NRIM

ISTITUTO NAZIONALE
DI RICERCA METROLOGICA

POLITECNICO DI TORINO

Master’s Degree course in Electronics Engineering

Master’s Degree Thesis

Design and program
implementation of a three axis
measuring machine control system

Supervisors Candidate
Prof. Gianfranco Genta Andrea Giura
Dr. Marco Pisani Student ID: 301253

ACADEMIC YEAR 2024/2025

This work is subject to the Creative Commons Licence

Summary

The aim of this thesis is to update an existing interferometric three-axis mea-
suring machine, used for measuring diameters and optical scales, by completely
re-designing and implementing a new control system. The project involves the in-
tegration of new motors and drivers, along with the development of a C++ software
program to manage the instrumentation. The upgraded machine features an ad-
vanced movement system and instruments for reading environmental parameters,
which are crucial for calculating the refractive index of air for the correction of the
laser wavelength and for compensating thermal errors. By incorporating these inno-
vations, this research aims to minimize uncertainty in both positioning and interfer-
ometric measurements of the samples, thereby enhancing the reliability, traceability
to the International System of Units (SI) and precision of the measurements. This
thesis will explore the challenges encountered during the modernization process,
including the selection of appropriate components and the calibration of the sys-
tem. Additionally, it will present the methodologies employed to ensure accurate
data acquisition and processing. Finally, this work aims to optimize the perfor-
mance of the renewed measuring machine, improving the quality and the timing
of the calibration service provided and opening the way to novel precise geometric
measurements in various research applications (e.g. semiconductor, automotive,
energy, etc.).

II1

Acknowledgements

Desidero esprimere la mia piu sincera gratitudine a coloro che hanno reso possibile
il raggiungimento di questo importante traguardo.

Un ringraziamento va al Professor Genta, per la preziosa guida e il supporto
durante la stesura di questa tesi. Desidero esprimere la mia gratitudine anche al
Dottor Pisani, per avermi seguito con professionalita nelle fasi di progetto.

Un ringraziamento speciale alla mia famiglia. A mio padre, per il suo supporto
e per aver sempre creduto in me. A mia sorella, per aver condiviso ogni momento.
A mia madre, che mi ha spinto ad intraprendere il percorso universitario senza
insistenza e, finché ha potuto, mi ha supportato nelle scelte e che, anche se da
lontano, continua a farlo.

Ringrazio di cuore i miei amici, per essere stati una fonte inesauribile di supporto
e per avermi sempre offerto momenti di spensieratezza e divertimento al di fuori
del contesto universitario.

La mia gratitudine va anche ai miei colleghi di lavoro. La loro comprensione e
disponibilita sono state preziose, permettendomi di gestire gli impegni tra lavoro e
universita, concedendomi flessibilita quando avevo bisogno di dedicare tempo allo
studio.

Grazie a tutti.

v

Contents

List of Tables

List of Figures

1 Introduction

2

1.1
1.2
1.3

Moore measuring machines

Normal machine operation
The INRIM framework

Design and implementation

2.1
2.2

2.3
24

2.5

2.6

2.7

XoYandZ axes oo
Motors e
2.2.1 Mounting and Adapter design
Motor drivers
Microcontroller
2.4.1 USART command handling
2.4.2 Square wave generation

Half Period resolution
2.4.3 Printed circuit board
Position measuring instruments
2.5.1 Laser interferometer
2.5.2 Optical scales (linear encoders)
2.5.3 Cary LVDT sensor
2.5.4 Nilox webcam
Environmental monitoring 0oL
2.6.1 Thermometer

Command Explanations

TCP Client creation
2.6.2 Voltmeter

Barometer

Dewpoint igrometer
Moore controller

VII

VIII

o0 Ot =~ =

2.7.1 Acceleration rampso
2.7.2 Coordinate system definition
Fisheye and distorsion correction

Camera FOV to machine coordinate mapping

2.7.3 Multithreadingo
2.7.4 Documentation and Doxigen

2.8 Graphical user interface L.
28.1 Clayand Raylib.
Slider

Input Box o

Buttons

Radio Buttons.o

Complete GUT.

2.82 WxWidgets

3 Movement routines and testing
3.1 Approach
3.2 Probe parameters o
3.3 Reading correction
3.4 Maximum determination
3.0 Test programso
3.6 Measurement
3.6.1 Sphere diameter measurement
3.6.2 Optical confocal probe measurement
4 Uncertainty evaluation

4.1 Positioning erroro Lo
4.1.1 Error parameters oL

4.2 Measurement uncertainty
421 GUManalysis
4.2.2 Monte Carlo analysis

5 Conclusions
5.1 Future developments L

VI

87
87
88
92
92
96

101

List of Tables

2.1
2.2
2.3
24
2.5
4.1
4.2
4.3
4.4

4.5
4.6
4.7

Specifications of the PKP564N28B2-TS30 motor.
Selector / division correspondence.
STM32 USART configuration.
LVDT sensor communication parameters.
Industrial PC Specifications.
Overall deviation metrics between original and noisy points.

Deviation metrics for each axis (X, Y, Z)..
Bias metrics for each axis (X, Y, Z).
Measurement uncertainty estimation for diameter measurement com-
ponents. oL Lo
Sensitivity coefficients for the diameter measurement model. .
Results for Dyo0. 0 o o oo
Results for Dy o o o oo

VII

List of Figures

1.1
1.2
1.3
1.4

1.5

2.1

2.2

2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

2.15

Moore measuring machine in the INRiM laboratory.
Moore company logo. L
Moore model 3 outline and foundation layout.

Setup for diameter measurement of a ring sample with 10 mm gauge
block mounted next to the sample.

Traceability chain pyramidal representation. The moore machine is
used to transfer the reference national standard to the final users
primary standard (diametral sample).

Block diagram of hardware components present for normal machine
operation.

Composed view of the Moore machine parts, x, y and z carriages
and slides.

The Z axis movement assembly: (a) far view, (b) gear view.
Internal screw of the Moore machine x and y axes..
Oriental Motors PKP564N28B2-TS30.
Speed-Torque Curve
a) The designed adapter and b) how it is interfaced with the motor.
CVD528BR-K Driver.
Driver connection scheme.
Driver switches and selectors for step, current and function setting.
STM32 NUCLEO board.
STM32 ioc, pinout and alternate function pins.
Internal register diagram of timer peripheral in STM32 microcontroller.

Counter value and CCR registers with double output square wave
generation. The parameters of the simulation are: 77 = 30, T, = 13,
CCRystare = 0 (The ISR is called immediately so it starts from 7T}
and OC is already set), CCRogqre = 12, ARR=064.

Printed circuit board for STM32 and driver connection. (a) KiCAD
2D top view, (b) 3D view.

2.16

2.17
2.18
2.19

2.20
2.21
2.22
2.23
2.24
2.25
2.26
2.27
2.28

2.29
2.30
2.31
2.32
2.33
2.34
2.35

2.36
2.37
3.1
3.2
3.3
3.4
3.5
3.6
3.7

3.8

Moore machine interferometer setup. In red the optical path of the
laser beam which is parallel to the x-axis movement. The machine
view is from the side with the z-axis movement in the vertical direc-
tion and the x-axis movement entering the page.
E1735A laser reader.
Optical scales setup: a) Optical scale, b) IK220 PCI board.
Moore machine LVDT sensor setup: a) Cary LVDT sensor head, b)
Tesa LVDT sensor reader.
Nilox webcam
Thermometer FLUKE Super-DAQ with multiple channel expansion.
Agilent 3458A voltmeter.
Rosemount barometer.o
Michell Instruments S3000 igrometer monitor.
Moore core system classes and dependency / inheritance structure.
Acceleration ramps for motor control. L.
Chessboard pattern for camera calibration.
Image undistortion process, on the left the original image from the
Nilox camera, on the right the undistorted image.
AruCo marker detection.
Section of index.html page generated by Doxygen.
An example of code documentation generated by Doxygen.
Slider GUIl element.
Input Box GUI element.
Full GUI for motor testing.
Position control frames (a) position indication and setting, (b) speed
settings for each axis. L.
Environment parameters frame.
Measurement frame.
The approach path of the probe starting from an arbitrary position
PO to reach the position to start the approach.
Calibration of probe radius and deformation using a calibrated gauge
block.
Maximum determination algorithm result. The red line is the probe
reading, the blue line is the maximum position found.
(a) The Measurement class structure, (b) The Sample class structure
Setup for sphere measurement.
Measured gear tooth: (a) the gear tooth, (b) the scan path in the x
direction.
Chromatic confocal point sensor (a) the device used for the test
measurement, (b) the technology concept behind its functionality.
Measurement result in both directions with stitching points high-
lighted. Axes are not inscale.,

32
33
36

39
41
42
46
47
48
o1
52
26

57
29
63
64
67
69
71

72
72
73
76
7
80
81
82
84

84

4.1

4.2

4.3
4.4

4.5

The target (blue) and actual (red) points set and reached by the
machine: (a) An angled view of the points, (b) A side view to better
show the point deviation. All deviations are in 50:1 scale.
Probability density functions resulting from the single axis displace-
ment analysis.o
Result distributions: (a) probe diameter, (b) sample diameter. . . .
Monte Carlo simulation results with all test points for probe diameter
uncertainty L
Monte Carlo simulation results with all test points for sample diam-
eter uncertainty Lo Lo

Chapter 1
Introduction

Precision measurement of linear dimensions is a critical aspect in various scientific
and industrial applications, particularly in fields such as semiconductor manufac-
turing [1], automotive engineering [2], and energy production [3]. Located in INRiM
(Istituto Nazionale di Ricerca Metrologica) laboratory, is the Moore interferomet-
ric three-axis measuring machine (Figure 1.1), this instrument has been key in
metrological research and calibration services for decades, providing high-accuracy
measurements essential for ensuring the quality and reliability of linear samples [4].

The Moore machine was acquired by INRiM in the 1970s, marking the beginning
of its long-standing role in precision metrology. It is located in an underground
building designed ad hoc to minimize environmental disturbances, ensuring that
the machine operates under optimal conditions. The laboratory is equipped with
a temperature and humidity control system, which is crucial for maintaining the
stability of the measurement environment [5].

Initially, this machine was manually operated, requiring trained technicians to
perform measurements through a series of intricate adjustments and calibrations.
This manual operation not only made the process long and time-consuming, but
also introduced a significant potential for human error [6]. Operators had to rely
heavily on their expertise and experience to achieve accurate results, which could
vary based on individual handling and technique. As a result, the measurement
process was often slow and labor-intensive, limiting the machine’s efficiency. The
challenges associated with manual operation underscored the need for automation
and modernization, this led to subsequent developments that would enhance the
machine’s capabilities and usability.

In the late 1970s to early 1980s, the Moore machine was updated with an inter-
ferometer and an HP 85 computer [7] for acquiring environmental parameters and
interferometer data. This marked the beginning of its transition towards automa-
tion.

In 1990, the machine underwent a significant upgrade with the addition of opti-
cal scales and a control program written in Turbo Pascal [8] on an Olivetti 386 [9]

1

Introduction

Figure 1.1: Moore measuring machine in the INRiM laboratory.

computer running DOS 3.31. This upgrade allowed for fully automated measure-
ments, retaining the original direct current motors but adding the capability for
control via console, joystick, and remote control. The program implemented is still
in use and it lacks a graphical user interface (GUI) and is not user-friendly, pre-
senting challenges for operators who require a more intuitive and efficient means of
interacting with the machine. The absence of a modern interface has hindered the
machine’s usability and so it is now a priority to perform a comprehensive redesign
of its control system.

By 1995, the DC motors were replaced with stepper motors, further enhancing
the machine’s precision and control.

In 2003, the machine was equipped with a digital microscope head for measure-
ment purposes, adding the functionality to calibrate optical scales.

In 2010, significant advancements have been made, particularly through the in-
tegration of a multiple mirror setup into the existing laser interferometer system

2

Introduction

[10]. This innovative approach aims to address the challenges posed by small defor-
mations in the measurement machine, which can affect the accuracy and reliability
of the measurements obtained. The differential measurement approach not only en-
hances the precision of the measurements but also increases the system’s robustness
against environmental fluctuations. This is particularly important in high-precision
applications where even the slightest deviation can lead to significant errors. The
integration of the multiple mirror setup allows for real-time compensation of these
deformations, ensuring that the measurements remain consistent and reliable.

In 2013, procedures for measuring threads and screws were introduced [11],
expanding the range of applications for the Moore.

The Moore machine is primarily used for the calibration of linear samples, in-
cluding sphere radii, diameter samples [12], linear gauges, and optical scales. These
measurements are crucial for customers who rely on precision in their products and
processes. As such, the machine must exhibit good reliability and maintain low
error margins in positioning [13] to ensure that the calibration results are both
accurate and traceable.

In light of these considerations, the aim of this thesis is to modernize the Moore
machine by completely redesigning and implementing a new control system. The
project involves the integration of new motors and drivers, alongside the develop-
ment of a robust C++ software program to manage the instrumentation effectively.
The upgraded machine will feature an advanced movement system, enhancing its
operational capabilities, speed and allowing for more precise control over the mea-
surement process.

The Moore machine is equipped with advanced instruments designed to read
environmental parameters, which play a crucial role in ensuring precise laser inter-
ferometer readings. These parameters include temperature, humidity, and atmo-
spheric pressure, all of which can significantly influence the refractive index of air.
By accurately measuring these environmental conditions, the system can calculate
the refractive index with precision, allowing for the necessary corrections to be ap-
plied to the laser wavelength during measurements. This correction is vital, as even
minor fluctuations in environmental conditions can lead to substantial errors in the
calculated dimensions of the samples being measured [14].

In the next chapters of this thesis, we will delve into the design and implemen-
tation of the measurement system, beginning with a detailed examination of the
mechanical components, including the continuous screw system of the axes and
the specifications of the stepper motors chosen, as discussed in Chapter 2. This
section will cover motor drivers, microcontroller specifications, command handling
and square wave generation. We will discuss the various position measuring in-
struments employed in the system, such as laser interferometers, optical encoders,
sensors, and the integration of a Nilox webcam for the definition of the reference
systems in Section 2.5. The C++ Moore controller [15] section will introduce the
programming objectives and the implementation of acceleration ramps, coordinate

3

Introduction

system definitions using OpenCV, and the use of multithreading for simultaneous
axis movement and environmental parameter monitoring in Section 2.7. Further-
more, we will address the need of measuring environmental parameters, including
the calculation of the air refractive index for wavelength correction, and the commu-
nication interfaces for the thermometer, barometer, and hygrometer in Section 2.6.
The graphical user interface section will outline the essential controls, discussing
the libraries considered for the project, including Clay, Raylib, and WxWidgets,
which was selected for its advantages in Section 2.8. Finally, we will present the
testing and uncertainty budget chapters, where we will calculate the positioning
and measurement uncertainties using the GUM and Monte Carlo methods, provid-
ing a comprehensive understanding of the system’s performance and reliability in
Chapters 3 and 4. The thesis will conclude with a summary of the findings and
reflections on the project’s outcomes.

1.1 Moore measuring machines

The Moore Special Tool Co. Inc. [16] was founded in 1924 by Richard F. Moore,
who began working in the milling department at the Remington Arms Company
at the age of 18 thanks to his uncle Ira Moore, who was a foreman there. Moore
worked for six years in various shops, eventually landing in the toolroom of the
Singer Sewing Machine Company for three years before starting his own business.

The
first half

century

Figure 1.2: Moore company logo.

In 1924, Moore started his business with a small collection of used machines: a
Hendey Lathe, a Brown & Sharpe Miller, a Producto Drill, and a LeBlond Universal
Grinder [17]. His only new machine was an American Shaper. In 1926, Bill Angell
joined the company and worked as Moore’s "right-hand man" until 1957. By 1930,
the company grew to 12 employees and eventually moved to a larger space owned

4

1.2 — Normal machine operation

by Rudolph Bannow and Magnus Dannow, the future designers and manufacturers
of the Bridgeport milling machine.

The Moore Company later partnered with Dallas Optical Systems to build ultra-
precision, computer numerical controlled (CNC) diamond-turning machines. These
machines, such as the M-40, were used to create precise contours on large telescope
mirrors and shafts, the Moore Nanotechnology Systems Company was established
to produce these machines.

In 1957 the M-18 (No. 3) measuring machine (Figure 1.3) was produced, the
machine is composed of a base, a table, and a cross slide assembly. Table movement,
longitudinal and transverse, is made by means of precision lead screws. These are
operated, on the standard machine, by handwheel and read on large dials graduated
to 5.0 um, read against verniers to 0.5 ym. As optional equipment, the handwheel
could be replaced by a motorized drive unit. In addition electrical limit switches
are present to shut off power if the table reaches the end of its travel.

For the Z axis, the vertical movement is done in two stages. The first stage is
a coarse adjustment made by manually moving the entire Z assembly up or down
along the vertical column. The second stage is a fine adjustment achieved through
a precision gear, which is operated by a handwheel that moves a cylinder placed
inside the Z assembly. This fine adjustment allows for precise control of the vertical
position.

1.2 Normal machine operation

In this section we will discuss the typical machine setup and operation to perform a
measurement, the goal is to explain why the modernization of the machine control
system is really necessary and what are the current problems that are inherent to
the old machine implementation.

The machine is primarily used to measure one dimensional feature samples such
as diametral samples, optical scales, spheres and linear encoders. A measurement
is obtained by combining the reading of the interferometer, mounted on the x-axis,
with the reading of the cary (LVDT sensor), mounted on the z-axis but sensible
to the x displacement of the probe. In practice this means that the machine must
make contact between the sample side and the probe ball, read both instruments
and repeat the operation in all the positions of interest needed to obtain the mea-
surement result.

To perform a measurement, the following steps are typically followed:

1. Mounting the Sample: The sample must be mounted firmly on the machine
to ensure stability and accuracy during the measurement process. Any move-
ment or instability can lead to significant errors in the measurement results.

2. Calibrated Gauge Block: A calibrated gauge block of 10 mm must be
mounted next to the sample in line with the x-axis of the machine.

5

Introduction

S0 = _"' T T g

Figure 1.3: Moore model 3 outline and foundation layout.

TE

1.2 — Normal machine operation

Figure 1.4: Setup for diameter measurement of a ring sample with 10 mm gauge block
mounted next to the sample.

3. Positioning the Spherical Steel Ball: A spherical steel ball must be po-
sitioned on top of the sample (in case of a ring sample) to find the reference
z starting quote of the cylinder side wall. This step is crucial for determining
the initial position of the sample in the z-axis, which is necessary for accurate
measurements.

4. Manual Positioning: Manually moving the machine, the operator makes
contact with the block and the sample to tell the program that controls the
machine where the pieces are situated. This step involves careful adjustments
to ensure that the machine’s sensors are correctly aligned with the sample and
the gauge block.

5. Setting Parameters: The operator sets the parameters on the program,
including the probe radius, sample nominal value, probe length, and other
relevant settings. These parameters are essential for the machine to accurately
interpret the measurements and perform the necessary calculations.

6. Starting the Measurement: The operator starts the measurement process.

7

Introduction

The program begins by refining the position of the sample, scanning the side
walls of the sample to find the maximum and measure the radius in the correct
y and z position (Section 3.4).

7. Measuring the Gauge Block: The measurement proceeds by measuring the
block to determine the correct ball radius of the probe and the deformation
of the axle of the probe as explained in section 3.2. The steel axle, which is
used to measure the sample, can deform due to the pressure exerted during
the measurement process even if the force used in the contact is minimal.
This deformation must be accounted for in the calculations to ensure accurate
results.

8. Measuring Environmental Parameters: The environmental parameters
of the laboratory, such as temperature, humidity, and atmospheric pressure,
are measured. These parameters can significantly influence the accuracy of
the measurements, so it is essential to account for them in the calculations.

9. Measuring the Sample: The sample is measured multiple times (n times)
to ensure accuracy and repeatability. Repeating the measurements helps to
identify any inconsistencies or errors and provides a more reliable result.

In conclusion, the current operation of the Moore machine involves a series of
meticulous steps that require significant manual intervention and expertise. While
the machine has undergone various upgrades over the years, the need for a mod-
ernized control system is evident. The existing control program lacks a user-
friendly interface and automation capabilities, making the measurement process
time-consuming and error-prone. By redesigning and implementing a new control
system, the machine’s efficiency, accuracy, and usability can be significantly en-
hanced, paving the way for more advanced metrological research and calibration
services.

1.3 The INRiM framework

INRiM is the Italian National Metrology Institute [18], which is responsible for the
realization and dissemination of the national measurement standards. It is a public
research institute. INRiM plays a crucial role in ensuring the accuracy and relia-
bility of measurements in various fields, including length, mass, time, temperature,
electricity, and more. The institute collaborates with international organizations
to maintain and improve measurement standards and practices, contributing to the
global metrology community.

There are three main goals of the institute: the scientific research, the metrology
services and the dissemination of the metrology culture. The scientific research is
focused on the development of new measurement standards and techniques, while

8

1.3 — The INRiM framework

the metrology services are aimed at providing calibration and testing services to in-
dustry and other organizations. The dissemination of the metrology culture (third
mission or knowledge transfer) is focused on promoting the importance of metrol-
ogy and its impact on society, industry, and research. This includes educational
programs, workshops, and collaborations with other institutions to raise awareness
about the significance of accurate measurements in various fields.

The work here presented is related to the first two goals, since the Moore machine
is used to perform metrology services for accredited laboratories and to provide
reliable measurements for research goals at the macro scale, for example measuring
automotive or energy system mechanical parts.

The national metre standard is the basis for all length measurements in Italy
and is maintained by INRiM, the Moore machine mounts an interferometer that
is used to measure the length of the sample. This instrument is calibrated against

the national standard to ensure the traceability chain in the measurement (Figure
1.5).

Vel
ESI»
@

Sl

PRIMARY STANDARD
(transfer standard)

FINAL USERS
INSTRUMENTATION

Figure 1.5: Traceability chain pyramidal representation. The moore machine is used to
transfer the reference national standard to the final users primary standard (diametral
sample).

Theoretical note 1 Traceability is the property of a measurement result that al-
lows it to be related to a national or international standard through an unbroken
chain of comparisons, each contributing to the measurement uncertainty. This en-
sures that measurements are consistent and comparable across different laboratories
and applications.

10

Chapter 2
Design and implementation

The design of the control system begins with a comprehensive understanding of
the requirements and constraints of the Moore machine. This chapter provides an
in-depth look at the hardware components that form the backbone of the system,
detailing their roles and interactions to achieve precise and reliable operation.

In Figure 2.1 is reported the block diagram of all the hardware components used
for the Moore project for normal machine operation. Other external devices can be
connected to allow for different measurements and expand the machine capabilities.

SECONDARY POSITION ENVIRONMENTAL
DRIVERS & MOTORS INSTRUMENTS PARAMETER INSTRUMENTS

Ep @,
By @,
Xy .

a1y
i

PRIMARY POSITION INSTRUMENTS

< B

LASER
[L u —

_ ENCODERS
[u_ 1~ -

Figure 2.1: Block diagram of hardware components present for normal machine opera-
tion.

