
POLITECNICO DI TORINO

College of Computer Engineering, Cinema and
Mechatronics

Master’s Degree Thesis

Temporal Tracking of Waste Objects for
New Item Identification in Smart Bins

Supervisors
prof. Bartolomeo Montrucchio
dr. Antonio Costantino Marceddu

Candidate
Matteo Gravile

July 2025

Abstract

This thesis addresses the problem of visual tracking of objects within images captured by smart
bins to determine whether an object is new or has already been observed. Unlike traditional
object detection methods, where each instance is recognized independently, this work focuses on
the temporal dimension and the system’s ability to retain the memory of previously seen objects,
thus improving continuous and automated waste monitoring. The dataset used, consisting of
approximately 7,000 images annotated in Common Object in Context (COCO) format, includes
bounding boxes, segmentation masks, object categories (about 60 classes), and a custom "new"
attribute indicating whether an object is new with respect to the temporal context. This attribute
takes the value "yes" for newly appearing objects and "no" for those already seen. After an initial
phase of annotation refinement and cleanup, three experimental architectures were designed and
compared to correctly predict the "new" label as either "yes" or "no". The first architecture,
used as a baseline, combines a ResNet50 visual feature extractor with a supervised Multilayer
Perceptron (MLP) classifier that receives as input a set of geometric and similarity-based metrics
(cosine similarity, Intersection over Union, centroid distance, area ratio) computed between the
current object and those stored in memory. The second approach is a Memory-Augmented
Network (MAN) that integrates a learnable Transformer module to retain a dynamic memory
of previously observed objects. The current object is processed in relation to this memory to
produce a contextualized representation, which an MLP classifies. Finally, a Siamese network
was developed and trained using both pairs and triplets of objects to learn discriminative visual
embeddings via supervised losses (Contrastive Loss and Triplet Loss). During inference, the
similarity between the current object and those in memory is combined with geometric features
and provided to an MLP for final classification. The results, evaluated using standard metrics
such as accuracy, precision, recall, F1-score, and Area Under the Curve (AUC), clearly highlight
the strengths and limitations of each method. The best-performing configuration was the Siamese
network trained with triplet loss and followed by a supervised MLP, achieving 0.787 accuracy,
0.747 precision, 0.906 recall, 0.818 F1-score, and 0.85 AUC. This was followed by the Memory-
Augmented Network with MLP (F1 = 0.781) and the baseline ResNet50 + MLP (F1 = 0.761).
These results demonstrate the effectiveness of advanced architectures in accurately recognizing
previously seen objects, even in visually complex and dynamic environments. Overall, this work
contributes to the development of intelligent waste management systems capable of incorporating
temporal reasoning into visual recognition, addressing real-world challenges with robustness and
adaptability. The proposed solutions, based on supervised learning and memory-aware models,
represent a promising step toward adaptive and continuous object recognition in urban and
environmental scenarios.

ii

Contents

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Application context and motivations . 1

1.2 Thesis objectives . 2

1.3 Existing technologies and current limitations . 4

1.4 Main contributions . 5

2 State of the Art 8

2.1 Object Detection: methods and limitations . 9

2.2 Visual tracking and Re-Identification . 13

2.3 Visual memory and Memory-Based architectures 15

2.4 Metric learning and Siamese Networks . 18

2.5 Computer vision-based waste management systems 20

3 Dataset and Methodology 22

3.1 Description of the original Dataset . 22

3.2 Relabeling and Annotation structure . 27

3.3 Preprocessing and mask management . 28

3.4 Initial approach: Manual image comparison . 29

3.5 Architecture 1: MLP on cosine similarity . 33

3.5.1 Integration into the inference pipeline . 39

3.5.2 Decision making through learned thresholds 43

3.6 Architecture 2: Memory-Augmented Network . 44

3.6.1 Using the Transformer as memory . 51

3.6.2 Matching with Masks or Bounding boxes 53

3.7 Architecture 3: Siamese Network . 55

3.7.1 Pair/Triplet generation and training . 57

3.7.2 Loss functions, training strategies, and tracking phase 63

3.8 Hyperparameters and experimental setup . 74

iii

4 Results and Discussion 76

4.1 Experimental results . 77

4.1.1 Baseline . 77

4.1.2 Memory-Augmented Network (MAN) . 79

4.1.3 Siamese Network . 82

4.1.4 Comparison between architectures . 84

4.2 Qualitative visualizations of the results . 85

4.3 Error analysis . 87

4.4 Critical reflections on the proposed solutions . 89

4.5 Applications and practical implications in industrial contexts 90

5 Conclusions and Future Work 92

5.1 Summary of the work . 92

5.2 Strengths and limitations . 93

5.3 Possible improvements and extensions . 93

Bibliography 95

iv

List of Figures

2.1 Comparison between the R-CNN, Fast R-CNN, and Faster R-CNN architectures.
Adapted from [6]. 10

2.2 Comparison between SSD and Faster R-CNN in terms of accuracy (mAP) and
GPU latency. Models are displayed based on the feature extractor used. Source:
TensorFlow Object Detection API benchmark chart. 10

2.3 ResNet backbone with FPN structure (bottom-up + top-down with lateral con-
nections) and residual blocks. Adapted from [18]. 12

2.4 ResNet50 + FPN architecture with semantic segmentation module, similar to the
one proposed by Schneider et al. for industrial environments. 13

2.5 Modular architecture of DeepSORT: Kalman filter, visual feature extractor, cost
matrix, and association using the Hungarian algorithm. 14

2.6 Spatio-temporal self-attention mechanism (time-then-space) used in video Trans-
former architectures [33] . 16

2.7 Comparison between traditional frame-wise pipeline and MeMViT’s selective buffer,
with memory updated only on key frames. 17

2.8 Hierarchical architecture of visual memory levels. 17

2.9 Comparison between Siamese Network (two branches with contrastive loss) and
Triplet Network (three branches with triplet loss), with shared weights. Image
from [42]. 18

2.10 Architecture of a video stream metric learning system based on encoder, memory,
and distance module. Image from [48]. 19

2.11 Architecture of the Waste-YOLO system for automatic waste classification. The
model combines convolutional backbones, attention modules (CBAM), and head
structure for real-time recognition on smart bins. Source: [56]. 21

3.1 Example of an image annotated with bounding boxes (colored by category) and
masks partially visible as overlays. Each object is accompanied by its respective
class and attributes. 29

3.2 Architecture of Baseline . 33

3.3 MAN architecture with Transformer . 45

3.4 Siamese Network architecture based on pairs and triplets. 55

4.1 Comparison between the baseline configurations in terms of Accuracy, Precision,
Recall, F1-score, and AUC. 79

4.2 Comparison between MAN variants in terms of Accuracy, Precision, Recall, F1-
score, and AUC. 81

v

4.3 Comparison between Siamese configurations (Pairs and Triplets) in terms of Ac-
curacy, Precision, Recall, F1-score, and AUC. 83

4.4 Synthetic comparison between the best configurations for each architecture in
terms of F1-score and AUC. 85

4.5 Example of correct tracking for a glass jar: all architectures succeed in maintaining
temporal coherence and recognizing the object as already seen, despite the change
in perspective. 86

4.6 Ambiguous example: the paper packaging is rotated between two consecutive
frames. The supervised baseline incorrectly labels the object as “new” in the
second frame, while the MAN and Siamese architectures correctly maintain the
identity. 86

4.7 Failure examples of the three analyzed architectures. Each image highlights a
structural limitation of the respective approach in maintaining visual identity con-
sistency. 87

4.8 Example of a false positive for each architecture. A new object (paper cup) is
mistakenly associated with a previously seen one due to strong visual similarity. . 88

4.9 Example of a false negative: the same instance appears in two consecutive frames
but is mistakenly labeled as “new.” The variation in position and context leads to a
high apparent distance in the embedding, exceeding the model’s decision threshold. 88

4.10 Example of inconsistent prediction in a crowded scene with spatial ambiguities.
The simultaneous presence of similar objects and partial deformations reduces the
quality of the visual embeddings. Even advanced models like MAN or the Siamese
network exhibit uncertainty — respectively due to noise in the learnable memory
or metric collapse on similar instances. 89

vi

List of Tables

2.1 Comparison of OSNet vs altri metodi su Market1501, CUHK03, Duke, MSMT17 [24]. 14

3.1 Category statistics: frequency, recurrence, and temporal distribution 25

4.1 Results of the baseline configurations: comparison between heuristic and super-
vised methods with different backbones. 78

4.2 Results of the Memory-Augmented Network (MAN) variants with static or learn-
able memory and different decision strategies. 80

4.3 Results of pairwise and triplet-based configurations: comparison between decision
strategies and backbones. 83

4.4 Comparison between the best variants of each architecture: baseline, memory-
augmented network (MAN), and Siamese approach. 84

vii

viii

Chapter 1

Introduction

1.1 Application context and motivations

The intelligent management of urban waste represents one of the most complex and relevant
challenges in the current context of ecological transition and digital transformation. Increasing
urbanization, combined with rising consumption and the spread of new production and distribu-
tion models, has led cities to urgently rethink their environmental infrastructure. In this scenario,
separate waste collection and the precise monitoring of waste flows play a key role in achieving
sustainability goals, reducing environmental impact, and improving operational efficiency.

To address these needs, numerous administrations and companies are adopting innovative
technological solutions based on sensors, communication networks, and advanced analysis tools.
Among these, so-called smart bins — intelligent containers equipped with electronic components
and control algorithms — represent one of the most promising applications. These devices are
not only capable of detecting the presence and volume of waste deposits, but also of dynamically
interacting with the surrounding environment, adapting in real time to operating conditions and
providing valuable data to service managers.

In particular, the integration of computer vision modules within smart bins has significantly
expanded the application potential of such systems. The integrated cameras allow for visual
analysis of the waste content, accurately identifying the type of disposed items and verifying
the correctness of disposal operations. This capability supports a wide range of additional func-
tionalities: from automatic recognition of materials (plastic, paper, glass, organic, metal) to
anomaly detection, and the generation of updated statistics for the development of operational
and informational strategies.

In some pilot projects, the data collected by such systems are already being used to feed
pay-as-you-throw pricing models, optimize collection routes, activate automatic malfunction or
overflow alerts, and even to launch personalized environmental education campaigns. In this way,
the bin becomes an active node within a distributed urban infrastructure, capable of interacting
with other systems and contributing to the construction of a true urban collective intelligence in
the environmental field.

The actual availability of visual data that is updated and contextualized also represents an
opportunity to increase transparency and user accountability. Real-time feedback, for example,
can serve as an educational mechanism, showing users any disposal errors and suggesting correct
behaviors. This aspect is particularly relevant in high-traffic public environments, such as schools
or corporate cafeterias, where the effectiveness of waste collection also depends on the aggregate
behavior of individuals.

However, despite technological advancements, many of the solutions currently in use still
adopt a static approach to visual analysis. The object detection models used to classify objects
within waste typically operate on single images, without considering the temporal sequence from

1

Introduction

which these images are extracted. Each object is analyzed as if it were an isolated entity, with
no history, regardless of whether it has already been seen in previous frames. This lack of
continuity represents a structural limitation of the current approach, as it prevents the system
from constructing a coherent representation of the evolution of objects over time.

As a result, the same object may be detected and counted multiple times, especially if it
remains within the camera’s field of view for an extended period or moves slowly. This phe-
nomenon leads to a systematic overestimation of the actual number of disposals, generating
redundant data and compromising the quality of the statistics. In high-usage contexts, this type
of error can lead to incorrect operational decisions: a bin may appear full when it is not, or a user
may be unfairly penalized. More generally, the system lacks the ability to correctly represent
the temporal dynamics of the observed scene.

The problem of lacking visual memory is not exclusive to the waste management sector. It
is a recurring challenge in many other fields of applied computer vision, where it is necessary
to distinguish between recurring and new events or objects. In video surveillance systems, for
instance, it is essential to recognize subjects that have already appeared in order to identify
anomalous behavior or potential threats. In logistics and retail, tracking the recurrence of objects
or people helps optimize the management of spaces and resources. In robotics as well, the
ability to distinguish known elements from new ones is crucial for interacting with dynamic and
unstructured environments.

In all these applications, the need emerges to equip systems with some form of visual memory,
capable of keeping track of previous observations and supporting intelligent comparisons over
time. Such a memory cannot be a simple static archive of images, but must include efficient
data structures, compact representation models, and algorithms capable of performing robust
comparisons between visual representations. Only through this type of mechanism can the system
acquire a temporal view of the world, rather than just an instantaneous one.

In this scenario lies the work of Relearn, an Italian startup that has made digital sustain-
ability and artificial intelligence applied to waste management its core focus. The company has
developed a device called Nando, designed for direct installation on smart bins, capable of ac-
quiring high-resolution images and applying real-time object detection techniques to recognize
the types of disposed items. The system is already operational in various real-world contexts
and can visually classify objects into more than 60 different categories.

The device is designed to operate in public and semi-controlled environments, providing both
immediate feedback to users and aggregate data for statistical or decision-making purposes.
However, in its current configuration, Nando adopts a frame-by-frame logic, lacking explicit
mechanisms for handling temporality or object recurrence. This limitation can lead to a distorted
view of the actual flow of disposals and compromise its statistical and operational accuracy.

1.2 Thesis objectives

In light of these considerations, the present work aims to extend the system’s functionalities by
integrating a temporal visual memory mechanism. The primary objective is to enable the system
to distinguish between previously observed and new objects, thus overcoming the limitations of
the currently adopted frame-by-frame approach.

This ability to recognize visual recurrence over time is crucial for improving the reliability of
the collected data, reducing the overestimation of disposals, and strengthening the consistency of
the metrics used in high-density operational contexts such as cafeterias, schools, public spaces, or
high-traffic environments. The inability to distinguish between genuinely new objects and those
already present in the camera’s field of view results in a systematic overcounting of disposals,
generating noisy data, statistical distortions, and potentially incorrect decisions by the system.
This, in turn, negatively impacts operational efficiency, the credibility of user feedback, and
the accuracy of the metrics used to guide maintenance, emptying, or environmental education
interventions.

2

Introduction

To address this issue, the thesis introduces an innovative module for the temporal identifica-
tion of observed objects. The goal is to assign, for each detected object, a binary label indicating
its novelty, distinguishing between new: yes (first appearance) and new: no (already observed
object). This approach, which fits within the paradigm of temporal computer vision, enhances
the functionality of existing systems by equipping them with a primitive yet effective form of
“visual memory.” The task, far from trivial, becomes even more challenging under real-world con-
ditions such as lighting variations, partial occlusions, perspective deformations, and the presence
of similar objects.

From a formal perspective, the problem has been framed as a binary supervised classification
task. Each detected object ot in an image It is associated with a new label, based on a compar-
ison between its visual and geometric characteristics and those of previously observed objects
(ot−1, ot−2, . . .). The comparison is carried out through a dynamic visual memory, designed to
be queryable, efficient, and compact enough to operate on resource-constrained devices, such as
the embedded systems typical of smart bins.

A primary methodological goal is therefore the definition of a discriminative visual represen-
tation capable of capturing the salient features of objects while remaining robust to noise and
non-significant variations. To this end, pre-trained feature extraction models such as ResNet50
will be used, alongside geometric descriptors such as position, size, centroid, area ratios, and
IoU. The integration of these heterogeneous features aims to strengthen the system’s ability to
distinguish between similar but distinct objects, thereby improving decision quality.

In parallel, the thesis involves the design of an artificial visual memory, whose purpose is
to store a synthetic yet informative trace of previously observed objects. Memory management
will require the development of dynamic update and pruning strategies, aimed at avoiding the
proliferation of redundant entries. Policies based on similarity thresholds (cosine, Euclidean),
temporal decay, maximum duration, and spatial consistency will be considered, with the goal of
balancing historical depth and responsiveness.

At the core of the system will be a decision module, responsible for estimating the probability
that a currently detected object is actually new. To this end, three distinct architectures will be
implemented and compared:

1. A supervised MLP classifier, fed with numerical metrics between current objects and those
stored in memory.

2. A Transformer model with an attention mechanism, designed to retain internal memory
and model relationships between objects over time.

3. A Siamese network, trained on both pairs and triplets of objects, capable of learning a
discriminative embedding space.

Each architecture will be evaluated in terms of accuracy, stability, generalization capability,
inference time, and computational footprint. Experimental tests will be conducted on a real
dataset provided by Relearn, consisting of approximately 7,000 sequential images, initially labeled
according to the COCO standard and later manually enriched with the new attribute. This
annotation activity required a sequential review of the images, with the goal of constructing a
reliable and coherent temporal history.

From a computational standpoint, the thesis will analyze in detail the system’s compatibility
with the typical constraints of embedded devices. Lightweight configurations for feature extrac-
tion (e.g., ResNet18), batchless modes for real-time inference, and pruning strategies for memory
management will be tested. The goal is to achieve a stable, fast, and resource-efficient pipeline
without sacrificing prediction quality.

An important part of the work will also be dedicated to the selection and management of
the decision threshold for binary classification. Approaches based on fixed thresholds, adaptive
dynamic thresholds (depending on the object type or environmental conditions), and thresholds

3

Introduction

learned during training will be evaluated. This choice will significantly influence the robustness
of the system in real-world scenarios, which are often highly variable.

Finally, particular attention will be paid to the generalizability of the proposed solutions.
In addition to training and testing on the annotated dataset, evaluations will be carried out on
unseen sequences acquired under conditions different from those used during training.

In summary, the objectives of the thesis are structured along three fundamental axes:

• The design of a system capable of distinguishing between new and already seen objects,
improving temporal continuity in computer vision.

• The comparative experimentation of multiple architectural solutions (MLP, Siamese, Trans-
former) for temporal identification.

• The optimization of a lightweight and generalizable pipeline suitable for embedded and
real-world operational environments.

The work aims to demonstrate that the introduction of the new attribute, if properly managed,
can provide a crucial contribution to the development of intelligent systems capable of reasoning
over time. From a broader perspective, this functionality can be considered a first step toward
equipping computer vision systems with memory capabilities, bringing them closer to situated,
contextual, and proactive intelligence.

1.3 Existing technologies and current limitations

In the context of computer vision applied to waste management, numerous systems have been
developed that are capable of classifying disposed materials through object detection models.
These systems are mainly based on pre-trained convolutional neural network architectures and
allow for the correct identification of multiple object categories. However, most of them adopt
a frame-by-frame approach, treating each image as independent from the others. This results
in the absence of any form of temporal memory: each object is analyzed as if it were a new
instance, even if it has already appeared in previous frames.

Such an approach introduces significant limitations in dynamic contexts, where objects may
remain in the scene across multiple consecutive frames. Repeated detections lead to overcounting,
reduced accuracy in aggregate statistics, and an incomplete understanding of the visual sequence.
To address these issues, the literature has proposed more advanced approaches, including track-
ing, re-identification (Re-ID), and metric learning. These techniques, widely adopted in other
application domains such as video surveillance, robotics, and retail, offer promising solutions for
maintaining object identity over time.

Tracking algorithms attempt to associate a consistent identity to each detected object through-
out the sequence. Solutions such as SORT and Deep SORT combine spatial data and visual
representations, proving effective under controlled conditions. However, their use in smart bins
is hindered by specific constraints, such as the presence of static or occluded objects, the discon-
tinuous acquisition frequency of frames, and the absence of coherent trajectories. In these cases,
tracking tends to lose object identities or introduce association errors.

Re-ID models, originally developed for person recognition in multi-camera scenarios, are based
on visual embeddings compared using distance metrics. Although more robust to changes in
perspective and lighting, these models are often trained on closed datasets and require significant
computational infrastructure, making them poorly suited for embedded applications. Moreover,
the open-world nature of waste makes classification based on predefined identities unsuitable for
the problem.

Metric learning represents a third path, based on learning semantic spaces where similar
objects are positioned close to each other. Siamese networks and Triplet Networks, trained on

4

Introduction

pairs or triplets of objects, allow for flexible instance-to-instance comparisons. This methodology,
used in numerous domains such as face recognition and signature verification, makes it possible
to estimate object similarity without explicitly classifying them, making it useful for novelty
estimation.

More recently, Transformers and neural networks with explicit memory have opened new
perspectives for temporal analysis. These models, although promising due to their ability to
model long-term dependencies, come with high computational costs. Their adoption in embedded
environments therefore requires lightweight solutions, optimized through pruning, quantization,
and compression techniques.

In summary, the literature review shows that existing solutions address the problem of vi-
sual memory only partially and are often not directly applicable to embedded and intermittent
contexts such as that of smart bins. This thesis is positioned within this still partially explored
research space, proposing a hybrid and lightweight approach adapted to the operational speci-
ficities of the Nando system.

In the following section, the main design and experimental contributions developed during this
work will be presented in detail, illustrating the architectural choices, implementation methods,
and validation strategies adopted.

1.4 Main contributions

In light of the objectives outlined in the previous section, this thesis has led to the development of
a series of concrete and structured contributions aimed at filling the identified gap in computer
vision systems applied to smart bins. The entire work focused not only on the introduction
of a module for the temporal classification of detected objects, but also on the construction
of a complete technical and methodological ecosystem capable of structurally addressing the
numerous challenges involved in recognizing previously observed objects over time.

Rather than limiting itself to the theoretical design of the system, the thesis pragmatically
tackled every aspect of the problem: from the formalization of the task to software implementa-
tion, from the definition of architectures to experimental validation, and from dataset review to
its expansion. Every phase of the project was aimed at building a robust, generalizable, and effi-
cient system, compatible with execution in real and constrained environments such as embedded
systems.

This section presents the main contributions obtained, categorized by their nature: formal,
architectural, experimental, and implementation-related. The aim is to provide a clear and sys-
tematic overview of the results achieved and their impact both from a technical and application-
oriented perspective. These contributions are not isolated elements but integral parts of a cohe-
sive pipeline, designed to address a real-world problem and with the potential to be extended to
other domains in which the temporal dimension of visual analysis is crucial.

The first contribution consisted in the formalization of the problem as a binary supervised
classification task, based on the concept of object “novelty.” A complete framework was devel-
oped, capable of processing annotated sequences, maintaining a historical visual memory, and
producing for each object a binary label (new: yes/no) based on visual and geometric com-
parisons. This formulation enabled not only the implementation of different neural architectures
but also the modular integration of the system into Nando’s operational pipeline, with special
attention to compatibility with resource-constrained systems.

