POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Fault Injection and selective Hardening
of Real Time Operating Systems

Supervisors Candidate
Prof. Alessandro SAVINO

Dimitri SCHIAVONE
Prof. Maurizio REBAUDENGO

July, 2025

Acknowledgements

I would like to thank my dear parents Romana and Umberto for their constant
support and encouragement throughout my academic journey. Their unwavering
belief in me has been a constant source of strength.

A special thanks goes to my beloved girlfriend, Silvia, whose steadfast support,
even in moments when I struggled to find motivation, has meant the world to me.
I would like to extend my heartfelt appreciation to my Uncle Guido for his invaluable
support, which has been instrumental in helping me through challenging times.

I am also thankful to my best friend, Marco. His insightful advice and the moments
of shared free time have provided both motivation and much needed balance during
this endeavor.

Lastly, I would like to thank Professor Alessandro Savino for providing me with
the opportunity to work on this experimental thesis. His patience and technical
advice throughout our email correspondence have been essential to the progress of
this work.

“In the midst of winter, I found there was, within me, an invincible summer.
And that makes me happy. For it says that no matter how hard the world pushes
against me, within me, there’s something stronger — something better, pushing
right back.”

Albert Camus

https://www.goodreads.com/quotes/508603-in-the-midst-of-winter-i-found-there-was-within

Abstract

Real-Time operating systems provide deterministic behavior for systems operat-
ing under strict deadline requirements. Beyond managing tasks and resources,
operating systems offer a hardware abstraction layer that enables developers to
concentrate on application logic instead of low-level hardware details. However,
both systems with and without operating system support are vulnerable to ionizing
radiation from sources such as cosmic rays, solar wind, electromagnetic interference,
and other deep space phenomena. These radiation effects can lead to unintended,
often catastrophic, failures ranging from system malfunctions to complete device
breakdowns.

Real-Time operating systems are commonly deployed in safety-critical applications
including railway systems, military drones, medical devices and transportation sys-
tems in cars and airplanes; where even a minor failure could have dire consequences
for human life. Thus, it is crucial to investigate mitigation techniques at both the
hardware and software levels. This thesis focuses exclusively on software-based
mitigation strategies within an RTOS (Real Time Operating System) environment,
specifically using FreeRTOS as the platform under study. More precisely, the work
targets the FreeRTOS port for POSIX (Portable Operating System Interface for
Unix) [1] and Windows [2], which allows a complete FreeRTOS operating system
to run as a hosted user-space application on general-purpose operating systems
such as GNU (GNU Is Not Unix)/Linux, FreeBSD, Solaris, Mac OS or Windows.
For the purposes of this thesis, the system of choice is GNU /Linux.

The study begins with a fault injection investigation designed to identify criti-
cal components of the RTOS that may compromise its expected behavior under
radiation-induced disturbances. This research employs a software fault injection
technique to emulate the effects of radiation on electronic devices, focusing on two
primary error types: the SEU (Single Event Upset), which causes random bit flips
in memory; and the SEHE (Single Event Hard Error), which results in permanent
"stuck-at" memory states. Software fault injection offers a cost-effective alternative
to specialized radiation testing facilities while still providing meaningful insights.
Based on the data collected from this investigation, the objective of this thesis is
to implement a targeted, selective hardening strategy to reinforce the identified
vulnerable areas of the RTOS under study.

I

Table of Contents

Acknowledgements
Abstract I
List of Figures VII
List of Tables X1
Listings XIT
Acronyms XIII
1 Introduction 1
1.1 Rationale 1
1.2 High energy particles 2
1.3 Fault injection oL 2
1.4 Tools Used 3
2 Single Event Effects 4
2.1 Introduction 4
2.2 Single Event Effects o000 4
221 Sourcesof SEEo 5
2.2.2 Mechanisms of SEE Occurrence 6
2.2.3 SEE Classification 6
2.2.4 Non-Destructive SEE (Soft Errors) 7
2.2.5 Destructive SEE (Hard Errors) 7
2.2.6 Effects on Real-Time Operating Systems 9
2.2.7 Hardware Mitigations of SEE. 10
2.2.8 Software Mitigations of SEE 10
2.3 Conclusion 10

3 Real-Time Operating Systems 12

3.1 Introduction 12
3.2 Real-Time Systems 12
3.3 Operating Systems 13
3.4 General Purpose Operating Systems 14
3.5 Real-Time Operating Systems 15
3.6 Heterogeneous OS Design: When General-Purpose and Real-Time
Systems Coexist 16
3.7 Achieving Real-Time 18
3.7.1 Poll-Driven Approach, 18
3.7.2 The Interrupt-Driven Approach 19
3.7.3 The Need for Interrupts in Complex Embedded Applications 20
3.8 Conclusion 20
4 FreeRTOS 21
4.1 Introduction 21
4.2 FreeRTOS 21
4.3 FreeRTOS Strengths 21
4.4 FreeRTOS Features 23
4.4.1 Task Scheduling oL 23
4.4.2 Timing Services 24
4.4.3 Memory Management L 24
444 TPC Services. e 24
4.5 Scheduling in FreeRTOS 25
4.5.1 Task Control Block 25
4.5.2 Task States 28
4.6 FreeRTOS Source Components 29
4.7 Conclusion 30
5 Fault Injection 31
5.1 Introduction 31
5.2 Dependabilityo 31
5.2.1 Attributes 31
52.2 Threats 33
5.2.3 Means 34
5.3 Fault injection testing 36
5.3.1 Fault Injection Techniques 37
54 Stateof the Art 39
54.1 FIAT 39
54.2 MAFALDA 39
54.3 FIFA 40

54.4 RTOS Guardian 40

5.4.5 Positioning of the Proposed Injector 40
5.5 Conclusion 41
FreeRTOS Fault Injector 42
6.1 Introduction 42
6.2 Background, Prior Implementations, Divergences 42
6.3 Project Structureo 44
6.3.1 Project files L 44
6.4 POSIX Port Layer Design 47
6.4.1 Overview Of the Port Layer Architecture 47
6.4.2 FreeRTOS Task Mapping 48
6.4.3 Port Layer Initialization 49
6.4.4 FreeRTOS Task Switching 50
6.4.5 Simulated Interrupts 51
6.4.6 Enabling and Disabling Interrupts 52
6.4.7 POSIX Portand I/O 53
6.5 FreeRTOS Injector System Architecture 53
6.5.1 Key Definitionso 53
6.5.2 Experiment Environment00 54
6.5.3 Injection Environment 55
6.6 FreeRTOS Injector Commands 69
6.7 Fault List 71
6.7.1 Target Types 71
6.7.2 FreeRTOS Injection Target Groups 73
6.8 Conclusion 79
Experimental Results 80
7.1 Introductiono 80
7.2 Experiment Setupo 80
7.2.1 First Scenario 80
7.2.2 Second Scenarioo 81
7.2.3 Number of Experiments 82
7.3 Experimental Results Before Hardening 83
7.3.1 First Scenarioo 83
7.3.2 Second Scenario 96
7.4 Results Summary by Target Type First Scenario 101

7.4.1 Injection Results on FreeRTOS Variables (ECC Disabled) . . 101

7.4.2 Injection Results On FreeRTOS Lists With ECC Disabled . 102

7.4.3 Injection Results on FreeRTOS Current TCB with ECC
Disabled 103

7.4.4 Injection Results On FreeRTOS Pointers With ECC Disabled 105

7.5 Results Summary by Target Type Second Scenario 105
7.5.1 Injection Results on FreeRTOS Variables (ECC Disabled) . . 106
7.5.2 Injection Results on FreeRTOS Lists (ECC Disabled) 106

7.5.3 Injection Results on FreeRTOS Current TCB (ECC Disabled)107
7.5.4 Injection Results on FreeRTOS Pointers (ECC Disabled) . . 107

7.6 FreeRTOS Fault-Sensitive Locations 108
7.7 Selective Hardening oL 108
7.7.1 Chosen Approach 108

7.7.2 Error Correcting Codes 108

7.7.3 Hamming Codes 109

7.7.4 Unused Bits In Pointer Variables 111

7.7.5 Hamming ECC Implementation 111

7.8 Experimental Results with ECC 118
7.8.1 First Scenario 119

7.8.2 Second Scenario 126

7.8.3 Results Analysis 129

7.8.4 Overall Results Analysis 131

7.9 Conclusion 131

8 Conclusion 133
Bibliography 135

VI

List of Figures

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5

4.1
4.2

5.1
5.2
5.3
5.4

6.1

7.1

7.2

7.3

7.4

SEL Intrinsic bipolar junction transistors in the CMOS technology .
SEE Classification
SEL Mitigation with an insulating oxide layer

Real-Time hierarchy,
Operating system essential services
RTOS Characteristics
Polling cycle in firmware
Interrupt cycle oo

Scheduling types in FreeRTOS
State transitions of FreeRTOS tasks

Attributes of dependabilityo
Threats of dependability 0L
Means of dependability
Types of Fault Injection Testing Techniques

FreeRTOS Injector project structure

Injections on FreeRTOS variables NO ECC (Transient Faults)
QSRT items 1000 TX iterations 5 Timer iterations 5 RX iterations
10 . .
Injections on FreeRTOS variables NO ECC (Permanent Faults)
QSRT items 1000 TX iterations 5 Timer iterations 5 RX iterations
10 . .
Injections on FreeRTOS lists NO ECC (Transient Faults) QSRT
items 1000 TX iterations 5 Timer iterations 5 RX iterations 10
Injections on FreeRTOS lists NO ECC (Permanent Faults)
QSRT items 1000 TX iterations 5 Timer iterations 5 RX iter-
ations 10o

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

7.17

7.18

Injections on FreeRTOS current TCB NO ECC (Transient
Faults) QSRT items 1000 TX iterations 5 Timer iterations 5
RX iterations 10o 86
Injections on FreeRTOS current TCB NO ECC (Permanent
Faults) QSRT items 1000 TX iterations 5 Timer iterations 5 RX
iterations 10o 86
Injections on FreeRTOS pointers NO ECC (Transient Faults)
QSRT items 1000 TX iterations 5 Timer iterations 5 RX iterations
10 . . e 87
Injections on FreeRTOS pointers NO ECC (Permanent Faults)
QSRT items 1000 TX iterations 5 Timer iterations 5 RX iterations
10 . o 87
Injections on FreeRTOS variables NO ECC (Transient Faults)
QSRT items 5000 TX iterations 10 Timer iterations 10 RX itera-
tions 20 . . . Lo 88
Injections on FreeRTOS variables NO ECC (Permanent Faults)
QSRT items 5000 TX iterations 10 Timer iterations 10 RX itera-
tions 20 L 88
Injections on FreeRTOS lists NO ECC (Transient Faults) QSRT
items 5000 TX iterations 10 Timer iterations 10 RX iterations 20 89
Injections on FreeRTOS lists NO ECC (Permanent Faults)
QSRT items 5000 TX iterations 10 Timer iterations 10 RX it-
erations 20o 89
Injections on FreeRTOS current TCB NO ECC (Transient
Faults) QSRT items 5000 TX iterations 10 Timer iterations 10
RX iterations 20o 90
Injections on FreeRTOS current TCB NO ECC (Permanent
Faults) QSRT items 5000 T'X iterations 10 Timer iterations 10
RX iterations 20o 90
Injections on FreeRTOS pointers NO ECC (Transient Faults)
QSRT items 5000 TX iterations 10 Timer iterations 10 RX itera-
tions 20 . . .o 91
Injections on FreeRTOS pointers NO ECC (Permanent Faults)
QSRT items 5000 TX iterations 10 Timer iterations 10 RX itera-
tions 20 . . . Lo 91
Injections on FreeRTOS variables NO ECC (Transient Faults)
QSRT items 10000 TX iterations 20 Timer iterations 20 RX iter-
ations 40o 92
Injections on FreeRTOS variables NO ECC (Permanent Faults)
QSRT items 10000 TX iterations 20 Timer iterations 20 RX iter-
ations 40 92

7.19 Injections on FreeRTOS lists NO ECC (Transient Faults) QSRT
items 10000 T'X iterations 20 Timer iterations 20 RX iterations 40 93
7.20 Injections on FreeRTOS lists NO ECC (Permanent Faults)
QSRT items 10000 TX iterations 20 Timer iterations 20 RX iter-
ations 40 Lo Lo 93
7.21 Injections on FreeRTOS current TCB NO ECC (Transient
Faults) QSRT items 10000 TX iterations 20 Timer iterations
20 RX iterations 40o 94
7.22 Injections on FreeRTOS current TCB NO ECC (Permanent
Faults) QSRT items 10000 T'X iterations 20 Timer iterations 20
RX iterations 40 94
7.23 Injections on FreeRTOS pointers NO ECC (Transient Faults)
QSRT items 10000 TX iterations 20 Timer iterations 20 RX iter-
ations 40 95
7.24 Injections on FreeRTOS variables NO ECC (Permanent Faults)
QSRT items 10000 TX iterations 20 Timer iterations 20 RX iter-
ations 40 95
7.25 Injections on FreeRTOS variables NO ECC (Transient Faults)
Tacle Benchmarks: SHA, FFT, CUBIC, HUFF _DEC, ADPCM_ENC 97
7.26 Injections on FreeRTOS variables NO ECC (Permanent Faults)
Tacle Benchmarks: SHA, FFT, CUBIC, HUFF _DEC, ADPCM_ENC 97
7.27 Injections on FreeRTOS lists NO ECC (Transient Faults) Tacle
Benchmarks: SHA, FFT, CUBIC, HUFF _DEC, ADPCM_ENC . . 98
7.28 Injections on FreeRTOS lists NO ECC (Permanent Faults)
Tacle Benchmarks: SHA, FFT, CUBIC, HUFF _DEC, ADPCM _ENC 98
7.29 Injections on FreeRTOS current TCB NO ECC (Transient
Faults) Tacle Benchmarks: SHA, FFT, CUBIC, HUFF_DEC, AD-
PCM_ENC 99
7.30 Injections on FreeRTOS current TCB NO ECC (Permanent
Faults) Tacle Benchmarks: SHA, FFT, CUBIC, HUFF_DEC, AD-
PCM_ENC 99
7.31 Injections on FreeRTOS pointers NO ECC (Transient Faults)
Tacle Benchmarks: SHA, FFT, CUBIC, HUFF _DEC, ADPCM__ENC100
7.32 Injections on FreeRTOS pointers NO ECC (Permanent Faults)
Tacle Benchmarks: SHA, FFT, CUBIC, HUFF _DEC, ADPCM__ENC100
7.33 Injections on FreeRTOS pointers NO ECC (Transient Faults)
QSRT items 1000 TX iterations 5 Timer iterations 5 RX iterations
10 . . 120
7.34 Injections on FreeRTOS pointers with ECC (Transient Faults)
QSRT items 1000 TX iterations 5 Timer iterations 5 RX iterations
10 . . 120

7.35

7.36

7.37

7.38

7.39

7.40

7.41

7.42

7.43

7.44

7.45

7.46

7.47

7.48

Injections on FreeRTOS pointers NO ECC (Permanent Faults)
QSRT items 1000 TX iterations 5 Timer iterations 5 RX iterations
10 . . 121
Injections on FreeRTOS pointers with ECC (Permanent Faults)
QSRT items 1000 TX iterations 5 Timer iterations 5 RX iterations
10 . . e 121
Injections on FreeRTOS pointers NO ECC (Transient Faults)
QSRT items 5000 TX iterations 10 Timer iterations 10 RX itera-
tions 20 L 122
Injections on FreeRTOS pointers with ECC (Transient Faults)
QSRT items 5000 TX iterations 10 Timer iterations 10 RX itera-
tions 20o 122
Injections on FreeRTOS pointers NO ECC (Permanent Faults)
QSRT items 5000 TX iterations 10 Timer iterations 10 RX itera-
tions 20 L 123
Injections on FreeRTOS pointers with ECC (Permanent Faults)
QSRT items 5000 TX iterations 10 Timer iterations 10 RX itera-
tions 20 . . . Lo Lo 123
Injections on FreeRTOS pointers NO ECC (Transient Faults)
QSRT items 10000 TX iterations 20 Timer iterations 20 RX iter-
ations 40o 124
Injections on FreeRTOS pointers with ECC (Transient Faults)
QSRT items 10000 TX iterations 20 Timer iterations 20 RX iter-
ations 40o 124
Injections on FreeRTOS pointers NO ECC (Permanent Faults)
QSRT items 10000 TX iterations 20 Timer iterations 20 RX iter-
ations 40o 125
Injections on FreeRTOS pointers with ECC (Permanent Faults)
QSRT items 10000 TX iterations 20 Timer iterations 20 RX iter-
ations 40o 125
Injections on FreeRTOS pointers NO ECC (Transient Faults)
Tacle Benchmarks: SHA, FFT, CUBIC, HUFF_DEC, ADPCM__ENC127
Injections on FreeRTOS pointers with ECC (Transient Faults)
Tacle Benchmarks: SHA, FFT, CUBIC, HUFF _DEC, ADPCM__ENC127
Injections on FreeRTOS pointers NO ECC (Permanent Faults)
Tacle Benchmarks: SHA, FFT, CUBIC, HUFF_DEC, ADPCM__ENC128
Injections on FreeRTOS pointers with ECC (Permanent Faults)
Tacle Benchmarks: SHA, FFT, CUBIC, HUFF_DEC, ADPCM_ENC128

List of Tables

6.1
6.2
6.3
6.4
6.5

FreeRTOS Global Variable Targets 74
FreeRTOS List Targets 75
FreeRTOS Pointer Targets 76
FreeRTOS current TCB Targets 7
FreeRTOS current TCB Targets (continued) 78

XI

Listings

4.1
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

FreeRTOS struct tskTaskControlBlock description 25
FreeRTOS Posix port Thread_t description 48
FreeRTOS Posix port struct event description 48
FreeRTOS Posix port system tick handler 50
FreeRTOS Posix port interrupt management functions 52
FreeRTOS Injector helper function 56
FreeRTOS IDLE task hook 57
FreeRTOS Injector trace hook macros 58
FreeRTOS Injector Logging function 58
FreeRTOS Injector Simulated IRQ Handler 59
FreeRTOS Injector Classifier 61
struct target description.o 64
Target-creation helper macros 64
Timer-target gatherer (pxTimerGatherTargets) 65
Hamming Encode Function 111
prvAddRedundandBits() Function00 112
prvComputeParity() Function 112
prvComputeParityForBitPosition() Function 113
Hamming Decode Function. 113
prvCorrectError() Function 000 114
prvExtractData() Function L. 115
hamming.h header file 115

XII

Acronyms

oS
Operating System

RTOS
Real Time Operating System

POSIX
Portable Operating System Interface for Unix

BSD
Berkeley Software Distribution

GNU
GNU Is Not Unix

SEE
Single Event Effect

SET

Single Event Transient

SEU
Single Event Upset

MBU
Multiple Bit Upset

SEFI

Single Event Functional Interrupt

XIII

SEL
Single Event Latchup

SEB

Single Event Burnout

SEGR
Single Event Gate Rupture

SEHE
Single Event Hard Error

RAM

Random Access Memory

SRAM

Static Random Access Memory

DRAM

Dynamic Random Access Memory

FI

Fault Injection

GCR
Galactic Cosmic Ray

EMI

Electromagnetic Interference

CMOS

Complementary Metal Oxide Semiconductor

MMU

Memory Management Unit
MPU
Memory Protection Unit

X1V

NMOS
N-Type Metal Oxide Semiconductor

PMOS
P-Type Metal Oxide Semiconductor

SCR
Silicon Controlled Rectifier

ECC

Error Correcting Code

CPU

Central Processing Unit

IPC

Inter Process Communication

LTE

Long Term Evolution

ASIC
Application Specific Integrated Circuit

DSP

Digital Signal Processor

ISR

Interrupt Service Routine

TRQ
Iterrupt Request

MISRA
Motor Industry Software Reliability Association

RISC

Reduced Instruction Set Computer

XV

AVR
Advanced Virtual RISC

ARM

Avanced Risc Machines

API

Application Programming Interface

FIFO
First In First Out

TCB
Task Control Block

COTS
Commercial Off The Shelf

SPI

Serial Peripheral Interface

CAN

Controller Area Network

I/0
Input Output

CLI

Command Line Interface

CSV

Comma Separated Value

SWIFI

Software Based Fault Injection

MAFALDA
Microkernel Assessment by Fault Injection Analysis and Design Aid

XVI

GDB
GNU Debugger

KGDB
Kernel GNU Debugger

RTOSG
RTOS Guardian

IEC

International Electrotechnical Commission

FIAT
Fault Injection Based Automated Testing

FIFA

Kernel-Level Fault Injection Framework for ARM-Based Embedded Linux
System

SIM
Subscriber Identity Module

PCRE2

Perl Compatible Regular Expressions (version 2)

BCH

Bose Chaudhuri Hocquenghem codes

AMD

Advanced Micro Devices

LSB
Least Significant Bit

P
Intellectual Property

XVII

PCB
Printed Circuit Board

RTL

Register Transfer Level

XVIII

Chapter 1

Introduction

1.1 Rationale

Modern society’s pervasive reliance on computing is a direct outcome of significant
advancements in electronics and computer systems. Breakthroughs in these fields,
bolstered by economies of scale, have seamlessly integrated computing into daily
life. Today, a wide array of devices, including smartphones, smartwatches, smart
televisions, and fitness trackers, have become ubiquitous. Moreover, nearly every
household appliance has evolved into a "smart" device, ranging from refrigerators
and washing machines to autonomous vacuum cleaners.

While many of these devices are categorized as embedded systems, smartphones
stand apart. Initially developed as embedded devices, they have since evolved,
offering computational capabilities comparable to those of mid-range computers.
Beyond consumer electronics, embedded systems play a critical yet often under-
stated role across various sectors. They are integral to the functionality of vehicles,
medical devices, financial trading platforms, railway systems, military equipment,
satellites, and more.

This widespread incorporation of embedded systems underscores the extent to
which our contemporary world is intertwined with computing technology, a trend
that is only set to intensify in the foreseeable future.

Embedded devices incorporate specialized software tailored to their specific func-
tions. In some instances, this software is highly application-specific firmware
designed exclusively for the device, directly interfacing with the underlying hard-
ware. In other cases, these devices run specialized operating systems, such as
real-time operating systems (RTOS), which are engineered to meet the stringent
timing and reliability requirements of embedded applications.

What emerges from the above is that human reliance on the correct behavior of
electronic devices and their supporting software is growing. This critical property,

1

Introduction

known as dependability, is defined as the system’s ability to deliver reliable, safe,
and secure services continuously over time, even when faced with faults or adverse
conditions.

Dependability in a system is influenced by numerous factors. Internally, elements
such as human errors during hardware design, software bugs introduced during
development, intentional tampering by malicious actors, and manufacturing defects
can compromise system integrity. Externally, the operational environment in which
the device functions also plays a significant role. In essence, internal factors pertain
to the system’s design, development, and fabrication processes, while external
factors arise from the conditions under which the device ultimately operates.

1.2 High energy particles

Among the external factors examined, ionizing radiation, specifically through high-
energy particles, emerges as one of the most damaging influences on electronic
devices. This susceptibility is especially pronounced in systems operating in high-
radiation environments such as outer space (e.g., satellites) and at lower altitudes
including airplanes and drones. Furthermore, as transistors and electronic gates
continue to shrink, the vulnerability of devices, even those functioning at sea level
where radiation is less prevalent, is increasingly amplified. When these energetic
particles interact with a device, they can induce computational errors under certain
conditions or, in more severe cases, cause irreversible damage.

The subsequent chapters will delve deeper into the phenomenon commonly referred
to as SEE (Single Event Effect), discussing its impacts on electronic systems in
greater detail.

1.3 Fault injection

Therefore it is essential to employ robust testing techniques that can uncover vul-
nerabilities within a system, as early detection is key to improving overall system
resilience. These techniques are designed not only to identify potential weaknesses
but also to gather comprehensive data regarding which parts of the system are the
most sensitive to perturbations. The information collected through this process
provides a valuable basis for the development of specific mitigation strategies,
ultimately enhancing the dependability and performance of the system as a whole.
Among the various methods available for dependability testing, fault injection (FI)
stands out as one of the most extensively utilized techniques [3]. Fault injection
involves deliberately introducing faults into a system in order to study its behavior
under abnormal conditions. Such an approach is critical for understanding how
faults propagate through system components and for verifying that appropriate

2

Introduction

error-handling mechanisms are in place.

While the fundamental principles and practices of fault injection are briefly men-
tioned here, a more detailed discussion covering its various approaches and practical
applications will be provided in a subsequent chapter.

1.4 Tools Used

This thesis focuses on studying the effects of faults and developing a selective
hardening strategy within the context of a specific RTOS, namely FreeRTOS. The
work utilizes FreeRTOS version 10.4.6, specifically employing its POSIX port [1],
although a functional Windows version was developed in parallel which makes use
of the Windows FreeRTOS port [2].

The project is compiled using the default system compiler available on most
GNU/Linuz distributions, which in this work is GNU’s GCC version 15.1.1 [4].
To facilitate cross-platform compilation between the POSIX and Windows ports, a
CMake based build system is used, specifically version 4.0.2 [5].

Development and testing of the project were carried out on a GNU/Linuz platform,
more precisely on Arch Linuzx [6].

Chapter 2

Single Event Effects

2.1 Introduction

In the introductory chapter, the growing importance of dependability in modern
embedded systems was emphasized, and fault injection testing was identified as a
critical tool for uncovering system vulnerabilities. One significant external factor
that challenges system reliability is ionizing radiation from high-energy particles.
As these particles interact with ever-more miniaturized electronic components, a
variety of Single Event Effects (SEE) can occur, ranging from transient errors to
permanent damage in severe cases.

This chapter examines the phenomenon of SEE by defining the concept, classifying
the various types, and exploring their origins. The discussion is then extended to
analyze the practical implications on electronic devices, particularly those running
an RTOS. By establishing this comprehensive background, the inherent challenges in
designing resilient systems are highlighted, underscoring the necessity of appropriate
hardening strategies. These strategies can be broadly divided into hardware-based
and software-based approaches. Hardware-based methods are briefly introduced
here for completeness, while software-based selective hardening measures are briefly
introduced and discussed in greater detail in later chapters.

2.2 Single Event Effects

Single Event Effects are disruptions in the normal operation of electronic devices
triggered when a single ionizing particle interacts with a circuit. Such interactions
occur as the particle deposits charge into the sensitive regions of a device, thereby
inducing abrupt and significant voltage or current spikes. These transient surges
can exceed the device’s design tolerances and may result in temporary malfunctions,
permanent damage, or erroneous output signals.

4

Single Event Effects

2.2.1 Sources of SEE

The ionizing particles responsible for SEE come from diverse sources:

Extraterrestrial sources

In space and high-altitude environments, devices are continuously exposed to a
complex radiation environment that includes Galactic Cosmic Rays (GCR), the
solar wind, and various solar phenomena that fluctuate with solar activity. In
addition to GCR, other extraterrestrial sources contribute significantly to the
radiation exposure:

o The Van Allen belts [7], comprised of the inner belt (mainly protons and
high-energy particles between about 1,000 and 5,000 kilometers altitude) and
the outer belt (dominated by high-energy electrons between roughly 15,000
and 25,000 kilometers), pose significant risks to satellites and astronauts.

o The Earth’s magnetosphere traps heavy ions such as iron or carbon, which
due to their mass and penetration capability can have pronounced effects on
sensitive equipment.

o High-energy protons and heavy ions originating from supernova events and
energetic solar flares further add to the radiation hazards.