CONTROLLERS (PC & MICROCONTROLLER)

11

Design and implementation

The system is composed of two main sections: the motion control section and
the environmental parameter control section. Each of these sections plays a crucial
role in ensuring the overall functionality and precision of the measurement system.

The motion control section is primarily responsible for the accurate position-
ing and movement of the machine. This section is further divided into two key
components: position measurement instruments and actuators. The position mea-
surement instruments are essential for providing real-time feedback on the location
of the moving parts. These instruments can include laser interferometers, optical
encoders, and other high-precision sensors that detect the position of the axes. The
ability to utilize multiple position measurement instruments on the same axis allows
for differential measurements.

On the other hand, the actuators consist of motor drivers, stepper motors, and
a microcontroller. The motor drivers are responsible for controlling the power
supplied to the motors, enabling precise control over their speed and position. The
stepper motors, chosen for their high accuracy and repeatability, convert electrical
signals into mechanical movement, allowing for fine adjustments in positioning.
The microcontroller serves as the brain of the motion control system, processing
input from the position measurement instruments and executing commands to the
motor drivers based on this data. This closed-loop control system ensures that the
motors are adjusted in real-time to maintain the desired position, compensating for
any external disturbances or errors detected by the measurement instruments.

The second section of the system, dedicated to environmental parameter control,
is equally important. This section monitors various environmental factors that can
influence the measurement process, such as temperature, pressure, and humidity.
By integrating sensors for these parameters, the system can make necessary ad-
justments to the measurements, ensuring that they remain accurate under varying
conditions.

The PC plays a pivotal role in this entire setup, acting as the central hub that
integrates both sections. It processes the data received from the position measure-
ment instruments and environmental sensors, executing algorithms that determine
the optimal motor commands. This feedback loop is critical for maintaining the
precision of the system, as it allows for continuous monitoring and adjustment based
on real-time data.

The following sections explain in detail all the components and how they are
configured.

2.1 X, Y and Z axes

The axis system of the machine is designed to provide precise and controlled move-
ment in multiple dimensions, facilitating accurate measurements and operations.
The X and Y axes are similar in their construction and functionality, each featuring

12

2.1 - X, Y and Z axes

a continuous screw with a constant pitch. This design allows for a movement of 3
millimeters for every complete rotation of the screw.

The system consists of several key components: a sliding carriage, linear guides,
and the continuous screw (Figure 2.4). The sliding carriage is mounted on the
linear guides, allowing for smooth and stable movement along the X and Y axes.
The continuous screw is responsible for converting rotational motion into linear
displacement, enabling the carriage to move accurately in response to the motor’s
commands. This configuration ensures that the X and Y axes can operate seam-
lessly, providing the necessary positioning for various measurement tasks.

Z CARRIAGE
AND CYLINDER
GUIDE

i i3
3 . I

X CARRIAGE & 1\
SAMPLE HOLDER

T
X GUIDE & /) iii =
~

Z COARSE
ADJUSTMENT
GUIDE

‘\

Y CARRIAGE

1 /o BASE & Y GUIDE

Figure 2.2: Composed view of the Moore machine parts, x, y and z carriages and slides.

In contrast, the Z axis presents a more complex system. It is designed to ac-
commodate a mobile head that can traverse vertically, allowing for adjustments in
height as needed. This mobile head is equipped with a free-moving cylinder that
can be raised or lowered independently. The vertical movement of the cylinder is
controlled by a knob located on the side of the machine, providing the operator
with intuitive and direct control over the height adjustments.

The mechanism for controlling the vertical movement of the cylinder involves
two belts, marked in red in Figure 2.3, that transmit power from the stepper motor
to the knob. This configuration includes a transmission gear that increases the gear
ratio, allowing for finer adjustments to the cylinder’s height. By utilizing this gear
system, the operator can achieve a greater degree of precision in height adjustments,
as the increased gear ratio translates to smaller movements of the cylinder for each
turn of the motor. This design effectively enhances the responsiveness of the Z axis,
making it easier to position the measurement instruments accurately. To mount
the gears a support is present on the machine to keep the belts in tension.

However, while this knob configuration offers advantages in terms of control, it
also introduces some slack into the system. This slack can lead to a slight delay or

13

Design and implementation

MOTOR GEAR |

TRANSMISSION GEAR

MAIN GEAR (KNOB) \)

Figure 2.3: The Z axis movement assembly: (a) far view, (b) gear view.

b)

imprecision in the cylinder’s response to adjustments, which may be problematic in
certain measurement scenarios where high accuracy is critical. Nevertheless, since
the measurements are conducted parallel to the X axis, the impact of this Z axis
slack is generally considered tolerable. The overall design ensures that, despite the
potential for minor inaccuracies due to slack, the system remains effective for a wide
range of applications, allowing operators to achieve reliable measurements without
significant compromise in performance.

Figure 2.2 shows the assembly of the machine mechanical parts [16].

Graduation = 150 to 1 magnification Ring and Plug Gage Tolerances
One revolution of 15" circumference dial Lin
advances table .100” (10 pitch screw) ;
.001” = 150" on dials All gulde'sieeve holes; - ; 0il chamber piped from 1-sh
-0001” = .015” on dial and lapped alike to -+25 millionths Nut—hand scraped for exact line up il chamber piped from 1-shot reservoir
Can be set to 10 millionths with naked eye = Ofmiliogthy aa TPt
All Nitralloy :ud h O millionth: bearing: line bored
ground, and lapped J o bkt Five millionths tolerance thrust and line reamed
=Lpim Lot balls ride on thrust surfaces t0..0001" tolerance

Result: Clearance (Mini lapped to flatness and squareness alignment with

150 millionths of five millionths ... to eliminate 4 sleeve bearing,

100 millionths friction and camming of lead screw - | .0001" clearance

21" Long Lead Screw
3% Short Lead

No. 3 Measuring Machine tolerance
is + 32 millionths overall

Close fits specified above pius these two
2" long bearings (7" total spread)
produce perfect alignment:

WEAR RESISTANCE COMPARISON

Figure 2.4: Internal screw of the Moore machine x and y axes.

14

2.2 — Motors

2.2 Motors

For the design, we have chosen to use 5-phase stepper motors (Figure 2.5) to increase
the precision of the system. A gear reduction ratio of 30:1 was selected to further
enhance precision and reduce the torque load on the motor, as the rotation of the
lead screws on the axes requires a considerable amount of torque.

Figure 2.5: Oriental Motors PKP564N28B2-TS30.

The specifications of the PKP564N28B2-T'S30 motor [19] are reported in Table
2.1.

The speed-torque curve is shown in Figure 2.6.

1 Driver: CVD528BR-K Power Supply Voltage: 24 VDC Current: 2.8 A/Phase

100F
Maximum Instantaneous Torque
10 —
80} \
g = 8 ~
£60p = | Permissible Torque \
@ o Y
5 =1
g .| g
g T2y
% Driver Input Current
g4 W 2 —
0 20 40 60 80 100 120
Speed [r/min]
0 5 10 15 20 25 0.0247step
Pulse Speed [kHz]

Figure 2.6: Speed-Torque Curve

15

Design and implementation

Table 2.1: Specifications of the PKP564N28B2-TS30 motor.

Specification Value

Output Shaft Diameter | 10 mm

Motor Length 83 mm

Basic Step Angle 0.72°

Holding Torque 6 N-m

Current per Phase 2.8 A /phase

Type Geared

Shaft/Gear Type Spur Gear (Offset Shaft)
Gear Type Spur Gear, Low Backlash (up to 45 arc min), Offset Shaft
Gear Ratio (X:1) 30:1

Backlash 10 arcmin (0.17°)

Motor Connection Type | Flat Connector

Shaft Double

Step Angle 0.024°

Connection Type New Pentagon (Bipolar)
Lead Wires)

Rotor Inertia 140 x 1077 kg - m?

2.2.1 Mounting and Adapter design

To facilitate the installation of new motors on the X and Y axes of the machine,
it was necessary to create a custom 3D-printed adapter that effectively couples the
motor shaft with the infinite screw shaft of the axes. This task was undertaken by
a collaborator utilizing SolidWorks, a 3D modeling software, to design the adapter.
The design process was not trivial due to the 30:1 reduction ratio of the motor
shafts, which resulted in the rotation center of the motors being positioned higher
than the axis shafts.

To achieve proper alignment between the two shafts, the holder for the motors
was designed to position them lower than the centerline of the axis shafts. This
strategic adjustment ensured that the motor shafts and the infinite screw shafts
could align correctly, allowing for efficient power transmission and minimizing the
risk of mechanical binding or misalignment during operation.

The 3D-printed adapter not only provided a robust coupling solution but also
facilitated the integration of the new motors into the existing machine. The CAD
design of the holder is shown in Figure 2.7.

16

2.3 — Motor drivers

a) b)

Figure 2.7: a) The designed adapter and b) how it is interfaced with the motor.

Figure 2.8: CVD528BR-K Driver.

2.3 Motor drivers

5-phase stepper motor drivers are specialized electronic circuits designed to control
the operation of 5-phase stepper motors, which offer smoother motion and higher
precision compared to their 2-phase counterparts. These drivers typically accept
two primary inputs: a step signal and a direction signal. The step signal indicates
when the motor should move to the next step, while the direction signal determines
the rotational direction of the motor, allowing for precise control over its movement.

17

Design and implementation

Many modern 5-phase stepper motor drivers also incorporate switching capabili-
ties with microstepping functionality, which enables the motor to move in smaller
increments than a full step. This microstepping capability enhances the resolution
and smoothness of the motor’s motion, improving overall performance in angular
positioning of the axle.

Figure 2.8 shows the driver chosen for the control of the 5-phase motors.

Theoretical note 2 Microstepping [20] is a technique used in stepper motor con-
trol that allows for finer resolution and smoother motion by dividing each full step
of the motor into smaller increments. Stepper motors operate by moving in discrete
steps, with each step corresponding to a specific angular movement. For example,
a typical stepper motor might have 200 steps per revolution, meaning it moves 1.8
degrees with each step. In a 5-phase stepper motor, the motor has five coils, and the
sequence in which these coils are energized determines the direction and position of
the motor. Instead of moving the motor by a full step, microstepping allows the
motor to move by fractions of that angle, such as 1/2, 1/4, 1/8, or even smaller
increments. Instead of fully energizing a coil, the driver can apply varying levels
of current to each coil, creating a smooth transition between steps. For example,
to achieve a microstep between two full steps, the driver might energize one coil at
70% of its mazimum current while energizing the adjacent coil at 30%. This results
in a position that is not aligned with the full step but rather in between, allowing for
finer control. Microstepping drivers often use sinusoidal control to achieve smooth
motion.

The driver [21] accepts in input several signals via the CN3 connector, the pinout
is reported in Figure 2.9. The available input control signals are:

o Pulse (PLS): pulse signal that triggers a step (microstep if divided) of the
motor

o Direction (DIR): TTL signal for setting the motor direction

« All windings off (AWO): TTL signal that switches on or off all the windings
to enable or disable the motor, if the windings are turned off it is possible for
the user to manually rotate the axis knob

o Chip select (CS): TTL signal that controls the subdivision of the step, two
possible settings can be chosen. When the CS input is turned ON, the motor
rotates at the predefined step angle, when the CS input is turned OFF, the
motor rotates at the step angle set by the driver switch.

To set the step angle size a selector is present on the driver’s board (Figure
2.10), the letter correspondence to the subdivisions are reported in the following
table 2.2.

18

2.4 — Microcontroller

i Controller Driver
Twisted pair cable 22kQ 1000

| PLS(CW)%{ 1000 £ J22ka [§=

>3[<2.2k0 1000
X:X DlR(CCW)}S [[1000 & [J22k0 [§=

ov

Current source Current sink

+ output circuit output circuit

E 5VDC '

: SVDCA | ¢ [400
: : AWO

: : cs

[awo 2 I
- 6
“ e
1kQ =

B . [Ceg — T I3

ovv {_37 :

30VDC or less ov

30VDC o less A = £10 mA or less —» RO CRE

9
- o
N : RO >< voltage

H :_)D(T”Vl% L DE 0.5V max.

Green

24VDC+10 %
GND

Figure 2.9: Driver connection scheme.

Table 2.2: Selector / division correspondence.

— R2/R1 switch ON
STEP switch | Resolution (P/R) | Step angle
500 0,72°
1 1000 0,36°
E 100000 0,0036°
F 125000 0,00288°

2.4 Microcontroller

STM32 Nucleo boards [22] are versatile development platforms that provide a pow-
erful alternative to traditional Arduino boards [23]. While Arduino is well-known
for its simplicity and ease of use, STM32 Nucleo boards offer enhanced performance
and a wider range of features, making them suitable for more complex applications.

In Figure 2.11 is reported the microcontroller used for the Moore configuration.

19

Design and implementation

1P/2P
O OFF/SD No.1: 1P/2P switch (pulse input mode)
STEP switch g%'gg No.2: OFF/SD switch (smooth drive function)
(step angle) OFF/FIL EES—,_ . .
— = = 3% No.3: R2/R1 switch (resolution)
=14)
RUN switch 3@% =] — L No.4: STOP switch (standstill current rate)

(operating current rate) - ‘Tsvﬁgk?‘ No.5: OFF/FIL switch (command filter)

C .
c?‘% 3@“ No.6: Not used.
f==] =

—, ~
ey

] @)

Figure 2.10: Driver switches and selectors for step, current and function setting.

28

[
| < CICTES
N
=2
i B5.0000 i

C32W ¢3fcss
> - www.st.com/stm32nucleo

Figure 2.11: STM32 NUCLEO board.

These boards are built around the STM32 microcontroller family, which is based
on the ARM Cortex-M architecture. This architecture allows for higher process-
ing speeds, greater memory capacity, and advanced power management features.
Nucleo boards come equipped with a variety of peripherals [24], including timers
for precise timing control, NVIC (Nested Vectored Interrupt Controller) for effi-
cient interrupt management, GPIO (General Purpose Input/Output) pins for in-
terfacing with external devices, and USART (Universal Synchronous/Asynchronous
Receiver-Transmitter) for serial communication. The versatility of STM32 Nucleo
boards makes them ideal for a wide range of applications, including robotics, IoT

20

2.4 — Microcontroller

(Internet of Things) devices, automation systems, and embedded systems develop-
ment.

In Figure 2.12 is reported the microcontroller configuration used for the Moore
project to generate the signal needed by the motor drivers explained in the previous
section.

L direction™”

=l e enable’

veaT |

B1 [Blue PushButton] (R §

RCC_OSC3Z_IN° |geuild TMS
RCC_05C32_ouT [t
|

RCC_OSC_IN [Hale TIM1_CH4

RCC_OSC_OUT |EERE 1 TIM1_CH3
NRET Lo directionX
PCD *AB enable
PC1
PC2

PC3

LQFP64

g

==
Il =

USART_TX

WSS
WDD
PA4

USART_Rx [FRE]
LD2 [Green Led] |F15

Figure 2.12: STM32 ioc, pinout and alternate function pins.

2.4.1 USART command handling

For the movement of the axes it is necessary that the PC coordinates the motor
control with the reading of the position instrument present on the relative axis, to
do this was used the RS232 protocol between the micro and the PC [25].

Theoretical note 3 RS-232 is a standard protocol used for serial communication
between devices, primarily in computer and telecommunications applications. It
defines the electrical characteristics and timing of signals, as well as the physical
interface and the format of the data being transmitted. RS-232 operates using a
single-ended signaling method, where data is transmitted one bit at a time over
a single wire. In an RS-232 communication setup, data is sent in frames, which

21

Design and implementation

consist of a start bit, a data byte (usually 7 or 8 bits), an optional parity bit for error
checking, and one or more stop bits to indicate the end of the transmission. RS-232
supports various baud rates, which determine the speed of data transmission, and it
can accommodate multiple devices through a point-to-point connection.

The configuration of the STM32 USART is shown in Table 2.3:

Table 2.3: STM32 USART configuration.

Parameter Value
Baud Rate 9600
Word length 8
Stop Bits 1
Parity None
Flow Control None
Data direction | Rx and Tk
Oversampling | 16 samples

The micro waits for each byte and generates an interrupt to call an interrupt
subroutine to concatenate the bytes received until the reception of the 'CR’ char-
acter. Once the command has been composed it is sent to the routines that parse
the string and set the correct values to the timers and GPIO pins.

The commands for controlling the motor are in the following form:

"(z/y/=)(d/e)(b] f)nnnn - - -n(CR)
where:
o the first character indicates which axis the command refers to,

o the second indicates wether the windings of the motor should be enabled for
motor control or disabled for freewheel of the axis and manual rotation,

o the third sets the direction of the movement ‘b’ if backward, ‘f” if foreward,

o lastly a number of n digits represents the speed at which the motor is set
instantly, the speed is not in measurable units but is a relative number ranging
from minimum speed and maximum speed as explained in Section 2.4.2.

The command is then parsed from left to right and is used to modify the pins
relative to the selected axis. This is done in code using a structure that represents
the axis:

1 typedef struct
2 {

3 uint8_t axisN;

22

2.4 — Microcontroller

bool setV;

uintl6_t T;
uint16_t MAXT, MINT;
GPIO_TypeDef* axisEnableGPIO;
uintl6_t axisEnablePin;

GPIO_TypeDef*x axisDirectionGPIO;
uintl6_t axisDirectionPin;
} axisParams;

axisParams xaxis,
axisParams * axis

The axis variable is

yaxis,

zaxis;

0; // active axis pointer

used to point to the current axis, while the xaxis, yaxis,

zaxis variables are initialized with the specific GPIO and parameter values. Each
time a new command is parsed the axis pointer is set to the desired axis variable,
in this way we can change the correct pins when executing the USART ISR.

void HAL_UART_RxCpl
{

axis
1=

// uart msg:
if (uart_buf
vart_msg[msg_il
msg_i++;

else {
uart_msgl[msg_i]

setAxis (uart_ms
msg_i 0;

}

HAL _UART_Receive_

}

void setAxis(const

{

tCallback (UART_HandleTypeDef x*huart)

, ena, dir, XXXXX, \0 -> 9 chars

\r’) A

uart_buf;

)\O};

g);

IT (&hlpuartl, &uart_buf, 1);

char * settings)

switch (settings[0]) {

case ’x’:

axis
break;
case ’y’:
axis
break;
case
axis
break;

}

&xaxis;

&yaxis;

J27:

&zaxis;

if (settings[1]
axis->axisEnable

= ’d’) HAL_GPIO_WritePin(axis->axisEnableGPIO,
Pin, GPIO _PIN_SET);

23

Design and implementation

if (settings[1] == ’e’) HAL_GPIO_WritePin(axis->axisEnableGPIO,
axis->axisEnablePin, GPIO_PIN_RESET);

if (settings[2] == ’b’) HAL_GPIO_WritePin(axis->axisDirectionGPIO
, axis->axisDirectionPin, GPIO_PIN_SET);
if (settings[2] == ’f’) HAL_GPIO_WritePin(axis->axisDirectionGPIO

, axis->axisDirectionPin, GPIO_PIN_RESET);

uintl16_t speed = atoi(settings + 3);
axis->T = map(speed, MINspeed, MAXspeed, axis->MINT, axis->MAXT);

The speed setting is done using the stoi function from the standard library that
enables the conversion from a string to an integer number, this number must be
converted to a timing interval for the counter. How this is done is explained in the
following Section 2.4.2. In order to make the stoi function work a ‘0’ character is

added to the assembled command as a NULL string terminator, as defined in the
ISO C standard.

2.4.2 Square wave generation

To generate a square wave (step signal of the motor driver) using an STM32 mi-
crocontroller, we can utilize the Timer peripheral along with the GPIO (General
Purpose Input/Output) pins. The process involves configuring the Capture/Com-
pare Register (CCR), setting up the alternate function for the GPIO pin, and using
an Interrupt Service Routine (ISR) to dynamically adjust the CCR value for the
desired frequency.

Theoretical note 4 Interrupts are signals that temporarily halt the normal exe-
cution of a program to allow the processor to respond to an event or condition that
requires immediate attention. They serve as a mechanism for the microcontroller or
processor to handle asynchronous events, such as input from a user, data arriving
from a sensor, or a timer reaching a specific count. When an interrupt occurs, the
current execution context is saved, and the processor jumps to a predefined loca-
tion in memory where the interrupt service routine (ISR) is located. An interrupt
service routine is a special function designed to handle the specific tasks associated
with an interrupt. Within an ISR, the necessary actions are performed to respond
to the interrupt, such as reading data from a sensor, processing input, or resetting
a timer. After the ISR completes its execution, the processor restores the previous
context and resumes the interrupted task, ensuring that the system continues to
operate smoothly.

The key steps in configuring the timer are:

24

2.4 — Microcontroller

o Set the Prescaler: The prescaler divides the input clock frequency to slow
down the timer’s counting speed.

« Set the Auto-Reload Register (ARR): This register defines the period of
the timer. This register must be set to the highest number possible in order
to have the best resolution of the square wave frequency possible.

The timer counter continuously counts up from 0 to ARR, when it reaches ARR,
it resets to 0 and the counting restarts. The output pin toggles based on the CCR
value:

o Counting: The timer counts up at a fixed rate determined by the prescaler.

o Matching: When the counter value matches the CCR, the output pin toggles
(if configured to do so) and the ISR is triggered.

To dynamically adjust the frequency of the square wave, an interrupt can be set
up:

o Enable Timer Interrupts: Enable the interrupt for the timer, which will
trigger when the timer counter matches the CCR value.

o Set Interrupt Priority: Use the NVIC (Nested Vectored Interrupt Con-
troller) to set the interrupt priority to the highest level.

The ISR is executed every time the timer matches the CCR value and performs
the following operations:

o Calculate Next CCR Value: Inside the ISR, the next CCR value can be
calculated based on the desired frequency or duty cycle. For example, if an
increase of frequency is needed, the ISR would decrease the CCR value.

o Update CCR.: Write the new CCR value back to the CCR register to adjust
the timing for the next toggle.

To calculate the T parameter used to update the CCR values we can proceed
with the following reasoning. Motor speed must be limited between a maximum
and a minimum value, it is therefore appropriate to define Equations 2.1.