To address the technical challenge of temporal classification, three different neural architec-
tures were implemented, each representing a complementary approach to the problem. The first
uses a pre-trained ResNet50 as a feature extractor, followed by an MLP classifier fed with a set
of heterogeneous metrics: Euclidean distance between centroids, cosine similarity between visual
embeddings, Intersection over Union (IoU), and the ratio of bounding box areas. This model,
designed as a baseline, demonstrated good discriminative capacity, particularly in controlled en-
vironments, while also being lightweight, interpretable, and easily deployable. An ablation study

5

Introduction

was also conducted to analyze the relative importance of each metric, helping to understand the
actual contribution of each feature to the decision-making process.

The second architecture is based on a Transformer module, integrated into a Memory-
Augmented Network capable of dynamically modeling the visual sequence and comparing the
current object with a historical context retained in memory. Thanks to the multi-head attention
mechanism, the model is able to handle complex cases such as occluded, deformed, or ambigu-
ous objects. The design required attention to sequence normalization, the choice of positional
encoding, and the selection of objects to retain in memory. This approach proved particularly
effective in real-world scenarios characterized by high variability.

Finally, a Siamese network was developed and used both with pairs (positive and negative)
through a Contrastive Loss, and with triplets (anchor, positive, negative) via Triplet Loss, with
the goal of learning a highly discriminative embedding space. In this space, visually similar
objects are projected close to each other, while distinct objects are well separated. During
inference, the current object is compared with those stored in memory based on the similarity
between their respective embeddings, and this information is then processed by a final MLP.
The training process required the controlled generation of pairs and triplets through dedicated
scripts, as well as t-SNE analysis to evaluate the quality of the learned space. This solution,
though more sophisticated, demonstrated notable generalization capability even under conditions
of visual noise and poor lighting.

A fundamental element of the work was the reprocessing of the dataset provided by Relearn.
Composed of approximately 7,000 images labeled according to the COCO standard, the dataset
was extended with the introduction of the new label through a meticulous manual review, carried
out by following the temporal sequence of the images. This process made it possible to build a
reliable object history, which was essential for model training. The definition of “novelty” was
based on objective criteria: spatial proximity, semantic class, visual similarity, and temporal
order. This extended dataset can also be reused for further developments in the field of semantic
temporal tracking.

From an implementation perspective, the entire system was developed in a cloud environment
on an Azure virtual machine, using Python and JupyterLab. Specialized libraries were adopted:
PyTorch for deep learning, OpenCV and NumPy for visual manipulation, Albumentations for
augmentation, and Scikit-learn and Matplotlib for performance analysis. The code architecture
was designed in independent and reusable modules, with the goal of ensuring extensibility and
simplified maintenance.

Finally, the experimental evaluation phase was conducted rigorously. Cross-validation meth-
ods, stratified data splitting, and various standard binary classification metrics were used: preci-
sion, recall, F1-score, accuracy, and AUC. Particular attention was paid to error analysis, identi-
fying recurring patterns in false positives and false negatives. In summary, the Siamese network
achieved the best overall performance, while the Transformer model showed superior stability in
the presence of environmental variations. The MLP model, on the other hand, proved to be a
solid baseline, simple to train and robust under standard conditions.

Taken together, the main contributions of the thesis can be summarized as follows:

• Formalization of the temporal identification problem as a supervised binary classification
task.

• Design, implementation, and comparison of three neural architectures: MLP, Memory-
Augmented Network (Transformer), and Siamese network (with pairs and triplets).

• Manual annotation of the dataset provided by Relearn, with the introduction of the tem-
poral label new.

• Development of a complete, modular, and scalable pipeline for both cloud environments
and embedded devices.

6

Introduction

• Comparative analysis of quantitative and qualitative performance on real data, with atten-
tion to generalization and efficiency.

These contributions demonstrate a body of work that combines theoretical research, software
design, and experimental validation, delivering a concrete and innovative system for temporal
object identification. The proposed solutions, originating from a specific use case, are gener-
alizable to a wide range of applications where the temporal dimension and object persistence
play a central role, particularly in fields such as collaborative robotics, intelligent surveillance,
and urban cyber-physical systems. The project shows how, even in constrained contexts such
as embedded devices, it is possible to introduce forms of “visual memory” capable of radically
improving scene interpretation and real-time decision support.

7

Chapter 2

State of the Art

This chapter aims to provide a systematic and in-depth overview of the state of the art con-
cerning the main methodologies, architectures, and tools in computer vision that constitute the
theoretical and technological foundation for this work. The objective is twofold: on one hand,
to offer a critical and up-to-date overview of the progress made in the fields of object detection,
visual tracking, metric learning, and architectures with visual memory; on the other hand, to
highlight the gaps that remain in the literature, particularly regarding the management of tem-
porality and visual persistence in dynamic and unsupervised environments. Fully understanding
the strengths and weaknesses of existing solutions is essential to justify the architectural and
methodological choices made in this thesis project.

In recent years, automatic object detection and visual tracking have made remarkable progress
thanks to the introduction of high-performance deep learning models, often based on convolu-
tional neural networks (CNNs) or, more recently, Transformer architectures. These technologies
have revolutionized visual processing of images and videos, enabling levels of accuracy and gen-
eralization previously unattainable with hand-crafted feature-based approaches. Such models
are now capable of recognizing hundreds of visual categories with inference times compatible
with real-time applications, contributing to a profound transformation of sectors such as urban
surveillance, autonomous driving, intelligent retail, industrial automation, and mobile robotics.
Systems like YOLOv5, EfficientDet, and DETR are emblematic examples of this evolution, com-
bining computational efficiency and discriminative capability even in highly variable scenarios.

However, the application of these technologies to real-world, dynamic, and open scenar-
ios—such as automated waste collection—poses still unresolved challenges. In unsupervised
contexts, characterized by high heterogeneity of objects and frequent presence of visual noise
(such as lighting variations, occlusions, and perspective distortions), the reliability of standard
object detection techniques can be significantly compromised. In particular, most systems still
operate in a frame-by-frame mode, analyzing each image as an isolated instance, without tem-
poral continuity. This setting proves inadequate in contexts where it is necessary to distinguish
between truly new objects and those already observed, as is the case in systems that continuously
monitor visual flows—for example, when opening a smart bin or entering a monitored area.

The problem, known in the literature as visual recurrence or temporal identity reasoning,
implies the need for computer vision systems to maintain a persistent representation of observed
identities over time. This is not simply about storing images, but about building data structures
and semantic representations capable of enabling reliable comparisons between objects over time.
The absence of explicit memory compromises the system’s ability to distinguish between recurring
instances and novel ones, resulting in limitations in robustness, interpretability, and data quality.
This aspect becomes especially critical in all cases where visual data is used to make operational
decisions, activate feedback mechanisms, or feed predictive systems.

In response to these critical issues, scientific research has progressively proposed a variety
of approaches to integrate the temporal dimension into vision systems. Among these, notable

8

State of the Art

techniques include multi-object tracking, re-identification (Re-ID), metric-based learning (metric
learning), and more recently, neural architectures equipped with attention mechanisms and in-
ternal memory. Each of these research directions offers conceptual and practical tools to address
the challenge of visual persistence in different ways: some focus on the spatial and temporal
continuity of objects (tracking), others on learning semantic spaces that preserve similarity be-
tween visual instances (Siamese networks, Triplet loss), and others still on the explicit modeling
of sequences (Transformers with memory).

The contribution of this chapter lies in providing the theoretical and methodological context
that justifies these design choices. Starting from the foundations of object detection and its
structural limitations, the chapter will delve into the main existing solutions for multi-object
tracking, embedding techniques for visual comparison, and neural architectures that integrate
memory and temporal attention. Particular attention will be paid to the relevance of these
technologies in the domain of automated waste management, where accuracy, robustness, and
the ability to generalize over time are essential requirements.

2.1 Object Detection: methods and limitations

Object detection, namely the automatic identification of objects in images and the estimation of
their bounding boxes, is one of the fundamental tasks in computer vision. Accuracy, inference
speed, and the ability to generalize in dynamic contexts have made this field one of the most
active in the deep learning landscape. The introduction of convolutional neural networks (CNNs)
marked a turning point, enabling end-to-end models capable of learning directly from visual data,
surpassing previous techniques based on handcrafted feature extraction (e.g., HOG, SIFT).

Modern object detection first evolved through two-stage models, where detection is divided
into two phases: the generation of region proposals and their subsequent classification.

The first successful model in this direction was R-CNN [1], which uses Selective Search to
produce about 2000 proposals per image, each of which is independently classified by a CNN
and then refined via linear regression.

Fast R-CNN [2] improved efficiency by sharing the convolution across the entire image and
using ROI Pooling to extract features from each proposal, drastically reducing inference time.

With Faster R-CNN [3], the generation of proposals was integrated directly into the model
through a Region Proposal Network (RPN), enabling end-to-end training.

However, despite their high accuracy, these models have several limitations:

• Latencies greater than 100 ms/frame, which are incompatible with real-time environments
[4].

• Heavy architectures, difficult to deploy on embedded or edge devices [5].

As shown in Figure 2.1, the architectural differences between R-CNN, Fast R-CNN, and
Faster R-CNN mainly concern proposal generation and feature sharing. The image is taken from
[6].

9

State of the Art

Figure 2.1: Comparison between the R-CNN, Fast R-CNN, and Faster R-CNN architectures.
Adapted from [6].

To address the need for reduced complexity and latency, one-stage models were introduced,
in which detection and classification occur in a single step.

The SSD (Single Shot MultiBox Detector) model [5] uses feature maps at different
scales to detect objects of various sizes. This approach maintains good performance on small
objects, making it useful in complex environments.

As illustrated in Figure 2.2, SSD and Faster R-CNN architectures show a clear trade-off
between accuracy and latency: SSD models are much faster but less precise, whereas Faster
R-CNN is more accurate at the cost of inference time.

Figure 2.2: Comparison between SSD and Faster R-CNN in terms of accuracy (mAP) and GPU
latency. Models are displayed based on the feature extractor used. Source: TensorFlow Object
Detection API benchmark chart.

A significant breakthrough came with the YOLO (You Only Look Once) series: YOLOv1
[7] segments the image into grids and assigns multiple class and bounding box predictions. Later
versions—up to YOLOv8—have improved both precision and efficiency through new data aug-
mentation techniques, optimized backbones, and attention modules [8], [9].

10

State of the Art

The features that make YOLO a suitable model for embedded contexts like smart bins include:

• Very low inference times (up to 200+ FPS on modern GPUs).

• Support for lightweight backbones (e.g., CSPDarknet, MobileNet).

• Excellent trade-off between accuracy and response time in open-world environments.

However, some critical issues persist:

• Degraded accuracy in the presence of overlapping or very small objects [10].

• Unstable behavior on noisy or low-light inputs [11].

Another key distinction among models lies in the loss functions used to optimize object
localization. SSD and Faster R-CNN typically use a combination of classification loss (e.g.,
cross-entropy) and localization loss (e.g., Smooth L1). YOLOv4 introduces CIoU loss, which
also accounts for the relative orientation of bounding boxes [12]. Furthermore, while traditional
models rely on predefined anchor boxes, some recent architectures experiment with anchor-free
detection or learn anchors during training [13].

A significant distinction among more recent architectures concerns precisely the handling of
anchor boxes. While SSD and Faster R-CNN employ predefined anchors of various sizes and
aspect ratios, models such as CenterNet, FCOS, and CornerNet adopt anchor-free strategies,
focusing instead on the direct prediction of object centers and dimensions. This approach elimi-
nates the need for manual anchor tuning and has proven particularly effective on open-world or
imbalanced datasets, where the morphological variety of objects is high. Moreover, anchor-free
architectures tend to be more flexible and adaptable in dynamic scenarios, such as those related
to waste sorting, where objects can vary significantly in shape, size, and position [13]–[15].

All the models mentioned above are built upon CNN-based architectures known as backbones,
which are responsible for extracting high-level visual features. Early models used VGG-16 [16],
but deeper and more modular backbones are now preferred, such as:

• ResNet [17]: uses residual blocks to ensure gradient propagation in deep networks.

• CSPDarknet: the native backbone of YOLOv5, with structural optimizations for embed-
ded environments.

• MobileNet, ShuffleNet: designed to reduce parameters and accelerate inference.

As shown in Figure 2.3, the backbone integrated with FPN features a bottom-up and top-
down pathway with lateral connections, ensuring efficient multiscale feature extraction. The
residual block structure is embedded in the ResNet backbone. Adapted from [18].

11

State of the Art

Figure 2.3: ResNet backbone with FPN structure (bottom-up + top-down with lateral connec-
tions) and residual blocks. Adapted from [18].

Despite significant advances, traditional object detection models exhibit a critical limitation
for the context of this thesis: they operate according to a purely frame-by-frame logic. In other
words, each frame is analyzed independently, and the system retains no memory or identity of
previously seen objects.

In the context of a smart bin, this approach is limiting for at least three reasons:

• Lack of persistent identity: the same object, observed multiple times, is treated as a
different entity each time.

• Inability to estimate novelty: no temporal or semantic information allows the model
to determine whether an object is new.

• Challenges in sequential scenarios: the system cannot learn temporal patterns, which
are crucial to recognize recurring behaviors (e.g., reappearance of the same object or track-
ing over time).

To demonstrate this, the DSYOLO-Trash algorithm [19], based on YOLOv5 with CBAM
attention and CotNet, combined with DeepSORT for tracking, achieves a mAP of 97.3% on
TrashNet, yet still operates on a frame-independent basis and does not explicitly address the
dimension of visual recurrence.

As shown in Figure 2.4, Schneider et al. [20] propose an architecture based on ResNet50
and FPN with a decoder for semantic segmentation, designed for industrial environments with
LiDAR data. However, the system does not incorporate any visual memory component.

12

State of the Art

Figure 2.4: ResNet50 + FPN architecture with semantic segmentation module, similar to the
one proposed by Schneider et al. for industrial environments.

These observations underscore the need to develop more advanced models capable of retain-
ing information across sequences, comparing instances over time, and inferring “visual novelty.”
The following chapters will explore architectures specifically designed to fill this gap, through
mechanisms of neural memory, temporal attention, and metric learning.

2.2 Visual tracking and Re-Identification

Following detection, the next step in a visual pipeline is visual tracking, which consists in main-
taining consistent object identity across frames. In modern approaches such as tracking-by-
detection, the bounding boxes generated by detectors like YOLO or SSD are associated over time
through algorithms that integrate kinematic and visual information, with the goal of maintaining
identity coherence over time—even in the presence of occlusions, interactions, or deformations.

One of the most well-known methods for multi-object tracking is SORT (Simple Online
and Realtime Tracking) [21]. SORT uses a Kalman filter to predict the position and velocity of
objects and applies the Hungarian algorithm to associate detections with active tracks. Although
effective in low-dynamic and low-density scenarios, SORT relies solely on geometric and kinematic
features, making it vulnerable to occlusions, scale variations, visual deformations, and temporary
overlaps. In particular, the absence of visual appearance features severely limits its ability to
distinguish between visually similar objects or to re-identify objects that reappear after temporal
interruptions.

To overcome these limitations, DeepSORT [22] was proposed, which supplements the kine-
matic tracker from SORT with a visual descriptor based on a CNN pre-trained for person re-
identification. Each detected object is assigned a visual embedding—a numerical vector that
summarizes its salient visual characteristics—used to improve the association between tracks
and detections. This multimodal approach allows for the combination of spatial prediction and
visual similarity, greatly improving robustness in real-world scenarios and significantly reducing
identity switches, with improvements estimated around 45% on standard benchmarks.

As shown in Figure 2.5, DeepSORT combines kinematic prediction (Kalman filter) with visual
appearance descriptors (CNN feature extractor), using a cascade of matching with combined
metrics to associate detections with active tracks.

13

State of the Art

Figure 2.5: Modular architecture of DeepSORT: Kalman filter, visual feature extractor, cost
matrix, and association using the Hungarian algorithm.

The DeepSORT system is based on re-ID networks, typically CNNs (e.g., ResNet-50), trained
with similarity metrics such as triplet loss or contrastive loss on specific datasets like Market-1501.
These embeddings enable effective object association even under challenging conditions such as
crowded scenes, rapid perspective changes, or the presence of visually similar objects. In recent
years, several studies have proposed even more performant architectures for re-ID, including
OSNet, PCB+RPP, and RGA, which provide more discriminative and robust embeddings against
intra-class variations. In particular, Koufos et al. (2021) showed that using these variants
significantly reduces identity switch rates and increases track stability, even in complex sequences
with visually similar objects [23].

As shown in Table 2.1, the OSNet, PCB+RPP, and RGA architectures provide more robust
embeddings compared to ResNet-50-based models, improving key metrics such as mAP and
Rank-1 on the Market-1501 and CUHK03 datasets.

Method Publication Backbone Market1501 CUHK03 Duke MSMT17
R1 mAP R1 mAP R1 mAP R1 mAP

ShuffleNet CVPR’18 ShuffleNet 84.8 65.0 38.4 37.2 71.6 49.9 41.5 19.9
MobileNetV2 CVPR’18 MobileNetV2 87.0 69.5 46.5 46.0 75.2 55.8 50.9 27.0
BraidNet CVPR’18 BraidNet 83.7 69.5 – – 76.4 59.5 – –
HAN CVPR’18 Inception 91.2 75.7 41.7 38.6 80.5 63.8 – –
OSNet (ours) ICCV’19 OSNet 93.6 81.0 57.1 54.2 84.7 68.6 71.0 43.3

DaRe CVPR’18 DenseNet 89.0 76.0 63.3 59.0 80.2 64.5 – –
PNGAN ECCV’18 ResNet 89.4 72.6 – – 73.6 53.2 – –
KPM CVPR’18 ResNet 90.1 75.3 – – 80.3 63.2 – –
MLFN CVPR’18 ResNeXt 90.0 74.3 52.8 47.8 81.0 62.8 – –
FDGAN NeurIPS’18 ResNet 90.5 77.7 – – 80.0 64.5 – –
DuaATM CVPR’18 DenseNet 91.4 76.6 – – 81.8 64.6 – –
Bilinear ECCV’18 Inception 91.7 79.6 – – 84.4 69.3 – –
G2G CVPR’18 ResNet 92.7 82.5 – – 80.7 66.4 – –
DeepCRF CVPR’18 ResNet 93.5 81.6 – – 84.9 69.2 – –
PCB ECCV’18 ResNet 93.8 81.6 63.7 57.5 83.3 69.2 68.2 40.4
SGGNN CVPR’19 ResNet 92.3 82.8 – – 81.0 68.2 – –
Mancs ECCV’18 ResNet 93.1 82.3 65.5 60.5 84.9 71.8 – –
AANet CVPR’19 ResNet 93.9 83.4 – – 87.7 74.3 – –
CAMA ECCV’19 ResNet 94.7 84.5 66.6 64.2 85.8 72.9 – –
IANet CVPR’19 ResNet 94.4 83.1 – – 87.1 73.4 75.5 46.8
DGNet CVPR’19 ResNet 94.8 86.0 – – 88.6 74.8 77.2 52.3
OSNet (ours) ICCV’19 OSNet 94.8 84.9 72.3 67.8 88.6 73.5 78.7 52.9

Table 2.1: Comparison of OSNet vs altri metodi su Market1501, CUHK03, Duke, MSMT17 [24].

When applying these approaches to the context of waste management, specific challenges
emerge that are not present in classical pedestrian tracking scenarios. Waste items deposited in

14

State of the Art

smart bins may disappear from view during the drop or container opening, remain static for long
periods, or exhibit discontinuous and unpredictable movements. Moreover, the visual similarity
between common objects, such as bottles, cups, or plastic containers, represents an additional
source of ambiguity for conventional CNN embeddings. Under these conditions, the Kalman
filter is unable to accurately predict trajectories, while visual similarity can lead to frequent
identity switches between distinct yet similar objects.

Another limitation of systems like DeepSORT is the absence of an explicit visual memory.
The model operates according to a purely local and frame-based logic, without maintaining a
history of visual representations. As a result, it cannot assess whether an object observed at a
given moment has already been seen previously. This lack of visual recurrence is particularly
detrimental in dynamic or intermittent contexts, where an object might exit the scene and
reappear after a few seconds, or appear in different positions without coherent motion.

In recent years, several approaches have been proposed in the literature that introduce mem-
ory mechanisms into multi-object tracking. Among them, MeMOT [25] uses a long-term memory
structure to store temporal embeddings associated with tracks, improving the system’s resilience
to prolonged occlusions or interruptions. More recently, MeMOTR [26] introduced a memory-
attention mechanism based on Transformers, capable of modeling long-range temporal relation-
ships and improving metrics like HOTA by more than 7.9% on benchmarks such as DanceTrack.
Other studies from 2024 and 2025 have developed even more compact and high-performing archi-
tectures, such as FASTTrackTr [27] and Global Tracking Transformer [28], capable of operating
in real time on edge devices thanks to reduced attention mechanisms and compressible memory.

Although DeepSORT remains a well-established reference for multi-object tracking in rela-
tively structured scenarios, its design principles prove less suited to the specific context of waste
management. In particular, preliminary experiments conducted in this domain have highlighted
limitations in the model’s ability to handle visually similar, static, or incoherently moving ob-
jects, leading to numerous association errors and identity switches. Furthermore, the lack of
persistent visual memory renders the system incapable of effectively distinguishing between new
and previously seen objects, especially in the presence of occlusions, reappearances, or unsuper-
vised scenes. These limitations point to the need for alternative solutions capable of explicitly
modeling the temporal recurrence and semantic continuity of objects.

2.3 Visual memory and Memory-Based architectures

The frame-wise processing typical of traditional object detection and tracking models has already
been highlighted in previous sections as one of the main limitations in dynamic scenarios. This
section analyzes architectural solutions that introduce explicit memory mechanisms, with the
aim of overcoming such constraints through temporal persistence and modeling of visual identity
over time.

To address these limitations, recent literature has developed models equipped with explicit
memory mechanisms, integrating persistent and dynamic representations of visual sequences.
One of the most significant innovations in this area is the concept of self-attention, introduced
by Vaswani et al. [29], which revolutionized the modeling of long-range dependencies within
sequences. Applied to the visual domain, this technique led to the development of models like
ViT [30], which treat images as sequences of patches, offering a richer understanding of spatial
and semantic interactions.

