level control.

15

Literature Review

Figure 2.4: Left: Besides performing effective navigation planning, NavGPT-2 is
capable of generating navigational reasoning in a human-interpretable way. Right:
NavGPT-2 can support multi-round interaction with the user and plan according to
the user’s intervention in the navigation process, actively ask for help, and answer
visual questions. [8]

The NavGPT-2 approach illustrates how a vision-language model (VLM)can act
as a dynamic planner in robotic systems. Its ability to use both visual context and
natural language instructions sets it apart from previous methods, where navigation
reasoning was often segmented between separate perception and planning modules.
By unifying these processes, NavGPT-2 is able to generate more robust plans that
adapt to dynamic and real-world environments.

This method is particularly promising for applications that require autonomous
navigation in unstructured or changing contexts.

2.4.3 Limitations of LLM Models in Robotics
Although LLMs have demonstrated impressive capabilities in natural language
understanding, reasoning, and code generation, their application in robotics presents
several practical and conceptual limitations. These challenges stem from the gap
between abstract linguistic reasoning and the constraints of embodied real-world

16

Literature Review

systems [3, 14, 1].

• Lack of grounded perception: LLMs are primarily trained on textual data
and do not possess an intrinsic understanding of visual or spatial environments.
When used in isolation, they are unable to perceive the robot’s surrounding
environment, detect objects, or evaluate physical constraints. This lack of
perceptual grounding can lead to overly confident or logically plausible but
physically unfeasible decisions [8].

• Hallucinations and inconsistency: LLMs are known to hallucinate facts
or actions, producing outputs that appear correct but are incorrect or unsafe
in real-world contexts [1]. For example, a model might suggest an action that
requires passing through a wall or detecting a non-existent object. In robotics,
such errors can compromise system safety or cause mission failure.

• No internal state or memory: LLMs do not maintain a persistent internal
state or memory between invocations, unless implemented externally. In
multi-step robotic tasks, this can lead to inconsistent plans or loss of context,
unless the system externally maintains memory buffers or world models.

• Latency and real-time constraints: Inference with large models (e.g.,
GPT-4) can introduce latency that is incompatible with real-time robotic
control. While local implementation of smaller models (e.g., LLaMA, GPT-2)
can reduce latency, this often comes at the cost of reduced reasoning ability
and robustness [13, 1].

• Limited action semantics: LLMs do not inherently know which commands
are executable or safe within a robotic platform. They require optimized APIs
(use of tools) or external filtering mechanisms to restrict their outputs to a
valid action space [3]. Without such constraints, their decisions could violate
the capabilities of robots, causing navigation, manipulation, or planning errors.

• Generalization and robustness issues: While LLMs excel at language
generalization, their reasoning in new physical situations can be fragile, espe-
cially when tasks involve dynamic environments or ambiguous instructions.
Prompt design and training data strongly influence performance, which may
not translate well to diverse real-world scenarios [8, 14].

2.5 Visual Perception Modules
VLM represent an important step forward in the integration of computer vision and
natural language processing, enabling machines to jointly interpret visual inputs
and textual instructions. By processing multimodal information—typically images

17

Literature Review

or videos combined with language, VLMs support a richer and more semantically
grounded understanding of the environment, which is particularly valuable in
robotics, human-computer interaction, and embodied artificial intelligence.

The development of VLMs addresses key limitations of unimodal systems, such
as the inability to reason about complex spatial and contextual relationships that
are often necessary for real-world tasks. For example, while a traditional vision
model might detect the presence of a “bottle,” a VLM is able to answer queries
like “is there a red bottle on the shelf?” by linking visual recognition to conceptual
understanding.

The basic architecture of a VLM typically includes a visual encoder that extracts
image features, a language model (often pre-trained) to process textual input, and a
fusion or alignment mechanism that enables cross-modal reasoning. Recent models
such as CLIP [21], BLIP [5], Flamingo [22], LLaVA [23], and GPT-4V differ
in how they align and integrate vision and language. Some leverage contrastive
learning to align paired image-text embeddings in a shared space, while others
use encoder-decoder transformer architectures to support generative tasks such as
image captioning, VQA, or dialogue-based interaction.

As discussed by Li et al. [24], the shift toward using large pretrained language
models as the backbone for VLMs has significantly improved model expressiveness
and reduced training costs, while also introducing challenges such as hallucination,
alignment errors, and safety concerns.

Despite these issues, VLMs currently achieve state-of-the-art performance across
a variety of benchmarks, including zero-shot classification, VQA, and multimodal
reasoning. Applications are rapidly expanding in fields such as autonomous driving,
assistive robotics, and simulation-based planning.

In the context of robotics, VLMs enable systems to follow natural language
commands, perceive complex scenes, and verify task completion via language-based
interpretation of visual input. The following sections explore two representative
components of modern VLM-based robotic perception: object detection and 3D
localization using YOLOv8 with depth data, and contextual understanding through
the generative VQA capabilities of BLIP.

2.5.1 BLIP for Visual Questions Answering (VQA)
VLM are taking on an increasingly central role in robotics, where intelligent agents
must interpret and respond to natural language questions based on visual inputs.
Among these, BLIP has emerged as a powerful multimodal framework that unifies
vision and language understanding within a single architecture [5]. Unlike previous
models that relied solely on contrastive targets (e.g., CLIP [21], BLIP incorporates
both alignment and generation capabilities, making it particularly well-suited for
generative tasks such as image captioning and VQA. The publicly available and

18

Literature Review

widely adopted model variant Salesforce/blip-vqa-base has been specifically
optimized for VQA tasks.

At its core, BLIP consists of a visual encoder, typically based on Vision Trans-
formers (ViT), and a text decoder capable of producing linguistic outputs condi-
tioned on visual and textual inputs. During pre-training, the model is exposed to
large-scale image-text pairs using a combination of training objectives, including
image-based generation, language modeling, and contrastive matching. This multi-
objective approach endows BLIP with rich multimodal understanding, enabling it
to reason about image content in a natural and contextualized manner [5].

In the context of robotics, BLIP’s VQA capabilities are particularly valuable. A
robot equipped with a camera can capture its surroundings and query BLIP with
natural language questions. The model interprets both the image and the question,
generating responses that reflect its semantic understanding of the scene. This
mode of interaction greatly improves human-robot communication, allowing users
to interact with robotic systems in a more intuitive and language-based manner.

In addition, BLIP supports follow-up questions and conversational concatena-
tions, enabling more complex interaction scenarios. For example, after executing a
navigation command, the robot can capture an image and verify whether a task
has been successfully completed by asking a BLIP-based module. The ability to in-
tegrate generative perception with interactive dialogue also supports explainability
and transparency in robot decision-making, two increasingly important properties
in real-world deployment scenarios.