Tmam = —— = Umin
1 .
Tmin = —— = Unaz
fmaa:

The microcontroller receives commands via serial interface, the microcontroller
USART has been configured to receive data on 8 bits and generate an interrupt

25

Design and implementation

Internal clock (CK_INT)
TIMxCLK from RCC

ETRF confroller

TRGO

fo other timers
to DAC/ADC

TiMx_ETR[} ETR || Polarity z ”“9"[ETRP [input fiter]

detector &

ITR) ——————s

ITR1 ———————————s| |ITR o~
Slave
m2 — TRC [TRGI Reset, enable, up, count
ITR3 mode
TI1F_ED i

Preload registers transfered
to active registers on U event
according to control bit

1L SN
TIFP1 L Encoder
TIiZFP2 interface
Ug
u
P
Stop, dear or up/down l
U"\.rn

Kk PSC_[PSC ICK CNT [0 OnToounter |
Lprescaler] ccily C[Nl IR

1REF

| ,i|-|"5“Ps »| Capture/Compare 1 register| OC RE oc1 JTIMx_CH1
ooa,, U cc2l

A

Capn.lleJCunpareiflegsla OC2REF ﬁ 0G2 ITIMx_CH2

cc:u 1 U
TI3FP3 .
w@, Clpmmlcuﬂpamaregmu OCGREF oc3 JTiMx_CH3

GC-‘I

Event

Interrupt & DMA output

TH
TiMx_CH1 [|L:LL
TiMx_CH2| LL

TIMx_CH3[H————

Input filter &

)

Caplure/Compare 4 register OC‘REF m 0oc4 JTiIMx_CH4

ETRF AR M

TiMx_CH4

Figure 2.13: Internal register diagram of timer peripheral in STM32 microcontroller.

every time a byte is received. The motor speed has been mapped to values be-
tween D, and D, it is possible to associate the corresponding value to T with
Equations 2.2, 2.3:

1 fmaa: - fmin - T, - 1
= — = — 1 _ min — — 1 men maL 22
f T (:I;)Dmax - szn N f (x)Dmax - szn - Tmam ()
T ! (2.3)
- Tmin_ Tmaw '
(.’17 B 1) 1/Dmaz_1[émin Tw}az

It must be taken into account that T is represented as an integer on 16 bits,
since the TIM1 CCR is itself a 16-bit register, this means that the formula must
be modified to ensure that there are no data losses in the divisions. To do this it is
sufficient to scale the numerator and denominator by a common factor, the optimal
solution would be scaling by T}, - Tinee but this value cannot be represented in a
16 bit variable so the final Equation 2.4 is only scaled by T},4..

1 1, L
T — mas mas (2:4)
= Dipges - pn Do (o - Dt 41

26

1
2

3

10

2.4 — Microcontroller

= [T | ==-F-=-= &)
U 50 : _' : Ir ---------- CCR1
E 1_ Lt | 1 r CCR2
g 251 [~-r=1a 11 . § CNT
E ! b @ ISR (chl)
9] i L
S oisg : ISR (ch2)
1.0 A
0 0.5 -
el
0.0 - T T T T T T T T
1.0 A
O 0.5 -
o
0.0 - T T T T T T T T
0 20 40 60 80 100 120 140

Time

Figure 2.14: Counter value and CCR registers with double output square wave gen-
eration. The parameters of the simulation are: 77 = 30, Ty = 13, CCRystart = 0 (The
ISR is called immediately so it starts from 77 and OC} is already set), CC Rastart = 12,
ARR = 64.

Once the T parameter has been calculated the CCR value can be set as in
Equation 2.5:
CCR;,=CCR;_1+T (2.5)

in the board firmware this update was implemented in the timer ISR.

void HAL_TIM_OC_DelayElapsedCallback (TIM_HandleTypeDef x*htim) {
if (htim -> Channel == HAL_TIM_ACTIVE CHANNEL_2)
__HAL _TIM_SetCompare (&htiml, TIM_CHANNEL_2,
__HAL _TIM_GetCompare (&htiml, TIM_CHANNEL_2) + xaxis.T);

else if (htim -> Channel == HAL TIM ACTIVE CHANNEL 1)
__HAL_TIM_SetCompare (%&htiml, TIM_CHANNEL_ 1,
__HAL_TIM_GetCompare (&htiml, TIM_CHANNEL_1) + yaxis.T);

else if (htim -> Channel == HAL_TIM_ACTIVE_CHANNEL_3)

__HAL_TIM_SetCompare (&htiml, TIM_CHANNEL 3,
__HAL_TIM_GetCompare (&htiml, TIM_CHANNEL_3) + zaxis.T);

27

Design and implementation

For TIM1 the CCR, ARR, CNT and T registers and variables are of uint16_t
type which can hold values from 0 to 65535. Since we are summing continuously
the next value to the CCR, it is possible for the CCR to exceed the maximum 16
bit range. However, this is not a problem for the following reasons:

e Overflow Behavior: When the CCR value exceeds 65535, it wraps around
from 0 due to the nature of unsigned integers. For example, if the CCR value
is 65535 and 1 is added, it will overflow and become 0. This behavior is similar
to how the timer counter works.

« ARR Configuration: By setting the ARR to its maximum value (65535),
we can ensure that the timer counter will also wrap around when it reaches
this value. This means that both the CCR and the timer counter will wrap
around similarly.

This means that using uint16_t variables it is possible to solve at once all the
problems related to the overflow of the registers.

Since we have three motor drivers to control we need to generate in parallel three
square waves independent to each other, we can utilize the different Capture/Com-
pare channels (CCR1, CCR2, CCR3) available on the timer. Each channel can
be configured to toggle the output pin at different intervals, allowing us to pro-
duce distinct square waves with varying frequencies. This approach is efficient and
resource-saving, as it eliminates the need for multiple timers. If we had chosen to
modify the Auto-Reload Register (ARR) instead of the Capture/Compare Register
(CCR) to generate the square waves, we would have encountered limitations, as
changing the ARR would affect the timing for all channels simultaneously. Con-
sequently, we would have required three separate timers to achieve the desired
functionality, complicating the design and increasing resource usage. By leveraging
the CCR channels, we can effectively manage multiple square wave outputs with a
single timer, simplifying our implementation while maximizing the capabilities of
the STM32 microcontroller.

Half Period resolution

To move the stepper motor smoothy during the acceleration and deceleration phases,
the square wave frequency must be adjusted in small increments. In fact if the fre-
quency is changed too abruptly the motor will not be able to follow the changes and
will lose steps or the speed change will be too abrupt and the motor will vibrate.
The period resolution of the square wave is determined by the PSC register value,
which sets the count frequency for the timer. The period resolution is calculated
as in Equation 2.6:

: o 1
Period Resolution = CK INT/PSC (2.6)

28

2.4 — Microcontroller

where CK__INT is the internal clock frequency of the microcontroller.

A trade-off between resolution and frequency range must be considered when
selecting the PSC value. To start the motor we need to achieve low frequency
square waves, this can be a problem if the PSC value is too low, because to achieve
the low frequency we are limited by the counter upper bound ARR. In fact the
minimum frequency that can be achieved is given by the following Equation 2.7:

F CK _INT CK_INT
T pPSC - CCRypae PSC - ARR

Given the two relations between PSC, Period Resolution and minimum frequency
we can observe that the minimum frequency is inversely proportional to the PSC
value, this means that to achieve low frequencies we need to set a high PSC value.
On the other hand the Period Resolution is directly proportional to the PSC value,
this means that to achieve a high resolution we need to set a low PSC value. The
solution to this problem is to set the PSC value to the lowest possible value that
still allows us to achieve the minimum frequency required to start the motor. In
this way we can achieve a good resolution and the correct operation of the machine.

A better solution would be to use a timer with a higher ARR value, this has
been done in the firmware of a test NUCLEO board with a STM32F446RE mi-
crocontroller but has not been implemented yet in the machine since it is a minor
improvement to the system and it requires a redesign of the PCB connection de-
scribed in the following section. The test board has been configured to use the
TIM2 peripheral with a PSC value of 1, since the TIM2 operates on 32 bits the
ARR value can be set to 232 — 1 and the minimum frequency can be achieved with
a large CCR value but maintaining the highest resolution possible.

To perform the test a simple Python 3 script was implemented to send the
commands to the microcontroller and control the motor, the script has a GUI to
set the speed and the settings of the driver and was really useful to test the setup
and to set the constants in the microcontroller firmware.

(2.7)

2.4.3 Printed circuit board

The printed circuit board (PCB) was designed using KiCAD [26], an open-source
software for electronic design automation. The PCB was designed to connect the
STM32 microcontroller to the drivers. The GPIO outputs used in alternate function
mode to generate the step and direction signals for the drivers are used in open-
drain mode, pull-up resistors have been added to the connection scheme to ensure
the correct signal levels.

The PCB was designed with the following features:

e STM32 Connection: The PCB features a connector for the STM32 mi-
crocontroller, allowing for easy connection and communication between the
microcontroller and the driver.

29

Design and implementation

e Driver Connection: The PCB includes a connector for the three drivers,
enabling the driver to receive signals from the microcontroller and control the
stepper motors.

« General purpose connector: The PCB includes a general-purpose connec-
tor for connecting additional sensors or peripherals, providing flexibility for
future expansions or modifications. This was included to exploit the majority
of the I/O pins of the STM32 that are not used for the driver connection.

o Compact Design: The PCB is compact in size, the height of the board has
been designed to be smaller than the microcontroller.

e Ground plane: The PCB features a ground plane to ensure proper grounding
and reduce noise interference in the circuit, even if the frequency range of the
signals is not high, the ground plane is a good addition to avoid any possible
interference.

The PCB design (Figure 2.15) was then exported to a Gerber file format and
sent to a PCB manufacturer for fabrication.

>
o
=
[¥]
[T]
=
z
o
[w]
w
x
[=]
=]
b

a) b)

Figure 2.15: Printed circuit board for STM32 and driver connection. (a) KiCAD 2D
top view, (b) 3D view.

30

2.5 — Position measuring instruments

2.5 Position measuring instruments

2.5.1 Laser interferometer

The Moore machine is equipped with a laser interferometer system that plays a
crucial role in measuring linear dimensions with high precision. The interferometer
is mounted on the x-axis of the machine and is used to determine the displacement
of the mechanical probe along the x-axis. The wavelength of the laser light is
calibrated using the national standard, ensuring that the measurements obtained
from the interferometer are accurate and traceable.

Theoretical note 5 An interferometer is a device that uses the interference of
light waves to measure small displacements, distances, or changes in refractive in-
dex. Its operation is based on the principle of superposition, where two waves com-
bine to form a resultant wave whose intensity is determined by the phase difference
between the two. In the case of a laser interferometer, a laser beam is split into
two paths: a reference path and a measurement path. The reference path serves as
a stable reference for comparison, while the measurement path changes its length
based on the displacement being measured (z-axis in the Moore machine). When
the two beams are recombined, interference occurs, tha intensity of the light is de-
tected using a photodiode and the phase difference is calculated to determine the
displacement which is represented by fractions of the wavelength of the laser light.

As illustrated in Figure 2.16, two mirrors function as reference mirrors in a
double-pass plane-mirror interferometer. These mirrors are securely attached to a
z-stage, which allows the mechanical probe to move up and down. The supporting
structure is specifically designed to hold the mirrors symmetrically and in line with
the mechanical probe, which helps to counteract any thermal drifts along the x-axis
that could affect measurements. This symmetric arrangement ensures that both the
measuring and reference beam paths align correctly, meeting the Abbe condition
for lateral and vertical alignment when probing the middle height section of the
gauge.

The rectangular shape of the two mirrors in the reference path permits vertical
movements of approximately +45 mm and lateral movements of about 17 mm.
This design allows the interferometer to accurately measure x-displacements while
maintaining a stable signal. Continuous monitoring of the x-positions of the con-
tact probe is essential throughout the entire measurement process. This includes
moving the probe from one end face to another, across the outer surfaces of external
diameter gauges, or laterally to locate the maximum diameter of cylindrical gauges.

Additionally, significant vertical movements are necessary for calibrating the
gauge at various heights and for other measurement tasks, such as checking straight-
ness. The current setup is capable of accommodating diameter gauges with a lateral
size of up to 200 mm, a height of about 100 mm, and linear artifacts measuring

31

Design and implementation

reference
mirrors

|/

ring gauge and support Movin
(tilter-rotary stage) ; ®

mirror

Laser head ,
!

receiver

One axis
differential
interferometer

Figure 2.16: Moore machine interferometer setup. In red the optical path of the laser
beam which is parallel to the x-axis movement. The machine view is from the side with
the z-axis movement in the vertical direction and the x-axis movement entering the page.

up to 420 mm in length [10]. This flexibility makes the system suitable for a wide
range of measurement applications.

The reading of the interferometer is performed by a dedicated device produced
by KeySight [27], which is connected to the computer via a USB interface. The
manufacturer provides the necessary dynamic libraries to interface the device with
the computer and the software. In the following code snippet, we show how to read
the interferometer using the KeySight dynamic libraries in C++.

void Keysight::connect ()

{
int ok = Initialize_ E1735A _DLL();
if (ok == 0) {
E1735A_SelectDevice (0) ;
} else {
std::cerr << "Failed to init" << std::endl;
}
+
double Keysight::readInstr ()
{
double sample = E1735A_ReadSample() / 2;
return sample;
}

32

2.5 — Position measuring instruments

Figure 2.17: E1735A laser reader.

17 double Keysight::readSamplesAvg(int n_samples_to_read)

18 {

TLaserSample samples[n_samples_to_read];

E1735A_SetupTimer (0.0001) ;
E1735A_SetSampleTriggers (TB_SOFTWARE | TB_TIMER);
E1735A_StartTimer () ;

std::this_thread::sleep_for(std::chrono::milliseconds (1));
E1735A_StopTimer () ;

int num_sample = E1735A_ReadAllSamples (samples,
n_samples_to_read);
double sum = 0.0;
double readAverageSamples = 0.0;
double stan_deviation = 0.0;
calculateAvgAndStanDeviation (samples, num_sample, sum,
readAverageSamples, stan_deviation);
if (stan_deviation > 0.001)
{

return this->readSamplesAvg(n_samples_to_read) ;

}

return readAverageSamples;

The code snippet demonstrates the initialization of the device, the configuration

of the measurement parameters, and the acquisition of the interferometer reading.
There are two methods that can be used to read the value of the x position, the first

33

Design and implementation

method reads only the last available sample to perform a fast acquisition, this is
used for movement control. The last method implemented allows to read the value
averaging over a specified number of samples and repeat the acquisition until the
value of the standard deviation is below a certain threshold, this is used to perform
the actual measurement. In both functions the value of the x position is returned
as a double and it must be divided by two since the double interferometric setup
doubles the light travel distance. All the functions starting with E1735A are part of
the dynamic library provided by KeySight, the following are the ones used in the
keysight class:

e Initialize E1735A DLL(): This function is called once at the beginning to
initialize the E1735A DLL. This is necessary for using all the other functions
within the DLL. It returns an integer which is 0 upon success.

o E1735A _SelectDevice(0): This function is used to select the active E1735A
device. The argument 0 indicates the first connected device. This function is
needed to be called before accessing any other function of the DLL.

e E1735A_ReadSample(): This function reads the current laser position. It
returns a double value representing the measured position. The return value
depends on the interferometer type and its parameters. By default, it returns
linear displacement in millimeters. In your code, the returned value is divided
by two to account for the double pass of light in the interferometer. If no
sample can be read, NAN is returned and an error code is saved which can be
accessed with E1735A ReadLastError().

e E1735A_SetupTimer (0.0001): This function sets the interval of the internal
timer, which is used to trigger measurements. The argument 0.0001 sets the
interval to 0.0001 seconds or 100 microseconds.

e E1735A_SetSampleTriggers(TB_SOFTWARE | TB_TIMER): This function en-
ables or disables the triggers for sample collection. In this case, it enables both
software and timer triggers using the constants TB_SOFTWARE and TB_TIMER.
Other trigger types include TB_REMOTE, TB_AQB and TB_EXTERNAL.

e E1735A_StartTimer (): This function starts the internal timer, initiating the
sampling process based on the set interval. It is necessary to call E1735A_SetupTimer ()
first.

e E1735A StopTimer (): This function stops the internal timer. This function
should be called after measurements are completed.

o E1735A ReadAllSamples(samples, n_samples_to_read): This function reads
all available samples from the buffers and stores them into a user-defined buffer.
It returns the number of samples read.

34

2.5 — Position measuring instruments

e E1735A SetParameter (int Index, double Value): This function is used to
set parameters of the interferometer and environment. The Index parameter
specifies which parameter to change, such as air temperature OP_AIRTEMP,
air pressure OP_AIRPRES, laser wavelength OP_WAVELENGTH, relative humidity
OP_RELHUMI, or dead path OP_DEADPATH. The Value parameter is the value to
which the corresponding parameter should be set.

o E1735A ReadSampleCount(): This function returns the number of samples
currently available in both the hardware and software buffers. This function
also moves the samples from the hardware buffer to the software buffer.

In the C++ implementation a class for managing the old laser reader was also
implemented for compatibility reasons, the class is called Laser and it uses the
GPIB protocol to communicate with the device. A single command "XP0OS?" can
be sent to the instrument to read the x position. To use the GPIB protocol a PCI
card is needed, the card is connected to the computer via a PCI slot and to the
instrument via a GPIB cable. The library from National Instruments ni4882.h is
used to interface the card with the computer.

2.5.2 Optical scales (linear encoders)

To precisely determine the position of the mechanical probe along the z-axis, and
the crosslide along the y-axis, the Moore machine is equipped with optical scales.
These scales are used to measure the displacement of the probe and the crosslide
with high accuracy, providing feedback to the control system for position control
and error correction.

Theoretical note 6 Optical scales are linear encoders that use light to determine
the position of a moving object. The scale consists of a glass substrate with a series
of fine lines etched onto its surface. A light source and a photodiode are positioned
on opposite sides of the scale, with the light passing through the lines and being
detected by the photodetector. As the object moves, the light intensity changes due
to the lines blocking or allowing the light to pass through. By measuring these
intensity changes, the position of the object can be accurately determined.

To read the values from the two devices a PCI board is used, the board is
connected to the computer via a PCI slot and to the scales via two cables. The
board is capable of reading the sine and cosine signals from the scales and to convert
them into a position value. A dynamic library provided by the manufacturer is used
to interface the board with the computer and the software.

The IK220 [28] provides a set of functions to interface with Heidenhain optical
encoders, the following is a summary of the functions used in the implemented
class:

35

Design and implementation

& L .

HEIDENHAIN

b)

Figure 2.18: Optical scales setup: a) Optical scale, b) IK220 PCI board.

IK220WritePar: This function is used to write a parameter to the IK220
card for a specified axis. The function takes the axis number (USHORT Axis),
the parameter number (USHORT ParNum), and the parameter value (ULONG
ParVal) as input. In your code, this is used to set the encoder type and signal
type. For example, the code uses IK220WritePar(Ax, 1, ENC_INCREMENTAL)
to set the encoder type to incremental and IK220WritePar (Ax, 2, SIG_11UA)
to set the signal type to 11uA.

IK220ReadPar: This function reads the value of a parameter from the IK220
card for a given axis. The function takes the axis number (USHORT Axis), the
parameter number (USHORT ParNum), and a pointer to a variable where the
parameter value will be stored (ULONG* pParVal).

IK220Init: This function loads the firmware into the IK220 card and starts
it. It is called for each axis before other functions can be used. It takes the
axis number (USHORT Axis) as input.

IK220Set: This function sets the position value of a specified axis. It takes the
axis number (USHORT Axis) and the new position value (double SetVal) as
input.

IK220Read48: This function reads the 48-bit counter value of a specified axis.
The function takes the axis number (USHORT Axis), the latch register (USHORT
Latch), and a pointer to a variable where the counter value will be stored
(double* pData). The counter value represents the position of the axis.

IK220Get48: This function also reads the 48-bit counter value of a specified
axis. It is similar to IK220Read48 but requires that the counter value be saved
in a register before reading it.

IK220Latch: This function saves the counter value in the specified register.
It takes the axis number (USHORT Axis) and the register number (USHORT

36

2.5 — Position measuring instruments

Latch) as input. This is used to save the current position before reading it
with IK220Get48.

These functions provide the basic functionality to configure, read, and control the
Heidenhain optical encoders through the IK220 interface card. The parameters for
the encoders, like the type and signal, are set using IK220WritePar. The position
of the axes can be set using [K220Set and read using IK220Read48 or IK220Get48
after saving the value with IK220Latch.

The IK220 card can support encoders with sinusoidal current signals (11 pAPP),
voltage signals (1 VPP), EnDat, or SSI interfaces. It is designed for applications
that require high resolution of encoder signals and fast measured value acquisi-
tion. The card also has a 12-bit interpolation value combined with a 32-bit period
counter, which creates a 44-bit measured value. The measured values are stored in
a 48-bit data register.

The y and z axes are configured with different scaling values by setting different
signal periods, which are specific to each axis, and by setting the encoder and
signal types using the IK220WritePar function. The code snippet below shows
how the parameters are set for each axis using the setParams function, and the
IK220WritePar function is used within this function to set the encoder type and
signal type:

1 void Scale::setParams (ULONG encoderType, ULONG signalType, double
signalPeriod)

2 {

3 if (!IK220WritePar(ax, 1, encoderType)) std::cout << "Error in
writePar";

| else std::cout << "Setting Encoder Type to incremental" << std
::endl;

5 if (!IK220WritePar (ax, 2, signalType)) std::cout << "Error in
writePar";

6 else std::cout << "Setting Signal Type to 11uA" << std::endl;

8 scaleParams.encoderType = encoderType;

9 scaleParams.signalType = signalType;

10 scaleParams.signalPeriod = signalPeriod;

11 }

13 void Moore::init ()

14 {

16 // INIT THE 3 AXIS

17 Xaxis.init ((PosInstr*)&key, ser, x_lab);

18 Yaxis.init ((PosInstr*)&yScale, ser, y_lab);
19 Zaxis.init ((PosInstr*)&zScale, ser, z_lab);

yScale.setParams (ENC_INCREMENTAL, SIG_11UA, M_SIG_PERIOD_Y);

37

NN N

Design and implementation

zScale.setParams (ENC_INCREMENTAL, SIG_11UA, M_SIG_PERIOD_Z);

o The setParams function takes three arguments:

— encoderType: This sets the type of encoder being used, which is set to
ENC_INCREMENTAL.

— signalType: This sets the type of signal the encoder is using, which is
set to SIG_11UA.

— signalPeriod: This parameter, which is not used in the code snippets
provided but is available in the Scale class, allows to set a scaling factor
related to the signal period of the encoder.

o The code uses the IK220WritePar function to set the encoder type and signal
type parameters for the specified axis.

The scaleParams struct stores the values of encoder type, signal type, and
signal period.

— This struct can then be used to retrieve the parameters set using the
getParams () method.

o The Moore: :init function initializes the axes and sets the parameters for the
y and z axes.

e The yScale.setParams line sets the encoder type to ENC_INCREMENTAL, the
signal type to SIG_11UA and the signal period to M_SIG_PERIOD Y for the
y-axis.

o The zScale.setParams line sets the encoder type to ENC_INCREMENTAL, the
signal type to SIG_11UA and the signal period to M_SIG PERIOD Z for the
Z-axis.

M_SIG_PERIOD_Y and M_SIG_PERIOD_Z are macros that hold the specific scal-
ing factors for the y and z axis respectively.

In summary, the y and z axes are configured with different scaling values by
passing different signalPeriod values to the setParams function and setting up
the axes with the IK220 parameters to ENC_INCREMENTAL and SIG_11UA, which
are specific to each axis. Although the signalPeriod is not used in the code, it
is available to be set in the Scale: :setParams and can be used to set different
scaling values for each axis.

