
Master’s Degree in Communications and Computer
Networks Engineering

Master’s Degree Thesis

Benefits of IMS Data Channels
for Voice Enrichment in 4G/5G:
A Simulation-Based Approach

Supervisor:
Prof. Carla Fabiana Chiasserini

External Supervisor:
Paolo Belloni

Candidate:
Michela Salvadori

July 2025

Abstract

As mobile communication becomes more advanced and focused on user experience, there
is growing demand for services that enrich voice and video calls in real time such as tran-
scription, translation, emotion detection and file sharing. Traditional networks, though
reliable, cannot guarantee the performance required for these new features.

This thesis focuses on a promising technology for future mobile services: the IMS Data
Channel. It allows real-time exchange of data (like text, files or emotional feedback)
during a voice or video call. The IMS Data Channel is an extension of the IP Multimedia
Subsystem (IMS), which telecom operators already use to manage services over 4G, 5G
and Wi-Fi. With this architecture, advanced services can run directly inside the call
without using external apps, offering better control, security and quality.

This thesis is structured into three main parts. The first part provides a theoretical
overview of how IMS Data Channel works, based on international standards. It intro-
duces the main components involved and explains how secure, real-time data sessions are
established and controlled. The focus is on how telecom operators can offer smart services
during calls, while maintaining reliability and quality of service, thanks to a standardized,
operator-managed infrastructure. The second part implements a real-time simulation of
use cases using WebRTC and Artificial Intelligent services. The test environment is based
on the Janus WebRTC Gateway and integrates Amazon services such as Transcribe,
Translate and Comprehend. A Python Flask server acts as middleware, connecting the
WebRTC clients to Amazon Web Services via software Application Programming Inter-
faces for real-time data exchange. In the simulated scenario, user A speaks or sends text
messages in Italian. User B receives real-time English transcription, translated audio and
text, as well as visual feedback based on sentiment analysis. The third part investigates
the system’s behavior under unstable network conditions, which are common in best-
effort internet environments. Controlled degradations such as jitter, artificial congestion
and packet loss are introduced to evaluate the impact on real-time performance. Metrics
such as Round-Trip Time (RTT), time to first transcription and packet loss are collected
and analyzed under various conditions. Results show that best-effort networks fail to
guarantee stable performance.

Unlike WebRTC, which relies on public internet conditions and cannot ensure consistent
performance, the IMS Data Channel operates within the operator’s managed network
and follows international standards designed to guarantee quality of service. By support-
ing features like resource reservation and traffic prioritization, it maintains low latency
and service stability even under stress. These capabilities make the IMS Data Chan-
nel a promising candidate to support next generation of Artificial Intelligent enhanced
communication services.

i

Acknowledgements

I would like to express my deepest gratitude to all those who have supported me through-
out this journey and made this achievement possible.

I am especially grateful to Professor Carla Fabiana Chiasserini for her guidance, con-
structive feedback and valuable suggestions throughout the development of this work.
Her guidance helped in shaping the direction and structure of the thesis.

I am also deeply thankful to my colleague Paolo Belloni, with whom I have the privilege
of working. His continued encouragement and thoughtful advice have been invaluable in
helping me move forward, especially in defining the scope and clarity of this research.

A special thank you goes to my friend Claudia, with whom I’ve shared moments of joy
and sacrifices and a celebratory drink after each exam.

I warmly thank my partner Jean-Claude and his daughter Chloé for their patience and
support during this demanding period. I am aware of the time I took away from you and
I am deeply grateful for your understanding, love and patience.

To my parents, thank you for always standing by my side and for teaching me, through
your example, the values of resilience and perseverance.

Lastly, I wish to thank my younger self, the little girl who once dreamed of becoming an
engineer. We did it. After all these years, a circle is now complete and I am proud of who
I have become. What is meant to be, will be.

ii

Table of Contents

Abstract i

Acknowledgements ii

List of Code Listings vii

Acronyms viii

1 Introduction 1
1.1 Overview of IMS . 1
1.2 Importance of Data Channels in IMS . 1
1.3 Thesis Objectives . 2

2 IMS Data Channels: Concept and Standardization 3
2.1 Definition . 3
2.2 Standards Specifications . 3
2.3 Possible Real-World Applications of IMS Data Channels 5

2.3.1 Real-Time Speech Transcription and Translation 5
2.3.2 Smart Customer Service and Remote Assistance 6
2.3.3 Collaboration and Remote Productivity 6
2.3.4 Immersive Entertainment and AR/VR 6
2.3.5 IoT and M2M Communications . 6
2.3.6 Healthcare and Remote Diagnostics 7

3 Architecture of IMS Data Channels 8
3.1 IMS Data Channel Reference Architecture 8

3.1.1 IMS Enhancements for Data Channel Integration 9
3.1.2 Reference Points . 13

3.2 IMS Data Channel Protocol Stack . 14
3.2.1 SCTP over DTLS . 14
3.2.2 SIP and SDP Extensions . 17

3.3 IMS Data Channel Setup . 19
3.3.1 Session Initiation and Configuration 19
3.3.2 Bootstrap Process Overview . 19
3.3.3 Client and Application Support . 20
3.3.4 SDP and ICE Considerations . 21
3.3.5 Device Architecture Overview . 22
3.3.6 Application Workflow and Interaction in Data Channels 23

3.4 QoS and Flow Management in 4G and 5G 25

iii

4 Demonstrating potential applications of IMS Data Channels using
WebRTC technology 27
4.1 Key Features of WebRTC . 27
4.2 Use Case Simulation with WebRTC . 29

4.2.1 Exploration of IMS Data Channel Potential 29
4.3 Janus WebRTC Gateway . 30
4.4 Environment setup simulation . 31

4.4.1 Ubuntu Environment via WSL . 31
4.4.2 Janus WebRTC Gateway configuration and organization 31
4.4.3 Setting Up the Janus WebRTC Gateway 32
4.4.4 Serving the Demo Files Locally . 33
4.4.5 Accessing the Demo Files in the Browser 33

4.5 Use Case: Video Call with Integrated Machine Learning AWS Services . . 34
4.5.1 Implemented functionalities . 36
4.5.2 System Components and Architecture 36
4.5.3 Flask Server Implementation . 37
4.5.4 Client-Side Real-Time Audio Processing and WebSocket Commu-

nication . 40

5 Audio Simulation Tests and Evaluation Metrics 43
5.1 Audio Events and Collected Metrics . 49
5.2 Scenario A: Impact of Chunk Size under Ideal Conditions 50

5.2.1 Impact on First Partial Latency . 51
5.2.2 Impact on Audio Round-Trip Time (RTT) 51
5.2.3 Conclusions on Chunk Size Optimization 51

5.3 Scenario B: Jitter Impact on Latency and System Stability 53
5.3.1 Impact of Light Jitter (10–25 ms) 53
5.3.2 Impact of High Jitter (40–100 ms) 54
5.3.3 Critical Failure Scenario: Chunk Size 50 ms with High Jitter (use

case B5) . 54
5.3.4 Best Configurations under Jitter Conditions 54

5.4 Scenario C: Impact of Congestion Delay on Latency and System Stability . 56
5.4.1 Impact of Moderate Congestion Delay (150–400 ms) 56
5.4.2 Impact of Severe Congestion Delay (400–600 ms) 57
5.4.3 Critical Observations and Best Practices 57

5.5 Scenario D: Impact of Packet Loss on Accuracy and System Stability . . . 58
5.5.1 Detailed Results per Scenario . 59
5.5.2 Critical Observations and Best Practices 60

6 Text Simulation Tests and Evaluation Metrics 61
6.1 Text Events and Collected Metrics . 63
6.2 Scenario A and Scenario B: Effect of Fixed Artificial Delays 64
6.3 Scenario C: Impact of Packet Loss on Real-Time Text Communication . . 66

6.3.1 Critical Observations and Best Practices 68

7 Conclusions 69
7.1 Impact on Audio Communication . 69
7.2 Impact on Text Communication . 69
7.3 Advantages of IMS Data Channel Architectures 71

iv

7.4 Final Remarks . 72

A Appendix: Source Code 73
A.1 Real-Time Transcription Server . 73
A.2 Custom WebRTC Client Interface . 77
A.3 JavaScript Custom Audio Processing and WebSocket Integration 83

Bibliography 90

v

List of Figures

1 Possible IMS Data Channel use cases . 7

2 IMS Data Channel bearers . 9
3 TS23.228 - Architecture option of IMS supporting DC usage with MF . . . 11
4 TS23.228 - Architecture option of IMS supporting DC usage with MRF . . 12
5 User plane protocol stack for a Data Channel client defined in 3GPP TS26.114 16
6 Bootstrap Data Channel setup signaling procedure (TS 23.228) 20
7 Device components supporting IMS Data Channels 22
8 Data Channel Workflow . 23

9 Custom user interface of the Video Call demo with live transcription, trans-
lation and sentiment analysis . 35

10 Flask server architecture acting as middleware between WebRTC clients
and AWS services. 37

11 First Partial and RTT Audio as a function of Chunk Size in Scenario A
(Ideal Conditions) . 50

12 Scenario B – Latency vs Chunk Size under Light and High Jitter Conditions 53
13 Scenario C – Latency vs Chunk Size under Simulated Congestion Delay

Conditions . 56
14 Scenario D – Packet Loss vs Accuracy (per Chunk Size) 58

15 Impact of Artificial Fixed Delay on Text Processing Latency 65

List of Tables

3.1 Bootstrap Data Channel Content Sources - TS26.114 23

6.1 Scenario C – Impact of Packet Loss on Text Communication 67

vi

List of Code Listings
4.1 Client B audio stream fully disabled to avoid echo 34

4.2 AudioWorklet processor converting Float32 to PCM 16-bit 41

5.1 Simulated jitter delay every 5 chunks . 46

5.2 Simulated congestion delay every 5 chunks 47

5.3 Simulated packet loss logic for Scenario D 48

A.1 full videocall rt comprehend final.py – Flask server with real-time stream-
ing, translation and sentiment analysis via AWS 73

A.2 videocalltest.html – Customized WebRTC interface with transcription and
translation panels . 77

A.3 videocalltest.js - Custom AudioWorklet integration and WebSocket logic . 83

vii

Acronyms

3GPP 3rd Generation Partnership Project

AI Artificial Intelligence

AR Augmented Reality

AS Application Server

AWS Amazon Web Services

DCAR Data Channel Application Repository

DCAS Data Channel Application Server

DCSF Data Channel Signaling Function

DTLS Datagram Transport Layer Security

GSMA Global System for Mobile Communications Association

HSS Home Subscriber Server

ICE Interactive Connectivity Establishment

IETF Internet Engineering Task Force

IMS IP Multimedia Subsystem

IMS AS IMS Application Server

IoT Internet of Things

M2M Machine-to-Machine Communications

MEC Multi-access Edge Computing

MF Media Function

mMTC Massive Machine-Type Communications

MRF Media Resource Function

MTSI Multimedia Telephony Service for IMS

NAT Network Address Translation

NEF Network Exposure Function

NG-RTC Next Generation Real-Time Communication

P-CSCF Proxy Call Session Control Function

viii

PCRF Policy and Charging Rules Function

QoS Quality of Service

RFC Request For Comments

SBI Service-Based Interface

SCTP Stream Control Transmission Protocol

SDP Session Description Protocol

SDK Software Development Kit

SIP Session Initiation Protocol

S-CSCF Serving Call Session Control Function

UE User Equipment

URLLC Ultra-Reliable Low-Latency Communication

VoLTE Voice over LTE

ViLTE Video over LTE

VR Virtual Reality

WebRTC Web Real-Time Communication

WSL Windows Subsystem for Linux

XR Extended Reality

ix

Chapter 1

Introduction

Overview of IMS

The IP Multimedia Subsystem (IMS) is an architectural framework designed to provide
multimedia services over IP-based networks. Initially introduced to support real-time
communication services such as voice and video over LTE (VoLTE and ViLTE) in 4G
networks, IMS has progressively evolved to meet the demands of modern telecommunica-
tions. With the introduction of 5G, IMS plays a crucial role in enabling a wide range of
services beyond traditional voice, including enhanced video conferencing, messaging and
the integration of emerging technologies such as Augmented Reality (AR). IMS ensures
interoperability across different access networks, including 4G, 5G and Wi-Fi, while main-
taining high quality of service, scalability and seamless session continuity. This evolution
makes IMS a key part of next-generation communication systems, linking telecommuni-
cations with artificial intelligent and machine learning algorithms. This allows for more
interactive and personalized services that better meet the needs and expectations of the
customer.

Importance of Data Channels in IMS

The integration of Data Channels into IMS networks represents a significant advancement
in enhancing multimedia communication services. Data Channels, based on WebRTC pro-
tocols, enable real-time transmission of any type of data alongside traditional voice and
video streams within the IMS framework. This capability not only extends the flexibil-
ity of IMS, but also facilitates the development of new interactive services such as file
sharing, augmented reality (AR) applications and real-time data synchronization during
calls. By supporting seamless and efficient data exchange over IP, Data Channels improve
the overall user experience, enabling richer, more immersive communication scenarios. In
addition, the introduction of Data Channels in IMS allows operators to leverage existing
infrastructure to deliver innovative 5G services, ensuring scalability, quality of service
(QoS) and interoperability across different network environments, including 4G, 5G and
Wi-Fi. This positions Data Channels as a key enabler for the next generation of multi-
media communication and service delivery in modern network architectures.

1

Introduction

Thesis Objectives

The objective of this thesis is to provide a comprehensive analysis of the IMS Data Channel
architecture, to address the key challenges associated with its deployment and to explore
its potential integration with machine learning algorithms to enable intelligent and real-
time services in next-generation networks. The thesis is structured into three main areas
of focus, with the following specific goals:

• Analyze the IMS Data Channel architecture, detailing its main components, refer-
ence points, protocol stack and integration within the broader IMS framework.

• Identify and discuss the main challenges related to the deployment of IMS Data
Channels, with particular attention to Quality of Service (QoS) management, secu-
rity and session control.

• Simulate representative use cases involving real-time data exchange over a WebRTC-
based environment, using the Janus WebRTC Gateway as a flexible testing platform.
The simulated system is integrated with Amazon Web Services (AWS) through AWS
SDKs and APIs, enabling the implementation and evaluation of advanced scenarios
such as:

– Real-time speech transcription;
– Real-time speech-to-text translation;
– Audio sentiment analysis;
– Text translation;
– Text sentiment analysis.

AWS Transcribe Streaming SDK is used for real-time audio transcription, while the
boto3 library (API) is employed for text translation and sentiment analysis services
(Translate and Comprehend). These experiments aim to demonstrate how IMS
Data Channels could enhance user experience when combined with AI-driven cloud
services.

• Simulate network degradations typically encountered in best-effort environments,
such as jitter, congestion and packet loss, assessing their impact on real-time au-
dio and text communication. The results highlight the limitations of best-effort
communication and the benefits of IMS Data Channels when combined with QoS
mechanisms.

2

Chapter 2

IMS Data Channels: Concept and
Standardization

Definition

IMS Data Channels are an innovative feature of the IP Multimedia Subsystem architec-
ture, enabling real-time data transfer alongside traditional voice and video streams. These
channels support advanced applications by allowing the simultaneous exchange of multiple
data types, enhancing multimedia communication experiences within IMS sessions.

Defined by standards from the 3rd Generation Partnership Project (3GPP) and the Inter-
net Engineering Task Force (IETF), IMS Data Channels leverage protocols such as RFC
8831 and WebRTC specifications. These protocols provide the technical foundation for
secure, bidirectional and reliable data transmission, ensuring seamless integration with
existing media streams of IMS.

The flexibility of IMS Data Channels makes them ideal for scenarios requiring concurrent
data exchange, such as live transcription and translation, real-time collaboration, remote
medical assistance, telehealth and augmented reality. Key documents, such as NG.134-
v3.0-1 and ETSI TS 24.186, provide detailed insights into the role of IMS Data Channels in
enabling these advanced services. They outline how the WebRTC Data Channel protocol
stack facilitates the integration of innovative functionalities within the robust signaling
and media handling framework of IMS.

Standards Specifications

IMS Data Channels align with established 3GPP, IETF and GSMA standards, ensuring
interoperability, security and efficient multimedia session management. The following key
specifications define their role within the IMS ecosystem:

• RFC 8831 (IETF): Specifies the use of Stream Control Transmission Protocol
(SCTP) over Datagram Transport Layer Security (DTLS) for secure, reliable and
real-time data exchange. SCTP’s message-oriented approach is particularly suited
for managing different data types, while DTLS ensures encryption and data integrity.

• TS 23.228 Annex AC (3GPP): Defines the architecture and procedures of the IP
Multimedia Subsystem, providing the foundation for managing multimedia sessions,
including the integration of Data Channels. This specification addresses key aspects

3

IMS Data Channels: Concept and Standardization

such as session management, quality of service (QoS) and security, ensuring seamless
operation of Data Channels within the IMS environment.

• TS 26.114 (3GPP): Defines procedures for managing multimedia telephony ser-
vices within IMS, including the integration of Data Channels alongside other media
types.

• TS 26.264 (3GPP): Adds support for augmented reality (AR) applications, de-
tailing mechanisms for incorporating AR components into IMS sessions.

• NG.134-v3.0-1 (GSMA): Highlights how IMS Data Channels enable interactive
services like remote assistance and AR in both consumer and enterprise environ-
ments.