Subsequently, video architectures such as TimeSformer [31] and VideoSwin [32] extended
the Transformer paradigm to the temporal domain. Specifically, TimeSformer adopts separa-
ble attention along spatial and temporal dimensions to reduce computational complexity, while
VideoSwin introduces hierarchical windows of local attention, making it scalable to long or high-
resolution sequences while maintaining strong consistency across successive frames.

As illustrated in Figure 2.6, the diagram shows how video Transformers (e.g., TimeSformer)
apply attention separately—first along the temporal dimension, then along the spatial dimen-
sion—and finally combine the two into a joint representation.

15

State of the Art

Figure 2.6: Spatio-temporal self-attention mechanism (time-then-space) used in video Trans-
former architectures [33] .

In parallel, the first Memory-Augmented Neural Networks (MANNs) emerged, such as
the Neural Turing Machine [34] and the Differentiable Neural Computer [35], which combine
differentiable external memory modules with neural read/write capabilities. These architectures
have been successfully applied to complex tasks such as Video Question Answering [36], [37],
where the model must maintain coherent narrative traces even in the presence of occlusions or
discontinuous events. Although promising, these approaches still suffer from high computational
costs, especially in real-time scenarios or on edge devices.

In the domain of multi-object tracking, the idea of visual persistence has been realized
in models such as MeMOT [25], which maintains a long-term memory of embeddings associated
with tracks, supporting correct reactivation after extended periods of visual absence. MeMOTR
[26] extended this logic by integrating memory into the decoder of a Transformer, modeling
complex temporal relationships and improving metrics such as HOTA by 7.9% on benchmarks
like DanceTrack. Other advanced models, such as Global Tracking Transformer [28], use a shared
visual cache with global attention, while FASTTrackTr [27] implements selective attention and
compression to maintain high performance even in resource-constrained environments.

An important distinction between these models and conventional architectures is that memory
is treated as an external, persistent, and updatable component, separate from the main network.
This allows for the construction of a continuous visual narrative, enriched frame by frame, making
the system more robust to environmental variations, occlusions, and perspective changes.

In parallel, research has addressed the problem of scalability and efficiency. Since full attention
has quadratic complexity and differentiable memory structures are expensive to update, models
like MeMViT [38] introduced selective buffers and compressed attention, updating memory only
on key frames. Additional techniques include token pooling, quantized memories, FIFO strategies,
and controlled forgetting to avoid memory saturation.

As shown in Figure 2.7, the MeMViT model uses a selective buffer updated only on key
frames, allowing the system to retain visual context without processing every frame. This reduces
computational cost while significantly extending temporal support.

16

State of the Art

Figure 2.7: Comparison between traditional frame-wise pipeline and MeMViT’s selective buffer,
with memory updated only on key frames.

In the context of this thesis, an architecture is proposed that integrates detection and tracking
with three hierarchical levels of visual memory: short-term (≤ 1s), medium-term (5–10s), and
long-term (entire operational cycle). As illustrated in Figure 2.8, each level is equipped with an
independent temporal buffer, with specific attention and forgetting policies, enabling real-time
comparison of current embeddings with the accumulated visual history. This structure facilitates
recognition of previously observed objects, reduction of false positives, and implementation of a
robust and contextual logic of visual novelty [39].

Figure 2.8: Hierarchical architecture of visual memory levels.

Studies on extended benchmarks (Kitti-Mem, MOT20-mem) indicate that the use of struc-
tured memory significantly reduces identity switches, with improvements of 20–30% compared
to conventional trackers. The integration of metric learning, through Siamese networks or su-
pervised triplet loss, further strengthens the system’s ability to distinguish between truly new
objects and visual recurrences.

All of these models represent a necessary transition toward systems endowed with visual
persistence, capable of performing continuous inference on video streams. Memory-aware ar-
chitectures represent the technological frontier for embedded applications, making it possible
to address the challenge posed by smart bins: understanding whether an object is new or al-
ready seen, tracking it over time, and acting accordingly (e.g., ignoring duplicates, estimating
quantities).

17

State of the Art

2.4 Metric learning and Siamese Networks

Metric learning is a paradigm in machine learning aimed at learning a distance function that
reflects the semantic relationships between objects. Unlike traditional supervised learning, which
seeks to classify inputs into predefined categories, metric learning constructs an embedding space
in which similar objects are mapped close together and dissimilar ones far apart, according to a
differentiable metric such as Euclidean distance or cosine similarity.

This approach is particularly effective in open-world or open-set contexts, where the system
must generalize to new classes never seen during training while maintaining semantic consistency
among visually similar instances. A prime example is facial recognition: faces of the same person
should be close in the feature space even if they were not part of the training set.

The most well-known architectures for implementing metric learning are Siamese Networks
and Triplet Networks, which share weights across parallel branches and learn a distance be-
tween inputs instead of performing explicit classification. The first modern formulation of the
Siamese network was proposed by Bromley et al. [40], while its revival in deep learning is at-
tributed to the work of Chopra et al. [41], and later to Schroff et al. with FaceNet (2015) [42].

Siamese Networks: consist of two identical subnetworks (with shared weights) that receive
two images as input and produce two embedding vectors compared using a distance function.
The goal is to minimize the distance between similar pairs (positives) and maximize it for dis-
similar pairs (negatives). Training is performed using contrastive loss [43], which penalizes errors
continuously based on the learned distance.

Triplet Networks: extend the Siamese logic by including an anchor, a positive (same class),
and a negative (different class). The triplet loss enforces that the distance between anchor and
positive is smaller than the distance between anchor and negative by at least a margin m. This
margin can be fixed or learned. Triplet loss is used in high-profile systems for re-identification
and the retrieval of similar objects in large-scale visual datasets.

Figure 2.9: Comparison between Siamese Network (two branches with contrastive loss) and
Triplet Network (three branches with triplet loss), with shared weights. Image from [42].

In recent years, numerous improvements to traditional loss functions have been proposed.
The batch hard triplet loss [44] selects the hardest triplets within a batch to maximize use-
ful gradient information. Other variants include angular loss, arcface loss [45], and circle
loss [46], which enhance discriminative power in complex scenarios such as person re-ID, face
recognition, and product matching.

The effectiveness of these architectures has been demonstrated in contexts with high intra-
class and inter-class variability. In commercial applications, metric learning is used in biometric
identity verification, deduplication of similar products in e-commerce, deduplication of frames in

18

State of the Art

video streams, and unsupervised visual clustering. The most widely used benchmarks include
LFW, Market-1501, CUHK03, and SOP (Stanford Online Products).

In the domain of intelligent waste management, metric learning plays a crucial role in
identifying previously seen objects—such as bottles, cans, or boxes reappearing in the video
stream—and thus in correctly estimating the concept of visual novelty. Since many waste items
are similar in shape and texture but not identical, the system’s ability to position them correctly
in the embedding space is a fundamental requirement.

For example, two plastic bottles may appear at different times, from different angles, but
the system must recognize their semantic similarity and decide whether it is a new instance
or a reappearance. This problem is further exacerbated in embedded environments with low
resolution, fast motion, partial occlusions, and optical distortions, making traditional embeddings
unstable.

For this reason, many recent architectures have integrated metric modules into tracking and
detection systems. In DeepSORT, for example, the re-identification embedding is used di-
rectly during the association phase, avoiding errors based solely on position (Kalman). More
recent works combine Transformer-based encoders with neural metric modules (e.g., MemViT,
MeMOTR) capable of comparing a current object with a memory of past embeddings.

Studies such as Re-IDformer [47] and CrossFormer [48] propose hybrid architectures in which
the visual backbone extracts embeddings compatible with metric learning, and the matching
modules compute similarity between objects separated in time. These architectures are designed
for low-power applications and optimized for continuous video datasets.

Figure 2.10: Architecture of a video stream metric learning system based on encoder, memory,
and distance module. Image from [48].

An important topic in metric learning is the quality of the pairs or triplets: many recent
architectures implement active mining strategies to select hard samples, avoiding the network
learning only from trivial cases. Online mining algorithms (e.g., semi-hard triplet mining),
semantic data augmentation, and guided sampling are essential to prevent overfitting.

In parallel, lossless matching modules have also been developed, where embeddings are
directly quantized and compared via hashing, reducing computational cost. These techniques are
particularly relevant for embedded systems such as smart bins, where memory and computational
power are highly constrained.

In the context of this thesis, the use of metric learning is essential for building a pipeline
capable of:

• visually associating objects across time,

19

State of the Art

• recognizing visual recurrences and reducing false positives,

• estimating whether an object has already been seen or represents a new instance.

The proposed architectures include Siamese modules that compare the current object with a
historical buffer of recent embeddings. Similarity is computed using cosine similarity or Euclidean
distance, with dynamic thresholds adapted based on distributional statistics.

Recent studies [49], [50] show how combining metric learning with visual attention and mem-
ory modules can drastically improve correct identification rates even in the presence of occlu-
sions or partial visual variations. The model presented in this thesis draws inspiration from this
paradigm to ensure robust and persistent object recognition in dynamic environments, leveraging
the potential of metric networks without compromising latency.

2.5 Computer vision-based waste management systems

In recent years, growing environmental pressure and the need for urban automation have driven
the integration of intelligent technologies into waste management systems. In this context, com-
puter vision has proven to be a fundamental tool to support the automatic recognition, classifi-
cation, and monitoring of waste, especially in unsupervised environments such as smart bins.

The first solutions based on convolutional neural networks introduced systems capable of
classifying waste by material category (plastic, glass, paper, organic, metal) using lightweight
CNN models. An example is WasteNet, a system designed to run in real time on edge hardware
such as the Jetson Nano, achieving an accuracy of 97% on six waste classes [51]. However, while
effective in static scenarios, these models did not address temporal dynamics or visual recurrence
of objects—key elements for real-world environments.

Subsequently, a more systematic overview of architectures was proposed by Kunwar and
Alade, who analyze various implementations of intelligent smart bins combining computer vision,
IoT sensors, and inference modules on microcontrollers [52]. Their analysis includes the use of
YOLO, MobileNet, EfficientNet, and ResNet for waste recognition, evaluating trade-offs between
accuracy, latency, and deployability on low-power devices.

Architectural evolution has led to the adoption of increasingly efficient and accurate models
for waste classification and detection. Kuang et al. proposed the use of YOLOv5 for multi-class
waste classification on a real-world dataset acquired in both indoor and outdoor environments
[53]. The model shows good performance even on partially occluded or deformed objects, but
still operates frame-by-frame, with no form of temporal memory.

A further step forward was made by Mithra et al., who describe a YOLOv8-based pipeline
equipped with a web interface and predictive modules to incentivize recycling through a rewarding
system. Although the system is efficient, it does not implement tracking mechanisms or identity
association, limiting itself to instantaneous classification of deposited objects [54].

In an effort to bridge this gap, several studies have begun integrating visual tracking algo-
rithms. A representative example is the DSYOLO-Trash system, which combines YOLOv5 with
attention modules (CBAM, CotNet) and the DeepSORT tracker to provide continuous estimation
of the identity of detected waste in video streams [55]. Results on the TrashNet and MMTrash
datasets show significant improvements in mAP and correct association rates, but the system
remains frame-independent and does not implement visual memory or metric learning modules.

20

State of the Art

Figure 2.11: Architecture of the Waste-YOLO system for automatic waste classification. The
model combines convolutional backbones, attention modules (CBAM), and head structure for
real-time recognition on smart bins. Source: [56].

Similarly, Abo-Zahhad and colleagues propose a real-time edge system based on Raspberry
Pi, YOLOv8, and ultrasonic sensors to monitor the fill level of waste bins, as well as to detect
litter abandoned near the container [57]. The system integrates vision with the Internet of Things
(IoT) to notify authorities in case of anomalies, but it does not address the issue of persistent
object identity.

Most of the systems mentioned above focus exclusively on detection or waste classification,
completely overlooking the problem of recurrence. In dynamic scenarios, such as smart bins
placed in urban environments, it is crucial to recognize whether a detected object is new or has
previously appeared in the scene, in order to avoid duplicate counting or estimation errors. This
requirement calls for explicit visual memory modules, integrable into tracking architectures and
combined with metric learning strategies.

In the literature, few studies have systematically addressed the issue of visual persistence.
Some recent approaches have begun to explore the use of memory-augmented trackers, such as
MeMOT or FASTTrackTr, for general multi-object tracking applications, but the specific ap-
plication to waste management contexts remains largely unexplored [25], [27]. Moreover, no
existing system integrates the concept of visual novelty—namely, the ability to distinguish be-
tween previously seen objects and new arrivals based on persistent visual memory and metrically
informed embeddings.

The available benchmarks, such as TrashNet, WaDaBa, TACO, and RecycleNet, focus on
classification and segmentation, but do not provide annotated datasets for identity tracking or
temporal recurrence. This limits the ability to evaluate truly persistent and memory-aware
systems, leaving a relevant research gap for embedded applications.

In light of the above, a clear gap in the literature emerges: the absence of integrated models
that combine detection, tracking, and recurrent recognition of waste objects, operating in real
time on embedded devices and equipped with visual memory capabilities.

This scenario represents the central motivation of the present thesis work. In the next chap-
ter, three innovative architectures will be presented, directly addressing the identified limitations.
These introduce a detection–tracking–metric learning pipeline equipped with a structured mem-
ory across multiple temporal levels, capable of recognizing previously seen objects, managing
visual recurrence, and adapting to the computational constraints of real-world embedded waste
management systems.

21

Chapter 3

Dataset and Methodology

3.1 Description of the original Dataset

The dataset used for the present thesis work was provided by Relearn, an innovative company
committed to developing technological solutions for intelligent waste management. It serves as
the experimental foundation upon which the methodologies for recurrent object recognition were
designed, developed, and validated, with particular focus on robustness against visual variability,
temporal discontinuity, and semantic invariance.

The images were collected through fixed cameras installed near bins designated for differen-
tiated waste collection in real indoor environments, such as offices, public spaces, and corporate
open spaces. Users, acting in a completely natural and unsupervised manner, deposit objects
into the containers, generating heterogeneous visual streams in terms of type, orientation, angle,
distance, occlusion, and ambient lighting. As such, the dataset represents an extremely realistic
and diverse collection of scenes containing waste, which can be classified into a wide range of
categories.

The ultimate goal of the data collection is not mere object classification, but rather the
ability to establish an identity relationship between similar objects appearing in different
images. This ability is central to applications such as waste traceability, deposit counting, and
user behavior analysis.

The dataset is structured according to the standard COCO (Common Objects in Context)
format, one of the most widely adopted and flexible formats in the field of computer vision. The
main annotation file is a JSON object containing five main sections:

• images: list of metadata related to each image;

• annotations: detailed list of annotations associated with visible objects;

• categories: dictionary of semantic classes;

• licenses (optional): metadata related to image licensing (not present in this case);

• info (optional): general metadata about the dataset (not used).

Each image is described by a JSON object containing the following fields:

• id: unique numerical identifier of the image;

• file_name: relative path or filename containing the date and time of the image;

• width, height: image dimensions in pixels;

22

Dataset and Methodology

• (any custom attributes): e.g., timestamp, source or camera location (not included in
the provided dataset).

This information enables unique access to the image files and helps establish a geometric
context useful during preprocessing or for computing spatial metrics.

Listing 3.1: Example of COCO structure with extensions for visual matching
1 {
2 "images": [
3 {
4 "id": 19,
5 "file_name": "real/2024_Week31_Tiny-0606_trash/data/2024-08-08___17-03-20.jpg",
6 "width": 1280,
7 "height": 1024
8 }
9],

10 "annotations": [
11 {
12 "id": 57,
13 "image_id": 19,
14 "category_id": 44,
15 "bbox": [430.36, 674.09, 263.67, 349.91],
16 "segmentation": [[628.76, 1024.0, 674.09, 943.91, 694.03, 898.72, 678.08,

731.25, 630.23, 709.98, 582.38, 674.09, 586.37, 797.7, 612.95, 811.0,
615.61, 818.97, 558.45, 880.11, 525.22, 926.64, 430.36, 1024.0]],

17 "area": 40930.0,
18 "iscrowd": 0,
19 "attributes": {
20 "new": "no",
21 "occluded": false
22 }
23 },
24 {
25 "id": 58,
26 "image_id": 19,
27 "category_id": 46,
28 "bbox": [252.74, 501.3, 376.02, 522.7],
29 "segmentation": [[600.99, 834.92, 557.12, 543.83, 491.99, 534.53, 482.69,

502.63, 420.22, 501.3, 394.96, 511.93, 386.99, 526.55, 386.99, 543.83,
252.74, 594.34, 320.53, 999.74, 324.48, 1024.0, 628.76, 1024.0]],

30 "area": 148911.0,
31 "iscrowd": 0,
32 "attributes": {
33 "new": "yes",
34 "occluded": false
35 }
36 }
37],
38 "categories": [
39 {
40 "id": 44,
41 "name": "crumbled tissue"
42 },
43 {
44 "id": 46,
45 "name": "paper cup"
46 }
47]
48 }

23

Dataset and Methodology

The annotations section is the richest and most central part of the dataset, consisting of a
list of annotations, each representing a single object visually identified in a given image.

Each object has the following structure:

• id: globally unique identifier of the annotation within the dataset. It is assigned incre-
mentally and sequentially for each annotated object, regardless of its visual identity. As
a result, even if the same object appears in multiple images, it will receive a new id each
time. Therefore, this field does not represent any temporal identity persistence, but only
a local reference to the visual instance in that specific image.

• image_id: identifier of the image to which the object belongs. This allows the annotation
to be directly associated with one of the entries in the images section.

• category_id: numerical identifier of the semantic class assigned to the object. This value
refers to the categories section, which maps each category_id to a human-readable
name.

• bbox: the object’s bounding box, represented as an array [x_min, y_min, width, height],
where:

– x_min, y_min are the coordinates of the top-left corner;

– width, height define the dimensions of the rectangle.

The bounding box is useful both for training models based on anchor boxes and as input
for cropping or extracting local features.

• segmentation: a precise representation of the object’s shape, via a list of vertices (x1, y1, x2, y2, . . .)
defining a polygon. The format also supports multiple segmentations (e.g., fragmented ob-
jects), but in the dataset at hand, a single manually annotated polygon per object is used.

• area: the surface area of the segmented object, automatically computed from the segmen-
tation. It is used during validation to detect possible geometric anomalies.

• iscrowd: boolean flag indicating whether the object is a difficult-to-segment crowd or mass.
In the provided dataset, it is always set to 0, as each object is annotated individually.

• track_id (custom): a custom field that uniquely identifies the same object across multiple
images. It is essential for building positive object pairs (i.e., different representations of
the same object) and is used for inter-frame matching.

• attributes (custom): a dictionary containing additional metadata:

– new: a flag indicating whether the object is “new” with respect to previous images. It
can take values such as “yes” or “no”.

– occluded: boolean indicating whether the object is partially covered by other elements
in the scene.

These additional attributes were used both for statistical analysis and for balancing the
training data.

The richness of this structure makes the annotations suitable for multiple tasks: detection,
instance segmentation, classification, tracking, and matching.

The categories field contains the definition of the semantic classes present in the dataset.
Each category is described by:

• id: unique numerical identifier;

• name: class name (e.g., “plastic bottle”, “paper cup”, “crumbled tissue”).

24

Dataset and Methodology

The provided dataset includes 53 categories, varying in frequency and visual complexity.

The distribution of categories is highly unbalanced. Some classes appear very frequently (e.g.,
paper cup, crumbled tissue), while others are rare (e.g., covid test, plastic dish, laptop
charger). Table 3.1 shows a representative excerpt of the statistics.

Table 3.1: Category statistics: frequency, recurrence, and temporal distribution

Class Annotations Recurrences
(new=no)

Distinct
images

Consecutive

ALUMINIUM CAN 1473 759 740 492
ALUMINIUM SHEET 281 126 265 125
ALUMINIUM TRAY 8 4 8 3
CIGARETTE BUTT 87 61 75 52
CIGARETTE PACK 87 51 78 44
COMPOSTABLE
PACKAGING

282 141 173 116

CONDIMENT PACKETS 20 4 18 4
COVID TEST 1 1 1 0
CRUMBLED TISSUE 5576 2399 3082 2280
FACE MASK 9 6 5 3
GLASS BOTTLE 807 336 229 161
GLASS JAR 37 30 37 31
LAPTOP CHARGER 1 0 1 0
MEDS BLISTER 8 1 8 1
METAL CAP 51 43 43 36
ORGANIC SCRAPS 1071 442 669 424
PAPER BOWL 289 129 249 130
PAPER CUP 6890 3538 2527 1918
PAPER MAGASINE 48 23 46 24
PAPER PACKAGING 5034 2523 2727 2068
PAPER PLATE 41 17 34 15
PAPER SHEET 801 415 631 400
PAPER SUGAR BAG 191 79 130 72
PAPER TRAY 83 27 60 27
PIZZA BOX 115 56 90 66
PLASTIC BAG 149 74 136 82
PLASTIC BOTTLE 2548 1319 1222 896
PLASTIC BOWL 192 105 154 88
PLASTIC CAP 911 382 656 370
PLASTIC CUP 1927 1347 704 483
PLASTIC CUTLERY 263 112 207 104
PLASTIC DISH 10 4 10 2
PLASTIC GLOVES 9 3 8 3
PLASTIC PACKAGING 1935 899 1511 944
MIXED PAPER-PLASTIC
PACKAGING

147 70 140 67

PLASTIC SNACK
PACKAGING

2435 1124 1645 1060

(continued on next page)

25

Dataset and Methodology

(continued from previous page)

Class Annotations Recurrences
(new=no)

Distinct
images

Consecutive

PAPER FOOD
PACKAGING

37 15 34 13

PLASTIC STICKS 460 334 148 118
PLASTIC STRAW 238 127 203 107
PLASTIC TRAY 169 75 148 71
RECEIPT 743 332 505 296
TEA BAG 54 18 43 17
TETRAPACK 190 125 166 113
TRANSPORT TICKET 22 11 20 10
WOODEN CUTLERY 169 52 137 51
WOODEN STICKS 746 310 516 281
TOBACCO PACK 11 6 11 6
PC ACCESSORIES 6 5 6 2
PLASTIC_JUG 77 41 56 34

Overall, the dataset comprises approximately 7000 images and a total of 35,325 annota-
tions. The original image set included 7,150 files, but about 150 were excluded due to corruption
or unreadability, as identified by an automated validation script.