Moreover, when GCR interact with the Earth’s atmosphere, they generate cascades
of secondary particles that can reach and impact devices at sea level. Although
these secondary effects are less likely than direct radiation encountered in orbit, they
still represent a potential risk for devices operating in lower orbits and near-Earth
environments.

Terrestrial sources

On Earth, man-made sources such as nuclear power plants and materials undergoing
radioactive decay contribute to the incidence of SEE. In addition to these, there
are several other factors that can lead to SEE:

e Industrial and Medical Equipment: Industrial accelerators and certain
medical imaging devices, like linear accelerators used in radiation therapy or
diagnostic equipment, can emit ionizing radiation. Although these sources
are typically well-shielded, accidental exposure or equipment malfunction can
result in localized increases in radiation levels, potentially triggering SEE.

« High-Voltage Equipment: Some high-voltage power equipment and trans-
mission systems may generate transient electromagnetic fields or emit stray

5

Single Event Effects

radiation during arcing or switching operations. This interference can some-
times create conditions conductive to SEE in nearby sensitive electronic
components.

» Testing and Research Facilities: Particle accelerators, fusion experiments,
and other high-energy physics research facilities often produce fluxes of high-
energy particles. While these environments are usually confined and controlled,
they can be hotspots for SEE if sensitive devices are exposed without proper
shielding.

o Consumer Electronics in Specific Environments: Although typical con-
sumer electronics operate in low-radiation environments, certain contexts, such
as situated near industrial sources or within research facilities, can expose these
devices to higher-than-normal levels of radiation, inadvertently increasing the
risk of SEE.

 Emerging Technologies and Unintentional Exposures: As technology
continues to evolve, new sources of radiation and high-energy emissions might
arise through unanticipated couplings in complex systems. This includes
phenomena like EMI (Electromagnetic Interference) from nearby electronic
devices, which may simulate conditions similar to those caused by radiative
SEE.

2.2.2 Mechanisms of SEE Occurrence

Ionizing particles impacting electronic circuits carry sufficient energy to ionize
atoms or molecules in semiconductor materials by dislodging electrons, resulting in
localized charge deposition. This sudden imbalance of charge can induce transient
currents, voltage spikes, or even permanent state changes in memory cells and logic
elements. While early studies of SEE focused on heavy ions and alpha particles,
thanks to their especially high linear energy transfer, it is now well established
that a broad spectrum of radiation (including muons, pions, neutrons, protons,
electrons, and even high-energy photons) can likewise provoke these effects when
they traverse or strike circuit structures.

2.2.3 SEE Classification

SEE are broadly categorized into two classes (as can be seen from Figure 2.2) based
on the severity and permanence of the damage:

6

Single Event Effects

Non-Destructive SEE (Soft Errors)

These effects result in temporary malfunctions or transient disruptions that can
usually be remedied by a system reset or power cycle. Examples include bit flips
in memory cells where data temporarily changes but can be corrected.

Destructive SEE (Hard Errors)

These represent irreversible damage where critical components are compromised,
rendering the device permanently inoperable or severely degraded.

2.2.4 Non-Destructive SEE (Soft Errors)

Soft errors, which include the following types, generally produce transient faults:

Single Event Transient (SET)

An SET is characterized by brief bursts of voltage or current that can propagate
through circuitry. Such disturbances may be observable only downstream in the
circuit, making them hard to detect and mitigate.

Single Event Upset (SEU)

In an SEU, the charge deposition changes the binary state of a device’s component
(commonly a bit toggling from 0 to 1 or vice versa). When several bits are affected
simultaneously, the phenomenon is known as an MBU (Multiple Bit Upset). These
effects are mostly observed in memory devices, such as SRAM (Static Random
Access Memory) and DRAM (Dynamic Random Access Memory), caches, as well
as in internal registers.

Single Event Functional Interrupt (SEFI)

SEFT are typically viewed as a subset of SEU or MBU that specifically impact
internal registers (e.g., control registers). Such disruptions may cause a device to
freeze, reset, or become unresponsive until a power cycle is performed.

2.2.5 Destructive SEE (Hard Errors)

Hard errors involve irreversible damage and include the following manifestations:

7

Single Event Effects

Single Event Latchup (SEL)

SEL occurs when a high-energy particle triggers a parasitic thyristor structure
inadvertently formed in CMOS (Complementary Metal Oxide Semiconductor)
devices. Once activated, this structure creates a low-impedance current path
between the power supply and ground, leading to excessive current flow, thermal
damage, and potentially catastrophic failure. Figure 2.1 illustrates the n-well
structure in CMOS where the parasitic bipolar junction transistors can be activated
by such an event.

gnd PMOS region Vdd
S S =
n-well I\
<
AV :
Substrate (p)

Figure 2.1: SEL Intrinsic bipolar junction transistors in the CMOS technology

Single Event Burnout (SEB)

SEB is induced by an abrupt surge in voltage or current that exceeds the rated
specifications of the device, resulting in permanent damage or breakage.

Single Event Gate Rupture (SEGR)

In SEGR, the charge deposition damages the gate oxide of a transistor by creating an
excessive electric field across the thin dielectric layer. This causes the gate oxide to
rupture and establishes an unwanted conductive path, permanently compromising
the transistor. SEGR is particularly critical in advanced semiconductor technologies
with extremely thin oxide layers.

Single Event Hard Error (SEHE)

SEHE refers to unrecoverable faults where a single particle impact leads to perma-
nent changes in the semiconductor structure. In memory devices like SRAM and

8

Single Event Effects

DRAM, this results in bits permanently fixed at a certain value, and when internal
registers are affected, the device may ultimately become inoperable.

= @ SET

Non- 1011

—>

= () SEFI

{@,? Single-Event

Effects

—

@ Destructive

Figure 2.2: SEE Classification

2.2.6 Effects on Real-Time Operating Systems

This work primarily focuses on SEU and SEHE, as their effects are visible at the
software level. The software fault injector, designed specifically for the FreeRTOS
RTOS, simulates both transient SEU and permanent bit flips induced by SEHE
within kernel data structures.

The impact of such bit flips varies with the location of the fault. For example:

Pointer Variables

A single bit flip in a pointer can change its target address, possibly causing it to
reference an invalid or out-of-bound location, which may result in system crashes.
Systems equipped with an MMU (Memory Management Unit) that supports
virtual memory and physical memory segmentation might handle these issues by

9

Single Event Effects

terminating the affected task, while many embedded systems without an MMU
could experience total system failure.

Task Scheduling Structures

Bit flips affecting task scheduling data structures may disrupt computations, cause
missed deadlines, and, consequently, lead to catastrophic outcomes in real-time
systems where timely task execution is crucial.

A more detailed exploration of these impacts on FreeRTOS, including a compre-
hensive analysis of its most sensitive kernel data structures, along with potential
mitigation strategies, will be presented in a later chapter.

2.2.7 Hardware Mitigations of SEE

Mitigation of SEE can be implemented at the hardware level. For instance,
to counter SEL in CMOS circuits, designers can introduce an insulating oxide
layer, often referred to as a trench, around the NMOS (N-Type Metal Oxide
Semiconductor) and PMOS (P-Type Metal Oxide Semiconductor) transistors (See
Figure 2.3). This physical barrier disrupts the formation of the parasitic SCR
(Silicon Controlled Rectifier) responsible for SEL. Similarly, SEU can be addressed
through the use of ECC (Error Correcting Code) memory.

Hardware-based mitigation methods are highly effective; however, they tend to
be costlier and cannot be retrofitted to devices already in the field, which may
still operate reliably using appropriate software mitigation techniques. While
these hardware hardening approaches play a crucial role, they will not be further
discussed here, as the focus of this thesis is on software-based solutions.

2.2.8 Software Mitigations of SEE

Software mitigation primarily addresses transient SEU and MBU through mecha-
nisms such as error correction, data redundancy, and check-pointing. This thesis
adopts an ECC approach, which will be detailed in a subsequent chapter. By imple-
menting these strategies, systems can detect and correct transient faults, thereby
improving system resilience even in the presence of ionizing radiation-induced SEE.

2.3 Conclusion

This chapter has introduced and categorized SEE, outlined their fundamental
mechanisms, and reviewed both hardware and software mitigation techniques.
Although hardware-based protections were described for completeness, the emphasis
was placed on software strategies, which form the central contribution of this thesis.

10

Single Event Effects

NMOS Gate

Buried Insulating Oxide Trench

P- Substrate

Figure 2.3: SEL Mitigation with an insulating oxide layer

In the following chapter, real-time operating systems will be examined to establish
the context for assessing SEE on devices running an RTOS. This overview will
pave the way for an in-depth study of FreeRTOS, the specific RTOS selected for
analysis.

11

Chapter 3

Real-Time Operating
Systems

3.1 Introduction

In the previous chapter, SEE were introduced and classified, their impact on
real-time systems was briefly discussed, and an overview of both hardware-based
and software-based solutions was provided. This chapter begins by presenting a
general definition of operating systems, before narrowing the focus to real-time
operating systems and comparing them to general-purpose operating systems. The
discussion establishes the key characteristics, design requirements, and performance
considerations that differentiate RTOS from their general-purpose counterparts.
A dedicated section is included to examine the critical mechanisms through which
real-time performance is achieved, with particular emphasis on the contrast between
poll-driven systems, commonly used in application firmware, and interrupt-driven
architectures. Interrupt-driven designs, in particular, are showcased as the enabling
mechanism for operating systems to regain control from applications, facilitate task
switching, and enforce preemption.

3.2 Real-Time Systems

A real-time system is any computer system designed to process data and deliver
responses within strictly defined time constraints, where meeting deadlines is as
crucial as executing correct computations. These systems are typically employed
in environments where delays can have severe consequences, such as aerospace,
medical devices, automotive control systems, and industrial automation. They are
characterized by deterministic processing, predictable behavior, and guaranteed

12

Real-Time Operating Systems

response times to ensure tasks complete within the specified time frames.

For example, consider a system controlling the spinning of drone propellers: if it
fails to compute the necessary speed adjustments in time, the drone could lose
stability and crash. Similarly, in civilian vehicles, the airbag system must activate
immediately after sensor detection; any delay could lead to fatal outcomes.
Real-Time systems are further divided into hard real-time systems and soft real-
time systems. Hard real-time systems, as illustrated by the above examples, require
that deadlines be met without exception. Soft real-time systems, on the other hand,
tolerate occasional missed deadlines, which might manifest as minor issues such as
dropped frames in multimedia applications, rather than catastrophic failures.

In contrast, general-purpose systems can afford to miss deadlines without significant
consequences, with any resulting delays causing only minor inconveniences for the
end-user.

Hard Real-Time
Systems
Systems where

deadlines must be met
without exception

Systems where missed
deadlines cause minor
inconveniences

Soft Real-Time
Systems

Systems that tolerate
occasional missed deadlines

Figure 3.1: Real-Time hierarchy

3.3 Operating Systems

Before delving into real-time operating systems, it is necessary to first provide a
general characterization of what an operating system is. Operating systems can be
defined from multiple perspectives. One common view is as a resource arbiter, a
core software program with the highest privileges that manages access to shared
resources and multiplexes them among various computing entities. Alternatively,
operating systems can be seen as hardware abstraction layers that mediate access

13

Real-Time Operating Systems

to the physical hardware on behalf of applications, ensuring fair resource allocation
and secure interaction with the underlying system components.

Operating systems provide essential services to applications. At their core, they
offer a common foundation that includes managing computing entities, typically in
the form of tasks, processes, and threads, which are schedulable units of execution
allocated CPU (Central Processing Unit) time. In addition, operating systems
provide crucial services such as:

« Memory Management: Efficient allocation and deallocation of memory
resources, ensuring that processes have access to the memory they need while
preventing conflicts.

e Timing Services: Mechanisms for timekeeping, clock management, and
scheduling, which allow the system to schedule tasks and enforce timing
constraints.

o Process Synchronization: Tools and primitives (like semaphores, mutexes,
and monitors) that facilitate the coordination and safe data sharing among con-
current processes or threads, thereby preventing race conditions and ensuring
data integrity.

e Inter-Process Communication: Mechanisms for processes and threads to
exchange data and signals, which can include message queues, pipes, shared
memory, and sockets.

These services collectively create an environment where applications can run reliably
and efficiently while abstracting the complexity of the underlying hardware.

3.4 General Purpose Operating Systems

General-Purpose operating systems are the ones most people use and interact with
on a daily basis. Common examples include Windows, macOS, Linux, and various
BSD (Berkeley Software Distribution) variants such as FreeBSD, OpenBSD, and
NetBSD. In the mobile arena, popular operating systems include Android, built on
a customized Linux kernel with a unique user space distinct from GNU, and iOS,
which is essentially the mobile incarnation of Apple’s macOS.

As the term "general-purpose" suggests, these operating systems are designed with
versatility in mind; they are built to accommodate a wide array of applications
and use cases rather than excelling at a single specialized task. This broad
functionality means that while they may not be optimized for any particular
function, they provide sufficient performance and flexibility to run diverse software,
from productivity suites and multimedia applications, to complex networking and

14

Real-Time Operating Systems

Inter-Process
Communication

Enables data exchange
between processes

Process

Resource

) ! Abstraction
Provides mechanisms

for timekeeping and
scheduling

Mediates access to
physical hardware

Synchronization e
y Management
Facilitates coordination
among concurrent Manages access to
processes / shared resources
®
N
()
F@1
o Hardware

Memory Management
Allocates and deallocates

memory resources

Figure 3.2: Operating system essential services

gaming software.

Additionally, general-purpose operating systems often offer extensive support for
hardware, a rich ecosystem of development tools, user-friendly interfaces, and
robust security features. This combination of traits makes them highly adaptable
to various environments, ensuring that users and developers have the tools needed
to meet everyday computing demands across personal, professional, and mobile
contexts.

3.5 Real-Time Operating Systems

Real-Time operating systems [8] are specialized operating systems designed to exe-
cute tasks under strict timing constraints. In these systems, fulfilling predetermined
deadlines is as critical as ensuring the correctness of the computations. Failure
to meet a deadline in an RTOS can lead to system malfunctions or catastrophic
outcomes, depending on the application.

15

Real-Time Operating Systems

RTOS are engineered for environments where the timeliness of task execution
directly impacts safety, performance, or functionality. For instance, in aerospace,
automotive, military, and medical applications, any delay in responding to sensor
inputs or system events can compromise the mission or jeopardize lives. Unlike
general-purpose operating systems that prioritize a broad set of functionalities,
RTOS are optimized for deterministic behavior. This means that they guarantee
that specific tasks will complete within predefined temporal windows, regardless of
system load or complexity.

Key features of RTOS include:

e Deterministic Scheduling: RTOS employ advanced scheduling algorithms
that ensure tasks are executed in a predictable and timely manner. This
may involve fixed-priority scheduling, rate-monotonic scheduling, or earliest-
deadline-first scheduling, among others.

e Minimal Latency: They are carefully designed to minimize interrupt and
context switch latencies, ensuring swift responses to external events and
encouraging quick task transitions.

e Resource Management: While providing comprehensive support for hard-
ware resources, RTOS often use streamlined memory management and IPC
(Inter Process Communication) mechanisms to avoid unpredictable delays
caused by resource contention.

o Reliability and robustness: Given their use in mission-critical applications,
RTOS are built with high reliability and robustness in mind. They often
feature fault-tolerance, real-time monitoring, and error-handling mechanisms
to maintain system integrity under challenging operational conditions.

In summary, RTOS serve not only as the backbone for time-sensitive tasks but also
as enablers of systems where adherence to strict deadlines is paramount. Their
design prioritizes both timely execution and accuracy, ensuring that real-time
applications perform as expected within the rigorous constraints of their operating
environments.

3.6 Heterogeneous OS Design: When General-
Purpose and Real-Time Systems Coexist

After exploring the core definition of operating systems and distinguishing between

general-purpose and real-time operating systems, it becomes evident that modern

computing has evolved into a more complex landscape. Today’s environments
often incorporate multiple operating systems working in tandem to meet diverse

16

Real-Time Operating Systems

Maintains system
integrity under

challenging e e e
conditions Determ||_1|st|c
Scheduling
Ensures tasks are
° executed predictably
and on time

Minimal
Latency
Streamlines ; Reduces delays in

resource allocation responding to events
to avoid delays

Figure 3.3: RTOS Characteristics

requirements.

For example, in the mobile arena, smartphones are not limited to a single operating
system. While the primary user interface is typically managed by a general-purpose
OS (such as Android or iOS), many smartphones also run additional specialized
operating systems concurrently. A dedicated processor (Baseband processor) in
these devices manages telephony services, including SIM (Subscriber Identity
Module) card access and cellular network connectivity (spanning technologies like
4G, LTE (Long Term Evolution), and 5G), by running either a specialized RTOS
or equivalent ASIC (Application Specific Integrated Circuit) firmware. Similarly,
multimedia functionalities in both smartphones and general-purpose computers are
often handled by DSP (Digital Signal Processor) that operate under an RTOS or
firmware to ensure real-time processing of audio and video data.

In contemporary designs, specialized tasks are increasingly offloaded to dedicated
processors. These processors, running either an RTOS or specifically tailored
firmware, interact with the primary operating system to optimize performance,
enhance responsiveness, and ensure that critical functions meet strict timing
constraints. This segregation allows the main operating system to focus on a broad
range of applications and user interactions, while specialized subsystems deliver
deterministic performance for mission-critical or time-sensitive tasks.

This multi-OS approach reflects the growing sophistication of modern hardware
architectures and the need for robust, efficient, and responsive systems in an
increasingly connected and dynamic technological landscape.

17

Real-Time Operating Systems

3.7 Achieving Real-Time

Real-time performance depends not only on scheduling algorithms and system
architecture but also on the mechanism used to interact with hardware. In essence,
real time is achieved by how quickly the system can detect and handle events. There
are two primary approaches: the poll-driven approach and the interrupt-driven
approach.

3.7.1 Poll-Driven Approach

In a poll-driven system, the firmware or driver continuously checks hardware
registers or flags to detect events. This method is especially common in application
firmware where the operating environment is predictable. Key points include:

Initiate Polling

7~ N

Return to

) Detect Event
Polling

Process Event

Figure 3.4: Polling cycle in firmware

o The driver continuously polls or "watches" for changes in hardware status.
o Events are detected during the polling cycle, which can introduce some latency.

o Polling works well when all events are known ahead of time and deadlines can
be computed easily.

This approach is simple to implement and is often used in dedicated device routines
where the timing requirements are predictable. However, as system complexity
increases or when very tight deadlines are required, the continual overhead of
polling can become a bottleneck.

18

Real-Time Operating Systems

3.7.2 The Interrupt-Driven Approach

Interrupts provide an alternative mechanism by allowing hardware to signal the
CPU as soon as an event occurs. Rather than continuously monitoring hardware,
the CPU can focus on other tasks until an interrupt notifies it of a required action.
Consider the following:

Hardware
Event

Resume Tasks \ Interrupt Signal

Execute ISR CPU Response
Figure 3.5: Interrupt cycle

o Immediate Response: Hardware generates an interrupt, causing the pro-
cessor to stop its current work and run a dedicated ISR (Interrupt Service
Routine), thereby minimizing latency.

e Regaining Control: Interrupts enable the operating system to interrupt
running application code, ensuring that high-priority tasks get immediate
attention.

o Efficient CPU Utilization: Since there is no need for constant polling, the
CPU can execute other tasks until an event requires immediate response.

While interrupts aren’t strictly required for scheduling (as cooperative scheduling
lets tasks voluntarily yield the CPU), they are vital for preemptive schedulers and
kernels. In a preemptive kernel, higher-priority interrupts can preempt tasks, even
during system calls or critical kernel code, enabling multiple execution contexts
within the kernel and significantly enhancing system responsiveness and multitask-
ing capabilities. Although this approach increases the burden on system developers,
it offers greater flexibility in implementing a responsive real-time operating system
with a better chance of meeting its deadlines.

19

Real-Time Operating Systems

3.7.3 The Need for Interrupts in Complex Embedded Ap-
plications

As embedded applications scale up in complexity and the number of asynchronous
events increases, the poll-driven approach becomes insufficient. Only an interrupt-
driven design can efficiently manage high loads and an high multitude of asyn-
chronous events. This approach forms the backbone of modern RTOS, which rely
on sophisticated interrupt handling techniques such as:

e Deterministic Interrupt Latency: Keeping delays between an event and
its corresponding ISR execution consistent.

o Efficient Context Switching: Minimizing the overhead involved when
switching between tasks and interrupts.

o Priority-Based Scheduling: Ensuring that high-priority tasks interrupt
lower-priority ones to maintain system responsiveness.

In complex systems, the interrupt-driven approach not only provides the necessary
real-time response but also enables robust multitasking and dynamic resource
allocation, which are essential for modern RTOS environments.

To summarize, while poll-driven systems are suited for application firmware with
predictable event timing, interrupt-driven designs become fundamental as system
complexity grows. Interrupts allow the operating system to regain control from
running processes, perform task switching, and ensure that the system meets
its real-time requirements. Although cooperative scheduling exists and can be
effective in simpler systems, interrupts, by enabling preemptive scheduling and
even preemption within the kernel, are the only viable option for handling many
asynchronous events. This approach is central to the development of real-time
operating systems.

3.8 Conclusion

This chapter presented an overview of operating systems, emphasizing the charac-
teristics that set real-time systems apart from general-purpose ones. In the next
chapter, we turn our attention to FreeRTOS, detailing its key features to establish
a basis for later fault injection experiments. These experiments will help identify
FreeRTOS vulnerabilities, which, in turn, drive the development and evaluation of
a selective hardening strategy later in the thesis.

20

Chapter 4

FreeRTOS

4.1 Introduction

In the previous chapter, operating systems were defined, real-time operating sys-
tems were characterized, and their distinctions from general-purpose systems were
highlighted. This chapter focuses on a specific RTOS implementation: FreeRTOS
[9, 10]. An overview of FreeRTOS, including its key properties and advantages, is
presented.

4.2 FreeRTOS

FreeRTOS is an open-source, MISRA (Motor Industry Software Reliability Associ-
ation) compliant RTOS implemented in C and maintained by Real Time Engineers
Ltd. Designed for both micro-controller and microprocessor based embedded
platforms, it offers a lightweight, deterministic scheduler plus inter-task communica-
tion primitives (queues, semaphores, mutexes) and essential resource management
(memory allocation, timers, interrupt handling). Its modular design can meet hard
or soft real-time requirements while keeping the code footprint small enough for
deeply embedded applications.

4.3 FreeRTOS Strengths

Using FreeRTOS as the RTOS of choice offers several notable advantages, including:

« Open-Source and Professionally Supported: FreeRTOS enjoys remark-
able global success due to its compelling value proposition. It is developed by
professional teams and undergoes rigorous quality control, ensuring robustness
and reliable support. Its open-source nature permits unrestricted commercial

21

FreeRTOS

use without licensing fees or mandatory disclosure of proprietary source code,
a significant benefit for companies bringing products to market. Additionally,
for organizations requiring enhanced legal assurances, written guarantees, or
indemnification, an affordable commercial upgrade path is available. This
option provides further peace of mind and the flexibility to adopt a commercial
support arrangement as needed.

Reliability: FreeRTOS is celebrated for its stability and dependable perfor-
mance. It has been extensively implemented in real-time critical applications,
ranging from medical devices and automotive systems to industrial control
solutions. Its carefully engineered, lightweight architecture facilitates the
consistent execution of real-time tasks without compromising overall system
performance.

Modularity: FreeRTOS is built with a highly modular structure, just five
source files (plus headers) are needed for a basic application. This lightweight
design lets developers include only the components they require. Over time,
a wide variety of software components and libraries have been successfully
ported to FreeRTOS, highlighting its versatility and ease of integration.

Hardware support: Thanks to its clean, modular architecture, FreeRTOS
is highly portable across a wide range of embedded processors. It has been
deployed on simple 8-bit micro-controllers (for example AVR (Advanced Virtual
RISC) and PIC families), 16-bit devices (such as MSP430), and an extensive
array of 32-bit cores, including ARM (Avanced Risc Machines) Cortex-M,
RISC-V, Tensilica Xtensa, and Renesas RX. On more advanced platforms,
FreeRTOS can leverage hardware features like MPU (Memory Protection Unit)
to enforce secure separation between kernel and application code or between
high and low-privilege tasks.

Code size: The core of a FreeRTOS-based embedded application requires
only five source files, demonstrating its extremely compact code footprint.
This minimalistic design makes FreeRTOS particularly well-suited for resource-
constrained environments where more feature-rich RTOS options might be
too demanding.

Developer Community: As an open-source project, FreeRTOS has fostered
a vibrant and active community over the years. Developers and users alike
contribute to its improvement through discussion forums, detailed documen-
tation, and a wealth of examples. This collaborative atmosphere not only
facilitates prompt support and insightful answers to technical questions but
also helps developers get started swiftly and resolve issues efficiently during
development.

22

FreeRTOS

4.4 FreeRTOS Features

As briefly outlined above, FreeRTOS can be viewed both as a real-time kernel or,
more simply, as a library providing scheduling facilities for embedded applications.

4.4.1 Task Scheduling

In FreeRTOS, execution units are called tasks and more closely resemble processes
in other operating systems rather than threads, since each task provides its own
execution context and cannot contain multiple threads of execution. Although
some ports offer an MPU for memory segregation, the default FreeRTOS model
places both all tasks and the kernel itself into a single, shared address space.
Two fundamental scheduling schemes are provided: (see Figure 4.1)

o Cooperative Scheduling: Tasks voluntarily relinquish control of the CPU
by calling taskYIELD() or by blocking on synchronization primitives. The
scheduler only performs a context switch when the running task explicitly
yields or enters a blocked state.

o Preemptive Scheduling: At any instant, the highest-priority task in the
Ready state is selected for execution. A context switch occurs immediately
when a task of higher priority becomes ready (for example, due to an interrupt
unblocking it), or when the current task blocks or yields.

NVIC priarty PREEMPTIVE

b

Tasks prigrities:
ldie o

- |ABCA

[a] 2

-]
=
[

]
3
=

Tasks priorities:
Idle 0
ABC 1

SysTick

Tasks

fime

A= RUN : A= READY i -~ BLOCKED B-= BLOCKELD
B.C = READY B -s LN Zon BB Lo R
&= READY A= READY A= READY

Figure 4.1: Scheduling types in FreeRTOS

23

FreeRTOS

4.4.2 Timing Services

FreeRTOS relies on a hardware timer, commonly referred to as the system tick,
to provide its fundamental timing services. When the scheduler is launched via a
call to vTaskStartScheduler (), the port layer configures this timer to generate
periodic interrupts. Each tick interrupt increments the RTOS tick counter, which
underpins task delays, timeouts, and the internal software timer mechanism.

4.4.3 Memory Management

FreeRTOS provides flexible memory management through both dynamic and static
allocation schemes. Its built-in heap allocator supports configurable strategies,
such as First Fit, Best Fit, and Worst Fit, to help control fragmentation. The
desired allocation policy is selected at compile time by including the corresponding
heap implementation file.