• NG.129-v1.0 (GSMA): Focuses on the value chain for Data Channel-enabled
services, defining roles and interactions among operators, device manufacturers and
developers.

• 3GPP Release 18: Introduces significant improvements to IMS Data Channels,
particularly for Augmented Reality (AR) applications, by defining real-time AR
communication procedures in TS 26.264. These updates take advantage of 5G’s
ultra-low latency and high-bandwidth capabilities, ensuring seamless AR integration
within IMS sessions. Although IMS Data Channels implement secure transport
through DTLS encryption, full end-to-end encryption and standardized application-
level data integrity mechanisms are still lacking. This limitation, especially critical
for privacy-sensitive applications, has led some device manufacturers to hesitate
in fully adopting IMS Data Channels pending further enhancements in security
frameworks.

• 3GPP Release 19: Aims to further enhance IMS Data Channels to support XR
applications, including immersive video, spatial audio and avatar-based interactions.

4

IMS Data Channels: Concept and Standardization

Possible Real-World Applications of IMS Data Chan-
nels

The introduction of 5G has positioned IMS Data Channels as an essential enabler for
next-generation communication services, addressing requirements for low latency, high
throughput and robust security. Advanced 5G capabilities, such as network slicing and
enhanced Quality of Service (QoS) handling, make it an ideal environment for deploying
real-time applications over IMS Data Channels. Features like massive machine-type com-
munications (mMTC) and ultra-reliable low-latency communication (URLLC) align with
the data requirements of IMS Data Channels, particularly for use cases requiring reliable
performance and responsiveness.

IMS Data Channels are designed to operate over IP-based networks, including IMS de-
ployments in 4G, 5G and Wi-Fi. Their protocol interactions and signaling procedures are
specified in 3GPP TS 24.186, which defines session setup, capability negotiation and re-
source allocation within IMS. This enables seamless integration of Data Channels within
IMS-based multimedia services, supporting advanced applications.

Moreover, IMS Data Channels can be enhanced by integrating AI-driven services, enabling
intelligent speech recognition, real-time translation, sentiment analysis and predictive an-
alytics. This allows for more personalized, automated and context-aware interactions,
improving applications such as real-time collaboration, remote assistance and interactive
AR/VR experiences. The combination of AI and IMS Data Channels creates new oppor-
tunities for smart customer service, accessibility features for people with disabilities and
advanced decision-making across IoT, healthcare and other real-time critical domains.

Building on these capabilities, various representative use cases are presented in the fol-
lowing subsections.

2.3.1 Real-Time Speech Transcription and Translation

IMS Data Channels enable real-time speech-to-text transcription and automatic transla-
tion, facilitating communication in multilingual environments and improving accessibility
for people with hearing loss.

Applications:

• Accessibility for the deaf and hard of hearing: Real-time transcription of voice
calls into text, allowing users with hearing loss to follow conversations seamlessly.

• Multilingual customer service: Automatic translation of conversations in real
time, enabling businesses such as hotels, restaurants and travel agencies to interact
with customers who speak different languages.

• Sentiment Analysis for Enhanced Interactions: Integration with AI-powered
sentiment analysis allows businesses to detect emotions in customer interactions,
adjusting tone and responses accordingly to improve service quality and customer
satisfaction.

5

IMS Data Channels: Concept and Standardization

2.3.2 Smart Customer Service and Remote Assistance

IMS Data Channels can improve customer service by enabling features such as file sharing,
real-time AR-assisted support and synchronized visual guidance.

2.3.3 Collaboration and Remote Productivity

IMS Data Channels facilitate real-time data exchange for enhanced multimedia confer-
encing, interactive document editing and screen sharing.

2.3.4 Immersive Entertainment and AR/VR

IMS Data Channels integrate AR/VR services into IMS, enabling interactive gaming,
real-time training and augmented live events.

2.3.5 IoT and M2M Communications

IMS Data Channels enable real-time data exchange between IoT devices, supporting
smart home automation, industrial IoT and predictive maintenance. While traditional
IoT communication protocols are widely used, IMS Data Channels provide additional
advantages in scenarios where IoT data needs to be integrated with IMS-based voice and
video services.

Key Advantages of IMS Data Channels:

• Seamless integration with IMS voice and video services: IoT devices can
transmit diagnostic data while simultaneously establishing a voice/video session
through IMS.

• Real-time synchronization of multimedia and sensor data: an industrial
IoT sensor can detect an anomaly and automatically initiate an IMS video call to a
technician while sending sensor readings over a Data Channel.

• Operator-controlled QoS and security: Unlike cloud-based IoT solutions, IMS
Data Channels operate within carrier-managed networks, ensuring end-to-end secu-
rity and predictable Quality of Service (QoS).

6

IMS Data Channels: Concept and Standardization

2.3.6 Healthcare and Remote Diagnostics

IMS Data Channels can enhance telemedicine by enabling real-time diagnostics, remote
patient monitoring and interactive medical consultations. While existing solutions (e.g.,
WebRTC or cloud-based services) already provide telehealth capabilities, IMS Data Chan-
nels offer unique advantages in environments requiring synchronous multimedia and data
exchange under operator-controlled QoS.

Key Advantages of IMS Data Channels:

• Simultaneous voice, video and medical data transmission: A doctor in a
remote consultation can receive live electrocardiogram readings or vital signs data
while interacting with the patient over an IMS-based video call.

• operator-controlled security and reliability: IMS ensures secure, low-latency
transmission of sensitive medical data.

• Guaranteed QoS for real-time medical applications: IMS Data Channels
leverage network-managed prioritization for critical healthcare services, ensuring
smooth data transmission even in congested networks.

Figure 1: Possible IMS Data Channel use cases

7

Chapter 3

Architecture of IMS Data Channels
This chapter explores the architecture of IMS Data Channels, including the essential
components, the main interfaces, the protocol stack and QoS mechanisms within IMS
environments. Standards such as NG.134-v3.0-1, NG.129-v1.0, ETSI IMSDC, TS 23.228,
TS 29.175 and TS 29.330 are referenced to highlight the guidelines and requirements.

IMS Data Channel Reference Architecture

In March 2024, CT#103 (103rd meeting of the 3GPP Core Network and Terminals (CT)
Technical Specification Group) finalized two important technical specifications, TS 29.175
and TS 29.330, completing the Release 18 work on NG-RTC (Next Generation Real-Time
Communication). NG-RTC is a new framework for real-time communication services built
on the IMS architecture. It combines advanced features like the IMS Data Channel, AI-
driven media processing and Service-Based Interface (SBI) frameworks. These innovations
enable richer and more interactive experiences, such as ultra-high-definition intelligent
calling.

The IMS Data Channel, introduced in Release 16, is a flexible mechanism for transmitting
data within IMS. It acts as a content-agnostic tunnel, offering several key advantages over
traditional data channels used in EPC/5GC networks:

• Seamless integration with IMS sessions: The IMS Data Channel is set up as
part of an IMS session (e.g., a voice or video call). This makes it easy to link data
with the session, enabling advanced voice and video features.

• User identity correlation: The IMS Data Channel is tied to the authenticated
identity of the user, simplifying how applications access user-specific information.

• Quality of Service (QoS) guarantees: Just like IMS audio and video streams,
the IMS Data Channel supports dedicated bearers, ensuring reliable data transmis-
sion with guaranteed performance.

8

Architecture of IMS Data Channels

Figure 2: IMS Data Channel bearers

3.1.1 IMS Enhancements for Data Channel Integration

To facilitate the IMS Data Channel based applications, 3GPP has enhanced the IMS
architecture by standardizing several new network functions in TS23.228:

• Media Function (MF) / Media Resource Function (MRF): Acts as the
media plane function for the IMS Data Channel, terminating IMS Data Channels
from the UE (User Equipment) and establishing further IMS Data Channels towards
the DC Application Server or another Media Function. The MF and MRF provide
the media resource management and forwarding of data channel media traffic. The
MF and MRF provide the following functionalities:

- The MF and MRF manage the data channel media resources (bootstrap
and application data channel resources, if applicable) under the control of
the IMS AS;

- The MF and MRF terminate the bootstrap data channel from the UE and
forward HTTP traffic between the UE and DCSF (Data Channel Signalling
Function) via MDC1 (Media Data Channel 1);

- The MF and MRF may anchor the application data channel in P2P (Peer-
to-Peer) scenarios, if required, and forward application data traffic from/to
the UEs;

- The MF and MRF relay traffic on the A2P/P2A (Application-to-Peer/Peer-
to-application) data channels between the UE and the DC Application
Server via MDC2 (Media Data Channel 2).

• Data Channel Signaling Function (DCSF): The DCSF is the signalling con-
trol function that provides data channel control logic. The DCSF subscribes to
IMS session events from the IMS Application Server (AS) and instructs the Media
Function to perform media plane handling (e.g., IMS DC forwarding and media
processing). The DCSF is not involved in SIP signalling. The DCSF supports the
following functionalities:

- receives event reports from the IMS AS and decides whether data channel
service is allowed to be provided during the IMS session;

9

Architecture of IMS Data Channels

- manages bootstrap data channel and (if applicable) application data channel
resources at the MF or MRF via the IMS AS;

- supports HTTP web server functionality to download data channel appli-
cations (bootstrapping) via MF and/or MRF to the UE based on UE sub-
scription.

- downloads data channel applications from the Data Channel Application
Repository;

- interacts with NEF for data channel capability exposure via N33 in 5G
networks;

- interacts with the DC Application Server for DC resource control via DC4/DC3,
and for traffic forwarding via MDC3/MDC2 (Media Data Channel 3/Media
Data Channel 2).

- interacts with HSS (Home Subscriber Server) for retrieving and storing
DCSF service specific data via N72/Sc.

• DC Application Server : Refers to an application server that leverages network
capabilities to provide service logic for both individual subscribers and enterprise
users. While it does not function as a dedicated network element, it acts as a service
platform enabling applications that rely on network infrastructure

• DC Application Repository (DCAR): Serves as a repository from which the
UE can download data channel applications which are retrieved by the DCSF and
needed for specific service logic. Applications do not need to be pre-installed on
the UE but can be downloaded and launched during runtime. The UE accesses
applications from DCAR indirectly via the DCSF and MF/MRF.

• IMS AS: The IMS AS is enhanced to support the following functionalities:

- The IMS AS interacts with the DCSF via DC1 for event notifications;
- The IMS AS receives the data channel control instructions from the DCSF

and accordingly interacts with the MF via DC2 or with MRF via Mr’/Cr
for data channel media resource management;

- The IMS AS interacts with HSS for retrieving and storing DC enhanced
IMS AS service specific data via N71/Sh.

• S-CSCF: The S-CSCF is enhanced to support the following functionalities:

- The S-CSCF includes a Feature-Caps header field indicating its data chan-
nel capability in the 200 OK response to the initial and any subsequent
REGISTER request from UE.

• HSS: In order to support data channel service, the HSS is additionally enhanced
with the following functionalities:

- stores IMS Data Channel subscription data as transparent data.
- interacts with DCSF during service data retrieval by DCSF via N72/Sc.
- interacts with IMS AS during service data retrieval by IMS AS via N71/Sh.

10

Architecture of IMS Data Channels

Figure 3: TS23.228 - Architecture option of IMS supporting DC usage with MF

11

Architecture of IMS Data Channels

Figure 4: TS23.228 - Architecture option of IMS supporting DC usage with MRF

12

Architecture of IMS Data Channels

3.1.2 Reference Points

The following reference points are defined in TS23.228 to support the data channel service
in IMS:

• DC1: Reference point between the DCSF and the IMS AS.

• DC2: Reference point between the IMS AS and MF.

• DC3: Reference point between the DCSF and NEF.

• DC4: Reference point between the DCSF and DC Application Server.

• DC5: Reference point between the DCSF and DCAR.

• N72/Sc: Reference point between the DCSF and HSS.

The following reference points are updated to support data channel signaling control in
IMS:

• N70/Cx/Dx: Reference point between the CSCF and HSS.

• N71/Sh: Reference point between the IMS AS and HSS.

The following reference points are defined for data channel media handling:

• MDC1: Reference point for transport of data channel media between data channel
media function (either MF or MRF) and DCSF.

• MDC2: Reference point for transport of data channel media between data channel
media function (either MF or MRF) and DC Application Server.

• MDC3: Reference point for transport of data channel media between DCSF and
DC Application Server.

The following reference point is updated to support data channel media handling:

• Mr’/Cr: SIP-based reference point between IMS AS and MRF.

Some of the above interfaces are SBI (Service Based Interfaces) interfaces that have been
introduced as enhancement to IMS architecture for IMS Data Channel. IMS has been
using SIP protocol for most of the interfaces, the strict state machine behind SIP protocol
does not fit well the various new services emerging rapidly nowadays. A new SBI (Nimsas)
has been defined for IMS AS, by consuming the APIs over Nimsas the DCSF can subscribe
to the IMS session events, flexible service triggering is achieved via such mechanism.
Furthermore, the DCSF exposes APIs towards DC applications via Ndcsf interface, the
application servers can therefore dynamically discover and invoke the APIs provided by
the network. All intentions behind the introduction of SBI into IMS is to make the
real-time communication network more open and flexible.

13

Architecture of IMS Data Channels

IMS Data Channel Protocol Stack

The IMS Data Channel Protocol Stack follows a layered architecture, designed to ensure
secure, flexible and real-time data transmission within IMS environments. This stack
is built upon the WebRTC framework and has been extended to meet the demanding
requirements of the IP Multimedia Subsystem (IMS), including:

• High security: End-to-end encryption using DTLS (Datagram Transport Layer
Security) to protect data integrity and confidentiality.

• Quality of service (QoS) management: Unlike standard WebRTC, IMS enforces
strict QoS mechanisms to ensure consistent performance across various network
conditions.

• Interoperability with 4G, 5G and different operators: Seamless integration
with mobile networks and IMS core functionalities, requiring standardized protocols
such as SIP (Session Initiation Protocol) and SDP (Session Description Protocol)

Each layer has a specific role, from handling data transport and security to managing
sessions, allowing IMS Data Channels to support various applications.

In particular, the IMS Data Channel protocol stack relies on two core transport protocols,
SCTP (Stream Control Transmission Protocol) and DTLS (Datagram Transport Layer
Security), to ensure secure and reliable data transmission. Additionally, the SIP (Session
Initiation Protocol) and SDP (Session Description Protocol) protocols operate in the
control plane, managing the signaling, session setup and media negotiation required for
establishing and maintaining Data Channels.

The following sections provide a detailed description of these key protocols and their roles
within the IMS Data Channel framework.

3.2.1 SCTP over DTLS

At the transport layer of the IMS Data Channel protocol stack, SCTP (Stream Con-
trol Transmission Protocol) runs over DTLS (Datagram Transport Layer Security). This
combination provides a communication framework that is both secure and reliable, which
is essential for supporting real-time, multimedia-oriented data exchange in IMS environ-
ments.

• SCTP (Stream Control Transmission Protocol): As defined in RFC 8831,
3GPP TS 26.114 and adopted in NG.134-v3.0-1, SCTP is a message-based transport
protocol that improves flexibility and reliability compared to traditional stream-
based protocols like TCP. SCTP transmits data in discrete chunks rather than as
a continuous stream, making it more efficient for multimedia services that need
to deliver independent messages, such as chat, file sharing or augmented reality
updates.

14

Architecture of IMS Data Channels

– Reliable and Partially Reliable Data Transfer: SCTP supports both
fully reliable and partially reliable modes. This allows applications to choose
between guaranteed delivery and reduced latency, depending on their require-
ments. For example, while file transfers may need full reliability, real-time AR
or interactive messaging may benefit from faster delivery even if occasional
data loss occurs.

– Multistreaming and Head-of-Line Blocking Reduction: SCTP enables
multistreaming, allowing multiple independent logical streams within a single
association. This prevents Head-of-Line (HoL) blocking, a situation where the
delay or loss of one packet blocks the delivery of all following packets, even if
they arrive on time. With SCTP, each stream operates independently, ensuring
that a delay in one data flow does not impact others, which is critical for real-
time responsiveness in IMS applications.

15

Architecture of IMS Data Channels

• DTLS (Datagram Transport Layer Security): DTLS, specified by the IETF
and integrated into 3GPP TS 26.114, provides encryption and data integrity for
SCTP, securing IMS Data Channels against various threats. This ensures that
sensitive data is protected throughout transmission.

– Data Confidentiality and Integrity: DTLS applies end-to-end encryption
to all data transmitted over SCTP, preventing unauthorized access. This is
crucial for IMS applications handling sensitive data, such as medical records.

– Low-Latency Security: Unlike traditional security mechanisms that may
introduce delays, DTLS is optimized for real-time applications, maintaining
security without compromising performance.

– Replay Protection and Authentication: DTLS includes mechanisms for
replay protection, preventing attackers from retransmitting intercepted packets
to manipulate communication. Each message is uniquely marked, ensuring it
is processed only once. Additionally, DTLS provides mutual authentication,
verifying the identities of both the sender and receiver to prevent unauthorized
access.