A crucial aspect concerns the sequentiality of the images. Unlike video datasets, where
temporal relationships are explicit and continuous, three scenarios are observed here:

• Continuous sequences: series of consecutive images of the same object during successive
deposit actions;

• Sparse repetitions: objects reappearing in images far apart from each other, without
any evident temporal order;

• Isolated images: presence of unique objects not observed elsewhere.

Data access was performed via an AzureML datastore, dynamically mounted within the work-
ing environment. After parsing the annotation JSON file, indexed data structures were created
to:

• Map each image to its set of annotations;

• Map categories to semantic IDs;

• Identify and group objects by track_id;

• Split the dataset into training and validation sets (80%-20%) while preserving the class
distribution.

The corrupted images (about 150) were automatically excluded.

The dataset provided by Relearn stands as a heterogeneous, realistic, and high-granularity
corpus, ideally suited for complex tasks such as visual matching. The detailed annotations,
enriched with non-standard extensions, enabled the development of deep learning models tailored
to semantic and visual similarity. The next chapters will present the relabeling operations, mask
normalization, and the architectures used to learn discriminative object representations.

26

Dataset and Methodology

3.2 Relabeling and Annotation structure

One of the key aspects of this work involved the critical analysis and partial relabeling of the
annotations provided in the original dataset. Although the annotations were initially produced
in COCO format with a high level of detail, it was deemed necessary to carry out a systematic
process of verification, validation, and manual correction of the labels to ensure data reliability
and semantic consistency.

The relabeling process focused in particular on the attributes field, and more specifically
on the new attribute, whose meaning is crucial for the analysis of recurring patterns. In the
original version of the dataset, all annotated objects were labeled as new: yes, regardless of
their actual recurrence within the image sequence. While this approach may have served its
purpose during the initial data collection phase, it was unsuitable for more refined analytical
goals, such as evaluating object similarity or training models capable of distinguishing between
new and previously seen objects.

For this reason, an extensive manual review of the images was initiated. The process involved
visualizing each image through the annotation tool provided by the Azure platform, which allows
for the overlay of segmented masks and metadata for each object. Through a sequential analysis
of the images, a visual comparison was carried out for objects appearing in consecutive or logically
connected frames, with the goal of identifying instances where the same object appeared more
than once.

In such cases, the new attribute was changed from yes to no, indicating that the object had
already been observed in previous images. This update enabled the distinction between truly
new and already known objects, thus providing essential information for recurrence analysis
and the construction of balanced datasets for matching tasks. While conceptually simple, this
operation required meticulous and continuous inspection of each of the over 7,000 images and
35,000 objects in the dataset.

During this process, the track_id field was not used. Although available in the COCO
format to support tracking tasks, it was not populated in the dataset provided by Relearn. The
absence of this information made the new attribute even more important, as it served as the only
indicator of an object’s temporal recurrence. The revision of the new field was therefore essential
not only for descriptive purposes but also for the construction of structured and reliable subsets
on which to conduct experiments in similar-object recognition.

In addition to correcting the new labels, the manual review also included the verification of
the semantic accuracy of the categories assigned to each object. In some cases, labeling errors
were identified, such as objects assigned to incorrect or ambiguous categories (e.g., paper cup
labeled as paper packaging, or plastic bottle labeled as plastic bowl). These anomalies
were corrected manually to ensure greater semantic consistency and improve the quality of the
training data for subsequent models.

The restructuring of the dataset did not involve any changes to the overall structure of the
JSON file, which remained fully compatible with the COCO standard. However, the quality
of the annotations was significantly improved through manual intervention. At the end of the
review process, a new updated annotation file was generated, including all revised and relabeled
objects. This file was used in all subsequent training and validation phases and served as the
basis for generating image pairs for the visual matching task.

Finally, it is worth emphasizing that the absence of automation in the relabeling process
made it possible to maintain accurate control over data consistency, minimizing the propagation
of systematic errors. Although time-consuming, the manual effort provided an invaluable added
value in terms of precision, semantic quality, and annotation reliability, making the dataset not
only a solid experimental base but also a useful reference for future developments and validations
of computer vision models applied to the context of urban waste.

27

Dataset and Methodology

3.3 Preprocessing and mask management

A fundamental phase in the experimental pipeline was the preprocessing of the images and their
corresponding annotations, with particular attention to the management of segmentation masks.
This step had a significant impact both on the efficiency of the trained models and on the
quality of the visual representations used for matching recurring objects. Since the annotations
followed the COCO format, each object in the dataset was equipped with a bounding box, and,
when available, also a high-precision polygonal segmentation mask. Processing such information
required a careful study of the methods for extracting, normalizing, and managing the regions
of interest.

The first preprocessing step involved normalizing the image dimensions. Although the original
dataset images shared a consistent resolution (e.g., 640x480 pixels), it was still necessary to scale
the images and their respective masks to dimensions compatible with the neural architectures
used, particularly during the training phase. In many experiments, the resolution was reduced
to 224x224 pixels to ensure compatibility with pretrained models (such as ResNet or MobileNet)
and to optimize GPU memory usage.

In parallel, automatic cropping of the objects was performed based on their bounding boxes.
This made it possible to individually isolate each annotated object, thus obtaining a secondary
dataset composed of cropped images containing only the object of interest. This procedure
proved useful in multiple phases, such as constructing pairs for training Siamese architectures or
extracting visual features independently of the background context. Cropping was accompanied
by constant padding around the object to prevent overly aggressive crops that could introduce
artifacts at the image edges.

The management of segmentation masks required dedicated handling. The masks provided
in the dataset were expressed as lists of polygonal coordinates. These masks were converted
into binary maps using libraries such as pycocotools and opencv. For each object, a binary
mask was generated with the same dimensions as the original image, where pixels belonging to
the object were marked with a value of 1, and the background with a value of 0. In cases of
partially occluded objects, the resulting mask was fragmented, but still representative of the
visible surface. These masks were subsequently used to:

• build custom inputs for mask-based architectures;

• compute structural similarity measures between objects, such as Intersection over Union
(IoU);

• exclude background during the computation of visual embeddings.

During this phase, special attention was paid to coordinate harmonization, since bounding
boxes and masks are often expressed in absolute units relative to the original image resolution. To
enable comparison and processing by the models, all coordinates were converted into normalized
form (values in [0,1]) with respect to the image size. This ensured independence from the original
image scale and improved model generalization during inference stages.

28

Dataset and Methodology

Figure 3.1: Example of an image annotated with bounding boxes (colored by category) and masks
partially visible as overlays. Each object is accompanied by its respective class and attributes.

In addition to binary masks, experiments were also conducted with “masked” versions of the
images—versions in which only the annotated object was kept visible, while the rest of the image
was obscured (zero padding) or filled with a neutral color. The goal was to train the models
to focus solely on the salient visual characteristics of the object, reducing the influence of the
surrounding context. However, contrary to expectations, this strategy often led to a decline in
matching performance, as removing the background deprived the model of contextual information
useful for disambiguating visually similar objects.

Finally, all preprocessed data—cropped images, binary masks, masked versions, and corre-
sponding annotations—were organized into indexed structures and saved in .pkl or .npy format
depending on their complexity. This organization enabled fast access during the training phase,
avoiding the need to dynamically recompute transformations for each data batch. Additionally,
automatic scripts were created for generating positive and negative pairs (based on category or
visual similarity) directly from the preprocessed masks.

Preprocessing and mask handling thus proved to be critical steps—not only to ensure the
quality and consistency of the dataset, but also to support the implementation of advanced
visual content-based matching strategies.

3.4 Initial approach: Manual image comparison

In the early stages of the project, a heuristic approach for recognizing recurring objects was de-
veloped, aimed at assessing the feasibility of the task using basic visual comparison tools, without
relying on supervised learning models. This approach, entirely rule-based, was founded on ge-
ometric and visual metrics derived directly from the dataset annotations and from embeddings
extracted via pre-trained neural networks.

29

Dataset and Methodology

The guiding principle was to compare each object in a new image with an archive of previously
observed objects, in order to determine whether the object was “new” or a repetition of one
already seen in earlier images. This decision was based exclusively on two indicators:

• the cosine similarity between visual embeddings;

• the Intersection over Union (IoU) between their respective bounding boxes.

Cosine similarity is a classical measure in the retrieval literature and is computed as:

simcos(a,b) =
a · b

∥a∥ · ∥b∥

where a and b are the embedding vectors associated with two objects.

IoU, on the other hand, is a geometric measure that evaluates the intersection between two
bounding boxes, normalized by their union:

IoU(B1, B2) =
|B1 ∩B2|
|B1 ∪B2|

For each object, the cosine similarity was computed between its embedding and those of all
objects already stored in the object memory, a data structure that stored embeddings, bounding
boxes, and categories for each previously observed instance. The candidate object was only
compared against objects of the same semantic category, reducing the search space and avoiding
comparisons between dissimilar classes (e.g., comparing a plastic bottle with an aluminum tray).

To determine whether an object had been seen before, a combination of the two metrics
described above was evaluated. Several aggregation policies were tested: initially, independent
thresholds were applied to each metric (e.g., simcos > 0.75 and IoU > 0.5); later, a composite
score was tested, computed as:

score = α · simcos + (1− α) · IoU

where α was a tunable hyperparameter (typically between 0.6 and 0.8) that controlled the
weight given to the visual versus geometric component.

The system assigned a new object_id only when no object in memory achieved a score
above a predefined threshold. Otherwise, the object was considered “already seen” and was
assigned the same ID as the corresponding object. This allowed for the simulation of a primitive
similarity-based tracking mechanism, without relying on temporal or contextual information.

The neural network used to extract embeddings was a ResNet-50 pre-trained on ImageNet.
For each object, the image was cropped using the annotated bounding box, followed by nor-
malization and resizing to 224 × 224 pixels. The embedding was extracted by removing the
fully-connected layer and applying global average pooling to the output of the penultimate con-
volutional block.

In the absence of explicit tracking or populated track_id fields in the dataset, the new
attribute was used as a proxy for ground truth to evaluate predictions. This allowed for the
calculation of standard metrics such as precision, recall, accuracy, and F1-score. Reasonable per-
formance was observed in simple scenes (few objects, no occlusion), while the approach frequently
failed in more realistic scenarios where objects were partially occluded, rotated, or affected by
different lighting conditions.

Special attention was given to the selection of thresholds. Systematic tests were conducted
by varying the similarity and IoU thresholds over continuous intervals (e.g., simcos ∈ [0.6, 0.9],
IoU ∈ [0.3, 0.7]) in order to identify the combination that maximized the F1-score across the
entire dataset. In some preliminary experiments, a dynamic weight α was also tested, adjusted

30

Dataset and Methodology

according to the number of objects per class, but the marginal benefits did not justify the
increased complexity.

The original code used for these experiments was partially lost, but the main logic was
reconstructed from later versions in which the heuristic matching component was still present,
although commented out. In these versions, additional features were introduced, such as the
distance between the centroids of bounding boxes and the ratio of their areas, which were later
used to train an MLP classifier. However, at this early stage, such features were not yet used,
and classification relied exclusively on cosine similarity and IoU.

A simplified snippet of the code used for the heuristic approach is shown below:

Listing 3.2: Heuristic classification based on cosine similarity and IoU
--- Modello di estrazione delle feature (ResNet50) ---
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
resnet = resnet50(weights=ResNet50_Weights.DEFAULT).to(device)
resnet.eval()
feature_extractor = torch.nn.Sequential(*list(resnet.children())[:-1])

transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224,

0.225]),
])

def extract_features(image):
input_tensor = transform(image).unsqueeze(0).to(device)
with torch.no_grad():

embedding = feature_extractor(input_tensor).squeeze().cpu().numpy()
return embedding

def compute_iou(box1, box2):
x1, y1, x2, y2 = box1
x1_p, y1_p, x2_p, y2_p = box2

x_inter1 = max(x1, x1_p)
y_inter1 = max(y1, y1_p)
x_inter2 = min(x2, x2_p)
y_inter2 = min(y2, y2_p)

inter_area = max(0, x_inter2 - x_inter1) * max(0, y_inter2 - y_inter1)
area1 = (x2 - x1) * (y2 - y1)
area2 = (x2_p - x1_p) * (y2_p - y1_p)
union_area = area1 + area2 - inter_area
return inter_area / union_area if union_area != 0 else 0

def validate_bbox(bbox, image_shape):
x1, y1, w, h = map(int, bbox)
x2, y2 = x1 + w, y1 + h
h_img, w_img, _ = image_shape
return [max(0, x1), max(0, y1), min(w_img, x2), min(h_img, y2)]

object_memory = []
results = []

similarity_threshold = 0.68
iou_threshold = 0.5

31

Dataset and Methodology

sorted_image_ids = sorted(img_map.keys())

for image_id in sorted_image_ids:
img_data = img_map[image_id]
img_path = img_data["path"]
image = cv2.imread(img_path)

print(f"Processing␣Image␣{image_id}␣-␣{img_path}")

for ann in img_data["annotations"]:
bbox = validate_bbox(ann["bbox"], image.shape)
category_id = ann["category_id"]
is_new_gt = 1 if ann["attributes"]["new"] == "yes" else 0

x1, y1, x2, y2 = bbox
cropped_img = Image.fromarray(cv2.cvtColor(image[y1:y2, x1:x2],

cv2.COLOR_BGR2RGB))
embedding = extract_features(cropped_img)

predicted_new = 1 # default: new
for obj in object_memory:

if obj["category"] != category_id:
continue

iou = compute_iou(obj["bbox"], bbox)
sim = 1 - cosine(obj["embedding"], embedding)
if sim > similarity_threshold and iou > iou_threshold:

predicted_new = 0
break

results.append({
"image_id": image_id,
"object_id": ann["id"],
"category_id": category_id,
"true_new": is_new_gt,
"predicted_new": predicted_new

})

object_memory.append({
"category": category_id,
"embedding": embedding,
"bbox": bbox

})

print("\nFinals␣results:")
print(f"Accuracy:{accuracy_score(y_true,␣y_pred):.4f}")
print(f"Precision:{precision_score(y_true,␣y_pred):.4f}")
print(f"Recall:{recall_score(y_true,␣y_pred):.4f}")
print(f"F1-Score:{f1_score(y_true,␣y_pred):.4f}")

This snippet shows how each object is compared with previously observed objects of the
same category using cosine similarity and IoU. If both values exceed predefined thresholds, the
object is considered already seen (‘new=no‘); otherwise, it is classified as new (‘new=yes‘). After
classification, the object is stored for future comparisons.

The system allowed for the collection of important preliminary insights:

32

Dataset and Methodology

• visual similarity between objects of the same class can vary significantly depending on
viewing angle and lighting;

• IoU proves effective only when the object is positioned similarly within the image, but it
is fragile in the presence of rotations or translations;

• overly strict thresholds lead to many false negatives (already seen objects classified as new),
while overly permissive thresholds increase false positives;

• the approach fails to generalize on deformable (e.g., crumpled napkins) or poorly structured
objects.

This phase provided a first unsupervised baseline, useful for quantifying the difficulty of
the problem and guiding the design of subsequent models. Although modest, the obtained
performance highlighted that geometric and visual distance metrics alone were insufficient to
produce a robust and scalable system. This motivated the introduction of supervised machine
learning techniques, described in the following chapters.

3.5 Architecture 1: MLP on cosine similarity

Figure 3.2: Architecture of Baseline

After completing the preliminary heuristic rule-based phase, it became evident that although
this approach was useful for understanding the nature of the problem, it was limited in its ability
to generalize to complex scenarios. This motivated the design of a first supervised model, with
the goal of learning from the data the optimal conditions to distinguish “new” objects from those
already seen.

The transition to machine learning-based models represented a fundamental step in the de-
velopment of a more robust and adaptable system for visual object tracking in real-world en-
vironments, with particular focus on the context of waste sorting monitored through computer
vision.

In this scenario, a static camera constantly frames a waste container and records changes in
its contents. The goal remains to determine, for each visible object, whether it represents a new
instance or a recurrence. This distinction is crucial for applications such as accurate disposal
counting, behavior tracking, and anomaly detection.

Unlike the rigid thresholds adopted in rule-based approaches, the architecture described here
relies on a Multilayer Perceptron (MLP) capable of inferring similarity relationships in a data-
driven manner, using a compact representation of the relationship between a “query” object and
a “candidate” object in the visual memory. The network receives as input a set of features derived

33

Dataset and Methodology

from the pair (embedding, IoU, centroid distance, area ratio, etc.) and outputs the probability
that the two objects represent the same instance.

The rationale behind using an MLP lies in its ability to model non-linear relationships between
features and target classes. This is particularly useful in the given context, where similarities
between objects are not always explicitly codifiable through simple rules. For example, two
objects may have a similar shape but differ in color or scale, or they may be partially occluded.
In such cases, the MLP offers a robust solution for integrating different sources of information
(visual embeddings, geometric metrics, etc.) and producing a reliable estimate of recurrence.

The core of the approach consists in building a supervised dataset to train the classifier.
This dataset was derived from manually annotated data in JSON format following the COCO
standard, in which each object is associated with a binary label new, specifying whether the
object is new (1) or already seen (0). This type of annotation is valuable because it allows the
problem to be formulated as a standard binary classification task, where the model must learn
to predict whether an object has previously appeared based on a set of features.

The annotations were made available through a remote mount from AzureML, and once
mounted, the dataset annotations were loaded from the latest.json file and organized into
a map that links each image to its local path and corresponding annotations. This step is
essential to construct a coherent data structure that allows for efficient iteration over images and
associated polygons. Furthermore, a check is performed to verify the existence of each image file
in order to discard any invalid references.

The following code snippet (Figure 3.3) shows the annotation parsing process and the con-
struction of the image map.

Listing 3.3: Annotation parsing and image map construction
import os
import json

ANNOTATIONS_PATH =
"annotations/office/waste-object-tracking/real/all/latest.json"

with open(os.path.join(MOUNT_FOLDER, ANNOTATIONS_PATH)) as f:
annotations = json.load(f)

img_map = {
i["id"]: {

"path": os.path.join(MOUNT_FOLDER, "images", i["file_name"]),
"annotations": []

} for i in annotations["images"]
}

for a in annotations["annotations"]:
img_map[a["image_id"]]["annotations"].append(a)

Filtra immagini mancanti
valid_img_map = {}
for image_id, data in img_map.items():

if os.path.exists(data["path"]):
valid_img_map[image_id] = data

img_map = valid_img_map

The features selected to describe the relationship between a current object and a past one were
carefully chosen, balancing computational simplicity and discriminative power. They include:

• Cosine similarity: obtained by comparing the visual embeddings of the two objects.
The embeddings are high-dimensional vectors extracted from a ResNet50 pretrained on

34

Dataset and Methodology

ImageNet, and they represent a compact and rich description of the visual content of the
cropped image. Cosine similarity provides a measure of how closely the two vectors point
in the same direction, with values close to 1 indicating strong visual similarity.

• Intersection over Union (IoU): a standard metric for evaluating the overlap between
two bounding boxes. It is calculated as the ratio between the intersection area and the
union area of the two boxes. A high IoU value indicates strong spatial overlap, and thus a
strong clue that the same object is being observed at different points in time.

• Euclidean distance between centroids: measures the distance between the centers
of the two bounding boxes. It is an intuitive and simple metric that proves useful in
distinguishing distant objects (likely different) from nearby ones (likely the same).

• Area ratio: used to assess whether the relative sizes of the two objects are consistent. An
object that is much smaller or larger than another may indicate too drastic a scale change
to justify identity.

These four features represent an effective trade-off between visual and spatial information.
The first two (cosine similarity and IoU) combine semantic and geometric dimensions, while the
latter two offer additional geometric cues to refine the decision.

To collect the training data, an automated procedure was implemented that iterates over
images in temporal order, building a FIFO memory of recently observed objects. Each new object
is compared with those in the memory, and if a compatible match (same category) is found, the
pair is added to the dataset with label 0; otherwise, the label is 1. This process enabled the
generation of thousands of examples without the need for additional manual annotations.

Listing 3.4: Supervised dataset construction for the MLP model
Setup percorsi
MOUNT_FOLDER = "/tmp/dataset"
IMAGES_FOLDER = os.path.join(MOUNT_FOLDER, "images")
ANNOTATIONS_PATH =

"annotations/office/waste-object-tracking/real/all/latest.json"

Caricamento annotazioni
with open(os.path.join(MOUNT_FOLDER, ANNOTATIONS_PATH)) as f:

annotations = json.load(f)

img_map = {
i["id"]: {

"path": os.path.join(IMAGES_FOLDER, i["file_name"]),
"annotations": []

} for i in annotations["images"]
}
for a in annotations["annotations"]:

img_map[a["image_id"]]["annotations"].append(a)

Feature extractor da ResNet50
resnet = resnet50(weights=ResNet50_Weights.DEFAULT).to(device)
resnet.eval()
feature_extractor = torch.nn.Sequential(*list(resnet.children())[:-1])
transform = transforms.Compose([

transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224,

0.225]),
])

35

Dataset and Methodology

def extract_features(image):
input_tensor = transform(image).unsqueeze(0).to(device)
with torch.no_grad():

return feature_extractor(input_tensor).squeeze().cpu().numpy()

def compute_iou(box1, box2):
xi1 = max(box1[0], box2[0])
yi1 = max(box1[1], box2[1])
xi2 = min(box1[2], box2[2])
yi2 = min(box1[3], box2[3])
inter_area = max(0, xi2 - xi1) * max(0, yi2 - yi1)
area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
union_area = area1 + area2 - inter_area
return inter_area / union_area if union_area > 0 else 0

def validate_bbox(bbox, image_shape):
x, y, w, h = map(int, bbox)
x2, y2 = x + w, y + h
h_img, w_img, _ = image_shape
return [max(0, x), max(0, y), min(w_img, x2), min(h_img, y2)]

Costruzione dataset
FIFO_SIZE = 20
memory_queue = []
feature_rows = []
SCORE_THRESHOLD = 0.64

for image_id in sorted(img_map.keys()):
img_data = img_map[image_id]
image = cv2.imread(img_data["path"])
if image is None:

continue

for ann in img_data["annotations"]:
bbox = validate_bbox(ann["bbox"], image.shape)
category_id = ann["category_id"]
x1, y1, x2, y2 = bbox
crop = image[y1:y2, x1:x2]
if crop.size == 0:

continue

cropped_img = Image.fromarray(cv2.cvtColor(crop, cv2.COLOR_BGR2RGB))
embedding = extract_features(cropped_img)

best_match, best_score = None, -1

for mem in memory_queue:
if mem["category"] != category_id:

continue
cosine_sim = 1 - cosine(mem["embedding"], embedding)
iou = compute_iou(mem["bbox"], bbox)
score = 0.6 * cosine_sim + 0.4 * iou
if score > best_score:

best_match = mem
best_score = score

36

Dataset and Methodology

best_cosine, best_iou = cosine_sim, iou

if best_score > SCORE_THRESHOLD and best_match:
label = 0
cx1, cy1 = (x1 + x2) / 2, (y1 + y2) / 2
cx2, cy2 = (best_match["bbox"][0] + best_match["bbox"][2]) / 2,

(best_match["bbox"][1] + best_match["bbox"][3]) / 2
centroid_distance = np.sqrt((cx1 - cx2)**2 + (cy1 - cy2)**2)
area1 = (x2 - x1) * (y2 - y1)
area2 = (best_match["bbox"][2] - best_match["bbox"][0]) *

(best_match["bbox"][3] - best_match["bbox"][1])
area_ratio = area1 / area2 if area2 != 0 else 0

else:
label = 1
best_cosine = best_iou = centroid_distance = area_ratio = 0

feature_rows.append({
"cosine_similarity": best_cosine,
"iou": best_iou,
"centroid_distance": centroid_distance,
"area_ratio": area_ratio,
"label": label

})

memory_queue.append({
"embedding": embedding,
"bbox": bbox,
"category": category_id

})
if len(memory_queue) > FIFO_SIZE:

memory_queue.pop(0)

pd.DataFrame(feature_rows).to_csv("mlp_baseline_features.csv", index=False)

The MLP model was structured in a simple yet effective way:

• an input layer with 4 neurons (one for each feature);

• a first hidden layer with 32 neurons and ReLU activation function;

• a second hidden layer with 16 neurons and ReLU activation;

• an output layer with 1 neuron and sigmoid activation, returning the probability that the
object is “new.”