In addition, many FreeRTOS services offer two variants of their API (Application
Programming Interface) calls, one that uses dynamic allocation and one that works
with statically allocated memory buffers. This dual-API design makes it possible
to build fully deterministic, mission-critical systems in which dynamic memory
allocation is prohibited. By relying exclusively on static buffers and compile-time
configuration, developers can avoid the unpredictability and potential fragmentation
associated with heap usage, ensuring the system’s timing and behavior remain fully
predictable.

4.4.4 IPC Services

FreeRTOS provides several inter-task communication and synchronization primi-
tives, enabling tasks and interrupt service routines to exchange data and coordinate
execution:

e Queues: Typed, thread-safe FIFO structures for passing fixed-size data items
between tasks or between ISR and tasks. Queues handle mutual exclusion
internally, can block callers when full or empty with a user-specified maximum
wait time to avoid unpredictability, and include API variants that are safe to
call from interrupt (ISR) context.

o Stream and Message Buffers: Byte-oriented, FIFO buffers that allow
variable-length messages to be sent and received. Stream buffers are optimized
for a single sender /receiver pair, while message buffers support multiple readers
and writers.

e Semaphores: Counting and binary semaphores for signaling and resource
counting. Counting semaphores maintain a count of available resources; binary

24

FreeRTOS

semaphores act as simple event flags. Both can be used for task-to-task or
ISR-to-task notifications.

o Mutexes: Priority-inheritance mutexes that protect shared resources while
avoiding priority inversion. Mutexes can be recursively taken by the owning
task and support priority inheritance. If a higher-priority task attempts to
take a mutex already owned by a lower-priority task, the owner temporarily
inherits the higher priority until it releases the mutex.

o Event Groups: Bit-masked event flags that allow tasks to wait for combina-
tions of events to be set or cleared. Event groups support waiting for any or
all bits, making them suitable for complex synchronization patterns.

« Task Notifications: Lightweight, per-task 32-bit values that can be used
instead of semaphores or queues for fast, low-overhead signaling. Notifications
support direct-to-task data passing, counting, and bit-based event flags.

Beyond these core services, FreeRTOS includes a number of other optional capabil-

ities.

4.5 Scheduling in FreeRTOS

4.5.1 Task Control Block

In FreeRTOS, each task is represented by a Task Control Block TCB, defined
in tasks.c as the tskTCB structure. This structure aggregates all kernel state

required for task management, context switching, and debugging. A canonical
layout of the TCB follows:

Listing 4.1: FreeRTOS struct tskTaskControlBlock description

typedef struct tskTaskControlBlock
{
volatile StackType t % pxTopOfStack;
#if (portUSING_MPU_WRAPPERS =— 1)
xMPU_SETTINGS xMPUSettings;

#endif

Listltem 't xStateListItem ;

ListItem_t xEventListItem

UBaseType_t uxPriority;

StackType_t xpxStack ;

char pcTaskName | configMAX_ TASK NAME_LEN |;

#if ((portSTACK_GROWTH > 0) || (
configRECORD_STACK_HIGH ADDRESS — 1))
StackType_t *pxEndOfStack;

#endif

25

I I T e T e
N o= O © W N O W

NN N NN
ST N X 5

-~

o NN
© 0

FreeRTOS

#if (portCRITICAL_NESTING_IN_TCB = 1)

UBaseType_t uxCriticalNesting ;
#endif
#if (configUSE_TRACE_FACILITY =— 1)
UBaseType_t uxTCBNumber ;
UBaseType_t uxTaskNumber ;
#endif
#if (configUSE_MUTEXES =— 1)
UBaseType_ t uxBasePriority;
UBaseType_t uxMutexesHeld ;
#endif

#if (configUSE_APPLICATION_TASK_ TAG = 1)
TaskHookFunction_t pxTaskTag;

#endif

#if (configNUM_THREAD LOCAL STORAGE POINTERS > 0)
void = pvThreadLocalStoragePointers |

configNUM_THREAD_LOCAL_STORAGE_POINTERS |;

#endif

#if (configGENERATE RUN_TIME STATS = 1)
configRUN_TIME_COUNTER, TYPE ulRunTimeCounter;

#endif

#if (configUSE_NEWLIB_REENTRANT — 1)
struct _ reent xNewLib_ reent;

#endif

#if (configUSE_TASK_ NOTIFICATIONS =— 1)
volatile uint32_t ulNotifiedValue|
configTASK_NOTIFICATION_ARRAY_ENTRIES |;
volatile uint8_t wucNotifyState|
configTASK_NOTIFICATION_ARRAY_ENTRIES |;

#endif

#if (tskSTATIC_AND_ DYNAMIC ALLOCATION_POSSIBLE != 0)
uint8 t ucStaticallyAllocated ;

#endif

#if (INCLUDE_xTaskAbortDelay =— 1)
uint8 't ucDelayAborted;

#endif

#if (configUSE_POSIX_ERRNO =— 1)
int iTaskErrno;

#endif

} tskTCB;

The principal members of tskTCB are:

pxTopOfStack Pointer to the current top of the task’s stack. On a context switch,

CPU registers are saved here. This must be the first member.

xMPUSettings (optional) MPU configuration, if memory-protection wrappers

are enabled.

26

FreeRTOS

xStateListItem List node linking the TCB into a state list (Ready, Blocked,
Suspended).

xEventListItem List node used when the task is blocked on an event (queue,
semaphore, timer).

uxPriority Current (possibly inherited) task priority; lower numerical value cor-
responds to lower priority.

pxStack Base address of the task’s stack memory, for overflow checking and
deallocation.

pcTaskName Null-terminated name string, used for debugging and trace output.
pxEndOfStack Highest valid stack address, when stack reporting is enabled.

uxCriticalNesting Depth of nested critical sections, for ports that track this in
the TCB.

uxTCBNumber, uxTaskNumber Unique identifiers for tracing and debugger
awareness.

uxBasePriority, uxMutexesHeld Priority-inheritance bookkeeping
for mutexes.

pxTaskTag (optional) User-defined tag for application-specific task hooks.

pvThreadLocalStoragePointers (optional) Array of pointers reserved for
thread-local storage.

ulRunTimeCounter (optional) Accumulated run time, for profiling if enabled.

xNewLib_reent (optional) Newlib reentrancy structure, if Newlib C library support
is requested.

ulNotified Value, ucNotifyState (optional) Arrays holding values and states for
task notifications.

ucStatically Allocated Indicates whether the task was created using static allo-
cation.

ucDelayAborted Flag set when a blocking delay is prematurely
aborted.

iTaskErrno (optional) Per-task errno for POSIX-style error reporting.
27

FreeRTOS

Together, these fields encapsulate the complete execution context, scheduling
metadata, and optional tracing or protection settings for each FreeRTOS task.
During a context switch, the port layer saves the CPU state to the task’s stack and
updates pxTopOfStack; it then loads the new task’s stack pointer from its TCB to
resume execution.

4.5.2 Task States

Task States

Suspended
vTaskSuspend()

vTaskSuspend() vTaskResume()

y

~
Task
Creation ——bady <
E—

vTaskSuspend()

Running

Blocking API

Blocked function called

Figure 4.2: State transitions of FreeRTOS tasks

FreeRTOS tasks exist in one of four primary states. Figure 4.1 illustrates these
states and the events or API calls that trigger transitions between them.

o Ready A task is Ready when it can run but is not currently executing. All
Ready tasks are kept in priority-ordered queues.

e Running The Running state is occupied by exactly one task at any time: the
highest-priority task in the Ready state that the scheduler has dispatched.

» Blocked (or Waiting) A task moves to Blocked when it invokes a blocking
operation, such as vTaskDelay (), xQueueReceive(), or xSemaphoreTake (),
or waits on a timeout or event. Blocked tasks consume no CPU time until the
blocking condition clears.

o Suspended A task is Suspended when the application calls vTaskSuspend().
Suspended tasks remain in memory but are excluded from scheduling until
explicitly resumed with vTaskResume () or xTaskResumeFromISR().

28

FreeRTOS

« Deleted When a task is deleted (vTaskDelete()), it moves to the Deleted
state. Its resources are reclaimed either immediately (if called from the task
itself) or when the idle task runs cleanup code. As this is a special state it is
not shown in the above figure.

State transitions:

e Ready — Running: the scheduler dispatches the highest-priority Ready task
(on startup, after a context switch, or when a higher-priority task becomes
Ready).

e Running — Ready: the current task yields (taskYIELD()), its time slice
expires (if round-robin is enabled), or a higher-priority task becomes Ready.

o Running — Blocked: the task calls a blocking APT or delays itself by calling
vTaskDelay ().

o Blocked — Ready: the blocking condition clears (timeout elapses, notification
arrives, or queue/semaphore is signaled).

« Ready — Suspended: the application calls vTaskSuspend ().

e Suspended — Ready: the application calls vTaskResume() or by calling
xTaskResumeFromISR().

Understanding these four states and their transitions is essential for designing
predictable real-time behavior under both preemptive and cooperative scheduling
modes.

4.6 FreeRTOS Source Components

A standard default configuration comprises the following eleven source files, each
addressing a specific functional domain:

port.c Implements the hardware-abstraction layer required by the scheduler. It
contains CPU and compiler-specific routines for context switching, scheduler
initialization and shutdown, and any necessary inline assembly.

heap__n.c Offers one of five selectable heap-management schemes (heap_ 1 through
heap_5). Each variant encapsulates a different strategy for dynamic memory
allocation.

FreeRTOSConfig.h Serves as the primary configuration header. All compile-
time parameters, such as task priorities, tick rate definitions, enabled kernel

29

FreeRTOS

features, and hook function overrides, are specified within this file. Additional
headers that introduce custom hooks or extend the kernel’s capabilities must
be included at its end.

FreeRTOS.h Acts as a facade, exposing or concealing kernel API in accordance
with the definitions provided in FreeRTOSConfig.h. It also declares opaque
"dummy" structures that mask the kernel’s internal data types, thereby pre-
venting inadvertent access from application code. For example, the TCB (Task
Control Block) type is defined privately in tasks.c and is never exposed in
a public header. Instead, a dummy TCB structure is declared elsewhere so
application code can only hold pointers to it (which are called Task Handles)
without ever seeing its contents. This design enforces that all interactions
with the TCB must go through the official FreeRTOS API rather than by
direct field access, aligning with encapsulation principles and proper software
engineering practices.

task.h / tasks.c Constitute the core task-management subsystem. These files
implement task creation, deletion, scheduling, and context-switch policy (the
mechanism is implemented by the portable layer), forming the central schedul-
ing engine of the RTOS.

queue.h / queue.c Define the queue abstraction and its associated enqueue/de-
queue operations. Semaphores and mutexes are implemented as specialized
instances of this queue mechanism, allowing for efficient reuse of the underlying
code.

semphr.h Provides a set of macros that map semaphore and mutex API onto the
queue primitives. These macros configure the queue functions with predefined
parameters to realize mutual-exclusion and signaling constructs.

list.h / list.c Deliver a generic doubly linked-list implementation. This module
underpins various RTOS data structures, such as ready lists, timer lists, and
delay lists, by offering insertion, removal, and traversal operations.

4.7 Conclusion

This chapter has provided an overview of FreeRTOS, emphasizing its key advantages
and core functionalities, including the details of its scheduling mechanism. These
concepts form the basis for the software fault-injection framework developed in this

thesis, which leverages the POSIX-based FreeRTOS port. Additional FreeRTOS
features used and supporting source files will be discussed in the relevant chapter.

30

Chapter 5

Fault Injection

5.1 Introduction

In the preceding chapters, a clear progression was established: from defining single
event effects and their impact on the reliability of electronic systems, particularly
embedded devices running an RTOS, to an overview of real-time operating systems
and a detailed introduction to the specific RTOS under study, FreeRTOS. The
introductory chapter also highlighted the need for fault-injection testing as a
foundation for effective SEE mitigation strategies. This chapter now turns to
the fundamentals of fault injection, preparing the way for the presentation of the
FreeRTOS based software fault injection simulator developed for this research.

5.2 Dependability

As noted in the introductory chapter, dependability [11] [12] refers to a system’s
ability to carry out its intended function correctly and reliably whenever it is
called upon. In other words, a dependable system is one you can trust to respond
appropriately under all anticipated conditions, be they routine or exceptional.
Dependability is made of attributes, threats and means.

5.2.1 Attributes

Attributes are the desirable qualities that together characterize a dependable
system.

Core Attributes

o Availability: The system is ready for correct service when requested.

31

Fault Injection

Security "\\ /". Availability

N\
N
4
4

N

’ Reliability

’

Figure 5.1: Attributes of dependability

» Reliability: The system performs its intended function without failure over
a specified period.

o Safety: The system operates without causing unacceptable risk of harm to
people or the environment.

o Integrity: The system prevents unauthorized or unintentional alteration of
data or functionality.

e Maintainability: The system can be repaired, modified, or enhanced effi-
ciently after a failure or as requirements evolve.

Additional Attributes

These supplementary attributes have emerged alongside our rapidly evolving tech-
nological landscape. For example, the rise of computer networks, most notably the
Internet, has brought new concerns such as security to the forefront.

o Security: Security is the attribute that ensures a system’s assets, data, ser-
vices, and resources, are protected against unauthorized access, use, disclosure,
disruption, modification, or destruction. A secure system provides:

— Confidentiality: only authorized parties can read or view sensitive
information.

— Integrity: data and operations cannot be altered by unauthorized actors,
either accidentally or maliciously.

— Availability: security controls themselves do not unduly prevent legiti-
mate users from accessing system functions when needed.

32

Fault Injection

— Authentication and Authorization: Users and components are reli-
ably identified, and their permitted actions are strictly enforced.

— Accountability (Auditability): Security-relevant events are logged so
that actions can be traced back to responsible entities.

Together, these facets ensure that the system resists attacks, detects breaches,
and recovers gracefully, preserving trust in its correct and intended operation.

5.2.2 Threats

Threats are the causes that can impair or violate one or more of the dependability
attributes. They can be classified as:

o Fault: An underlying defect or flaw, physical or logical, within a system
that can disrupt correct operation when activated. Examples include a manu-
facturing defect in hardware or the observable effect of an SEE, such as an
SEU-induced bit-flip in device memory.

o Error: An error is an incorrect decision or action, typically by a human
or automated process, that leads to the introduction of a fault into the
system. Errors may occur at any phase of the life-cycle of a system (design,
implementation, testing, deployment, or maintenance) and include:

— Flawed design choices or architectural omissions,
— Programming bugs or logic mistakes,

— Incomplete or missing requirements,

— Invalid data entry or configuration by an operator.

For instance, a developer’s typo in source code or an administrator’s miscon-
figured parameter both constitute errors that can give rise to faults.

o Failure: A failure is the externally observable incorrect behavior resulting
from an activated fault. For instance, an SEU-induced bit-flip in an RTOS
pointer variable may lead to a system crash, this crash is the failure. Not
all faults cause failures: if a fault occurs in a component that does not affect
user-visible outputs or system functionality, it remains latent and does not
manifest as a failure.

33

Fault Injection

Observable
Consequence

Failure

Activated fault causes incorrect behavior
I\ Fault
A Latent defect disrupts correct operation

Human action introduces system fault

Root Cause

Figure 5.2: Threats of dependability

5.2.3 Means

A system’s dependability can be enhanced through techniques that either miti-
gate the impact of faults or, ideally, render the application entirely immune to
them. These methods fall into four main categories: fault prevention, fault
forecasting, fault tolerance, and fault removal.

Fault Prevention

Fault prevention encompasses techniques that reduce the likelihood of faults oc-
curring. For instance, as discussed in Chapter 2, mission-critical hardware often
uses a hardened fabrication process that adds an insulating layer to prevent single
event gate ruptures (SEGR) in CMOS based electronics. Commercial off-the-shelf
(COTS) devices typically omit such measures because their dependability require-
ments are lower and cost pressures higher. In contrast, systems with stringent
reliability needs, medical equipment, military hardware, and electronics for space or
low-Earth orbit, rely on these more expensive, hardened manufacturing processes
to ensure continuous, fault-free operation.

34

Fault Injection

Fault Forecasting

Fault forecasting aims to anticipate where and how faults might affect a system.
This involves a thorough analysis of the design and implementation, often em-
ploying techniques such as fault-injection testing, to uncover weaknesses before
they manifest. In this study, fault forecasting is used to pinpoint the system’s
most vulnerable components and guide targeted hardening efforts in those high-risk
areas.

Fault Tolerance

Fault tolerance is a technique that aims at equipping a system with the capacity to
continue doing its work even in the adverse cases of faults happening. As mentioned
in fault forecasting in this work a fault forecasting technique such as fault injection
is used to identify weak areas of the system and then a targeted hardening approach
enables the system to keep going even in the presence of faults.

Fault-tolerance techniques fall into two broad categories: hardware-based and
software-based.

Hardware-Based Techniques

o Advanced fabrication processes and component selection
e Redundancy at the hardware level, which can be implemented as:

— Gate-level redundancy (duplicate or triplicate critical logic gates)

— Module or system-level redundancy (extra processors, power supplies, or
I/O paths)

Software-Based Techniques

 Data redundancy (variable duplication or triplication)
 Error-correcting codes (ECC) in memory and storage

 Check-pointing and rollback recovery (periodic state snapshots with the ability
to revert after a fault)

By combining both hardware and software approaches, systems can detect, mask,
or recover from faults with minimal interruption to service.

35

Fault Injection

Fault Removal

Fault removal encompasses techniques for detecting and eliminating defects as early
as possible, ideally before deployment or at the onset of operation. By catching
faults during development and testing, their cost and impact are minimized.

Key practices include:

« Static analysis and code inspection

— Automated linters, type checkers, and static analyzers

— Manual peer reviews of requirements, design documents, and source code
e Dynamic testing

— Unit tests, integration tests, system tests, and acceptance tests under
normal, boundary, and stress conditions

— Test harnesses, simulators, and emulators to exercise corner cases
o Formal verification

— Model checking or theorem proving for safety-critical components

— Proofs of algorithmic correctness and adherence to specifications
« Continuous integration and deployment (CI/CD)

— Automated build pipelines with regression testing

— Early feedback loops to catch and fix faults immediately

Together, these methods drive fault density down, bolstering the overall depend-
ability of the system.

5.3 Fault injection testing

Fault injection testing [3] is a standard industry practice for assessing a system’s
dependability. By deliberately injecting faults, it evaluates robustness under adverse
conditions and uncovers latent vulnerabilities. Various techniques, ranging from
physical stressors to logical and hardware, or software-based injections, can be
employed to match different testing objectives.

36

Fault Injection

Fault_ Fault o Fault Tolerance Fault Removal
.1 1 1 |

e | G
oo i i) (i

Figure 5.3: Means of dependability

5.3.1 Fault Injection Techniques

Fault injection methods fall into three broad classes, selected according to desired
fidelity, flexibility, and cost:

1. Physical Testing: reproduces real-world stressors with high fidelity

2. Hardware and Software Based Logical Testing: injects faults via added
circuitry or runtime perturbation

3. Simulation Based Injection: employs virtual platforms and cycle-accurate
models

Physical Testing

Physical testing recreates the actual environmental or radiation conditions respon-
sible for faults (e.g. single event effects). Equipment such as a linear accelerator,
vacuum chamber, or EMI generator is used to induce errors in situ. Despite its
accuracy, this approach is costly, inflexible, and generally incapable of targeting
internal registers or specific memory locations, especially on closed IP (Intellectual
Property) hardware that must first be reverse engineered.

Logical Testing

Logical fault injection may rely on either dedicated hardware circuitry or purely
software driven techniques.

37

Fault Injection

Simulation-Based

Testing
This involves using
This involves simulating physical means to
faqlts in a virtual induce faults. Linear
environment. RTL accelerator (radiation),
simulator is used for vacuum chamber and

single-event effects. EMI generator are used.

Logical Testing

This involves inducing
faults through hardware
or software
manipulation. On-chip
fault injectors, kernel
module flips and
hypervisor hooks are
used.

Figure 5.4: Types of Fault Injection Testing Techniques

Hardware Based Logical Injection In this mode, the target device incorpo-
rates an on-chip fault-injection module that can be activated during test runs. A
control interface, often implemented as a simple serial or memory-mapped protocol,
allows an external test controller to specify when and where faults are introduced.
An alternative laboratory setup employs probe fixtures or "nail" adapters that
physically drive chosen PCB (Printed Circuit Board) traces to known logic levels,
thereby emulating signal corruption or stuck-at conditions. The embedded module
approach typically incurs silicon area overhead, while probe based methods can
require expensive instrumentation and precise fixture alignment.

Software Based Logical Injection (SWIFI) Software driven injection ex-
ploits routines with privileges or low-level access kernel modules, bootloader patches,
or hypervisor hooks, that deliberately modify data structures, registers, or memory
cells at runtime. Although this approach yields genuine bit flips or control-flow
faults, the insertion and execution of the injection code itself can alter timing
characteristics, potentially masking or amplifying certain failure modes.

The following chapter describes a SWIFI based injector designed to target real
time operating system kernel objects with fine granularity, without recourse to
specialized hardware.

38

Fault Injection

Simulation Based Testing

In simulation based fault injection, error events are emulated within a virtual
model of the hardware rather than being applied to a physical device. A hardware
description (e.g., VHDL or Verilog) is exercised under a simulator that supports
the insertion of single event effects (SEE), timing glitches, or stuck-at faults at
chosen points in the design. Since the actual silicon is not required, this method
offers rapid iteration and fine-grained control over injection timing and location in
the RTL (Register Transfer Level) code.

When the focus shifts to software robustness, such as examining the impact of
random bit flips on application data, simulation alone can be limiting. Although
it remains possible to introduce faults at the RTL, pinpointing and corrupting a
specific high-level memory cell or data structure in a full-system simulator is often
impractical. Address remapping, dynamic allocation, and compiler optimizations
obscure how source-level variables map onto physical memory, preventing precise
insertion of faults into particular bytes or bits. In the context of an RTOS, this
challenge becomes especially pronounced when attempting to target individual
kernel data structures directly.

5.4 State of the Art

A concise overview of notable fault-injection frameworks follows [12, 13].

5.4.1 FIAT

Barton et al. introduced the Fault Injection and Testing framework (FIAT (Fault
Injection Based Automated Testing)) for kernel-space fault injection [14]. Three
abstract data fault models, decoupled from any physical fault source, are applied to
the task image, perturbing both user-space applications and kernel code. Although
pioneering, FIAT lacks the granularity needed to corrupt specific internal RTOS
data structures.

5.4.2 MAFALDA

Arlat et al. presented MAFALDA (Microkernel Assessment by Fault Injection
Analysis and Design Aid), a micro-kernel oriented injector [15]. Faults are inserted
at the byte level into API arguments and micro-kernel segments. This unguided
approach exposes resilience gaps but provides limited insight into how faults
propagate through core kernel objects.

39

Fault Injection

5.4.3 FIFA

Jeong et al. devised FIFA (Kernel-Level Fault Injection Framework for ARM-Based
Embedded Linux System) to reproduce real hardware errors on live boards [16].
Two mechanisms are offered:

« KGDB-based injection: halts execution via the GNU debugger to flip bits
in registers or memory.

o« Hardware breakpoint injection: uses ARM breakpoints to trigger faults
on instruction or data access.

Transient bit-flips, timing delays, and device failures can thus be emulated. Despite
its power, FIFA does not specifically target high-level kernel data structures.

5.4.4 RTOS Guardian

Silva et al. developed RTOSG (RTOS Guardian), a passive bus monitoring module
that verifies RTOS scheduling integrity [17]. Key components include:

1. Task Controller (TC)

2. Function Identifier (FI)

3. List Monitor & Error Generator (LMEG)

4. Content-Addressable Memories (CAM1 & CAM?2)

IEC 61000-4-29 experiments show superior coverage of EMI-induced faults, but
focus remains on scheduler events rather than arbitrary kernel objects.

5.4.5 Positioning of the Proposed Injector
The above frameworks expose two gaps:

 Software-only injectors (FIAT, MAFALDA) operate at task-image or API-
argument levels, lacking kernel-object granularity.

« Hardware assisted methods (FIFA, RTOSG) reach registers and memory but
depend on external hooks or probes, and seldom relate faults back to OS
internal data structures.

The approach introduced here addresses both gaps. Runtime mapping of core
RTOS structures, task control blocks, ready-queue nodes, timer lists, etc., combined
with bit-level corruptions injected via a lightweight mechanism sharing the RTOS
address space, delivers:

40

Fault Injection

1. Precise, structure-level targeting of kernel data without compiler or silicon
modifications.

2. Programmatic control over injection timing and location, enabling reproducible,
systematic campaigns.

3. Direct correlation of faults in specific RTOS internal data structures with
observable system level outcomes.

This methodology bridges coarse grained, bit-flip campaigns and heavyweight,
hardware centric tests, offering high fidelity in OS state fault modeling alongside
the flexibility of a purely software solution. The next chapter details its design and
implementation.

5.5 Conclusion

This chapter has expanded the concept of dependability by defining its core
attributes, identifying prevalent threats, and outlining established evaluation tech-
niques. Fault injection was highlighted as a versatile methodology for assessing
system resilience, followed by a concise survey of state-of-the-art approaches. The
shortcomings and focus areas revealed by that survey motivated the design of
the current software-based fault injector, which directly corrupts RTOS internal
data structures to deliver more fine-grained, realistic, and reproducible resilience
evaluations.

The next chapter presents the custom fault injector developed for this research.
Implemented as a software-based framework for FreeRTOS, it supports both tran-
sient bit-flips SEU and permanent bit-flips SEHE within kernel data structures,
enabling a controlled, systematic analysis of the operating system’s fault-tolerance
capabilities.

41

Chapter 6

FreeRTOS Fault Injector

6.1 Introduction

The preceding chapters established the necessary foundation by first examining
the threats faced by real-time operating systems in harsh conditions, most notably
ionizing radiation, and detailing the classification of resulting single-event effects
(SEE). An overview of RTOS design principles followed, with FreeRTOS identified
as the case study platform. Subsequent discussion characterized dependability and
highlighted fault-injection testing as the de facto industry technique for evaluating
system robustness.

This chapter concludes the introductory sequence by describing the FreeRTOS
Injector, a software-based fault-injection framework that introduces both tran-
sient and permanent bit-flips into FreeRTOS kernel data structures to facilitate a
systematic assessment of the operating system’s resilience.

6.2 Background, Prior Implementations, Diver-
gences

This thesis builds on an earlier framework [18] for fault-injection in FreeRTOS
that supported transient SEU and SEHE faults. That prior work identified the
kernel’s fault-sensitive regions and provided a platform for injection campaigns.
Using those insights, this project implemented a selective hardening strategy to
protect only the most critical code paths.

Despite this inheritance, the current implementation diverges substantially while
preserving the original semantics:

o The codebase was reorganized into clean submodules, and numerous memory-
management bugs were fixed.