Figure 5: User plane protocol stack for a Data Channel client defined in 3GPP TS26.114

16

Architecture of IMS Data Channels

3.2.2 SIP and SDP Extensions

The Session Initiation Protocol (SIP) and Session Description Protocol (SDP) are es-
sential components for managing sessions in the IP Multimedia Subsystem, particularly
for supporting IMS Data Channels. SIP and SDP handle the signaling and media setup
required to establish, modify and terminate sessions, providing IMS Data Channels with
flexibility to adapt dynamically to network conditions and user needs. These protocols
facilitate the establishment, negotiation and modification of Data Channels, enabling IMS
applications to adapt to changing network conditions or user requirements. The exten-
sions introduced in 3GPP TS 24.229, TS 26.114, ETSI IMSDC, enhance SIP and SDP
to accommodate the unique demands of IMS Data Channels, including real-time data
exchange, low latency and secure multimedia communication.

• Session Initiation Protocol (SIP): SIP serves as the primary signaling protocol
within IMS, handling session initiation, modification and termination. For IMS
Data Channels, SIP extensions allow for:

– Channel Setup and Media Negotiation: SIP initiates the session and ne-
gotiates media capabilities between endpoints. It enables the connected devices
to negotiate parameters, including supported codecs, transport protocols (e.g.,
SCTP over DTLS) and encryption settings.

– Dynamic Session Modification: SIP enables dynamic session modifica-
tions, allowing the addition, removal or adjustment of Data Channels during
an active session. For example, an IMS voice or video call can be enhanced by
adding a Data Channel for file sharing or displaying real-time speech to text
transcription, real-time translation and sentiment analysis. SIP ensures that
these Data Channels can be seamlessly incorporated without interrupting the
existing session.

– Quality of Service (QoS) Signaling: SIP signaling in IMS includes ex-
tensions for QoS negotiation, which allows Data Channels to request specific
bandwidth and priority levels according to the application’s needs.

• Session Description Protocol (SDP): Embedded within SIP messages, SDP
provides comprehensive descriptions of the media types, codecs, transport protocols
and other parameters involved in establishing and managing IMS sessions. In the
context of IMS Data Channels, SDP plays a crucial role in enabling precise me-
dia negotiation, ensuring interoperability and providing flexibility across different
applications. This allows for the adaptation of session parameters in real time to
support varying network conditions and application-specific requirements.

– Media and Channel Parameter Negotiation: SDP facilitates the nego-
tiation of channel-specific parameters, including transport protocols (such as
SCTP over DTLS), reliability configurations and Quality of Service (QoS) re-
quirements. This flexibility is fundamental for IMS Data Channels, as it allows
applications to choose configurations that best suit their specific needs. For
instance, data channels can be configured for full reliability, making them ideal
for applications that require error-free data transfer (e.g., file transfers). Al-
ternatively, for real-time applications like AR, data channels can be set up

17

Architecture of IMS Data Channels

with partial reliability to prioritize low latency over complete data accuracy,
supporting responsive and interactive experiences.

– Codec and Application Layer Configuration: SDP enables devices to ne-
gotiate codecs that are optimized for IMS applications, as outlined in 3GPP TS
26.264, which includes Enhanced Voice Services (EVS) tailored for AR and XR
experiences. By allowing devices to dynamically adjust codec settings—such
as bitrate, resolution and compression level—SDP ensures that media quality
is maintained while meeting the application’s latency and bandwidth require-
ments. This capability is especially valuable for immersive applications like
AR and XR, where high-quality, low-latency audio and video are essential to
user experience.

– Security Parameters: SDP also supports the negotiation of security-related
parameters, including encryption methods such as DTLS (Datagram Transport
Layer Security). This negotiation is critical to ensure that both endpoints agree
on the security configurations before data transmission begins, establishing an
encrypted and authenticated channel. Such a security layer is indispensable
for applications handling sensitive data, as it provides end-to-end encryption
to protect against unauthorized interception and access. By enabling these se-
curity negotiations, SDP contributes to the overall integrity and confidentiality
of IMS Data Channels, making them suitable for applications requiring robust
data protection.

18

Architecture of IMS Data Channels

IMS Data Channel Setup

The setup of an IMS Data Channel follows a structured procedure that ensures secure and
efficient session establishment, resource allocation and application delivery. This section
outlines the key steps and entities involved in the setup process.

3.3.1 Session Initiation and Configuration

The UE may initiate an IMS Data Channel concurrently with an IMS audio/video session
or upgrade an existing session through a re-INVITE message. While simultaneous setup
allows enhanced multimedia interaction from the start, it may slightly increase the initial
session setup time.

The Home Public Land Mobile Network (HPLMN) can configure the UE via device man-
agement mechanisms or UICC (Universal Integrated Circuit Card) to define whether and
when to request a Data Channel. If no explicit configuration is provided by the network,
the UE may autonomously decide whether to initiate a Data Channel request, as long as
IMS Data Channel support was confirmed by the network during the registration process.

If the UE is not authorized for IMS Data Channels, the IMS Application Server discards
the data channel request, allowing only the audio/video session to proceed.

3.3.2 Bootstrap Process Overview

The bootstrap phase is essential for establishing a control channel that facilitates appli-
cation download and configuration. The overall steps are:

1. Session Request. The UE sends a SIP INVITE containing an SDP offer that
specifies intent to establish a data channel.

2. Authorization. The IMS AS validates the request by querying the Home Sub-
scriber Server (HSS) to verify subscription status and policy compliance.

3. Resource Allocation. The IMS AS interacts with the Data Channel Signaling
Function (DCSF), which coordinates with the Policy and Charging Rules Function
(PCRF) via the P-CSCF to reserve necessary resources.

4. Application Provisioning.

• The Data Channel Application Repository (DCAR) stores application packages
(e.g., HTML/JavaScript).

• The Data Channel Application Server (DCAS) retrieves and prepares the ap-
plication content for delivery.

5. Media Function Configuration. The DCSF instructs the IMS AS to engage
either the Media Function (MF) or Media Resource Function (MRF), which acts as
a proxy for application delivery via HTTP over data channels.

19

Architecture of IMS Data Channels

6. Stream ID and URL Assignment. The DCSF assigns a unique Stream ID and
a session-specific URL, communicated back through the IMS AS to the MF/MRF.

7. Application Request. The UE sends an HTTP GET over the data channel to
retrieve application content. The MF/MRF intercepts, modifies and forwards the
request to the DCAS.

8. Content Delivery and Session Finalization. The DCAS responds with the
application resources. Once downloaded, the IMS AS finalizes the setup, enabling
full functionality of the IMS Data Channel.

Figure 6: Bootstrap Data Channel setup signaling procedure (TS 23.228)

3.3.3 Client and Application Support

A DCMTSI client is an MTSI-capable UE that supports IMS Data Channels. It signals
its capability using the +sip.app-subtype media feature tag set to webrtc-datachannel, as
per RFC 5688.

Applications retrieved over the bootstrap data channel are delivered securely through
MF/MRF intermediaries. The process includes:

20

Architecture of IMS Data Channels

• Content hosted in DCAR.

• Policy enforcement and retrieval via DCAS.

• HTTP session managed through MF/MRF acting as intermediary proxy.

3.3.4 SDP and ICE Considerations

SDP is central to session negotiation, enabling the configuration of multiple data channels
within an IMS session. Each data channel is associated with a unique Stream ID and
mapped through specific SDP attributes.

Multiple data channels must respect a global session bandwidth limit. Each channel is
mapped via SDP with unique parameters and may require individual media descriptions
if different transport parameters are used.

To simplify NAT traversal, DCMTSI clients typically use ICE Lite, which relies on local
(host) candidates. In IMS controlled networks, full ICE/STUN/TURN mechanisms are
generally unnecessary.

Stream IDs below 1000 are reserved for bootstrap purposes. The DCMTSI client uses
HTTP over data channels to load GUI or application logic. Host information in headers
is omitted to ensure compatibility with IMS routing policies.

If unintended HTTP requests are received on a bootstrap channel, the client removes the
associated SDP mapping, closing the stream to prevent unauthorized use.

21

Architecture of IMS Data Channels

3.3.5 Device Architecture Overview

The figure below illustrates the architecture of a device designed to interact with IMS
Data Channels.

Figure 7: Device components supporting IMS Data Channels

22

Architecture of IMS Data Channels

3.3.6 Application Workflow and Interaction in Data Channels

A data channel application workflow involves the following steps, detailed in Figure 8:

1. Application Storage and Upload: Applications are uploaded to the network by
authorized parties and stored in a repository (DCAR) within the IMS network.

2. Application Retrieval: During the session, the application is retrieved from the
repository DCAR by the DCAS. The DCAS manages updates and interactive func-
tionalities.

3. Application Delivery: Content is sent through bootstrap data channels to the
local UE A and, in parallel, to the remote UE B. Additional data channels can
be established for direct communication between UEs A and B. Data transmission
starts only after mutual instantiation confirmation between peers.

Figure 8: Data Channel Workflow

Applications retrieved in this manner are securely stored, associated with specific ses-
sion requirements and mapped to unique Stream IDs for interaction. The interaction is
dynamic, enabling multi-source application handling as shown in Table 3.1.

Stream ID Content Source
0 Local network provider
10 Local user
100 Remote network provider
110 Remote user

Table 3.1: Bootstrap Data Channel Content Sources - TS26.114

23

Architecture of IMS Data Channels

Data channel providers include the local UE user, authorized network parties, remote
users and remote network providers. Each stream ID corresponds to a unique content
source and is listed with the a=dcmap attribute.

Application-Specific SDP Attributes

Two specific attributes are defined to support application data channels:

• a=3gpp-bdc-used-by: Specifies the party (either ”sender” or ”receiver”) using the
bootstrap data channel. This attribute helps distinguish bootstrap channel descrip-
tions in SDP offers and answers, ensuring proper session termination for each party.

• a=3gpp-req-app: Used when adding application data channels, this attribute spec-
ifies the requesting application via a req-app-id. The attribute may include an adc-
stream-id-endpoint parameter to differentiate endpoints for server or UE communi-
cation. This configuration allows applications to manage data channels specifically
associated with unique identifiers.

Session Control and QoS Handling in SDP

IMS sessions using data channels adhere to the SDP offer-answer model from RFC 3264,
allowing for the dynamic addition or removal of media components without affecting on-
going media lines. In sessions with multiple media types, the a=3gpp-qos-hint attribute
facilitates QoS management for application data channels. Adjustments can be made
based on strict or relaxed latency requirements for data flows and if necessary, modifica-
tions can be applied to meet changing conditions.

Receiving SDP Answer and Channel Setup

When a DCMTSI client receives an SDP answer, it checks the a=dcmap attributes to
see which stream IDs have been accepted for data channels. If a stream ID that was
offered is missing in the answer, the corresponding data channel is considered rejected.
The req-app-id parameter helps link each data channel to a specific application, allowing
precise control over which data belongs to which service.

By using SDP in this way, IMS Data Channels can manage multiple types of data traffic,
support application loading and maintain quality of service. This ensures that data is
delivered reliably and that the system remains flexible, even in complex or high-demand
IMS scenarios.

24

Architecture of IMS Data Channels

QoS and Flow Management in 4G and 5G

IMS Data Channels are designed to leverage QoS mechanisms in both 4G and 5G net-
works, ensuring that data transmission meets application-specific performance require-
ments. While both networks provide QoS, 5G offers enhanced capabilities, such as net-
work slicing and more granular QoS flows.

• 4G LTE QoS Integration: In 4G LTE, QoS is managed using bearers that provide
various levels of service based on data requirements. IMS Data Channels can request
dedicated bearers for prioritized data handling, ensuring optimal performance for
high-priority traffic.

– Guaranteed Bit Rate (GBR) and Non-GBR Bearers: 4G LTE supports
GBR bearers for applications that need consistent bandwidth (e.g., voice calls)
and non-GBR bearers for applications with flexible requirements. IMS Data
Channels can use GBR bearers to ensure reliable delivery of critical data, such
as interactive media content.

– Dynamic QoS Adjustment: SIP signaling in IMS enables Data Channels
to adapt QoS settings dynamically based on real-time network conditions. For
instance, if network congestion occurs, a Data Channel for AR overlays can
reduce its bit rate to maintain low latency.

• 5G QoS Framework: The 5G network introduces advanced Quality of Service
(QoS) mechanisms, specifically designed to meet the different requirements of mod-
ern applications. Key features, such as network slicing and fine-grained QoS flows,
allow the network to prioritize and manage data traffic with greater flexibility and
precision. IMS Data Channels benefit significantly from these features, enabling
applications that require ultra-low latency and high reliability.

– Network Slicing: Network slicing in 5G allows operators to create multiple,
virtualized network segments (or ”slices”) on a shared physical infrastructure.
Each slice can be configured with specific resources and QoS policies tailored to
the needs of a particular application or service type. One key slice type in 5G
is URLLC (Ultra-Reliable Low-Latency Communication), specifically designed
for applications that require extremely low latency and high reliability. This
slice is ideal for AR/XR applications and other real-time interactive services.
IMS Data Channels can leverage URLLC slices to ensure that latency-sensitive
applications maintain consistent, responsive performance. For example, in a
remote assistance scenario using AR, a URLLC slice provides the necessary
resources to maintain ultra-low latency and prevent delays, making the user
experience more seamless and stable.

– QoS Flow Control: In 5G networks, QoS flow control enables a more detailed
level of management for data streams by allowing the network to assign specific
priority levels and resource allocations to different types of data within a single
session. Unlike the less flexible QoS handling in previous generations, 5G’s QoS
flows can dynamically adjust to the needs of various data streams, providing
each with the resources required for optimal performance. This capability

25

Architecture of IMS Data Channels

allows IMS Data Channels to prioritize certain data streams over others within
the same session. For example, during an IMS session involving both AR data
and standard messaging, the AR data stream can be assigned a higher priority
to ensure timely delivery, while less time-sensitive data like text messaging can
be given lower priority. For applications requiring real-time interaction, such as
live AR annotations in a video call, assigning these data flows the highest QoS
priority minimizes latency and maintains data integrity, ensuring that users
receive high-quality service even in network-congested situations.

26

Chapter 4

Demonstrating potential applications
of IMS Data Channels using

WebRTC technology
WebRTC (Web Real-Time Communication) is an open-source technology that enables
real-time audio, video and data communication directly between browsers or applications
without the need for dedicated intermediary servers. It is designed to support interactive
communication features such as voice calls, video calls and data exchange with low latency
and high efficiency, leveraging internet protocols and standards.

Key Features of WebRTC

• Peer-to-peer communication: Enables direct connections between two endpoints
(browsers, devices or applications) for data transfer without a centralized server.

• Standardization: Built on open standards defined by World Wide Web Consor-
tium and IETF, ensuring interoperability across different browsers and devices.

• Protocols used:

– ICE (Interactive Connectivity Establishment): For negotiating connec-
tions through firewalls and NAT.

– SRTP (Secure Real-Time Protocol): Ensures secure audio/video commu-
nication.

– DTLS (Datagram Transport Layer Security): Secures data communica-
tion.

• Integrated APIs: WebRTC provides JavaScript APIs (for the web) that allow
developers to add features such as:

– Audio and video streaming (media streams).
– Real-time data exchange (RTCDataChannel).
– Peer-to-peer connection management (RTCPeerConnection).

• Common Applications:

– Video calls and conferences (e.g., Google Meet, Zoom).
– Instant messaging services with file transfer.

27

Demonstrating potential applications of IMS Data Channels using WebRTC technology

– Real-time multiplayer online games.
– IoT applications for video streaming or remote control.

28

Demonstrating potential applications of IMS Data Channels using WebRTC technology

Use Case Simulation with WebRTC

Since IMS Data Channels are not yet widely available and adopted in the European mar-
kets, simulating their use cases through WebRTC makes it possible to showcase potential
application scenarios that could be implemented with IMS Data Channels in the future.

4.2.1 Exploration of IMS Data Channel Potential

WebRTC offers a highly flexible environment for experimenting with features such as video
call, real-time communication, text and, most importantly, the integration of advanced
machine learning algorithms provided by modern cloud platforms like AWS (Amazon)
and GCP (Google Cloud Platform).

These simulations allow for practical exploration of how IMS Data Channels can support
and enhance such intelligent capabilities within IMS networks, enabling smarter, more
adaptive services powered by cloud-based AI.

The integration of IMS Data Channels introduces significant benefits for the end user,
enhancing communication experiences through more dynamic and efficient service access:

• Advanced Voice Services: Enhancing voice communication with real-time con-
textual information, translations and on-screen information, making the interaction
richer and more engaging.

• Multi-Network Accessibility: Seamless operation across 4G, 5G and Wi-Fi net-
works, ensuring service continuity and consistent quality regardless of the user’s
network environment.

• Guaranteed Quality of Service: By leveraging the IMS framework, Data Chan-
nels benefit from QoS-aware resource management, ensuring reliable performance
for real-time applications even under varying network conditions.

• Simplified User Interaction: Advanced features are automatically activated dur-
ing sessions via bootstrapping mechanisms, eliminating the need for manual setup
or application downloads. This approach reduces complexity and makes services
more accessible and user-friendly.

This work aims to demonstrate advanced voice service use cases by simulating them
through a WebRTC-based environment, integrated with cloud-based machine learning
services offered by AWS. The simulation includes real-time functionalities such as speech
transcription, speech-to-text translation and sentiment analysis. While IMS Data Chan-
nels are not yet widely adopted, the use cases implemented with WebRTC are designed
to showcase how such services could be mapped onto the IMS architecture in the future
opening new perspectives for the evolution of voice communication.