The choice to use a relatively small network was due to the tabular nature of the data and the
low dimensionality of the features. A deeper network would likely have led to overfitting without
bringing significant performance improvements. Furthermore, the simplicity of the model allows
for faster inference, which is an important requirement in real-time applications.

Before training the model, the features were normalized using a StandardScaler, which trans-
forms each variable to have zero mean and unit standard deviation. This step is crucial to ensure
that all features contribute equally to learning, preventing those with a larger numerical range
from dominating the optimization process.

Listing 3.5: Definition and training of the MLP network
X_train_tensor = torch.tensor(X_train, dtype=torch.float32)

37

Dataset and Methodology

y_train_tensor = torch.tensor(y_train.values,
dtype=torch.float32).unsqueeze(1)

train_dataset = TensorDataset(X_train_tensor, y_train_tensor)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)

class BaselineMLP(nn.Module):
def __init__(self):

super().__init__()
self.model = nn.Sequential(

nn.Linear(4, 32), nn.ReLU(),
nn.Linear(32, 16), nn.ReLU(),
nn.Linear(16, 1), nn.Sigmoid()

)
def forward(self, x):

return self.model(x)

mlp_model = BaselineMLP()
optimizer = optim.Adam(mlp_model.parameters(), lr=1e-3)
criterion = nn.BCELoss()

for epoch in range(10):
mlp_model.train()
for batch_X, batch_y in train_loader:

optimizer.zero_grad()
loss = criterion(mlp_model(batch_X), batch_y)
loss.backward()
optimizer.step()

The dataset was then split into a training set and a validation set with an 80/20 ratio,
ensuring that the class distribution was preserved (stratification). Training was performed for 10
epochs, with a batch size of 64, using the Adam optimizer and Binary Cross Entropy as the loss
function. At each epoch, the model was evaluated on the validation set, and key metrics such as
accuracy, precision, recall, and F1-score were monitored in order to select the best-performing
configuration.

Listing 3.6: Loading, normalization, and splitting of the dataset
df = pd.read_csv("mlp_baseline_features.csv")

X = df[["cosine_similarity", "iou", "centroid_distance", "area_ratio"]]
y = df["label"]

scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

X_train, X_test, y_train, y_test = train_test_split(
X_scaled, y, test_size=0.2, stratify=y, random_state=42)

Finally, at the end of the training process, the trained model was saved in PyTorch format
(.pth), along with the scaler, so that it could be easily reloaded for subsequent inference.The entire
pipeline was designed to be modular, reusable, and extensible, making the model immediately
available for operational use during the inference phase, which represents the next step in the
pipeline and will be described in the following section.

Listing 3.7: Final evaluation and model saving
X_test_tensor = torch.tensor(X_test, dtype=torch.float32)
y_test_tensor = torch.tensor(y_test.values, dtype=torch.float32).unsqueeze(1)

38

Dataset and Methodology

mlp_model.eval()
with torch.no_grad():

y_pred_probs = mlp_model(X_test_tensor).squeeze()
y_pred = (y_pred_probs >= 0.5).int()

print(classification_report(y_test, y_pred))

torch.save(mlp_model.state_dict(), "mlp_baseline_model.pth")
joblib.dump(scaler, "mlp_baseline_scaler.pkl")

3.5.1 Integration into the inference pipeline

After the training phase, the MLP model is integrated into the inference pipeline, which pro-
cesses in real time the sequence of images captured by a static camera. This process constitutes
one of the fundamental aspects of the architecture, as it transforms a supervised model into an
active operational component capable of autonomously contributing to the tracking logic. Inte-
gration into the inference phase thus represents the crucial transition from experimental design
to practical deployment.

The pipeline processes images one by one in temporal order, since each frame is captured
by a fixed camera at regular intervals. For every new image processed, the system detects the
present objects using the available annotations (or a detection system, if present), and for each
object it performs a systematic comparison with previously seen objects stored in a FIFO (First-
In, First-Out) memory structure. This memory keeps a history of the objects encountered in
previous frames, with a maximum limit on the number of stored objects to prevent uncontrolled
growth in computational cost.

The main objective of this phase is to determine, for each current object, whether there exists
a compatible past object—i.e., one belonging to the same semantic category and with sufficiently
similar geometric and visual characteristics. For each compatible pair (current object and FIFO
memory object), the same four features used during training are computed: cosine similarity
between visual embeddings, Intersection over Union (IoU) between bounding boxes, Euclidean
distance between centroids, and the area ratio of the boxes. At the implementation level, the
visual embedding of the current object is computed by passing the cropped image through a
pre-trained ResNet50, truncated before the last fully connected layer, to obtain a representative
vector of salient visual features.

Once computed, the features are preprocessed using the same scaler (StandardScaler) em-
ployed during training, in order to ensure statistical consistency with the data on which the model
was optimized. This step is critical: without normalization, the feature distributions could differ
between training and testing, significantly degrading model performance.

The normalized features are then passed to the MLP model, which returns a probability
value between 0 and 1. This value represents the model’s estimate that the object is “new” with
respect to the observed memory. If the probability is below a predefined threshold (0.5 in the
base case), the object is considered already seen (label 0) and is associated with the compatible
candidate that produced the lowest probability (i.e., the one most likely to represent the same
instance). On the other hand, if all probabilities are above the threshold, the object is assumed
to be previously unseen, and a new identity (label 1) is assigned.

Regardless of the assigned classification, all objects from the new image are added to the
FIFO memory, enriching the available context for subsequent images. In this way, the memory
is continuously updated with every observed object, providing an incremental overview useful
for future comparisons.

This decision mechanism allows the system to identify, at any given moment, the visual history
of each object across frames, providing a form of semantic tracking of occurrences. Moreover,

39

Dataset and Methodology

using a trained model enables the system to overcome many of the limitations associated with
direct comparisons and heuristic thresholds. For example, objects that are partially rotated,
deformed, captured under different lighting conditions, or affected by visual noise can still be
correctly recognized by the model, as long as their visual embeddings remain consistent with
previous instances.

From a computational perspective, the inference phase is well optimized. The extraction of
visual features is the most demanding operation, but it can be performed in batches to accelerate
the process. Furthermore, the use of a FIFO memory with a limited length reduces the number
of comparisons to perform at each frame, ensuring acceptable scalability even in real-time con-
ditions. In the future, the entire system could be further optimized through parallelization or
GPU-friendly implementations suitable for embedded environments.

Interestingly, the inference also plays a feedback role within the system: every object classified
as "new" is stored in the FIFO, contributing to the system’s evolving knowledge. This continuous
cycle of comparison and update makes the system dynamic, adaptive, and constantly refreshed,
helping to create a consistent temporal context for tracking. In other words, the pipeline implic-
itly learns the recent history of the visual content, basing its predictions on contextual memory.

The integration of the model into the inference pipeline is also fully modular. This means
that the classifier can be easily replaced with a more sophisticated model (e.g., a deeper network
or a classifier with visual attention) without altering the core logic of the pipeline. Similarly,
the feature set can be expanded or enriched with new components (e.g., dominant color, tex-
ture, spatial frequency), enhancing the model’s discriminative power without requiring structural
changes to the architecture.

Another relevant aspect is that the model outputs a continuous probability, which provides
an indication of the network’s confidence in its predictions. This value can be interpreted to
enrich the decision logic or simply monitored for diagnostic or analytical purposes, as will be
further discussed in the next section.

Finally, the robustness of the integration also manifests in the handling of edge cases. Situa-
tions where an object appears highly deformed compared to its first appearance, or cases where
similar objects are deposited close together, can still be resolved thanks to the model’s ability to
learn complex representations. The adoption of a learning-based approach, rather than one based
on fixed rules, allows the system to adapt to unforeseen scenarios, extending its generalization
capabilities.

This mechanism not only improves the system’s accuracy and robustness, but also lays the
foundation for even finer control of the decision logic, governed by the learned threshold that
will be analyzed in the next section.

Listing 3.8: Integration of the MLP model into the inference pipeline
=== Setup iniziale ===
MOUNT_FOLDER = "/tmp/dataset"
IMAGES_FOLDER = os.path.join(MOUNT_FOLDER, "images")
ANNOTATIONS_PATH = os.path.join(MOUNT_FOLDER,

"annotations/office/waste-object-tracking/real/all/latest.json")

with open(ANNOTATIONS_PATH) as f:
annotations = json.load(f)

Costruzione mappa immagini
img_map = {

i["id"]: {"path": os.path.join(IMAGES_FOLDER, i["file_name"]),
"annotations": []}

for i in annotations["images"]
}
for a in annotations["annotations"]:

img_map[a["image_id"]]["annotations"].append(a)

40

Dataset and Methodology

Filtra immagini effettivamente presenti
filtered_img_map = {k: v for k, v in img_map.items() if

cv2.imread(v["path"]) is not None}

=== Caricamento modelli ===
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

Estrazione feature con ResNet50
resnet = resnet50(weights=ResNet50_Weights.DEFAULT).to(device).eval()
feature_extractor = torch.nn.Sequential(*list(resnet.children())[:-1])
transform = transforms.Compose([

transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224,

0.225]),
])

def extract_features(image):
tensor = transform(image).unsqueeze(0).to(device)
with torch.no_grad():

return feature_extractor(tensor).squeeze().cpu().numpy()

def compute_iou(box1, box2):
xi1, yi1 = max(box1[0], box2[0]), max(box1[1], box2[1])
xi2, yi2 = min(box1[2], box2[2]), min(box1[3], box2[3])
inter = max(0, xi2 - xi1) * max(0, yi2 - yi1)
area1 = (box1[2]-box1[0]) * (box1[3]-box1[1])
area2 = (box2[2]-box2[0]) * (box2[3]-box2[1])
return inter / (area1 + area2 - inter) if inter else 0

=== Inizializza rete e scaler ===
class MLP(nn.Module):

def __init__(self, input_dim=4, hidden_dim=32):
super().__init__()
self.model = nn.Sequential(

nn.Linear(input_dim, hidden_dim), nn.ReLU(),
nn.Linear(hidden_dim, 16), nn.ReLU(),
nn.Linear(16, 1), nn.Sigmoid()

)
def forward(self, x): return self.model(x)

mlp_model = MLP().to(device)
mlp_model.load_state_dict(torch.load("mlp_baseline_model.pth",

map_location=device))
mlp_model.eval()
scaler = joblib.load("mlp_baseline_scaler.pkl")

=== Inference loop ===
object_memory = deque(maxlen=20)
results = []

for image_id in sorted(filtered_img_map.keys()):
image = cv2.imread(filtered_img_map[image_id]["path"])
current_objects = []

41

Dataset and Methodology

for ann in filtered_img_map[image_id]["annotations"]:
bbox = validate_bbox(ann["bbox"], image.shape)
crop = image[bbox[1]:bbox[3], bbox[0]:bbox[2]]
cropped_img = Image.fromarray(cv2.cvtColor(crop, cv2.COLOR_BGR2RGB))
embedding = extract_features(cropped_img)

category_id = ann["category_id"]
true_label = 1 if ann["attributes"]["new"] == "yes" else 0
predicted_label = 1 # Assume nuovo finche non si trova match
found = False

for memory in object_memory:
for mem_obj in memory:

if mem_obj["category"] != category_id: continue

sim = 1 - cosine(mem_obj["embedding"], embedding)
iou = compute_iou(mem_obj["bbox"], bbox)
cx1 = (bbox[0] + bbox[2]) / 2
cy1 = (bbox[1] + bbox[3]) / 2
cx2 = (mem_obj["bbox"][0] + mem_obj["bbox"][2]) / 2
cy2 = (mem_obj["bbox"][1] + mem_obj["bbox"][3]) / 2
centroid_dist = ((cx1 - cx2)**2 + (cy1 - cy2)**2)**0.5
area1 = (bbox[2] - bbox[0]) * (bbox[3] - bbox[1])
area2 = (mem_obj["bbox"][2] - mem_obj["bbox"][0]) *

(mem_obj["bbox"][3] - mem_obj["bbox"][1])
area_ratio = area1 / area2 if area2 != 0 else 0

features = [[sim, iou, centroid_dist, area_ratio]]
features_tensor = torch.tensor(scaler.transform(features),

dtype=torch.float32).to(device)
with torch.no_grad():

prob = mlp_model(features_tensor).item()

if prob <= 0.5:
predicted_label = 0
found = True
break

if found: break

current_objects.append({"embedding": embedding, "bbox": bbox,
"category": category_id})

results.append({
"image_id": image_id,
"object_id": ann["id"],
"category_id": category_id,
"true_new": true_label,
"predicted_new": predicted_label

})

object_memory.append(current_objects)

=== Valutazione finale ===
df = pd.DataFrame(results)
print("Accuracy:", accuracy_score(df["true_new"], df["predicted_new"]))
print("F1-Score:", f1_score(df["true_new"], df["predicted_new"]))

42

Dataset and Methodology

3.5.2 Decision making through learned thresholds

One of the most innovative elements introduced in Architecture 1 is the shift from a fixed-
threshold decision system to one based on supervised statistical learning. In traditional computer
vision contexts, it is common to use empirical thresholds to determine whether two objects
represent the same instance. For example, an object might be considered “already seen” if the
cosine similarity between its visual features and those of an object in memory exceeds 0.7, and
their bounding boxes have an Intersection over Union (IoU) greater than 0.5. While these values
are often derived from experimental observation or engineering intuition, they represent rigid
compromises that are not necessarily optimal and are difficult to adapt to unforeseen conditions.

By using a Multilayer Perceptron (MLP), this binary and rigid logic can be replaced with a
learned, continuous, and flexible function. During the training phase, the neural network learns a
complex mapping between the four input features (cosine similarity, IoU, centroid distance, area
ratio) and a class probability (new vs. already seen), optimizing a loss function (binary cross
entropy) on the labeled data. In this scenario, the concept of a "threshold" is reinterpreted: it is
no longer a single, static value, but the result of a nonlinear combination of multiple indicators,
each weighted according to its learned importance.

Operationally, this means that the final decision no longer depends on the simultaneous
satisfaction of isolated conditions, but rather on the continuous output of the model. This
output—a probability between 0 and 1—expresses the system’s confidence that the object is
“new.” The decision threshold applied to this output (typically 0.5) thus becomes a secondary
parameter, easily adaptable to the application context, while the bulk of the decision-making
complexity is absorbed by the model during the learning process.

This approach offers several advantages. First, it allows the modeling of complex interactions
between features. For example, an object with a medium cosine similarity but a very small
centroid distance might still be considered “already seen”; conversely, two objects with similar
bounding boxes but very different visual embeddings should be treated as distinct. Such rela-
tionships, which could not be encoded using simple fixed thresholds, emerge naturally from the
model training, which learns to discriminate based on the full feature configuration.

A second crucial aspect is the ability to calibrate the operational threshold on the model’s
output value. While 0.5 represents a neutral decision point (equally distant between the two
classes), there is no restriction on shifting this threshold to suit specific needs. In contexts where
it is a priority to avoid false positives (i.e., wrongly classifying a new object as already seen), the
threshold can be raised to 0.6 or 0.7, increasing decision strictness. Conversely, in scenarios where
avoiding false negatives (i.e., overlooking already seen objects) is more critical, the threshold can
be lowered to 0.3 or 0.4. This type of control allows the system’s behavior to be tailored to
application-specific rather than purely statistical criteria.

Furthermore, the learned-threshold approach is more robust to variations in the data. Fixed
thresholds are highly sensitive to changes in the data domain (e.g., new lighting conditions,
changes in framing, new object categories), and require non-trivial manual retuning. The MLP
model, if trained on a sufficiently large and diverse dataset, is instead capable of generalizing to
such conditions while maintaining stable performance. In other words, the system’s intelligence
no longer resides in the engineer manually tuning the thresholds, but in the model’s ability to
learn regularities from observed data.

Another interesting characteristic of this approach is that the probabilistic output of the
model can be analyzed beyond the mere decision-making process. It provides a continuous
measure of confidence, which can be used to trigger fallback mechanisms, request confirmation,
or enable advanced logging. For example, in the presence of a prediction with an output close to
0.5, the system may flag the decision as “uncertain” and retain it for post-processing review. This
behavior is particularly relevant in high-criticality environments, such as industrial applications
or quality control scenarios.

The differentiable nature of the model also allows for its extension or integration into more
complex architectures. For instance, the MLP classifier could be replaced with a deeper net-
work, integrated into an end-to-end pipeline alongside a segmentation network, or enhanced

43

Dataset and Methodology

through attention mechanisms that dynamically weigh the most relevant features for the deci-
sion. Moreover, the threshold itself can be made dynamic: instead of being a fixed value, it
could be modulated based on context (e.g., object type, elapsed time, frequency of similar object
occurrences), or even learned by a meta-model.

From a theoretical standpoint, the transition from fixed thresholds to a learned classifier
aligns with the principles of modern machine learning. While rule-based approaches belong to
the tradition of explicit programming, the use of data-driven statistical models is rooted in the
belief that the optimal behavior of a complex system cannot be predetermined, but must emerge
through observation. The architecture described here fully embodies this principle, demonstrat-
ing how even in seemingly simple problems—such as the visual recurrence of objects—significant
advantages can be gained by adopting a paradigm shift.

In practical terms, the learned threshold also introduces an element of transparency into the
system. Although the model is not as interpretable as an explicit rule, post-hoc analyses can
be performed on the classifier’s decisions by examining the feature configurations that lead to
a given prediction. Furthermore, the distribution of probabilities output by the model can be
visualized over a dataset to assess the separability of the two classes and to identify ambiguous
or out-of-distribution cases.

Lastly, it is worth noting that the choice of the MLP classifier is neither arbitrary nor exclu-
sive. It is a coherent choice given the complexity of the problem and the nature of the features,
but other alternatives would also be possible, such as support vector machines, decision tree
ensembles (e.g., random forest, gradient boosting), or even Bayesian models. However, the MLP
stands out for its ability to model non-linear relationships, its computational efficiency, and its
simplicity of implementation and training, making it a balanced choice for this baseline.

The replacement of a fixed threshold with a learned decision mechanism concretely improves
system performance and marks a conceptual shift in the design of visual tracking pipelines. It
allows the system to adapt to the actual characteristics of the data, to offer more flexible and
reliable decisions, and to provide a solid foundation for future developments. In this sense,
this architecture is not only an effective solution to the specific problem at hand but also a
paradigmatic example of how artificial intelligence can elegantly and efficiently replace heuristics
with learning.

3.6 Architecture 2: Memory-Augmented Network

The second proposed architecture, named Memory-Augmented Network (MAN), introduces
a significant evolution over the previous one by incorporating a differentiable memory component
based on a Transformer Encoder to explicitly model the recent history of observed objects.
This choice stems from the need to enhance the representation of visual-temporal context and
to overcome the limitations inherent in the use of static metrics and pairwise comparisons.
The traditional paradigm of trackers based on fixed thresholds and local metrics often proves
inadequate in realistic scenarios characterized by temporary occlusions, partial deformations, or
variations in scale and viewpoint.

MAN was thus designed to enable a more robust and flexible approach, capable of maintain-
ing an updated and adaptive representation of tracked objects by leveraging memory to capture
visual dynamics across consecutive frames. This approach becomes particularly relevant in en-
vironments where image frequency is not constant or in the presence of short and heterogeneous
sequences. In such cases, relying solely on rigid pairwise comparisons can lead to systematic
association errors between similar but non-identical objects.

Whereas in the first architecture object comparison was performed through an MLP operating
on isolated features (visual embeddings, IoU, centroid distance, area ratio), MAN introduces a
more sophisticated mechanism of contextual embedding, where each current object (referred to
as the query) is compared against an external memory composed of past objects (key-value)
and dynamically updated through multi-head self-attentive interaction. The key difference is

44

Dataset and Methodology

Figure 3.3: MAN architecture with Transformer

that, instead of analyzing each pair independently, the new approach considers the entire recent
visual context simultaneously, ensuring consistency and stability even in conditions of perceptual
ambiguity.

The core idea is to provide the system with an explicit memory of previously observed objects,
capable not only of storing visual information but also of actively influencing the representation
of the current object. The output of this interaction is a new, “enhanced” (contextualized)
embedding, which incorporates information about what has been recently observed and how
similar it is to the object under examination. This mechanism also allows for better handling of
semantic drift phenomena, in which an object partially changes its appearance while maintaining
the same semantic identity (e.g., a rotated or partially emptied bottle).