42

FreeRTOS Fault Injector

o Permanent fault support, originally driven by a shell script, was migrated into
the CMake build system and extended to the Windows port via the PCRE2
(Perl Compatible Regular Expressions (version 2)) library [19].

o The POSIX port’s portable layer now checks every POSIX system-call return
value and incorporates simulated interrupts matching the Windows port
semantics.

e A "-dry-run' option was added to the existing "-campaign' command. It
outputs the selected fault-injection targets without executing them, enabling
reproducible campaigns and making random selections explicit.

e The -campaign command can now export campaign results to a user-specified

CSV file.

o If no -j option is supplied, ~campaign automatically spawns as many con-
current processes as there are CPU threads (queried via the underlying OS
API).

o The project now seeds rand() with srand() using a high-quality entropy
source when available (on Linux, via the getrandom() system call).

o The selective hardening mechanism itself was designed and implemented as
the core contribution of this thesis.

e On Linuz (the platform for this work), FreeRTOS port-layer threads and
tasks can, when permissions allow, be scheduled under the POSIX-defined
SCHED_ RR policy, common on many UNIX-like systems. This setup
enables simulations to execute under conditions that more closely approximate
real-time behavior. Future work could introduce Linux’s PREEMPT _RT
real-time kernel patches (merged into mainline as of version 6.12) to improve
timing determinism, and separately evaluate the Linux-exclusive
SCHED_ DEADLINE policy as an alternative for hard real-time schedul-

ing.

In addition, both the POSIX task I/O library and the FreeRTOS Injector’s 1/O
module have been designed for maximum debuggability: when the project is built
with the DEBUG option, they emit detailed, verbose output. The primary user-
facing scripts, posix.sh and windows.bat, were created from scratch to streamline
common workflows. These scripts:

e Build the project on POSIX or Windows platforms.

o Configure and launch fault-injection campaigns.

43

FreeRTOS Fault Injector

o Automatically patch the FreeRTOS source code for permanent-fault emulation.
« Execute any required dependencies.

Together, these components provide a user-friendly, script-driven interface and
enhance transparency throughout the injection process.

6.3 Project Structure

The implementation adheres to the official FreeRTOS coding conventions and
style guidelines [9], ensuring seamless integration with the existing codebase and
simplifying navigation and comprehension.

Within the base directory of a FreeRTOS project cloned from the official Git reposi-
tory, there is a single top-level folder containing the entire FreeRTOS Fault Injector.
This folder is named FreeRTOS-Injector. Its internal layout is illustrated in
Figure 6.1 which presents only the project’s top-level view. Below, a concise yet
more detailed outline of the key files will be shown.

6.3.1 Project files

o CMakeLists.txt: The CMake configuration file for the project’s build system.
It defines two build targets:

1. The FreeRTOS Injector executable.

2. An auxiliary tool that implements the permanent "stuck-at" fault model
used for the SEHE single-event effect.

The auxiliary tool injects permanent faults into the FreeRTOS source by
applying targeted patches. It scans the RTOS code with regular expressions
to locate operations on selected targets, such as accesses, increments, or
decrements, and inserts a function call at each site to override the variable’s
value with the chosen fault. A full description of this patching mechanism is
omitted here, since it has been documented in earlier work.

e posix.sh and windows.bat: A POSIX-compatible shell script and a Windows
batch script that act as the project’s primary interface. They bundle common
setup and execution steps into simple commands, enabling users to start
fault-injection campaigns immediately, no deep familiarity with the project
structure is needed. Advanced users, however, can bypass these wrappers
and interact directly with the executables and other project components as
required.

44

FreeRTOS Fault Injector

Windows.bat

Batch file for using the
FreeRTOS Injector on
Windows systems

Posix.sh Applications

FreeRTOS task code
(QSRT, TX, RX and timer
callback)

Shell script for using the
FreeRTOS Injector on
POSIX systems

Permanent CMakelists.txt

Permanent faults
implementation and
patcher

Configuration file for
building the project

Main.c CMake

Main program file Output of compilation

Injector

FreeRTOS Injector
implementation, target
extraction, commands,

etc...

Error correcting codes
implementation

Include Hooks
Header files for the whole Implementation of
project FreeRTOS hooks used in the

project

Figure 6.1: FreeRTOS Injector project structure

e main.c: The application’s entry point on both POSIX and Windows. It
initializes the corresponding FreeRTOS port, POSIX on Unix-like systems
or the Windows port, so the full FreeRTOS kernel runs as a hosted user-
space application. It then parses command-line arguments to dispatch the
appropriate injector commands. By using these hosted ports, the FreeRTOS
Injector operates entirely in software on any standard workstation, with no
specialized hardware required.

e task main.c: Located in the Applications directory, this file serves as the
entry point for the user-space portion of the simulated FreeRTOS kernel. It
sets up all FreeRTOS tasks and calls vTaskStartScheduler () to launch the
RTOS scheduler.

o Applications: This directory contains the user-space components of the
simulated FreeRTOS kernel. In addition to the task_main.c entry point, it
includes:

45

FreeRTOS Fault Injector

— An I/0 library that wraps underlying OS 1/O calls. It uses FreeRTOS
mutexes to serialize access across concurrent tasks.

— Implementations of three FreeRTOS tasks, Quicksort (QSRT), Receive
(RX), and Send (TX), registered by those names in the FreeRTOS task
API.

— A timer callback function invoked periodically by a FreeRTOS software
timer.

— A subfolder tacle_benchmarks contains the ported benchmarks from the
TACLe software suite.

e Hooks: This directory contains implementations of the FreeRT'OS hook
functions used by the injector. For example, the "Idle" task hook is invoked
each time the FreeRTOS Idle task runs. These hooks allow custom code to
execute at key points in the kernel’s operation.

e Injector This directory houses the core FreeRTOS Injector implementation
and is organized into four subdirectories:

— commands Implements the CLI commands -golden, -1ist, -run, and
—-campaign in the files command_golden.c, command_list.c,
command_run.c, and command_campaign.c, respectively. A common
subfolder contains common.c, which provides utility functions shared
across all commands.

— target Contains target.c, responsible for extracting and acquiring the
injection targets within the framework.

— tracer Contains tracer.c, the logging engine for the injector. It hooks
into FreeRTOS at key events, task switch-in/switch-out, queue send/re-
ceive success or failure, to record runtime behavior.

— os__deps Provides an OS-abstraction layer for both POSIX and Windows:
% thread.c: Wraps underlying threading primitives so the injector can
create and manage threads uniformly.

% injection.c: Supplies OS-independent routines used by the
-campaign command, for example, spawning processes, waiting for
termination and exit codes, creating and waiting on timers.

e Include: This directory holds all header files for the FreeRTOS Injector
modules. Its subfolder layout mirrors the injector’s internal structure. For
example:

include/injector/commands/common/common.h

46

FreeRTOS Fault Injector

corresponds to the source file common. ¢, enabling clean includes such as:
#include <injector/commands/common/common.h>

Of particular note are:

— injector_config.h: Modeled after FreeRTOS’s FreeRT0SConfig.h, this
header defines injector-specific configuration parameters, paths to required
files, iteration counts for QSRT/TX/RX tasks, timeouts, and more.

— injector_io.h: Defines an I/O library for the injector framework that
wraps native OS I/O calls. Unlike the 1/O library used within FreeRTOS
tasks, this layer serves the injector’s own threads, those not managed
by the FreeRTOS POSIX portable layer. Because the POSIX port uses
UNIX signals to implement task switching, its signal setup and handling
must be carefully coordinated to prevent deadlocks. A later section (see
6.4.7) will outline the POSIX portable layer’s design and explain why this
separate 1/O abstraction is necessary.

o Permanent: Contains the standalone binary sources that patch FreeRTOS
to introduce the permanent "stuck-at' fault model (as referenced in the
CMakeLists.txt). Although this thesis centers on the POSIX injector, the
permanent patcher has been ported to Windows. Because Windows standard
C library lacks POSIX’s regex.h interface, the PCRE2 library [19][20] was
integrated to provide equivalent regular expression support. Building PCRE2
is orchestrated within windows.bat and the project’s CMakeLists.txt.

o ECC: Contains a single source file, hamming. c, which implements the error-
correcting code (ECC) mechanism used for selective hardening in this work.
Further details are provided in a later chapter.

6.4 POSIX Port Layer Design

This section provides an overview of the POSIX port [1] layer design and implemen-
tation, which underlies the FreeRTOS Injector on UNIX-like systems. The POSIX
port layer enables the full FreeRTOS kernel to execute as a hosted, user-space appli-
cation and serves as the foundation for task scheduling, inter-task synchronization,
and timing on POSIX platforms.

6.4.1 Overview Of the Port Layer Architecture

The POSIX port layer implements the FreeRTOS kernel as a purely user-space
application on UNIX-like systems. At its core, each FreeRTOS task is represented

47

[SR

FreeRTOS Fault Injector

by a dedicated POSIX thread, while a separate scheduler thread manages timer
events and shutdown signals. Task scheduling and preemption are driven by a
periodic SIGALRM delivered via a POSIX timer, and context-switch coordination
relies on per-thread condition variables.

Simulated hardware interrupts are handled by an auxiliary "interrupt" thread that
invokes registered handlers. Critical-section semantics and the FreeRTOS API
for entering/exiting critical regions are realized by masking and unmasking all
signals in the calling thread. Finally, all I/O calls flow through a custom wrapper
layer to avoid conflicts between the standard C library’s internal locking and the
signal-driven scheduler.

Together, these elements form a cohesive architecture that faithfully reproduces
FreeRTOS behavior, task creation, scheduling, synchronization, timing, interrupts,
and safe critical sections, entirely within a hosted POSIX environment.

Each component is examined in detail in the subsections that follow.

6.4.2 FreeRTOS Task Mapping

Each FreeRTOS task runs as a separate POSIX thread. During task creation, the
FreeRTOS kernel invokes the port-specific initialization function:

pxPortInitializeStack()
This function stores a Thread t descriptor at the top of the task’s stack:

Listing 6.1: FreeRTOS Posix port Thread t description

typedef struct THREAD {
pthread t pthread; // POSIX thread handle
pdTASK_CODE pxCode; // FreeRTOS Task function

void xpvParams; // FreeRTOS Task function parameters

BaseType_t xDying; // Port layer termination flag

struct event xev; // Port layer syncrhonization event
} Thread_t;

The port then calls pthread_create() to spawn the thread. Next, a struct
event object is allocated and initialized:

Listing 6.2: FreeRTOS Posix port struct event description

struct event {
pthread mutex_t mutex; // Protects the event state
pthread cond_t cond; // Condition variable for signaling
bool event_triggered; // Flag indicating signal status

.
|}

Each new thread begins execution in the function:
prvWaitForStart ()
48

FreeRTOS Fault Injector

which immediately calls:
event_wait()

Internally, event_wait () blocks on the thread’s condition variable until the sched-
uler signals that the task may run.

6.4.3 Port Layer Initialization
When the FreeRTOS kernel is ready to start, it invokes

vTaskStartScheduler() % in tasks.c

Inside vTaskStartScheduler (), the architecture specific entry point
xPortStartScheduler ()

performs two main steps:

1. Setup the tick interrupt. Calls
vPortStartFirstTask()

This routine:

e Obtains the first ready task handle via xTaskGetCurrentTaskHandle().
o Extracts its Thread_t object from the top-of-stack frame.

« Signals the POSIX condition variable on which that task’s pthread is
blocked in prvWaitForStart().

o Upon receiving the signal, prvWaitForStart() resumes execution, re-
trieves the FreeRTOS task function and its parameters from the thread’s
Thread_t structure, and invokes it, thereby implementing the FreeRTOS
task’s execution.

Scheduler Initialization

Before any tasks run, the port must initialize signals and scheduling policy exactly
once. To guarantee one-time setup, pxPortInitializeStack() uses POSIX’s

pthread_once()

On the first call to pxPortInitializeStack(), which occurs when the very first
FreeRTOS task is created via the RTOS task-creation API, the following function
is invoked:

49

FreeRTOS Fault Injector

prvSetupSignalsAndSchedulerPolicy ()

which performs:

1. Block all signals. Set a mask that blocks every signal, then SIGINT is

explicitly unblocked. This ensures each new FreeRTOS task’s pthread inherits
a "block everything" policy while preserving Ctrl-C' handling for terminating
the injector or simulator and enabling SIGINT-driven breakpoints in GDB.

. Install the system tick handler. With sigaction(), associate

SIGALRM to vPortSystemTickHandler().

. Spawn the simulated interrupt thread. Create a pthread to emulate

peripheral interrupts for simulating device interrupts.

. Prepare the scheduler thread. The thread that invoked

xPortStartScheduler () blocks all signals except SIGUSR1 and waits in
sigwait (). When SIGUSRI1 arrives, sent by a call to

xPortEndScheduler() Y% wvia vTaskEndScheduler()

the scheduler cleanly shuts down and returns control to the code that originally
called vTaskStartScheduler (). In this POSIX-simulated environment, this
return path is essential, tools such as the FreeRTOS Injector rely on it to
capture and analyze a complete FreeRTOS run. In contrast, on real embedded
hardware the FreeRTOS scheduler typically runs indefinitely, terminating only
in response to catastrophic faults or a full system reset.

6.4.4 FreeRTOS Task Switching
The core of task switching in the POSIX port is the SIGALRM handler:

Listing 6.3: FreeRTOS Posix port system tick handler

static void vPortSystemTickHandler(int sig)

{

Thread_t xtoSuspend, *toResume;
UBaseType_t switchRequired;

/* Enter critical section =/
uxCriticalNesting++;
switchRequired = xTaskIncrementTick () ;

#if (configUSE_PREEMPTION = 1)
it (switchRequired)

{
50

FreeRTOS Fault Injector

13 /% Identify current and next tasks =/
14 toSuspend = prvGetThreadFromTask (xTaskGetCurrentTaskHandle())

15 vTaskSwitchContext () ;

16 toResume = prvGetThreadFromTask (xTaskGetCurrentTaskHandle());
17

18 /* Perform the context switch x/

19 prvSwitchThread (toResume, toSuspend);

20 }

2 #endif

O N

N
=

/* Exit critical section =/
uxCriticalNesting ——;

25}

Workflow:
1. Block signals and enter critical section by incrementing uxCriticalNesting.

2. Tick the kernel with xTaskIncrementTick (), which returns whether a context
switch is required.

3. If preemption is enabled and a switch is required:

(a) Look up the current task’s Thread_t.
(b) Call vTaskSwitchContext () to select the next ready task.
(c) Look up the next task’s Thread_t.

)

(d) Call prvSwitchThread() to block the outgoing pthread and unblock the
incoming one.

4. Exit the critical section by decrementing uxCriticalNesting.

This signal-driven mechanism ensures each tick can preempt a running task and
switch to the highest-priority ready task.

6.4.5 Simulated Interrupts

The POSIX port layer has been extended to support simulated device interrupts,
functionality that was not present in the original implementation [1]. Inspired by
the Windows port, the author added:

o A dedicated pthread that drives the interrupt simulation.
o API functions:

— vPortSetInterruptHandler () Registers a custom handler for interrupt
numbers 0-32.

51

FreeRTOS Fault Injector

— vPortGenerateSimulatedInterrupt () Schedules a previously registered
handler to execute as if the hardware interrupt had occurred.

The dedicated interrupt-manager thread uses SIGUSR2 to avoid polling. A
call to vPortGenerateSimulatedInterrupt () sets the bit in an internal bitmask
corresponding to the simulated interrupt number and then sends SIGUSR2 to
that thread. The interrupt manager thread sits in a sigwait() loop awaiting this
signal; upon receipt, it scans the bitmask for pending interrupts and invokes any
registered handler(s).

This simulated-interrupt infrastructure is a critical dependency of the FreeRTOS
Injector, which will be explained in the 6.5.3 section.

6.4.6 Enabling and Disabling Interrupts
The portable layer exposes two API functions, vPortDisableInterrupts() and

vPortEnableInterrupts (), which mask and unmask all signals within the calling
pthread. Their implementations are shown below:

Listing 6.4: FreeRTOS Posix port interrupt management functions

void vPortDisableInterrupts(void)

{
int ret = pthread_sigmask (SIG_BLOCK, &xAllSignals, NULL);
it (ret != 0)
{
prvFatalError ("pthread_sigmask", ret);
}
}
void vPortEnableInterrupts(void)
{
int ret = pthread_sigmask (SIG_UNBLOCK, &xAllSignals, NULL);
if (ret != 0)
{
prvFatalError ("pthread sigmask"', ret);
¥
}

These functions are not invoked directly by application code but form the backbone
of the FreeRTOS kernel’s critical-section API, namely, vTaskEnterCritical () and
vTaskExitCritical(). By blocking (SIG_BLOCK) or unblocking (SIG_UNBLOCK)
the complete signal set (xA11Signals) for the pthread that backs each FreeRTOS
task, they effectively disable or enable "interrupts" in a POSIX environment.

52

FreeRTOS Fault Injector

6.4.7 POSIX Port and I/0

A dedicated I/0O library is provided for both FreeRTOS tasks and the FreeRTOS
Injector, rather than invoking the native POSIX 1/O API directly. This wrapper
serves two critical purposes:

1. Task switching in the POSIX port depends on a SIG_ALRM handler. Each
FreeRTOS task unblocks this signal so the scheduler can preempt and perform
context switches. Threads outside the POSIX port layer, such as those used by
the FreeRTOS Injector, must keep SIG_ALRM blocked; otherwise, receiving the
alarm signal without proper context or associated POSIX condition variables
may cause deadlocks and simulator stalls.

2. Some standard C library functions employ internal pthread mutexes. If the
FreeRTOS scheduler switches tasks while such a mutex is held, deadlocks can
occur. Routing all I/O through the custom API prevents unexpected internal
locking and ensures safe task-switch points.

As noted by the original POSIX port author:

"Use of parts of the standard C library requires care, as some functions
take pthread mutexes internally. If the FreeRTOS kernel switches tasks
while a mutex is held, deadlocks can occur."

As a final remark, this overview focuses on the most pertinent components and
omits full low-level details, complete coverage would require extensive code excerpts
and commentary beyond this work’s scope. The chosen level of detail should suffice
to convey the core concepts.

6.5 FreeRTOS Injector System Architecture

This section presents the overall architecture of the FreeRTOS Injector. Before
diving into the fault-injection system overview, key terminology is defined.

6.5.1 Key Definitions
o Experiment: A single execution instance.

o Golden Run: An experiment without fault injection, used to establish
baseline timing and correct output.

e Run: Either a golden run or a fault-injection run.

o Campaign: An ordered sequence of experiments, starting with one golden
run and followed by multiple fault-injection runs.

53

FreeRTOS Fault Injector

o Fault List: The set of locations where faults may be injected.

o Fault: A specific injection event at a given location. In this work, a fault
corresponds to the memory address where a bit-flip (transient or permanent)
is introduced.

6.5.2 Experiment Environment

The experimental setup consists of two scenarios:

First Scenario

The first scenario comprises a FreeRTOS instance with three benchmark tasks and
one software timer:

o QSRT Executes one iteration of the Quicksort algorithm on an input data
file, then self-deletes.

« TX & RX Two tasks sharing a FreeRTOS queue. TX enqueues data; RX
dequeues it. RX runs at priority 2 (highest), while TX and QSRT share
priority 1. Both tasks repeat for a configurable number of iterations (see
injector_config.h in 6.3.1) before deleting themselves.

o Software Timer On each expiration, its callback enqueues a value on
the same queue used by TX/RX. A static counter, also configurable via
injector_config.h (see 6.3.1), tracks the number of callbacks; once it reaches
its limit, the timer deletes itself.

In addition to the above, the FreeRTOS kernel creates several system tasks:

« IDLE Task Runs at the lowest priority (usually 0). It reclaims resources of
tasks deleted by other contexts. If preemption and idle-yield are enabled in
FreeRT0SConfig.h (see 4.6), it also calls vTaskYield().

o Timer Daemon Task Implements the FreeRTOS software-timer API and
runs at the highest kernel-task priority (as configured in FreeRT0SConfig.h).

Finally, the portable layer introduces two additional threads:

e Main Thread Begins in main.c, initializes the port layer, and then in-
vokes vTaskStartScheduler() (in task_main.c). After scheduler start, it
remains in the scheduler loop until receiving a termination signal (typically
via vTaskEndScheduler()).

o4

FreeRTOS Fault Injector

o Interrupt Simulator Thread Waits for simulated interrupts through
vPortGenerateSimulatedInterrupt (), dispatches the appropriate handler,
and is cleanly shut down by the main scheduler loop upon scheduler termina-
tion.

Second Scenario

The second scenario employs five automotive industry benchmarks from the TACLe
suite, each ported to the FreeRTOS Injector. These tasks better represent real
embedded workloads:

SHA — computes a SHA hash

FFT — performs a fast Fourier transform

CUBIC - solves a cubic equation

HUFF_DEC - carries out Huffman decoding

« ADPCM__ENC - executes adaptive pulse-code modulation encoding
Priorities are assigned as follows:

o SHA, FFT, and CUBIC: priority 1

« HUFF_DEC: priority 2

« ADPCM__ENC: priority 3

Additionally, as in the first scenario (see Section 6.5.2), the system tasks are
present. Each task executes its computation and then self-deletes, allowing the
shutdown mechanism to terminate the experiment correctly (see 6.5.3). The same
queue created in scenario 1 is also instantiated here to accommodate the simulated
interrupt mechanism (see 6.5.3).

6.5.3 Injection Environment

The injection environment builds on a hosted, user-space FreeRTOS instance by
adding a dedicated POSIX thread that carries out fault injections at runtime. In
this model, each FreeRTOS instance runs as a separate process under the host OS,
with all its FreeRTOS "threads" sharing a single address space. By introducing the
injector as a peer POSIX thread in that same process, the injector gains direct
access to the target memory addresses. An injection run thus consists of the
standard benchmark tasks plus this external injector thread, which triggers a fault
at a specified time and memory location.

59

S N o

~

o0

10

12

13

FreeRTOS Fault Injector

FreeRTOS Source Patches for Fault Injection Support

To integrate the fault-injection framework, several modifications were made to the
original FreeRTOS kernel. The primary addition is a helper function in tasks.c
that detects when only the IDLE task remains, allowing the clean shut down of the
FreeRTOS scheduler:

Listing 6.5: FreeRTOS Injector helper function

a8

/%%

x @brief Returns true if the IDLE task is the only ready task.
* Used by the FreeRTOS Injector to determine when all
* benchmark tasks have completed.

x @return true if only the IDLE task is ready; false otherwise.
*

/

bool blIsIdleTheOnlyTaskInTheSystem (void)

/* uxTopReadyPriority holds the highest priority level with ready
tasks.
[f it is zero (IDLE priority) and there is exactly one task in
that list |,
while all delayed and pending lists are empty, and no tasks
await
termination , then the IDLE task is the sole remaining task. x/
if (uxTopReadyPriority = 0
&& listCURRENT LIST LENGTH(&pxReadyTasksLists[0]) = 1
&& listCURRENT_LIST_LENGTH(&xDelayedTaskList1) — 0
&& listCURRENT_LIST_LENGTH(&xDelayedTaskList2) =— 0
&& listCURRENT_LIST LENGTH(&xPendingReadyList) = 0
&& lissCURRENT _LIST LENGTH(&xTasksWaitingTermination) = 0

{
}

return false;

)

return true;

When all benchmark tasks have deleted themselves after their configured iterations,
this function returns true, signalling the injector’s scheduler loop to perform a
graceful shutdown.

FreeRTOS Scheduler Shutdown Mechanism
The FreeRTOS scheduler can be terminated via two complementary paths:
1. Idle-Hook Path When configUSE_IDLE HOOK is set to 1 in

FreeRT0SConfig.h, the hook vApplicationIdleHook() is called each time the
IDLE task executes. Since the hook must avoid any blocking FreeRTOS API calls,

56

FreeRTOS Fault Injector

it serves as a safe point to check whether IDLE is the only remaining ready task.
If so, the hook records timing (for a golden run), generates a simulated interrupt
(the purpose of which is explained below), and calls vTaskEndScheduler () to shut
down the scheduler:

Listing 6.6: FreeRTOS IDLE task hook

#if (configUSE_IDLE_HOOK = 1)

s void vApplicationIdleHook (void)

{
extern bool bIsIdleTheOnlyTaskInTheSystem (void);

if (bIsIdleTheOnlyTaskInTheSystem ())
if (bIsGoldenRun)

vCommonWriteGoldenExecutionTimeFile () ;

}

vPortGenerateSimulatedInterrupt (
injector__configlSR_ INTERRUPT_NUMBER
)

vIinjectorloPrintDebug (
"TIdle Hook: calling vTaskEndScheduler ()\n"
) ;

vTaskEndScheduler () ;

}

25|#endif /+ configUSE IDLE HOOK =— 1 x/

2. Injector-Thread Path Some fault scenarios can prevent the scheduler (and
thus the IDLE task) from ever running again. To handle such hangs, the injector
thread monitors execution time post, injection. If it exceeds a configurable timeout,
typically set to 300% of the golden-run duration, the injector thread performs the
same shutdown sequence as the IDLE hook, ensuring a graceful termination even
when the scheduler is blocked.

3. Watchdog-Timer Path In this extreme recovery scenario, the RTOS in-
stance has become unresponsive to all standard shutdown requests. When running
in campaign mode (see 6.5.3), the FreeRTOS Injector arms a watchdog timer whose
timeout interval is configurable via injector_config.h (see 6.3.1). By default
this interval is set to exceed 300% of the "golden run' timeout that each injector

57

N

w

19

FreeRTOS Fault Injector

thread waits, ensuring the watchdog only fires after all normal recovery attempts
have failed. Once the configurable interval elapses, a dedicated handler thread is
invoked to issue an immediate forced termination, sending SIGKILL on POSIX
platforms (or the equivalent forced-termination call on Windows), to forcefully
terminate the stuck RTOS process.