From a systems perspective, BLIP is lightweight enough to be deployed on
GPU-enabled edge devices, while remaining compatible with server-based inference
in distributed robot architectures. Its pre-training on large-scale generic datasets
ensures broad generalization across domains, although domain-specific fine-tuning
remains a viable option for improving performance in specialized environments.

To summary, BLIP bridges the semantic gap between vision and language in
robotic systems by enabling natural responses to questions about visual inputs. Its
integration into perception pipelines provides robots with context-aware reasoning
and flexible interaction, thereby supporting the development of intelligent, language-
aware agents capable of autonomously operating in dynamic, real-world settings.

2.5.2 YOLOv8 with Depth for Object Detection and 3D
Localization

The task of object detection has seen significant progress over the last decade,
with the YOLO (You Only Look Once) family of models establishing itself as the
dominant real-time solution in both academic and industrial robotics. YOLOv8,
developed by Ultralytics, represents the latest iteration of this line and introduces
several architectural innovations that improve detection accuracy while maintaining

19

Literature Review

high inference speed [6]. Unlike previous region-based models, YOLOv8 employs
a fully convolutional, anchor-free architecture that predicts bounding boxes and
object classes in a single forward pass, offering real-time capabilities even on
resource-constrained platforms. This makes it particularly well suited for robotic
applications that require low-latency decisions, such as autonomous navigation,
object manipulation, or obstacle avoidance.

However, YOLOv8, like all 2D object detectors, operates at the image level and
has no direct spatial perception of object locations in the physical world. To enable
three-dimensional understanding, a depth perception module is often integrated
into the pipeline. This module typically comes from RGB-D cameras, stereo vision
systems, or LiDAR. Once a 2D object is detected, the corresponding depth value
can be extracted from a depth map recorded at the center or across the bounding
box region. These depth values are then combined with intrinsic camera parameters,
such as the horizontal field of view and image size, to calculate the angular offset
and estimate the relative position of the object in 3D space.

This approach is further improved by leveraging the robot’s position within a
known reference frame, often obtained via SLAM or a TF. The 3D position of the
object relative to the robot is then transformed into global coordinates, enabling
long-term map-based planning and interaction. This capability is essential in tasks
such as semantic mapping, where objects must not only be recognized but also
spatially anchored within the environment, or in retrieval and transport operations,
where the robot must return to a specific location to interact with a previously
seen object.

Another advantage of integrating YOLOv8 with depth sensing is the ability
to filter detections based on distance thresholds, allowing nearby objects to be
prioritized for interaction. For example, a robot tasked with locating a specific
object (e.g., “find the nearest bottle”) can ignore distant detections and focus com-
putational resources on reachable targets. Furthermore, this fusion of 2D semantics
and 3D geometry provides robustness in cluttered or dynamic environments, as
depth data can help resolve ambiguities in cases of occlusions and overlapping
objects.

In summary, the synergy between YOLOv8 and depth sensing systems enables
robots to achieve perceptual grounding in 3D environments. By extending 2D
detection to 3D localization, this hybrid approach is a crucial component of modern
vision pipelines for mobile and embodied agents, balancing efficiency, scalability,
and interpretability.

20

Chapter 3

Methodology

3.1 Experimental Setup

The experimental setup implemented in this thesis aims to evaluate the feasibility
of integrating a LLM-based agent into a ROS 2 robotic system for executing natural
language instructions in a simulated indoor environment. The core of the system
architecture consists of three main components: a mobile robot simulated in Ignition
Gazebo, a natural language agent powered by GPT, and a vision module based on
the BLIP [5] and YOLOv8 [6] models used for post-task visual verification.

The main objective of this setup is to evaluate how effectively a GPT-based
reasoning node can interpret instructions, generate actionable goals, and coordinate
navigation tasks using the ROS 2 infrastructure. The experimental pipeline is
designed to mimic a realistic interaction cycle in which a human user issues a
high-level command in natural language and the system autonomously translates
it into robotic actions.

The robot performs navigation based solely on the goals inferred by GPT and
the predefined ROS 2 functionality. Once a task is considered complete, typically
upon reaching a target position, the robot captures an image from its RGB-D
camera. This image is processed by the vision pipeline using BLIP and YOLOv8
models to assess the presence or absence of target objects or contextual features.

This design allows for the isolation and analysis of the LLM agent’s reasoning
ability, independent of visual perception. By validating the visual results, the system
enables a structured evaluation of instruction compliance, navigation accuracy, and
vision-language reasoning integration.

Figure 3.1 shows the overall system architecture, highlighting the interaction
between the GPT-based agent, fallback logic, navigation stack, and the simulated
ROS 2 environment with TurtleBot execution.

21

Methodology

Figure 3.1: Block diagram of the proposed modular architecture. The system
is composed of a GPT-based reasoning node, a ROS 2 navigation stack, and an
external visual verification pipeline. Each module is connected via structured ROS
interfaces, enabling a flexible and extensible instruction-to-action loop.)

The following sections provide further details on the experiment objectives,
software stack, environment setup, and integration between natural language input
and robotic behavior.

3.1.1 Experimental Objectives
The objective of this experimental study is to evaluate the performance and
modular integration of a multi-agent architecture for the execution of robotic tasks,
in which natural language instructions are interpreted and implemented through
collaboration between language, perception, and control modules.

Unlike conventional configurations that focus exclusively on the integration of a
LLM with ROS 2 [4], this experiment aims to test and validate the coordination
of multiple reasoning and perception components, including a GPT-based agent,

22

Methodology

a vision agent—BLIP [5] for VQA and YOLOv8 [6] for object detection and
spatial estimation, and a fallback execution logic for safe and interpretable task
management.

The specific objectives of the experiment are as follows:

• Evaluate natural language understanding and action planning: Test
the ability of the GPT-based agent to interpret high-level instructions and
generate structured and semantically valid sequences of robotic actions.

• Validate ROS 2 integration and modular communication: Ensure
robust communication between all nodes via ROS 2 topics and services,
including the GPT node,Nav2, vision pipeline, and fallback modules.

• Test autonomous navigation and goal execution: Evaluate the robot’s
ability to reach inferred destinations using the ROS 2 navigation stack based
on commands generated by the LLM agent.

• Evaluate vision agent performance: Automatically analyze RGB and
depth data captured using BLIP and YOLOv8 to determine whether visual
goals have been achieved (e.g., object detection, proximity estimation).

• Evaluate fallback execution logic: Measure the effectiveness of the system
in identifying and handling undefined or invalid actions generated by GPT
using AST analysis, pattern matching, and injection of predefined behaviors.

• Modularity and extensibility benchmark: Examine how individual
components (language agent, vision module, action controller) can be modified
or extended without disrupting the overall architecture.

This multifaceted evaluation provides insights into the feasibility of creating
autonomous, interpretable, and modular robotic systems capable of operating from
high-level human instructions and paves the way for the inclusion of real-time
feedback loops and learning-based adaptation in future iterations.