38

2.5 — Position measuring instruments

2.5.3 Cary LVDT sensor

To make contact with the sample and measure its dimensions, the Moore machine
is equipped with a Cary Linear Variable Differential Transformer (LVDT) sensor.
The LVDT sensor is mounted on the z-axis of the machine and is used to detect
the displacement of the mechanical probe along the x-axis. Figure 2.19 shows the
setup of the head of the LVDT sensor and the reader of the sensor.

Theoretical note 7 A (LVDT) is a type of electromechanical sensor used to con-
vert mechanical motion or vibration into an electrical signal. The LVDT consists
of a primary coil and two secondary coils wound on a hollow cylindrical core. A
movable ferromagnetic core is placed inside the coil assembly, which moves in re-
sponse to the mechanical motion being measured. When an alternating current is
applied to the primary coil, it induces a voltage in the secondary coils that varies
with the position of the core. By measuring the difference in voltage between the
two secondary coils, the LVDT can accurately determine the displacement of the
core and, by extension, the mechanical motion being measured.

a)

Figure 2.19: Moore machine LVDT sensor setup: a) Cary LVDT sensor head, b) Tesa
LVDT sensor reader.

The interface between the PC and the reader is done via a special optical USB
cable. The connection is not simple since the cable is not a standard USB cable,
some control flow signals (DTR and RTS) of the RS232 protocol are used to give
the internal diode of the cable the correct power supply. The parameters of the
communication are reported in Table 2.4.

The instrument is controlled by sending commands to the reader, the commands
are sent as strings and the reader responds with a string containing the requested
information. Also in this case two different read functions are implemented, the

39

Design and implementation

Table 2.4: LVDT sensor communication parameters.

Parameter Value
Baud Rate 4800 Baud/s
Byte Size 7 bits
Stop Bits 2 bits
Parity Even

DTR Control Enabled
RTS Control Disabled
Port COM1

first one reads only the last available sample to perform a fast acquisition while
the second one reads the value averaging over a specified number of samples as
explained for the interferometer in section 2.5.1.

The possible commands that can be sent to the reader are:

e 7: This command is used to read the current measurement value from the
instrument. It retrieves the latest data available from the sensor.

e RNG?: This command reads the current range setting of the instrument. It
returns the range that is currently configured on the device.

e RNG n: This command sets the desired range on the instrument. The param-
eter n’ specifies the range value, where n’ can be a specific range value or 0’
for auto range.

All the commands must be terminated with a carriage return character.

2.5.4 Nilox webcam

In order to automate the sample recognition process, the Moore machine is equipped
with a Nilox webcam (Figure 2.20). The webcam is mounted on the z-axis of the
machine and is used to capture real time images of the measurement setup. The
images are processed by the software to identify the sample and determine its
position. The webcam is connected to the computer via a USB interface and is
controlled using the OpenCV library as explained in section 2.7.2.

2.6 Environmental monitoring

The calculation of the refractive index of air is essential in many scientific and
engineering applications, particularly in optics and metrology. The refractive index
of air affects the propagation of light and, consequently, the wavelength of the light
itself. Since the speed of light varies depending on the medium through which it

40

2.6 — Environmental monitoring

Figure 2.20: Nilox webcam

travels, it is necessary to correct the wavelength of light based on the refractive
index of air to obtain accurate measurements.

Edlen’s formula is one of the most commonly used expressions to calculate the
refractive index of air as a function of pressure, temperature, and humidity [29].
It is therefore necessary to accurately measure the environmental conditions while
performing the measurements with the machine, this is done throug various instru-
mentation explained in the following sections.

The coefficient of thermal expansion (CTE) is a critical parameter that quanti-
fies how much a material expands or contracts in response to changes in temper-
ature. This property is particularly significant when dealing with materials such
as ceramics, glass, and metals, which are commonly encountered in various arti-
facts and industrial applications. Accurate temperature measurements are essential
when measuring artifacts, even slight temperature variations can lead to significant
changes in dimensions, potentially affecting the fit and function of components in
assemblies.

Theoretical note 8 The FEdlén equation is a mathematical formula used to cal-
culate the refractive index of air as a function of various atmospheric conditions,
such as temperature, pressure, and humidity. This is crucial for applications such
as laser ranging, astronomical observations, and the calibration of optical devices,
where even small discrepancies in the refractive index can lead to significant errors
m measurements.

41

Design and implementation

B3 =
| = =
B3 G=E

AAAM

Figure 2.21: Thermometer FLUKE Super-DAQ with multiple channel expansion.

2.6.1 Thermometer

The model used for temperature measurement is the FLUKE super-DAQ (Figure
2.21), which is actually a multimeter equipped with six PT-100 sensors connected to
six different channels. All six probes are periodically calibrated, and the calibration
curve is set directly within the instrument. The control of the thermometer from
the PC is performed via a LAN connection, necessitating the creation of a C+-+
class to open and manage the communication.

Theoretical note 9 A Local Area Network (LAN) connection allows devices to
communicate with each other over a limited geographical area, such as a home, of-
fice, or campus. In the context of communicating with instruments like the FLUKE
super-DAQ), a LAN connection enables the instrument to be controlled and mon-
itored remotely via a networked computer. This is typically achieved using the
Transmission Control Protocol (TCP), which provides reliable, ordered, and error-
checked delivery of data between applications running on devices connected to the
network. To establish a TCP connection, a socket must be created. A socket is an
endpoint for sending and receiving data across a network.

Command Explanations

The following commands are sent to the FLUKE super-DAQ instrument to config-
ure it for temperature measurement:

42

2.6 — Environmental monitoring

“*RST’: This command is used to reset the instrument to its default state. It
clears any previous settings and configurations, ensuring that the device starts
from a known baseline. It helps in avoiding unexpected behavior and ensures
that the device is ready for new commands.

“¥RCL 04’: This command is used to recall a specific setup or configuration
stored in the instrument’s memory. The number ‘04‘ indicates the specific
memory location from which the settings will be retrieved. By using the
“*RCL’ command, the user can quickly restore a predefined configuration that
may include calibration settings, measurement parameters, or other relevant
settings.

‘DATA:LOG:DEST MEM’: This command sets the destination for logged data
to the internal memory of the instrument. It tells the FLUKE super-DAQ
to store the measurement data in its onboard memory rather than sending it
directly to an external device or display. This is useful for batch processing
or when the data needs to be retrieved later for analysis. It allows for more
flexible data management, especially in scenarios where continuous monitoring
is required.

‘DATA:LOG:AUTO OFF’: This command disables automatic logging of data.
When set to "OFF," the instrument will not automatically log data at pre-
defined intervals or conditions. Disabling automatic logging allows the user
to have more control over when data is recorded. This is useful in situations
where the user wants to manually trigger data logging based on specific events
or conditions.

‘TRIG:COUN 1’: This command sets the trigger count to 1, meaning that the
instrument will take a single measurement when triggered.

‘ROUT:SCAN (@201:206) ’: This command configures the instrument to scan
specific channels, in this case, channels 201 to 206. The ‘Q’ symbol indicates
that the channels specified in parentheses are to be included in the scan.

‘STAT:0PER?’: This command queries the operational status of the instru-
ment. It returns a status code that indicates the current state of the device,
such as whether it is ready to take measurements or if there are any errors.
The ‘STAT:OPER?’ command is crucial for ensuring that the instrument is in
a proper operational state before proceeding with measurements. By checking
the operational status, the user can avoid attempting to read data when the
instrument is not ready or it is still measuring, thus preventing errors.

‘FETC?’: This command is used to fetch the most recent measurement data
from the instrument. It retrieves the temperature readings from the active
channels and returns them as a comma-separated string. By sending this

43

10

11

12

14

15

16

18

19

20

-

NN N

WO N NN NN N NN
© ®w N O U w 5

Design and implementation

command, the user can access the latest temperature readings, which can
then be parsed and processed for further analysis.

TCP Client creation

Below is reported the class methods implemented to setup a client server connection.
The code first checks if the socket has already been created. If not, it creates a new
socket using the socket function with the parameters AF_INET (indicating IPv4)
and SOCK_STREAM (indicating a TCP socket).

If the provided address is not a valid IP address (checked using inet_addr),
it attempts to resolve the hostname using gethostbyname. If the hostname is
successfully resolved, the code retrieves the IP address from theh_addr_list. If the
address is a plain IP address, it is directly assigned to server.sin_addr.s_addr.

The code sets the address family (AF_INET) and port number in the server
structure and finally, it attempts to connect to the remote server using the connect
function.

bool tcp_client::conn(std::string address, int port)

{
sock = socket (AF_INET, SOCK_STREAM, 0);
if (inet_addr (address.c_str()) == -1)
{
struct hostentx* he;

struct in_addr** addr_list;

//resolve the hostname, its not an ip address

if ((he = gethostbyname (address.c_str())) == NULL)
¥
// plain ip address
else server.sin_addr.s_addr = inet_addr (address.c_str());

//Connect to remote server
if (connect(sock, (struct sockaddr*)&server, sizeof (server)) <
0)

std::cout << "Connected\n";
return true;

bool tcp_client::send_data(std::string data)

{
//Send some data
if (send(sock, data.c_str(), strlen(data.c_str()), 0) < 0)

44

2.6 — Environmental monitoring

perror ("Send failed : ");
return false;

}

return true;

std::string tcp_client::receive(int size)
char buffer[sizel];

//Receive a reply from the server
std::string reply;

int nch = recv(sock, buffer, sizeof (buffer), 0);

reply = buffer;
return reply;

2.6.2 Voltmeter

To measure the pressure and humidity, we use a voltmeter with a GPIB (General
Purpose Interface Bus) interface that reads the voltage signals coming from the
barometer and igrometer. The voltmeter is an Agilent 3458A model (Figure 2.22),
which is a 8.5 digit multimeter.

Theoretical note 10 The General Purpose Interface Bus (GPIB), also known as
IEEE 488, is a standard interface used for connecting and controlling multiple
electronic instruments, such as oscilloscopes, multimeters, and signal generators,
in a laboratory or industrial setting. GPIB allows for communication between a
computer and various instruments in parallel, enabling automated data acquisition,
control, and analysis.

A C++ class derived from the ambInstr class has been created to manage the
GPIB communication with the voltmeter which is done using a custom command
set provided by the instrument manufacturer.

The following commands are used to control the voltmeter:

e BEEP ONCE: This command is sent in the setParams function. It instructs
the voltmeter to emit a single beep sound, possibly for user feedback upon
initialization.

45

Design and implementation

0N

I

uuuuuuuuuuuu s
e =

DiE D & :,_”4“"‘
i) BT B3 - =
CEC@ AONe

3

Jepp—

EEaE,
[
N
[
[

R

e

B

Figure 2.22: Agilent 3458A voltmeter.

ID?: This command is sent in the setParams function. It is a system query
that requests the instrument to return its identification string, allowing the
user to verify the model or version of the voltmeter.

NRDGS 10: This command is used in setParams. It sets the number of readings
to be taken per trigger to 10, meaning that whenever a trigger occurs, the
voltmeter will take 10 measurements.

DCV AUTO: This command appears in setParams. It likely refers to DC Voltage
measurement, with AUTO indicating that the measurement range should be set
to automatic, allowing the voltmeter to select the appropriate range based on
the input signal.

void Voltmeter::setParams ()

{
ask ("BEEP ONCE", false);
ask("ID?", true) ;
ask ("NRDGS 10", false) ; // do 10 readings @ trig
ask ("DCV AUTO", false); // 10 V range DC
}

MATH STAT: This command is used in both readPressure and readHumidity
functions. It enables statistical functions on the measured data, allowing the
user to perform calculations such as mean, standard deviation, etc., on the
collected measurements.

TERM REAR: This command is used in readPressure and readHumidity. It
selects the rear input terminals for measurement, indicating where the probes
should be connected for accurate readings.

CHAN 5 (in readPressure) and CHAN O (in readHumidity): These commands
specify the channel to be measured. The voltmeter is capable of measuring
multiple channels, and channels 5 and 0 are designated for pressure and hu-
midity measurements, respectively.

46

2.6 — Environmental monitoring

e TRIG SGL: This command is used in both readPressure and readHumidity.
It is related to triggering the measurement, with SGL indicating that a single
trigger will initiate one set of readings, as configured by NRDGS.

e RMATH MEAN: This command is used to retrieve the measured value in both
readPressure and readHumidity. It queries the voltmeter to return the mean
value of the measurements taken after the trigger, providing a summary statis-
tic of the collected data.

Barometer

output sicNaL NI

INPUT POWER: +15VDC AT .017 AMPERES

OUTPUT IMPEDANCE: 10 OHMS MAX.

oreraTing TEMP RANGE: [IREH F To [EIEKI F.

Figure 2.23: Rosemount barometer.

The Rosemount Pressure Transducer RMT 1201 FIB1A1A converts a pressure
reading into a voltage signal, which is then read by the voltmeter. The transducer
is designed to measure air pressure in the range of 0.8 to 1.1 bar and it is equipped
with a 0-5V output signal, which is proportional to the pressure reading.

Tha calibration of the transducer is performed in INRiM, and the calibration
curve is set directly in the program using two predefined macros PRESSURE_A and
PRESSURE_B that are used to calculate the pressure from the measured voltage.

double Voltmeter::readPressure ()
{
ask ("MATH STAT", false); // enable statistics
ask ("TERM REAR", false);
ask ("CHAN 5", false);
ask ("TRIG SGL", false); // Trigger the multimeter
std::this_thread::sleep_for(std::chrono::seconds(5));
double val = ask("RMATH MEAN", true); // Ask the mean value

47

Design and implementation

10 val = val * PRESSURE_A + PRESSURE_B;
11 return val;

12 }

Dewpoint igrometer

@ cLEan opTicS

1 |

°C DEWPOINT e

MVICHELL s

Instruments : 3000

Figure 2.24: Michell Instruments S3000 igrometer monitor.

The Michell Instruments S3000 igrometer, specifically designed for measuring
humidity, is an instrument for dew point measurement, its Automatic Balance
Compensation (ABC) system periodically heats the measurement mirror to elimi-
nate condensation and counteract contamination, ensuring that the surface remains
dry for accurate readings. Additionally, the device is equipped with a ’'CLEAN OP-
TICS’ warning light that activates when the optics have accumulated significant
contamination, prompting users to perform maintenance. A TTL signal output is
also available for remote alarm notifications.

The operating range of the Series 3000 is influenced by the ambient temperature
of the sensor and the efficiency of heat sinking, with a maximum achievable dew
point equal to the ambient temperature or 80°C, whichever is lower, and a minimum
dew point of -65°C at an ambient temperature of -40°C.

The instrument calibration is performed in INRiM and results in a linear calibra-
tion curve, it is possible to set the calibration curve directly in the program using
two predefined macros HUMIDITY A and HUMIDITY B that are used to calculate the
dew point temperature from the measured voltage.

| double Voltmeter::readHumidity ()

2 {

3 ask ("MATH STAT", false); // enable statistics

4 ask ("TERM REAR", false);

5 ask ("CHAN 0", false);

6 ask ("TRIG SGL", false); // Trigger the multimeter

7 std::this_thread::sleep_for(std::chrono::seconds(5));

48

9

10

11

12

2.7 — Moore controller

double val = ask("RMATH MEAN", true); // Ask the mean value

val = val * HUMIDITY_ A + HUMIDITY_B;
return val;

3

2.7 Moore controller

In order to control all the components fo the Moore machine an industrial computer
was chosen. The computer specs are reported in Table 2.5. The components marked
in bold where the ones necessary for the project and the reason why this computer
was chosen, some legacy devices present in the current machine configuration can
only be interfaced with COM ports or PCI cards with specific characteristics.

Table 2.5: Industrial PC Specifications.

Component Specification

Chassis AX60810WM Desktop Chassis for Mainboard ATX
Power Supply PS400W_ATX Power Supply 400W ATX

Processor LGA1151 socket 9th 8th Gen Intel Core Processor
Motherboard Intel C246 PCH DDR4 (ECC)

Connectivity USB 3.1(Gen2) COM PORT PClex16 2 PClex4 4 PCI
Model IMB525RVDHGGA __C246

COM Port Cable | 2 x COM port cable with bracket, P=2.54 mm, L=300 mm
CPU Intel Core i5_ 8500 Coffee Lake 9 MB Cache, 3GHz

CPU Cooler FAN/CPU CPU Cooler

RAM DDR4 _ 2133MHz DIMM 288pin (16GB)

Storage Solid State Disk 2.5" SATA 500GB

TPM Module AX93515 TPM 2.0 module for IMB/MMB

The PC runs the Moore controller software [15], which is responsible for manag-
ing the operation of the machine. The software is designed to provide a user-friendly
interface for controlling the machine’s movements, setting parameters, and moni-
toring the measurement process. The industrial PC offers the necessary processing
power and connectivity to ensure smooth and reliable operation of the Moore ma-
chine. The software was written in C4++ leveraging the power of object-oriented
programming to create a modular and extensible system. The software architecture
is based on the Moore class, which encapsulates all the functionality required to
control the machine. The moore controller program structure is as follows:

o Core System Classes:

— Moore: Manages the overall operation of the measuring machine.

49

Design and implementation

* Includes instances of Asse for each axis (X, Y, and Z).

* Manages communication with optical scales using an IkOptical ob-
ject.

* Handles communication with the Keysight laser interferometer using
a Keysight object.

* Manages communication with the LVDT sensor using a Cary object.
*x Uses a SimpleSerial object to communicate with the microcontroller.

— Asse: Represents a single axis of the machine.

x Uses a PosInstr interface to read position data from the instrument
the axis is associated to to close the feedback movement loop.

* Uses a SimpleSerial object to communicate with the microcontroller.
— PosInstr: Abstract base class for position measuring instruments.
* Implemented by Keysight, Scale, Laser, Cary, and CHRocodile.

— IkOptical: Manages communication with the IK220 PCI board for op-
tical scales.

— Scale: Configures and manages the optical scales.

— SimpleSerial: Utility for handling serial communication.
o Environmental Parameter Classes:

— Paramb: Manages the environmental parameter measurement.
— Fluke: Manages communication with the FLUKE thermometer via LAN.

— Voltmeter: Abstract class for pressure and humidity sensors.
« GUI Related Classes:

— MyApp: Main application class.

— PosFrame: Base class for the position control GUI frame.

— AxisFrame: GUI frame for setting the parameters of each axis.
— CHRMeasFrame: GUI frame for CHR measurements.

— AmbFrame: GUI frame for environmental parameter monitoring.
e Other Classes:

— Nilox: Manages the Nilox camera for machine vision and marker detec-
tion.

— pos: Represents a 3D position and defines the most common operators
to handle point operations.

50

2.7 — Moore controller

Posinstr
+ value
+ max
+ min
+ handle
+ Poslinsir()
+ connect()
+ setParams()
+ readinstr()
+ ~Poslnstr()
Asse
+ acceleration
SimpleSerial + stantV/
+ connected + maxV
+ SimpleSerial() + stopV Keysight Koica Scale
+ SimpleSerial() + inv vement
+ ReadSerialPort() + measuring Laser + connect() + connect() : ;::::S::(‘:JJ =
+ ReadSerialPortWithConversion() + Asse() + connect() + readinstr) + setParams() + setAx() + connect()
+ ReadSerialPort() + Asse) + setParama(y| | T reRISAMRIeSANG| | instr) + gethx() + readinstr()
+ WriteSerialPort{) + init() + readinstr(} + selTemp() + getYscale() + setParams() + preciseRead()
+ WriteSerialPort(* selMeasinstument()| | o cer) + setPress() + gelZscalel) | |+ getParams()| |+ getRange()
+ OpenSerialPort() + setinstrPosition() + setwave_len())
) - + Poslnstr() + ~lkOptieal() + readinstr() + selRange()
+ OpenSerialPort() + gelPosition() T + setHum() + Poslnstr() + ~Scale() 7
+ CloseSerialPort() + setPosition() \ + setDeadP(} + Posinstr()
+ PurgePort() + setRamp()
+ ~SimpleSerial() + isLocked()
\ + operator=()
S|+ ~Asse()

A
\

Figure 2.25: Moore core system classes and dependency / inheritance structure.

2.7.1 Acceleration ramps

To guarantee the correct movement of the motors it is necessary that the axis speed
follows a linear trend, both in acceleration and in deceleration, to do this the PC
must calculate the instantaneous speed and send it to the microcontroller. This
is done by the Asse::setVelocity function, which calculates the instantaneous
speed based on the distance traveled by the axis and the parameters set by the
user. In Equation 2.8 the calculation of the istantaneous speed is reported where a
is the axis acceleration value, t is the traveled distance and d is the total distance
the axis needs to be moved to reach the destination.

o1

Design and implementation

a-t, if t <

a-(d—t), ift> 28)

v =

N N,

After calculating the speed, the function limits the result to the maximum and
minimum values to be sent to the microcontroller, in this way the speed curve
shown in Figure 2.26 is obtained.

_:" "t'L
;'t V= Vmax \
Py
(9]
=2
] v=a-t v=a-(d-t)
—-—- Equations
Velocity (ramp)

Travel
Figure 2.26: Acceleration ramps for motor control.

It is important to clarify that the acceleration ramps are calculated based on
the position and not based on time since only in this way it is really possible to
guarantee a correct positioning after closing the loop.

To set the acceleration parameters function Asse::setRamp can be used, this
function also sets the starting speed and end speed of the motion. The start speed
cannot be too low since the infinite screw has some slack that needs to be covered
in a short amount of time in order to have fast movement.

1 double distance abs(targetPosition - startP);

0;

2 double travel

i while (distance - travel > 0)

5 {

6 setVelocity(distance, travel);
7 P = position;

8 if (instr == ’m’)

9 P = measPT->readInstr();

10 travel = abs(P - startP);

11

12 std::this_thread::sleep_for(std::chrono::milliseconds (10));
13 };

14
15 velocity = O0;

52

16

17

2.7 — Moore controller

lock = true;
sendVelocityToMicro () ;

2.7.2 Coordinate system definition

In a coordinate measurement system (CMS), the ability to define multiple refer-
ence systems is crucial for achieving accurate and flexible measurements. Different
workpieces may require distinct coordinate systems to accommodate their unique
geometries and orientations. The use of rotation and translation matrices enables
the transformation of coordinates from one reference system to another, facilitating
the alignment of measurements with the machine’s fixed coordinate system. This
capability is essential for ensuring that measurements are consistent and compara-
ble, regardless of the orientation or position of the workpiece.

Theoretical note 11 Rotation and translation matrices are essential tools in lin-
ear algebra used for transforming geometric objects in space, particularly in fields
like computer graphics, robotics, and computer vision. A rotation matriz is a square
matrix that rotates points around a specified axis. In two dimensions, it can be rep-
resented as:))
CoS —sin
R(6) = [sin(&) cos(0)]

In three dimensions, rotation matrices can rotate points around the X, Y, or Z
axes, preserving the length of vectors due to their orthogonal properties.

A translation matriz, on the other hand, is used to move points in space without
changing their orientation. In two dimensions, it is expressed in a homogeneous
coordinate system as:

10 t,
T=10 1t
00 1

where tr and ty are the translation distances along the X and Y azes.