Logging Facility

To classify outcomes of both golden and fault-injection runs, the FreeRTOS Injector
leverages the kernel’s tracing hooks. These hooks, defined in FreeRTOSConfig.h,
invoke custom code at critical kernel events:

Listing 6.7: FreeRTOS Injector trace hook macros

/* Tracing macros (must remain in FreeRTOSConfig.h) x/

#define traceTASK SWITCHED_ IN () vTracerLogEvent (0)
#define traceTASK SWITCHED OUT() vTracerLogEvent (1)
#define traceQUEUE_SEND_FAILED (pxQueue) vTracerLogEvent (2)
#define traceQUEUE_RECEIVE_FAILED (pxQueue) vTracerLogEvent (3)
#define traceQUEUE_SEND_ FROM_ISR,_FAILED(pxQueue) vTracerLogEvent

(4)
#define traceQUEUE_RECEIVE_FROM_ISR_FAILED (pxQueue) vTracerLogEvent

(5)

Each macro calls vTracerLogEvent (), declared in tracer.h and implemented in
tracer.c. Its logic is as follows:

Listing 6.8: FreeRTOS Injector Logging function

void vTracerLogEvent (uint8_t ucEventType)

{
char cEventBuf [injector_configTRACER_MAX_COLUMNS |;
char cTaskName [configMAX TASK NAME_LEN];

unsigned long ulTime = ulGetRunTimeCounterValue () ;
/* Stop logging after a simulated\ interrupt failure. x/
if (bISRExecuted) {
return ;
¥

/* Get the current task’s name x/
vTaskGetTaskName (cTaskName) ;

/* Format and flush the log entry =/
switch (ucEventType)
{
case 0: /x Task switched in =/
snprintf(cEventBuf, sizeof(cEventBuf),
"%—161u\t [IN]\ t%s ", ulTime, cTaskName);

58

FreeRTOS Fault Injector

21 break;

22 case 1: /x Task switched out =/

23 snprintf (cEventBuf, sizeof(cEventBuf),

24 "%—161u\t [OUT]|\ t%s ", ulTime, cTaskName);
25 break;

26 case 2: /% xQueueSend() failed x/

27 snprintf(cEventBuf, sizeof(cEventBuf),

28 "%—161u\t [QSF]\ t%s", ulTime, cTaskName) ;
29 break ;

30 case 3: /x xQueueReceive() failed x/
31 snprintf(cEventBuf, sizeof(cEventBuf),

32 "%—161u\t [QRF]\ t%s ", ulTime, cTaskName);
33 break;

34 case 4: /x xQueueSendFromISR () failed =/

35 bISRExecuted = true;

36 snprintf (cEventBuf, sizeof(cEventBuf),

37 "%—161u\t [QSIF]\ t%s ", ulTime, cTaskName);
38 break;

39 case 5: /x xQueueReceiveFromISR () failed =/

40 bISRExecuted = true;

1 snprintf (cEventBuf, sizeof(cEventBuf),

12 "%—161u\t [QRIF]\ t%s ", ulTime, cTaskName);
13 break;

44 default: /+ Unexpected event x/

45 snprintf (cEventBuf, sizeof(cEventBuf),

46 "%—161u\ t [INV]\tNOTASK"' , ulTime):

17 }

18

19 prvFlushEvent (cEventBuf) ;

50 }

This tracer captures every task switch-in/out and all queue operations (in both
thread and ISR contexts), prefixing each entry with the current runtime counter
value. Downstream, the classification algorithm uses these timestamps to detect
unexpected scheduling delays. Once the simulated interrupt handler sets the flag
bISRExecuted, all further tracing is suppressed.

Simulated Interrupt Handler

The injector leverages the POSIX (and Windows-equivalent) simulated-ISR facility
to trigger a controlled "interrupt" during an experiment run. Its sole purpose is to
attempt a queue receive from ISR context, thereby revealing scheduler disruptions.

Listing 6.9: FreeRTOS Injector Simulated IRQ Handler

i|#ifdef _POSIX SOURCE
2| void vCommonInterruptHandler (uint32_t ullnterruptNumber)
s|#elif defined (_WINDOWS_SOURCE)

59

15

[S SO
= O © » N O

NN N NN
o3 B N U)

NN NN
R o3} ~

FreeRTOS Fault Injector

uint32_t vCommonInterruptHandler (uint32_t ullnterruptNumber)
#endif

{
/* Shared queue defined in applications/task main.c x/
extern QueueHandle t xQueue;
/* Attempt to receive without blocking x/
uint32_t xQueueReceivedValue = 0;
xQueueReceiveFromISR (xQueue,
(void #)&xQueueReceivedValue ,
NULL) ;
/%
x If we unexpectedly succeed, the scheduler has failed
* to dispatch the RX task in time. Record this anomaly.
Y
if (xQueueReceivedValue != 0) {
vInjectorloPrintFromISRDebug (
"ISR received a queue value: %u\n'
"Unexpected! Scheduler was disrupted by the injection.\n",

xQueueReceivedValue
)
}

/* Log that the interrupt handler executed x/
vInjectorloPrintFromISRDebug (
"[%lu]\ tInterrupt %lu handler invoked.\n",
ulGetRunTimeCounterValue () ,
ullnterruptNumber

)3

s|#ifdef WINDOWS SOURCE

return pdFALSE;

|#endif

}

Operational Context All benchmark tasks of the first scenario (see 6.5.2) (TX,
RX) and the software-timer callback share a single FreeRTOS queue. They are
configured with finite iteration counts so that

RX iterations = TX iterations + timer callback iterations.

Hence, in a correct (golden) run, or any run where faults do not break the sched-
uler path, the ISR’s nonblocking receive will fail, triggering one of the trace-hook
macros (see Listing 6.7). The presence of that specific trace entry is used by the
classification algorithm which will be described below.

60

-3

FreeRTOS Fault Injector

The same mechanism is applied in the second scenario (see 6.5.2). Here, an
empty queue, identical to the one used previously, is instantiated solely to signal
the tracing mechanism to stop and to verify that the simulated interrupt (see
Section 6.5.3) executes correctly.

Execution Outcome Categories in Fault Injection

Fault injection experiments typically classify each run into one of several standard
outcome categories, as established in the dependability and resilience literature:

OK (Correct) The system completes its task within the expected time and
produces correct results.

SDC (Silent Data Corruption) The system finishes on time but yields an in-
correct result without raising any error, an undetected data corruption.

DELAY (Timing Violation) The result is functionally correct, but the execu-
tion exceeds the predefined timing threshold, indicating a performance or
real-time violation.

HANG (Hang/Deadlock) The system never completes (no output or comple-
tion signal), typically due to deadlock, livelock, or unhandled fault.

CRASH (Immediate Failure) The system terminates abruptly (e.g., via excep-
tion, abort, or unhandled signal), preventing normal shutdown and output
generation.

These categories help quantify the resilience of real-time and safety-critical systems
by distinguishing between benign timing slips, silent corruptions, and severe failures
that require recovery intervention.

Experiment Classification

After the scheduler has been cleanly shut down (see Section 6.5.3), the classifier
inspects the in-memory trace and execution results to assign one of several outcome
codes:

Listing 6.10: FreeRTOS Injector Classifier

int prvCheckExecutionResult (void spvData)

{

s|#ifdef DEBUG

vTracerPrint () ;

#endif /+x DEBUG x/
61

FreeRTOS Fault Injector

NN N
@ N =

NN NN

if (bTracerTracelsOk())

unsigned long ulExecTime = ulTracerGetExecutionTime () ;

vInjectorloPrintExtThreadDebug (" Execution time: %lu\n",
ulExecTime) ;

if (bTracerExecutionResultIsOk (pvData))

{

if (ulExecTime = 0)
{

}

else if (ulExecTime < (injector_configDELAY_THRESHOLD x
ulGoldenExecutionTime))
/*% Silent execution, correct output. x/

{
}

else
/*x Delayed execution, correct output. */

{
}

return error_codesBAD EXECUTION_TIME;

return error codesEXECUTION_OUTCOME_OK;

return error codesEXECUTION OUTCOME DELAY

}

else
/*x Execution result is not correct. x/

{
if (ulExecTime < (injector_configDELAY_THRESHOLD =
ulGoldenExecutionTime))
/*x Error execution, incorrect output. */

{
}

else
/*% SDC with Delay. =/
{

}

return error codesEXECUTION OUTCOME_ SDC;

return error_codesEXECUTION_OUTCOME_ SDC_DELAY

}

else
/#*% Incorrect Trace output, ISR didn’t work. x/

{
}

return error codesEXECUTION OUTCOME_CRASH;

62

FreeRTOS Fault Injector

FreeRTOS Injector Classification Logic The outcome of each run is deter-
mined as follows:

1. If the trace is invalid (for example, logging ended before the simulated ISR),
classify the run as a crash.

2. Otherwise, measure the total execution time and compare it against the
configurable threshold.

3. Verify functional correctness by comparing:

o In the first scenario (see 6.5.2), the output of the QSRT task against the
golden reference using bTracerExecutionResultIs0Ok().
« In the second scenario (see Section 6.5.2), each TACLe benchmark’s output

is validated in bTracerExecutionResultIs0Ok() as well.

4. Assign one of five primary outcome codes:

EXECUTION_OUTCOME_OK: correct output, on-time

EXECUTION_OUTCOME_DELAY: correct output, but delayed
EXECUTION_OUTCOME_SDC: incorrect output (SDC), on-time

EXECUTION_OQUTCOME_SDC_DELAY: incorrect output, and delayed
« EXECUTION OUTCOME_CRASH: crash

A sixth outcome code, EXECUTION_OUTCOME_HANG, is returned when the watchdog
timer intervenes (see Section 6.5.3). In this scenario, the OS-dependent logic in
os_ deps.c (see 6.3.1) recognizes that the FreeRTOS instance was terminated by
the specific UNIX signal sent by the watchdog handler, rather than by a normal
exit, and reports the hang back to the Orchestrator process.

Target Extraction

Injection targets inside the FreeRTOS kernel are discovered at startup by module-
specific "gatherer" functions. Each gatherer is registered in a global function
table. During initialization, the helper macros build a global, singly-linked list of
struct target entries. Finally, a single call to vTargetCallGatherers() iterates
over that table, invoking each gatherer in turn, and thus populates the complete
fault-injection target list.

63

N

w

ot

-~

0

FreeRTOS Fault Injector

Target Data Structure The main data structure used for the list of injection
targets is shown below:

Listing 6.11: struct target description

/%% Main data structure for gathering data about injection targets.
Targets are gathered from the corresponding functions implemented
in the relevant files (task.c, queue.c etc...) and are linked
together in a linked list. Each target can have a child (for
example a structure’s member is a child of the structure itself).
The first member of a struct is it’s only children because other
children are linked together. Every single child has instead a
link back to its parent. =/

struct target

{

size_t ulld;

char pcName [injector_configTARGET NAME_ LENGTH |;

void sxpvAddress;

bool bNeedsParentDereferenceAtRuntime;

size_t ulSize;

/*x This takes into account the size of the memory areas
pointed to by pointer targets. x/

size_t ulSizeOfPointedData;

size__t ulNMembers;

uint8_t ucType;

struct target spxParent;

struct target xpxChild;

struct target xpxNext;

}s

Helper Macros A suite of macros wraps calls to the internal constructor
pxTargetCreateInternal (), managing parent/child links, compile-time vs. run-
time addresses, and array lengths:

Listing 6.12: Target-creation helper macros

/%% These helper macros can be used to construct the injection target
list. x/

/**% Creates a new target. x/
#define pxTargetCreate(xTarget, ucType, ulSize, ulPointedSize
ulNMemb) \
pxTargetCreatelnternal (targetNAME OF (xTarget), (void *)&(
xTarget), ucType, ulSize, ulPointedSize , NULL, NULL, NULL, ulNMemb
, 0, 0);

/#% Creates a new child target. =/
#define pxTargetCreateChild (xTarget, ucType, ulSize, ulPointedSize ,
ulNMemb, pxParent) \

64

1

FreeRTOS Fault Injector

9 pxTargetCreatelnternal (targetNAME_OF (xTarget), (void x)&(

xTarget), ucType, ulSize, ulPointedSize, pxParent, NULL, NULL,
ulNMemb, 0, 1);

1| /#+*% Creates a new child target with an unknown compile time address.

*/

12|#define pxTargetCreateChildNoAddress(xTarget, ucType, ulSize

ulPointedSize , ulNMemb, pxParent) \
pxTargetCreatelnternal (targetNAME_OF (xTarget), NULL, ucType,
ulSize , ulPointedSize , pxParent, NULL, NULL, ulNMemb, 0, 1);

/!

15| /**% Appends a new target to the previous one. x/
16|#define pxTargetAppend (pxPrevious, xTarget, ucType, ulSize,

ulPointedSize , ulNMemb) \

17 pxPrevious = pxTargetCreatelnternal (targetNAME_OF (xTarget), (

void *)&(xTarget), ucType, ulSize, ulPointedSize , NULL, NULL,
pxPrevious , ulNMemb, 1, 0);

19| /*x Appends a new child target to the previous one and links it to

the father. x/

20|#define pxTargetAppendChild (pxPrevious, xTarget, ucType, ulSize,

ulPointedSize , ulNMemb, pxParent) \

1 pxPrevious = pxTargetCreatelnternal (targetNAME_OF (xTarget), (
void x)&(xTarget), ucType, ulSize, ulPointedSize, pxParent, NULL,
pxPrevious , ulNMemb, 1, 0);

2

3| /** Appends a new child target to the prevous one and links it to the
father. This version is for targets with unknown compile time
address. x/

21|#define pxTargetAppendChildNoAddress(pxPrevious, xTarget, ucType,

ulSize , ulPointedSize , ulNMemb, pxParent) \

5 pxPrevious = pxTargetCreatelnternal (targetNAME OF (xTarget) ,
NULL, ucType, ulSize, ulPointedSize , pxParent, NULL, pxPrevious,
ulNMemb, 1, 0);

Module-Specific Gatherer Example Below is the timer module’s gatherer
(timers.c):

Listing 6.13: Timer-target gatherer (pxTimerGatherTargets)

struct target xpxTimerGatherTargets(struct target xpxPrevious) {

[un

N

/*% The list of injection targets is global to the whole FreeRTOS
Injector and the order of calls to the functions implementing
target gathering is unknown. This leads to 2 conditions: this is
the first target gathering function called and its first member is
the first element of the list (does not need to be appended) or
the function needs to append its first target to an already
existing list. x/

65

16

FreeRTOS Fault Injector

if (pxPrevious)

// static List_t xActiveTimerListl;
pxTargetAppend (pxPrevious, xActiveTimerListl, targetTYPE_ LIST
, sizeof(xActiveTimerListl), 0, 1);

}

else

// static List_t xActiveTimerListl;

pxPrevious = pxTargetCreate (xActiveTimerList] ,
target TYPE_LIST, sizeof(xActiveTimerListl), 0, 1);
¥

struct target xconst pxFirstTargetInList = pxPrevious;

// static List_t xActiveTimerList2;
pxTargetAppend (pxPrevious, xActiveTimerList2, targetTYPE LIST,
sizeof (xActiveTimerList2), 0, 1);

// static List_t # pxCurrentTimerList;

pxTargetAppend (pxPrevious, pxCurrentTimerList , targetTYPE POINTER
| targetTYPE_LIST, sizeof(pxCurrentTimerList), sizeof (=

pxCurrentTimerList), 1);

// static List t % pxOverflowTimerList;

pxTargetAppend (pxPrevious , pxOverflowTimerList ,

targetTYPE POINTER | targetTYPE_ LIST, sizeof(pxOverflowTimerList),
sizeof (xpxOverflowTimerList), 1);

// static QueueHandle t xTimerQueue;

// initialized in prvCheckForValidListAndQueue (timers.c)
pxTargetAppend (pxPrevious , xTimerQueue, targetTYPE VARIABLE,
sizeof (xTimerQueue), 0, 1);

// static TaskHandle t xTimerTaskHandle;

// initialized in xTimerCreateTimerTask (timers.c)

pxTargetAppend (pxPrevious , xTimerTaskHandle, targetTYPE VARIABLE,
sizeof (xTimerTaskHandle), 0, 1);

return pxFirstTargetInList;

Each kernel module implements a similar gatherer and registers it in an initializa-
tion table. At runtime, a single invocation of vTargetCallGatherers() calls all
registered gatherers in turn, building the complete target list for fault injection.

66

FreeRTOS Fault Injector

Golden Run Overview

A golden run is an execution in which no fault injection takes place. Its primary pur-
pose is to establish a baseline performance benchmark against which all subsequent
fault-injection runs can be compared. During the golden execution:

1. The FreeRTOS scheduler is started.
2. The benchmark tasks are allowed to run uninterrupted until they complete.

3. The shutdown mechanism described in Section 6.5.3 is invoked to stop the

RTOS scheduler.
4. Two output files are generated:

o golden.txt records the execution time (in nanoseconds) from scheduler
start to scheduler shutdown.

e golden_data.txt contains the results produced by the QSRT benchmark
task.

Injection Run Overview

This run follows the same steps as the golden run, except that after a configurable
delay the injector thread flips a single bit, either transiently or permanently, at
a specified memory address. After the fault is injected, all tasks are left free to
run to completion. Once every task has finished, the normal shutdown mechanism
described in Section 6.5.3 is invoked to stop the RTOS scheduler gracefully.

o If the scheduler shuts down normally, a classification algorithm analyzes the
outcome and the RTOS instance exits with one of the predefined error codes
from error_codes.h. Several of these codes were introduced in Section 6.5.3.

o If the scheduler crashes, producing an exit code outside the range defined in
error_codes.h, the run is classified as a crash.

Note: The "single-run" mode is intended for internal use by campaign mode. It is
not designed to be invoked as a standalone test.
Campaign Mode Overview

In campaign mode, the FreeRTOS Injector reads a user-supplied CSV file detailing
one or more injection campaigns. Each line in the CSV must follow the format:

Target ,Execs,Time,Variance,Distribution,Fault

Here:

67

FreeRTOS Fault Injector

Target: injection target
Execs: how many times to run the injection on this target

Time: nominal time in nanoseconds when to perform the injection (from the
RTOS scheduler start)

Variance: timing variance in nanoseconds around the nominal time
Distribution: one of uniform (u), Gaussian (g), triangular (t), or fixed (f)

Fault: Fault type, transient (t) or permanent (p) bit-flip

An Orchestrator process carries out the campaign:

1.
2.

Parse CSV: Load all campaign entries into an in-memory data structure.

Parallelize: Determine the worker count using the -j option (or default to
the number of logical CPU threads).

Schedule Injections: For each CSV entry and for each of its specified
number of executions:

e Sample an actual injection time from the chosen distribution, applying
the nominal time and variance.

Note: The exact byte and bit location within the target region are
chosen uniformly at random for each injection trial.

o Compute the injection byte and bit based on the specified target type.

» Fork a worker process that executes the FreeRTOS Injector —run command
with appropriate parameters (see 6.6).

o Attach a per-experiment watchdog timer to force terminate any hung
RTOS instance.

Collect Results: As each worker exits (normally or by watchdog), record
its exit code in an internal statistics table.

Report: After all injections complete, output the aggregated statistics to
stdout (unless suppressed) or to a file if the -w option is specified.

Note: An effectively infinite initial population of targets is assumed.
For each specified target, the injection campaign selects uniformly at
random one byte and one bit within its memory region. All selections are
independent, so the same byte and bit location may be chosen multiple
times (at different instants). If injection times are also drawn from a
probability distribution, repeated injections into a single location remain
independent events. Consequently, any downstream statistical analysis
must treat these observations as samples with replacement.

68

FreeRTOS Fault Injector

Final Remarks

The system architecture overview and core concepts were covered thoroughly,
though a deeper dive would require more listings and space than this presentation
allows. Nonetheless, the fundamental ideas have been clearly explained.

6.6 FreeRTOS Injector Commands

Following the detailed description of the FreeRTOS Injector architecture and fault-
injection mechanisms, this section provides a concise overview of the supported
commands and their usage for conducting injection campaigns.

o —golden Execute a single golden run:
freertos --golden

This generates two output files (see Section 6.5.3) that serve as the reference
benchmark for subsequent injection campaigns.

e —run Perform a single fault-injection run. Usage:
freertos ——run Target Time Byte Bit Type

where

Target: The name of the injection target.

Time Injection time in nanoseconds.

Byte Byte offset within the specified target.

Bit Bit position (0-7) within the specified byte.

Type Fault type: t for a transient bit-flip, p for a permanent bit-flip.

o —campaign Execute or prepare a full injection campaign using a CSV file.
Usage:

freertos --campaign file.csv [options]

Options:

-d out.csv Dry run mode: read file.csv, compute injection times, bytes,
and bits, and write these parameters to out.csv without performing any
injections.

69

FreeRTOS Fault Injector

Note: Unlike a standard campaign, out.csv reports the final per-
trial byte and bit locations.

For example, given an input file.csv with this single entry:
exampleTarget,5,1000,0,f,t
the generated out.csv might look like:

#exampleTarget,5,1000,t
exampleTarget,10,5
exampleTarget,7,7
exampleTarget,1,5
exampleTarget,4,3
exampleTarget,1,0

The dry-run command generates a new CSV file in which each row of
the original becomes a header. Directly after each header, it inserts one
entry per specified injection, explicitly listing the target byte and bit for
that run. The execution time from the original file, sampled according
to its probability distribution, is also fixed and recorded in the header of
the new file. Because this time has already been determined, the new file
omits the original probability and variance-related columns.

Note: In the current implementation, the dry-run command does
not ensure uniqueness when generating random byte and bit loca-
tions from the original CSV file. As a result, multiple injection
targets may share identical locations. This limitation is addressed
during experimental validation by applying a statistical formula
designed for sampling with replacement (i.e., an infinite initial
population), which will be described in detail in the corresponding
chapter.

-ud out.csv Use out.csv (produced by the -d dry-run option) to drive the
injection campaign directly, bypassing the runtime computation of byte-bit
locations and injection times. A typical invocation is:

freertos --campaign out.csv -ud [other-options]

Here, -ud signals that out.csv was generated earlier by a dry-run com-
mand.

-y Automatically answer "yes' to all interactive prompts.
-p Display progress updates.

-s Suppress summary statistics on standard output.

70

FreeRTOS Fault Injector

-w results.csv Write aggregated campaign statistics in CSV format to re-
sults.csv.

-j n Run up to n parallel worker processes (default: number of logical CPU
threads available on the system).

o —list
freertos —--list

This command shows the available injection targets along additional informa-
tion, useful to know which injection targets are supported by the FreeRTOS
Injector. The list of injection target has been described in 6.7.

6.7 Fault List

The following sections briefly describe the supported injection target types and list
the specific targets available in the FreeRTOS Injector.

6.7.1 Target Types

The FreeRTOS Injector supports several categories of injection targets. Before
listing all available targets, the following recap defines each target type.

Variable Targets

Scalar kernel variables (e.g., uxCurrentNumberOfTasks, xTickCount).

Array Targets

Contiguous collections of elements, indexed like C arrays. Injection can occur at
any index, for example:

pxCurrentTCB->pcTaskName [0]
pxReadyTasksLists[2]
pxReadyTasksLists[-1]

Here, an index of -1 directs the injector to pick a random valid position at runtime.

Struct Targets
Fields within C structs. Any member may be selected for injection, for example:

pxCurrentTCB->pxTop0fStack
pxCurrentTCB->uxBasePriority

71

FreeRTOS Fault Injector

List Targets

FreeRTOS List objects (doubly linked lists). Injection can target a specific list
node by index, for example:

xDelayedTaskList1[2]
*pxCurrentTimerList [-1]

As with arrays, an index of -1 instructs the injector to choose a random valid
position at runtime. If the list is empty, this may lead to no injection or an invalid
access that the injector will detect and skip.

Note that when you have a pointer to a List, you must dereference it before
applying an index. For instance,

pxCurrentTimerList [-1]
is invalid because pxCurrentTimerList is a pointer; you must write
*xpxCurrentTimerList [-1]

to access a node. Pure List variables (not pointers) can be indexed directly.

Pointer Targets

These targets are variables that hold memory addresses. Fault injections can either
corrupt the pointer’s value or the data it references. Examples:
Inject into the pointer variable itself:

pxCurrentTCB
xTimerQueue

Inject into the memory pointed to (using a leading asterisk):
*pxCurrentTCB

The leading-asterisk notation forces the injector to target the pointee rather than
the pointer. This syntax also applies when a pointer refers to a struct or a list, e.g.,
*xpxDelayedTaskList injects into the memory area of the List_t structure.

Mixed Targets

Composite types combining two or more of the above categories. For instance,
pxReadyTasksLists is an array of lists and supports nested indexing:

pxReadyTasksLists [0] [0]

This target specification directs the injector to:

72

FreeRTOS Fault Injector

1. Select the ready-tasks list at priority level 0 (the IDLE task priority usually):
pxReadyTasksLists[0]

2. Within that list, choose the first element (list node index 0): [0]

The injector will corrupt a field (for example, pxNext, pxPrevious, or pvOwner)
of the first node in the priority 0 ready-tasks list.

6.7.2 FreeRTOS Injection Target Groups

The various targets available have been grouped into four major groups:

» Global Variables: These are global variables used within the RTOS that
influence scheduling decisions and help manage the RTOS system. The targets
under this group are shown in table 6.1.

o Lists: These are used for queuing tasks into scheduling lists, event lists,
blocked lists, delayed lists or lists of tasks blocked on mutexes or semaphores.
The targets under this group are shown in table 6.2.

e Current TCB: These are targets pertaining to the TCB of the currently run-
ning task under the RTOS. The fields of a task’s TCB influence its scheduling
and managing by the RTOS. The targets under this group are shown in table
6.4 and 6.5.

o Pointers: These are pointer targets. Targets under this group are shown in
table 6.3.

73

FreeRTOS Fault Injector

Table 6.1: FreeRTOS Global Variable Targets

Target Type Description
uxDeleted TasksWaitingCleanup | VARIABLE | count of TCB pending cleanup
by the IDLE task
uxCurrentNumberOfTasks VARIABLE | Total number of currently ac-
tive tasks.
xTickCount VARIABLE | System tick counter since
scheduler start.
uxTopReadyPriority VARIABLE | Highest priority level with at
least one ready task.
x3chedulerRunning VARIABLE | Boolean flag: has the scheduler
started?
xPendedTicks VARIABLE | Ticks accumulated while sched-
uler was suspended.
xYieldPending VARIABLE | Flag indicating a pending con-
text switch.
xNumOfOverflows VARIABLE | Number of times xTickCount
has wrapped around.
uxTaskNumber VARIABLE | Monotonic counter for task cre-
ation (unique ID).
xNextTaskUnblockTime VARIABLE | Tick count when the next de-
layed task is due to unblock.
xTimerQueue VARIABLE | Handle of the internal timer
command queue.
xTimerTaskHandle VARIABLE | Task handle of the Timer Dae-

mon Task.

74

FreeRTOS Fault Injector

Table 6.2: FreeRTOS List Targets

Target Type | Description

pxReadyTasksLists LIST | Array of ready-task lists indexed by task
priority.

xDelayed TaskList1 LIST | Lists of tasks delayed via vTaskDelay/().

xDelayed TaskList2 LIST | Lists of tasks delayed via vTaskDelay/().

xPendingReadyList LIST | Tasks that became ready while the sched-
uler was locked.

xTasksWaitingTermination | LIST | TCB of deleted tasks pending resource
cleanup by the Idle task.

xSuspended TaskList LIST | TCB of suspended tasks.

xActiveTimerList1 LIST | List of active software timers.

xActiveTimerList2 LIST | List of active software timers.

75

FreeRTOS Fault Injector

Table 6.3:

FreeRTOS Pointer Targets

Target

Type

Description

pxDelayed TaskList

POINTER

Pointer to the current delayed
task list. The pointer switches
on xTickCount overflow between
xDelayedTaskList1 and xDelayed-
TaskList?2

pxOverflowDelayed TaskList

POINTER

Pointer to the current overflowed
delayed task list. The pointer
switches on xTickCount overflow
between xDelayedTaskListl and
xDelayed TaskList2

xIdleTaskHandle

POINTER

Pointer to the Idle task’s TCB (its
task handle).

pxCurrent TCB

POINTER

Pointer to the TCB of the cur-
rently running task.

pxCurrent TCB.pxTopOfStack

POINTER

Pointer to the top of the stack of
the currently running task.

pxCurrent TCB.pxTaskTag

POINTER

Pointer to the application task tag
of the currently running task.

pxCurrent TimerList

POINTER

Pointer to the current timer list.
Switches on xTickCount overflow
between xActiveTimerListl and
xActiveTimerList2.

pxOverflowTimerList

POINTER

Pointer to the current over-
flowed timer list. Switches
on xTickCount overflow between
xActiveTimerListl and xActive-
TimerList2.