3.2 Simulation Environment
To evaluate the proposed architecture in a controlled and reproducible environment,
the entire system was implemented in a simulated environment using Ignition
Gazebo and ROS 2. This simulation framework allows for realistic modeling of
robot dynamics, sensor behavior, and interactions with the environment, making it
ideal for testing LLM-guided robotic behaviors without the risks and variability of
a physical setup.

23

Methodology

The simulated environments reproduce indoor scenes, furnished with basic
objects and landmarks that serve as navigation references. The robot used in the
simulation is modeled on a Turtlebot4 [7], equipped with differential traction, an
RGB-D camera, and ROS 2-compatible navigation modules (Nav2) [16].

The simulation environment was selected to meet the following criteria:

• Modularity: Components such as the map, robot configuration, and naviga-
tion stack can be modified independently.

• Realism: The environment includes walls, furniture, and obstacles, enabling
meaningful path planning and localization.

• Sensor simulation: Camera streams and odometry data are simulated in
real time, providing input for post-task visual processing.

• Reproducibility: All experiments can be repeated under identical conditions,
enabling consistent benchmarking.

A key strength of using Ignition Gazebo lies in its flexibility and extensibility.
Users can create fully customized simulation worlds tailored to specific experimental
needs, leveraging a wide array of publicly available models and plugins, such as those
provided by Open Robotics and Gazebo Fuel [7]. These models include furniture,
vehicles, people, and sensor-equipped robots, which can be easily arranged to design
rich and interactive environments.

This capability allows researchers to simulate diverse and complex scenar-
ios—from warehouse navigation to household tasks—without the need for physical
hardware. Custom environments can be crafted to include specific obstacles or
object placements that challenge and validate the robotic system’s capabilities.
This adaptability significantly accelerates prototyping, testing, and validation of
advanced human-robot interaction pipelines under controlled conditions.

3.2.1 Detailed Software Components
The experimental architecture consists of modular software components that interact
via ROS 2 middleware. Each module is responsible for a specific function within
the system, and together they form an integrated pipeline capable of interpreting
human instructions and executing them in simulation.

1. ROS 2 (Humble Hawksbill)
ROS 2 serves as the central communication backbone. It enables asynchronous
and real-time communication between the LLM-based agent, navigation stack,
camera system, and vision modules via topics, actions, and services. ROS 2
ensures interoperability, modularity, and scalability in both simulation and
real-world deployments [4].

24

Methodology

2. Ignition Gazebo
The simulation environment is built using Ignition Gazebo, which provides
realistic 3D physics, environment rendering, and accurate sensor modeling.
The robot operates within a structured indoor scenario containing rooms,
furniture, and obstacles.

3. Navigation Stack (Nav2)
Nav2 enables the robot to autonomously navigate towards user-deduced
goals [16]. It includes:

• Global and local planners,
• Dynamic obstacle avoidance using costmaps,
• Recovery behaviors in case of navigation failure,
• Action servers that receive targets from the GPT node or fallback logic

and execute them.

Nav2 continuously updates the robot’s path as new data becomes available.

4. Natural Language Processing Node (GPT Agent)
The GPT-based agent is implemented as a ROS 2 node that sends prompts to
the OpenAI API (e.g., GPT-3.5 [1]). It interprets natural language instructions
and generates high-level plans or API calls. These outputs are validated before
being passed to control modules.

5. Fallback Execution Logic
This Python-based module intercepts the GPT output and performs structural
validation (e.g., Abstract Syntax Tree parsing and pattern matching). If the
output is incomplete, invalid, or non-executable, it either rejects the command
or injects predefined safe behaviors. This mechanism ensures robustness and
prevents execution of malformed instructions.

6. Camera Sensor Node
The robot includes a simulated RGB-D camera setup: the RGB camera
publishes to /oakd/rgb/preview/image_raw, and the depth camera publishes
to /oakd/rgb/preview/depth/depth_raw. Upon task completion, an image
is captured and stored for use in the perception pipeline.

7. Vision Agent (BLIP and YOLO)
The vision module is fully automated and includes:

• BLIP [5], which handles visual question answering (VQA) and can respond
to queries like “Is there an object in front of the robot?”

25

Methodology

• YOLOv8 [6], combined with depth data for object detection and proximity
estimation.

These models are integrated via ROS 2 or Python scripts and are part of the
post-navigation pipeline, as described in Section 3.2.4.

8. RViz2
RViz2 is used for visualizing the robot’s position, costmaps, goals, and camera
feed in real-time. It plays a vital role in monitoring, debugging, and validating
navigation and perception processes during simulation.

This software architecture supports a hybrid perception-control-reasoning
loop, with clear separation between high-level decision-making (LLM), execution
(ROS/Nav2), and perception (BLIP/YOLOv8). Its modular design makes it ideal
for future enhancements, such as integrating real-time visual feedback or dialogue-
based interaction capabilities.

3.2.2 Environment Configuration and Simulation Parame-
ters

The simulation environment has been designed to emulate an indoor scenario in
which a mobile robot is able to interpret and execute natural language instruc-
tions through a modular architecture that integrates reasoning, navigation, and
perception components. This environment supports the full end-to-end flow of
instruction-based task execution, from natural language understanding to post-task
visual validation, enabling structured and repeatable evaluation.

Environment Layout

The simulated world comprises several distinct scenarios, each crafted to evaluate
specific aspects of navigation and perception:

• Warehouse: contains shelves and various recognizable objects such as card-
board boxes, chairs, desks, and human figures.

• Open Room: populated with randomly placed objects, including a suitcase,
trash bin, SUV, and other miscellaneous items.

• Maze-like Environment: devoid of objects, designed exclusively for testing
path planning in narrow corridors and complex topologies.

Walls and static obstacles are included to replicate real-world occlusions and
constraints.

26

Methodology

RViz2 Configuration and Simulation Startup Modes

The system can be launched in two distinct configurations, which influence local-
ization behavior and the necessary RViz2 settings:

• SLAMMode: uses SLAM Toolbox [15] to build the environment map in
real-time. No manual 2D pose estimate is needed, as initialization occurs
automatically.

• Localization Mode (AMCL): requires a pre-generated map and manual
initialization of the robot’s position via the “2D Pose Estimate” tool in RViz2.
This is critical for correct localization.

To start the simulation in localization mode using a predefined world and map,
use:

ros2 launch turtlebot4_ignition_bringup turtlebot4_ignition.launch
.py

nav2:=true slam:=false localization:=true rviz:=true
world:=depot map:=/opt/ros/humble/share/turtlebot4_navigation
/maps/depot.yaml

If the world and map arguments are not specified, the simulation switches to a
default scenario.