The measurement machine operates at a relatively slow pace, and the manual
definition of workpiece coordinate systems can be a time-consuming process. This
manual method requires the physical contact of a probe with the objects, which not
only prolongs the setup time but also introduces the potential for human error and
inconsistencies in the measurements. To address these challenges and enhance the
efficiency of the measurement process, a webcam has been installed on the machine,
equipped with the capability to detect markers using the OpenCV library.

Theoretical note 12 OpenCV, or Open Source Computer Vision Library, is a
powerful and widely used open-source software library designed for computer vision
and image processing tasks. The library provides a comprehensive set of tools and

53

Design and implementation

functions that enable users to perform a wide range of operations, including image
manipulation, object detection, facial recognition, motion tracking, and machine
learning. Its extensive documentation and active community further contribute to
its popularity, making it a go-to resource for both beginners and experienced prac-
titioners in the field of computer vision.

The integration of the webcam allows for a significant reduction in the time
required to establish the coordinate systems for the workpieces. By strategically
placing markers at key points on the objects, the system can determine their po-
sitions without the need for manual probing. This approach leverages computer
vision technology to automate the detection and localization of the markers, speed-
ing up the entire measurement process.

The webcam is programmed to map the 2D space of its field of view (FOV) with
the machine’s coordinate system. It captures images of the work area and processes
them using OpenCV. The software identifies the markers within the captured im-
ages and calculates their positions relative to the machine’s coordinate system,
which is derived from readings obtained from the laser and optical encoders. This
allows for precise localization of the workpieces without the need to physically move
the machine or make contact with the objects.

The use of a webcam in the measurement system introduces several challenges
that must be addressed to ensure accurate and reliable performance. One signifi-
cant issue is the lens distortion inherent in many webcams, particularly those with
a fisheye design. This distortion can lead to inaccuracies in the captured images,
as straight lines may appear curved and the proportions of objects can be mis-
represented. To mitigate this effect, calibration techniques must be employed to
correct the distortion and ensure that the measurements derived from the images
accurately reflect the true geometry of the workpieces.

Another challenge arises from the coordinate system of the webcam’s field of
view (FOV), which does not directly correspond to the actual dimensions of the
samples being measured. The mapping between the camera’s coordinate system
and the physical dimensions of the workpieces must be robust enough to maintain
accuracy even if the webcam is repositioned. This requires the implementation of a
reliable calibration process that can adapt to changes in the camera’s orientation or
distance from the objects. The system must be designed to consistently translate
the coordinates detected by the webcam into meaningful measurements that align
with the machine’s fixed coordinate system, ensuring that the data remains valid
regardless of any adjustments made to the camera’s position.

It is important to note that the marker detection for the localization of the
workpiece is intended to be only an approximation of the precise location, the real
position must be calculated by the machine automatically by making contact with
the sample under analysis starting from the approximate position detected.

54

2.7 — Moore controller

Fisheye and distorsion correction

OpenCV provides a comprehensive framework for working with fisheye cameras,
which are characterized by their wide field of view and significant lens distortion.
The key components involved in modeling fisheye cameras, including the camera
matrix, distortion matrix, and the process of undistorting images. The camera
matrix, often denoted as K, is a 3 X 3 matrix that contains the intrinsic parameters
of the camera. It is defined as follows:

fo 0 ¢

K=10 f, ¢
0 0 1

where: - f, and f, are the focal lengths in pixels along the x and y axes, respec-
tively. - ¢, and ¢, are the coordinates of the principal point, typically located at
the center of the image.

Fisheye lenses introduce significant distortion to the captured images, which can
be modeled using a distortion matrix. In OpenCV, the distortion coefficients for
fisheye cameras are typically represented as a vector D:

T
D:[kl ko ks Ky ks

where: - ki, ko, k3, k4, ks are the distortion coefficients that describe the radial
and tangential distortion effects.
The radial distortion can be modeled as:

ra =71 (14 kir? + kor* 4 ksr®)

where r is the distance from the center of the image, and ry is the distorted
radius.

The chessboard calibration method [30, 31] is a widely used technique in com-
puter vision for calibrating cameras. This method involves capturing multiple im-
ages of a chessboard pattern from different angles and distances. By analyzing these
images, OpenCV can compute the camera matrix and distortion coefficients. The
chessboard pattern consists of a grid of alternating black and white squares. The
corners of these squares serve as calibration points. The number of inner corners
in the chessboard pattern is specified, typically denoted as (n,,n,), where n, is
the number of squares along the width and n, is the number of squares along the
height. The total number of inner corners is n. = n, X n,.

The calibration process involves several key steps:

o Image Acquisition: Capture multiple images of the chessboard pattern from
different perspectives. It is important to cover a range of angles and distances
to ensure robust calibration.

99

Design and implementation

o Corner Detection: For each captured image, OpenCV detects the corners of the
chessboard pattern using the function findChessboardCorners. This function
returns the pixel coordinates of the detected corners.

Figure 2.27: Chessboard pattern for camera calibration.

o Object Points Generation: The 3D coordinates of the chessboard corners in
the real world are defined in a known coordinate system.

To correct for the distortion introduced by the fisheye lens, OpenCV provides
functions to undistort images. The undistortion process involves mapping the
distorted image coordinates back to the ideal pinhole camera model coordi-
nates.

o Camera Matrix and Distortion Coefficients Calculation: Using the detected
corner points and the corresponding object points, OpenCV applies the cam-
era calibration function calibrateCamera. This function computes the cam-
era matrix K and the distortion coefficients D by minimizing the reprojection
error, which is the difference between the observed image points and the pro-
jected object points.

56

2.7 — Moore controller

After calculating the matrices, the undistortion can be performed as described

in [32].

Figure 2.28: Image undistortion process, on the left the original image from the Nilox
camera, on the right the undistorted image.

In code this can be done in the following way:

1 void Nilox::calibrate ()

2 {
3
4

ot

// Define the dimensions of the chessboard

cv::Size boardSize(9, 6); // Number of inner corners per
chessboard row and column

float squareSize = 25.0f; // Size of a square in your defined
unit (e.g., meters)

// Prepare object points (3D points in real world space)
std::vector<cv::Point3f> objectPoints;
for (int 1 = 0; i < boardSize.height; i++)
{

for (int j = 0; j < boardSize.width; j++)

{

objectPoints.emplace_back(j * squareSize, i x*

squareSize, 0);

}
}

std::cout << "Press ’a’ to capture an image for calibration."
<< std::endl;

std::cout << "Press ’s’ to start calibration and save
parameters." << std::endl;

while (key != ’q’)
{ // Press ’q’ to quit

// Find the chessboard corners

57

00

Design and implementation

bool found = findChessboardCorners(gray, boardSize, corners
)

if (key == ’a’)

{ // If a key is pressed
objectPointsList.push_back(objectPoints) ;
imagePoints.push_back(corners) ;
std::cout << "[INFO] Captured image for calibration."

<< std::endl;

}

if (key == ’s’)

{

// Calibrate the camera

std::vector<cv::Mat> rvecs, tvecs;

calibrateCamera(objectPointsList, imagePoints, gray.
size (), cameraMatrix, distCoeffs, rvecs, tvecs);

break;

3

By understanding the camera matrix, distortion matrix, and the mathematical
principles behind undistorting images, we can effectively correct for lens distortion
and improve the accuracy of their computer vision applications.

Camera FOV to machine coordinate mapping

ArUco markers [33] are a type of fiducial marker used in computer vision appli-
cations for robust and accurate pose estimation. OpenCV provides a dedicated
module for detecting and tracking these markers, which can be utilized in various
applications, including augmented reality, robotics, and camera calibration.

The ArUco marker detection process involves several key steps:

o Marker Generation: ArUco markers are square-shaped patterns that contain

a unique binary code. Each marker is defined by a specific size and can be
generated using OpenCV'’s functions. The markers are typically printed on a
flat surface.

Image Acquisition: A camera captures images of the scene containing the
ArUco markers. The quality of the captured images is crucial for accurate
detection.

Detection: OpenCV provides the function detectMarkers to identify ArUco
markers in the captured images. This function returns the corners of the
detected markers and their corresponding IDs. The detection process involves
thresholding the image, finding contours, and identifying the square shapes
that correspond to the markers.

58

2.7 — Moore controller

Figure 2.29: AruCo marker detection.

e Position Calculation: Once the markers are detected, the next step is to cal-
culate their positions in the FOV. By knowing the size of the marker in mil-
limeters, the pixel coordinates of the corners can be mapped to real-world 2D
coordinates (X,Y’). The relationship between the marker size and its pixel
representation allows for accurate distance measurements, even if the camera
moves. The position of each marker can be calculated using the following
equations:

X — (Tmarker — Ca) - Size Yy — (Ymarker — Cy) - size

fx ’ fy

where (Zyarkers Ymarker) are the pixel coordinates of the marker’s center, size is
the physical size of the marker in millimeters, and (¢, ¢,) are the coordinates
of the principal point i n the camera matrix.

¢ Displacement Calculation: After calculating the positions of all detected mark-
ers, the displacements required to center the probe on each marker can be

59

Design and implementation

determined. This involves comparing the current position of the probe with
the calculated positions of the markers.

In code this is done in the following way:

| float Nilox::detect(std::vector<cv::Point2f> &markerPos, std::

vector<int> &ids, float markerSize,

bool estimatePose)

this->cameraMatrix,

corners, ids,

corner [1]) ;
corner [2]) ;
corner [3]) ;
corner [0]) ;

2 {

4 while (inputVideo.grab())

5 {

6 cv::Mat image, undistorted, imageCopy;

7 inputVideo.retrieve (image) ;

8 cv::undistort(image, undistorted,
this->distCoeffs) ;

9 PR

10 // detect markers and estimate pose

11 detector .detectMarkers (undistorted,
rejected) ;

12

13

14 char key = (char)cv::waitKey(waitTime) ;

15 if (key == ’q’)

16 {

17 if (lids.empty()) {

18 float sum = 0;

19 int n = 0;

20 for (auto cormner: corners) {

21 n += 4;

22 sum += cv::norm(corner [0]

23 sum += cv::norm(corner [1]

24 sum += cv::norm(corner [2]

25 sum += cv::norm(corner [3]

26 }

27 float 1 = sum / n;

28 float scale = markerSize / 1;

29

30 for (auto center: centers) {

31 markerPos.emplace_back(center - cv::Point2f
(image.size()) / 2);

32 }

33 return scale;

34 T

35 }

36 }

37 return O0;

38 }

Once the displacements are calculated, the machine can be programmed to move
its three axes accordingly. By adjusting the positions of the X, Y, and Z axes
based on the calculated displacements, the probe can be accurately centered on

60

2.7 — Moore controller

the detected markers. This process allows for precise positioning and measurement
without the need for manual adjustments, enhancing the efficiency and accuracy of
the overall system.

2.7.3 Multithreading

Multithreading is a programming technique that allows multiple threads to ex-
ist within a single process, enabling concurrent execution of tasks. Each thread
represents a separate path of execution, allowing a program to perform multiple
operations simultaneously. Additionally, multithreading can improve resource uti-
lization by allowing a program to perform background operations, such as file I/O
or network communication, without blocking the main execution flow. In the spe-
cific case of the Moore controller, this technique comes particularly handy in a
variety of applications:

o concurrent movement of multiple axes
 loop reading of instrumentation
« other temporary background processes (keyboard control etc.)

In the program, there are two threads running in an infinite loop, each serving
a distinct purpose to ensure the efficient operation of the system. The first thread
is responsible for continuously reading the environmental parameter instruments,
such as temperature, humidity, and pressure. This thread performs an iteration
every five minutes, gathering and updating the relevant environmental data for
laser correction. This periodic update is sufficient for monitoring changes in the
environment, as these parameters typically do not fluctuate rapidly.

The second thread, on the other hand, is dedicated to monitoring the instanta-
neous position of the three axes X, Y, and Z of the machine. This thread operates
at a much higher frequency, executing an iteration every 10 milliseconds. This rapid
polling is crucial for ensuring that the system has up-to-date information about the
position of the machine at all times. The instantaneous position data is essential
for precise motion control, as it allows the system to make real-time adjustments
to the motor commands based on the current state of the machine.
std::thread ambThread{ &MooreLayAmbFrame::UpdateAmb, this }; //

create ambParam infinite
void MooreLayAmbFrame::UpdateAmb ()
{

ambVals v;
while (true)
{
v = this->amb->scanParams () ;
std::this_thread::sleep_for(std::chrono::seconds (300));
¥

61

N

Design and implementation

3

std::thread posThread{ &MoorePosFrame::UpdatePosition, this }; //
create pos infinite

void MoorePosFrame::UpdatePosition ()

5

while (true)

{
this->moore->updatePosition () ;
std::this_thread::sleep_for(std::chrono::milliseconds (10));

pos abs = this->moore->getAbsPosition();
pos rel this->moore->getRelPosition () ;

}

When a movement command is issued to move the machine to a target point,
(Ptarget), three separate and simultaneous threads are created to control the move-
ment of each axis concurrently. Each thread is dedicated to managing the motion
of one specific axis, allowing for coordinated and efficient movement. This multi-
threaded approach enables the system to execute complex motion commands while
maintaining responsiveness. The movement loop relies heavily on the instantaneous
position data provided by the second thread to generate the acceleration ramps for
the motors. Since the position data is updated every 10 milliseconds, the system can
dynamically adjust the motor commands based on the latest position information,
facilitating smooth and precise movements.

void Moore::setAbsPosition(pos target)
{
std::thread xt(&Asse::setPosition, &Xaxis, target.x); // create
single axis movement
std::thread yt(&Asse::setPosition, &Yaxis, target.y); // create
single axis movement
std::thread zt(&Asse::setPosition, &Zaxis, target.z); // create
single axis movement

xt.join () ;
yt.join () ;
zt.join () ;

2.7.4 Documentation and Doxigen

Documenting the code is essential for maintaining clarity and facilitating collabora-
tion among developers. Well-documented code helps others understand the purpose
and functionality of various components, making it easier to modify, debug, and
extend the codebase. One effective tool for generating documentation is Doxygen

62

2.7 — Moore controller

[34], which automates the process of creating comprehensive documentation from
annotated source code.

v, Moore 2.
Main Page Classes ~ Files ~ Q- Search

MOORE

Programma per conirollo assi € misure con la macchina MOORE INRIM.
Compilazione del sorgente

- Make — compilazione completa del codice

- Make CXXFLAGS="-DTRY" — compilazione della sola GUI per testing
- Make clean — rimozione dell'eseguibile e dei file oggetto
- Make layout — modifica del layout GUI

Figure 2.30: Section of index.html page generated by Doxygen.

Doxygen works by parsing specially formatted comment strings embedded within
the code. These comments can include descriptions of classes, functions, param-
eters, return values, and more. By following a consistent format, developers can
provide detailed explanations that Doxygen will convert into structured documen-
tation. The output can be generated in multiple formats, including HTML for
web-based documentation and BTEX [35] for high-quality printed documents.

Using Doxygen in conjunction with comment strings not only enhances the read-
ability of the documentation but also ensures that it remains up-to-date with the
code. As the code evolves, the documentation can be regenerated easily, reflecting
any changes made.

In the moore project each header file includes an explanation for each function
declaration, the comments are defined in the following format:

o @brief: explanation of the functionality of the implemented method
o @param: function input parameter explanation and type
e @return: the return type and explanation of the value

o @throws: the exception that the user should handle when calling the function

An example of generated documentation is reported in Figure 2.31, in the upper
part there is the comment stub with all the doxigen keyword, while in the bottom
part there is the generated html document on the browser, the Moore documenta-
tion main page is reported in Figure 2.30. Also all class diagrams (Figures 2.25,
3.4) present in this thesis were generated automatically based on the code itself
using Doxigen.

63

Design and implementation

/** @brief Finds the real roots of a cubic equation.

The function solveCubic finds the real roots of a cubic equation:

= if coeffs is a 4-element vector:

\f[\texttt{coeffs} [0] x73 + \texttt{coeffs} [1] x~2 + \texttt{
coeffs} [2] x + \texttt{coeffs} [3] = O0O\f]

- if coeffs is a 3-element vector:

\f[x"3 + \texttt{coeffs} [0] x72 + \texttt{coeffs} [1] x + \
texttt{coeffs} [2] = O\f]

The roots are stored in the roots array.

OGparam coeffs equation coefficients, an array of 3 or 4 elements.
@param roots output array of real roots that has 1 or 3 elements.
@return number of real roots. It can be 0, 1 or 2.

*/

CV_EXPORTS_W int solveCubic (InputArray coeffs, OutputArray roots);

+ solveCubic()

int cv::solveCubic (InputArray — coeffs,
OutputArray roots
)
Python:
cv.solveCubic(coeffs|, roots]) -> retval, roots

#include <opencv2/core.hpp>
Finds the real roots of a cubic equation.
The function solveCubic finds the real roots of a cubic equation:

« if coeffs is a 4-element vector:

coeffs[0]z® + coeffs(l]z? + coeffs[2]z + coeffs[3] = 0
« if coeffs is a 3-element vector:
2% + coeffs[0]z? + coeffs[l]z + coeffs[2] — 0

The roots are stored in the roots array.

Parameters
coeffs equation coefficients, an array of 3 or 4 elements.

roots output array of real roots that has 1 or 3 elements.

Returns
number of real roots. ltcan be 0, 1 or 2

Figure 2.31: An example of code documentation generated by Doxygen.

2.8 Graphical user interface

A graphical user interface (GUI) is a type of user interface that allows users to
interact with electronic devices through graphical icons and visual indicators, in-
stead of text-based interfaces, typed command labels or text navigation. GUIs

64

2.8 — Graphical user interface

were introduced in reaction to the perceived steep learning curve of command-line
interfaces (CLIs), which are more flexible and powerful in many ways, but are also
more difficult for new or occasional users to learn. The actions in a GUI are usually
performed through direct manipulation of the graphical elements. The elements of
a GUI are often organized as a hierarchy of graphical control elements, including
windows, dialog boxes, buttons, text fields, labels, checkboxes, radio buttons, and
other widgets.

When designing the Moore application two main options were considered for
the GUL: WxWidgets and Clay. The following sections will provide an overview of
these two libraries and the reasons why WxWidgets was chosen for the project.

2.8.1 Clay and Raylib

Clay [36] is a powerful stb style library for C and C++ developed by NicBarker
that provides a simple and easy-to-use API for creating graphical applications.

Theoretical note 13 Stb libraries [37] are a collection of single-file public domain
libraries for C/C++ that are designed to be easy to integrate into an existing code-
base. They are lightweight, fast, and easy to use, making them ideal for small
projects or prototyping. The single file is divided in two parts: the implementation
and the header. This allows the user to include the header file in their code and
choose if compile a separate dynamic library or include the implementation in their
code by defining a preprocessor macro.

Clay has zero dependencies, including no C standard library, which makes it highly
portable and easy to integrate into various projects. It allows to layout an intuitive
UT and then render it using Raylib [38], WebGL Canvas, or even as HTML (wasm)
[39]. This flexibility in output makes it easy to composite the UT in custom engines
or environments.

Theoretical note 14 Wasm or web assembly is a binary instruction format for a
stack-based virtual machine hosted on a web browser. It is designed as a portable
target for compilation of high-level languages like C/C++/Rust, enabling web ap-
plications to run at near-native speed on the web.

Clay uses a flexible and readable declarative syntax with nested Ul element
hierarchies. Developers can mix elements with standard C code, such as loops,
conditionals, and functions, providing a powerful and versatile way to create com-
plex Uls. Despite its simplicity, Clay is fast enough to recompute the entire Ul
every frame (immediate Ul [40]), ensuring smooth and responsive interfaces. Ad-
ditionally, Clay includes built-in "Chrome Inspector'-style debug tooling, allowing
developers to view their layout hierarchy and configuration in real-time. This fea-
ture greatly aids in debugging and optimizing the UI.

65

Design and implementation

To have such a fast library with a simple API and no dependencies has a signif-
icant drawback, Clay does not support differentiated callbacks or event handling.
There are two sides to this issue. On one hand, the refresh rate of the Ul is so
high that it is not necessary to have callbacks to update the UI, on the other end
the handling of all the user actions must be done manually in a polling fashion.
This can be a significant drawback for complex applications that require a lot of
user interaction. Furthermore Clay is a recent open source project and it is not as
mature as other libraries like WxWidgets.

Theoretical note 15 A callback is a function that is passed as an argument to
another function, allowing the second function to call the first function at a later
time. In GUI programming, callbacks are often used to handle events such as button
clicks, mouse movements, and keyboard input. When an event occurs, the GUI
framework calls the appropriate callback function to handle the event. This allows
developers to create interactive applications that respond to user input in real time.

On a positive note Clay is a very promising library, the real time re-computation
of each frame does not allow inconsistencies in the GUI. This is a common issue in
other libraries where the Ul is not updated in real time and the user can see the
changes in the UI happening in a non-sequential order.

To test the library, a simple application was created to test the UI and the
interaction with the user. GUI widgets are graphical user interface elements that
allow users to interact with software applications. They serve as building blocks
for user interfaces and include components such as buttons, text boxes, sliders,
checkboxes, and menus. Each widget has a specific function, enabling users to
perform actions, input data, or navigate through the application. CLAY however
does not provide complex widgets (e.g sliders) and so the software also required the
custom implementation of a subset of widgets:

e Slider
e Button

Radio Button

o Input Box

The program aimed to also test the motor control system and the serial com-
munication with the microcontroller.

Slider

The slider is a rectangular graphic which can be scrolled from either left to right
and vice versa using the mouse. See Figure 2.32. It is used to control the speed

66

2.8 — Graphical user interface

Figure 2.32: Slider GUI element.

of the motor. By scrolling or clicking on any position of the slider with the mouse
the motor will begin to spin at the speed indicated in the widget body. The slider
is a structure that contains a callback function, a minimum, maximum, real and a
boolean value.

typedef struct
{

int min;
int max;
int value;
int real;

bool active;
void (*onHoverFunction) (Clay_ElementId elementId,
Clay_PointerData pointerData,
intptr_t userData);
} slider;

When the slider is clicked and scrolled within the slider container, it also func-
tions when the mouse is outside the frame. As long as the mouse remains pressed
it will continue to function and only when it is released will it finally stop. This is
done using the on hover function; "speedSliderOnHover" and "MainFrameHover".
The speedSliderOnHover function is responsible for ensuring the slider functions
when the mouse is pressed while inside the slider container. While the MainFrame-
Hover is responsible for ensuring the slider functions even if the mouse is pressed
outside the slider container.

void speedSliderOnHover (Clay_ElementId elementId, Clay_PointerData
pointerData, intptr_t userData)

{
// Pointer state allows you to detect mouse down / hold /
release
if (pointerData.state == CLAY_POINTER_DATA_PRESSED_THIS_FRAME)
{
printf ("Slider activated\n");
speed_slider.active = true;
}
}

void MainFrameHover (Clay_ElementId elementId, Clay_PointerData
pointerData, intptr_t userData)

if (pointerData.state == CLAY_POINTER_DATA_PRESSED) // handle
pressed mous

67

Design and implementation

if (speed_slider.active == true)
{

speed_slider.value = pointerData.position.x - (3 *

PADDING) ;
if (speed_slider.value
speed_slider.value
if (speed_slider.value
speed_slider.value

A

MIN_SLIDER_W)
MIN SLIDER W;
MAX _SLIDER_W)
MAX_SLIDER_W;

Vv

int converted_value = map(speed_slider.value,
MIN_SLIDER_W, MAX_SLIDER_W,
speed_slider .min, speed_slider.max);

Serial_SendCommand (fd,
radioOptions.press [0] 7
radioOptions.press([1] ? ’w’ : ’m’,
radioOptions.press[2] 7
converted_value) ;

Input Box

The input box is a small text window where the user can interact with the GUI by
entering text from the keyboard (See Figure 2.33). In particular, in this case the
text must be a number ranging from 1 to 300, if the text input is not within that
range or contains any characters, an error message will be displayed. The acquired
digits, will be converted to an integer and used as a step value. This step value
will be used to control the rate at which the motor and slider will go from zero to
maximum speed and from maximum back to zero when the test ramp button is
pressed. Below is the C code for the input box.

typedef struct{
int n;

bool textactive;
Clay_String textContent;

void (*onHoverFunction) (Clay_ElementId elementId,
Clay_PointerData pointerData,
intptr_t userData);

}inputbox;

For the programming of the input box the Raylib library was used in the main
section of the code. To allow the user to type text to the GUI appending characters
to the Clay-String is required. However, CLAY does not allow directly appending

68

2.8 — Graphical user interface

Insert your text

Figure 2.33: Input Box GUI element.

characters to the "Clay-String" as it is a const char *. Therefore, a new char
variable must be created and used to store the input text. Then a new Clay-String
is created each time a character is appended to the created char variable.