From an implementation standpoint, the memory is structured as a FIFO (First-In, First-Out)
queue, in which the embeddings of objects observed in previous frames are stored. Each memory
element includes not only the visual embedding but also geometric information (bounding box
coordinates, area) and semantic category. The data structure used is a categorized dictionary,
allowing efficient retrieval of compatible objects for each new query. At every new frame, the
network performs a comparison between each current object and all compatible objects in mem-
ory (i.e., of the same semantic category). The object’s representation is then refined through
a Transformer Encoder, which uses the memory as context to modify the query. The maxi-
mum number of stored elements per category can be dynamically adjusted to balance historical
coverage and computational efficiency.

The pipeline is structured into the following main steps:

1. Extraction of the annotated images and their corresponding objects using bounding boxes
or segmentations.

2. Extraction of the crops (or masks) from the objects, followed by normalization and trans-
formation using a pre-trained ResNet50.

3. Conversion of the crops into embedding vectors (512-dimensional), normalized using L2
norm.

45

Dataset and Methodology

Listing 3.9: Feature extractor based on ResNet50
import torch.nn as nn
import torch.nn.functional as F
from torchvision import models

class FeatureExtractor(nn.Module):
def __init__(self, output_dim=512):

super().__init__()
base_model =

models.resnet50(weights=models.ResNet50_Weights.DEFAULT)
self.feature_extractor =

nn.Sequential(*list(base_model.children())[:-1])
self.projection = nn.Linear(2048, output_dim)

def forward(self, x):
features = self.feature_extractor(x) # [B, 2048, 1, 1]
features = features.view(features.size(0), -1) # [B, 2048]
projected = self.projection(features) # [B, output_dim]
return F.normalize(projected, p=2, dim=1) # Normalizzazione L2

Listing 3.10: Image transformations for ResNet50
import torchvision.transforms as T

transform = T.Compose([
T.Resize((224, 224)),
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

])

4. Organization of these embeddings into query-memory pairs and computation of the same
four geometric features (previously described in Section 3.5): cosine similarity, IoU, centroid
distance, and area ratio.

5. Application of the Transformer module that combines the query with the memory to gen-
erate a contextualized embedding.

6. Concatenation of the new embedding with the memory object and the geometric features,
followed by final classification via MLP.

At the dataset level, the model is supervised using binary labels directly derived from the
new attribute present in the COCO annotations. If an object is annotated as “new”, its match
with objects in memory is considered negative (label = 0); conversely, if it has already been
observed, a positive match can be automatically inferred, reducing the need for manual anno-
tation. To balance the dataset and avoid class imbalance issues, a stratified sampling strategy
was introduced to ensure the presence of positive and negative pairs in balanced proportions.
Additionally, matches between objects of different categories or with incompatible sizes were
excluded to avoid semantic ambiguity and reduce noise in the data.

Listing 3.11: MAN dataset construction and FIFO memory management
from collections import deque
from tqdm import tqdm

=== PARAMETRI ===
MAX_MEMORY_IMAGES = 20
COSINE_THRESHOLD = 0.7
IOU_THRESHOLD = 0.3

46

Dataset and Methodology

MAX_IMAGES = 3500
FEATURE_DIM = 512

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
feature_extractor = FeatureExtractor(output_dim=FEATURE_DIM).to(device)
memory_queue = deque(maxlen=MAX_MEMORY_IMAGES)
man_dataset = []

=== LOOP SULLE IMMAGINI ===
for img_id in tqdm(image_ids, desc="Creazione␣dataset␣MAN"):

img_data = img_map[img_id]
img_path = img_data["path"]
anns = img_data["annotations"]

Estrazione crop e feature
crops, valid_anns = [], []
for ann in anns:

try:
crop = extract_crop(img_path, ann, transform)
crops.append(crop)
valid_anns.append(ann)

except:
continue

if not crops:
continue

batch = torch.stack(crops).to(device)
with torch.no_grad():

feats = feature_extractor(batch)

Confronta ogni oggetto con la memoria FIFO
for i, ann in enumerate(valid_anns):

f_q = feats[i]
cat_q = ann["category_id"]
is_new_q = ann["attributes"].get("new") == "yes"
bbox_q = ann["bbox"]

if len(memory_queue) == 0:
continue

for mem in memory_queue:
for mem_obj in mem:

if mem_obj["category_id"] != cat_q:
continue

f_m = mem_obj["embedding"].to(device)
bbox_m = mem_obj["bbox"]

Calcolo delle metriche
cos = F.cosine_similarity(f_q, f_m, dim=0).item()
iou = bbox_iou(bbox_q, bbox_m)
cent_dist = centroid_dist(bbox_q, bbox_m)
area_r = area_ratio(bbox_q, bbox_m)

label = 0

47

Dataset and Methodology

if not is_new_q and cos >= COSINE_THRESHOLD and iou >=
IOU_THRESHOLD:
label = 1

Aggiunta al dataset
man_dataset.append({

"query": f_q.cpu(),
"memory": f_m.cpu(),
"cosine_sim": cos,
"iou": iou,
"centroid_dist": cent_dist,
"area_ratio": area_r,
"label": label

})

Aggiorna la memoria FIFO
current_objs = [{

"embedding": feats[i].detach().cpu(),
"category_id": ann["category_id"],
"bbox": ann["bbox"]

} for i, ann in enumerate(valid_anns)]
memory_queue.append(current_objs)

torch.save(man_dataset, "man_train_dataset.pt")

This architecture offers several key advantages over the previous one:

• Dynamic contextualization: the query is modified based on the available memory, mak-
ing the comparison context-dependent and improving discrimination in ambiguous cases.

• Flexible decision-making: the system learns to combine embeddings and geometric
features without relying on rigid thresholds, adapting fluidly to different scenarios.

• Extensibility: the Transformer component can be easily scaled with additional layers or
attention heads, or replaced with alternative memory mechanisms (e.g., attention pooling,
recurrent mechanisms).

The final model therefore includes two main components:

• A Memory Transformer, which enhances the representation of the current object based
on the context provided by the FIFO memory.

• A Three-layer MLP, which receives as input the contextualized embedding, the memory
object’s embedding, and the four geometric features, and outputs a probability indicating
whether the two objects represent the same instance.

Training is performed on a dataset of (query, memory) pairs dynamically constructed from
annotated sequences.

Listing 3.12: ManMLPDataset class for loading query-memory pairs
class ManMLPDataset(Dataset):

def __init__(self, path):
self.data = torch.load(path) # Carica i dati da file .pt

def __len__(self):
return len(self.data) # Numero di esempi

48

Dataset and Methodology

def __getitem__(self, idx):
sample = self.data[idx]
q_feat = sample["query"] # Feature embedding della query
m_feat = sample["memory"] # Feature dell’oggetto in memoria
extras = torch.tensor([

sample["cosine_sim"],
sample["iou"],
sample["centroid_dist"],
sample["area_ratio"]

], dtype=torch.float32) # Feature geometriche
label = torch.tensor(sample["label"], dtype=torch.float32) #

Etichetta binaria
return q_feat, m_feat, extras, label

Listing 3.13: Training loop for MAN+MLP
=== Parametri ===
BATCH_SIZE = 64
EPOCHS = 10
LR = 1e-4
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")

=== Dataset & DataLoader ===
train_dataset = ManMLPDataset("man_train_dataset.pt")
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)

=== Inizializzazione modello, loss e ottimizzatore ===

Il modello ManWithMLP verra’ mostrato nel dettaglio piu’ avanti
model = ManWithMLP(feature_dim=512).to(DEVICE)
criterion = nn.BCELoss()
optimizer = optim.Adam(model.parameters(), lr=LR)

=== Ciclo di training ===
model.train()
for epoch in range(EPOCHS):

total_loss = 0.0
for q_feat, m_feat, extras, label in train_loader:

q_feat, m_feat, extras, label = q_feat.to(DEVICE), m_feat.to(DEVICE),
extras.to(DEVICE), label.to(DEVICE)

optimizer.zero_grad()
output = model(q_feat, m_feat, extras)
loss = criterion(output, label)
loss.backward()
optimizer.step()
total_loss += loss.item()

avg_loss = total_loss / len(train_loader)
print(f"[Epoch␣{epoch+1}]␣Loss:␣{avg_loss:.4f}")

torch.save(model.state_dict(), "man_mlp_model.pth")

The model’s final predictions, expressed in probabilistic form, enable fine-grained control
of the decision-making process, with thresholds adjustable based on the operational context.
The entire architecture is designed for real-time environments, thanks to the modularity of the
Transformer and the computational simplicity of the classifier. Performance can be further
improved through temporal data augmentation techniques or by adopting hard negative mining

49

Dataset and Methodology

strategies, aimed at selecting challenging pairs to enhance the classifier’s discriminative power.

The core innovation of this solution therefore lies in the model’s ability to learn not only “how
much” an object resembles a previously seen one, but also “in what context” such similarity occurs,
delegating to the Transformer the responsibility of dynamically adapting internal representations.
This concept will be analyzed in detail in the next subsection, dedicated to the use of the
Transformer as an adaptive memory.

Listing 3.14: Final tracking with MAN+MLP and evaluation
=== Inizializzazione ===
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
feature_extractor = FeatureExtractor().to(device)
model = ManWithMLP().to(device)
model.load_state_dict(torch.load("man_mlp_model.pth", map_location=device))
model.eval()
feature_extractor.eval()
memory_queue = deque(maxlen=20)

=== Funzioni ===
def extract_crop(img_path, ann, transform):

img = Image.open(img_path).convert("RGB")
x, y, w, h = map(int, ann[’bbox’])
return transform(img.crop((x, y, x + w, y + h)))

def bbox_area(b): return b[2] * b[3]
def bbox_iou(boxA, boxB): ...
def centroid_distance(b1, b2): ...
def area_ratio(b1, b2): ...

=== Tracking ===
all_preds, all_labels, all_max_sim = [], [], []
for img_id in sorted(img_map.keys()):

...
for i, ann in enumerate(valid_anns):

...
for mem in memory_queue:

...
with torch.no_grad():

pred = model(query_feat, mem_feat, extras).item()
scores.append(pred)

is_new = True
max_score = max(scores) if scores else 0.0
if scores and max_score >= 0.5:

is_new = False
...
all_preds.append(1 if is_new else 0)
all_labels.append(1 if ann["attributes"].get("new") == "yes" else 0)
all_max_sim.append(max_score)

...
=== Metriche finali ===
from sklearn.metrics import accuracy_score, precision_score, recall_score,

f1_score, roc_curve, auc

accuracy = accuracy_score(all_labels, all_preds)
precision = precision_score(all_labels, all_preds)
recall = recall_score(all_labels, all_preds)

50

Dataset and Methodology

f1 = f1_score(all_labels, all_preds)

fpr, tpr, thresholds = roc_curve(all_labels, all_max_sim, pos_label=0)
roc_auc = auc(fpr, tpr)

3.6.1 Using the Transformer as memory

One of the core components of the MAN architecture is the use of a Transformer Encoder as
a differentiable memory mechanism. This choice is inspired by the effectiveness demonstrated
by Transformers in modeling complex relationships among sets of interdependent elements—a
capability initially developed in the field of Natural Language Processing (NLP), but which
has found widespread application in other domains as well, such as computer vision and, more
specifically, object tracking in video sequences. The Transformer can learn latent structures and
dynamically weigh relationships between elements, making it an ideal choice for refining visual
representations over time.

In the context of the Memory-Augmented Network, the Transformer is used to process the
query—i.e., the embedding of the currently observed object—by leveraging as context a FIFO
memory containing the embeddings of objects previously seen in earlier frames. This process fun-
damentally differs from rigid point-to-point comparisons: here, the representation of the current
object is enhanced through multi-head attention, allowing the model to distribute importance
across multiple stored objects, selecting and integrating useful information differently for each
attention head.

The Transformer module is implemented using PyTorch’s nn.TransformerEncoder. It is con-
figured with two sequential layers and four independent attention heads (multi-head attention),
maintaining an input dimensionality of 512, consistent with the output of the ResNet50 used
to generate the visual embeddings. The entire module operates in batch-first mode, facilitating
parallel sequence processing and ensuring compatibility with batched data flows during train-
ing and inference. Despite being relatively compact, this configuration is sufficient to capture
complex interactions within the visual-temporal domain.

Listing 3.15: MemoryTransformer module to enhance the query with FIFO memory
class MemoryTransformer(nn.Module):

def __init__(self, feature_dim=512, n_heads=4, n_layers=2):
super().__init__()
encoder_layer = nn.TransformerEncoderLayer(

d_model=feature_dim, nhead=n_heads, dim_feedforward=1024,
batch_first=True

)
self.encoder = nn.TransformerEncoder(encoder_layer,

num_layers=n_layers)

def forward(self, queries, memory_bank):
if memory_bank.size(0) == 0:

return queries # se la memoria e’ vuota, ritorna la query
originale

memory = memory_bank.unsqueeze(0).expand(queries.size(0), -1, -1) #
[B, M, F]

queries = queries.unsqueeze(1) # [B, 1, F]
concat = torch.cat([queries, memory], dim=1) # [B, 1+M, F]
enhanced = self.encoder(concat) # [B, 1+M, F]
return enhanced[:, 0, :] # Estrae la query potenziata

The operational flow of the Transformer within the MAN pipeline unfolds through five main
steps:

51

Dataset and Methodology

1. The query, namely the embedding [F] of the current object, is reshaped into a tensor of
shape [1, 1, F] to match the expected input format of the module.

2. The memory, i.e., the set of embeddings from objects in previous frames (up to a maximum
of M = 20), is aggregated into a tensor of shape [1, M, F], where each row represents a
distinct stored object.

3. The query and memory are concatenated along the temporal dimension (second dimension),
producing a combined input of shape [1, M+1, F]. The first position corresponds to the
query; the remaining positions correspond to memory elements.

4. This input is processed through the Transformer’s self-attention and feed-forward mecha-
nisms. Each embedding can interact with all others, updating itself based on contextual
information. The query thus receives an injection of memory.

5. After processing, the first position of the resulting tensor is extracted, which corresponds to
the enhanced query: a contextualized vector enriched with relations to the FIFO memory.

The result is a new embedding that reflects not only the intrinsic features of the observed
object but also the visual-historical context in which it is situated. This is particularly useful
in ambiguous situations—for example, when visually similar objects appear at different times or
exhibit slight variations in pose, lighting, or occlusion. The Transformer is capable of adapting
the contribution of each memory element based on global coherence, applying soft attention to
automatically select the most relevant information.

An additional advantage of this strategy lies in its end-to-end differentiability. Every
component—from memory construction to the generation of the final embedding—is included
in the computational graph and can be optimized via backpropagation. This allows the system
to automatically learn the optimal combination of historical patterns and visual representations,
without relying on hand-coded heuristics or static similarity thresholds.

A notable implementation detail is the absence of traditional positional encodings, which
are common in standard Transformers. In our case, memory objects are not organized in a
structured sequence, as in natural language, but rather form an unordered set. This reflects the
nature of the problem: the absolute temporal position is not relevant—only the relative quality
and informativeness of each memory element.

During experimentation, it was observed that the Transformer behaves robustly even in the
presence of noise or incomplete memory. When non-informative elements are present, the learned
attention tends to ignore them, focusing on the most relevant ones. This emergent behavior
proved particularly useful in real-world scenarios, where the quality of visual observations can
vary drastically due to occlusions, scale or angle variations, and segmentation artifacts.

Finally, the architecture is designed to be scalable. It is possible to increase the number
of Transformer layers to enhance abstraction capacity, raise the number of attention heads for
finer segmentation of contextual relationships, or integrate masking modules that restrict the
Transformer’s visual field to semantic or spatial subsets of the memory. These extensions have
not yet been included in the base version of the system, but they represent promising directions
for the continuous improvement of the model.

The final output of this module is a rich, context-informed visual representation, which is then
integrated with the embedding of the candidate object in memory and the geometric features
for binary classification. This contextualized embedding forms the foundation upon which the
subsequent similarity evaluation by the MLP is based.

Listing 3.16: ManWithMLP module: Transformer + MLP for binary classification
class ManWithMLP(nn.Module):

def __init__(self, feature_dim=512):
super().__init__()
self.man = MemoryTransformer(feature_dim=feature_dim, n_heads=4,

n_layers=2)

52

Dataset and Methodology

self.mlp = nn.Sequential(
nn.Linear(feature_dim * 2 + 4, 128), # query potenziata + memory

+ 4 feature
nn.ReLU(),
nn.Linear(128, 64),
nn.ReLU(),
nn.Linear(64, 1),
nn.Sigmoid() # output [0,1]

)

def forward(self, q_feat, m_feat, extras):
enhanced_q = self.man(q_feat, m_feat) # Potenzia la query con il

contesto
combined = torch.cat([enhanced_q, m_feat, extras], dim=1)
out = self.mlp(combined).squeeze(1)
return out

3.6.2 Matching with Masks or Bounding boxes

One of the most critical design decisions in visual tracking is the choice of spatial representation
for objects. Specifically, within the Memory-Augmented Network architecture, we explored the
alternative between using simple bounding boxes (bbox) and using segmentation masks for
extracting image crops to be fed into the feature extractor and subsequent stages of the model.

Bounding boxes represent each object using an axis-aligned rectangle defined by coordinates
[x, y, w, h], where x, y denote the top-left corner, and w, h correspond to width and height.
This is a simple representation, compatible with most public datasets (e.g., COCO), and enables
fast and efficient extraction. The resulting crops are then transformed (resized, normalized) and
projected into the feature domain through a pretrained ResNet50, as described in Section 3.5.

Segmentation masks, on the other hand, rely on more precise information: each object
is described by a list of 2D coordinates defining its actual contour. From these polygons, a
binary mask is constructed and used to keep only the relevant pixels visible while replacing the
background with a neutral color (typically gray). The crop is extracted around the extended
bounding box of the mask, optionally applying padding. This strategy reduces background
noise and improves the visual clarity of the input, though at the cost of higher computational
complexity.

Both strategies present advantages and limitations.

Use of Bounding Boxes (bbox):

• Pro: computational simplicity, direct compatibility with many datasets (e.g., COCO), fast
extraction, no need for advanced geometric operations.

• Con: often includes portions of the background, which may mislead the model, especially
in cluttered scenes or with adjacent objects.

Use of Segmentation Masks:

• Pro: more precise extraction, reduced visual noise from the background, better semantic
consistency across examples of the same category.

• Con: increased computational complexity (mask rendering and composition), potential loss
of useful contextual information (e.g., object-environment relations).

During the experimentation phase, both approaches were implemented and compared both
visually and functionally. The two key functions employed are:

53

Dataset and Methodology

• extract_object_crop(): extracts the crop using the bounding box, by directly slicing the
rectangular region from the original image.

Listing 3.17: Crop extraction from bounding box

def extract_object_crop(img_path, annotation):
if not os.path.exists(img_path):

raise FileNotFoundError(f"File␣not␣found:␣{img_path}")
img = Image.open(img_path).convert("RGB")
x, y, w, h = map(int, annotation[’bbox’])
cropped = img.crop((x, y, x + w, y + h))
return cropped

• extract_soft_masked_crop(): builds a mask from the segmentation polygons, applies a
neutral background, and performs a crop centered on the masked region.

Listing 3.18: Extraction with segmentation mask and neutral background
def extract_soft_masked_crop(img_path, annotation, padding=10,

background_color=(128, 128, 128)):
img = Image.open(img_path).convert("RGB")
w_img, h_img = img.size

create binary mask
mask = Image.new("L", (w_img, h_img), 0)
draw = ImageDraw.Draw(mask)
for seg in annotation[’segmentation’]:

if len(seg) >= 6:
draw.polygon(seg, fill=255)

gray background image
background = Image.new("RGB", img.size, background_color)
masked_img = Image.composite(img, background, mask)

crop with padding
bbox = mask.getbbox()
if bbox is None:

return masked_img

x0, y0, x1, y1 = bbox
x0 = max(0, x0 - padding)
y0 = max(0, y0 - padding)
x1 = min(w_img, x1 + padding)
y1 = min(h_img, y1 + padding)

return masked_img.crop((x0, y0, x1, y1))

A visual comparison between the two strategies revealed clear differences, especially in crowded
or occluded conditions: masks help separate adjacent objects, while bounding boxes provide
greater spatial context, which is useful when the object undergoes structural variations or is
only partially visible. However, if the segmentation is inaccurate or affected by artifacts (e.g.,
translucent or deformed objects), masking may compromise input quality.

From a training perspective, the pipeline was designed to allow easy switching between the
two modes, thanks to a parameterized setting defined at script launch. The modular structure
enabled the creation of two parallel versions of the dataset—bbox-based and mask-based—each
organized as a collection of query-memory pairs described by:

54

Dataset and Methodology

• Query feature embedding.

• Memory feature embedding.

• Four geometric features: cosine similarity, IoU, centroid distance, area ratio.

• Binary label (0 for different objects, 1 for same object).

The comparison showed that embeddings generated from masks tend to exhibit lower intra-
class variance, making it easier for the classifier to distinguish similar objects. However, due to
their precision, they are also more sensitive to small variations in pose or perspective. Bounding
boxes, on the other hand, while including background portions, preserve a broader context and
can offer greater robustness against occlusions or scale changes.

From a computational standpoint, the mask-based approach introduces significant overhead.
The operations required to build and apply the mask, blend it with the background image,
and perform the final crop are more demanding than simple rectangular slicing. In real-time
environments or on embedded devices, this aspect may be a critical limitation.

Ultimately, the choice between the two strategies depends heavily on the application context.
The final version of the system adopts the bbox mode as the baseline, due to its greater oper-
ational stability and lower dependence on segmentation quality. However, the entire pipeline is
compatible with both options and retains the flexibility to alternate between them as needed,
allowing empirical evaluation of the performance associated with each configuration without
modifying the system’s core logic.

3.7 Architecture 3: Siamese Network

Figure 3.4: Siamese Network architecture based on pairs and triplets.

The third architecture developed in this work is based on the use of a Siamese Network,
a classical yet highly effective approach in the domain of metric learning, designed to learn a
similarity function between visual objects based on instance relationships rather than explicit
class labels. This paradigm is particularly well-suited for open-set or open-world scenarios, where
the number of object identities is neither fixed nor entirely known, and a system is desired that
can generalize to new instances never seen during the training phase.