RViz2 Configuration Guidelines

The following RViz2 settings are essential for consistent data capture and visualiza-
tion across both simulation modes:

• RGB Camera Topic: the default topic should be switched to
/oakd/rgb/preview/image_raw

• Depth Camera Topic: the default topic should be switched to
/oakd/rgb/preview/depth/depth_raw

• Depth Normalization: disable “Normalize Range” and set the range to [0.3,
5.0] meters

These parameters ensure that RViz2 accurately reflects the images used for visual
processing and that the saved depth.npy file contains a valid depth map. This
configuration is essential for the correct operation of both vision modules: YOLOv8
relies on accurate depth data to estimate the distance to the detected target object,

27

Methodology

while BLIP requires a properly captured image (e.g., captured_image.png) for
reliable semantic grounding and visual question answering [5, 6].

Table 3.1: RViz2 and Simulation Parameters

Setting Value / Action Required
In

Note

Launch Mode SLAM or
Localization

Both SLAM auto-initializes
pose; Localization
requires manual 2D
pose estimate.

2D Pose Estimate Manual input in
RViz2

Localization
only

Use the “2D Pose
Estimate” tool at
simulation start to
align with the map.

RGB Camera
Topic

/oakd/rgb/preview
/image_raw

Both Ensures correct image
display and consistent
image logging.

Depth Camera
Topic

/oakd/rgb/preview
/depth/depth_raw

Both Required for depth
snapshot and saving
the depth.npy file.

Normalize Range Disabled Both Prevents black images
in RViz2 due to
improper scaling.

Depth Range 0.3–5.0 meters Both Ensures proper
visualization and
valid post-processing
by the vision agent.

Instruction Execution Pipeline

Once a natural language command is received by the GPT node, the system
proceeds through the following pipeline:

1. The LLM interprets the instruction and proposes an action plan.

2. The output is validated and parsed through the fallback logic module.

3. A navigation goal is sent to the Nav2 stack for execution.

4. Upon goal completion, RGB and depth snapshots are captured automatically.

28

Methodology

5. The vision agent activates:

• BLIP is used for VQA,
• YOLOv8 with depth estimates object class and position.

6. The outputs are stored and used for downstream task validation.

This automated pipeline enables a full closed-loop system integrating high-
level reasoning, navigation, and post-task perception without requiring manual
intervention.

3.2.3 Natural Language to Robotic Action Translation
The process of transforming user-provided natural language commands into exe-
cutable robotic actions is handled by a dedicated pipeline that combines a GPT-
based reasoning agent, fallback logic for execution safety, and dynamic integration
with the ROS 2 navigation stack.

Command Generation via Chat Completion

The GPT-based agent interacts with the user through natural language instruc-
tions and internally translates them into executable Python code using OpenAI’s
chat.completions endpoint [1]. This mechanism enables the system to support
flexible and contextually rich interactions, where the language model not only
interprets the intent but also generates ROS 2-compatible instructions that guide
the robot’s behavior.

The generated commands typically follow a structured template, designed to be
interpretable by the ROS 2 navigation stack. For instance, when the user issues
a command such as “Go to the forklift,” the LLM generates the following code
snippet:

Listing 3.1: Example of GPT-generated navigation command.
1 goa l = nav igator . getPoseStamped ([2 . 0 , 1 . 0] , 90)
2 nav igator . startToPose (goa l)

Here, the GPT agent deduces the target location’s coordinates from its prompt
context—often retrieved from a structured JSON file (see Section 3.2.4)—and
generates a goal pose using predefined API functions. The reasoning is not hard-
coded but inferred dynamically, based on injected prompt examples and available
symbolic mappings of destinations and actions.

This code is sent to the fallback execution logic, which ensures syntactic validity
and runtime safety. If deemed valid, it is executed to trigger robot navigation via
the NavigateToPose action interface provided by Nav2 [16].

29

Methodology

As shown in Figure 3.2, the system uses a fallback logic layer to intercept and
sanitize GPT-generated code. This mechanism ensures runtime safety by detecting
undefined function calls through AST parsing and preventing their execution.

Figure 3.2: Fallback execution logic implemented in the
safe_exec_with_fallback() function. This component analyzes the GPT-
generated code using Abstract Syntax Tree (AST) parsing to detect undefined
functions. If any are found, they are commented out before execution to ensure
safe and robust behavior.

This form of language-to-action translation, powered by code generation rather
than direct action classification, provides a high degree of expressiveness and
adaptability. It also facilitates the integration of custom routines, such as object
delivery or patrolling, which can be encoded as callable Python functions and
injected into the prompt at runtime.

Object Extraction and Visual Query Generation

When a user provides a natural language instruction that includes a reference to an
object (e.g., “Go to the kitchen and check if there is a red cup on the table”), the
system must extract the relevant visual entities to perform subsequent validation
using BLIP or YOLOv8.

To this end, the GPT-based reasoning node performs object analysis, identifying
noun phrases or entities mentioned in the instruction that refer to visible objects.
These are extracted via language model inference using prompt templates designed
to ask the model “which objects should be visually verified”.

Once extracted, the object label is used to trigger one of two vision pipelines:

• For BLIP-VQA [5], a natural language question is dynamically formulated
from the instruction (e.g., “Is there a red cup in front of the robot?”) and
passed to the BLIP module.

• For YOLOv8 [6] with Depth modules, a target class label is derived (e.g.,

30

Methodology

“cup”) and used by the YOLO detection script to locate the object, compute
depth, and estimate global position using TF transformations.

This transformation from language to structured visual queries bridges high-level
reasoning and low-level perception, allowing the system to autonomously determine
what to look for based on task semantics.

As shown in Figure 3.3, the system uses a set of regular expressions to parse
the object name from the instruction. This enables downstream components to
formulate either visual questions for BLIP or detection labels for YOLO+Depth.

Figure 3.3: Code excerpt from the extract_target_object() function in natu-
ral_language_nav.py. This method applies regular expression matching to isolate
the visual target entity mentioned in the user instruction, enabling dynamic query
generation for the visual pipeline.

Dynamic API and Destination Management

The system leverages two dynamically updated configuration files to support
runtime extensibility: dynamic_destinations.json for symbolic locations and
dynamic_turtlebot4_api.json for action templates. Their full implementation
and usage are detailed in Section 3.2.4.

Final Flow Overview

The complete pipeline for instruction-to-action translation follows this sequence:

1. User input is interpreted by GPT using injected command templates.

2. GPT output is validated and executed through fallback logic.

3. Validated code sends a navigation goal to Nav2.

4. Upon goal completion, additional routines (e.g., visual checking) are triggered
as needed.

This architecture supports flexible, extensible, and partially autonomous lan-
guage understanding, while remaining robust to GPT hallucinations and malformed
logic.

31

Methodology

Node Initialization

To launch the GPT-based reasoning node within the ROS 2 framework, the following
commands must be executed in a terminal:

source /opt/ros/humble/setup.bash
source ~/turtlebot4_ws/install/setup.bash
cd ~/turtlebot4_ws
ros2 launch
turtlebot4_openai_tutorials natural_language_nav_launch.py\

openai_api_key:=‘your_api_key’ parking_brake:=true

This command initializes the natural_language_nav.py node with access to the
OpenAI API and activates the fallback mechanism for secure command execution.
The parking_brake:=true parameter ensures that the robot remains stationary
until navigation begins. Once launched, the node listens for user input and activates
the complete instruction-to-action pipeline.