29

Demonstrating potential applications of IMS Data Channels using WebRTC technology

Janus WebRTC Gateway

For the simulation, the Janus WebRTC Gateway was chosen due to its strong capabilities
in building and testing advanced real-time communication scenarios. Its flexible archi-
tecture and native support for WebRTC protocols made it an ideal platform to explore
potential use cases and their integration with machine learning algorithms.

• Janus is specifically designed to support WebRTC protocols, which form the basis
for IMS Data Channel functionality. This made it an effective tool for simulating
IMS Data Channel capabilities in a controlled environment. In this project, Janus
was used to implement real-time speech transcription, speech and text translation,
voice and text sentiment analysis showcasing how advanced voice services with ML
algorithms interactions can be delivered through data channels.

• Janus’s modular architecture, with plugins like TextRoom, AudioBridge and Video-
Call provided the flexibility required for my research. This design allowed me to
customize and extend the Janus Gateway to suit my specific thesis requirements,
such as integrating APIs and SDKs for cloud-based machine learning services.

• Janus is lightweight, making it easy to deploy and manage within my development
environment. The availability of pre-built Docker images simplified the setup pro-
cess.

• Janus enabled me to simulate realistic communication scenarios, such as data ex-
change and interactive applications, using WebRTC data channels.

While IMS Data Channels are not yet widely implemented, Janus provides a practical
way to model their potential. By simulating use cases on Janus, it is possible to explore
how IMS Data Channels could enhance voice communication, ensure seamless operation
across different network types (such as 4G, 5G and Wi-Fi) and improve user experience
by automatically loading application features during a session—without requiring manual
downloads or setup.

30

Demonstrating potential applications of IMS Data Channels using WebRTC technology

Environment setup simulation

4.4.1 Ubuntu Environment via WSL

The entire simulation environment was managed using Ubuntu running within the Win-
dows Subsystem for Linux (WSL). This setup provides a fully functional Linux environ-
ment directly on top of a Windows system, allowing seamless interaction with native
Linux tools and Docker containers.

Ubuntu was used for several tasks in the simulation workflow:

• Launching the Janus WebRTC Gateway: The Janus Docker container was
managed from the Ubuntu shell, using standard Docker commands to start, stop
and configure the gateway and expose the necessary ports.

• Serving the WebRTC Demo Files: The demo files were served to the browser
by running a lightweight HTTP server with the command:

python3 -m http.server 8080

This made the Janus WebRTC demos accessible via http://localhost:8080.

• Running the Flask Server: The Python script responsible for handling audio and
text communication with AWS (including real-time transcription, translation and
sentiment analysis) was executed directly within the Ubuntu environment, using the
following command:

./full_videocall_rt_comprehend_final.py

This script continuously listened for WebSocket and REST requests from the client
interface and forwarded them to the relevant AWS APIs and SDKs.

Using WSL with Ubuntu provided a highly flexible and efficient environment for devel-
opment and testing. It allowed the full stack including Janus, the Flask backend and the
HTTP server to be executed in a Unix-like system, while still being accessible from the
browser running in the host Windows environment.

4.4.2 Janus WebRTC Gateway configuration and organization

The Janus WebRTC Gateway was configured locally using Docker and the demo files were
served via a local HTTP server.

The Janus WebRTC Gateway demo files, which allow testing of Janus features such as
WebRTC data channels, were obtained directly from the Docker container rather than
cloning the GitHub repository. These files are pre-installed in the /usr/local/share/janus/
demos directory within the Janus Docker image. The following steps were taken to access
and organize these files:

31

Demonstrating potential applications of IMS Data Channels using WebRTC technology

• The Janus Docker image was pulled from Docker Hub using:

docker pull canyan/janus-gateway:latest

• The Docker container janus was created and launched.

• The demo files (.js, .html and .css files) were copied from the container to the local
directory /Tesi/html for easier access:

docker cp janus:/usr/local/share/janus/demos ˜/Tesi/html

4.4.3 Setting Up the Janus WebRTC Gateway

To deploy the Janus WebRTC Gateway, the following steps were carried out:

1. Any previously running Janus containers were stopped and removed:

docker stop janus
docker rm janus

2. A new Janus container was started using the official Docker image:

docker run -d --name janus \
-p 8088:8088 \
-p 8188:8188 \
-p 10000-10200:10000-10200/udp \
canyan/janus-gateway:latest

The ports used in the container serve the following purposes:

• 8088 (REST API): Used for HTTP-based REST API interactions with the Janus
Gateway for session management

• 8188 (WebSocket): Enables WebSocket communication for plugins such as the
VideoCall for real-time data exchange.

• 10000-10200/UDP (Media Traffic): Handles audio, video and data streams
exchanged during WebRTC sessions using the UDP protocol for low-latency trans-
mission.

Note: Although multiple ports are exposed when running the Janus Gateway container,
only port 8188 is directly used in this project. All signaling between the browser-based
WebRTC client and the Janus server, such as session creation, plugin attachment, call

32

Demonstrating potential applications of IMS Data Channels using WebRTC technology

setup and SDP exchange, is handled through this WebSocket port. The UDP port range
10000–10200 is used automatically by the browser’s internal WebRTC engine to transmit
media streams (audio, video and data). This process happens in the background without
requiring manual configuration. Port 8088, which is reserved for REST API communi-
cation with Janus, is configured but not used in this simulation. Both WebRTC clients
(Client A and Client B) run on the same machine, which simplifies network routing and
avoids issues related to NAT traversal.

4.4.4 Serving the Demo Files Locally

Web browsers enforce strict security rules, preventing WebRTC and WebSocket-based
pages from working properly when opened directly as local files. To comply with these
security policies, a local HTTP server was started to serve the demo files:

cd ˜/Tesi/html
python3 -m http.server 8080

This command maps the local directory /Tesi/html to the URL http://localhost:8080,
making the demo files accessible via HTTP.

4.4.5 Accessing the Demo Files in the Browser

The demo files can be accessed in the browser using the local HTTP server:

• Homepage: http://localhost:8080

• VideoCall demo: http://localhost:8080/videocalltest.html

When a demo is opened in the browser:

• The browser loads HTML, JavaScript and CSS files from the local HTTP server.

• WebSocket communication with the Janus Gateway occurs via port 8188.

• WebRTC media streams are exchanged over the UDP ports 10000-10200.

This setup enables full testing of WebRTC features such as video calls, data messaging
and integration with external AI services.

33

Demonstrating potential applications of IMS Data Channels using WebRTC technology

Use Case: Video Call with Integrated Machine Learn-
ing AWS Services

This use case demonstrates a comprehensive WebRTC-based simulation of advanced voice
and text communication services, enhanced through the integration of AWS machine
learning capabilities. The implementation is based on the Janus WebRTC Gateway and
extends the default video call demo to support features such as real-time audio transcrip-
tion, audio and text chat translation, audio and text sentiment analysis.

The setup simulates a call between two clients (from Client A to Client B) running on
the same machine. In order to avoid echo and audio feedback, custom modifications in
the videocalltest.js file were made to disable audio element used by Client B:

1 if (myusername === "B") {
2 console.log("Fully disabling audio for Client B to avoid echo (both

incoming stream and HTML element).");
3

4 let remoteStream = videocall.webrtcStuff.pc.getReceivers().find(r => r.
track && r.track.kind === "audio");

5 if (remoteStream && remoteStream.track) {
6 remoteStream.track.stop();
7 console.log("Incoming audio track for Client B has been fully stopped."

);
8 }
9

10 let audioElement = document.querySelector("#peervideo0");
11 if (audioElement) {
12 audioElement.muted = true;
13 audioElement.volume = 0;
14 audioElement.srcObject = null;
15 console.log("HTML media element on Client B has been muted and detached

from the stream.");
16 }
17 }

Listing 4.1: Client B audio stream fully disabled to avoid echo

In addition to the backend logic, several important updates were made to the user interface
in the videocalltest.html file:

• Two new buttons, Start Recording and Stop Recording, were added to the HTML
layout to allow the user to control when real-time transcription begins and ends.

• A dedicated section was added to display the original transcription and its translated
version side by side. These are updated live via WebSocket events from the Flask
server.

34

Demonstrating potential applications of IMS Data Channels using WebRTC technology

• Custom visual blocks were implemented to display sentiment analysis results using
emoji. The interface includes two boxes: one for audio sentiment and one for text
sentiment, each updated independently.

• Additional logic was added to handle WebSocket events for partial transcriptions,
final transcriptions and sentiment updates, ensuring that the interface remains re-
sponsive during the entire call.

Figure 9: Custom user interface of the Video Call demo with live transcription, translation and sentiment analysis

35

Demonstrating potential applications of IMS Data Channels using WebRTC technology

4.5.1 Implemented functionalities

The enhanced demo addresses the following key functionalities:

• Real-time speech-to-text transcription using Amazon Transcribe.

• Real-time audio and text translation from Italian to English using Amazon Trans-
late.

• Real-time audio and text sentiment analysis using Amazon Comprehend.

4.5.2 System Components and Architecture

• Janus WebRTC Gateway: Used to establish video/audio/dataChannel sessions.
Deployed via Docker with REST and WebSocket interfaces.

• WebRTC Clients (A and B): Accessed via the browser at http://localhost:
8080/videocalltest.html, each with a unique username.

• Flask Server: Acts as a middleware between the WebRTC clients and AWS ser-
vices. It provides a WebSocket interface for real-time audio streaming to Amazon
Transcribe and a REST API for text translation and sentiment analysis using AWS
Translate and Comprehend.

• AWS Services: Includes Amazon Transcribe (streaming) accessed via SDK for
python, Translate and Comprehend APIs accessed via boto3.

36

http://localhost:8080/videocalltest.html
http://localhost:8080/videocalltest.html

Demonstrating potential applications of IMS Data Channels using WebRTC technology

4.5.3 Flask Server Implementation

The Flask server plays a central role in the simulation architecture by acting as an intel-
ligent middleware between the WebRTC clients and the AWS machine learning services.
It is responsible for handling both real-time audio processing and HTTP-based text mes-
sage analysis. The Python script used in this simulation integrates Flask, Flask-SocketIO,
Amazon Transcribe Streaming SDK and the AWS Boto3 for Translate and Comprehend.

Figure 10: Flask server architecture acting as middleware between WebRTC clients and AWS services.

At the beginning of the script, the required Python modules are imported, including
boto3 for accessing AWS services, asyncio for asynchronous processing and flask, flask cors
and flask socketio for handling web and WebSocket communication. The AWS region is
explicitly set to eu-central-1 and the necessary AWS clients for Transcribe, Translate and
Comprehend are initialized.

A Flask application is configured to use SocketIO, enabling real-time two-way communi-
cation between clients and the server. Cross-Origin Resource Sharing (CORS) is enabled
to allow browser-based WebRTC clients to communicate with the server.

Audio Transcription, Translation and Sentiment Analysis

The server implements a WebSocket event listener receive audio(data) that is triggered
whenever audio chunks are sent from the client. These chunks are buffered until they
reach a duration of approximately 50 milliseconds (the minimum recommended by AWS
for real-time processing) and are then inserted into a queue for asynchronous processing.

The transcription process is handled by the asynchronous function tran-
scribe stream(), which initiates a streaming session with Amazon Transcribe through
start stream transcription(). Audio data is continuously read from the queue and sent
to the AWS service. The server receives both partial and final transcription results,

37

Demonstrating potential applications of IMS Data Channels using WebRTC technology

which are processed through a custom event handler MyEventHandler, derived from
TranscriptResultStreamHandler.

When a partial transcription result is available:

• The text is immediately translated using Amazon Translate.

• The original and translated text are emitted via WebSocket to the client using the
event partial transcription, allowing the user interface to display real-time results.

When a final transcription result is received:

• The full sentence is stored in a buffer.

• The sentence is translated from Italian to English.

• The result is sent to the client using the event final transcription.

• The translated text is also analyzed by Amazon Comprehend to classify the senti-
ment (e.g. positive, negative, neutral).

• The sentiment result is converted into a visual emoji and sent to the client using
the event sentiment result.

The transcription session is terminated either when the user clicks the “Stop Recording”
button or automatically after a period of inactivity. To ensure that Amazon Transcribe
closes the stream cleanly and produces final results, 10 silent audio chunks are added
before termination.

Text-Based Translation and Sentiment Analysis

For chat messages sent via the text interface, the Flask server exposes a REST endpoint
/analyze, which accepts HTTP POST requests with a JSON payload containing the
following fields:

• text: the original message content.

• source language: language code of the input text.

• target language: desired language for translation.

The server performs the following actions:

1. Translates the message using the AWS Translate API.

2. Performs sentiment analysis on the translated message using Amazon Comprehend.

3. Sends the sentiment result back to the client as a WebSocket event named
text sentiment result.

4. Returns a JSON response containing both the translated text and the detected
sentiment.

38

Demonstrating potential applications of IMS Data Channels using WebRTC technology

Server Launch

The server is launched on http://0.0.0.0:5000 to accept connections from local WebRTC
clients. The startup command is:

./full_videocall_rt_comprehend_final.py

This server handles both real-time and asynchronous workflows, enabling seamless inte-
gration of voice and text services with AWS machine learning APIs.

39

Demonstrating potential applications of IMS Data Channels using WebRTC technology

4.5.4 Client-Side Real-Time Audio Processing and WebSocket
Communication

The logic for capturing, processing and transmitting audio data is entirely managed by
the videocalltest.js script, which was originally provided as part of the Janus WebRTC
Gateway demo and has been modified to support the functionalities required by this
project.

The client-side enhancements introduced in this simulation include microphone stream
acquisition, real-time audio processing using the AudioWorklet API, conversion to a 16-
bit PCM format compatible with AWS Transcribe and transmission to a Flask server over
WebSocket for real-time transcription, translation and sentiment analysis.

Microphone Access and Stream Initialization

When the user clicks the “Start Recording” button, the startRecording() function is trig-
gered. This function requests access to the user’s microphone using the WebRTC API
navigator.mediaDevices.getUserMedia().

The stream is configured with the following parameters:

• Sample rate: 16 kHz

• Channel count: mono

• Echo cancellation: enabled

• Noise suppression: enabled

• Automatic gain control: enabled

This configuration ensures that the input signal is optimized for speech recognition.

AudioWorklet Processing and Audio Conversion

The captured audio stream is routed through a custom AudioWorkletNode, which runs
in a dedicated audio thread for efficient real-time processing. This node executes a mod-
ule defined in processor.js, responsible for converting the floating-point audio samples
provided by the browser into 16-bit PCM format. This format is required by Amazon
Transcribe for audio streaming.

Browsers typically output audio samples as 32-bit floating-point values (Float32) in the
range [-1.0, +1.0]. However, Amazon Transcribe expects audio in signed 16-bit linear
PCM format (Int16), with values ranging from -32768 to +32767.

To fix this gap, the processor.js module performs the following steps for each audio frame:

1. Clips the floating-point values to ensure they remain within [-1, +1].

40

Demonstrating potential applications of IMS Data Channels using WebRTC technology

2. Scales each sample to the 16-bit integer range.

3. Converts the array to an Int16Array and sends it to the main thread via postMes-
sage().

Once received by the main JavaScript thread, the PCM buffer is sent to the Flask server
over WebSocket using the Socket.IO client. The Flask server processes the audio using
Amazon Transcribe, Amazon Translate and returns real-time transcription/translation
and sentiment results.

The following code shows the actual implementation of processor.js:

1 class MyAudioProcessor extends AudioWorkletProcessor {
2 process(inputs, outputs, parameters) {
3 const input = inputs[0]; // First input channel
4 if (input && input.length > 0) {
5 const channelData = input[0]; // Mono channel assumption
6 const int16Buffer = new Int16Array(channelData.length);
7

8 // Convert audio data from Float32 to PCM 16-bit
9 for (let i = 0; i < channelData.length; i++) {

10 let s = Math.max(-1, Math.min(1, channelData[i])); // Clipping
11 int16Buffer[i] = s < 0 ? s * 32768 : s * 32767;
12 }
13

14 // Send the buffer to the main thread as ArrayBuffer
15 this.port.postMessage(int16Buffer.buffer, [int16Buffer.buffer]);
16 }
17 return true;
18 }
19 }
20

21 registerProcessor('my-audio-processor', MyAudioProcessor);

Listing 4.2: AudioWorklet processor converting Float32 to PCM 16-bit

41

Demonstrating potential applications of IMS Data Channels using WebRTC technology

WebSocket Connection to Flask

A continuous WebSocket connection to the Flask server is established at page load using
Socket.IO:

1 let socket = io("http://127.0.0.1:5000");

This connection is used to transmit small chunks of microphone audio data to the Flask
server in real time:

1 socket.emit("audio", buffer.buffer);

WebSocket was chosen over HTTP because it supports low-latency and full-duplex com-
munication. This means that the client can continuously stream audio to the server
while simultaneously receiving transcription and translation updates in real time, which
is essential for interactive, real-time applications like speech recognition and feedback.

Server Feedback Handling

As the Flask server receives and processes the audio (via AWS Transcribe, Translate and
Comprehend), it emits WebSocket events back to the client interface. The client handles:

• partial transcription: displaying in-progress transcriptions.

• final transcription: showing the complete sentence and translation.

• sentiment result: displaying an emoji that reflects the detected emotion based on
key words.

• text sentiment result: used for chat messages, showing both translation and
sentiment analysis.