55

Dataset and Methodology

Unlike the two previous architectures discussed in this thesis, which directly produced a
binary decision (match / no match) through a supervised classifier, the Siamese network aims to
structure a latent space in which the geometric proximity between representations (embeddings)
consistently reflects the semantic similarity between instances. In this space, similar objects (e.g.,
two different views of the same bottle) should be projected into adjacent regions, while distinct
objects (e.g., two different bottles or a bottle and a glass) should be separated by a significant
distance. This allows the system to assess similarity between objects in a continuous and flexible
way, through the simple measurement of distance rather than rigid classification.

The implemented network is based on a modular and general-purpose architecture, designed
to support both of the most common learning modes in metric learning: training on pairs of
objects (using contrastive loss) and training on triplets in the form of anchor-positive-negative
(using triplet loss). The decision to support both configurations was guided by empirical and
theoretical considerations: the two strategies emphasize complementary aspects of the problem
of learning a discriminative metric. While pairs promote absolute learning of distances, triplets
encourage relative discrimination between similar and dissimilar examples.

At the core of the architecture is a shared feature extractor, based on a pre-trained
ResNet50 model on ImageNet, with the final fully connected layer (fc) removed. This backbone
takes as input a visual patch (crop from bounding box or segmentation mask), resizes it to
224× 224, and extracts a feature vector of dimension 2048. This representation captures salient
visual information (shape, color, texture, etc.) in a compact and reusable space.

Listing 3.19: Siamese network with ResNet50 backbone and L2 normalization
class EmbeddingNet(nn.Module):

def __init__(self):
super().__init__()
resnet = models.resnet50(pretrained=True)
modules = list(resnet.children())[:-1]
self.backbone = nn.Sequential(*modules)
self.embedding = nn.Linear(2048, 512)

def forward(self, x):
x = self.backbone(x)
x = x.view(x.size(0), -1)
x = self.embedding(x)
return F.normalize(x, p=2, dim=1)

Following the backbone, a projection module (projection head) is introduced, implemented
as a Multilayer Perceptron (MLP) composed of two fully connected layers. The first layer re-
duces the dimensionality from 2048 to 512, followed by a ReLU activation and Dropout with
probability p = 0.3; the second layer further compresses the space to 128 dimensions. Formally,
the transformation can be expressed as:

z = W2 · ReLU(W1 · fResNet(x) + b1) + b2 (3.1)

where fResNet(x) ∈ R2048 is the vector produced by the backbone, and z ∈ R128 is the final
embedding. To ensure consistency in the distance metric and improve numerical stability during
optimization, the vector z is normalized using the L2 norm:

ẑ =
z

∥z∥2
(3.2)

Normalization constrains all embeddings to lie on the surface of the unit hypersphere S127 ⊂
R128, effectively transforming Euclidean distance into a metric equivalent to angular (cosine)
distance. This choice is particularly advantageous in the context of metric learning, as it makes

56

Dataset and Methodology

the representation space more homogeneous and prevents collapse or saturation phenomena in
distance values.

From an operational standpoint, the network can be used interchangeably to analyze ei-
ther pairs or triplets. In pair mode, the network processes two images (xi, xj), generating two
embeddings ẑi and ẑj ; in triplet mode, three images are processed (xa, xp, xn), producing the
normalized embeddings ẑa, ẑp, and ẑn. While the loss logic varies between the two configurations,
the architecture remains unchanged.

The entire model has been implemented in PyTorch in a modular and flexible way. The
main components — backbone, projection head, loss, and sampling strategy — are encapsulated
in separate classes, allowing for easy switching between different training configurations. For
example, it is possible to replace ResNet50 with a lighter backbone (such as MobileNetV3) for
embedded applications, or vary the final embedding size for downstream analysis.

One of the key features of the architecture is its ability to produce representations that can
be efficiently compared during inference. Given a set of reference objects {xj} and a query object
xi, it is possible to compute the embeddings ẑi and {ẑj} and determine matching through the
Euclidean distance between normalized vectors:

dij = ∥ẑi − ẑj∥2 (3.3)

This operation, being a simple computation over vectors, is highly efficient and scalable,
making it suitable for real-time applications or deployment on resource-constrained hardware.

Another important aspect of the architecture is its semantic neutrality: the network does not
learn to classify objects into predefined categories, but rather to maintain consistency between
representations of similar objects. This makes it particularly suitable for scenarios where cate-
gories change frequently, or are unknown or undefined a priori, as often occurs in object tracking,
video surveillance, or mobile robotics.

The normalization, the architectural choice of the MLP, and the clear separation between
the visual and embedding components finally allow for visual monitoring and analysis of the
representation space.

The Siamese architecture developed in this work thus stands out for its simultaneous integra-
tion of pair- and triplet-based strategies, the adoption of a fully modular and reusable pipeline,
and the ability to produce embeddings compatible with a wide range of downstream tasks. In
order for this architecture to learn an effective discriminative metric, it is necessary to construct
a supervised dataset based on coherent pairs and triplets. The following section describes in
detail the process of automatically generating these data and the training procedures adopted.

3.7.1 Pair/Triplet generation and training

The construction of an appropriate dataset represents a fundamental step in training a Siamese
network, as the quality and consistency of the pairs or triplets used directly determine the model’s
ability to learn an effective semantic embedding space. In this work, two different strategies were
implemented for the automatic generation of supervised data: the first, based on the creation of
labeled pairs, is designed for use with Contrastive Loss; the second instead produces (anchor,
positive, negative) triplets for training with Triplet Loss. Both approaches were developed in
accordance with the structure and temporal properties of the annotated dataset and contribute
to different phases of training and evaluation.

Pair generation constitutes the first step in the data preparation pipeline. This method
involves pairing two visual objects extracted from different images or from the same image, and
assigning them a binary label based on their semantic and temporal similarity. The goal is to
provide the Siamese model with examples of similar objects (label 1) and dissimilar ones (label
0), so that the contrastive loss function can act on the distance between the embeddings of the
two images.

57

Dataset and Methodology

The dataset used is annotated in COCO format and includes, for each object, a bounding box,
semantic category, and a new attribute, which indicates whether the object has been observed
in previous frames or has appeared for the first time. Exploiting this temporal information, a
pairing criterion was devised that takes into account the consistency of images over time.

The generation of positive pairs is based on comparing objects labeled as “not new” (new
= no) in a current image with objects present in the two preceding images, with the aim of
identifying the same object instance observed at different times. When an object from the
previous frames is found belonging to the same category and with high cosine similarity between
embeddings and an Intersection over Union (IoU) above an empirically fixed threshold (in this
case 0.6), a positive pair is created. The underlying assumption is that a high IoU and class
match within a short time window are strongly indicative of object recurrence.

Negative pairs, on the other hand, are generated in two complementary ways. On one hand,
pairs are formed between objects from the same image or consecutive images that belong to
different categories. On the other hand, pairs in which one of the two objects is marked as “new”
are also considered. In both cases, the pairing provides a negative example that helps push the
model to increase the distance between the respective embeddings.

Once the complete set of pairs was generated, a balancing procedure was applied to avoid an
excessive predominance of negative examples, which are typically more numerous. To this end, a
neg_ratio parameter was introduced to limit the maximum number of negative pairs included,
generally maintaining a 1:1 ratio with the positive ones. The pairs are then divided into two
disjoint sets, one for training and the other for validation, by performing a shuffle followed by a
percentage-based split.

The resulting data is serialized in JSON Lines format. Each line contains the paths of the
two images, the coordinates of the respective bounding boxes, the semantic categories, the IoU
value, and the binary label associated with the pair. This data is then handled through a
SiamesePairsDataset class implemented in PyTorch, which manages loading, cropping of the
regions of interest, and transformation of the images via resizing and normalization. During
training, the Siamese network receives the two crops as input and learns to distinguish similar
from dissimilar pairs by optimizing the Contrastive Loss.

Listing 3.20: Generation of positive and negative pairs for training with contrastive loss
def generate_pairs(img_map, iou_threshold=0.3, neg_ratio=1.0, val_ratio=0.2):

sorted_img_ids = sorted(img_map.keys())
positive_pairs = []
negative_pairs = []

for idx, img_id in enumerate(sorted_img_ids):
img_data = img_map[img_id]
annotations = img_data[’annotations’]
objs_new_no = [obj for obj in annotations if obj[’attributes’][’new’]

== ’no’]

for prev_idx in [idx - 1, idx - 2]:
if prev_idx < 0:

continue
prev_img_id = sorted_img_ids[prev_idx]
prev_annotations = img_map[prev_img_id][’annotations’]
for obj_a in objs_new_no:

cat_a = obj_a[’category_id’]
bbox_a = obj_a[’bbox’]
for obj_b in prev_annotations:

if obj_b[’category_id’] != cat_a:
continue

iou = bbox_iou(bbox_a, obj_b[’bbox’])
if iou >= iou_threshold:

58

Dataset and Methodology

positive_pairs.append({
’img_a_path’: img_data[’path’],
’img_b_path’: img_map[prev_img_id][’path’],
’bbox_a’: bbox_a,
’bbox_b’: obj_b[’bbox’],
’category_id_a’: cat_a,
’category_id_b’: obj_b[’category_id’],
’label’: 1,
’iou’: round(iou, 4)

})

for next_idx in [idx + 1, idx + 2]:
if next_idx >= len(sorted_img_ids):

continue
next_img_id = sorted_img_ids[next_idx]
next_annotations = img_map[next_img_id][’annotations’]
for obj_a in annotations:

cat_a = obj_a[’category_id’]
new_a = obj_a[’attributes’][’new’]
for obj_b in next_annotations:

cat_b = obj_b[’category_id’]
new_b = obj_b[’attributes’][’new’]
cond1 = cat_a != cat_b
cond2 = new_a == ’yes’ and new_b == ’yes’
cond3 = new_a != new_b and new_a == ’no’
if cond1 or cond2 or cond3:

negative_pairs.append({
’img_a_path’: img_data[’path’],
’img_b_path’: img_map[next_img_id][’path’],
’bbox_a’: obj_a[’bbox’],
’bbox_b’: obj_b[’bbox’],
’category_id_a’: cat_a,
’category_id_b’: cat_b,
’label’: 0,
’iou’: round(bbox_iou(obj_a[’bbox’],

obj_b[’bbox’]), 4)
})

num_pos = len(positive_pairs)
num_neg = int(num_pos * neg_ratio)
negative_pairs = random.sample(negative_pairs, min(num_neg,

len(negative_pairs)))

all_pairs = positive_pairs + negative_pairs
random.shuffle(all_pairs)

split_idx = int(len(all_pairs) * (1 - val_ratio))
train_pairs = all_pairs[:split_idx]
val_pairs = all_pairs[split_idx:]

os.makedirs("data_pairs", exist_ok=True)
with open("data_pairs/pairs_train.jsonl", "w") as f:

for p in train_pairs:
f.write(json.dumps(p) + "\n")

with open("data_pairs/pairs_val.jsonl", "w") as f:
for p in val_pairs:

59

Dataset and Methodology

f.write(json.dumps(p) + "\n")

Listing 3.21: Dataset for (positive/negative) pairs with bounding box transformation and crop-
ping

class SiamesePairsDataset(Dataset):
def __init__(self, jsonl_path, transform=None):

self.pairs = [json.loads(line.strip()) for line in open(jsonl_path)]
self.transform = transform if transform else self.default_transform()

def __len__(self):
return len(self.pairs)

def __getitem__(self, idx):
pair = self.pairs[idx]
img_a = self.load_and_crop(pair[’img_a_path’], pair[’bbox_a’])
img_b = self.load_and_crop(pair[’img_b_path’], pair[’bbox_b’])

img_a = self.transform(img_a)
img_b = self.transform(img_b)
label = torch.tensor(pair[’label’], dtype=torch.float32)
return img_a, img_b, label

def load_and_crop(self, img_path, bbox):
img = cv2.imread(img_path)
if img is None:

raise ValueError(f"Errore␣nella␣lettura:␣{img_path}")
x, y, w, h = map(int, bbox)
crop = img[y:y+h, x:x+w]
crop = cv2.cvtColor(crop, cv2.COLOR_BGR2RGB)
return Image.fromarray(crop)

def default_transform(self):
return T.Compose([

T.Resize((224, 224)),
T.ToTensor(),
T.Normalize([0.5]*3, [0.5]*3)

])

In parallel with the generation of pairs, a second module was developed for the automatic
construction of supervised triplets, used in training a Siamese architecture based on the Triplet
Loss. This loss function aims to structure the embedding space so that, for each anchor point, a
positive point belonging to the same class is closer than a negative point belonging to a different
class, with a minimum guaranteed margin.

Here as well, the construction logic leverages the temporal sequence of the images. For
each current image, objects marked with new = no are selected as anchor candidates. For each
of these, the system attempts to identify a positive object among those present in the two
preceding images. The selection criterion for the positive is twofold: the object must belong
to the same category and exhibit semantic-visual similarity suggesting it is the same physical
object, estimated by combining cosine similarity and IoU (as with the pairs, also here 0.6).

If a valid positive is found, the system proceeds with the search for one or more negatives.
These are selected from subsequent images or, alternatively, from the same current image, pro-
vided they belong to different categories or are marked as “new.” Furthermore, to enrich the
training process, multiple negatives per triplet may be included, up to a predefined maximum.

The final result is a heterogeneous collection of triplets, each composed of an anchor, a
positive, and a negative, each represented by an image, a bounding box, and a category. The

60

Dataset and Methodology

entire set is then shuffled and split into training and validation, with the data saved into two
separate files (triples_train.jsonl and triples_val.jsonl).

This strategy can be considered a form of semi-supervised hard triplet mining, as the selec-
tion of examples is guided by heuristic rules and semantic metadata (the new label), without
performing a true search for the most difficult examples. This compromise allows for the auto-
mated construction of an informative triplet dataset, reducing the risk of overfitting or semantic
ambiguity.

As in the previous case, the data is handled by a PyTorch class TripletDataset, which
extracts the crops from the source images and applies the necessary transformations. The model
trained with Triplet Loss receives the three samples as input and optimizes the objective function
by minimizing the distance between anchor and positive, and maximizing it with respect to the
negative beyond a certain threshold.

Listing 3.22: Generation of triplets anchored on existing objects
def generate_triplets1(img_map, iou_threshold=0.6, max_negatives=2,

val_ratio=0.2):
sorted_img_ids = sorted(img_map.keys())
triplets = []

for idx, img_id in enumerate(sorted_img_ids):
img_data = img_map[img_id]
annotations = img_data[’annotations’]
objs_anchor = [obj for obj in annotations if obj[’attributes’][’new’]

== ’no’]

for obj_a in objs_anchor:
cat_a = obj_a[’category_id’]
bbox_a = obj_a[’bbox’]
for prev_idx in [idx - 1, idx - 2]:

if prev_idx < 0:
continue

prev_id = sorted_img_ids[prev_idx]
prev_ann = img_map[prev_id][’annotations’]
same_cat = [obj for obj in prev_ann if obj[’category_id’] ==

cat_a]

best_iou = 0
best_obj = None
for obj_p in same_cat:

iou = bbox_iou(bbox_a, obj_p[’bbox’])
if iou > best_iou and iou >= iou_threshold:

best_iou = iou
best_obj = obj_p

if best_obj:
negatives = []
for next_idx in [idx + 1, idx + 2, idx + 3]:

if next_idx >= len(sorted_img_ids):
continue

next_id = sorted_img_ids[next_idx]
next_ann = img_map[next_id][’annotations’]
for obj_n in next_ann:

if obj_n[’category_id’] != cat_a or
obj_n[’attributes’][’new’] == ’yes’:
negatives.append((next_id, obj_n[’bbox’]))

61

Dataset and Methodology

if not negatives:
others = [obj for obj in annotations if

obj[’category_id’] != cat_a]
for obj_n in others:

negatives.append((img_id, obj_n[’bbox’]))

if negatives:
for neg_img_id, neg_bbox in random.sample(negatives,

min(max_negatives, len(negatives))):
triplets.append({

"img_anchor_path": img_data[’path’],
"bbox_anchor": bbox_a,
"img_positive_path": img_map[prev_id][’path’],
"bbox_positive": best_obj[’bbox’],
"img_negative_path":

img_map[neg_img_id][’path’],
"bbox_negative": neg_bbox,
"category_id": cat_a

})
break

random.shuffle(triplets)
split_idx = int(len(triplets) * (1 - val_ratio))
train_triples = triplets[:split_idx]
val_triples = triplets[split_idx:]

os.makedirs("data_triplets", exist_ok=True)
with open("data_triplets/triples_train.jsonl", "w") as f:

for t in train_triples:
f.write(json.dumps(t) + "\n")

with open("data_triplets/triples_val.jsonl", "w") as f:
for t in val_triples:

f.write(json.dumps(t) + "\n")

Listing 3.23: PyTorch dataset for loading training triplets
class TripletDataset(Dataset):

def __init__(self, triplet_file, transform):
self.samples = [json.loads(line) for line in open(triplet_file)]
self.transform = transform

def load_crop(self, path, bbox):
img = cv2.imread(path)
if img is None:

raise ValueError(f"Errore␣nel␣leggere␣l’immagine:␣{path}")
x, y, w, h = map(int, bbox)
crop = img[y:y+h, x:x+w]
crop = cv2.cvtColor(crop, cv2.COLOR_BGR2RGB)
return self.transform(Image.fromarray(crop))

def __getitem__(self, idx):
sample = self.samples[idx]
anc = self.load_crop(sample[’img_anchor_path’], sample[’bbox_anchor’])
pos = self.load_crop(sample[’img_positive_path’],

sample[’bbox_positive’])
neg = self.load_crop(sample[’img_negative_path’],

sample[’bbox_negative’])

62

Dataset and Methodology

return anc, pos, neg

def __len__(self):
return len(self.samples)

The combined adoption of pairs and triplets allows leveraging the strengths of both ap-
proaches. The generation of pairs proves particularly useful for stable and well-balanced pre-
training, especially during the early phases of training or in scenarios with limited annotations.
The construction of triplets, on the other hand, offers greater generalization potential in defining
a structured semantic space, particularly when the model has already been initialized and its
discriminative capacity needs to be refined.

Moreover, the generation infrastructure described here integrates seamlessly into the context
of a visual tracking system, where it is essential to have compact and comparable representations
of objects over time. The semantic richness of the embeddings learned through these methods
translates directly into improved performance in distinguishing between recurring and novel
objects, as will be discussed in the following chapters.

3.7.2 Loss functions, training strategies, and tracking phase

The training of the Siamese network is carried out in two operational modes, each associated
with a different loss function: Contrastive Loss for training on pairs, and Triplet Loss for training
on triplets. Both strategies aim to structure an embedding space in which the distance between
vectors coherently reflects the semantic and visual similarity between objects. Unlike traditional
classification approaches, where each input is assigned a discrete label, metric learning seeks to
define a distance metric that can be generalized even to previously unseen objects.

Contrastive Loss is a fundamental objective function in the context of Siamese networks, as it
enables learning an embedding space where the distance between two representations produced
by the network indicates the degree of semantic similarity between the corresponding objects.
This function was used in the training mode based on image pairs, each labeled as either “similar”
(y = 1) or “dissimilar” (y = 0).

The mathematical formulation adopted is:

L = y ·D2 + (1− y) ·max(0,m−D)2

where:

• D = ∥zi − zj∥2 is the Euclidean distance between the two normalized embeddings zi, zj ∈
R128 generated by the shared backbone of the network;

• y ∈ {0, 1} is the binary label associated with the pair: 1 if the two objects belong to the
same identity, 0 otherwise;

• m > 0 is a hyperparameter that defines the minimum desired margin between embeddings
of dissimilar objects.

The behavior of the loss function can be analyzed separately for the two types of pairs:

• For positive pairs (y = 1), the loss simplifies to D2, i.e., the squared distance between
the two embeddings. This term forces the network to compress the embedding space
for representations associated with the same instance or similar objects, minimizing the
distance between them.

• For negative pairs (y = 0), the loss becomes max(0,m −D)2, a penalization term that
activates only if the distance between the two embeddings is less than the margin m. In
other words, it penalizes only the “easy” negatives, i.e., those erroneously mapped too close
in the metric space, and ignores the contribution of already well-separated pairs.

63

Dataset and Methodology

The parameter m plays a critical role in regulating the behavior of the loss: values that are
too small reduce the separation effect between different classes, while overly large margins may
cause the function to diverge, especially in the presence of intra-class variability. In this work,
the value m = 1.0 was empirically selected after a series of preliminary experiments.

Since all embeddings produced by the network are L2-normalized (i.e., ∥z∥2 = 1), they lie on
the surface of the unit sphere S127 ⊂ R128. Consequently, the Euclidean distance between two
normalized embeddings is directly related to the angle between them and can also be expressed
in terms of cosine similarity:

∥zi − zj∥22 = 2(1− cos(θij))

where θij is the angle between the two vectors. This property makes the function particularly
robust from a geometric standpoint and well-suited to capturing latent semantic relationships in
a continuous manner.

Listing 3.24: Contrastive Loss for Siamese network
class ContrastiveLoss(nn.Module):

def __init__(self, margin=1.0):
super().__init__()
self.margin = margin

def forward(self, emb1, emb2, label):
dist = F.pairwise_distance(emb1, emb2)
loss_pos = label * dist.pow(2)
loss_neg = (1 - label) * F.relu(self.margin - dist).pow(2)
return (loss_pos + loss_neg).mean()

Triplet Loss is a more sophisticated loss function, introduced to overcome the limitations of
Contrastive Loss in modeling relative relationships between examples. Instead of considering
isolated pairs, it operates on groups of three examples, called triplets, composed of:

• An anchor xa: the reference example;

• A positive xp: an object similar to the anchor (same identity);

• A negative xn: a different object (different identity).

The loss is defined as:

L = max
(︁
0, ∥za − zp∥22 − ∥za − zn∥22 + α

)︁
where:

• za, zp, zn are the normalized embeddings of anchor, positive, and negative;

• α is the positive margin that enforces a minimum distance between the anchor and the
negative compared to the positive.

The intuition behind Triplet Loss is that the anchor should always be closer to the positive
than to the negative by at least α. When this condition is met, the loss becomes zero (a “satisfied
triplet”); otherwise, if the negative is mistakenly closer to the anchor than the positive (or too
close), the loss becomes proportional to the degree of violation of the inequality.