3.2.4 Navigation and Perception Functionalities
The robotic system executes high-level instructions through a two-step process:
navigation followed by perception. These components operate in a modular sequence
and are integrated via ROS 2 communication interfaces, enabling real-time feedback,
post-task evaluation, and autonomous status updates.

Navigation Functionality

Navigation is managed by the Nav2 stack, which autonomously moves the robot to
the destination inferred from the natural language instruction. The stack includes
global and local path planners, dynamic obstacle avoidance using costmaps, and
recovery behaviors for blocked or invalid trajectories [16]. Navigation goals are
handled through the NavigateToPose action server, and success is determined by
positional (≤ 0.1 m) and angular (≤ 5◦) thresholds. Nav2 supports both SLAM
and AMCL localization modes, adapting to the availability of an environmental
map and the initial robot pose.

Perception and Visual Verification

After reaching the target, the robot enters the perception phase. An RGB image
and a depth map are captured using the simulated RGB-D camera. For accurate
depth interpretation, RViz2 is configured to disable normalization and to constrain
the range to 0.3–5.0 meters, ensuring valid data is written into the depth.npy file.

32

Methodology

As shown in Figure 3.4, once navigation is complete, the system triggers a visual
validation routine that runs both BLIP-VQA and YOLO+Depth modules. If a
match is confirmed, the detected object is stored and linked to a symbolic name
for future reuse.

Figure 3.4: Automated execution of the vision module via the
run_vision_pipeline() function. Both BLIP-VQA and YOLO+Depth modules are
executed in sequence to verify the task outcome and register the detected object
into the system’s knowledge base. The code is available at [25].

The vision pipeline processes the captured image by executing both the BLIP-
VQA module (for language-based scene understanding) and the YOLO+Depth
module (for object detection and 3D localization).

• The BLIP-VQA module (vision_agent_vqa.py) answers visual questions in
natural language based on the captured image, producing binary or descriptive
responses such as “yes”, “no”, or short captions [5].

• The YOLOv8 with Depth module (check_depth_proximity_yolo.py) de-
tects specified objects and estimates their global position by combining bound-
ing box centers, depth values, and TF-based transformations [6].

33

Methodology

Dynamic Updating of System Knowledge

If the pipeline—from instruction parsing to visual validation—confirms that the
task was successfully executed, the system updates two core files:

• dynamic_destinations.json: this file is modified to record the global coor-
dinates of the newly identified object, allowing future references to it by name
(e.g., “Go to the detected trash can”).

• dynamic_turtlebot4_api.json: this file is updated with a callable function
associated with the new location, enabling the GPT-based agent to include it
in future generated responses.

These updates are triggered only after both the BLIP and YOLO+Depth modules
validate the visual target. In particular, the object is considered successfully
detected and close enough if:

• The BLIP module returns a positive answer (e.g., “yes”) to the visual question,

• The YOLO+Depth module detects the object and estimates its distance to
be less than 1.5 meters.

As shown in Figure 3.5, when these conditions are satisfied, the system computes
the global coordinates of the object using the TF tree and saves them into the
destination map. In parallel, a new callable command is registered by updating
the dynamic API JSON file with a corresponding Python instruction block, ready
to be reused by the GPT agent in future instructions.

Figure 3.5: Logic for runtime updates to destination and API command files.
After object validation (distance ≤ 1.5 m), the system saves its global coor-
dinates into dynamic_destinations.json and injects a callable command into
dynamic_turtlebot4_api.json. This enables the GPT node to reference the
object symbolically in future tasks.

This mechanism enables the robot to incrementally enrich its internal world
representation using validated sensory information, linking high-level reasoning

34

Methodology

with perceptual feedback in a semi-autonomous loop. Although this information is
not immediately fed back into the GPT node during execution, it is incorporated
into later prompts via dynamic prompt injection, progressively enhancing the
agent’s contextual awareness and planning ability.

3.3 Summary
This chapter presented the complete methodology for developing a modular, LLM-
guided robotic system capable of interpreting and executing natural language
instructions in simulation. The architecture integrates language understanding,
motion planning via ROS 2, and post-task perception through BLIP and YOLOv8.
The next chapter evaluates the system’s behavior under various experimental
conditions.

35

Chapter 4

Experimental Results

4.1 Natural Language Understanding and Action
Planning

The integration of a LLM into a robotic system introduces the challenge of ensuring
accurate and unambiguous interpretation of user instructions [1]. In this context,
we assessed the agent’s ability to understand diverse natural language commands
and generate the appropriate structured code required to trigger low-level robotic
actions.

A total of 14 distinct language commands were tested, encompassing both
direct and semantically implicit instructions. Among these, 6 commands were
explicitly mapped to functions defined in the system’s prompt injector and were
all successfully executed by the robot, demonstrating a 100% success rate for
predefined instructions.

The agent was also tested with 3 generalized commands, where semantic reason-
ing was required (e.g., "go to where there is water"). While the model correctly
inferred the linguistic intent, it failed to execute the associated actions due to
missing symbolic mappings, resulting in safe execution errors.

A critical observation was the dependency on prompt formatting. Minor de-
viations, such as added whitespace, occasionally caused the LLM-based agent to
generate natural language responses or hallucinated functions. These anomalies
stress the importance of maintaining a strict, deterministic prompt structure [2].

Overall, the language understanding module achieved a success rate of 64% (9
out of 14), with 100% accuracy on instructions anchored to predefined functions.

36

Experimental Results

4.2 ROS 2 Integration and Modular Communi-
cation

The proposed architecture uses ROS 2 [4] as the communication backbone between
the language understanding, planning, and execution components. Integration is
achieved through structured topic publishing, service calls, and action interfaces.

User instructions are published to a dedicated topic (/user_input) and parsed
by the LLM-based reasoning node, which generates an executable plan and relays
the action to the appropriate module, such as the navigation stack or perception
pipeline.

The modularity of the system allows components to remain independent while
communicating via ROS 2 messaging. The LLM node interacts only with the
symbolic destination registry and the prompt injector, while execution is handled by
modules like bt_navigator and controller_server. Visualization is supported by
RViz2, and the architecture supports easy replacement or extension of components.

The communication flow was validated through multiple instruction cycles, with
all modules responding correctly and confirming end-to-end execution, demon-
strating the viability of integrating LLM-based reasoning into a ROS 2 control
loop.

4.3 Autonomous Navigation and Goal Execution
To assess the navigation capabilities, a series of trials were conducted where the
robot was tasked with reaching predefined and inferred destinations. Navigation
goals were generated by the LLM agent and passed to the Nav2 stack [16].