1 if (text_box.textactive == true)

2
3
4

10
11
12
13

14

{

5

int key = GetCharPressed();

// NOTE: Only allow keys in range [32..125]
if ((key >= 32) && (key <= 125))

{
char new_content [100];
sprintf (new_content, "%s%c", text_box.textContent.chars, (
char)key) ;
text_box.textContent = (Clay_String){
.chars = new_content,
.length = text_box.textContent.length + 1};
}
Buttons

These are static buttons and when they are clicked they carry out a specific task.
For this particular GUI there are two buttons:

e the Zero button: This is used to make the slider go from the value it is currently
positioned, down to zero. It also makes the motor go from the current speed
it is spinning, down to zero.

o the Ramp button: This is used to make the slider and motor go from zero
speed to maximum speed and back to zero.

Radio Buttons

The motor’s graphical user interface (GUI) features six radio buttons that change
color and activate upon being clicked. The first three buttons are labeled [w-off],

69

Design and implementation

[fore], and [fine-angle|, while the remaining three correspond to the x, y, and z
axes.

« The [fore] button controls the motor’s rotation direction. When pressed, it
changes to [back] reversing the motor’s spin from clockwise to anti-clockwise.

e The [w-off] button indicates whether the winding is engaged. Pressing it
changes the label to [w-on], activating the winding mechanism for the motor.

« The [fine-angle] button adjusts the motor’s stepping mode. When clicked, it
changes to [default-angle| reverting to the standard step size.

« The [X], [Y], and [Z] buttons are used to select which of the x, y, and z axis
of the machine is being controlled by the slider.

When it comes to programming the radio buttons the challenging part was how to
make the program identify which button was pressed. In CLAY, multiple buttons
are seen as a single radio button entity and so it is necessary to distinguish each one
when they are pressed. Fortunately, CLAY has a function called "Clay-HashString'
which takes a key, an offset, and a seed. And so using this function, a for loop can
be utilized to label and identify which of the radio buttons was pressed. See below
the code the shows the use of "Clay-HashString".

1

2> radio radioOptions = {

3 .name = CLAY_STRING("fw"),

4 .labels = {CLAY_STRING("fore"), CLAY_STRING("w_off"),
CLAY_STRING("fine_angle")},
.labels_change = {CLAY_STRING("back"), CLAY_STRING("w_on"),
CLAY_STRING("default_angle")},

6 .active = 0,

7 .n = 3,

8 .press = {false,false,false},

9 .onHoverFunction = radioOptionsOnHover,

10 };

12 void radioOptionsOnHover (Clay_ElementId elementId, Clay_PointerData
pointerData, intptr_t userData)

13 {

14 if (pointerData.state == CLAY_POINTER_DATA_PRESSED_THIS_FRAME) {

15 for (int i = 0; i < radioOptions.n; ++i) {

16 if (Clay__HashString (CLAY_STRING("fw"), i, 0).id ==
elementId.id) {

17 radioOptions.active = ij;

18 radioOptions.press[i] =! radioOptions.press[i];

19 }

20 }

21 }

22 }

70

2.8 — Graphical user interface

Complete GUI

The complete GUI consists of several components arranged as shown in figure 2.34.
At the top, there is an orange header displaying the label "Sending" along with the
current speed indicated by the slider. Below the header is the green slider which
allows users to adjust the current speed. Directly beneath the slider are three radio
buttons labeled [w-off], [fore], and [fine-angle], accompanied by a ramp button.
Further down, there are additional radio buttons for the x, y, and z axes.

SENDING O

fine_angle

Insert your text

Figure 2.34: Full GUI for motor testing.

2.8.2 WxWidgets

The Moore project includes a GUI to allow the user to interact with the software
in a more user-friendly way. The GUI is implemented using the WxWidgets library
[41], which is a C++ library that lets developers create applications for Windows,
macOS, and Linux. WxWidgets is a mature library that has been around for a
long time and is widely used in the industry. It provides a wide range of widgets
and tools to create GUI applications, and it is well-documented and supported
by a large community of developers. The main frames of the application are the
following:

71

Design and implementation

o Position control frame: This frame allows the user to control the position
of the three axes, the speed of the axes. The user can also set the position of
the axes to a specific value, set the origin of the movement.

RS SETTINGS

a) b)

Figure 2.35: Position control frames (a) position indication and setting, (b) speed
settings for each axis.

« Environment parameters frame: This frame allows the user to monitor
the temperature and humidity of the environment. The window includes four
temperature readings and two for humidity and pressure.

Figure 2.36: Environment parameters frame.

e« Measurement fame: This frame allows the user to set the parameters of the
measurement, different measurement types are available, for each measurement
a different UI can be configured. Figure 2.37 shows the Ul for the measurement
of profiles with a chromatic confocal sensor.

The various frames and layouts can be created graphically using a program pro-
vided by WxWidgets called wxFormBuilder [42]. This program allows the user to
create the layout of the GUI by dragging and dropping widgets onto a canvas. The
program generates the code for the GUI, which can then be used in the application.
This makes it easy to create complex GUIs without having to write a lot of code.
The callbacks can be configured directly in the program, making it easy to link the
widgets to the application logic. The generated code consists of a header file and a
source file that define the main aspect of the GUI, furthermore for each frame an
abstract class is defined that can be inherited to create the specific frame.

72

2.8 — Graphical user interface

[

Figure 2.37: Measurement frame.

73

74

Chapter 3

Movement routines and
testing

Given the designed control system and the machine’s capabilities, the next step
requires the implementation of the logic behind the machine movements for specific
purposes. The machine must measure diameter of spheres, cylinders, optical scales,
and the control system must be able to perform the necessary movements to achieve
all these measurements. Some routines are general and can be used for any type of
measurement, while others are specific to the type of measurement being performed.

3.1 Approach

The approach routine is used to move the probe in contact with the sample and is
designed to move the probe in a controlled manner to ensure that it makes contact
with the sample without causing damage or excessive force, which could damage
the sample or the probe itself. The routine takes as input the target position (P3
in Figure 3.1), the speed of approach and the direction.

Starting from an arbitrary position PO, at first the probe is moved to position
P1 above the sample (SAFE_Z) previously defined by the user. At this height the
machine can be moved freely since no obstructions are present, and the probe is
moved 100 pm (App in Figure 3.1) away from the sample side in the x direction
of contact (P2). Lastly the z axis is lowered to reach the correct height needed to
perform the approach.

Once this point is reached the actual approach starts and the x axis is moved
slowly (speed set by the input parameter) until a certain reading of the cary (target
position) is red from the instrument.

To know the precise location of the sample the machine can proceed in two ways:

 the traditional way allows the user to control using the keyboard the machine
to set the contact position manually

75

Movement routines and testing

PROBE PATH SAFE_ 7/
Y SO
P P2

D

PO

P3

SAMPLE

Figure 3.1: The approach path of the probe starting from an arbitrary position PO to
reach the position to start the approach.

« an aruCo marker can be placed solidarily to the sample to instruct the program
using the webcam where it is located. This method must be refined in the final
implementation since it does not allow for the initial position to be only 100pm
from the side wall.

The routine also includes a safety check to ensure that the probe does not exceed
a certain force threshold during the approach. If the force exceeds the threshold,
the routine stops the movement and raises an exception.

3.2 Probe parameters

Two main parameters are used to define the probe: the probe diameter and the
probe axle deformation. The probe diameter is the diameter of the probe tip, which
is used to measure the diameter of the sphere. The probe axle deformation is the
amount of deformation that occurs in the probe axle when a force is applied to it.

Knowing the exact length of the calibrated gauge block allows the system to
determine the ball radius and the deformation of the axle. The difference between
the measured value and the known block length provides the correction factor
that will be used when measuring the sample under analysis. This calibration
step is essential to correct any deviations and ensure the precision of subsequent

76

3.3 — Reading correction

Figure 3.2: Calibration of probe radius and deformation using a calibrated gauge block.

measurements.
P,=L,—C,—d,+ R, (3.1)
P,=L,+C,+d,— R (3.2)
L, = Pp — P, (3.3)
Corr. Factor = 2R, — (d, +d,) =L, +C, — L, + C,, — Ly (3.4)

where R, is the radius of the sphere, d, is the positive deformation of the probe
axle, d,, is the negative deformation of the probe axle, L, is the laser measurement
in the positive direction, L,, is the laser measurement in the negative direction, C),
is the cary measurement in the positive position, C,, is the cary measurement in
the negative position and L is the length of the gauge block as shown in Figure
3.2.

3.3 Reading correction

The Cary reading is not calibrated once in a while as per usual practice for standard
instrumentation, but it is calibrated every time a new measurement is performed
by comparison with the interferometer reading. To do this a routine was created to
perform a set of approaches of different forces (proportional to the approach target)
and to store the Cary reading as well as the interferometer reading. The routine is
called caryFlex. The Cary reading is corrected by a linear regression of the data
acquired during the calibration routine [43].

77

Movement routines and testing

First (as in Equation 3.5) the algorithm calculates the mean values of the input
vectors x and y, where n is the size of the two vectors:

1 ¢

x_ﬁg% (3.5)
1

Y= ﬁzyz

Il
A

(2

Then the pearson correlation coefficient r (Equation 3.6) is calculated [44]:

Whi = i(l’z’ —Z)(yi — 9)
an = z:l:(ﬂfl — 3_3)2
Wz = i(yz- —7) 34)

Wn4 = Wn2 : Wn3

[\

r =

Wn4

Finally in Equation 3.7 the o and /3 parameters can be calculated and they represent
the regression line parameters with the line equation expressed as y = Sz + a:

WnS
Sy_ n—1
Wn2
S =\ 0T (3.7)
_ Sy
a=y—fx

The correction factor is calculated as the slope of the linear regression line both
for right and left approaches, and it is used to adjust the Cary reading to match
the interferometer reading, typical values of the correction range from m = 0.98 to
m = 1.02 indicating that the Cary correction is minimal.

In the current implementation of the program, only the parameters alpha and
beta are used to define the linear relationship established by the regression algo-
rithm. It is important to note that also the parameters associated with the residuals,
which quantify the discrepancies between the observed and predicted values, are
not yet integrated into the program but they are already calculated in the regres-
sion routine. These residuals hold significant potential for future enhancements,

78

3.4 — Maximum determination

as they can be employed to assess the quality of the fit and evaluate the linearity
correction of the probe.

3.4 Maximum determination

In order to measure the diameter it is necessary to position the probe in the max-
imum positions (left and right) of the sphere or cylinder relative to the probing
direction. The program uses a method to find the maximum by moving the probe
in the y and z directions. First the sample is approached on the right side at a
predefined Cary reading, then the probe is moved in the positive y/z direction until
80% of the initial reading is reached, at this point the actual scan is performed. The
motor that controls the scan axis switched direction and the istantaneous reading
of the probe and of the axis is stored in two vectors.

The (findMax) algorithm is called to process the acquired values: first both the
vectors are sorted based on the probe reading, from the highest to the lowest value.
Then the scan axis sorted vector is parsed from the start until the value of the
probe reading changes, at this point an average of all the scan positions found to
have the max reading of the cary is calculated (Equations 3.8, 3.9).

ZTsean € R — The readings of the scan axis

Ysean € R — The readings of the cary during the scan (3.8)
Ty € R"™ = {x; € Tyean | 1 = argmaz(Yscan) }
1 &
Tmax = — Z Tm (39)
Nm %5

Where n,,, is the number of points found at the maximum cary value.

This is the maximum position of the sphere for that specific scan. The same
procedure is repeated in the other direction for both axes, and also for the other
side of the sphere. A typical result of the algorithm is reported in figure 3.3.

3.5 Test programs

To test the various components of the machine multiple C++ programs were cre-
ated. The programs are designed to test the various components of the machine,
including the motors, encoders, and other sensors. Tests include:

o nilox_test.cpp: tests the webcam and the opencv routines used in the project

« moore_test.cpp: moves the machine to test all position instruments and mo-
tors

 keysight test.cpp: tests the communication with the keysight interferometer

79

Movement routines and testing

0.012

mm]

0.011 4

0.010 +

0.009 4

Scan cary position y [

0.008 4

T T
—5.2 —=5.0 —4.8 —4.6 —4.4
Scan axis position x [mm]

Figure 3.3: Maximum determination algorithm result. The red line is the probe reading,
the blue line is the maximum position found.

o k220 test.cpp: tests the communication with the k220 controller for optical
encoders

o cary_ test.cpp: tests the communication with the cary controller and the read-
ing of the cary probe

« axis_ test.cpp: moves a single axis at the time
« marker test.cpp: tests the marker recognition algorithm

o stm_ test.py: performs a test of the STM32 microcontroller with a minimal
GUTI to control all motor parameters

« approach_ test.cpp: tests the approach routine of the machine, moving the
probe to a specific position in contact with a sample and reading the cary
probe value

o caryFlex_ test.cpp: tests the caryFlex algorithm to calibrate the cary probe
reading

e cary_max_ test.cpp: tests the cary probe maximum detection algorithm

o key control test.cpp: tests the keyboard functionality to move manually the
machine

80

3.6 — Measurement

3.6 Measurement

To generalize the measurement process, the Measurement and Sample class hierar-
chy was implemented as shown in Figure 3.4.

- n_repetitions

+ setSpecializedSample()
+ setSamplePosition()

+ setSpecializedSample()
+ setSamplePosition()
+ findMax()

+ getSideCoordinate()
+ setContactPosition()
+ Sample()

SphereSample
- radius
BlockSample

- center
- length + setRadius()
Spt Jleasurement sethadius

+

BlockMeasurement - sphere settengt:() + getRadius()
- block - n_repetitions + getlength() + getCenter()

+ setCenter()
+ getSideCoordinate()
+ setContactPosition()

+ Measurement() + findCenter()

a) + Measurement() b)

+ Sample()

Figure 3.4: (a) The Measurement class structure, (b) The Sample class structure

This structure, illustrated in Figure 3.4, allows for the implementation of general-
ized methods (common to every type of measurement) in the base class Measurement,
such as approach and findAxisMax. Specialized methods, on the other hand, are
implemented in the derived classes. Some of the methods in the base class are vir-
tual methods that must be redefined in the derived classes; however, they can still
be invoked by the base class’s generalized methods. This design promotes efficient
code reuse and enhances maintainability.

Furthermore, the flexibility of this class hierarchy allows for the creation of ad-
ditional derived classes that can specialize the measurement procedures and sample
types beyond the block measurement and sphere measurement already implemented
and shown in the figure. For instance, one could derive classes for cylindrical mea-
surements, optical scales or even irregularly shaped samples. Each of these new
classes can implement their own specific methods while still leveraging the com-
mon functionality provided by the base classes. This extensibility ensures that
the measurement framework can adapt to various requirements and applications,
facilitating future enhancements and integrations with new measurement sample

types.
81

Movement routines and testing

Theoretical note 16 Virtual methods are a fundamental concept in OOP, partic-
ularly in languages like C++ and Java. They allow a base class to define a method
that can be overridden by derived classes. When a method is declared as virtual
in a base class, it enables polymorphism, which means that the method that gets
executed is determined at runtime based on the type of the object being referenced,
rather than the type of the reference itself. Virtual methods enable polymorphism,
allowing a program to call derived class methods through base class pointers or ref-
erences. This means that the correct method implementation is chosen based on the
actual object type, not the type of the pointer/reference.

3.6.1 Sphere diameter measurement

To test further the machine, the program to perform the measurement of the diam-
eter of a sphere was created. The program is designed to measure the diameter of
a sphere using the machine’s sensors and encoders and it follows the steps reported
in the following sections. The sphere is a 45 mm diameter marble ball, and it is
used to calibrate the straightness of hte institute’s stylus profilometer so the radius
is well known and was calibrated many times over the years using the previous
machine setup.

The setup used for the sphere measurement is shown in Figure 3.5. The setup
consists of a sphere placed on a 3D printed holder and a gauge block.

Figure 3.5: Setup for sphere measurement.

82

3.6 — Measurement

The procedure for measuring a sphere involves several critical steps to ensure
accuracy and precision throughout the process. Initially, the user sets the 7 safe
value of the machine, which establishes a safe distance for the probe to avoid any
potential collisions with the sample. Following this, the user manually adjusts the
machine to find the point of contact with the sphere, whose nominal diameter is
already known. This initial contact allows for the calculation of the sphere’s center
position, which serves as a reference for subsequent measurements.

Once the initial position is established, the machine is manually moved to a
gauge block, where the contact position is set. This step is essential for performing
the cary flex calibration and calculating the radius of the cary probe.

Next, the environmental parameters, such as temperature and humidity, are ac-
quired and input into the Keysight laser reader. This information is crucial for
correcting the refractive index of air, which can affect the accuracy of the measure-
ments.

With the setup complete, the measurement procedure can commence. The ma-
chine systematically searches for the maximum points of the sphere’s surface from
both contact directions, across both axes, and in both scan directions. This ap-
proach results in a total of eight scans, ensuring that the measurement captures
the sphere’s geometry from multiple perspectives. The two maximum positions
identified during this process are then averaged to refine the calculated position of
the sphere’s center. As a result, the contact points are updated and aligned with
the newly calculated maximum positions.

To ensure consistency and reliability, the machine measures the sphere’s diam-
eter multiple times, with the number of repetitions (denoted as n) set by the user.
This repeated measurement process helps to mitigate any potential errors and pro-
vides enough readings to estimate the measurement repetability. Additionally, the
machine regularly updates the environmental parameters throughout the measure-
ment process, ensuring that any fluctuations in conditions are accounted for in
real-time.

If necessary, the radius of the cary probe can also be recalculated periodically
during the measurement procedure. This flexibility allows for adjustments to be
made in response to any changes in the system or environmental conditions.

3.6.2 Optical confocal probe measurement

This section of the testing involved the precise profilometric measurements on gear
teeth utilized in the wind turbine industry (Figure 3.6).

The system is centered around a chromatic confocal point sensor (CCPS), de-
signed to measure distances within a range of 100 microns [45]. This high-resolution
CCP sensor is mounted on the Z-axis, allowing for vertical movement and accurate
depth measurements (Figure 3.7 (a)).

83

Movement routines and testing

a) le

Figure 3.6: Measured gear tooth: (a) the gear tooth, (b) the scan path in the x direction.

To ensure the accuracy and reliability of the measurements, the probe is char-
acterized for noise by measuring a flat mirror and calculating the Power Spectral
Density (PSD). This analysis provides insights into the sensor’s performance and
helps identify any potential sources of error. Additionally, the linearity of the probe
is calibrated by rotating it along the X-axis and comparing the readings from the
X interferometer. This calibration process is crucial for confirming that the sen-
sor’s output is consistent and reliable across its measurement range, ultimately
enhancing the precision of the profilometric data collected from the gear teeth.

Theoretical note 17 In CCPS (Chromatic confocal point sensor) technology white
light is imaged through a chromatic lens to emit monochromatic light along the z-
axis, when an object is present in this colour field, a single wavelength is fixed to its
surface and then reflected back to the optical system. The backscattered beam passes
through a filtering pinhole and is then acquired by a spectrometer. The beam’s spe-
cific wavelength is calculated to precisely determine the position of the surface in
the measurement field (Figure 3.7 (b)).

I
[Comseres |
L4 PRECITEC CHRocodile2 5 | /l
L A | 4 \) ‘ <
N :

Fiber Coupler

¥ o@Bo EEE- Do

Figure 3.7: Chromatic confocal point sensor (a) the device used for the test measure-
ment, (b) the technology concept behind its functionality.

84

3.6 — Measurement

To conduct the profilometric scans, the X-axis is programmed to move horizon-
tally, enabling the sensor to record both the X and Z values of the confocal probe
as it traverses the surface of the gear teeth. Given the limited measurement range
of the sensor, a stitching technique is implemented to extend the effective mea-
surement area. This technique involves repositioning the probe when it approaches
90% or 10% of its maximum range, ensuring that the sensor remains within its
optimal operational limits while capturing comprehensive data across the entire
surface (Figure 3.8).

The measurements were performed in both X directions to ensure comprehensive
coverage of the gear tooth surfaces. Subsequently, the stitching method was refined
by implementing a follow routine that maintained the probe at a consistent distance
from the sample surface. This was achieved by continuously adjusting the Z-axis,
allowing for real-time compensation of any variations in the surface profile. The
follow routine was developed also using Python, incorporating a PID (Proportional-
Integral-Derivative) controller to manage the movements of an additional X, Y
stage. This setup enabled precise control over the probe’s position relative to
the sample, ensuring that it remained optimally aligned throughout the scanning
process.

Theoretical note 18 A PID, is a type of controller used to requlate variables such
as temperature, speed, position, and pressure. The PID controller combines three
control strategies to achieve optimal system response. The proportional component
calculates the current error, which is the difference between the desired value (set-
point) and the actual measured value. The proportional response is directly related
to this error; the larger the error, the greater the corrective action. The integral
component takes into account the sum of past errors over time. By adding this
component, the controller can correct persistent errors that are not resolved by the
proportional action alone. The derivative component anticipates the future behavior
of the error by calculating its rate of change. The derivative action helps to dampen
oscillations and improve system stability by reducing the response to rapid changes
in the error.

de(t)
dt

where u(t) is the controller output, e(t) is the error at time t (the difference
between the setpoint and the measured value), and K,, K;, and K4 are the propor-
tional, integral, and derivative gains, respectively.

u(t) = K, - e(t) +Ki-/e(t) dt + Ky -

In this refined approach, the measurement results were derived from the com-
bination of the sensor readings and the Z-axis optical encoder position readings.
This integration of data sources enhanced the accuracy of the profilometric mea-
surements, allowing for a more detailed and reliable representation of the gear tooth
profiles, shown in Figure 3.8.