76

FreeRTOS Fault Injector

Table 6.4: FreeRTOS current TCB Targets

Target Type Description

pxCurrent TCB.pxTopOfStack POINTER | Pointer to the top of the stack
of the currently executing task.

pxCurrent TCB.xStateListItem STRUCT | List node linking TCB into
scheduler lists.

pxCurrent TCB.xEventListItem | STRUCT | List node for events (queues,
semaphores).

pxCurrent TCB.uxPriority VARIABLE | Priority of the current task.

pxCurrent TCB.pxStack POINTER | Pointer to the base of the stack
of the current task.

pxCurrent TCB.pcTaskName ARRAY Array of characters represent-
ing the name of the current
task.

pxCurrent TCB.uxTCBNumber | VARIABLE | Unique identifier of the current
task.

pxCurrent TCB.uxTaskNumber | VARIABLE | Unique identifier of the current

task.

7

FreeRTOS Fault Injector

Table 6.5: FreeRTOS current TCB Targets (continued)

Target

Type

Description

pxCurrent TCB.uxBasePriority

VARIABLE

Current task’s base priority
used by the mutex priority
inheritance mechanism.

pxCurrent TCB.uxMutexesHeld

VARIABLE

Current task’s number of
mutexes held, also used by
the mutex priority inheri-
tance mechanism.

pxCurrent TCB.pxTaskTag

POINTER

Current task’s application
specific tag. This is a mech-
anism to permit tasks to
call specific functions at spe-
cific times.

pxCurrent TCB.ulRunTimeCounter

VARIABLE

Accumulates the task’s
time spent in the running
state.

pxCurrent TCB.ulNotified Value

VARIABLE

Internal variable used by
the task notification mecha-
nism.

pxCurrent TCB.ucNotifyState

VARIABLE

Internal variable used by
the task notification mecha-
nism.

pxCurrent TCB.ucDelayAborted

VARIABLE

Flags whether a block-
ing delay was prematurely
aborted for the current
task.

78

FreeRTOS Fault Injector

6.8 Conclusion

This chapter has provided a detailed tour of the FreeRTOS Injector. After a brief
survey of related work and a recap of core implementation principles, the project’s
directory structure was laid out and the roles of its key modules highlighted. The
design of the POSIX port layer followed, establishing the groundwork for a deep dive
into the injector’s architecture. Next, the injector’s core fault-injection mechanisms
and command-line interface were described, and the complete set of supported
targets was organized by type.

In the next chapter, baseline results from initial fault-injection campaigns (with
no hardening enabled) will be presented. These observations will motivate the
selective hardening strategy proposed in this study, which will then be described
in detail. Finally, a second round of injections, this time with hardening active,
will quantify the protection’s effectiveness. The concluding chapter will synthesize
these results and explore their broader implications.

79

Chapter 7

Experimental Results

7.1 Introduction

The previous chapter introduced the FreeRTOS Injector, described its project
structure, and detailed its architecture and implementation. The threat landscape
confronting embedded devices running a real-time operating system, specifically
FreeRTOS, was also reviewed.

This chapter begins the experimental evaluation. First, an initial set of baseline
experiments conducted with no hardening enabled is presented. These results expose
FreeRTOS’s primary vulnerabilities and motivate the need for a selective hardening
strategy. Next, the hardening approach is described in detail , outlining its rationale
and implementation. Finally, a second set of experiments with hardening active is
reported and compared against the unprotected baseline to quantify the effectiveness
of the defenses.

7.2 Experiment Setup

7.2.1 First Scenario

The first scenario test harness (see Section 6.5.2) executes four benchmark activities

under FreeRTOS:

QSRT task: in-place sort of a data array

TX task: periodic producer task

RX task: periodic consumer task

Software timer callback: invoked by the Timer Daemon; also acts as a
producer

80

Experimental Results

Fault injections are triggered at a fixed time, 10000 nanoseconds after scheduler
start, to ensure the benchmarks are still active. Three batches of experiments differ
only in task workload:

1. Batch 1

e QSRT sorts 1000 elements
o TX loops 5 times
e RX loops 10 times

o Timer callback fires 5 times

2. Batch 2

QSRT sorts 5000 elements
TX loops 10 times

RX loops 20 times

o Timer callback fires 10 times

3. Batch 3

QSRT sorts 10000 elements
o TX loops 20 times
e RX loops 40 times

e Timer callback fires 20 times

The 10000 nanoseconds injection point was chosen experimentally: on the host-
based POSIX port, the scheduler and benchmarks execute rapidly, so later injections
would occur after task completion but before scheduler shutdown.

7.2.2 Second Scenario

As detailed in 6.5.2, this scenario runs five TACLe benchmarks exactly once, to
completion (no repeated iterations). The injection time remains 10000 ns after the
FreeRTOS scheduler start, as in the first scenario. Because the POSIX simulated
port on a high performance workstation executes these tasks extremely rapidly,
finishing in a single pass, the early injection deadline is critical to ensure the faults
are injected before task completion.

81

Experimental Results

7.2.3 Number of Experiments

The FreeRTOS Injector samples with replacement, each chosen injection location
remains eligible for reselection, so the space of possible faults is effectively infinite.
Leveugle et al. [21] present a rigorous framework for computing error bounds
and confidence intervals in fault-injection experiments, but their methods assume
a finite, non-replenished set of fault sites and thus do not apply directly to a
with-replacement scheme.

The required number of injections per location and the resulting confidence interval
are given by two key formulas, both derived under the assumption of an effectively
infinite population (sampling with replacement):

« Sample size n For margin of error e at confidence level 1 — a, let
= Zl—a/Z

be the critical value of the standard normal distribution. The required number
of injections is

2
Zp(1—p)

n =
62

« Confidence Interval (CI) After observing a sample proportion p over n
injections, the true failure probability lies within

p(l—p)

Cl =p+ =z

The Chosen parameters for the experimental campaigns in this work are:
o Confidence level 1 — a = 0.99, hence z ~ 2.576.
e Margin of error e = 0.05.

o Proportion estimate p = 0.5, a conservative assumption that each bit in a
target injection location is equally likely to reveal a manifest error.

Substitution into the first formula yields

(2.576)2 x 0.5 x (1 — 0.5)
= ~~ 660.
" (0.05)2

Performing 666 injections per location ensures a 99% confidence level that the
observed outcome distribution deviates by no more than 4+5% from the true
probabilities.

82

Experimental Results

7.3 Experimental Results Before Hardening

In the following the results of injection campaigns before hardening are shown:

7.3.1 First Scenario

The first scenario (see subsection 7.3.1) comprises three primary tasks, QSRT,
TX, and RX, together with a timer callback function. This callback is driven
by a software timer, which is scheduled and executed by the FreeRTOS Timer
Daemon Task. Within the scenario, three workloads of increasing intensity have
been defined. Each workload differs solely in the number of iterations executed by
the three tasks and the timer callback, as well as in the size of the dataset that the
QSRT task must sort. Fault injection outcomes are organized into two categories,
transient and permanent faults, and reported separately for each workload.

83

Experimental Results

100 Injection outcome
OK =

SDC I

SDC (Delay) =3
Delay 3
Hang C—J
Crash =

Invalid —3
60

Execution Outcome %

20 -

Target

Figure 7.1: Injections on FreeRTOS variables NO ECC (Transient Faults)
QSRT items 1000 TX iterations 5 Timer iterations 5 RX iterations 10

0 o
10 Injection outcome

SDC (Delay) 3
Delay 3
Hang C—
Crash S

Invalid 3
60

Execution Outcome %

20 -

Target

Figure 7.2: Injections on FreeRTOS variables NO ECC (Permanent Faults)
QSRT items 1000 TX iterations 5 Timer iterations 5 RX iterations 10

84

Experimental Results

100 ™ _—
Injection outcome
OK =
SDC
SDC (Delay) 3
80 1 7 Delay =)
Hang C—J
Crash S
Invalid —3
60 -
40 4
20 -
0

Target

Execution Outcome %

Figure 7.3: Injections on FreeRTOS lists NO ECC (Transient Faults) QSRT
items 1000 TX iterations 5 Timer iterations 5 RX iterations 10

100 [] Injection outcome

OK m

SDC N

SDC (Delay) =3

80 - 7 Delay

Hang]

Crash

Invalid
60 |
40 h
20 -)
0

B B B B ot oty tr tp
Cry Py Phoy Py o, o, By, Ry, N "% .
%, %, . . %

Execution Outcome %

%
O}'\S‘ﬁ"os'os

Target

Figure 7.4: Injections on FreeRTOS lists NO ECC (Permanent Faults) QSRT
items 1000 T'X iterations 5 Tumer iterations 5 RX iterations 10

85

Experimental Results

100 Injection outcome
OK =

SDC .

SDC (Delay) 3
Delay 3

Hang C—J
Crash S
Invalid —3

80 -

60 -

Execution Outcome %

20

Target

Figure 7.5: Injections on FreeRTOS current TCB NO ECC (Transient
Faults) QSRT items 1000 TX iterations 5 Timer iterations 5 RX iterations 10

100 P
Injection outcome
OK

SDC .

SDC (Delay) =3
Delay 3
Hang]
Crash

Invalid 3
60

Execution Outcome %

20 -

Target

Figure 7.6: Injections on FreeRTOS current TCB NO ECC (Permanent
Faults) QSRT items 1000 TX iterations 5 Timer iterations 5 RX iterations 10

86

Experimental Results

100 -
Injection outcome

OK =

SDC

SDC (Delay) 3
Delay 3
Hang C—J
Crash S
Invalid —3

80 -

60

Execution Outcome %

20

Target

Figure 7.7: Injections on FreeRTOS pointers NO ECC (Transient Faults)
QSRT items 1000 TX iterations 5 Timer iterations 5 RX iterations 10

100 Injection outcome

OK

SDC .

SDC (Delay) =3
Delay 3
Hang]
Crash IR
Invalid 3

80 -

40

Execution Outcome %

20 -

Target

Figure 7.8: Injections on FreeRTOS pointers NO ECC (Permanent Faults)
QSRT items 1000 TX iterations 5 Timer iterations 5 RX iterations 10

87

Experimental Results

100 Injection outcome
OK =

SDC I

SDC (Delay) =3
Delay 3
Hang C—J
Crash =

Invalid —3
60

Execution Outcome %

20 -

Target

Figure 7.9: Injections on FreeRTOS variables NO ECC (Transient Faults)
QSRT items 5000 TX iterations 10 Timer iterations 10 RX iterations 20

100 P
Injection outcome
OK

SDC .

SDC (Delay) =3
Delay 3
Hang]
Crash IR
Invalid 3

80 -

60

40

Execution Outcome %

Target

Figure 7.10: Injections on FreeRTOS variables NO ECC (Permanent Faults)
QSRT items 5000 TX iterations 10 Timer iterations 10 RX iterations 20

88

Experimental Results

100 -
Injection outcome
oK =
SDC -
SDC (Delay) ==
80 - Delay ==
Hang C—J
< Crash S
) Invalid 3
E 60
.
3
S)
c
S
3 40f
(7]
o]
20
0
0,
D
%, ’b@?
G
14

Target

Figure 7.11: Injections on FreeRTOS lists NO ECC (Transient Faults) QSRT
items 5000 TX iterations 10 Timer iterations 10 RX iterations 20

100 Injection outcome
OK
SDC -
SDC (Delay) B
80 I~ Delay B
Hang]
= Crash =
E Invalid 3
E 60 4
g
=3
o
=4
S
S 40 4
o
&
20 4
0 -
O B B B O Oyt % %K K ds do by Aty oty %%
% P hp e Py P O, T, Do, By T By TR o Ty Ty N T T, T, T, T, R By By Ry
S, Ty ey ey Ty oy % %, O, O, O, O, Ty, My, K, K, S0, R0, G G, G G QR o,
0, %0, %, %o, S, Yo Y Ye, %, %, a & % % Sy Sy e, e, op e ey oy U . T, R
Do o5 Doy o Iy Do Cop o Uy U T T Tp op oy, oy, on 0 . oy . 8 %
Bty D, e, e, T, Nty S, %, B, e 0, K Ry o B O o Yo " Py Oy
Yo i Ko Ko K K K K o %, %0, On xR, Ry, K e e %
¥, %, %, b, 0 % 02, %0y, e, B, Gy 0, 1, T, % 5
0D, e, 2, e, 0, 0 L %, o 0 7 g, By ¢ %, D 7 % %, % %
Pty ey T %, T P Lo,
o
e
%, 4
Target

Figure 7.12: Injections on FreeRTOS lists NO ECC (Permanent Faults)
QSRT items 5000 TX iterations 10 Timer iterations 10 RX iterations 20

89

Experimental Results

100 —
Injection outcome

OK 3

SDC I

SDC (Delay) 3
Delay 3
Hang C—J
Crash IR
Invalid 3

80 -

40

Execution Outcome %

20 -

Target

Figure 7.13: Injections on FreeRTOS current TCB NO ECC (Transient
Faults) QSRT items 5000 TX iterations 10 Timer iterations 10 RX iterations
20

100 Injection outcome

OK =3

SDC s

SDC (Delay) 3
Delay 3
Hang C—J
Crash .
Invalid ——3

80 -

40

Execution Outcome %

Target

Figure 7.14: Injections on FreeRTOS current TCB NO ECC (Permanent
Faults) QSRT items 5000 7X iterations 10 Timer iterations 10 RX iterations
20

90

Experimental Results

100 Injection outcome

OK

SDC .

SDC (Delay) 3
Delay 3
Hang]
Crash IR
Invalid 3

80

60 -

40

Execution Outcome %

Target

Figure 7.15: Injections on FreeRTOS pointers NO ECC (Transient Faults)
QSRT items 5000 TX iterations 10 Timer iterations 10 RX iterations 20

100 Injection outcome

OK s

SDC I

SDC (Delay) B
Delay 3
Hang]
Crash .
Invalid ——3

80 -

40 -

Execution Outcome %

Target

Figure 7.16: Injections on FreeRTOS pointers NO ECC (Permanent Faults)
QSRT items 5000 TX iterations 10 Timer iterations 10 RX iterations 20

91

Experimental Results

100 Injection outcome
OK =3

SDC

SDC (Delay) &
Delay 3
Hang
Crash S
Invalid —3

80 -

60

40 -

Execution Outcome %

20 -

Target

Figure 7.17: Injections on FreeRTOS variables NO ECC (Transient Faults)
QSRT items 10000 TX iterations 20 Timer iterations 20 RX iterations 40

100 Injection outcome
OK s

SDC I

SDC (Delay) 20
Delay 3
Hang]
Crash .

Invalid 3
60

Execution Outcome %

20

Target

Figure 7.18: Injections on FreeRTOS variables NO ECC (Permanent Faults)
QSRT items 10000 TX iterations 20 Timer iterations 20 RX iterations 40

92

Experimental Results

100 — -
Injection outcome
OK mmmm
SDC mm.
SDC (Delay)
80 - 7 Delay =
Hang
< Crash S
) Invalid 3
E 60f g
£
3
o
<
2
S 40 B
(7]
&
20 B
0 L |
+ % % % x
B, % %, e, Py, e, T, P P Phe P
Wo o Uy Uy Uy Uy, ¢ (¢ 7. 9%
b Do, Por B D B e, e, S ©
% %8, %6, P P . P, e a0, %
Dy ON O & S, S, S, O G Ty Ty,
T, 7, N, S5, Sy G, s Sy %0, %o, Mg,
S, %, R R Y T T N0, S S T s
2y, 2y G 2 Ly o S R R
Dy P ¢ X 14 2% %, % ‘G
% 7 < % %
%, %, v 4 2
2%
4

Target

Figure 7.19: Injections on FreeRTOS lists NO ECC (Transient Faults) QSRT
items 10000 TX iterations 20 Timer iterations 20 RX iterations 40

100] Injection outcome
OK
SDC I
SDC (Delay) 20
8o 7 Delay ==
Hang]
< Crash .
o Invalid ——3
E 60 4
=
=]
$)
=4
o
2
S a0 4
1]
X
&
20 |
0,o,o,o,o,o,o+o+o****+,<,+,o+,\+,\+¢+\,\++++****7
i, %, P, b, e, o, o By Py P By T, R, o T 0 My e, By ey oy, Pt Pty P, Py
%, %%, %0, %, 0, s, Y, L, %, %, ‘@,»”o %, %, S O %, 2, Yoy Yoy Yoy Yoy %, "s,>? "@,»
By, By, By By By Ry, B Ry, Con S0, 2y, 0, TR TR g Y Oy, %, P, P P, P, e, e Ry, Ry,
T % T T Ty T K K, Ry, Ry G, O, % 0, on on By R Ko R R Ry Ty Ty
e G, By %, G B, By, o e T Ky Ry e R, 0 Y Y O g G R oy e, %
X, W, VU, U, W, U, 4, Y 0, %, 2 % o ‘oﬁz%’%”@
v) g VY ’/‘%;F(Qg‘(f"!}%!}% o R ’k;/
0% (1)/(‘ K’,/
k4

Target

Figure 7.20: Injections on FreeRTOS lists NO ECC (Permanent Faults)
QSRT items 10000 TX iterations 20 Timer iterations 20 RX iterations 40

93

Experimental Results

00 —
! Injection outcome

OK 3

SDC I

SDC (Delay) 3
Delay 3
Hang C—J
Crash IR
Invalid 3

80 -

40

Execution Outcome %

20 -

Target

Figure 7.21: Injections on FreeRTOS current TCB NO ECC (Transient
Faults) QSRT items 10000 TX iterations 20 Timer iterations 20 RX iterations
40

100 Injection outcome

OK =3

SDC s

SDC (Delay) 3
Delay 3
Hang C—J
Crash .
Invalid ——3

80 -

40

Execution Outcome %

Target

Figure 7.22: Injections on FreeRTOS current TCB NO ECC (Permanent
Faults) QSRT items 10000 TX iterations 20 Timer iterations 20 RX iterations
40

94

Experimental Results

100 —
Injection outcome

OK =3

SDC

SDC (Delay) &
Delay 3
Hang
Crash S
Invalid —3

80 -

40 -

Execution Outcome %

Target

Figure 7.23: Injections on FreeRTOS pointers NO ECC (Transient Faults)
QSRT items 10000 TX iterations 20 Timer iterations 20 RX iterations 40

100 Injection outcome

OK s

SDC I

SDC (Delay) B
Delay 3
Hang]
Crash .
Invalid ——3

80 -

40 -

Execution Outcome %

Target

Figure 7.24: Injections on FreeRTOS variables NO ECC (Permanent Faults)
QSRT items 10000 TX iterations 20 Timer iterations 20 RX iterations 40

95

Experimental Results

7.3.2 Second Scenario

In contrast to the first scenario, this experiment exercises five benchmarks from
the TACLe suite (see subsection 7.3.2), all of which have been ported to the
FreeRTOS—based framework. The selected benchmarks are SHA, FFT, CUBIC,
HUFF__DEC, and ADPCM__ENC, each representing typical computation pat-
terns found in embedded-industry applications. As in the previous scenario, fault-
injection outcomes are reported separately for transient and permanent injection
faults, thereby enabling an assessment of each benchmark’s fault susceptibility
under realistic workload conditions.

96

Experimental Results

100 Injection outcome
OK =

SDC s

SDC (Delay) =3
Delay 3
Hang C—J
Crash =

Invalid —3
60

Execution Outcome %

20 -

Target

Figure 7.25: Injections on FreeRTOS variables NO ECC (Transient Faults)
Tacle Benchmarks: SHA, FFT, CUBIC, HUFF _DEC, ADPCM_ENC

100 Injection outcome

SDC (Delay) 3
Delay 003
Hang C—
Crash S

Invalid 3
60

Execution Outcome %

20 -

Target

Figure 7.26: Injections on FreeRTOS variables NO ECC (Permanent Faults)
Tacle Benchmarks: SHA, FFT, CUBIC, HUFF_DEC, ADPCM__ENC

97

Experimental Results

100 [] Injection outcome
OK mmmm
SDC -
SDC (Delay) B
80 1 7 Delay =)
Hang C—J
< Crash S
o Invalid 3
s 60 e
3
5
3 4or B
o]
20 B
P X % x
“up b, O Ot '°+4> ’%f’*’p %, %, By 2ty e, +O +s,, *’?@*’& R, S, ey Ty T e, o, Rty 2 2
Ly I Iy Ly % % 0, %, Yoo, K, %, % Sy, O B, % @s_ s% o Sy 0 D Py ",
%, ‘94(Ty, 424\?%@(‘%(‘%(@%)s‘*(%’;:%\r e %"’:%‘90«@@/09; ’S»%Os *% %”(%, %’(g ,)’;»)%5; K %’>‘
/ B B Lo Lo Mo B Mok b K K S S Dy Dy Sy, %y EOTIR O T
% J”’//(” 2 @/&(’ N '“"’kjﬁ"";’”’/o@“”fé%% T,
0 o, > Yo, 20, 2, 7 Ry Ry 7 e %, “ RN
% ('J?'/ »
k4

Target

Figure 7.27: Injections on FreeRTOS lists NO ECC (Transient Faults) Tacle
Benchmarks: SHA, FFT, CUBIC, HUFF _DEC, ADPCM_ENC

100 —
InJectlon outcome
OK
SDC -
SDC (Delay) B
8o Delay E==m
Hang]
ES Crash IR
E Invalid 3
E 60 4
g
5
o]
c
S
3 a0t i
[
&
20 4
0 L
+ X% do to tx ta tp dy H t * %%
Py Py b Chpy Phy Phy Py o, %o, Ko, Ko, Ko ot A dp de gt 4 g K% %
R, T, o 'Ps 'Ps'? ey ‘P@ %, %, +O % +OL+L8/)-6 Ru Sy o g, o 0 oy %1'+(?/+Q/+OL+OL
& U % %, . e, % % Sy Sy P, o,) Yoy o) e b U e, K
J’»J'»J'»J’»Jf»*»*»*»%@o&‘& %0 0 Do o0 B, %y Por o T Y e S 8
g Ry Ry Ry R, R R, 4)\%)\%6‘”}@0’/\0 9, e '%0 %, A, N . %, s, @/\/7,)/’)%4 %, %,
U, X, Ko X5, Ko X, Ko Ko, o i O, g % Y, %, %%, 9%, O, Ry Ry S i, o e P, e, B,
%, oty R, Ry R o R Ve K i Sy e, Sy e T, G K S K s, O
O U 10,) sty ey 2, D g e, By 22 G,
N 2“9 "% 7 %y, %, o %, %, 2 2, %,
Gy “
k4
Target

Figure 7.28: Injections on FreeRTOS lists NO ECC (Permanent Faults)
Tacle Benchmarks: SHA, FFT, CUBIC, HUFF_DEC, ADPCM_ENC

98

Experimental Results

100 Injection outcome

OK =

SDC .

SDC (Delay) 3
Delay 3
Hang C—J
Crash S
Invalid —3

80 -

60 -

Execution Outcome %

Target

Figure 7.29: Injections on FreeRTOS current TCB NO ECC (Transient
Faults) Tacle Benchmarks: SHA, FFT, CUBIC, HUFF_DEC, ADPCM_ENC

100 P
Injection outcome
OK

SDC .

SDC (Delay) =3
Delay 3
Hang]
Crash

Invalid 3
60

40

Execution Outcome %

20 -

Target

Figure 7.30: Injections on FreeRTOS current TCB NO ECC (Permanent
Faults) Tacle Benchmarks: SHA, FFT, CUBIC, HUFF_DEC, ADPCM_ENC

99

Experimental Results

100 Injection outcome

OK =

SDC

SDC (Delay) 3
Delay 3
Hang C—J
Crash S
Invalid —3

60 -

Execution Outcome %

20 -

Target

Figure 7.31: Injections on FreeRTOS pointers NO ECC (Transient Faults)
Tacle Benchmarks: SHA, FFT, CUBIC, HUFF _DEC, ADPCM_ENC

100 P
Injection outcome
OK

SDC .

SDC (Delay) =3
Delay 3

Hang]
Crash IR
Invalid 3

60 -

Execution Outcome %

20 -

Target

Figure 7.32: Injections on FreeRTOS pointers NO ECC (Permanent Faults)
Tacle Benchmarks: SHA, FFT, CUBIC, HUFF_DEC, ADPCM_ENC

100

Experimental Results

7.4 Results Summary by Target Type First Sce-
nario

This section presents a preliminary analysis of injection outcomes, grouped by
target type, based on the results shown in the preceding figures for the first scenario
case.

7.4.1 Injection Results on FreeRTOS Variables (ECC Dis-
abled)

o uxDeletedTasksWaitingCleanUp, xIdleTaskHandle, xTimerQueue
All three targets exhibit a consistent 100% crash rate across every work-
load.

— uxDeletedTasksWaitingCleanUp is used by the IDLE task to reclaim
deleted task resources. Corrupting it causes the IDLFE task to assume
non-existent list entries, leading to a crash.

— xIdleTaskHandle and xTimerQueue are pointer variables; corrupting
either pointer predictably results in an immediate crash.

uxCurrentNumberOfTasks, xTickCount Both variables yield mostly OK
outcomes, with resilience improving at higher workloads. Occasional crashes
indicate limited sensitivity under certain timing conditions.

uxTopReadyPriority Highly critical: injections almost always produce
a CRASH in the transient-fault scenario and a slight DELAY in the
permanent-fault case, across all workloads.

xPendedTicks Exhibits consistent behavior across workloads, with crash
rates slightly decreasing as workload increases. The dominant failure mode is
SDC (Delay), with occasional pure DELAY. Explanation: after scheduler
suspension, the kernel loops to process all pending ticks. Corrupting high-order
bits of xPendedTicks inflates this count, causing the RTOS to spend excessive
time handling "phantom" ticks.

xSchedulerRunning, xYieldPending, xXNumOfOverflows,
uxTaskNumber, xTimerTaskHandle These variables show low sensitivity:
most injections yield OK, with a small fraction of CRASH outcomes that
further decrease at higher workloads.

101

Experimental Results

7.4.2 Injection Results On FreeRTOS Lists With ECC Dis-
abled

« pxReadyTasksLists[-1] Transient faults yield over 50% OK and a few
percent Delay; the remainder are Crash. Permanent faults increase the
Crash rate. Crash frequency decreases as workload grows, since corruptions of
critical List_t fields (e.g. pxIndex) trigger failures.

» pxReadyTasksLists[0][0] Similar pattern: permanent faults produce more
Crashes, with crash rates falling under heavier load. List nodes contain
vulnerable pointers (pxNext, pxPrevious, pvOwner); corrupting any of these
usually causes a Crash.

» pxReadyTasksLists[1][0] Permanent faults again maximize Crashes, which
decline as workload increases. Occasional SDC and SDC Delay appear under
permanent faults. Since this priority hosts QSRT and TX tasks, corrupting
xItemValue (used for priority-sorting) can misplace tasks in the round-robin
queue, leading to Delay or SDC Delay.

» pxReadyTasksLists[1][1] Follows the same trend, with a higher share of
SDC Delay in permanent faults. Transient injections here result in fewer
Crashes than at other list positions.

» pxReadyTasksLists[2][0] Predominantly Crashes, marginally decreasing
under heavier workloads.