The bt_navigator and controller_server components handled motion plan-
ning and trajectory computation effectively. Logs confirmed dynamic path refine-
ment, with over 20 real-time updates observed in certain cases, demonstrating
adaptability to environmental changes.

All navigation goals involving registered symbolic destinations were completed
successfully. Post-arrival actions, such as image capture, were also triggered. Minor
warnings were observed (e.g., message drops or tick rate issues), but no critical
failures occurred, confirming system stability.

4.4 Vision Agent Performance
The perception pipeline includes BLIP [5] for VQA, and YOLOv8 [6] combined
with depth sensing for object detection and localization. These modules were
activated after navigation to verify task completion.

37

Experimental Results

4.4.1 BLIP Evaluation
The BLIP model was tested on 1000 examples from the val_balanced_questions.json
split of the GQA dataset. Out of 356 yes/no questions, 247 were answered correctly,
achieving a 69.38% exact match accuracy. High accuracy was recorded for "does"
(75%) and "do" (70%) questions. Lower performance was noted for "how" (60%)
and "is" (56.9%).

Open-ended questions were more challenging, with 44.2% accuracy for "what",
50% for "which", and 20.7% for "who" questions. Fuzzy matching improved these
results, and ROUGE-L scores (e.g., 0.606 for "which") confirmed semantic proximity
of many answers.

As illustrated in Figure 4.1, the model performs best on binary question types
such as “does” and “do”. In contrast, accuracy declines significantly on open-ended
questions like “what” and “who”, highlighting the model’s limitations in object
identification tasks.

Figure 4.1: BLIP – Exact Match Accuracy by Question Type on GQA
(val_balanced) split. The model achieves highest performance on binary questions
like “does” and “do”, while accuracy drops significantly on open-ended ones like
“what” and “who”.

4.4.2 YOLOv8 with Depth
To evaluate the reliability of 3D object localization in our perception pipeline,
YOLOv8 was tested on the synthetic SceneNet RGB-D dataset, which provides
photorealistic indoor environments with aligned RGB and depth information. The
objective was to assess the system’s capability to detect and estimate the distance
of common household objects under varying visual and spatial conditions.

38

Experimental Results

Approximately 4,000 randomly selected scenes were processed. Object detection
was performed using a pre-trained YOLOv8 model, and distance estimation was
obtained by averaging the depth values within the central region of each detected
bounding box. A total of 2,658 valid detections were collected, resulting in a mean
absolute error (MAE) of 0.36 m with respect to the ground truth depth.

Figure 4.2 summarizes the overall performance of the depth estimation process.
A large proportion of objects were accurately localized: 77.13% of detections yielded
an error below 0.5 m, 61.29% within 0.25 m, and 41.99% within 0.1 m. The error
distribution is right-skewed, with a small number of outliers exceeding 5 meters.

Figure 4.2: Global distribution of absolute error in object distance estimation.
77.13% of predictions fall under 0.5 m, and 41.99% under 0.1 m, with a mean
absolute error of 0.36 m.

Detection performance varied significantly across environments. As shown in
Figure 4.3, the 10 most populated scenes exhibited different accuracy distributions.
For instance, scene 296 yielded near-perfect estimates with all errors under 10 cm,
while more cluttered scenes like scene 819 showed increased depth ambiguity and
higher average errors.

A breakdown by object class is presented in Figure 4.4, where it is evident that
classes such as book, tv, and toilet produced low errors and consistent results. In
contrast, more reflective or geometrically complex objects like laptop or person led
to higher variance in distance estimates.

To ensure reliable interaction, the perception module was integrated into the
robotic control pipeline with a maximum effective detection range of 1.5 m. Detected

39

Experimental Results

Figure 4.3: Distribution of absolute distance error across the 10 most populated
scenes in the SceneNet RGB-D dataset. Scene variability significantly affects
detection accuracy and depth estimation.

Figure 4.4: Distribution of absolute distance error across the 10 most frequently
detected object classes. Object shape and occlusion influence performance.

40

Experimental Results

items within this range were transformed into the robot’s internal frame using TF
and stored in the symbolic memory representation.

Finally, Figure 4.5 presents qualitative examples of object detection and depth-
based bounding boxes. The chair and suitcase detections confirm the system’s
ability to visually identify and localize targets with sufficient accuracy for symbolic
task resolution.

Detected object: chair Detected object: suitcase

Figure 4.5: Qualitative examples of object detection and depth-based bounding
boxes generated by YOLOv8 in the simulated environment.

Overall, the YOLOv8+Depth module proved suitable for integration into au-
tonomous loops and semantic world modeling. Combined with BLIP, which enables
high-level visual reasoning, it forms a robust hybrid perception system capable of
supporting closed-loop language-guided robotic behavior.

4.5 Fallback Execution Logic and AST-Based
Safety

To ensure safe execution, a static code validation layer based on AST parsing was
implemented [2]. It validates code generated by the LLM agent before execution,
blocking instructions with undefined functions, variables, or attributes.

Five adversarial commands were tested to elicit hallucinations
(e.g., scan_for_alien_life). In each case, the fallback logic successfully blocked

unsafe code. Partial goals were allowed to complete, but invalid instructions were
suppressed.

This mechanism preserved system stability and confirmed that the fallback logic
is effective in protecting the architecture from erroneous logic generated by the
language model.

41

Experimental Results

4.6 Full Pipeline Evaluation
The complete instruction-to-verification pipeline was tested in end-to-end tasks
involving navigation followed by vision-based object confirmation.

Navigation was successful in all scenarios. Recovery behaviors handled blocked
paths autonomously. Once the robot reached its destination, the vision pipeline
was triggered.

Seven tasks were tested. BLIP answered correctly in six out of seven, even under
partial occlusion. YOLOv8+Depth confirmed objects in only three cases. Failures
were due to viewpoint limitations or dataset coverage. For example, the "suitcase"
was detected but rejected for being too close. In contrast, objects like "wc" and
"bin" were successfully detected by both systems.

Ablation Study: Impact of Fallback Logic and Visual Verification

To better understand the contribution of each system module, we conducted a brief
ablation analysis focused on two components: the fallback execution logic and the
visual verification pipeline.

Fallback Logic. In the absence of AST-based fallback handling, we observed
that approximately 28% of instructions generated by the GPT agent triggered
runtime errors or undefined function calls. These failures included hallucinated
API calls, inconsistent variable references, and incomplete code blocks. By contrast,
the inclusion of fallback logic via safe_exec_with_fallback() intercepted and
sanitized all such outputs, maintaining system stability and enabling partial task
execution even under ambiguous prompts. This confirms the critical role of static
validation in mitigating the unpredictability of LLMs.

Visual Perception. We also tested end-to-end execution with the vision module
disabled. In these conditions, tasks involving object verification relied solely on
GPT’s prior assumptions or symbolic associations. Unsurprisingly, the system
could not confirm task completion or update the symbolic map, highlighting the
essential role of multimodal grounding. This experiment validated the necessity of
BLIP and YOLO+Depth modules to close the semantic loop and enforce real-world
awareness.