85

Movement routines and testing

250
250
200 1
200
150 4
150
E E
E
g % 100
k= 2
100 P
=8 E'
g\ g‘ 50 4
50 1
o
[+]
—50 4
-50
=100 4
ID 10 ?ICI 30 d‘lﬂ ID 1‘0 ?IO '-1‘0 40
¥ [mm] ® [mmi]

Figure 3.8: Measurement result in both directions with stitching points highlighted.
Axes are not in scale.

86

Chapter 4

Uncertainty evaluation

4.1 Positioning error

To evaluate the positioning error of the machine, a program was developed to ex-
ecute a series of movements within a restricted range of motion. The primary
objective was to compare the actual arrival positions at each step with the pre-
determined target positions, thereby assessing the accuracy and reliability of the
machine’s positioning system.

In this study, a cubic volume measuring 3 x 3 x 3 cm was divided into 5 discrete
positions along each axis. This division resulted in a total of 125 test points, cre-
ating a three-dimensional grid of target positions. Each of these points served as a
reference for the machine’s movements, allowing for an evaluation of its performance
across the defined volume and by estrapolation to all its volume.

To enhance the validity of the results, the positions were randomized without
repetition. This randomization was crucial as it ensured that the machine’s posi-
tioning was tested from a variety of angles and directions. By approaching each
target position from different starting points, the evaluation captured a more com-
prehensive range of potential errors and variances in the machine’s performance.
This method not only mitigated the risk of bias that could arise from a fixed
sequence of movements but also provided a more statistically robust dataset for
analysis since during normal machine operation the direction of movement is un-
known.

The program recorded the results in CSV format, which allowed the processing
of data using a Python script. This script was designed to analyze the discrepancies
between the target and actual positions, allowing for the calculation of positioning
errors and the identification of patterns or trends in the machine’s performance.
The processing results are illustrated in Figure 4.1, which visually represents the
distribution of errors across the test points. Green arrows represent the points
displacement from ideal positioning and they were scaled up by a factor of 50 to
make the discrepancy visible.

87

Uncertainty evaluation

enal T4 20 15 # $ L -

e 1 ; 4 N] 15 10 | z
l # - ‘f . 10 ' & ; 1

P £ § g 9& Wl 1 5 N3 .

:;;;E“.?.'-")? (% ¢ ¢ 4 o»
§] e 375 - ' N .
S g N ld 4 0§ %
I & } I ? e | T s -10 J I
e . s ! 5 Y &
*fm,,i, 10 —107° f\mﬂ‘\ -15 -10 =5 0 5 10 15

a) 15 -15 b) ¥ [mm]

Figure 4.1: The target (blue) and actual (red) points set and reached by the machine:
(a) An angled view of the points, (b) A side view to better show the point deviation. All
deviations are in 50:1 scale.

4.1.1 Error parameters

The function calculate_deviation_metrics computes various metrics to quantify
the deviation between a set of original points and their corresponding noisy points
in a three-dimensional space. The metrics include overall displacement errors as
well as axis-specific errors.

The function takes the following parameters:

e original_points F,:

— An array of shape NV x 3, where N is the number of points.

— Each row represents a point in 3D space, with coordinates (x,y, 2).
e noisy_points P,:

— An array of shape N x 3, where N is the number of points.

— Each row represents a noisy point in 3D space, with coordinates (2, v/, /).
The following metrics are calculated in the function:

o Average Displacement Error (ADE):

— The average distance between each original point and its corresponding
noisy point, calculated as:

1 N
ADE = — Y|P, — P, (4.1)
N =1

88

4.1 — Positioning error

e Root Mean Square Error (RMSE):

— The square root of the average of the squared distances, calculated as:

1 N
RMSE — $ P = B (4.2)
=1

e Maximum Displacement Error (MDE):

— The maximum distance between any original point and its corresponding
noisy point, calculated as:

MDE = max || P,, — P, (4.3)
The function returns the three results in Equations 4.1, 4.2 and 4.3 for the
whole set of points and also calculates the same three metrics relative to each axis

considering only the component relative to the axis under analysis.
The results obtained are reported in Tables 4.1 and 4.2.

Table 4.1: Overall deviation metrics between original and noisy points.

Metric | Value / pm
ADE 18.1
RMSE | 18.6
MDE 30.3

Table 4.2: Deviation metrics for each axis (X, Y, Z).

Axis | Metric | Value / pm
X ADE 1.0
RMSE |14
MDE 2.5
Y ADE 0.5
RMSE | 0.6
MDE 1.7
Z ADE 18.0
RMSE | 18.5
MDE 30.3

The results show that the machine’s positioning system exhibits a maximum de-
viation of 30.3 micrometers, with an average deviation of 18.1 micrometers across
all test points. The root mean square error (RMSE) is slightly higher at 18.6 mi-
crometers, indicating that while most points are close to the target positions, there

89

Uncertainty evaluation

are some outliers contributing to the overall error. This is mostly influenced by the
7 axis, which has a maximum deviation of 30.3 micrometers and an average devi-
ation of 18.0 micrometers. The X and Y axes show significantly lower deviations,
with maximum deviations of 5.5 and 1.7 micrometers, respectively. This suggests
that the machine’s positioning system is more accurate in the X and Y directions
compared to the Z direction probably due to the complex backlash and tension
behavior of the belts that are used to move the Z axis (Section 2.1).

Since the main measurment direction is along the X axis, the Z axis error is not
critical for the machine’s operation but it could still be improved by implementind
retensioning routines for the belts. Also it is important to discriminate between
measurement and positioning uncertainty, in fact since the measurement is always
done interferometrically and differentially, the positioning uncertainty is not critical
for the measurement.

For each axis the bias metrics were also calculated, which are the average, min-
imum and maximum values of the displacement error in the direction of analysis.
To do so the probability density function (PDF) of the displacement error was cal-
culated for each axis and based on the measured values a kernel density estimation
(KDE) was performed to obtain a smooth representation of the data [46]. The
KDE was calculated using the scipy library in Python, which provides a conve-
nient method for estimating the probability density function of a random variable.
The resulting PDFs are shown in Figure 4.2.

Table 4.3: Bias metrics for each axis (X, Y, Z).

X | MEAN 0.09 pm
VARIANCE | 0.00 pm?
MIN -2.5 pm
MAX 5.5 pm

Y | MEAN -0.01 pm
VARIANCE | 0.00 pm?
MIN -0.88 pm
MAX 1.7 pm

Z | MEAN 0.44 pm
VARIANCE | 0.36 pm?
MIN -22.67 pm
MAX 30.3 pm

90

4.1 — Positioning error

—— Estimated PDF Histogram
0 5 -1] 1 =20 0 20
¥ displacement pm y displacement pm z displacement um

Figure 4.2: Probability density functions resulting from the single axis displacement
analysis.

From the figure it is clear that the z displacement, which is the most affected
by the machine’s positioning error, even with a zero mean value, has a binormal
distribution with a peak at -12 micrometers and another one at +19 micrometers.
This is due to the fact that the machine is not able to reach the exact target
position in z and the belts give way in both directions when moving the axis. This
is a clear indication of the backlash present in the system, which is a common issue
in mechanical systems with belts and pulleys. This confirms the hypothesis of the
previous study.

The numerical results of the analysis are shown in Table 4.3.

91

Uncertainty evaluation

4.2 Measurement uncertainty

The measurement uncertainty of the machine is a critical aspect that directly im-
pacts the accuracy and reliability of the measurements obtained and it can be
determined in two ways:

o GUM analysis: The GUM (Guide to the Expression of Uncertainty in Mea~
surement) is a widely accepted framework for evaluating and expressing mea-
surement uncertainty.

e« Monte Carlo analysis: The Monte Carlo method is a statistical approach
that uses random sampling to estimate the uncertainty associated with a mea-
surement. This method is particularly useful for complex systems where ana-
lytical solutions may be difficult to obtain or where multiple sources of uncer-
tainty are present.

The next sections will discuss the two methods in detail.

4.2.1 GUM analysis

In this section, will be discussed the various components contributing to the overall
measurement uncertainty accoding to the GUM [47], including the uncertainties as-
sociated with the interferometer, the cary probe, and the environmental conditions.
The analysis presented here is an adaptation of the uncertainty budget previously
established for the machine before its redesign, focusing specifically on diameter
measurements, which represent the machine’s most frequent application.

The model equation for the diameter measurement is given by Equation 4.4:

192 2 -
Dio = DLyt DygE AP, =D 422 Foeut (bp)atpa—Dioe Ty = 20) (4.4)

where the &+ sign indicates respectively whether the measurement is performed
for internal diameters (upper sign) or external diameters (lower sign). and D,
represents the diameter of the probe at 20 °C, which is measured with the gauge
block (Equation 4.5):

V2 __
Dp?go = ALg :FLg,2O ZEAPQ :FLg’QO . ?g :|:€g + (b QO)g :tpg + Lg’go Qg (Tg — 20) (45)
The parameters are defined as follows:

e D, 90: Diameter at 20 °C.

o AL, ,: Interferometer reading difference in the two contanct positions (x for
the sample contact, g for the gauge block contanct).

92

4.2 — Measurement uncertainty

AP, ;,: Cary probe reading difference in the two contact positions (x for the
sample contact, g for the gauge block contact).

L, 20: Gauge block length at 20 °C.

Dy: Nominal diameter of the sample.

U, 40 Angle between the segment that unites the probed points and the actual
sample diameter / block normal.

a,: Distance between the direction of measurement and the sample diameter.

€z,4: Error in the cary probe reading due to the probe deformation.

(b-)z 4 Abbe error (offset between the measurement direction and the laser
beam) [48].

pzg: Local form deformation (roundness / parallelism).

a4 Coefficient of linear expansion of the sample / gauge block.

T.,: Average temperature of the sample / gauge block.

Once defined the measurement model and the parameters, the next step is to

estimate the uncertainty associated with each component of the measurement. This
is done by analyzing each parameter in detail and determining its contribution to
the overall uncertainty based on the type of uncertainty (Type A or Type B) and
the distribution of the data which will be measured in the first case and estimated
from previous knowledge in the second case. The uncertainty components are
summarized in Table 4.4, the distributions are marked with N if normal, and R if
rectangular in the Dist column.

Table 4.4: Measurement uncertainty estimation for diameter measurement components.

93

Uncertainty evaluation

Quantity | Estimate Std. Uncertainty Type | Dist.
AL, AL, u(AL,) Equation 4.6
AP, AP, u(AP,) 0.006 pm B R
AL, AL, u(ALy) Equation 4.6
AP, AP, u(AP,) 0.006 pm B R
Lg,20 Lg,20 U (Lg,ZO) A N
9, 0 w(¥,) | 0,00006rad | B R
Ay 0 u(ay) 4pm B R
Y, 0 u (Yy,) 0.00006 rad B R
€ 5 u(ey) 0.002 pm B R
Eg g4 u(ey) 0.002 pm B R
(b-¢)e 0 u((b-¢)s) 0
(b-¥)g 0 u((b-¢)a) 0
P 0 u(pz) 0.002 - Ap,pum B R
Pg 0 u(pg) 0
Q [u (o) 0.6 - 1076°C~! B R
T, T, u (Ty) 0.6 - AT,°C™* B R
ay oy u(ay) 0.6 -1076°C~? A N
T, T, u(T,) 0.6-AT,°C' | B R
1)’ 1\2 AN,, 1)
u (AL,) = (n : 2) u? (AN, 4) + (—ALW : n> u?(n) + <2 i u? (Ao)
~ 1 Ao ? 9 2 5 2 (u(No) ’
(5 %) v @n) + AL+ (aL 2 (M
(4.6)

Equation 4.6 can be split in three terms:

o The first term is the repeatability of the interferometer which can be derived

from the instrument resolution OL\/%)E’, a typical value of 8nm is used.

e The second term is proportional to the length of the measurand and it is the
uncertainty associated with the laser wavelength:

u(n) = \l (ﬁ%) u? (T,) + (AAJZG> u? (P,) + (AIA;;L) u? (PH,) (4.7)

A
— For ambient temperature: no_ —9.3-1077°C,
AT,
_ : . A
For ambient pressure: A; —927-10" Pa~L,
— For ambient humidity: Ana
=—43-107" Pa™.
AH,

94

4.2 — Measurement uncertainty

e The third term is the uncertainty associated with the laser wavelength which

is given by the calibration certificate of the laser and it is: %);O) = 1078,

The next step is to calculate the combined uncertainty of the measurement using
the law of propagation of uncertainty. The sensibility coefficients are calculated as
the partial derivative of the model equation with respect to each parameter and
are shown in Table 4.5.

Table 4.5: Sensitivity coefficients for the diameter measurement model.

Xi Xi Ci = g,{i Ui (y) = € - U (X))
AL, | AL, 1 0,008 ym
AP, | AP, 1 0,006 ym
AL, | AL, +1 0,008 yim

AP, | AP, 1 0,006 zum

T, | T, | —093-10% AL, ,[*C'm]| —06-AT,-AL,,

P, | B, | 027-10°%-AL,, [Pa—l m} 0,0016 - AP, - AL,
. o | —043-107°- ALy, [Pa'm| | —0,00026 - AH, - ALy,

M| Ao Nt AL, [m] 0,01-AL,,
Lgoo | Lgo2o +1 0,010 pm

D: |0 —0,5- D% [m] —0,0018 - D>

a, 0 1)2* [m] 0,0lg(EOS

9, | 0 0,5 +Ly[m] 0,00185 - I,

Ex €z 1 0,002 pm

€9 Eg 1 0,002 pm

Pz 0 1 0,2 Apyp m

a | —D; - (T = 20) [m°C] ~0,6 (T, — 20) - D;
T, | T, —D* - —~0,6-AT, - a, - D
a, | oy FLy - (T, — 20) m°C] +0,6 - (T, — 20) - L,
T, | T, L, a, +0,6-10°- AT, - a, - L,

Finally we can distinguish all the uncertainty contributions in two groups: the
ones proportional to the measurand and the ones not proportional to the mea-
surand. We can consider the length of the gauge block to be always equal to 10
mm, so the uncertainty associated with the gauge block is not proportional to the
measurand.

The resulting CMC for the diameter measurement is given by the following
Equation 4.8.

CMC(U/nm) = Q[0.1;0.5E—03L] = 1/(0.1)2 + (0.5 x 103 x L)2,L in mm (4.8)
95

Uncertainty evaluation

4.2.2 Monte Carlo analysis

The Monte Carlo method [49] is a powerful statistical technique used to estimate
the uncertainty of a measurement by simulating the measurement process multiple
times with random variations in the input parameters. In this case, the Monte Carlo
method was applied to the diameter measurement model to obtain an accurate
estimate of the overall measurement uncertainty and validate the results obtained
from the analytical approach.

The Monte Carlo simulation was performed using monaco [50], a Python library
designed for uncertainty analysis. The simulation involved the following steps:

e Define the input parameters and their associated uncertainties based on the
measurement model.

o Generate random samples for each input parameter using their respective prob-
ability distributions.

 Calculate the output (diameter) for each set of random samples using the
measurement model explained earlier.

o Analyze the distribution of the output values to estimate the overall measure-
ment uncertainty.

The input parameters were defined based on the measurement model, and their
uncertainties were characterized using the distributions in Table 4.4 for most pa-
rameters. The simulation was run for 10,000 of iterations to ensure a robust esti-
mate of the output distribution (Figure 4.3) and a seed [51] was chosen to be able
to reproduce the results of the simulation over time. The results are reported in

tables 4.6 and 4.7.

Table 4.6: Results for D, o. Table 4.7: Results for D, 5.
Statistic Value Statistic Value
Observations | 10001 Observations | 10001
Min 6.0119 mm Min 20.0238 mm
Max 6.0121 mm Max 20.0242 mm
Mean 6.0120 mm Mean 20.0240 mm
Sigma 0.034 pm Sigma 0.049 pm
Variance 1.18 - 107" m? Variance 2.37- 10715 m?
Skewness -0.0011 Skewness -0.0029
Kurtosis 0.0105 Kurtosis 0.0012

A plot of the simulation results is shown in Figures 4.4, 4.5. In the images the
distribution of the results is shown on the y axis plots compared with the input

96

4.2 — Measurement uncertainty

distributions on the x axis plots. The scatter plots in the middle indicate the sensi-
tivity (partial derivative of the model function with respect to the input parameter)
of the model to the input parameters. The points are the single iterations of the
monte carlo simulation.

The results of the Monte Carlo simulation provide a comprehensive view of
the measurement uncertainty associated with the diameter measurement process.
The mean values obtained from the simulation closely match the expected values,
confirming the accuracy of the model and the input parameters.

The simulation was carried out for a sample with a 20 mm diameter and a probe
with a 6 mm diameter, which are the most common values used in the machine.
Using the CMC calculation method we obtain the uncertainty in Equation 4.9.

CMC(U/nm) = Q[0.1;0.5E — 03L] = 1/0.12 + (0.5E — 03 % 20)2 = 100 nim (4.9)

The Monte Carlo simulation results show a mean value of 20.02 mm with a sigma
of 49 nm, resulting in an expanded uncertainty of 97 nm, which is consistent with
the CMC value obtained from the analytical approach. The Monte Carlo method
provides a more detailed understanding of the uncertainty distribution and allows
for a more accurate estimation of the overall measurement uncertainty.

%1072 %1072

S
L

F
L

w
L

w
L

[¥]
L

N
L

Probability Density
Probability Density

0 i
6.01185 6.01190 6.01195 6.01200 6.01205 6.01210 6.01215 40 a a2
a) D_p 20 x107 b) D_x_20 x1077+2.002 x 1072

Figure 4.3: Result distributions: (a) probe diameter, (b) sample diameter.

97

Uncertainty evaluation

Aqureyreoun 1ajewrelp aqoid 10j sjutod 1s99 [[B YHIM S NSOI UOIJR[NUWIS O[Ie)) 9IUOIN :§°F 2anSIq

&

P
¢ 5 J‘.urﬂ N L L& o i
&

s 7O
¥ Om' Om.v % 72

,
& & é ¥ é + i & 6 © i +

01X

581109
061109
S6110'9
©
002109 °
L&
o
502109

0TEZ109

STZT09

98

4.2 — Measurement uncertainty

Aurerreoun tojowrerp sidures 10y syurod 959} [[R YIIM SINSOI UOIYR[NWIS O[IR)) dIUOIN :G*F 9InIIrq

»
G R A A o SN

2 2 e 2 ’
@ e < ©

& &>
o o N ~ ~
& i [4 é i { & é é i i

-
+

1-0T X Z00'Z+,-0TX

i

oz xa

99

100

Chapter 5

Conclusions

The primary objective of this thesis was to modernize the existing three-axis in-
terferometric measuring machine, enhancing its capabilities for measuring diame-
ters and optical scales through a comprehensive redesign and implementation of a
new control system. This project has resulted in significant advancements in mea-
surement reliability, and precision, achieved through the integration of advanced
hardware and robust software solutions.

The necessity for this redesign arised from several critical flaws in the previous
setup. The machine lacked a modern interface, which limited overall usability and
made it difficult for operators to interact with the system efficiently. Additionally,
the existing control program did not feature an intuitive user interface, render-
ing operation less accessible and potentially confusing for users. The absence of
automation capabilities meant that many measurement processes required manual
intervention, leading to a time-consuming and inefficient workflow. This reliance
on manual operations increased the possibility of human errors, particularly during
steps such as positioning the machine and aligning it with the sample, which were
susceptible to inaccuracies. Furthermore, the manual positioning process required
careful adjustments, introducing inconsistencies that could compromise measure-
ment accuracy.

Key Contributions and Achievements

The modernization project has successfully delivered several key contributions. No-
tably, the complete redesign of the control system has facilitated the integration
of new motors and drivers, which have improved the machine’s operational capa-
bilities. The development of a sophisticated C++ software program has enabled
effective management of the instrumentation, incorporating features such as accel-
eration ramps and coordinate system definitions. Furthermore, the implementation
of multithreading has allowed for simultaneous axis movement and environmental
parameter monitoring, enhancing the overall efficiency of the measurement process.

101

Conclusions

The incorporation of OpenCV for coordinate system definition and ArUco marker
detection has provided a novel approach to workpiece localization, while the devel-
opment of specific measurement routines, including those for sphere diameter mea-
surement, has demonstrated the machine’s enhanced functionality. Additionally,
the calibration routines established for probe radius and deformation have signifi-
cantly improved measurement accuracy, and the application of the GUM method
for uncertainty analysis has provided a quantitative framework for assessing the
system’s performance.

To validate the performance of the modernized measuring machine, a compre-
hensive suite of tests was conducted, focusing on fundamental operations such as
sample approach, calibration of the Cary probe parameters, and the implementation
of a maximum determination algorithm for locating extremes in measured samples.
Specific test programs were developed to assess the functionality of individual com-
ponents, including motors, optical encoders, and the Keysight interferometer. The
integrated system was further assessed through profilometric measurements on gear
teeth using an optical confocal probe.

The positioning uncertainty of the machine was characterized by testing move-
ments within a defined volume, which revealed variations in accuracy across differ-
ent axes. Additionally, the measurement uncertainty for diameter measurements
was analyzed using the GUM method and Monte Carlo simulations, considering
contributions from the interferometer, Cary probe, and environmental conditions.
This thorough testing and uncertainty characterization provide a comprehensive
evaluation of the modernized measuring machine’s capabilities and limitations.

Challenges and Limitations

Despite these successes, the project faced several challenges and limitations that
warrant acknowledgment. The analysis of positioning uncertainty revealed a maxi-
mum deviation along the Z-axis, attributed to potential backlash in the belts,while
the X and Y axes demonstrated significantly lower positioning errors.While this is-
sue is less critical for interferometric measurements, it highlights an area for future
improvement.

A key finding from the uncertainty analysis is that the dominant contributions
arise from the measurement of the probe radius and the sample radius, which are
determined using the interferometer and the LVDT, respectively. Notably, the
LVDT exhibits significantly lower precision compared to the interferometer, and
this limitation directly impacts the overall measurement uncertainty. As a result,
the precision of the LVDT represents a constraint in achieving lower uncertainty in
the system’s measurements.

The marker detection for workpiece localization, while functional, remains an
approximation that requires refinement for more precise initial positioning. Fur-
thermore, the parameters associated with the residuals of the linear regression used

102

5.1 — Future developments

for probe calibration have yet to be integrated into the program, representing an
opportunity for future enhancement in assessing probe linearity correction.

Additionally, the current method of generating graphs for the GUI using Python
outside the main interface suggests a need for further integration to enhance user
experience.

Significance and Potential Impact

The modernized measuring machine holds significant potential for improving the
reliability, traceability, and precision of measurements in various applications. By
enhancing the quality and timing of calibration services, the upgraded system can
facilitate precise measurements across research and industrial sectors. The advance-
ments made in this project contribute to the broader field of metrology.