These events update specific boxes in the user interface in real time, allowing a highly
interactive experience for the user.

42

Chapter 5

Audio Simulation Tests and
Evaluation Metrics

This section explains how the simulation tests were organized and which metrics were
collected to evaluate the quality of the user experience during real-time audio communi-
cation.

The goal of these tests is to simulate different levels of degradation in a best-effort network,
which represents the default behavior of the WebRTC-based environment used in this
simulation and to understand how the absence of QoS mechanisms impacts overall system
performance and perceived user experience.

The tests aim to explore how increased latency, jitter and packet loss affect the real-time
processing chain, especially when compared to what could be expected in an IMS Data
Channel environment, where QoS is guaranteed.

To make the results consistent and comparable across all tests, the same pre-recorded
audio was used every time:

Ciao, come stai? Questa è una frase di test. Oggi è una bella giornata.

Because everything happens in real time, it wasn’t possible to fully automate the tests.
Each test was run manually and every scenario was repeated five times to get average
values and reduce the impact of any unexpected fluctuations.

43

Audio Simulation Tests and Evaluation Metrics

In best-effort networks, where data packets are forwarded without guaranteed delivery
times, jitter and congestion delay are among the most frequent and impactful factors that
can degrade real-time communication services.

Jitter (Variable Delay). Jitter refers to the variation in packet arrival times. In the
context of this simulation, jitter is introduced as a random fluctuation of delay every 5
audio chunks, simulating real-world scenarios where packets arrive inconsistently due to:

• Dynamic routing decisions

• Buffering at intermediate network nodes

Values in the range of 10–25 ms (light jitter) and 40–100 ms (severe jitter) were selected
to reflect real-world conditions in congested wireless or cellular networks, where jitter can
easily exceed 50 ms without QoS enforcement.

Congestion Delay (Buffered Queuing Delay). Congestion delay occurs when pack-
ets accumulate in buffers at intermediate routers during high traffic load, causing notice-
able delays before forwarding. In this simulation, fixed delays (150–400 ms and 400–
600 ms) were added periodically to simulate:

• Latency spikes caused by full buffers

• Delays caused by heavy traffic on upload or download connections

These values reflect network conditions often observed in best-effort environments during
peak hours or in situations where multiple users contend for limited upstream capacity.

44

Audio Simulation Tests and Evaluation Metrics

The audio simulation tests were organized into four groups of scenarios, each focusing on
a specific aspect of system behavior under different network and configuration conditions.
The goal was to progressively introduce controlled degradations such as jitter, congestion
and packet loss while observing their impact on latency, transcription performance and
overall user experience.

• Scenario A – Reference tests under ideal conditions: no jitter, no packet loss and
no congestion. The only parameter varied across sub-scenarios is the chunk size, in
order to establish a baseline comparison across configurations:

– A1 – Chunk size: 50 ms
– A2 – Chunk size: 30 ms
– A3 – Chunk size: 100 ms
– A4 – Chunk size: 150 ms
– A5 – Chunk size: 200 ms

The chunk size defines the duration (in milliseconds) of each audio segment trans-
mitted to the transcription algorithm. Smaller chunk sizes enable lower latency and
faster feedback, which are desirable in real-time communication systems. However,
they also increase the number of packets sent and the associated processing over-
head. Larger chunk sizes reduce packet frequency but may increase end-to-end delay
and reduce interactivity.
According to AWS Transcribe Streaming best practices, the recommended chunk
size range is between 50 ms and 250 ms, with 50 ms being a common choice for
real-time streaming scenarios.

45

Audio Simulation Tests and Evaluation Metrics

• Scenario B – Chunk size variation combined with two levels of simulated jitter. A
random delay was applied every 5 audio chunks to simulate unstable delivery typical
of best-effort networks.

To simulate jitter effects every 5 audio chunks, the following logic was added to the
server Flask:

1 # Chunk counter initialization
2 if "chunk_counter" not in receive_audio.__dict__:
3 receive_audio.chunk_counter = 0
4

5 while len(audio_buffer) >= chunk_size_bytes:
6 receive_audio.chunk_counter += 1
7

8 # Simulate jitter: apply random delay every 5 chunks
9 if receive_audio.chunk_counter % 5 == 0:

10 jitter_delay = random.uniform(0.01, 0.025)
11 time.sleep(jitter_delay)
12 log_event(f"Simulated jitter delay: {int(jitter_delay * 1000)}

ms")
13

14 audio_queue.put(audio_buffer[:chunk_size_bytes])
15 audio_buffer = audio_buffer[chunk_size_bytes:]
16

Listing 5.1: Simulated jitter delay every 5 chunks

Chunk Size Jitter 10–25 ms (Light) Jitter 40–100 ms (High)
50 ms B1 B5
100 ms B2 B6
150 ms B3 B7
200 ms B4 B8

46

Audio Simulation Tests and Evaluation Metrics

• Scenario C – Chunk size combined with two levels of congestion delay, introduced
every 5 audio chunks to simulate queue accumulation in overloaded network nodes.

To emulate congestion in overloaded networks, the Flask server introduces fixed
queuing delays every 5 audio chunks. This simulates latency spikes typically caused
by buffer accumulation or transmission bottlenecks:

1 # Simulate congestion every 5 chunks
2 if receive_audio.chunk_counter % 5 == 0:
3 congestion_delay = np.random.uniform(0.15, 0.4)
4 time.sleep(congestion_delay)
5 log_event(f"Simulated congestion delay: {int(congestion_delay *

1000)} ms")
6

7 audio_queue.put(audio_buffer[:chunk_size_bytes])
8 audio_buffer = audio_buffer[chunk_size_bytes:]
9

Listing 5.2: Simulated congestion delay every 5 chunks

Chunk Size Delay 150–400 ms (Light) Delay 400–600 ms (Severe)
50 ms C1 C5
100 ms C2 C6
150 ms C3 C7
200 ms C4 C8

47

Audio Simulation Tests and Evaluation Metrics

• Scenario D – Chunk size combined with different levels of packet loss. Audio
chunks were randomly dropped based on predefined loss probabilities to emulate
unreliable delivery.

To simulate packet loss, a random number is generated for each audio chunk. If this
number is below a predefined threshold (e.g., 10%), the chunk is discarded and not
sent to the transcription engine. This models real-world scenarios where network
unreliability leads to missing packets.

1 drop_probability = 0.1 # packet loss simulation
2 if random.random() < drop_probability:
3 receive_audio.dropped_chunks += 1
4 log_event(f"DROPPED chunk #{receive_audio.chunk_counter}")
5 audio_buffer = audio_buffer[chunk_size_bytes:]
6 continue
7

Listing 5.3: Simulated packet loss logic for Scenario D

– D1 – Chunk 50 ms, ∼10% loss
– D2 – Chunk 100 ms, ∼10% loss
– D3 – Chunk 150 ms, ∼10% loss
– D4 – Chunk 200 ms, ∼10% loss
– D5 – Chunk 50 ms, ∼15% loss
– D6 – Chunk 200 ms, ∼15% loss
– D7 – Chunk 50 ms, ∼20% loss

During the tests, chunk sizes from 50 ms to 200 ms were used to explore the trade-offs
between latency, responsiveness and accuracy under various conditions. Only for use case
A chunk size = 30 ms has been also investigated.

Each test was repeated five times and the average values were used for comparison.

48

Audio Simulation Tests and Evaluation Metrics

Audio Events and Collected Metrics

During each test, a series of key events were logged on the server side (Flask server),
with precise timestamps recorded into CSV files. This event tracking enabled a detailed
analysis of system behavior and allowed for the calculation of latency and reliability
metrics under various network conditions.

The following events were captured during the real-time audio processing workflow:

• Speech Start (first audio chunk received) – Represents the arrival of the first
audio chunk at the server and the official start of the test.

• First Partial Transcription Received – Indicates when AWS Transcribe pro-
duced the first partial transcription result, providing an early feedback of the system
responsiveness.

• Full Transcription Received – Represents the reception of the complete tran-
scribed sentence from AWS Transcribe.

• Translation Completed – The translated version of the sentence has been gener-
ated via AWS Translate.

• Sentiment Analysis Completed – AWS Comprehend has analyzed the translated
sentence and produced the detected sentiment.

• Audio Round-Trip Latency – Measures the time between the reception of the
first audio chunk and the completion of the sentiment analysis, representing the
end-to-end processing delay.

• Audio Recording Stopped by User – Indicates the manual stopping of audio
recording on the client side.

• End of Audio Stream (last chunk sent) – Represents the moment when all
audio chunks, including final silence, have been transmitted to the server.

• Transcription Session Ended – Signals the final closure of the transcription,
translation and sentiment processing session.

From these logged events, the following metrics were extracted and computed for each
test:

• Audio Round-Trip Time (RTT) – Measures the time elapsed between the recep-
tion of the first audio chunk and the completion of the sentiment analysis, capturing
the full end-to-end processing delay perceived by the user.

• Time to First Partial Transcription – Time required for AWS Transcribe to
produce the first partial transcription, providing an early indication of system re-
sponsiveness.

• Number of Chunks Sent and Dropped – Allows evaluating system robustness
under packet loss conditions and correlating delivery reliability with transcription
accuracy.

49

Audio Simulation Tests and Evaluation Metrics

Scenario A: Impact of Chunk Size under Ideal Condi-
tions

Scenario A was designed to serve as a baseline reference for all subsequent experimental
scenarios. No artificial network degradations such as jitter, packet loss or congestion delay
were introduced. This allowed an analysis of how the system behaves when only the chunk
size parameter is varied under ideal transmission conditions.

In real-time audio streaming, the chunk size defines how much audio is collected before
being packetized and sent for processing. Smaller chunks enable faster initial feedback but
increase packetization overhead and system workload. On the other hand, larger chunks
reduce packet frequency but introduce additional buffering delays, impacting interactivity.

In this scenario, five different chunk sizes were tested: 30 ms, 50 ms, 100 ms, 150 ms,
and 200 ms considering that for the Streaming Transcription AWS suggests a chunk size
between 50 ms and 200 ms. In addition to this range also chunk size = 30 ms has been
tested. Two critical metrics were monitored during each test:

• First Partial (ms) – Time elapsed between the reception of the first audio chunk
and the reception of the first partial transcription from AWS Transcribe. It repre-
sents the initial responsiveness of the system.

• Audio Round-Trip Time (RTT) (ms) – Time from the reception of the first
audio chunk to the arrival of the final sentiment analysis result after transcription,
translation and sentiment classification. It captures the full end-to-end latency
perceived by the user.

The results, shown in Figure 11, show important trends:

Figure 11: First Partial and RTT Audio as a function of Chunk Size in Scenario A (Ideal Conditions)

50

Audio Simulation Tests and Evaluation Metrics

5.2.1 Impact on First Partial Latency

The first partial latency is highly sensitive to the chunk size. With a 50 ms chunk size, the
system achieved the lowest first partial latency, delivering initial transcription feedback
and consequently initial translation rapidly. Reducing the chunk size to 30 ms unexpect-
edly led to worse latency instead of an improvement.

This degradation is explained by the overhead introduced by very small chunks: sending
too many packets in quick succession puts excessive load on both the local system and
the cloud services. Each packet transmission triggers processing overhead (WebSocket
framing, network I/O, buffer management) and increases scheduling pressure on the tran-
scription engine. AWS Transcribe is optimized for chunk sizes between 50 ms and 200 ms
and operating outside this range (as with 30 ms) results in inefficiencies and degraded
performance.

Increasing the chunk size beyond 50 ms (to 100 ms, 150 ms, and 200 ms) progressively
worsened the first partial latency. Larger chunks mean the system needs to accumulate
more audio before transmitting anything, introducing an initial buffering delay. Therefore,
the first partial result is delayed simply because the first audio packet is sent later.

5.2.2 Impact on Audio Round-Trip Time (RTT)

The overall Audio RTT showed a similar trend, but with a few differences:

• As the chunk size increased from 50 ms to 150 ms, the RTT also increased signifi-
cantly, showing that larger chunks not only delay the start of transcription but also
propagate delays throughout the full processing chain.

• With a chunk size of 200 ms, a slight decrease in RTT was observed compared to
150 ms, but the performance remained worse than at 50 ms.

This behavior can be explained by considering that larger chunks cause initial buffer-
ing delays, but may also reduce the number of packets sent overall, slightly mitigating
system load at extreme chunk sizes like 200 ms. Nevertheless, the overall user-perceived
responsiveness remains lower compared to the 50 ms configuration.

5.2.3 Conclusions on Chunk Size Optimization

The combination of overhead management and buffering delay explains why a chunk size
of 50 ms proves to be the best choice under ideal network conditions in this simulation
environment. It minimizes both the time needed to receive the first partial transcription,
translation and the total round-trip latency, resulting in the best overall user experience.

On the other hand, the 30 ms configuration, although initially intended to improve re-
sponsiveness, actually degraded performance. This happened because it operated outside
AWS’s recommended range and introduced excessive packetization overhead, making the
system less efficient.

51

Audio Simulation Tests and Evaluation Metrics

These conclusions will serve as a reference for evaluating the system behavior under de-
graded network conditions, as analyzed in the following scenarios.

52

Audio Simulation Tests and Evaluation Metrics

Scenario B: Jitter Impact on Latency and System Sta-
bility

The results shown in Figure 12 illustrate how the introduction of jitter in a best-effort
network affects the performance of real-time audio communication. Both light jitter
(10–25 ms) and high jitter (40–100 ms) were simulated under different chunk size configu-
rations and the corresponding First Partial Latency and Audio Round-Trip Time (RTT)
were measured.

Figure 12: Scenario B – Latency vs Chunk Size under Light and High Jitter Conditions

5.3.1 Impact of Light Jitter (10–25 ms)

When a moderate jitter level was introduced, the system remained relatively robust and
stable. In particular:

• First Partial Latency showed a slight decreasing trend as the chunk size increased
from 50 ms to 150 ms, suggesting that larger chunks help absorb minor delay varia-
tions, making the transmission more stable toward AWS Transcribe.

• However, when reaching 200 ms, both the First Partial Latency and the RTT Audio
increased again. This is likely because the buffering delays introduced by the larger
chunks became more significant than the benefits gained from absorbing jitter.

• In terms of accuracy, the system performed very well under light jitter: all tests
achieved 100% success except for chunk size 100 ms (B2), which showed an 80%
success rate.

These results indicate that minor delay fluctuations typical of moderately loaded best-
effort networks can be tolerated without major degradation in service quality, especially
with appropriate chunk size tuning.

53

Audio Simulation Tests and Evaluation Metrics

5.3.2 Impact of High Jitter (40–100 ms)

When a much higher jitter range was introduced, both latency performance and accuracy
were negatively affected:

• First Partial Latency remained consistently higher across all chunk sizes compared
to the light jitter case. This indicates that severe delay variability compromises the
system’s ability to provide rapid initial transcription feedback.

• RTT Audio also showed a general increase, confirming that significant jitter affects
not only the start of the processing chain but also the full round-trip experience,
from transcription to sentiment analysis.

• Chunk sizes between 100 ms and 150 ms provided a slightly better performance than
200 ms even under high jitter conditions. They were large enough to absorb most
delay variations without introducing the excessive buffering delays seen with 200 ms
chunks, thus preserving better responsiveness.

• Accuracy also dropped under these conditions: chunk sizes of 150 ms (B7) and
200 ms (B8) achieved only 80% success rates, compared to the 100% success rate
observed under lighter jitter.

5.3.3 Critical Failure Scenario: Chunk Size 50 ms with High
Jitter (use case B5)

A particularly critical failure was observed for the combination of small chunk size and
high jitter. In Scenario B5 (chunk size 50 ms with high jitter), the system consistently
failed: the accuracy was 0% across all tests. AWS Transcribe was unable to reconstruct a
coherent transcription stream. As a result, no meaningful RTT Audio measurements were
obtained, and all attempts were classified as failures (NOK). Furthermore, in every test,
AWS truncated the audio early, closing the transcription session before the full sentence
was completed. Consequently, no complete transcription, no translation and no sentiment
analysis results were produced.

This behavior led to a severely degraded user experience, highlighting how fragile real-
time services can become under extreme jitter when packet sizes are too small and Quality
of Service (QoS) mechanisms are absent, as typical in degraded best-effort networks.

5.3.4 Best Configurations under Jitter Conditions

Based on the collected data:

• Under light jitter (10–25 ms), chunk sizes between 100 ms and 150 ms proved to be
the most effective, providing a good balance between responsiveness and resilience
against moderate network fluctuations.

54

Audio Simulation Tests and Evaluation Metrics

• Under high jitter (40–100 ms), a chunk size of 100 ms delivered the best robustness,
achieving 100% success across all tests. However, this improvement in reliability
came at the cost of increased latency: both the First Partial Latency and the Audio
Round-Trip Time (RTT) were higher compared to higher chunk sizes. Therefore,
in scenarios where reliability is prioritized over ultra-low latency, 100 ms can be
considered the optimal setting.

• Still under high jitter conditions, larger chunk sizes such as 150 ms and 200 ms led
to a slight drop in accuracy (down to 80%), but latency actually improved compared
to 100 ms. This suggests that while increasing the chunk size beyond 100 ms reduces
the sensitivity to jitter and improves delay, it may also introduce synchronization
issues or partial packet loss that slightly affect the reliability of full transcription
and translation.