» pxReadyTasksLists[6][0] Transient faults cause mostly Crashes; permanent
faults yield about 15% Delay. This priority runs the Timer Daemon Task,
permanent faults disrupt its scheduling, resulting in Delay.

o Other task lists (xDelayedTaskList1[-1], xDelayedTaskList2[-1],
*xpxDelayedTaskList [-1], *pxOverflowDelayedTaskList [-1],
xPendingReadyList [-1], xTasksWaitingTermination[-1],
xSuspendedTaskList [-1], xActiveTimerList1[-1],
xActiveTimerList2[-1], *pxCurrentTimerList [-1],
*px0verflowTimeList [-1]):

Mostly Invalid (empty lists at injection); occasional SDC when non-empty.
High timing sensitivity suggests broad-range injection timing is necessary.

o *pxDelayedTaskList 100% Crash across all workloads. Dereferencing leads
to a List_t whose fields (uxNumberOfItems, pxIndex, xListEnd) are highly
sensitive.

102

Experimental Results

*pxOverflowDelayed TaskList Predominantly Delay in both fault types,
growing with workload. As an inactive delayed-list pointer, it is timing-critical
but less prone to Crash.

xPendingReadyList Mostly OK, with 20% Crash (higher in permanent
faults). Scheduler lock intervals here are brief, and injections target the List_t
structure rather than individual nodes, reducing crash likelihood.

xTasksWaitingTermination High Crash rates (greater for permanent faults
and under heavier load). Consistent Delay outcomes arise from the IDLE hook
that polls uxNumberOf Items until zero (see 6.6); corruptions delay simulation
termination.

xSuspendedTaskList Mostly OK with a substantial Crash fraction. Tran-
sient faults cause more Crashes due to timing variability; crash rates fall as
workload increases.

xActiveTimerList1l Primarily OK, significant Delay, and few Crash.
Crashes decrease with load; Delays remain steady. Corrupting timer node
pointers causes Crashes; corrupting xItemValue postpones timer expiry, caus-
ing Delay.

xActiveTimerList2 Similar to xActiveTimerList1 but less crash-prone, as
the two lists swap on tick-count overflow. Delays remain consistent.

*pxCurrentTimerList and *pxOverflowTimerList Point to the active
(non-overflowed) and overflowed timer lists, respectively. Both yield mostly
Delay, since corrupting xItemValue defers all timer expirations far into the
future.

7.4.3 Injection Results on FreeRTOS Current TCB with

ECC Disabled

The most insensitive fields in the current TCB are identified as follows:

pxCurrentTCB.pxStack
pxCurrentTCB.pcTaskName [-1]
pxCurrentTCB.uxTCBNumber
pxCurrentTCB.uxTaskNumber

pxCurrentTCB.uxBasePriority

103

Experimental Results

pxCurrentTCB.uxMutexesHeld

pxCurrentTCB.pxTaskTag

pxCurrentTCB.ulRunTimeCounter

pxCurrentTCB.ulNotifiedValue

pxCurrentTCB.ucNotifyState

pxCurrentTCB.ucDelayAborted

Most of these injection targets yield OK outcomes, with a crash rate between
approximately 2% and 7%. Interestingly, the crash frequency decreases as work-
load increases. In critical kernel paths, none of these fields see frequent use. For
example, pxStack is unused in the POSIX port, and neither uxBasePriority nor
uxMutexesHeld affect this benchmark suite, since no mutexes are held during the
experiment (further investigation is required for mutex-related scenarios). Fields
such as pxTaskTag, ulNotifiedValue, and ucNotifyState are not exercised by
these benchmarks. The names pcTaskName [-1], uxTCBNumber, and uxTaskNumber
serve only for debugging and do not influence FreeRTOS’s computations.
Permanent injections into pxCurrentTCB cause a 100% Crash rate across all work-
loads. Transient injections exhibit a small but growing SDC Delay as workload
increases. This delay likely arises when lower-order bits of the task pointer are
flipped: the pointer remains valid long enough for the RTOS to overwrite it, whereas
a permanent fault prevents any subsequent correction.

Note that *pxCurrentTCB and pxCurrentTCB. pxTopOfStack are semantically iden-
tical, since the first member of the TCB_t structure (see Section 4.5.1) is
pxTopO0fStack. In the POSIX port, this location is used to track each pthread that
backs a FreeRTOS task (see 6.4.2), making it highly sensitive.

The xStateListIten field also shows a high propensity for crashes in both transient
and permanent fault models, though the crash rate diminishes under heavier work-
loads. Permanent faults in this field induce about 16% Delay, whereas transient
faults yield roughly 1% SDC and SDC Delay.

For xEventListItem, transient faults predominantly result in OK outcomes (with
decreasing success under higher workloads), while permanent faults generate an
increasing fraction of crashes, which in turn slightly declines with workload.
Finally, injections into uxPriority produce crashes in both fault models, with the
crash rate rising slightly as workload grows. Each fault type also induces around
5% Delay. Such delays can occur if bit-flips lower the priority into a valid range;
flips of higher-order bits push the priority outside permissible bounds, leading to
out-of-range accesses in pxReadyTasksLists [Priority] and thus complete failure.

104

Experimental Results

7.4.4 Injection Results On FreeRTOS Pointers With ECC
Disabled

pxCurrentTCB, pxCurrentTCB.pxTopOfStack, pxCurrentTCB.pxStack,
pxCurrentTCB.pxTaskTag were already discussed in the section on current-TCB
targets and won’t be repeated here.

pxDelayedTaskList Yields predominantly Crash outcomes, with the crash rate
decreasing slightly as workload increases (both in permanent and transient
injection scenarios).

pxOverflowDelayed TaskList Exhibits mostly OK outcomes and approximately
2%-8% Crash, which also declines modestly under heavier workloads. This
pointer is therefore not highly sensitive to injection faults.
The FreeRTOS kernel periodically swaps these pointers (pxDelayedTaskList
and px0OverflowDelayedTaskList between xDelayedTaskList1 and
xDelayedTaskList2, automatically correcting the pointer values in the tran-
sient faults.

xIdleTaskHandle A critical pointer, particularly in the POSIX port, which
calls xTaskGetIdleTaskHandle() to delete the IDLFE task upon scheduler
shutdown. Here, injections yield mostly Crash, with only 30%-35% OK
results that remain essentially constant across all workloads.

pxCurrentTimerList Produces mainly Crash outcomes, with the crash fre-
quency rising slightly as the workload grows (in both permanent and transient
cases). Additionally, there are about 2%-5% Delay outcomes, likely due to
flipping the pointer to the alternate timer list, again with marginally more
delays under transient injection.

pxOverflowTimerList Also shows mostly Crash, but retains a consistent 10%
OK rate compared to pxCurrentTimerList. Delay outcomes here range from
10% to 17%, with the permanent-injection case exhibiting slightly more delays.

7.5 Results Summary by Target Type Second
Scenario
This section presents a preliminary analysis of injection outcomes, grouped by

target type, based on the results shown in the preceding figures for the second
scenario case.

105

Experimental Results

7.5.1 Injection Results on FreeRTOS Variables (ECC Dis-
abled)

The variables uxDeletedTasksWaitingCleanup, uxTopReadyPriority,
xIdleTaskHandle, and xTimerQueue exhibit the highest crash rates in both tran-
sient and permanent fault cases. In the transient case, uxTopReadyPriority also
yields a small fraction of SDC mis-scheduled tasks due to an incorrect top-ready
priority, but these SDC disappear under permanent faults, where delays dominate
instead. Both uxDeletedTasksWaitingCleanup and xIdleTaskHandle experience
nearly 100% crash rates for both fault types; xTimerQueue shows predominantly
crashes in both transient and permanent cases, with only minor delay outcomes in
the transient case.

The variable xPendedTicks produces predominantly delays (including SDC-delays)
under both transient and permanent faults. All other FreeRTOS variables in this
group yield mostly OK outcomes, with occasional crashes and delays appearing
only under transient faults.

7.5.2 Injection Results on FreeRTOS Lists (ECC Disabled)

Injections into pxReadyTasksLists[-1] and pxReadyTasksLists[0] [0] produce
consistent outcomes in both transient and permanent fault cases, with crash rates
rising under permanent faults. Minor delay outcomes remain roughly constant
between the two cases.

Faults injected into pxReadyTasksLists[1] [0], pxReadyTasksLists[1] [1],
pxReadyTasksLists[1] [2], pxReadyTasksLists[2] [0],

and pxReadyTasksLists[3] [0] yield predominantly crashes, supplemented by a
small fraction of delays. Crash frequency increases under permanent faults.

Both *pxDelayedTaskList and *pxOverflowDelayedTaskList exhibit mostly de-
lay outcomes, with a minor share of crashes that become slightly more frequent in
permanent faults.

xPendingReadyList behaves consistently across transient and permanent injec-
tions, returning mostly OK results with occasional crashes and slight delays.
xTasksWaitingTermination shows primarily crashes, more so under permanent
faults, with a small, steady fraction of delay outcomes in both cases.
xSuspendedTaskList yields mostly OK results, interspersed with some crashes
and very few delays; behavior is comparable for both fault types.

Faults injected into xActiveTimerListl and xActiveTimerList2 produce pre-
dominantly OK outcomes, a small number of delays, and an even smaller fraction
of crashes, which actually decrease under permanent faults.

Finally, injections into *pxCurrentTimerList and *px0OverflowTimerList result
mainly in delays, accompanied by a substantial share of OK outcomes and slight

106

Experimental Results

crashes that diminish in the permanent case.

All remaining list targets exhibit invalid outcomes, reflecting their high time-
sensitivity and the use of blocking features (e.g. vTaskDelay) in the benchmarked
applications.

7.5.3 Injection Results on FreeRTOS Current TCB (ECC
Disabled)

o pxCurrentTCB: 100% crashes under both transient and permanent faults.

o xpxCurrentTCB, pxCurrentTCB.pxTopO0fStack: Predominantly crashes, with
a small fraction of delays that decrease in the permanent-fault case.

o pxCurrentTCB.xStateListItem: Mostly OK outcomes in both scenarios,
with minor delays that become more frequent under permanent faults.

o All other targets in this group behave consistently across fault types, yielding
mostly OK results and a slight presence of crashes and delays.

7.5.4 Injection Results on FreeRTOS Pointers (ECC Dis-
abled)

o pxDelayedTaskList and pxOverflowDelayedTaskList Predominantly OK
outcomes under both transient and permanent faults. Compared to the first
benchmark scenario, pxDelayedTaskList is less sensitive, likely because this
scenario exercises blocking calls less thoroughly. Minor delays and occasional
crashes also occur.

o xIdleTaskHandle Mostly crashes in both fault scenarios, with a few consistent
delays.

o pxCurrentTCB and pxCurrentTCB.pxTopOfStack pxCurrentTCB experiences
100% crashes under both transient and permanent faults. pxCurrentTCB.pxTopOfStack
also fails in most injections, with slight delays that increase modestly under
permanent faults.

o pxCurrentTimerList and pxOverflowTimerList A mix of outcomes: crashes
dominate (with higher rates in permanent faults), delays occur more often
under permanent faults, and a substantial share of OK results persists in both
cases.

e pxCurrentTCB.pxStack and pxCurrentTCB.pxTaskTag Mostly OK outcomes
in both transient and permanent injections, with a small fraction of delays
and crashes that remain consistent across fault types.

107

Experimental Results

7.6 FreeRTOS Fault-Sensitive Locations

Analysis revealed numerous data-structure fields in the FreeRTOS kernel that are
highly vulnerable to injected faults. In particular, pointer variables emerged as the
most sensitive targets, surpassing even other critical fields such as
uxDeletedTasksWaitingCleanup, uxTopReadyPriority,
xNextTaskUnblockTime, and various list and list-node descriptors.

Given that pointers proved the most failure-prone locations, this thesis adopts a
selective hardening strategy focused on pointer variables within the FreeRTOS
kernel. By reinforcing only those elements with the highest risk of catastrophic
failure, the approach maximizes system resilience while limiting additional overhead.

7.7 Selective Hardening

Selective hardening applies protection only to the most critical code and data
regions. Analysis of the unprotected FreeRTOS fault-injection results revealed that
pointer variables are by far the most vulnerable targets in the kernel. Although
modern general-purpose architectures sometimes mitigate pointer corruption at the
application level via virtual memory or memory-protection units, these protections
rarely extend to the kernel itself. As a result, a corrupted kernel pointer can still
cause a complete system failure.

Micro-kernel designs address this gap by minimizing the kernel’s trusted computing
base, but they incur significant overhead from additional context switches. In
deeply resource-constrained embedded systems, where low latency and minimal
overhead are paramount, such an approach is often impractical. A more lightweight
alternative is selective hardening: identify the pointer-related data structures that
dominate system failure and apply targeted encoding or redundancy only to those
fields. This focused strategy delivers most of the reliability benefits of full fault
tolerance while keeping performance and code size overhead to a minimum.

7.7.1 Chosen Approach

Error-correcting codes (ECC) were selected for their minimal intrusiveness and
low overhead. In comparison, data-redundancy techniques, such as triplication
with majority voting, impose significant storage and runtime costs, requiring
majority-vote computation on each read and triple updates on each write.

7.7.2 Error Correcting Codes

Error Correcting Codes (ECC) are a fundamental tool for detecting and correcting
faults in stored or transmitted data. By appending carefully chosen parity bits to

108

Experimental Results

a block of user data, one can recover from a certain number of bit-flips, whether
induced by transient disturbances (e.g. cosmic rays, power-supply glitches) or by
permanent defects in memory or communication channels.

General Framework A linear block ECC transforms a data word of length
k into an n-bit codeword by adding r = n — k parity bits. On retrieval, the
received codeword ¢ € {0,1}" is tested against a set of parity-check equations. Any
inconsistency yields a nonzero syndrome vector, from which up to

t = \‘dmin - 1J
B 2

errors can be located and corrected. Here d,,;, denotes the minimum Hamming
distance of the code.

Key Performance Metrics

e Error Detection vs. Correction. A code of distance d,,;, can detect up to
dpin — 1 simultaneous bit-flips, and correct up to ¢t = | (dpyin — 1)/2].

n

» Storage Overhead. The ratio ? =

bandwidth required.

1 + ¢ quantifies the extra memory or

« Latency and Complexity. Encoding/decoding typically reduce to XOR
operations over {0,1}-vectors of length at most n, inducing additional read-
/write latency proportional to r and a hardware or software cost proportional

to O(n - r).

ECC are pervasive in embedded systems, storage devices (DRAM, flash), network
protocols, and any safety-critical application where undetected data corruption is
unacceptable.

7.7.3 Hamming Codes

Hamming codes form the canonical family of single-error—correcting, double-
error—detecting linear block codes. An (n,k) Hamming code is characterized
by

n=2"—-1, k=n-—r,

where 7 is the number of parity bits.

109

Experimental Results

Codeword Layout Place parity bits at positions whose indices are powers of
two, i.e. positions
124,...27 71

in the n-bit codeword. The remaining k£ positions carry the data bits in left-to-right
order.

Parity-Check Matrix Define the r xn parity-check matrix H so that its columns
enumerate all nonzero binary vectors of length r. For the (7,4) code (r = 3), one
has

1 01

H=|0 11

000

with columns labelled by positions 1,...,7.

_ o O

101
01 1},
111

Encoding Given a data vector d € {0,1}*, solve for the parity bits p € {0,1}"
such that

H<§> =0 (mod?2).

The full codeword is then ¢ = (p|d) € {0,1}".

Decoding Upon receiving ¢, compute the syndrome
s = Hc" mod 2.
o If s =0, no errors are detected.

o If s # 0, interpret the binary vector s as an integer in {1,...,n}; this index
pinpoints the single flipped bit, which is then inverted to correct the error.

Summary of Properties
e Minimum Hamming distance: dy, = 3.
 Error capabilities: single-bit correction (¢t = 1), double-bit detection.
o Overhead: r/(2" — 1) fraction of extra bits.
o Complexity: encoding and decoding in O(nr) bit-wise XOR operations.

Thanks to their extremely low decoding complexity and modest overhead, Hamming
codes are ubiquitous in memory systems (e.g. ECC-protected DRAM) and serial-
link controllers. In particular, they are well suited for protecting critical pointer
and control-word data in real-time kernels (e.g. FreeRTOS), where single-bit faults
dominate and high reliability is required.

110

Experimental Results

7.7.4 Unused Bits In Pointer Variables

This work is inspired by Ahmed et al. [22], which embeds linear-block ECC parity
directly into neural-network weights via a multi-task learning objective. Although
the present application does not involve neural networks, the technique of co-
locating parity bits with primary data bits serves as the foundation for the chosen
pointer-hardening strategy.

All experiments employ simulated FreeRTOS POSIX and Windows ports compiled
as 64-bit x86_ 64 binaries. Although these binaries nominally use 64-bit pointers,
modern CPU and MMU do not implement the full 254 address space. In practice,
hardware limits both physical and virtual addresses to a smaller subset, typically
48 bits or lower on current AMD and Intel consumer processors. For example, on a
Linux system with an AMD Ryzen 9 7950X processor, the command

cat /proc/cpuinfo | grep address
address sizes : 48 bits physical, 48 bits virtual

reveals that only 48 of the 64 pointer bits are actually used. Consequently, the
unused high-order bits can be repurposed to embed ECC parity directly within
each pointer.

7.7.5 Hamming ECC Implementation

This module encodes and decodes 48-bit data values (e.g. pointers) into a 54-bit
Hamming code stored in a 64-bit word. It enables detection and correction of any
single-bit error before extracting the original data.

Configuration

o« DATA BITS = 48, PARITY BITS = 6.
The six parity bits satisfy the Hamming requirement 27 > p +m + 1 for
m = 48.

o A compile-time check ensures DATA_BITS + PARITY_BITS < 64.

Encoding

The entry point is:

Listing 7.1: Hamming Encode Function

t|uintptr_t _ ullHammingEncode (uintptr_t ullData)

e
3 uintptr_t ullCodeword = prvAddRedundantBits(ullData);
x ullCodeword = prvComputeParity (ullCodeword) ;

111

5

Experimental Results

return ullCodeword;

1)

16

NN N N NN
I o o ok @

prvAddRedundantBits Scans bit positions 1-(DATA_BITS+PARITY_BITS),
skips the power-of-two indices reserved for parity, and packs the 48 data bits (LSB
first) into the remaining slots.

Listing 7.2: prvAddRedundandBits() Function

|}

uintptr_t prvAddRedundantBits(uintptr_t ullData)

{
uintptr_t ullEncodedData = 0;
/*% Tracks which data bit we are placing (starting at LSB). x/
size_t ulDataBitIndex = 0;
/*% Bit positions are counted starting from 1 as Hamming power of
two positions require counting from 1 and not 0. This is taken
into account when accessing the underlying bits with the correct
position. x/
for (size_t ulPos = 1; ulPos <= DATA_BITS + PARITY_BITS; ulPos++)
{
/#*x Check if the current position is reserved for a parity
bit. x/
it (prvlisPowerOfTwollndexed(ulPos))
{
/*% Parity bit slot: leave as 0 for now. x/
continue ;
}
/%% Otherwise, take the next data bit from ’'ulData’ and place
it. =/
bool bBit = (ullData >> ulDataBitIndex) & 1ULL;
if (bBit)
{
/%% Take into account 1 based indexing when accessing the
underlying bits. x/
ullEncodedData |= (1ULL << (ulPos — 1));
}
ulDataBitIndex++;
}
return ullEncodedData ;

prvComputeParity Iterates over each parity position p = 1,2,4,8,16,32, calls
prvComputeParityForBitPosition to XOR the appropriate pattern of bits, and
writes the result with prvSetBit1Indexed.

Listing 7.3: prvComputeParity() Function

i|uintptr_t prvComputeParity (uintptr_t ullEncoded)

112

Experimental Results

I

3 for (size_t ulP = 1; ulP <= DATA_BITS + PARITY_BITS; ulP x= 2)

4 {

5 if (ulP > DATA BITS + PARITY_ BITS)

6 {

7 break;

)

9 bool bParityBitValue = prvComputeParityForBitPosition (
ullEncoded , ulP, DATA BITS + PARITY BITS);

10 prvSetBitlIndexed(&ullEncoded , ulP, bParityBitValue);

1 }

12 return ullEncoded;

13 }

prvComputeParityForBitPosition computes the parity for a specific bit posi-
tion.

Listing 7.4: prvComputeParityForBitPosition() Function

i|bool prvComputeParityForBitPosition (uintptr_t ullCodeWord, size t
ulParityBitPosition , size_t ulEncodedWordBitLength)

|

3 bool bParity = OUL;

1

5 /**% Starting at ulParityBitPosition, process a number of bits
equal to the value of ulParityBitPosition, skip a number of bits
equal to the value of ulParityBitPosition, etc... x/

6 for (size_t ulPos = ulParityBitPosition; ulPos <=
ulEncodedWordBitLength; ulPos 4= 2 * ulParityBitPosition)

7 {

8 /*x For the next positions represented by the value of
ulParityBitPosition , XOR the bits to compute the parity. x/

9 for (size_t ull = 0; ull < ulParityBitPosition && (ulPos +
ull) <= ulEncodedWordBitLength; ull+4++)

10

11 bool bBitVal = prvGetBitlIndexed (ullCodeWord, ulPos + ull
)

12 bParity "= bBitVal;

13 }

14 }

15 return bParity;

16 }

Decoding

The entry point is:

Listing 7.5: Hamming Decode Function

113

[SUR SR

16

17

18

19

N

VNN N
» w N

Experimental Results

uintptr_t _ ullHammingDecode (uintptr_t ullCodeWord)

{
uintptr_t ullCorrected = prvCorrectError (ullCodeWord) ;
uintptr_t ullData = prvExtractData(ullCorrected);
return ullData;

}

prvCorrectError Computes a syndrome by clearing each parity bit in turn,
recomputing its parity, and comparing with the stored bit. Any mismatch adds
that parity position to the syndrome. If the syndrome is nonzero, flips the bit at
that position to correct a single-bit error.

Listing 7.6: prvCorrectError() Function

uintptr_t prvCorrectError (uintptr_t ullCodeWord)

{

size__t ulSyndrome = OUL;
/**x Loop over the parity bits to compute the syndrome. x/
for (size_t ulP = 1UL; ulP <= DATA_BITS + PARITY_BITS; ulP x= 2)
{

if (ulP > DATA BITS + PARITY_ BITS)

{

break ;

}

/%% Temporarily clear the bit at this parity position to
ensure the parity calculation is done exactly as during the
original encoding, taking into account the data bits and parity
bits other than self. x/

uintptr_t ullTemp = ullCodeWord & ~(1ULL << (ulP — 1));

size_t ulComputedParity = prvComputeParityForBitPosition (
ullTemp, ulP, DATA_BITS + PARITY_BITS);

size_t ulStoredParity = prvGetBitlIndexed (ullCodeWord, ulP);

if (ulComputedParity != ulStoredParity)

{

ulSyndrome 4= ulP;

}
if (ulSyndrome != 0)

vInjectorIoPrintDebug ("ECC: detected error at bit %lu...
correcting error!\n", ulSyndrome);

/x% Correct the error at the position indexed by the value of
the syndrome. Take into account 1 indexed based counting. =/

ullCodeWord "= (1ULL << (ulSyndrome — 1));
return ullCodeWord;

}

114

N

Experimental Results

prvExtractData Reverses prvAddRedundantBits by scanning positions
1-(DATA_BITS+PARITY_BITS), skipping parity slots, and rebuilding the origi-
nal 48-bit value in LSB order.

Listing 7.7: prvExtractData() Function

uintptr_t prvExtractData(uintptr_t ullCodeWord)

{
uintptr_t ullData = OULL;
size_t ulDataBitIndex = OUL;
for (size_t ulPos = 1UL; ulPos <= DATA_BITS + PARITY_BITS; ulPos
++)
{
if (prvlisPowerOfTwollndexed(ulPos))
{
continue;
}
bool bBitVal = prvGetBitlIndexed (ullCodeWord, ulPos);
ullData |= ((uintptr_t)bBitVal << ulDataBitIndex);
ulDataBitIndex+-+;
}
return ullData ;
}
Public API

All ECC routines are declared in hamming.h. Two primary macros,
ullHammingEncode (ptr) and ullHammingDecode(cw), wrap the underlying func-
tions with optional debug instrumentation and port-specific dispatch.

Listing 7.8: hamming.h header file

#ifndef FREERTOS ECC HAMMING H

#define FREERTOS ECC HAMMING H

s|#include <stdint.h>

#ifdef _WINDOWS SOURCE

#define _ FILE NAME _ (strrchr(_ FILE | ’\\'’) ? strrchr(_ _FILE , ~’
W) + 1 : FIE)

#endif /+x WINDOWS SOURCE x/

#ifdef DEBUG

115

Experimental Results

15| /#% @brief This function takes a 64 bit pointer representation and
uses the unused bits of the pointer to compute a Hamming codeword
containing a number of parity bits interleaved with the bits of
the orignal data. @param ullData The integer value of the pointer
on which to apply the Hamming encoding. @Qparam pcFile Name of the
file that called this function. @param pcFunc Name of the function
that called this function. @param iLine Line number of the source
file that called this function. @param pcVarName Name of the
pointer being encoded. @return Returns the integer representation
of encoded pointer. This pointer value is not suitable for
dereferencing as it needs to be decoded first. x/
6| uintptr_t _ ullHammingEncode (uintptr_t ullData, const char spcFile,
const char spcFunc, int iLine, const char xpcVarName);
17
13| /%% @brief This function undoes what was done during vHammingEncode
by reconstructing the original pointer value from the encoded
pointer value. @param pvCodeWord The encoded pointer previously
encoded by vHammingEncode (). @param pcFile Name of the file that
called this function. @param pcFunc Name of the function that
called this function. @param iLine Line number of the source file
that called this function. @param pcVarName Name of the pointer
being decoded. @return Returns the original pointer integer
representation value. =/
| uintptr_t _ ullHammingDecode (uintptr_t ullCodeWord, const char xpcFile
, const char xpcFunc, int iLine, const char xpcVarName);

1¢

20
21| #else
22
23| /#% @brief This function takes a 64 bit pointer representation and
uses the unused bits of the pointer to compute a Hamming codeword
containing a number of parity bits interleaved with the bits of
the orignal data. @param ullData The integer value of the pointer
on which to apply the Hamming encoding. @Qreturn Returns the
integer representation of encoded pointer. This pointer value is
not suitable for dereferencing as it needs to be decoded first. */
24| uintptr_t _ ullHammingEncode(uintptr_t ullData);

25
26| /**% @brief This function undoes what was done during vHammingEncode
by reconstructing the original pointer value from the encoded
pointer value. @param pvCodeWord The encoded pointer previously
encoded by vHammingEncode(). @return Returns the original pointer
integer representation value. x/

o7l uintptr__t _ullHammingDecode (uintptr_t ullCodeWord) ;

28

#endif /+x DEBUG x/

2¢

30

si|#ifdef _RECC_

32

ss|#ifdef _POSIX_ SOURCE

116

34
35

36

38

43

S

Experimental Results

#ifdef DEBUG

i7|#define ullHammingEncode (ullData) ((typeof(ullData))_ullHammingEncode

((uintptr_t)ullData, FILE NAME |, func_, _ LINE | #ullData))
#define ullHammingDecode (ullData) ((typeof(ullData))_ullHammingDecode
((uintptr_t)ullData, _ FILE NAME , _ func_ , _ LINE__, #ullData))

#else

#define ullHammingEncode(ullData) ((typeof(ullData))_ullHammingEncode
((uintptr_t)ullData))

#define ullHammingDecode(ullData) ((typeof(ullData))_ullHammingDecode
((uintptr_t)ullData))

s|#endif /xx DEBUG x/

#elif defined (_WINDOWS SOURCE)
#ifdef DEBUG

#define ullHammingEncode (ullData) ((__typeof _ (ullData))
_ullHammingEncode ((uintptr_t)ullData, _ FILE NAME _, _ func__,
__LINE__, #ullData))

#define ullHammingDecode(ullData) ((__ typeof _ (ullData))
_ullHammingDecode ((uintptr_t)ullData, FIE NAME , func
__LINE__, #ullData))

#else

j|#define ullHammingEncode (ullData) ((__typeof _ (ullData))

_ullHammingEncode ((uintptr_t)ullData))

#define ullHammingDecode(ullData) ((__typeof _ (ullData))
_ullHammingDecode ((uintptr_t)ullData))

#endif /+x DEBUG x/

#else /[+x _POSIX SOURCE _ WINDOWS SOURCE x/

#define ullHammingEncode (ullData) (ullData)
#define ullHammingDecode(ullData) (ullData)

#endif /+ _POSIX_SOURCE _WINDOWS_SOURCE x/
#else /[+x BCC =/

#define ullHammingEncode(ullData) (ullData)
#define ullHammingDecode(ullData) (ullData)

117

Experimental Results

s|#endif /xx ECC x/

74

7s|#endif /+x FREERTOS ECC_HAMMING H x/

Protecting a FreeRTOS pointer with ECC requires encoding on every write and
decoding on every read. In this study, the FreeRTOS source was manually patched
to secure the chosen pointer-type injection targets: each write site invokes the ECC
encoder, and each read site invokes the ECC decoder. Because the RTOS code
frequently manipulates pointers in unconventional contexts, such as within macro
expressions, it proved incompatible with the automated patching approach used for
permanent-fault handling. A fully automated ECC patcher for pointer protection
therefore remains a subject for future research.