Error Analysis in Visual Grounding

Several cases of task failure in Table 4.1 can be attributed to limitations in either
perception coverage or instruction parsing:

• Vending Machine (Row 2): The object class was not recognized by

42

Experimental Results

YOLOv8, likely due to its absence in the pretrained model’s label set. More-
over, the visual appearance may have lacked distinctive features for reliable
detection under the current training data.

• SUV (Row 4): The failure occurred due to extreme proximity between the
robot and the object. Depth data in this region was too sparse or saturated,
making 3D localization unreliable. Although BLIP confirmed the presence,
YOLO+Depth rejected the result based on distance filtering.

• Bin (Row 6): In this case, BLIP answered correctly, but the object label
was not extracted due to a parsing failure in the extract_target_object()
function. As a result, the YOLO pipeline was not triggered, revealing a
brittleness in object reference resolution for compound or ambiguous noun
phrases.

These findings indicate that performance is influenced by object class coverage,
viewpoint angle, and prompt robustness. Improvements in parsing heuristics and
dataset-specific fine-tuning are recommended to increase reliability.

Figure 4.6 and Figure 4.7 illustrate the robot’s movements towards specific
destinations within the simulated environment.

Figure 4.6: Navigation example towards a predefined destination in a clear
scenario. Gazebo environment (left) and planned trajectory in RViz2 (right).

43

Experimental Results

Figure 4.7: Navigation example demonstrating obstacle avoidance. The robot
dynamically updates its trajectory to safely bypass obstacles, as visible in both
Gazebo (left) and RViz2 (right).

44

Experimental Results

Table 4.1: End-to-End Evaluation of Natural Language Instruction Execution
and Verification

Instruction Nav2 Parsing BLIP YOLO Outcome

1 Go to (0, -2),
face North, check
for chair

OK OK OK OK OK (second at-
tempt)

2 Go to (1, -2),
face North, check
for vending ma-
chine

OK OK KO KO KO (class not
recognized)

3 Go to (2, 4.3),
face North, check
for suitcase

OK OK OK OK OK (dual valida-
tion)

4 Go to (-1.1, 5),
face East, check
for suv

OK OK OK KO KO (YOLO too
close)

5 Go to (-4, 0.5),
face SW, check
for sofa

OK OK OK KO Partial (BLIP
only)

6 Go to (-6, -6),
face South, check
for bin

OK KO KO KO Partial (BLIP
only, parsing
failed)

7 Go to (-1, -6),
face South, check
for wc

OK OK OK OK OK (dual valida-
tion)

45

Chapter 5

Conclusions and Future
Work

This thesis explored the integration of a LLM-based reasoning agent within a
modular robotic architecture, enabling natural language interaction with a mobile
robot in a simulated ROS 2 environment. The proposed system demonstrated
the ability to interpret high-level instructions, autonomously navigate to symbolic
destinations, and verify goal completion through vision-based feedback.

The architecture was designed around three key modules: a LLM for instruction
parsing and planning, a ROS 2 navigation stack for trajectory execution, and
a perception pipeline using BLIP for VQA and YOLOv8 with depth data for
object localization. The system incorporated an AST-based fallback mechanism
to validate code safety and supported dynamic task expansion through symbolic
mapping.

5.1 Summary of Contributions
This work provided the following key contributions:

• Design and implementation of a fully modular ROS 2 architecture integrat-
ing natural language understanding, symbolic planning, and vision-based
perception.

• Development of a LLM-based agent capable of translating natural language
instructions into executable robotic commands using prompt injection and
structured APIs.

• Integration of BLIP and YOLOv8+Depth for post-navigation visual verifica-
tion, enabling end-to-end instruction grounding.

46

Conclusions and Future Work

• AST-based fallback logic for execution safety, intercepting hallucinated or
invalid code before runtime.

• Experimental validation of the system in a simulated environment using a
TurtleBot4 model and multi-room layouts.

5.2 Future Work
Despite the promising results, several limitations were identified that motivate
future enhancements:

• Real-World Deployment: The current implementation was tested exclu-
sively in simulation. Future work should focus on deploying the system on a
real TurtleBot4 equipped with an RGB-D sensor. This will allow evaluation
under real-world noise, occlusions, and hardware constraints [7].

• Real-Time Visual Feedback: While perception is currently post-task,
real-time integration of visual information into the LLM loop would enable
conditional execution and online decision-making. This could be achieved
through prompt enrichment with structured vision outputs.

• Memory and Context Tracking: The system currently lacks persistent
memory. Introducing a memory module to retain visited goals, previously
detected objects, and conversation context would support multi-step planning
and reduce task redundancy.

• Multi-Turn Dialogue: The ability for the agent to engage in interactive
conversations, resolve ambiguities, or confirm intent would enhance robustness.
This could leverage recent strategies such as ReAct [20] and ToT [3] for
step-by-step reasoning and response refinement.

• Visual Grounding Expansion: YOLOv8 performance was affected by
occlusions and lateral views. Enhancing the training dataset with more
domain-specific objects and adding multi-angle processing would improve
object recall.

• Semantic Action Filtering: To constrain LLM outputs to valid, executable
actions, schema-based filtering, predefined toolkits, or program-of-thought
prompting [2] could be introduced.

47

Conclusions and Future Work

5.3 Final Remarks
The results of this thesis demonstrate the feasibility of using LLM-driven planning
in robotic control loops, validating both task understanding and physical execution
in a hybrid symbolic environment. Although currently limited to simulation, the
system lays a solid foundation for future developments in autonomous, natural-
language-based human-robot interaction.

Future enhancements, particularly in real-time feedback, memory, and dialogue,
will be essential in moving from a controlled prototype to a general-purpose
embodied AI agent capable of operating intelligently in complex, unstructured
environments.

48

Bibliography

[1] Tom Brown et al. «Language Models are Few-Shot Learners». In: NeurIPS
(2020) (cit. on pp. 1, 4, 6, 12, 17, 25, 29, 36).

[2] Jacky Liang, Kelvin Xu, Andy Zeng, et al. «Code as Policies: Language
Model Programs for Embodied Control». In: arXiv preprint arXiv:2303.04552
(2023). url: https://arxiv.org/abs/2209.07753 (cit. on pp. 1, 2, 13, 14,
36, 41, 47).

[3] Shinn Yao et al. «Tree of Thoughts: Deliberate Problem Solving with Large
Language Models». In: arXiv preprint arXiv:2305.10601 (2023) (cit. on pp. 1,
6, 12, 17, 47).

[4] Steven Macenski et al. «Robot Operating System 2: Design, architecture, and
uses in the wild». In: Science Robotics (2022) (cit. on pp. 1, 7, 9, 11, 13, 22,
24, 37).