Operating with very small chunks (such as 50 ms) under high jitter is strongly discouraged
unless additional network controls like jitter buffers or prioritization are available.

55

Audio Simulation Tests and Evaluation Metrics

Scenario C: Impact of Congestion Delay on Latency
and System Stability

The results shown in Figure 13 illustrate the impact of simulated congestion delays on
real-time audio communication performance. Both moderate congestion (150–400 ms) and
severe congestion (400–600 ms) were analyzed, evaluating First Partial Latency, Audio
Round-Trip Time (RTT) and system accuracy across different chunk sizes.

Figure 13: Scenario C – Latency vs Chunk Size under Simulated Congestion Delay Conditions

5.4.1 Impact of Moderate Congestion Delay (150–400 ms)

Under moderate congestion conditions:

• First Partial Latency exhibited a slight increase moving from a chunk size of
50 ms to 100 ms, followed by a stable trend across 100–200 ms. This suggests that
the system can tolerate moderate delays without major penalties on initial feedback
timing.

• RTT Audio showed a bell-shaped curve: it was lowest at 100 ms, peaked at 150 ms
and then decreased at 200 ms. This behavior indicates that intermediate chunk sizes
(100–150 ms) balance buffering and delay accumulation, while very large chunks
(200 ms) start to reduce the overall transmission overhead.

• Accuracy remained generally high:

– C1: 100% OK
– C2: 60% OK
– C3: 80% OK
– C4: 100% OK

56

Audio Simulation Tests and Evaluation Metrics

Only in C2 a notable degradation was observed, possibly caused by sporadic delivery
issues under congestion.

These results demonstrate that moderate congestion levels can still be effectively managed
by properly tuning the chunk size.

5.4.2 Impact of Severe Congestion Delay (400–600 ms)

With increased congestion:

• First Partial Latency remained relatively constant between 100 ms and 150 ms,
but significantly improved when increasing the chunk size to 200 ms, demonstrating
the effectiveness of larger buffering in stabilizing the initial feedback.

• RTT Audio was highest at 100 ms, slightly decreased at 150 ms and further im-
proved at 200 ms. This confirms that smaller chunks become highly sensitive to
severe congestion, while larger chunks mitigate the effect of burst delays.

• Accuracy was more heavily impacted:

– C5: 0% OK (AWS closed sessions prematurely, resulting in dropped sentences)
– C6: 60% OK
– C7: 100% OK
– C8: 80% OK

Scenario C5 represents a catastrophic case where the combination of small chunk
size (50 ms) and high congestion delay led to total session failures.

5.4.3 Critical Observations and Best Practices

Based on the analysis:

• Under moderate congestion (150–400 ms), chunk sizes between 100 ms and 150 ms
offer the best trade-off between latency and accuracy, maintaining a good level of
service even with minor fluctuations.

• Under severe congestion (400–600 ms), larger chunk sizes, particularly 200 ms,
provide the most robust performance by reducing the sensitivity to packet delivery
variations, despite slightly increasing the buffering delay.

• Small chunk sizes (50 ms) under severe congestion should be strictly avoided, as
they resulted in complete session failures due to excessive fragmentation and packet
arrival disorder.

• In highly degraded network scenarios, prioritizing reliability over ultra-low latency
becomes crucial, and adjusting the chunk size is an effective strategy to maintain
service quality.

57

Audio Simulation Tests and Evaluation Metrics

Scenario D: Impact of Packet Loss on Accuracy and
System Stability

The results shown in Figure 14 illustrate how different levels of packet loss affect the
system’s ability to correctly process real-time audio communication. Unlike previous tests
focused on latency, this evaluation prioritized system accuracy and successful transcription
and translation since packet loss introduces semantic distortions, word drops or even early
session closures.

Figure 14: Scenario D – Packet Loss vs Accuracy (per Chunk Size)

58

Audio Simulation Tests and Evaluation Metrics

5.5.1 Detailed Results per Scenario

• D1 (Chunk 50 ms):
All tests were successful (100% OK) despite packet loss values ranging between 6%
and 10.3%. This configuration demonstrated excellent robustness under moderate
packet loss conditions.

• D2 (Chunk 100 ms):
Tests 1, 2, 3, and 5 resulted in NOK outcomes, even with relatively low packet loss
(starting from 6%). Only Test 4 (packet loss 7.5%) was successful. This indicates
that D2 is highly sensitive to even low packet loss.

• D3 (Chunk 150 ms):
Tests 2, 3, and 4 failed (NOK) already at packet loss values around 8.6%. Inter-
estingly, Test 1 was successful despite having a packet loss similar to that of Test 2
and Test 5 also succeeded even though it showed a higher packet loss than Test 2.
This suggests that, under this configuration, the system’s behavior was somewhat
inconsistent, with moderate packet loss generally degrading reliability, but with
occasional successful deliveries even at comparable or slightly worse conditions.

• D4 (Chunk 200 ms):
All tests (1 to 5) failed (NOK) despite very low packet loss levels, starting as low as
3.6%. This confirms that very large chunk sizes cannot compensate for packet loss
and tend to worsen the quality of transcription and translation processes.

• D5 (Chunk 50 ms):
All tests were successful (100% OK) even with packet loss values up to 15.4%. This
configuration proved to be very resilient to moderate levels of packet loss.

• D6 (Chunk 100 ms):
All tests failed (100% NOK) with packet loss levels ranging from 13.7% to 24.5%.
This indicates that when the network degradation becomes severe, chunk sizes
around 100 ms are not sufficient to ensure robustness.

• D7 (Chunk 50 ms):
Tests 1, 2, and 3 failed (NOK) under packet loss between 18.3% and 24.8%. Tests
4 and 5 were still successful with lower packet loss (around 14.7%–17.8%). This
suggests that small chunk sizes (50 ms) can tolerate moderate packet loss but are
vulnerable beyond approximately 18%.

59

Audio Simulation Tests and Evaluation Metrics

5.5.2 Critical Observations and Best Practices

• Chunk sizes of 50 ms (as in D1 and D5) demonstrated the best overall resilience
against packet loss up to 15%.

• Intermediate chunk sizes (100 ms and 150 ms) showed a higher sensitivity to packet
loss, already degrading at levels as low as 6–8%.

• Larger chunk sizes (200 ms) proved ineffective in mitigating packet loss: even mini-
mal losses resulted in failures.

• High packet loss rates (above 15%) severely impact the system regardless of chunk
size, confirming that above this threshold additional recovery mechanisms would be
necessary.

• In scenarios with unstable networks and packet loss above 10–15%, maintaining
smaller chunk sizes (e.g. 50 ms) appears to be the most effective strategy to preserve
service quality. Smaller chunks have the intrinsic advantage that, if a packet is lost,
only a limited portion of the audio is affected. This allows AWS Transcribe to still
reconstruct a coherent transcription. Conversely, losing larger chunks (e.g. 200 ms)
results in the loss of more significant portions of speech, making recovery much more
difficult and leading to severe degradation in transcription and translation quality.

60

Chapter 6

Text Simulation Tests and
Evaluation Metrics

This section explains how the simulation tests were organized and which metrics were col-
lected to evaluate the quality of the user experience during real-time text communication.

The goal of these tests is to simulate different levels of degradation in a best-effort network,
which represents the default behavior of the WebRTC-based environment used in this
simulation and to understand how the absence of Quality of Service (QoS) mechanisms
impacts overall system performance and perceived user experience.

The tests aim to explore how increased latency and packet loss affect the real-time process-
ing chain, especially when compared to what could be expected in an IMS Data Channel
environment, where QoS is guaranteed.

To make the results consistent and comparable across all tests, the same text message
was used every time:

Ciao, come stai? Oggi è una bella giornata. Questo è un messaggio di test
che contiene diverse parole per simulare una normale comunicazione via chat.

The text simulation tests were organized into three groups of scenarios, each focusing on
a specific aspect of system behavior under different network and configuration conditions:

• Scenario A – Reference tests under ideal conditions: no artificial delays and no
packet loss.

• Scenario B – Tests with the introduction of fixed artificial delays to simulate
network latency. The following fixed delays were applied:

– B1 – 200 ms delay
– B2 – 300 ms delay
– B3 – 400 ms delay
– B4 – 500 ms delay
– B5 – 600 ms delay

• Scenario C – Tests with artificial packet loss randomly applied to words within
the transmitted message, with loss percentages varying between 4% and 28%.

61

Text Simulation Tests and Evaluation Metrics

For consistency, each test in Scenarios A and B (B1 to B5) was repeated five times, while
Scenario C tests were repeated eight times to ensure an evaluation under different packet
loss conditions.

62

Text Simulation Tests and Evaluation Metrics

Text Events and Collected Metrics

During each test, a series of key events were logged on the server side (Flask server),
with precise timestamps recorded into CSV files. This event tracking enabled a detailed
analysis of system behavior and allowed for the calculation of latency and reliability
metrics under various network conditions.

The following events were captured during the real-time text processing workflow:

• Text Message Received from Client – Shows the reception of a text message
from the client, marking the start of the processing sequence.

• Text Start Translation – Marks the beginning of the translation process via AWS
Translate.

• Text Translation Completed – Represents the successful completion of the text
translation.

• Text Start Sentiment Analysis – Marks the beginning of the sentiment analysis
using AWS Comprehend.

• Text Sentiment Analysis Completed – Shows the successful detection of the
sentiment of the translated text.

• Text Round-Trip Latency – Measures the time elapsed between the reception of
the original text and the completion of sentiment analysis, capturing the end-to-end
processing delay perceived by the user.

From these logged events, the following metrics were extracted and computed for each
test:

• Text Translation Time – Measures the time taken to translate the received text
message.

• Text Sentiment Analysis Time – Measures the time taken to complete the
sentiment analysis after translation.

• Text Round-Trip Time (RTT) – Measures the total elapsed time between the
reception of the text and the availability of the sentiment analysis result.

• Number of Words Lost (only in Scenario C) – In Scenario C, additional
metrics were collected to evaluate the degradation caused by artificial packet loss,
including the number of words lost and the corresponding percentage of loss.

63

Text Simulation Tests and Evaluation Metrics

Scenario A and Scenario B: Effect of Fixed Artificial
Delays

In this set of experiments, the impact of artificial fixed delays on text communication was
evaluated.

The main objective was to analyze whether increased delay could impact the real-time
usability and responsiveness of the system without causing semantic or accuracy issues.

The results, summarized in Figure 15, show that:

• The overall Round Trip Time (RTT) shows fluctuations rather than a purely linear
increase with the artificial fixed delay. A significant latency spike is observed at
300 ms.

• Translation time is generally stable, but a noticeable peak at 300 ms suggests sen-
sitivity to specific network or processing conditions, rather than a smooth delay
propagation.

• Sentiment analysis time remains comparatively stable, showing minor variations
across different delay scenarios.

• This behavior indicates that while artificial delay impacts RTT, the internal pro-
cessing times for translation and sentiment analysis are influenced also by other
factors such as processing load and API internal buffering.

• No errors or semantic distortions were observed in any of the tests, confirming that
while delay degrades responsiveness, it does not affect the translation or sentiment
analysis accuracy.

64

Text Simulation Tests and Evaluation Metrics

Figure 15: Impact of Artificial Fixed Delay on Text Processing Latency

65

Text Simulation Tests and Evaluation Metrics

Scenario C: Impact of Packet Loss on Real-Time Text
Communication

The results presented in this section analyze how packet loss affects the accuracy and the
emotional coherence of real-time text communication over a best-effort network.

Unlike previous latency-focused scenarios (Scenario A and Scenario B), here the main
focus is the semantic and the sentiment analysis integrity of the transmitted message
rather than transmission speed.

Table 6.1 summarizes the detailed results obtained during the experiments, where different
levels of random word loss were artificially introduced.

66

Text Simulation Tests and Evaluation Metrics

Test Words Lost Loss (%) Translated text
without packet loss

Translated text with
packet loss

1 7 28% Hi, how are you? Today
is a beautiful day. This
is a test message that
contains several words
to simulate normal chat
communication

Hi, are you? A nice
day. This is a test that
contains several words
to simulate normal com-
munication via

2 4 16% Hi, how are you? Today
is a beautiful day. This
is a test message that
contains several words
to simulate normal chat
communication

Hi, how are you? To-
day is a nice day. A
test that contains sev-
eral words to simulate
normal chat communi-
cation

3 2 8% Hi, how are you? Today
is a beautiful day. This
is a test message that
contains several words
to simulate normal chat
communication

How are you? Today is
a beautiful day. This
is a test message that
contains several words
to simulate normal chat
communication

4 2 8% Hi, how are you? Today
is a beautiful day. This
is a test message that
contains several words
to simulate normal chat
communication

Hi, how are you? Today
is a beautiful day. This
is a test message that
contains words to simu-
late normal communica-
tion via

5 1 4% Hi, how are you? Today
is a beautiful day. This
is a test message that
contains several words
to simulate normal chat
communication

Hi, how are you? Today
is a day. This is a test
message that contains
several words to simu-
late normal chat com-
munication

6 2 8% Hi, how are you? Today
is a beautiful day. This
is a test message that
contains several words
to simulate normal chat
communication

Hi, how is today a nice
day. This is a test mes-
sage that contains sev-
eral words to simulate a
normal chat message

7 6 24% Hi, how are you? Today
is a beautiful day. This
is a test message that
contains several words
to simulate normal chat
communication

Hi, how are you? Today
is a beautiful day. This
is a test that contains
several words to simu-
late a

8 6 24% Hi, how are you? Today
is a beautiful day. This
is a test message that
contains several words
to simulate normal chat
communication

Hi, how are you? Today
is a beautiful day. This
is a test message, sev-
eral words for chat com-
munication.

Table 6.1: Scenario C – Impact of Packet Loss on Text Communication

67

Text Simulation Tests and Evaluation Metrics

6.3.1 Critical Observations and Best Practices

• Even low packet loss rates (4%–8%) immediately degraded the transmitted sen-
tences, either by removing essential words or modifying their meaning.

• Unlike audio streaming, where minor packet losses may still allow partial reconstruc-
tion, in real-time text transmission the loss of individual words leads to semantic
distortions.

• Sentiment analysis accuracy was also affected: the absence of emotionally relevant
words (such as adjectives like beautiful, happy or sad) sometimes caused incorrect
sentiment detection.

• These findings confirm that text communications over best-effort channels are ex-
tremely sensitive to packet loss: even minimal degradation can compromise both
the understanding and the sentiment interpretation of the message.

68

Chapter 7

Conclusions
This work provided a comprehensive exploration of the challenges posed by best-effort
network degradations on real-time audio and text communications in a WebRTC-based
environment integrated with cloud-based machine learning services such as AWS Tran-
scribe, Translate and Comprehend.

Impact on Audio Communication

• Increased jitter and congestion led to higher latencies in audio transmission and
processing, often causing significant delays in transcription and translation. In
severe cases, session instabilities occurred, with partial or even complete failures in
transcription and sentiment analysis.

• Small chunk sizes (e.g., 50 ms) minimized latency and improved responsiveness under
ideal network conditions. However, they showed sensitivity under network degra-
dation such as high jitter and packet loss, leading to increased instability and pro-
cessing errors.

• Packet loss beyond 10–15% levels dramatically affected the audio communication
chain, making real-time transcription unreliable and disrupting downstream services
such as translation and sentiment analysis.

Impact on Text Communication

• Artificial network delays (fixed additional latencies) increased the round-trip time
for text processing but did not significantly affect the accuracy of translations or
sentiment analysis, even up to 600 ms.

• In contrast, even relatively low rates of word loss (4%–8%) immediately compro-
mised the semantic integrity of transmitted text. Essential parts of the message
were lost, leading to distortions in meaning and inaccuracies in sentiment detection.

• Text-based communications demonstrated critical vulnerability to packet loss: un-
like audio streams, where partial recovery is sometimes possible, the loss of individ-
ual words severely affected both comprehension and emotional interpretation.

69

Conclusions

These results highlight the limitations of best-effort networks for supporting high-quality,
real-time communication services, particularly when complex processing chains such as
real-time transcription, translation and sentiment analysis are involved.

70

Conclusions

Advantages of IMS Data Channel Architectures

Compared to best-effort Internet connections, where transmission quality cannot be guar-
anteed, the IMS Data Channel framework defined by 3GPP introduces significant en-
hancements to address these limitations:

• Guaranteed Quality of Service (QoS): IMS Data Channels leverage standard-
ized QoS frameworks in both 4G and 5G to ensure predictable performance. In LTE
networks, the QoS Class Identifier (QCI) mechanism assigns specific traffic classes
with fixed characteristics. For example, QCI 1 is used for conversational voice with
a packet delay budget of 100 ms and packet loss rate of 10−2. In 5G, this is replaced
by the more flexible 5G QoS Identifier (5QI). For instance, 5QI 1 corresponds to
conversational voice (same as QCI 1), and 5QI 2 is assigned to conversational video
with a delay budget of 150 ms and a tighter packet loss constraint (10−3). These
frameworks enable IMS Data Channels to operate with consistent latency, jitter and
reliability across both technologies.

• Dedicated Bearers and Network Slicing: IMS supports the allocation of ded-
icated network resources (dedicated bearers in LTE and QoS flows in 5G), and
enables service-specific segmentation of the network through network slicing. This
ensures that communication quality remains stable even under congested or heavily
loaded conditions.