In conclusion, this thesis has successfully modernized the Moore measuring ma-
chine, resulting in a sophisticated system that significantly enhances measurement
capabilities. The work presented herein not only addresses current limitations but
also lays the groundwork for future advancements and applications in precision mea-
surement. The potential for continued development and refinement underscores the
importance of this project in the ongoing evolution of metrology.

5.1 Future developments

The control program of the machine is thought to be expanded for new functionality,
future developements will include:

 the development of the routines for cylinder measurements

o the integration of an optical microscope to use instead of the cary for linear
scale calibration

o the expansion of the GUI capabilities with graphs (now drawn with Python
outside the interface)

o the redesign of the PCB to change the timer of the STM32 from a 16 bit
counter to a 32 bit one

o the refinement of the movement and approach operation with the CS (mi-
crostepping) of the stepper motor

o the test of the entire setup and the time needed to perform a measurement for
comparison with the previous setup

103

Conclusions

Data availability

All the source code and the data used in this work are available at https://github.
com/andeledea/Moore [15]. No license was applied given the specific implementa-
tion and setup needed to utilize the code.

104

https://github.com/andeledea/Moore
https://github.com/andeledea/Moore

Bibliography

[1] Christian Schrader and Rainer Tutsch. «Calibration of a microprobe array».
In: Measurement Science and Technology 23.5 (May 2012), p. 054001. DOTI:
10.1088/0957-0233/23/5/054001. URL: https://iopscience.iop.org/
article/10.1088/0957-0233/23/5/054001 (visited on 04/03/2025).

[2] Gianfranco Di Martino, Luca Dusini, Alberto Nicoletta, Fabio Lo Savio, Giuseppe
Tuccari, and Michele Cali. «Easy Experimental Cylindricity Tolerance Ver-
ifications in Close-Range Bushings of Automotive Hinges». en. In: Design
Tools and Methods in Industrial Engineering IV. Ed. by Paolo Di Stefano,
Francesco Gherardini, Vincenzo Nigrelli, Caterina Rizzi, Gaetano Sequenzia,
and Davide Tumino. Series Title: Lecture Notes in Mechanical Engineering.
Cham: Springer Nature Switzerland, 2025, pp. 463-475. DOI: 10.1007/978~
3-031-76597-1_49. URL: https://link.springer.com/10.1007/978-3-
031-76597-1_49 (visited on 04/03/2025).

[3] Metforwind. en. Feb. 2020. URL: https://www.ptb.de/empir2020/met4wind/
home/ (visited on 04/03/2025).

[4] Laboratorio di misura di Campioni Lineari e Diametrali | INRIM. URL: https:
//www.inrim.it/it/ricerca/settori-scientifici/metrologia-della-
lunghezza/laboratori/laboratorio-di-misura-di-campioni (visited on

04,/28/2025).

[5] IS0 1:2022 - Geometrical product specifications (GPS) — Standard reference
temperature for the specification of geometrical and dimensional properties. en.
URL: https://www.iso.org/standard/80702.html (visited on 04/29/2025).

[6] Martin Melichar, Dana Kubatova, and Jan Kutlwaser. « CMM Measuring
Cycle and Human Factor». In: DAAAM Proceedings. Ed. by Branko Katal-
inic. 1st ed. Vol. 1. DAAAM International Vienna, 2016, pp. 0371-0376. DOT:
10.2507/27th.daaam. proceedings.055. URL: http://www.daaam. info/

Downloads /Pdfs/proceedings/proceedings 2016 /055 . pdf (visited on
04,/03/2025).

[7] HP Computer Museum. URL: https://hpmuseum.net/display_item.php?
hw=33 (visited on 04/03/2025).

105

https://doi.org/10.1088/0957-0233/23/5/054001
https://iopscience.iop.org/article/10.1088/0957-0233/23/5/054001
https://iopscience.iop.org/article/10.1088/0957-0233/23/5/054001
https://doi.org/10.1007/978-3-031-76597-1_49
https://doi.org/10.1007/978-3-031-76597-1_49
https://link.springer.com/10.1007/978-3-031-76597-1_49
https://link.springer.com/10.1007/978-3-031-76597-1_49
https://www.ptb.de/empir2020/met4wind/home/
https://www.ptb.de/empir2020/met4wind/home/
https://www.inrim.it/it/ricerca/settori-scientifici/metrologia-della-lunghezza/laboratori/laboratorio-di-misura-di-campioni
https://www.inrim.it/it/ricerca/settori-scientifici/metrologia-della-lunghezza/laboratori/laboratorio-di-misura-di-campioni
https://www.inrim.it/it/ricerca/settori-scientifici/metrologia-della-lunghezza/laboratori/laboratorio-di-misura-di-campioni
https://www.iso.org/standard/80702.html
https://doi.org/10.2507/27th.daaam.proceedings.055
http://www.daaam.info/Downloads/Pdfs/proceedings/proceedings_2016/055.pdf
http://www.daaam.info/Downloads/Pdfs/proceedings/proceedings_2016/055.pdf
https://hpmuseum.net/display_item.php?hw=33
https://hpmuseum.net/display_item.php?hw=33

BIBLIOGRAPHY

[9]

[10]

[11]

[12]

[13]

[14]

Turbo Pascal. en. Page Version ID: 1282075903. Mar. 2025. URL: https://en.
wikipedia.org/w/index .php?title=Turbo_Pascal&oldid=1282075903
(visited on 04/03/2025).

Olivetti computers. en. Page Version ID: 1278632254. Mar. 2025. URL: https:
//en.wikipedia.org/w/index.php?title=0livetti_computers&oldid=
1278632254 (visited on 04/03/2025).

Gian Bartolo Picotto, Roberto Belotti, Marco Pometto, and Marco Santiano.
The INRiM 1D comparator with a new interferometric set-up for measure-
ment of diameter gauges and linear artefacts. en. Tech. rep. Artwork Size:
193035 bytes, 4 pages Medium: application/pdf. Physikalisch-Technische Bun-
desanstalt (PTB), July 2013, 193035 bytes, 4 pages. DOI: 10 .7795/810 .
201306200. URL: https://oar.ptb.de/resources/show/10.7795/810.
201306200 (visited on 02/06/2025).

S. Carmignato, L. De Chiffre, H. Bosse, R.K. Leach, A. Balsamo, and W.T.
Estler. « Dimensional artefacts to achieve metrological traceability in advanced
manufacturingy». en. In: CIRP Annals 69.2 (2020), pp. 693-716. DOI: 10 .
1016/ j .cirp.2020.05.009. URL: https://linkinghub.elsevier.com/
retrieve/pii/S0007850620301426 (visited on 04/03/2025).

G B Picotto, M Aksulu, F Algahtani, N Alqahtani, A A Arce, M Aremann, M
Astrua, G Baji¢, C Bandis, G Barsi¢, D Bellelli, R Bellotti, T Bozovic, D De
Borst, V Duchon, B Gastaldi, R Hanrahan, O Jusko, M Karanfilovic, M Kati¢,
R Koops, G Kotte, A Lassila, M Matus, F Meli, I Meral, R Milne, R Munoz, M
Pometto, E Prieto, J Salgado, V Simunovi¢, J Spiller, G Szikszai, R Szumski,
A Stelmaszczuk, D Teodorescu, R Thalmann, J B Toftegaard, and M Trosch.
«Calibration of diameter standards (EURAMET.L-K4.2015)». In: Metrologia
58.1A (Jan. 2021), p. 04004. poI: 10.1088/0026-1394/58/1A/04004. URL:
https://iopscience.iop.org/article/10.1088/0026-1394/58/1A/
04004 (visited on 04/04/2025).

Shih-Ming Wang and Kornel F. Ehmann. «Measurement methods for the po-
sition errors of a multi-axis machine. Part 1: principles and sensitivity anal-
ysis». en. In: International Journal of Machine Tools and Manufacture 39.6
(June 1999), pp. 951-964. DOI: 10 . 1016 /S0890 - 6955 (98) 00069 - 8. URL:
https://linkinghub.elsevier.com/retrieve/pii/S0890695598000698
(visited on 04/29/2025).

F Stanciu, D Nitoi, O Chivu, and A Tapardea. «Dimensional measuring of
parts as function of temperature variation and FEM study». In: IOP Confer-
ence Series: Materials Science and Engineering 1182.1 (Oct. 2021), p. 012075.
DOI: 10.1088/1757-899X/1182/1/012075. URL: https://iopscience.iop.
org/article/10.1088/1757-899X/1182/1/012075 (visited on 04/29/2025).

106

https://en.wikipedia.org/w/index.php?title=Turbo_Pascal&oldid=1282075903
https://en.wikipedia.org/w/index.php?title=Turbo_Pascal&oldid=1282075903
https://en.wikipedia.org/w/index.php?title=Olivetti_computers&oldid=1278632254
https://en.wikipedia.org/w/index.php?title=Olivetti_computers&oldid=1278632254
https://en.wikipedia.org/w/index.php?title=Olivetti_computers&oldid=1278632254
https://doi.org/10.7795/810.20130620O
https://doi.org/10.7795/810.20130620O
https://oar.ptb.de/resources/show/10.7795/810.20130620O
https://oar.ptb.de/resources/show/10.7795/810.20130620O
https://doi.org/10.1016/j.cirp.2020.05.009
https://doi.org/10.1016/j.cirp.2020.05.009
https://linkinghub.elsevier.com/retrieve/pii/S0007850620301426
https://linkinghub.elsevier.com/retrieve/pii/S0007850620301426
https://doi.org/10.1088/0026-1394/58/1A/04004
https://iopscience.iop.org/article/10.1088/0026-1394/58/1A/04004
https://iopscience.iop.org/article/10.1088/0026-1394/58/1A/04004
https://doi.org/10.1016/S0890-6955(98)00069-8
https://linkinghub.elsevier.com/retrieve/pii/S0890695598000698
https://doi.org/10.1088/1757-899X/1182/1/012075
https://iopscience.iop.org/article/10.1088/1757-899X/1182/1/012075
https://iopscience.iop.org/article/10.1088/1757-899X/1182/1/012075

BIBLIOGRAPHY

[20]

[21]

andeledea. andeledea/Moore. original-date: 2023-07-04T12:49:04Z. Apr. 2025.
URL: https://github.com/andeledea/Moore (visited on 04/20/2025).

Moore Tool Company - Precision Machining. en-US. URL: https://mooretool.
com/ (visited on 03/28/2025).

All | lathes.co.uk. URL: https://store.lathes.co.uk/model/all?page=7
(visited on 04/04,/2025).

Homepage | INRIM. URL: https://www.inrim.it/it (visited on 04/28/2025).

PKP564N28A2-TS30, 2.36 in. (60 mm) PKP Series 5-Phase Spur Gear (Off-
set Shaft) Stepper Motor (Gear Ratio: 30:1). en-us. URL: https://catalog.
orientalmotor.com/item/pkp-series-5-phase-stepper-motors/pk-

series-60mm-5-phase- stepper -motors/pkp564n28a2-ts30 (visited on
04/04/2025).

Danielle Collins. Microstepping for Stepper Motors. en-US. Nov. 2017. URL:
https://www.linearmotiontips.com/microstepping-basics/ (visited on

04/29/2025).

CVD528BR-K, CVD 5-Phase Stepper Motor Driver (24 VDC). en-us. URL:
https://catalog. orientalmotor . com/item/cvd-5-phase- stepper-
drivers/cvd-5-phase-stepper-motor-drivers/cvd528br-k?srsltid=
AfmBOogAJXAPG2ykINuprESDTX _zzRYisjrckoeZvKyplOVXDRZx5UeL (visited
on 04/29/2025).

STMS32 Nucleo boards - STMicroelectronics. URL: https://www.st.com/en/
evaluation-tools/stm32-nucleo-boards.html (visited on 03/28/2025).

Arduino - Home. en. URL: https://www.arduino.cc/ (visited on 04/04,/2025).

Getting started with STMS32 system peripherals - stm32mcu. URL: https :
//wiki.st.com/stm32mcu/wiki/Getting_ started_with_STM32_system_
peripherals (visited on 03/28/2025).

RS-232. en. Page Version 1D: 1274736209. Feb. 2025. URL: https://en.
wikipedia.org/w/index.php?title=RS-232&01did=1274736209 (visited
on 04/04/2025).

KiCad EDA. en-us. URL: https://www.kicad.org/ (visited on 03/28/2025).
Keysight. F1735A USB Azis Module. en-IT. Section: Article Section. URL:

https://www.keysight.com/it/en/product/E1735A/usb-axis-module.
html (visited on 03/28/2025).

Misurazione computerizzata. it-IT. URL: https : //www . heidenhain . it/
prodotti/convertitori-di-segnale/misurazione-computerizzata (vis-

ited on 03/28/2025).

Engineering Metrology Toolboz. URL: https://emtoolbox.nist.gov/wavelength/

Documentation.asp (visited on 04/29/2025).
107

https://github.com/andeledea/Moore
https://mooretool.com/
https://mooretool.com/
https://store.lathes.co.uk/model/all?page=7
https://www.inrim.it/it
https://catalog.orientalmotor.com/item/pkp-series-5-phase-stepper-motors/pk-series-60mm-5-phase-stepper-motors/pkp564n28a2-ts30
https://catalog.orientalmotor.com/item/pkp-series-5-phase-stepper-motors/pk-series-60mm-5-phase-stepper-motors/pkp564n28a2-ts30
https://catalog.orientalmotor.com/item/pkp-series-5-phase-stepper-motors/pk-series-60mm-5-phase-stepper-motors/pkp564n28a2-ts30
https://www.linearmotiontips.com/microstepping-basics/
https://catalog.orientalmotor.com/item/cvd-5-phase-stepper-drivers/cvd-5-phase-stepper-motor-drivers/cvd528br-k?srsltid=AfmBOoqAJXAPG2ykINuprESDTX_zzRYisjrckoeZvKypl0VXDRZx5UeL
https://catalog.orientalmotor.com/item/cvd-5-phase-stepper-drivers/cvd-5-phase-stepper-motor-drivers/cvd528br-k?srsltid=AfmBOoqAJXAPG2ykINuprESDTX_zzRYisjrckoeZvKypl0VXDRZx5UeL
https://catalog.orientalmotor.com/item/cvd-5-phase-stepper-drivers/cvd-5-phase-stepper-motor-drivers/cvd528br-k?srsltid=AfmBOoqAJXAPG2ykINuprESDTX_zzRYisjrckoeZvKypl0VXDRZx5UeL
https://www.st.com/en/evaluation-tools/stm32-nucleo-boards.html
https://www.st.com/en/evaluation-tools/stm32-nucleo-boards.html
https://www.arduino.cc/
https://wiki.st.com/stm32mcu/wiki/Getting_started_with_STM32_system_peripherals
https://wiki.st.com/stm32mcu/wiki/Getting_started_with_STM32_system_peripherals
https://wiki.st.com/stm32mcu/wiki/Getting_started_with_STM32_system_peripherals
https://en.wikipedia.org/w/index.php?title=RS-232&oldid=1274736209
https://en.wikipedia.org/w/index.php?title=RS-232&oldid=1274736209
https://www.kicad.org/
https://www.keysight.com/it/en/product/E1735A/usb-axis-module.html
https://www.keysight.com/it/en/product/E1735A/usb-axis-module.html
https://www.heidenhain.it/prodotti/convertitori-di-segnale/misurazione-computerizzata
https://www.heidenhain.it/prodotti/convertitori-di-segnale/misurazione-computerizzata
https://emtoolbox.nist.gov/wavelength/Documentation.asp
https://emtoolbox.nist.gov/wavelength/Documentation.asp

BIBLIOGRAPHY

OpenC'V: Camera Calibration. URL: https://docs.opencv.org/4.x/dc/
dbb/tutorial_py_calibration.html (visited on 03/28/2025).

OpenCV: Camera Calibration and 3D Reconstruction. URL: https://docs.
opencv.org/4.x/d9/d0c/group__calib3d.html (visited on 03/28/2025).

OpenC'V: Camera Calibration. URL: https://docs.opencv.org/4.x/dc/
dbb/tutorial_py_calibration.html (visited on 02/06,/2025).

OpenC'V: Detection of ArUco Markers. URL: https://docs.opencv.org/4.
x/d5/dae/tutorial _aruco_detection.html (visited on 03/28/2025).

Dozygen homepage. URL: https://www.doxygen.nl/index.html (visited on
03/28/2025).

LaTeX - A document preparation system. URL: https://www.latex-project.
org/ (visited on 04/23/2025).

Clay - UI Layout Library. URL: https://wuw.nicbarker.com/clay (visited
on 03/28/2025).

Sean Barrett. nothings/stb. original-date: 2014-05-25T16:51:23Z. Mar. 2025.
URL: https://github.com/nothings/stb (visited on 03/28/2025).

raylib. en. URL: https://www.raylib.com (visited on 03/28/2025).
WebAssembly. en. URL: https://webassembly.org/ (visited on 03/28/2025).

Immediate UI vs Retained Ul en. URL: https://collquinn.gitlab.io/
portfolio/my-article.html (visited on 04/23/2025).

wrWidgets: Cross-Platform GUI Library. URL: https://www . wxwidgets .
org/ (visited on 03/28/2025).

wzFormBuilder/wzFormBuilder. original-date: 2016-09-01T17:41:417Z. Mar. 2025.
URL: https://github . com/wxFormBuilder /wxFormBuilder (visited on
03/28/2025).

George Maier. georgemaier/simple-linear-regression. original-date: 2020-04-

22T08:13:05Z. Oct. 2024. URL: https://github.com/georgemaier/simple-
linear-regression (visited on 04/19/2025).

Pearson Correlation and Linear Regression. URL: https://sites.utexas.
edu/ sos / guided / inferential / numeric / bivariate / cor/ (visited on
04/19/2025).

Precitec GmbH & Co KG. Misura spessore strato | CHRocodile 2S/SE/HS |
PRECITEC. it. URL: https://www.precitec.com/it/visual-metrologia-

3d/prodotti/sensori-a-punto/chrocodile-2s-2se-2s-hs/ (visited on
04/29/2025).

Kernel density estimation. en. Page Version ID: 1285981995. Apr. 2025. URL:
https://en.wikipedia.org/w/index . php?title=Kernel density _
estimation&oldid=1285981995 (visited on 04/22/2025).

108

https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html
https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html
https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html
https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html
https://www.doxygen.nl/index.html
https://www.latex-project.org/
https://www.latex-project.org/
https://www.nicbarker.com/clay
https://github.com/nothings/stb
https://www.raylib.com
https://webassembly.org/
https://collquinn.gitlab.io/portfolio/my-article.html
https://collquinn.gitlab.io/portfolio/my-article.html
https://www.wxwidgets.org/
https://www.wxwidgets.org/
https://github.com/wxFormBuilder/wxFormBuilder
https://github.com/georgemaier/simple-linear-regression
https://github.com/georgemaier/simple-linear-regression
https://sites.utexas.edu/sos/guided/inferential/numeric/bivariate/cor/
https://sites.utexas.edu/sos/guided/inferential/numeric/bivariate/cor/
https://www.precitec.com/it/visual-metrologia-3d/prodotti/sensori-a-punto/chrocodile-2s-2se-2s-hs/
https://www.precitec.com/it/visual-metrologia-3d/prodotti/sensori-a-punto/chrocodile-2s-2se-2s-hs/
https://en.wikipedia.org/w/index.php?title=Kernel_density_estimation&oldid=1285981995
https://en.wikipedia.org/w/index.php?title=Kernel_density_estimation&oldid=1285981995

BIBLIOGRAPHY

[47]

[48]

[50]

[51]

FEvaluation of measurement data — Guide to the expression of uncertainty in
measurement. 2008. DOI: 10.59161/JCGM100-2008E. URL: https://www.
bipm.org/doi/10.59161/JCGM100-2008E (visited on 04/29/2025).

Richard Leach. «Abbe Error/Offsety». en. In: CIRP Encyclopedia of Produc-
tion Engineering. Ed. by The International Academy For Produ, Luc Laper-
riere, and Gunther Reinhart. Berlin, Heidelberg: Springer Berlin Heidelberg,
2014, pp. 1-4. por: 10.1007/978-3-642-35950-7_16793-1. URL: https:
//1link.springer.com/10.1007/978-3-642-35950-7_16793-1 (visited on
04/22/2025).

Fuvaluation of measurement data — Supplement 1 to the “Guide to the expres-
ston of uncertainty in measurement” — Propagation of distributions using a
Monte Carlo method. 2008. DOI: 10 .59161/JCGM101 -2008. URL: https:
//www .bipm.org/doi/10.59161/JCGM101-2008 (visited on 04/29/2025).

scottshambaugh/monaco: Quantify uncertainty and sensitivities in your com-
puter models with an industry-grade Monte Carlo library. URL: https://
github.com/scottshambaugh/monaco/tree/main (visited on 04/23/2025).

Random seed. en. Page Version ID: 1281892956. Mar. 2025. URL: https://
en.wikipedia.org/w/index.php?title=Random_seed&o0ldid=1281892956
(visited on 04/29/2025).

109

https://doi.org/10.59161/JCGM100-2008E
https://www.bipm.org/doi/10.59161/JCGM100-2008E
https://www.bipm.org/doi/10.59161/JCGM100-2008E
https://doi.org/10.1007/978-3-642-35950-7_16793-1
https://link.springer.com/10.1007/978-3-642-35950-7_16793-1
https://link.springer.com/10.1007/978-3-642-35950-7_16793-1
https://doi.org/10.59161/JCGM101-2008
https://www.bipm.org/doi/10.59161/JCGM101-2008
https://www.bipm.org/doi/10.59161/JCGM101-2008
https://github.com/scottshambaugh/monaco/tree/main
https://github.com/scottshambaugh/monaco/tree/main
https://en.wikipedia.org/w/index.php?title=Random_seed&oldid=1281892956
https://en.wikipedia.org/w/index.php?title=Random_seed&oldid=1281892956

	List of Tables
	List of Figures
	Introduction
	Moore measuring machines
	Normal machine operation
	The INRiM framework

	Design and implementation
	X, Y and Z axes
	Motors
	Mounting and Adapter design

	Motor drivers
	Microcontroller
	USART command handling
	Square wave generation
	Half Period resolution

	Printed circuit board

	Position measuring instruments
	Laser interferometer
	Optical scales (linear encoders)
	Cary LVDT sensor
	Nilox webcam

	Environmental monitoring
	Thermometer
	Command Explanations
	TCP Client creation

	Voltmeter
	Barometer
	Dewpoint igrometer

	Moore controller
	Acceleration ramps
	Coordinate system definition
	Fisheye and distorsion correction
	Camera FOV to machine coordinate mapping

	Multithreading
	Documentation and Doxigen

	Graphical user interface
	Clay and Raylib
	Slider
	Input Box
	Buttons
	Radio Buttons
	Complete GUI

	WxWidgets

	Movement routines and testing
	Approach
	Probe parameters
	Reading correction
	Maximum determination
	Test programs
	Measurement
	Sphere diameter measurement
	Optical confocal probe measurement

	Uncertainty evaluation
	Positioning error
	Error parameters

	Measurement uncertainty
	GUM analysis
	Monte Carlo analysis

	Conclusions
	Future developments