7.8 Experimental Results with ECC

This section presents the fault-injection outcomes when Hamming-ECC is applied
to selected FreeRTOS pointers. Before discussing the measurements, the list of
protected pointers is recalled. These were chosen from the full set of injection
targets (see 6.7) and instrumented with the ECC macros:

e pxDelayedTaskList

e pxOverflowDelayedTaskList
e xIdleTaskHandle

e pxCurrentTCB

e pxCurrentTCB.pxTopOfStack
e pxCurrentTCB.pxStack

e pxCurrentTCB.pxTaskTag

e pxCurrentTimerList

e pxOverflowTimerList

The following plots compare fault injection outcomes across the three workloads of
the first scenario (see 6.5.2) and the TACLE benchmarks of the second scenario
(see 6.5.2), first with no ECC protection and then with Hamming-ECC enabled for
the specified pointer targets.

118

Experimental Results

7.8.1 First Scenario

119

Experimental Results

100 Injection outcome
OK =

SDC .

SDC (Delay) 3
Delay 3
Hang C—J
Crash S
Invalid —3

80 -

40

Execution Outcome %

20

Target

Figure 7.33: Injections on FreeRTOS pointers NO ECC (Transient Faults)
QSRT items 1000 TX iterations 5 Timer iterations 5 RX iterations 10

0 o
10 Injection outcome

SDC (Delay) 3
Delay 3
Hang C—
Crash S

Invalid 3

80

60

40

Execution Outcome %

20

Target

Figure 7.34: Injections on FreeRTOS pointers with ECC (Transient Faults)
QSRT items 1000 TX iterations 5 Timer iterations 5 RX iterations 10

120

Experimental Results

100 Injection outcome
OK =

SDC .

SDC (Delay) 3
Delay 3

Hang C—J
Crash S
Invalid —3

60

40

Execution Outcome %

20

Target

Figure 7.35: Injections on FreeRTOS pointers NO ECC (Permanent Faults)
QSRT items 1000 TX iterations 5 Timer iterations 5 RX iterations 10

100 P
Injection outcome
OK

SDC .

SDC (Delay) =3
Delay 3
Hang]
Crash IR
Invalid 3

60 -

Execution Outcome %

20 -

Target

Figure 7.36: Injections on FreeRTOS pointers with ECC (Permanent Faults)
QSRT items 1000 TX iterations 5 Timer iterations 5 RX iterations 10

121

Experimental Results

100 Injection outcome

OK

SDC

SDC (Delay) =3
Delay 3
Hang]
Crash .
Invalid 3

80

60 -

40

Execution Outcome %

20 -

Target

Figure 7.37: Injections on FreeRTOS pointers NO ECC (Transient Faults)
QSRT items 5000 TX iterations 10 Timer iterations 10 RX iterations 20

100 P
Injection outcome
OK

SDC .

SDC (Delay) =3
Delay 3
Hang]
Crash IR
Invalid 3

60 -

Execution Outcome %

20 -

Target

Figure 7.38: Injections on FreeRTOS pointers with ECC (Transient Faults)
QSRT items 5000 TX iterations 10 Timer iterations 10 RX iterations 20

122

Experimental Results

100 Injection outcome
OK =

SDC .

SDC (Delay) 3
Delay 3

Hang C—J
Crash S
Invalid —3

60

40

Execution Outcome %

20

Target

Figure 7.39: Injections on FreeRTOS pointers NO ECC (Permanent Faults)
QSRT items 5000 TX iterations 10 Timer iterations 10 RX iterations 20

100 P
Injection outcome
OK

SDC .

SDC (Delay) =3
Delay 3
Hang]
Crash IR
Invalid 3

60 -

Execution Outcome %

20 -

Target

Figure 7.40: Injections on FreeRTOS pointers with ECC (Permanent Faults)
QSRT items 5000 TX iterations 10 Timer iterations 10 RX iterations 20

123

Experimental Results

100 Injection outcome
OK =

SDC .

SDC (Delay) 3
Delay 3

Hang C—J
Crash S
Invalid —3

60

40

Execution Outcome %

20

Target

Figure 7.41: Injections on FreeRTOS pointers NO ECC (Transient Faults)
QSRT items 10000 TX iterations 20 Timer iterations 20 RX iterations 40

100 P
Injection outcome
OK

SDC .

SDC (Delay) =3
Delay 3
Hang]
Crash IR
Invalid 3

60 -

Execution Outcome %

20 -

Target

Figure 7.42: Injections on FreeRTOS pointers with ECC (Transient Faults)
QSRT items 10000 TX iterations 20 Timer iterations 20 RX iterations 40

124

Experimental Results

100 Injection outcome
OK =

SDC .

SDC (Delay) 3
Delay 3

Hang C—J
Crash S
Invalid —3

60

40

Execution Outcome %

20

Target

Figure 7.43: Injections on FreeRTOS pointers NO ECC (Permanent Faults)
QSRT items 10000 TX iterations 20 Timer iterations 20 RX iterations 40

100 P
Injection outcome
OK

SDC .

SDC (Delay) =3
Delay 3
Hang]
Crash IR
Invalid 3

60 -

Execution Outcome %

20 -

Target

Figure 7.44: Injections on FreeRTOS pointers with ECC (Permanent Faults)
QSRT items 10000 TX iterations 20 Timer iterations 20 RX iterations 40

125

Experimental Results

7.8.2 Second Scenario

126

Experimental Results

100 Injection outcome
OK =

SDC .

SDC (Delay) 3
Delay 3
Hang C—J
Crash S
Invalid —3

60

40

Execution Outcome %

20

Target

Figure 7.45: Injections on FreeRTOS pointers NO ECC (Transient Faults)
Tacle Benchmarks: SHA, FFT, CUBIC, HUFF _DEC, ADPCM_ENC

100 Injection outcome

SDC (Delay) 3
Delay 003
Hang C—
Crash S

Invalid 3

80

60

40

Execution Outcome %

20 -

Target

Figure 7.46: Injections on FreeRTOS pointers with ECC (Transient Faults)
Tacle Benchmarks: SHA, FFT, CUBIC, HUFF_DEC, ADPCM__ENC

127

Experimental Results

100 Injection outcome

OK =

SDC .

SDC (Delay) 3
Delay 3
Hang C—J
Crash S
Invalid —3

60

Execution Outcome %

20 -

Target

Figure 7.47: Injections on FreeRTOS pointers NO ECC (Permanent Faults)
Tacle Benchmarks: SHA, FFT, CUBIC, HUFF _DEC, ADPCM_ENC

100 P
Injection outcome
OK

SDC .

SDC (Delay) =3
Delay 3

Hang]
Crash IR
Invalid 3

60 -

Execution Outcome %

20 -

Target

Figure 7.48: Injections on FreeRTOS pointers with ECC (Permanent Faults)
Tacle Benchmarks: SHA, FFT, CUBIC, HUFF_DEC, ADPCM__ENC

128

Experimental Results

7.8.3 Results Analysis

First Scenario

Across all three workloads in the first scenario, most failure modes, SDC, SDC
Delay, Delay, and Hang, are eliminated by Hamming-ECC, leaving only a small
residual Crash rate.

pxDelayedTaskList: Before ECC, nearly 100% crashes. After ECC, crashes
drop to about 6%, consistently across both transient and permanent faults
and all workloads.

px0OverflowDelayedTaskList: Originally marginally sensitive, with a few
crashes; ECC reduces this already small crash fraction under both fault types.

xIdleTaskHandle: Crash rate falls from 70% (pre-ECC) to 2-3% post-ECC,
for both transient and permanent injections in all workloads.

pxCurrentTCB:

— Pre-ECC:
* Transient faults: 97% crashes, 3% SDC Delay.
* Permanent faults: 100% crashes.
— Post-ECC:
*x SDC Delays vanish.
* Transient crashes: 2-4%.

* Permanent crashes: 45% (anomalous reduction due to ECC interaction
with the permanent fault routine, faults injected after encoding within
the first 54 codeword bits are corrected, whereas faults applied prior
to encoding bypass correction and still crash).

pxCurrentTCB. pxTopOfStack: Crashes fall from 100% (both fault types) to
1-4% after ECC, with a slight additional reduction at higher workloads.

pxCurrentTCB. pxStack: Initial crash rate of 5% is reduced further by ECC,
declining more as workload increases.

pxCurrentTCB.pxTaskTag: Low sensitivity overall. Occasional slight increases
in crash rate post-ECC, due to run-to-run variation in the hosted RTOS
environment, are followed by consistent reductions in other workloads.

pxCurrentTimerList:

— Pre-ECC: 95% crashes plus small, workload-consistent fractions of Delay
and SDC Delay.

129

Experimental Results

— Post-ECC: All Delay and SDC Delay outcomes vanish; crash rate falls to
4% under both fault types and all workloads.

o pxOverflowTimerList: Highly sensitive pre-ECC, with majority crashes and
substantial delays. ECC eliminates all delays and reduces crashes to 5%.

Second Scenario

o pxDelayedTaskList: Sensitivity falls compared to the first scenario, likely
because this workload invokes fewer blocking calls.

— Pre-ECC: Mostly OK outcomes, with a small fraction of Delays. Perma-
nent fault crashes are lower overall.

— Post-ECC: Delay outcomes increase slightly under both fault types; crash
rates remain low. This added Delay reflects the overhead of Hamming
encoding/decoding in a faster-running benchmark (no long loops).

— px0OverflowDelayedTaskList: Remains marginally sensitive.

x Pre-ECC: Mostly OK, with a slight Delay fraction.
* Post-ECC: Delay fraction rises modestly; crashes stay low.

— xIdleTaskHandle: Retains high sensitivity.

* Pre-ECC: Predominantly crashes, plus some Delays.

x Post-ECC: Crash rate drops, but slight Delays persist under both
fault types.

— pxCurrentTCB: Sensitivity remains very high.
* Pre-ECC: 100% crashes under both transient and permanent faults.
* Post-ECC: Crashes fall to 2-3%, with 4% Delays.

— pxCurrentTCB. pxTopOfStack: Continues to be highly sensitive.

* Pre-ECC: Majority crashes, plus 10% OK and a few Delays (lower
crash rate than Scenario 1).

x Post-ECC: Crashes nearly disappear; a small Delay fraction remains.
— pxCurrentTCB.pxStack: Remains low sensitivity.

* Pre and Post-ECC: Mostly OK outcomes, with slight Delays under
both fault types (absent in Scenario 1).

— pxCurrentTCB.pxTaskTag: Similar to pxStack, but with an even smaller
Delay fraction both pre and post-ECC.

— pxCurrentTimerList: Sensitivity reduces from "very high" (Scenario 1)
to "high."

130

Experimental Results

* Pre-ECC: Fewer crashes than in Scenario 1, with slightly more Delays.
% Post-ECC: Crashes nearly vanish; slight Delays persist.
— px0OverflowTimerList: Also down-rated from "very high" to "high" sen-
sitivity.
* Pre-ECC: Lower crash rate than Scenario 1; Delays remain consistent.
x Post-ECC: Crashes mostly eliminated; minor Delays remain.

7.8.4 Overall Results Analysis

From the detailed overview of both benchmark scenarios, the Hamming code ECC
proves highly effective at mitigating erroneous outcomes. In the first scenario:

o All outcome types except Crash vanish entirely.

o The remaining Crash rate is negligible, with the sole exception of modifications
to pxCurrentTCB. This residual error stems from the interaction between
permanent-fault injections and the implemented ECC.

In the second scenario:
o ECC again drives Crash outcomes down to very low levels.

o Compared to the first scenario, this benchmark exhibits increased sensitivity
to the decoding/encoding overhead introduced by ECC.

e Most post-ECC executions complete as OK, with a small fraction suffering
Delay or residual Crash.

In both scenarios these remaining crashes can be explained by the code protection
choices. Hamming code protection was applied to only 48 data bits (the bits
deemed significant on the test machine), adding 6 parity bits for a total code-word
length of 54 bits. The unprotected 10 bits of each 64 bit pointer remain susceptible
to random bit-flips injected by the FreeRTOS Injector, which can still provoke
occasional Crash outcomes.

7.9 Conclusion

An experimental framework was established comprising two test scenarios: the first
executing three tasks with a timer callback (see 7.3.1), and the second running
five benchmarks from the TACLE suite (see 7.3.2). A statistical methodology
determined the number of fault-injection campaigns required to achieve a 99%
confidence level with a 5% error margin on the observed outcome distributions.

131

Experimental Results

Baseline measurements, collected before any hardening, revealed fault-sensitive
regions in the FreeRTOS kernel.

Multiple hardening strategies were then evaluated, with particular emphasis on
a Hamming-code ECC implementation. The ECC layer was integrated into the
kernel and assessed via a further series of fault-injection experiments. In every
scenario, the ECC mechanism yielded a significant reduction in failure rates.
These results complete the validation cycle introduced in Chapter 1, demonstrating
that a targeted, selective software hardening approach can substantially improve
the fault resilience of FreeRTOS.

132

Chapter 8

Conclusion

Selective hardening of pointer variables in FreeRTOS via a Hamming code ECC
scheme has virtually eliminated fault-induced failures at the protected addresses.
The few residual errors arise from three principal sources:

1. Protection covering only the lower 54 bits of each 64-bit pointer.

2. Interference between the ECC routines and the permanent-fault injection
mechanism.

3. Significant runtime overhead for ECC encoding/decoding under very high
execution rates.

Each of these limitations admits a straightforward corrective action:
» Extend parity coverage to all 64 bits of each pointer.

e Improve the permanent fault implementation to avoid interfering with the
ECC scheme.

o Accelerate or replace the current ECC implementation with a lower-latency
alternative.

The underlying code base has also been refactored and enhanced:
o Monolithic structures were replaced by a modular sub-component architecture.
o Memory management bugs were identified and corrected.
o Inline documentation was expanded to improve maintainability.

o A "dry-run" mode now computes injection times and locations in advance of
fault campaigns.

133

Conclusion

e Permanent-fault support was added to the Windows port.
e The permanent fault patcher compilation was integrated into CMake.

o Auxiliary scripts now automate compilation, patch deployment, and depen-
dency checks.

Future work may include extending ECC protection to additional pointer-based
structures (e.g. internal kernel lists) and exploring error-correction strategies for
non-pointer data. Such an extension would require reserving auxiliary storage for
parity bits and establishing a robust metadata-binding mechanism. Additional
performance gains could arise from implementing alternative ECC schemes through
the existing public API, thereby allowing multiple ECC variants to coexist within
the same code base. Hybrid approaches, combining pointer ECC with data redun-
dancy or check-pointing, also warrant investigation.

These enhancements are anticipated to further elevate the dependability of FreeR-
TOS and provide valuable insights for strengthening the resilience of embedded
real-time operating systems more broadly.

134

Bibliography

David Vrabel. FreeRTOS port for Posiz. URL: https://www . freertos .
org/Documentation/02-Kernel/03-Supported-devices/04-Demos/03-
Emulation-and-simulation/Linux/FreeRT0S-simulator-for-Linux (cit.
on pp. i, 3, 47, 51).

FreeRTOS Community. FreeRTOS port for Windows. URL: https://wuw.
freertos.org/Documentation/02-Kernel/03-Supported-devices/04-
Demos /03 -Emulation - and - simulation/Windows /FreeRT0S - Windows -
Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW (cit. on
pp. i, 3).

Alfredo Benso and Stefano Di Carlo. «The Art of Fault Injection». In: Control
Engineering and Applied Informatics 13.4 (2011), pp. 9-18. 1SSN: 1454-8658
(cit. on pp. 2, 36).

GNU. GCC. URL: https://gcc.gnu.org/ (cit. on p. 3).

kitware. CMake. URL: https://cmake.org/ (cit. on p. 3).

Arch Linux Community. Arch Linuz. URL: https://archlinux.org/ (cit. on
p. 3).

Norsuzila Ya’acob, Akmarulnizam Zainudin, R. Magdugal, and Nani Fadzlina
Naim. «Mitigation of space radiation effects on satellites at Low Earth
Orbit (LEO)». eng. In: 2016 6th IEEE International Conference on Control
System, Computing and Engineering (ICCSCE). IEEE, 2016, pp. 56-61. 1SBN:
1509011781 (cit. on p. 5).

John A. Stankovic and R. Rajkumar. «Real-Time Operating Systems». eng.
In: Real-time systems 28.2/3 (2004), pp. 237-253. 1SSN: 0922-6443 (cit. on
p. 15).

FreeRTOS Community. Mastering the FreeRTOS Real Time Kernel. URL:
https://www.freertos.org/media/2018/161204_ Mastering the_FreeRT

0S_Real Time_Kernel-A_Hands-On_Tutorial Guide.pdf (cit. on pp. 21,
44).

135

https://www.freertos.org/Documentation/02-Kernel/03-Supported-devices/04-Demos/03-Emulation-and-simulation/Linux/FreeRTOS-simulator-for-Linux
https://www.freertos.org/Documentation/02-Kernel/03-Supported-devices/04-Demos/03-Emulation-and-simulation/Linux/FreeRTOS-simulator-for-Linux
https://www.freertos.org/Documentation/02-Kernel/03-Supported-devices/04-Demos/03-Emulation-and-simulation/Linux/FreeRTOS-simulator-for-Linux
https://www.freertos.org/Documentation/02-Kernel/03-Supported-devices/04-Demos/03-Emulation-and-simulation/Windows/FreeRTOS-Windows-Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW
https://www.freertos.org/Documentation/02-Kernel/03-Supported-devices/04-Demos/03-Emulation-and-simulation/Windows/FreeRTOS-Windows-Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW
https://www.freertos.org/Documentation/02-Kernel/03-Supported-devices/04-Demos/03-Emulation-and-simulation/Windows/FreeRTOS-Windows-Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW
https://www.freertos.org/Documentation/02-Kernel/03-Supported-devices/04-Demos/03-Emulation-and-simulation/Windows/FreeRTOS-Windows-Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW
https://gcc.gnu.org/
https://cmake.org/
https://archlinux.org/
https://www.freertos.org/media/2018/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf
https://www.freertos.org/media/2018/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

FreeRTOS Community. FreeRTOS Reference Manual. URL: https://www.
freertos.org/media/2018/FreeRT0OS_Reference Manual V10.0.0.pdf
(cit. on p. 21).

Raj kamal Kaur, Babita Pandey, and Lalit Kumar Singh. «Dependability
analysis of safety critical systems: Issues and challengesy. eng. In: Annals of
nuclear energy 120 (2018), pp. 127-154. 18SN: 0306-4549 (cit. on p. 31).

Maha Kooli and Giorgio Di Natale. «A survey on simulation-based fault
injection tools for complex systems». eng. In: 2014 9th IEEE International
Conference on Design Technology of Integrated Systems in Nanoscale Era
(DTIS). IEEE, 2014, pp. 1-6. 1SBN: 1479949728 (cit. on pp. 31, 39).

Dario Mamone, Alberto Bosio, Alessandro Savino, Said Hamdioui, and Maur-
izio Rebaudengo. «On the Analysis of Real-time Operating System Reliability
in Embedded Systems». eng. In: 2020 IEEE International Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT).
IEEE, 2020, pp. 1-6. 1SBN: 1728194571 (cit. on p. 39).

J.H. Barton, E.W. Czeck, Z.Z. Segall, and D.P. Siewiorek. «Fault injection
experiments using FIAT». eng. In: IEEFE transactions on computers 39.4
(1990), pp. 575-582. 1sSN: 0018-9340 (cit. on p. 39).

J. Arlat, J.-C. Fabre, and M. Rodriguez. «Dependability of COTS microkernel-
based systemsy. eng. In: IEEFE transactions on computers 51.2 (2002), pp. 138
163. 1ssN: 0018-9340 (cit. on p. 39).

Eunjin Jeong, Namgoo Lee, Jinhan Kim, Duseok Kang, and Soonhoi Ha.
«FIFA: A Kernel-Level Fault Injection Framework for ARM-Based Embedded
Linux System». eng. In: 2017 IEEFE International Conference on Software
Testing, Verification and Validation (ICST). IEEE, 2017, pp. 23-34. I1SBN:
9781509060313 (cit. on p. 40).

D. Silva, K. Stangherlin, L. Bolzani, and F. Vargas. « A Hardware-Based
Approach for Fault Detection in RTOS-Based Embedded Systems». eng. In:
2011 Sizteenth IEEE Furopean Test Symposium. IEEE, 2011, pp. 209-209.
ISBN: 1457704838 (cit. on p. 40).

Giovanni De Florio. Permanent Fault Injection and Selective Hardening of
Real Time Operating Systems. Savino, Alessandro, 2023-07-28 (cit. on p. 42).

PCRE2 Community. PCRE2 Website. URL: https://www.pcre.org/ (cit. on
pp. 43, 47).

PCRE2 Community. PCRE2 Git Repository. URL: https://github.com/
PCRE2Project/pcre2/releases (cit. on p. 47).

136

https://www.freertos.org/media/2018/FreeRTOS_Reference_Manual_V10.0.0.pdf
https://www.freertos.org/media/2018/FreeRTOS_Reference_Manual_V10.0.0.pdf
https://www.pcre.org/
https://github.com/PCRE2Project/pcre2/releases
https://github.com/PCRE2Project/pcre2/releases

BIBLIOGRAPHY

[21]

22]

R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert. «Statistical fault
injection: Quantified error and confidence». eng. In: 2009 Design, Automa-
tion Test in Furope Conference FExhibition. IEEE, 2009, pp. 502-506. ISBN:
9781424437818 (cit. on p. 82).

Soyed Tuhin Ahmed, Surendra Hemaram, and Mehdi B. Tahoori. «NN-ECC:
Embedding Error Correction Codes in Neural Network Weight Memories
using Multi-task Learningy. eng. In: 202/ IEEE /2nd VLSI Test Symposium
(VTS). IEEE, 2024, pp. 1-7. 1SBN: 9798350363784 (cit. on p. 111).

137

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	Rationale
	High energy particles
	Fault injection
	Tools Used

	Single Event Effects
	Introduction
	Single Event Effects
	Sources of SEE
	Mechanisms of SEE Occurrence
	SEE Classification
	Non-Destructive SEE (Soft Errors)
	Destructive SEE (Hard Errors)
	Effects on Real-Time Operating Systems
	Hardware Mitigations of SEE
	Software Mitigations of SEE

	Conclusion

	Real-Time Operating Systems
	Introduction
	Real-Time Systems
	Operating Systems
	General Purpose Operating Systems
	Real-Time Operating Systems
	Heterogeneous OS Design: When General-Purpose and Real-Time Systems Coexist
	Achieving Real-Time
	Poll-Driven Approach
	The Interrupt-Driven Approach
	The Need for Interrupts in Complex Embedded Applications

	Conclusion

	FreeRTOS
	Introduction
	FreeRTOS
	FreeRTOS Strengths
	FreeRTOS Features
	Task Scheduling
	Timing Services
	Memory Management
	IPC Services

	Scheduling in FreeRTOS
	Task Control Block
	Task States

	FreeRTOS Source Components
	Conclusion

	Fault Injection
	Introduction
	Dependability
	Attributes
	Threats
	Means

	Fault injection testing
	Fault Injection Techniques

	State of the Art
	FIAT
	MAFALDA
	FIFA
	RTOS Guardian
	Positioning of the Proposed Injector

	Conclusion

	FreeRTOS Fault Injector
	Introduction
	Background, Prior Implementations, Divergences
	Project Structure
	Project files

	POSIX Port Layer Design
	Overview Of the Port Layer Architecture
	FreeRTOS Task Mapping
	Port Layer Initialization
	FreeRTOS Task Switching
	Simulated Interrupts
	Enabling and Disabling Interrupts
	POSIX Port and I/O

	FreeRTOS Injector System Architecture
	Key Definitions
	Experiment Environment
	Injection Environment

	FreeRTOS Injector Commands
	Fault List
	Target Types
	FreeRTOS Injection Target Groups

	Conclusion

	Experimental Results
	Introduction
	Experiment Setup
	First Scenario
	Second Scenario
	Number of Experiments

	Experimental Results Before Hardening
	First Scenario
	Second Scenario

	Results Summary by Target Type First Scenario
	Injection Results on FreeRTOS Variables (ECC Disabled)
	Injection Results On FreeRTOS Lists With ECC Disabled
	Injection Results on FreeRTOS Current TCB with ECC Disabled
	Injection Results On FreeRTOS Pointers With ECC Disabled

	Results Summary by Target Type Second Scenario
	Injection Results on FreeRTOS Variables (ECC Disabled)
	Injection Results on FreeRTOS Lists (ECC Disabled)
	Injection Results on FreeRTOS Current TCB (ECC Disabled)
	Injection Results on FreeRTOS Pointers (ECC Disabled)

	FreeRTOS Fault-Sensitive Locations
	Selective Hardening
	Chosen Approach
	Error Correcting Codes
	Hamming Codes
	Unused Bits In Pointer Variables
	Hamming ECC Implementation

	Experimental Results with ECC
	First Scenario
	Second Scenario
	Results Analysis
	Overall Results Analysis

	Conclusion

	Conclusion
	Bibliography