• Session Control and Dynamic Resource Reservation: Using the SIP protocol
and IMS Application Servers, IMS enables advanced session control and dynamic
reservation of network resources. This ensures that applications receive guaranteed
bandwidth and latency profiles before transmission begins, reducing the risk of mid-
session degradation.

By incorporating these features, IMS Data Channels significantly mitigate or even elimi-
nate the challenges typically observed in best-effort networks, ensuring faster, more reli-
able and higher-quality communication experiences.

Beyond improvements in transmission reliability, the location where machine learning
processing takes place also plays a crucial role in enhancing user experience.

In the simulation developed, services such as real-time transcription, translation and
sentiment analysis were executed remotely via cloud-based platforms. However, in use
cases demanding ultra-low latency, the use of distant cloud servers introduces additional
transmission delays and increases dependence on external network conditions.

To further optimize performance, shifting critical AI processing closer to end-users using
technologies like 5G Multi-Access Edge Computing (MEC) would provide substantial
benefits:

• Latency Reduction: Bringing processing closer to the network edge significantly
shortens transmission paths, reducing end-to-end delays and enabling near real-time
responses.

71

Conclusions

• Reliability Enhancement: Localized processing reduces dependency on wide-area
Internet connectivity, improving service stability.

• Bandwidth Optimization: Processing part of the data locally reduces the amount
of information that needs to travel across the network, preserving bandwidth for
critical services.

• Enhanced User Experience: Faster and more stable services improve the expe-
rience for users, especially for applications that involve real-time interaction, emo-
tional analysis, and other AI-based functions.

Thus, IMS Data Channels, complemented by edge-based machine learning integration,
represent a critical foundation for delivering the next generation of intelligent and real-
time multimedia services.

Final Remarks

The results of this work confirm that best-effort networks are not suitable for supporting
advanced, real-time communication services using data channels, especially when artificial
intelligence is part of the service.

By using IMS Data Channel architectures, which guarantee network quality through
mechanisms like QCI in 4G and 5QI in 5G, and by moving machine learning functions
closer to the users with edge computing, it becomes possible to offer high-quality real-time
communication services.

The combination of IMS Data Channels and AI processing at MEC is a key factor for
enabling the next generation of intelligent and real-time mobile services providing reliable,
fast and emotionally aware experiences for users.

72

Chapter A

Appendix: Source Code
This appendix includes the source code developed and used during the simulation exper-
iments described in this thesis.

Real-Time Transcription Server

1 #!/usr/bin/env python3
2 import os
3 import queue
4 import asyncio
5 import time
6 import boto3
7 import sys
8 import numpy as np
9 from flask import Flask, request, jsonify

10 from flask_cors import CORS
11 from flask_socketio import SocketIO
12 from amazon_transcribe.client import TranscribeStreamingClient
13 from amazon_transcribe.handlers import TranscriptResultStreamHandler
14 from amazon_transcribe.model import TranscriptEvent
15

16 # AWS Region and Clients
17 AWS_REGION = "eu-central-1"
18 transcribe_client = TranscribeStreamingClient(region=AWS_REGION)
19 translate_client = boto3.client(service_name="translate", region_name=

AWS_REGION, use_ssl=True)
20 comprehend_client = boto3.client("comprehend", region_name=AWS_REGION)
21

22 # Flask WebSocket Setup
23 app = Flask(__name__)
24 CORS(app)
25 socketio = SocketIO(app, cors_allowed_origins="*", async_mode="threading")
26

27 # Audio Processing Variables
28 audio_queue = queue.Queue()
29 transcription_started = False
30 sample_rate = 16000
31 audio_buffer = b""
32 transcription_text = ""
33 final_transcription_received = False
34 chunk_size_ms = 50 # Recommended chunk size for real-time streaming

73

Appendix: Source Code

35 chunk_size_bytes = int((chunk_size_ms / 1000) * sample_rate * 2)
36

37 last_full_sentence = "" # Store the last full sentence before sending to
translation

38

39 ## AUDIO: Transcription and Sentiment Analysis
40 class MyEventHandler(TranscriptResultStreamHandler):
41 async def handle_transcript_event(self, transcript_event: TranscriptEvent):
42 "Handles incoming transcription results and immediately translates

partial texts."
43 global transcription_text, final_transcription_received,

last_full_sentence
44 try:
45 results = transcript_event.transcript.results
46 for result in results:
47 text = result.alternatives[0].transcript.strip()
48

49 if text:
50 if result.is_partial:
51 translated_partial = translate_text(text, "it", "en")
52 socketio.emit("partial_transcription", {"original":

text, "translated": translated_partial})
53 else:
54 transcription_text += " " + text
55 last_full_sentence = text
56 final_transcription_received = True
57

58 translated_full = translate_text(last_full_sentence, "
it", "en")

59 socketio.emit("final_transcription", {"original":
last_full_sentence, "translated": translated_full})

60

61 # **AUDIO Sentiment Analysis**
62 sentiment, _ = analyze_sentiment(last_full_sentence, "

it")
63 sentiment_emoji = sentiment_to_emoji(sentiment)
64 socketio.emit("sentiment_result", {"sentiment":

sentiment_emoji, "client": "B"})
65

66 except Exception as e:
67 print(f" Error processing transcript event: {e}")
68

69 async def transcribe_stream():
70 "Handles streaming audio to Amazon Transcribe."
71 try:
72 stream = await transcribe_client.start_stream_transcription(
73 language_code="it-IT",
74 media_sample_rate_hz=sample_rate,
75 media_encoding="pcm",
76)
77 handler = MyEventHandler(stream.output_stream)

74

Appendix: Source Code

78 asyncio.create_task(handler.handle_events())
79

80 while True:
81 chunk = await asyncio.get_event_loop().run_in_executor(None,

audio_queue.get)
82 if chunk is None:
83 await stream.input_stream.end_stream()
84 break
85 await stream.input_stream.send_audio_event(audio_chunk=chunk)
86

87 except Exception as e:
88 print(f" Transcription stream error: {e}")
89

90 def background_transcription():
91 "Starts transcription in a background task."
92 loop = asyncio.new_event_loop()
93 asyncio.set_event_loop(loop)
94 loop.run_until_complete(transcribe_stream())
95

96 @socketio.on("audio")
97 def receive_audio(data):
98 """Receives audio data and queues it for transcription."""
99 global transcription_started, audio_buffer

100 try:
101 audio_buffer += data
102 if not transcription_started:
103 transcription_started = True
104 socketio.start_background_task(target=background_transcription)
105

106 while len(audio_buffer) >= chunk_size_bytes:
107 audio_queue.put(audio_buffer[:chunk_size_bytes])
108 audio_buffer = audio_buffer[chunk_size_bytes:]
109

110 except Exception as e:
111 print(f"Error processing audio: {e}")
112

113 @socketio.on("stop_audio")
114 def stop_audio():
115 "Handles stopping the audio stream and finalizing transcription."
116 global transcription_started, final_transcription_received
117

118 if audio_buffer:
119 audio_queue.put(audio_buffer)
120

121 silence_chunk = np.zeros(int(sample_rate * 2 * 0.2), dtype=np.int16).
tobytes()

122 for _ in range(10):
123 audio_queue.put(silence_chunk)
124 time.sleep(0.2)
125

126 audio_queue.put(None)

75

Appendix: Source Code

127

128 wait_time = 0
129 while not final_transcription_received and wait_time < 15:
130 time.sleep(1)
131 wait_time += 1
132

133 print("Transcription session closed successfully.")
134 transcription_started = False
135

136 ## TEXT: Translation and Sentiment Analysis
137

138 @app.route('/analyze', methods=['POST'])
139 def analyze_message():
140 "Handles text translation and sentiment analysis."
141 data = request.json
142 text = data.get('text')
143 source_lang = data.get('source_language', 'auto')
144 target_lang = data.get('target_language', 'en')
145

146 if not text:
147 return jsonify({"error": "Il messaggio vuoto"}), 400
148

149 translated_text = translate_text(text, source_lang, target_lang)
150

151 if not translated_text:
152 return jsonify({"error": "Errore durante la traduzione"}), 500
153

154 sentiment, confidence_scores = analyze_sentiment(translated_text,
target_lang)

155

156 # Text sentiment analysis via WebSocket
157 socketio.emit("text_sentiment_result", {"sentiment": sentiment_to_emoji(

sentiment)})
158

159 return jsonify({
160 "translation": translated_text,
161 "sentiment": sentiment,
162 "confidence_scores": confidence_scores
163 })
164

165

166 ## **Support Functions**
167 def translate_text(text, source_lang, target_lang):
168 "Translates text from source_lang to target_lang using AWS Translate."
169 try:
170 response = translate_client.translate_text(
171 Text=text,
172 SourceLanguageCode=source_lang,
173 TargetLanguageCode=target_lang
174)
175 return response["TranslatedText"]

76

Appendix: Source Code

176 except Exception as e:
177 print(f" Error in translation: {e}")
178 return "[Translation Failed]"
179

180 def analyze_sentiment(text, language):
181 "Analyzes the sentiment of a text using AWS Comprehend."
182 try:
183 response = comprehend_client.detect_sentiment(
184 Text=text,
185 LanguageCode=language
186)
187 return response['Sentiment'], response['SentimentScore']
188 except Exception as e:
189 print(f" Error in sentiment analysis: {e}")
190 return "UNKNOWN", {}
191

192 def sentiment_to_emoji(sentiment):
193 "Converts sentiment text to an emoji."
194 return {"POSITIVE": "", "NEGATIVE": "", "NEUTRAL": "", "MIXED": ""}.get(

sentiment, "")
195

196 ## Server Launch
197 if __name__ == "__main__":
198 print("\n Starting Flask WebSocket & API server on http://0.0.0.0:5000")
199 socketio.run(app, host="0.0.0.0", port=5000, allow_unsafe_werkzeug=True)

Listing A.1: full videocall rt comprehend final.py – Flask server with real-time streaming, translation and sentiment analysis
via AWS

Custom WebRTC Client Interface

1 <!DOCTYPE html>
2 <html xmlns="http://www.w3.org/1999/xhtml">
3 <head>
4 <meta charset="utf-8">
5 <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
6 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
7 <title>Janus WebRTC Server (multistream): Video Call Demo</title>
8 <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/

webrtc-adapter/8.2.2/adapter.min.js" ></script>
9 <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/

jquery/1.9.1/jquery.min.js" ></script>
10 <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/

jquery.blockUI/2.70/jquery.blockUI.min.js" ></script>
11 <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/

twitter-bootstrap/3.4.1/js/bootstrap.min.js"></script>
12 <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/

bootbox.js/5.4.0/bootbox.min.js"></script>
13 <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/spin

.js/2.3.2/spin.min.js"></script>

77

Appendix: Source Code

14 <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/
toastr.js/2.1.4/toastr.min.js"></script>

15 <script src="https://cdnjs.cloudflare.com/ajax/libs/socket.io/4.7.2/socket.io.
js"></script>

16 <script type="text/javascript" src="settings.js" ></script>
17 <script type="text/javascript" src="janus.js" ></script>
18 <script type="text/javascript" src="videocalltest.js"></script>
19 <script>
20 $(function() {
21 $(".navbar-static-top").load("navbar.html", function() {
22 $(".navbar-static-top li.dropdown").addClass("active");
23 $(".navbar-static-top a[href='videocalltest.html']").parent().

addClass("active");
24 });
25 $(".footer").load("footer.html");
26 });
27 </script>
28 <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/bootswatch

/3.4.0/cerulean/bootstrap.min.css" type="text/css"/>
29 <link rel="stylesheet" href="css/demo.css" type="text/css"/>
30 <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-

awesome/4.7.0/css/font-awesome.min.css" type="text/css"/>
31 <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/toastr.js

/2.1.4/toastr.min.css"/>
32 </head>
33 <body>
34

35 <img style="position:
absolute; top: 0; left: 0; border: 0; z-index: 1001;" src="
forkme_left_darkblue_121621.png" alt="Fork me on GitHub">

36

37 <nav class="navbar navbar-default navbar-static-top">
38 </nav>
39

40 <div class="container">
41 <div class="row">
42 <div class="col-md-12">
43 <div class="page-header">
44 <h1>Plugin Demo: Video Call
45 <button class="btn btn-default" autocomplete="off" id="

start">Start</button>
46 </h1>
47 </div>
48 <div class="container" id="details">
49 <div class="row">
50 <div class="col-md-12">
51 <h3>Demo details</h3>
52 <p>This Video Call demo is basically an example of how

you can achieve a
53 scenario like the famous AppRTC demo but with media

flowing through Janus. It

78

Appendix: Source Code

54 basically is an extension to the Echo Test demo, where
in this case the media

55 packets and statistics are forwarded between the two
involved peers.</p>

56 <p>Using the demo is simple. Just choose a simple
username to register

57 at the plugin, and then either call another user (
provided you know

58 which username was picked) or share your username with
a friend and

59 wait for a call. At that point, you'll be in a video
call with the

60 remote peer, and you'll have the same controls the Echo
Test demo

61 provides to try and control the media: that is, a
button to mute/unmute

62 your audio and video, and a knob to try and limit your
bandwidth. If

63 the browser supports it, you'll also get a view of the
bandwidth

64 currently used by your peer for the video stream.</p>
65 <p>If you're interested in testing how simulcasting can

be used within
66 the context of this sample videocall application, just

pass the
67 <code>?simulcast=true</code> query string to the url of

this page and
68 reload it. If you're using a browser that does support

simulcasting
69 (Chrome or Firefox) and the call will end up using VP8,

you'll
70 send multiple qualities of the video you're capturing.

Notice that
71 simulcasting will only occur if the browser thinks

there is enough
72 bandwidth, so you'll have to play with the Bandwidth

selector to
73 increase it. New buttons to play with the feature will

automatically
74 appear for your peer; at the same time, if your peer

enabled simulcasting
75 new buttons will appear for you when watching the

remote stream. Notice that
76 no simulcast support is needed for watching, only for

publishing.</p>
77 <p>A very simple chat based on Data Channels is

available as well:
78 just use the text area under your local video to send

messages
79 to your peer. Incoming messages will be displayed below

the

79

Appendix: Source Code

80 remote video instead.</p>
81 <p>Press the <code>Start</code> button above to launch

the demo.</p>
82 </div>
83 </div>
84 </div>
85 <div class="container hide" id="videocall">
86 <div class="row">
87 <div class="col-md-12">
88 <div class="col-md-6 container hide" id="login">
89 <div class="input-group margin-bottom-sm">
90 <i class="fa fa

-user fa-fw"></i>
91 <input class="form-control" type="text"

placeholder="Choose a username" autocomplete="off" id="username" onkeypress
="return checkEnter(this, event);" />

92 </div>
93 <button class="btn btn-success margin-bottom-sm"

autocomplete="off" id="register">Register</button> <span class="hide label
label-info" id="youok">

94 </div>
95 <div class="col-md-6 container hide" id="phone">
96 <div class="input-group margin-bottom-sm">
97 <i class="fa fa

-phone fa-fw"></i>
98 <input class="form-control" type="text"

placeholder="Who should we call?" autocomplete="off" id="peer" onkeypress="
return checkEnter(this, event);" />

99 </div>
100 <button class="btn btn-success margin-bottom-sm"

autocomplete="off" id="call">Call</button>
101 </div>
102 </div>
103 <div/>
104 <div id="videos" class="hide">
105 <div class="col-md-6">
106 <div class="panel panel-default">
107 <div class="panel-heading">
108 <h3 class="panel-title">Local Stream
109 <div class="btn-group btn-group-xs pull-

right hide">
110 <button class="btn btn-danger"

autocomplete="off" id="toggleaudio">Disable audio</button>
111 <button class="btn btn-danger"

autocomplete="off" id="togglevideo">Disable video</button>
112 <div class="btn-group btn-group-xs">
113 <button autocomplete="off" id="

bitrateset" class="btn btn-primary dropdown-toggle" data-toggle="dropdown">
114 Bandwidth</

span>
115 </button>

80

Appendix: Source Code

116 <ul id="bitrate" class="dropdown-
menu" role="menu">

117 No limit

118 Cap to
128kbit

119 Cap to
256kbit

120 Cap to
512kbit

121 Cap
to 1mbit

122 Cap
to 1.5mbit

123 Cap
to 2mbit

124
125 </div>
126 </div>
127 </h3>
128 </div>
129 <div class="panel-body" id="videoleft"></div>
130 </div>
131 <!-- START/STOP REGISTRATION BUTTONS -->
132 <div style="margin-top: 10px;margin-bottom: 20px;">
133 <button id="startRecording" class="btn btn-

success"> Start Recording</button>
134 <button id="stopRecording" class="btn btn-

danger hide"> Stop Recording</button>
135 </div>
136

137 <!-- TRANSCRIPTION BOX -->
138 <div id="transcription-container" style="border: 1px

solid #4CAF50; padding: 10px; height: 300px; overflow-y: scroll; background
-color: #f9fff9; margin-bottom: 20px;">

139 <h4> Transcription</h4>
140 <pre id="originalText" style="margin: 0; font-

size: 14px;"></pre>
141 </div>
142

143

144

145 <div class="input-group margin-bottom-sm">
146 <i class="fa fa-

cloud-upload fa-fw"></i>
147 <input class="form-control" type="text" placeholder

="Write a DataChannel message to your peer" autocomplete="off" id="datasend
" onkeypress="return checkEnter(this, event);" disabled />