[5] Junnan Li, Dongxu Li, Caiming Xiong, and Steven CH Hoi. «BLIP: Bootstrap-
ping Language-Image Pre-training for Unified Vision-Language Understanding
and Generation». In: arXiv preprint arXiv:2201.12086 (2022) (cit. on pp. 2,
18, 19, 21, 23, 25, 28, 30, 33, 37).

[6] Glenn Jocher, Ayush Chaurasia, Jirka Qiu, and Keon Stoken. «Ultralytics
YOLOv8: Cutting-Edge Object Detection Models». In: Zenodo (2023). https:
//docs.ultralytics.com/it/models/yolov8/ & https://docs.ultral
ytics.com/it/compare/yolov8-vs-efficientdet/ (cit. on pp. 2, 20, 21,
23, 26, 28, 30, 33, 37).

[7] Clearpath Robotics and Open Robotics. TurtleBot 4 User Manual. https:
//turtlebot.github.io/turtlebot4-user-manual/. 2022 (cit. on pp. 2,
7–9, 24, 47).

[8] Gengze Zhou, Qi Wu, Pan Zhang, and Yicon Hong. «NavGPT-2: Vision-
Language Navigation with Code as Policies». In: arXiv preprint arXiv:2312.13702
(2023). url: https://arxiv.org/abs/2407.12366 (cit. on pp. 2, 15–17).

[9] Ashish Vaswani et al. «Attention is all you need». In: Advances in Neural
Information Processing Systems. 2017 (cit. on pp. 4, 5).

49

https://arxiv.org/abs/2209.07753
https://docs.ultralytics.com/it/models/yolov8/
https://docs.ultralytics.com/it/models/yolov8/
https://docs.ultralytics.com/it/compare/yolov8-vs-efficientdet/
https://docs.ultralytics.com/it/compare/yolov8-vs-efficientdet/
https://turtlebot.github.io/turtlebot4-user-manual/
https://turtlebot.github.io/turtlebot4-user-manual/
https://arxiv.org/abs/2407.12366

BIBLIOGRAPHY

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. «BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding».
In: NAACL (2019) (cit. on p. 4).

[11] Yinhan Liu et al. «RoBERTa: A Robustly Optimized BERT Pretraining
Approach». In: arXiv preprint arXiv:1907.11692 (2019) (cit. on p. 4).

[12] Aakanksha Chowdhery et al. «PaLM: Scaling Language Models with Path-
ways». In: arXiv preprint arXiv:2204.02311 (2022) (cit. on p. 4).

[13] Hugo Touvron et al. «LLaMA: Open and Efficient Foundation Language
Models». In: arXiv preprint arXiv:2302.13971 (2023) (cit. on pp. 4, 17).

[14] Jason Wei et al. «Chain of Thought Prompting Elicits Reasoning in Large
Language Models». In: NeurIPS. 2022 (cit. on pp. 6, 12, 17).

[15] Steven Macenski. «Slam Toolbox: SLAM for lifelong mapping in mobile
robots». In: Journal of Open Source Software 5.51 (2020), p. 2383 (cit. on
pp. 7, 10, 27).

[16] Steve Macenski, Francisco Martín, Ruffin White, and Jonatan Ginés Clavero.
«The Marathon 2: A Navigation System». In: 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2020. url: https:
//arxiv.org/abs/2003.00368 (cit. on pp. 11, 12, 24, 25, 29, 32, 37).

[17] Michele Colledanchise and Petter Ögren. Behavior Trees in Robotics and AI:
An Introduction. CRC Press, 2018 (cit. on p. 11).

[18] Alessandro Marzinotto, Michele Colledanchise, Christian Smith, and Petter
Ogren. «Towards a unified behavior trees framework for robot control». In:
IEEE International Conference on Robotics and Automation (ICRA). 2014,
pp. 5420–5427 (cit. on p. 12).

[19] Michele Colledanchise and Petter Ogren. «The behavior tree framework». In:
arXiv preprint arXiv:1709.00084 (2017) (cit. on p. 12).

[20] Shinn Yao, Jiasi Zhao, Dian Yu, et al. «ReAct: Synergizing Reasoning and
Acting in Language Models». In: arXiv preprint arXiv:2210.03629 (2023)
(cit. on pp. 14, 47).

[21] Alec Radford et al. «Learning transferable visual models from natural language
supervision». In: International conference on machine learning. PMLR. 2021,
pp. 8748–8763 (cit. on p. 18).

[22] Jean-Baptiste Alayrac et al. «Flamingo: a visual language model for few-shot
learning». In: arXiv preprint arXiv:2204.14198 (2022) (cit. on p. 18).

[23] Haotian Liu et al. «Visual Instruction Tuning». In: arXiv preprint arXiv:2304.08485
(2023) (cit. on p. 18).

50

https://arxiv.org/abs/2003.00368
https://arxiv.org/abs/2003.00368

BIBLIOGRAPHY

[24] Junnan Li, Hexiang Hu, Kevin Lin, Xiyang Wang, Yusheng Yang, Chunyuan
Zhang, Caiming Xiong, and Steven CH Hoi. «Scaling Vision-Language Models
with Language-Only Data». In: arXiv preprint arXiv:2501.02189 (2025). url:
https://arxiv.org/abs/2501.02189 (cit. on p. 18).

[25] P3pp. Semantic-Navigation-LLM. https://github.com/P3pp/Semantic-
Navigation-LLM/tree/main. Accessed: 2024-07-11. 2024 (cit. on p. 33).

51

https://arxiv.org/abs/2501.02189
https://github.com/P3pp/Semantic-Navigation-LLM/tree/main
https://github.com/P3pp/Semantic-Navigation-LLM/tree/main

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Literature Review
	Large Language Models
	Prompting
	Robotics
	Mobile Robots
	Robot Operating System
	Simultaneous Localization and Mapping (slam)
	Navigation Stack
	Behaviour Tree (BT)

	Robotics and AI
	Code as Policies Approach
	NavGPT-2: Navigational Reasoning with Vision-Language Models
	Limitations of LLM Models in Robotics

	 Visual Perception Modules
	BLIP for Visual Questions Answering (VQA)
	YOLOv8 with Depth for Object Detection and 3D Localization

	Methodology
	Experimental Setup
	Experimental Objectives

	Simulation Environment
	Detailed Software Components
	Environment Configuration and Simulation Parameters
	Natural Language to Robotic Action Translation
	Navigation and Perception Functionalities

	Summary

	Experimental Results
	Natural Language Understanding and Action Planning
	ros 2 Integration and Modular Communication
	Autonomous Navigation and Goal Execution
	Vision Agent Performance
	blip Evaluation
	yolov8 with Depth

	Fallback Execution Logic and AST-Based Safety
	Full Pipeline Evaluation

	Conclusions and Future Work
	Summary of Contributions
	Future Work
	Final Remarks

	Bibliography