148 </div>
149

150

81

Appendix: Source Code

151 <div style="display: flex; justify-content: space-
between; gap: 10px; margin-bottom: 20px;">

152

153 <!-- AUDIO SENTIMENT ANALYSIS -->
154 <div id="sentiment-container" style="flex: 1;

border: 2px solid #FFD700; padding: 15px; height: 150px; text-align: center
; background-color: #FFFACD;">

155 <h4> Audio Sentiment Analysis</h4>
156 <div id="sentimentEmoji" style="font-size:

70px;"></div>
157 </div>
158

159 <!-- TEXT SENTIMENT ANALYSIS -->
160 <div id="text-sentiment-container" style="flex: 1;

border: 2px solid #FFD700; padding: 15px; height: 150px; text-align: center
; background-color: #FFFACD;">

161 <h4> Text Sentiment Analysis</h4>
162 <div id="textSentimentEmoji" style="font-

size: 70px;"></div>
163 </div>
164

165 </div>
166

167

168

169 </div>
170 <div class="col-md-6">
171 <div class="panel panel-default">
172 <div class="panel-heading">
173 <h3 class="panel-title">Remote Stream <span

class="label label-info hide" id="callee"> <span class="label label-
primary hide" id="curres"> <span class="label label-info hide" id="
curbitrate"></h3>

174 </div>
175 <div class="panel-body" id="videoright"></div>
176 </div>
177

178 <!-- TRANSLATION BOX (BELOW REMOTE STREAM) -->
179

180 <div id="translation-container" style="border: 1px
solid #2E86C1; padding: 10px; height: 300px; overflow-y: scroll; background
-color: #e3f2fd; margin-bottom: 20px; margin-top: 80px;">

181 <h4> Translation</h4>
182 <pre id="translatedText" style="margin: 0; font

-size: 14px; color: #0D47A1;"></pre>
183 </div>
184

185

186 <div class="input-group margin-bottom-sm">
187 <i class="fa fa

-cloud-download fa-fw"></i>

82

Appendix: Source Code

188 </div>
189

190 <!-- CHAT BOX BELOW REMOTE STREAM -->
191 <div id="chat-container" style="border: 1px solid #ccc;

padding: 10px; height: 200px; overflow-y: scroll;">
192 <pre id="datarecv" style="margin: 0;"></pre>
193 </div>
194

195

196

197

198

199 </div>
200 </div>
201 </div>
202 </div>
203 </div>
204

205 <hr>
206 <div class="footer">
207 </div>
208 </div>
209

210 </body>
211 </html>

Listing A.2: videocalltest.html – Customized WebRTC interface with transcription and translation panels

JavaScript Custom Audio Processing and WebSocket
Integration

The following Javascript contains the main functions that were added to the default Janus
demo in order to support real-time audio streaming, audio worklet processing and machine
learning integration via WebSocket.

1

2

3 function doCall() {
4 // Call someone
5 $('#peer').attr('disabled', true);
6 $('#call').attr('disabled', true).unbind('click');
7 let username = $('#peer').val();
8 if(username === "") {
9 bootbox.alert("Insert a username to call (e.g., pluto)");

10 $('#peer').removeAttr('disabled');
11 $('#call').removeAttr('disabled').click(doCall);
12 return;
13 }
14 if(/[ˆa-zA-Z0-9]/.test(username)) {

83

Appendix: Source Code

15 bootbox.alert('Input is not alphanumeric');
16 $('#peer').removeAttr('disabled').val("");
17 $('#call').removeAttr('disabled').click(doCall);
18 return;
19 }
20 // Call this user
21 videocall.createOffer(
22 {
23 // We want bidirectional audio and video, plus data channels
24 tracks: [
25 { type: 'audio', capture: true, recv: true },
26 { type: 'video', capture: true, recv: true, simulcast:

doSimulcast },
27 { type: 'data' },
28],
29 success: function(jsep) {
30 Janus.debug("Got SDP!", jsep);
31 let body = { request: "call", username: $('#peer').val() };
32 videocall.send({ message: body, jsep: jsep });
33 },
34 error: function(error) {
35 Janus.error("WebRTC error...", error);
36 bootbox.alert("WebRTC error... " + error.message);
37 }
38 });
39 }
40

41 function doHangup() {
42 // Hangup a call
43 $('#call').attr('disabled', true).unbind('click');
44 let hangup = { request: "hangup" };
45 videocall.send({ message: hangup });
46 videocall.hangup();
47 yourusername = null;
48 }
49

50 // Global variables for audio management
51 let audioContext;
52 let source;
53 let workletNode;
54 let stream;
55 let socket = io("http://127.0.0.1:5000"); // WebSocket initialized once
56

57 socket.on("connect", function() {
58 console.log("WebSocket connected successfully!");
59 });
60

61 let recording = false;
62 window.lastBuffer = null; // To avoid sending duplicate audio packets
63

64 // Function to start recording

84

Appendix: Source Code

65 async function startRecording() {
66 if (recording) {
67 console.log(" Recording is already active!");
68 return;
69 }
70

71 console.log("Starting recording, WebSocket is ready...");
72 recording = true;
73

74 try {
75 const audioStream = await navigator.mediaDevices.getUserMedia({
76 audio: {
77 sampleRate: 16000,
78 channelCount: 1,
79 echoCancellation: true,
80 noiseSuppression: true,
81 autoGainControl: true
82 }
83 });
84

85 console.log("Microphone capture started...");
86 audioContext = new AudioContext({ sampleRate: 16000 });
87

88 if (audioContext.state === "suspended") {
89 await audioContext.resume();
90 console.log("AudioContext resumed.");
91 }
92

93 source = audioContext.createMediaStreamSource(audioStream);
94 stream = audioStream;
95

96 // Load the AudioWorklet module
97 try {
98 await audioContext.audioWorklet.addModule('processor.js');
99 console.log("AudioWorklet loaded successfully!");

100 } catch (e) {
101 console.error("Error loading AudioWorklet:", e);
102 stopRecording();
103 return;
104 }
105

106 await new Promise(resolve => setTimeout(resolve, 100)); // Ensure
readiness

107

108 // Create and connect the AudioWorkletNode
109 try {
110 workletNode = new AudioWorkletNode(audioContext, 'my-audio-

processor');
111 console.log("AudioWorkletNode created successfully.");
112 } catch (e) {
113 console.error("Error creating AudioWorkletNode:", e);

85

Appendix: Source Code

114 stopRecording();
115 return;
116 }
117

118 source.connect(workletNode);
119

120 // Handle audio chunks from AudioWorklet
121 workletNode.port.onmessage = function(event) {
122 let buffer = new Int16Array(event.data);
123

124 let isSilent = buffer.every(sample => Math.abs(sample) < 100);
125 if (isSilent) {
126 console.log("Ignoring silent audio.");
127 return;
128 }
129

130 if (window.lastBuffer && buffer.length === window.lastBuffer.length
&&

131 buffer.every((val, i) => val === window.lastBuffer[i])) {
132 console.log("Duplicate audio packet ignored.");
133 return;
134 }
135

136 window.lastBuffer = buffer.slice();
137

138 if (socket) {
139 socket.emit("audio", buffer.buffer);
140 }
141 };
142

143 // Show the stop button once Worklet is ready
144 $('#stopRecording').removeClass('hide').show();
145 console.log("Audio recording is active.");
146

147 } catch (err) {
148 console.error("Error accessing microphone:", err);
149 stopRecording();
150 }
151 }
152

153 // Function to stop recording
154 async function stopRecording() {
155 if (!recording) return;
156

157 console.log("Stopping audio capture...");
158 recording = false;
159

160 try {
161 if (workletNode) workletNode.disconnect();
162 if (source) source.disconnect();
163 if (stream) stream.getTracks().forEach(track => track.stop());

86

Appendix: Source Code

164 if (audioContext) await audioContext.close();
165

166 if (socket) {
167 console.log("Sending stop_audio to Flask");
168 socket.emit("stop_audio");
169 }
170

171 } catch (err) {
172 console.error("Error during recording shutdown:", err);
173 }
174

175 setTimeout(() => {
176 $('#stopRecording').addClass('hide');
177 console.log("Recording stopped.");
178 }, 500);
179 }
180

181 // Assign event listeners to HTML buttons
182 $(document).ready(function() {
183 $('#startRecording').click(startRecording);
184 $('#stopRecording').click(stopRecording);
185 });
186

187 // WebSocket: handle partial transcription updates
188 socket.on("partial_transcription", function(data) {
189 let originalTextDiv = document.getElementById("originalText");
190 let translatedTextDiv = document.getElementById("translatedText");
191

192 if (data.original.trim() !== "") {
193 originalTextDiv.innerText = data.original;
194 }
195 if (data.translated.trim() !== "") {
196 translatedTextDiv.innerText = data.translated;
197 }
198

199 originalTextDiv.scrollTop = originalTextDiv.scrollHeight;
200 translatedTextDiv.scrollTop = translatedTextDiv.scrollHeight;
201 });
202

203 // WebSocket: handle final transcription and translation
204 socket.on("final_transcription", function(data) {
205 let originalTextDiv = document.getElementById("originalText");
206 let translatedTextDiv = document.getElementById("translatedText");
207

208 if (originalTextDiv.innerText !== data.original) {
209 originalTextDiv.innerText = data.original;
210 }
211 if (translatedTextDiv.innerText !== data.translated) {
212 translatedTextDiv.innerText = data.translated;
213 }
214

87

Appendix: Source Code

215 originalTextDiv.scrollTop = originalTextDiv.scrollHeight;
216 translatedTextDiv.scrollTop = translatedTextDiv.scrollHeight;
217 });
218

219 // WebSocket: handle audio sentiment result (only for client B)
220 socket.on("sentiment_result", function(data) {
221 if (data.client === "B") {
222 let sentimentDiv = document.getElementById("sentimentEmoji");
223 sentimentDiv.innerHTML = `<h1 style="font-size: 80px;">${data.sentiment

}</h1>`;
224 }
225 });
226

227 // WebSocket: handle sentiment result for text messages
228 socket.on("text_sentiment_result", function(data) {
229 console.log("Text Sentiment received:", data.sentiment);
230 let textSentimentDiv = document.getElementById("textSentimentEmoji");
231 textSentimentDiv.innerHTML = `<h1 style="font-size: 80px;">${data.sentiment

}</h1>`;
232 });
233

234 // Function to send a message and process translation and sentiment
235 function sendData() {
236 let dataInput = $('#datasend');
237 let data = dataInput.val().trim();
238

239 if (data === "") {
240 bootbox.alert('Please enter a message to send via DataChannel.');
241 return;
242 }
243

244 let currentTime = new Date().toLocaleTimeString();
245 let chatBox = $('#datarecv');
246 let localUsername = myusername;
247

248 // Step 1: Show original message in chat
249 chatBox.append(`<div>[${currentTime}] You: ${data}</div>`);
250 chatBox.parent().scrollTop(chatBox.parent()[0].scrollHeight);
251

252 // Clear input field using multiple methods for reliability
253 dataInput.val('');
254 document.getElementById("datasend").value = '';
255 dataInput.trigger("input");
256 setTimeout(() => {
257 dataInput.val('');
258 document.getElementById("datasend").value = '';
259 }, 100);
260

261 // Step 2: Send text to Flask for translation and sentiment analysis
262 let sourceLang = (localUsername === "A") ? 'it' : 'en';
263 let targetLang = (localUsername === "A") ? 'en' : 'it';

88

Appendix: Source Code

264

265 $.ajax({
266 url: 'http://127.0.0.1:5000/analyze',
267 method: 'POST',
268 contentType: 'application/json',
269 data: JSON.stringify({
270 text: data,
271 source_language: sourceLang,
272 target_language: targetLang
273 }),
274 success: function(response) {
275 let translatedText = response.translation || 'Translation

unavailable';
276 let sentiment = response.sentiment || '';
277

278 // Send sentiment to WebSocket for UI update
279 socket.emit("text_sentiment_result", { sentiment: sentiment });
280

281 // Step 3: Send translated message to peer via DataChannel
282 videocall.data({
283 text: JSON.stringify({
284 sender: localUsername,
285 text: translatedText
286 }),
287 error: function(reason) {
288 console.error('Error during message send:', reason);
289 bootbox.alert('Error during message send.');
290 },
291 success: function() {
292 console.log('Message sent successfully.');
293 }
294 });
295 },
296 error: function() {
297 console.error('Error communicating with Flask.');
298 bootbox.alert('Error communicating with Flask.');
299 }
300 });
301 }

Listing A.3: videocalltest.js - Custom AudioWorklet integration and WebSocket logic

89

Bibliography
[1] 3GPP TS 23.228, IP Multimedia Subsystem (IMS); Stage 2, Release 18.

[2] 3GPP TS 26.114, IP Multimedia Subsystem (IMS); Multimedia Telephony; Media
Handling and Interaction, Release 18.

[3] 3GPP TS 26.264, IP Multimedia Subsystem (IMS); Audio-Visual Profile for Aug-
mented Reality, Release 18.

[4] IETF RFC 8831, WebRTC Data Channels, January 2021.

[5] IETF RFC 5688, Session Initiation Protocol (SIP) Media Feature Tag for MIME
Application Subtypes, November 2009.

[6] IETF RFC 3264, An Offer/Answer Model with the Session Description Protocol
(SDP), June 2002.

[7] GSMA NG.134 v3.0, IMS Data Channel Requirements and Architecture, 2024.

[8] GSMA NG.129 v1.0, IMS Data Channel Ecosystem and Use Cases, 2022.

[9] GSMA Foundry, Delivering Real-Time Translation, Case Study, May 2023.

[10] GSMA Foundry, 5G New Calling: Revolutionising the Communication Services
Landscape, September 2023.

[11] ETSI TS 24.186, IP Multimedia Subsystem (IMS); Stage 3 Specification for IMS Data
Channel Services, Release 17.

[12] Amazon Web Services, Amazon Transcribe Developer Guide, 2024.

[13] Amazon Web Services, Amazon Comprehend Developer Guide, 2024.

[14] Amazon Web Services, Amazon Translate Developer Guide, 2024.

90

	Abstract
	Acknowledgements
	List of Code Listings
	Acronyms
	Introduction
	Overview of IMS
	Importance of Data Channels in IMS
	Thesis Objectives

	IMS Data Channels: Concept and Standardization
	Definition
	Standards Specifications
	Possible Real-World Applications of IMS Data Channels
	Real-Time Speech Transcription and Translation
	Smart Customer Service and Remote Assistance
	Collaboration and Remote Productivity
	Immersive Entertainment and AR/VR
	IoT and M2M Communications
	Healthcare and Remote Diagnostics

	Architecture of IMS Data Channels
	IMS Data Channel Reference Architecture
	IMS Enhancements for Data Channel Integration
	Reference Points

	IMS Data Channel Protocol Stack
	SCTP over DTLS
	SIP and SDP Extensions

	IMS Data Channel Setup
	Session Initiation and Configuration
	Bootstrap Process Overview
	Client and Application Support
	SDP and ICE Considerations
	Device Architecture Overview
	Application Workflow and Interaction in Data Channels

	QoS and Flow Management in 4G and 5G

	Demonstrating potential applications of IMS Data Channels using WebRTC technology
	Key Features of WebRTC
	Use Case Simulation with WebRTC
	Exploration of IMS Data Channel Potential

	Janus WebRTC Gateway
	Environment setup simulation
	Ubuntu Environment via WSL
	Janus WebRTC Gateway configuration and organization
	Setting Up the Janus WebRTC Gateway
	Serving the Demo Files Locally
	Accessing the Demo Files in the Browser

	Use Case: Video Call with Integrated Machine Learning AWS Services
	Implemented functionalities
	System Components and Architecture
	Flask Server Implementation
	Client-Side Real-Time Audio Processing and WebSocket Communication

	Audio Simulation Tests and Evaluation Metrics
	Audio Events and Collected Metrics
	Scenario A: Impact of Chunk Size under Ideal Conditions
	Impact on First Partial Latency
	Impact on Audio Round-Trip Time (RTT)
	Conclusions on Chunk Size Optimization

	Scenario B: Jitter Impact on Latency and System Stability
	Impact of Light Jitter (10–25 ms)
	Impact of High Jitter (40–100 ms)
	Critical Failure Scenario: Chunk Size 50 ms with High Jitter (use case B5)
	Best Configurations under Jitter Conditions

	Scenario C: Impact of Congestion Delay on Latency and System Stability
	Impact of Moderate Congestion Delay (150–400 ms)
	Impact of Severe Congestion Delay (400–600 ms)
	Critical Observations and Best Practices

	Scenario D: Impact of Packet Loss on Accuracy and System Stability
	Detailed Results per Scenario
	Critical Observations and Best Practices

	Text Simulation Tests and Evaluation Metrics
	Text Events and Collected Metrics
	Scenario A and Scenario B: Effect of Fixed Artificial Delays
	Scenario C: Impact of Packet Loss on Real-Time Text Communication
	Critical Observations and Best Practices

	Conclusions
	Impact on Audio Communication
	Impact on Text Communication
	Advantages of IMS Data Channel Architectures
	Final Remarks

	Appendix: Source Code
	Real-Time Transcription Server
	Custom WebRTC Client Interface
	JavaScript Custom Audio Processing and WebSocket Integration

	Bibliography