This type of formulation allows the embedding space to be modeled according to a relative
geometric structure, encouraging the organization of points into compact clusters by identity,
separated by clear margins from different classes. The value of the margin α is a delicate

64

Dataset and Methodology

hyperparameter: a value too small fails to enforce sufficient class separation, while one too
large may prevent convergence, especially in the presence of noisy data or semantic ambiguity.
In this work, α = 0.2 was adopted, an empirically validated compromise.

Moreover, Triplet Loss is particularly sensitive to the quality of triplet selection. Ideally,
one would use so-called hard triplets, i.e., triplets in which the negative is very similar to the
anchor. However, mining such examples is expensive and may induce instability in convergence.
The approach implemented in this work can be considered a form of semi-hard triplet min-
ing, in which triplets are constructed through temporal heuristics (co-occurrence analysis in
frames) and semantic cues (high IoU, “new” status, category), ensuring a good balance between
informativeness and numerical stability.

Listing 3.25: Triplet margin-based loss function
class TripletLoss(nn.Module):

def __init__(self, margin=1.0):
super().__init__()
self.margin = margin

def forward(self, anchor, positive, negative):
d_pos = F.pairwise_distance(anchor, positive, p=2)
d_neg = F.pairwise_distance(anchor, negative, p=2)
loss = F.relu(d_pos - d_neg + self.margin)
return loss.mean()

The combined effect of this loss function is to produce a highly structured embedding space,
where each object instance forms a compact region, clearly separated from those of different
objects, even when these exhibit high visual similarity.

Both training modes, based respectively on pairs and triplets, share an operational pipeline
structured in five main stages, each designed to maximize the efficiency and semantic coherence
of the learning process. The pipeline consists of:

• Dataset loading: The supervised data is organized in JSON Lines format, where each
line describes a pair or triplet through image paths, bounding box coordinates, and as-
sociated metadata (categories, labels, IoU, etc.). These files are loaded via two custom
classes: SiamesePairsDataset for pairs, and TripletDataset for triplets. Both classes
extend torch.utils.data.Dataset and implement dynamic cropping logic: starting from
the bounding box coordinates, the corresponding image patch is extracted and then trans-
formed to be suitable for the network. These classes also support advanced operations such
as automatic label balancing, conversion to PyTorch tensors, data-driven transformations,
and multi-thread DataLoader integration to accelerate training.

• Preprocessing and transformations: Each image undergoes a series of standardized
transformations, including:

– Resizing to a fixed resolution of 224× 224, compatible with ResNet;

– Conversion to tensor and channel permutation (from HWC to CHW);

– Channel-wise normalization using ImageNet statistics (mean: [0.485, 0.456, 0.406],
std: [0.229, 0.224, 0.225]).

These transformations ensure compatibility with the pre-trained backbone and promote
more stable convergence. Images are then processed in mini-batches of 32, maintaining
consistency in size and format.

• Embedding generation: The normalized crops are fed into the Siamese network, which
consists of a ResNet50 backbone pre-trained on ImageNet, with the final classifier removed.
The resulting vector (dimension 2048) is passed to a projection MLP module, consisting
of:

65

Dataset and Methodology

– A fully connected layer from 2048 to 512 neurons;
– ReLU activation and Dropout with p = 0.3;
– A second fully connected layer from 512 to 128 neurons;
– Final L2 normalization to project embeddings onto the unit sphere.

The final output z ∈ R128 is thus a dense, normalized visual representation of the object,
ready to be compared using Euclidean distance or cosine similarity.

• Model optimization: The optimization process is handled using the Adam algorithm,
with an initial learning rate of 1 · 10−4. The loss function depends on the training mode:

– ContrastiveLoss for pairs, which encourages similar embeddings to move closer and
dissimilar ones to move apart beyond the margin m;

– TripletLoss for triplets, enforcing a geometric relationship between anchor, positive,
and negative, controlled by margin α.

Training is performed over 10 full epochs, with a validation phase at the end of each
epoch. Validation is based on the average loss over the validation set. The model with
the best validation loss is automatically saved via checkpointing. While early stopping was
not explicitly used, conditional checkpointing prevented overfitting and ensured robustness
against noise or local metric fluctuations.

• Monitoring: All key metrics (training and validation loss) were saved in CSV format
at the end of each epoch. These values were then visualized using Matplotlib to detect
anomalies, divergence, or saturation effects. These plots made it possible to empirically
verify the stability of both losses and the behavior of different training setups.

At the end of training, the Siamese network was used as a general-purpose encoder to trans-
form each annotated object (image + bounding box) into a vector representation z ∈ R128. These
embeddings form the foundation for all subsequent stages: matching, tracking, and novelty clas-
sification.

Listing 3.26: Training of the Siamese network using pairs and contrastive loss
model = EmbeddingNet().to(DEVICE)
criterion = ContrastiveLoss(margin=1.0)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)

train_losses = []
val_losses = []
best_val_loss = float(’inf’)

for epoch in range(EPOCHS):
model.train()
total_loss = 0
for img1, img2, label in train_loader:

img1, img2, label = img1.to(DEVICE), img2.to(DEVICE), label.to(DEVICE)
optimizer.zero_grad()
emb1 = model(img1)
emb2 = model(img2)
loss = criterion(emb1, emb2, label)
loss.backward()
optimizer.step()
total_loss += loss.item()

avg_train_loss = total_loss / len(train_loader)
train_losses.append(avg_train_loss)

66

Dataset and Methodology

model.eval()
total_val_loss = 0
with torch.no_grad():

for img1, img2, label in val_loader:
img1, img2, label = img1.to(DEVICE), img2.to(DEVICE),

label.to(DEVICE)
emb1 = model(img1)
emb2 = model(img2)
loss = criterion(emb1, emb2, label)
total_val_loss += loss.item()

avg_val_loss = total_val_loss / len(val_loader)
val_losses.append(avg_val_loss)

if avg_val_loss < best_val_loss:
best_val_loss = avg_val_loss
torch.save(model.state_dict(), "best_siamese_pairs_model.pth")

Listing 3.27: Training of the Siamese network with best model saving
model = EmbeddingNet().to(DEVICE)
criterion = TripletLoss(margin=1.0)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)

best_val_loss = float("inf")
train_losses, val_losses = [], []

for epoch in range(EPOCHS):
model.train()
total_loss = 0
for anc, pos, neg in train_loader:

anc, pos, neg = anc.to(DEVICE), pos.to(DEVICE), neg.to(DEVICE)
optimizer.zero_grad()
loss = criterion(model(anc), model(pos), model(neg))
loss.backward()
optimizer.step()
total_loss += loss.item()

avg_train_loss = total_loss / len(train_loader)
train_losses.append(avg_train_loss)

model.eval()
val_loss = 0
with torch.no_grad():

for anc, pos, neg in val_loader:
anc, pos, neg = anc.to(DEVICE), pos.to(DEVICE), neg.to(DEVICE)
loss = criterion(model(anc), model(pos), model(neg))
val_loss += loss.item()

avg_val_loss = val_loss / len(val_loader)
val_losses.append(avg_val_loss)

if avg_val_loss < best_val_loss:
best_val_loss = avg_val_loss
torch.save(model.state_dict(), "best_siamese_model.pth")

Once the Siamese backbone has been trained and a stable, discriminative semantic embedding

67

Dataset and Methodology

space has been obtained, a dedicated module was implemented for binary recurrence classifica-
tion. This module aims to predict whether an object observed in the current frame is a new
instance (never seen before) or a recurrence of an object previously detected in past frames.

For each object ot in a current frame t, represented by its bounding box bt and corresponding
embedding zt ∈ R128, the best matching is searched among all embeddings stored in previous
frames, within a fixed temporal window [t−30, t−1]. This strategy implements a limited temporal
memory, useful for reducing computational complexity and maintaining temporal locality in the
tracking process.

Among all possible matches (zk, bk) from previous frames, the one with the highest cosine
similarity to zt is selected:

cosine_sim(zt, zk) =
zt · zk

∥zt∥ · ∥zk∥
, with zt, zk ∈ S127

Since all embeddings are L2-normalized, cosine similarity is equivalent to the dot product, making
the computation highly efficient.

Once the best match is identified, four descriptive features are computed and combined into
a feature vector (f1, f2, f3, f4) ∈ R4:

1. f1: Cosine similarity between zt and zk, capturing semantic coherence;

2. f2: Intersection over Union (IoU) between bt and bk, used to assess spatial consistency;

3. f3: Euclidean distance between the centroids of the two bounding boxes, indicative
of geometric proximity in the frame;

4. f4: Area ratio between the two boxes, penalizing matches with significantly different
scales.

These features are designed to jointly capture three types of coherence: semantic (via em-
beddings), spatial (via IoU), and geometric (via centroid and area). The feature vector is then
normalized using a StandardScaler fitted on the training data, in order to center and rescale
feature distributions and stabilize the classifier’s training.

Listing 3.28: Extraction of similarity features between bounding boxes for MLP training
for img_id in sorted(img_map.keys()):

img_data = img_map[img_id]
img_path = img_data["path"]
annotations = img_data["annotations"]
current_objects = []

for obj in annotations:
bbox = obj["bbox"]
cat_id = obj["category_id"]
true_new = 1 if obj["attributes"]["new"] == "yes" else 0
emb = crop_and_embed(img_path, bbox, model, transform, DEVICE)
emb = crop_and_embed(img_path, bbox, model_pairs, transform,

DEVICE) # se si usa la rete addestrata con coppie
if emb is None:

continue

best = {"cosine_sim": -1.0, "iou": 0.0, "centroid_dist": 1e9,
"area_ratio": 1.0}

for past in memory:
for past_obj in past["objects"]:

if past_obj["category_id"] != cat_id:

68

Dataset and Methodology

continue
cos_sim = F.cosine_similarity(emb, past_obj["embedding"],

dim=0).item()
iou = bbox_iou(bbox, past_obj["bbox"])
dist = np.linalg.norm(np.array(bbox_centroid(bbox)) -

np.array(bbox_centroid(past_obj["bbox"])))
ar = bbox_area(bbox) / (bbox_area(past_obj["bbox"]) + 1e-6)
if cos_sim > best["cosine_sim"]:

best.update({"cosine_sim": cos_sim, "iou": iou,
"centroid_dist": dist, "area_ratio": ar})

features.append({
"cosine_sim": best["cosine_sim"],
"iou": best["iou"],
"centroid_dist": best["centroid_dist"],
"area_ratio": best["area_ratio"],
"true_new": true_new

})

if true_new == 1:
current_objects.append({

"embedding": emb.detach(),
"category_id": cat_id,
"bbox": bbox

})

memory.append({"image_id": img_id, "objects": current_objects})
df_feat = pd.DataFrame(features)
df_feat.to_csv("mlp_features_dataset.csv", index=False)

Listing 3.29: PyTorch dataset for the MLP with feature normalization
class FeatureDataset(Dataset):

def __init__(self, csv_path, scaler=None):
df = pd.read_csv(csv_path)
X = df[["cosine_sim", "iou", "centroid_dist", "area_ratio"]].values
y = df["true_new"].values.astype(np.float32)

if scaler is None:
scaler = StandardScaler()
X = scaler.fit_transform(X)
self.scaler = scaler

else:
X = scaler.transform(X)
self.scaler = scaler

self.X = torch.tensor(X, dtype=torch.float32)
self.y = torch.tensor(y, dtype=torch.float32)

def __len__(self):
return len(self.y)

def __getitem__(self, idx):
return self.X[idx], self.y[idx]

Listing 3.30: MLP for binary classification: new vs known object
class MLPClassifier(nn.Module):

69

Dataset and Methodology

def __init__(self, input_dim):
super().__init__()
self.fc1 = nn.Linear(input_dim, 64)
self.fc2 = nn.Linear(64, 32)
self.out = nn.Linear(32, 1)

def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return torch.sigmoid(self.out(x)).squeeze()

The binary classification model implemented to predict whether an object is “new” is a Mul-
tilayer Perceptron (MLP) with a compact yet effective architecture. The network takes as
input the normalized feature vector (f1, f2, f3, f4) and outputs a probability p ∈ [0,1] representing
the likelihood that the object belongs to the “new” class.

The MLP architecture is defined as follows:

• Input layer: 4 neurons (one for each feature);

• First hidden layer: 64 neurons, ReLU activation;

• Second hidden layer: 32 neurons, ReLU activation;

• Output layer: 1 neuron, sigmoid activation.

The network is trained by minimizing the Binary Cross Entropy Loss (BCELoss), which
penalizes the discrepancy between the predicted probability p and the binary ground-truth label
y ∈ {0,1}. Optimization is performed using the Adam optimizer with a learning rate of 1 · 10−4

and a batch size of 64. Training is conducted over 20 epochs. The model achieving the highest
accuracy on the stratified validation set is saved as the best checkpoint.

Listing 3.31: Training of the MLP with Binary Cross-Entropy Loss
model = MLPClassifier(input_dim=4).to(DEVICE)
criterion = nn.BCELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)

train_losses, val_losses = [], []

for epoch in range(EPOCHS):
model.train()
total_loss = 0
for x_batch, y_batch in train_loader:

x_batch, y_batch = x_batch.to(DEVICE), y_batch.to(DEVICE)
optimizer.zero_grad()
y_pred = model(x_batch)
loss = criterion(y_pred, y_batch)
loss.backward()
optimizer.step()
total_loss += loss.item()

avg_train_loss = total_loss / len(train_loader)
train_losses.append(avg_train_loss)

model.eval()
total_val_loss = 0
with torch.no_grad():

for x_val, y_val in val_loader:

70

Dataset and Methodology

x_val, y_val = x_val.to(DEVICE), y_val.to(DEVICE)
y_pred = model(x_val)
val_loss = criterion(y_pred, y_val)
total_val_loss += val_loss.item()

avg_val_loss = total_val_loss / len(val_loader)
val_losses.append(avg_val_loss)

torch.save(model.state_dict(), "mlp_classifier.pth")
torch.save(model.state_dict(), "mlp_classifier_pairs.pth")

Listing 3.32: Evaluation of the MLP and saving of the ROC curve
val_loader = DataLoader(val_ds, batch_size=128)
model.eval()
y_true, y_pred, y_scores = [], [], []

with torch.no_grad():
for x_batch, y_batch in val_loader:

x_batch = x_batch.to(DEVICE)
y_score = model(x_batch).cpu()
y_pred_batch = (y_score >= 0.5).float()
y_scores.extend(y_score.numpy())
y_pred.extend(y_pred_batch.numpy())
y_true.extend(y_batch.numpy())

acc = accuracy_score(y_true, y_pred)
prec = precision_score(y_true, y_pred)
rec = recall_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred)
auc = roc_auc_score(y_true, y_scores)

The dataset used for training was obtained through a semi-supervised procedure based on
the embeddings produced by the Siamese network and the original “new” labels provided in
the COCO dataset. Specifically, for each annotated object, a positive or negative sample was
generated depending on the presence of real matches in previous frames. To ensure proper
class balance, a 1:1 ratio between “new” and “previously seen” examples was maintained using
undersampling (in cases of negative prevalence) or oversampling (in the opposite case).

The architectural simplicity of the MLP is justified by the small number of input features and
the inherently linear nature of the problem: the combination of semantic, spatial, and geometric
coherence proved sufficient to effectively separate the two classes. Moreover, the modularity of
the classifier allows for replacement with more complex models (e.g., Random Forest, XGBoost)
if required in noisier or less structured scenarios.

The final classifier is subsequently used during the inference and tracking phase to determine,
frame by frame, whether each new observation represents a new instance or a recurrence. A
threshold value of p ≥ 0.5 is used to binarize the prediction. The results are aggregated and
saved for further evaluation.

Once the Siamese network and the MLP classifier have been trained, the entire system is
integrated into a sequential inference pipeline, designed for temporal object tracking and binary
classification of their state (“new” vs “recurring”). The approach is based on comparing each new
observation with the recent visual memory, represented by a dynamic set of embeddings and
associated metadata.

For each new frame Ft processed, the system performs the following operations in sequence:

1. Embedding extraction: For each annotated object in frame Ft, the region of interest
(bounding box) is cropped from the image and undergoes preprocessing (resize to 224×224,

71

Dataset and Methodology

normalization). The resulting patch is then passed through the Siamese network to obtain
the normalized embedding zt ∈ R128.

2. Memory search: The embedding zt is compared against all embeddings zk stored in the
temporary memory M , which contains information on objects observed in the 30 previous
frames Ft−1, Ft−2, ..., Ft−30. Each memory entry is represented as a tuple (zk, bk, IDk, fk),
where bk is the bounding box, IDk is the object identifier, and fk is the frame index of
origin.

3. Feature computation: For each comparison (zt, zk), a feature vector (f1, f2, f3, f4) is
constructed, as previously described:

• f1: cosine similarity between zt and zk;

• f2: IoU between boxes bt and bk;

• f3: Euclidean distance between the centroids of the two boxes;

• f4: area ratio between the two boxes.

4. Best match selection: Among all pairs (zt, zk), the one with the highest cosine similar-
ity f1 is selected. In case of ties, the Euclidean distance between centroids is used as a
secondary criterion.

5. Classification: The feature vector of the selected pair is normalized using the StandardScaler
fitted on the training data and passed as input to the MLP classifier. The model outputs
a probability p ∈ [0,1] indicating the likelihood that the object is “new” (i.e., not present
in memory).

6. Decision: If p ≥ 0.5, the object is labeled as predicted_new = 1; otherwise, it is consid-
ered a recurrence and labeled as predicted_new = 0.

7. Memory update: The temporary memory is updated by inserting a new entry (zt, bt, ID, t)
corresponding to the current object. If the memory has reached its maximum capacity (e.g.,
30 frames), the oldest entries are discarded.

Throughout the entire inference phase, metadata relevant for both quantitative and qualita-
tive analysis of the system are stored. This information is archived in a final CSV file, where
each row corresponds to a single prediction and includes:

• frame: index of the current frame;

• object_id: unique identifier assigned to the object;

• predicted_new: binary output of the classifier (0 = recurring, 1 = new);

• ground_truth_new: ground truth label extracted from the COCO dataset;

• max_similarity: cosine similarity value of the best match;

• IoU: Intersection over Union value with the best match;

• embedding_distance: Euclidean distance between zt and zk;

• MLP_output: probability p produced by the classifier.

This closed-loop architecture enables continuous monitoring of the semantic evolution of vi-
sual entities across the temporal sequence, and dynamic management of object identity. The
adoption of metric learning as a core mechanism ensures robust comparison between representa-
tions, regardless of variations in pose, lighting, or partial occlusions, while the supervised MLP
component provides a discrete decision on novelty.

72

Dataset and Methodology

Listing 3.33: Temporal tracking with sliding window memory and prediction with MLP
for img_id in tqdm(sorted_ids, desc="Tracking␣con␣MLP"):

img_data = img_map[img_id]
img_path = img_data["path"]
annotations = img_data["annotations"]
current_objects = []

for obj in annotations:
bbox = obj["bbox"]
cat_id = obj["category_id"]
true_new = 1 if obj["attributes"]["new"] == "yes" else 0

emb = crop_and_embed(img_path, bbox, s_model, transform, DEVICE)
emb = crop_and_embed(img_path, bbox, s_model_pairs, transform,

DEVICE)
if emb is None: continue

best = {"cosine_sim": -1.0, "iou": 0.0, "centroid_dist": 1e9,
"area_ratio": 1.0}

for past in memory:
for p in past["objects"]:

if p["category_id"] != cat_id: continue
cos_sim = F.cosine_similarity(emb, p["embedding"],

dim=0).item()
iou = bbox_iou(bbox, p["bbox"])
dist = np.linalg.norm(np.array(bbox_centroid(bbox)) -

np.array(bbox_centroid(p["bbox"])))
ar = bbox_area(bbox) / (bbox_area(p["bbox"]) + 1e-6)
if cos_sim > best["cosine_sim"]:

best.update({"cosine_sim": cos_sim, "iou": iou,
"centroid_dist": dist, "area_ratio": ar})

x_feat = pd.DataFrame([best])
x_scaled = torch.tensor(scaler.transform(x_feat),

dtype=torch.float32).to(DEVICE)
pred = mlp_model(x_scaled).item()
pred = mlp_model_pairs(x_scaled).item()
is_new = int(pred >= 0.5)

results.append({
"image_id": img_id,
"object_id": obj["id"],
"category_id": cat_id,
"true_new": true_new,
"predicted_new": is_new,
"cosine_sim": best["cosine_sim"],
"iou": best["iou"],
"centroid_dist": best["centroid_dist"],
"area_ratio": best["area_ratio"],
"mlp_output": pred,
"bbox_x": bbox[0],
"bbox_y": bbox[1],
"bbox_w": bbox[2],
"bbox_h": bbox[3]

})

73

Dataset and Methodology

if is_new == 1:
current_objects.append({

"embedding": emb.detach(),
"category_id": cat_id,
"bbox": bbox

})

memory.append({"image_id": img_id, "objects": current_objects})

The entire system is characterized by modularity, scalability, and adaptability. The decou-
pling between the embedding extraction phase and the classification phase allows for future
improvements to each module independently — for instance, by adopting more advanced strate-
gies for memory management (e.g., hierarchical or attention-based memory), or by replacing the
MLP classifier with more complex or specialized models.

The result is an incremental recognition-oriented tracking system, effective in open-world
scenarios where the number of object identities is unknown a priori, and capable of adaptively
managing the appearance of new visual entities over time.

3.8 Hyperparameters and experimental setup

To complete the description of the three architectures developed — Baseline, Memory-Augmented
Network, and Siamese Network — it is useful to provide a unified overview of the hyperparameters
adopted, the computational environment, and the data preparation procedures, in anticipation
of the experimental results presented in Chapter 4.

All experiments were conducted on a Microsoft Azure virtual machine equipped with an
NVIDIA V100 GPU with 16 GB of memory, 56 virtual CPU cores, and 224 GB of RAM.
The development environment used was JupyterLab, with Python 3.10 as the kernel, and main
libraries including PyTorch 2.0, torchvision, NumPy, OpenCV, Matplotlib, Scikit-learn, and
tqdm.

The dataset used was a custom-annotated version of COCO 2017, comprising 6,958 valid
images. Each object is annotated with a bounding box, semantic category, and a binary new
label indicating whether it represents a new instance or a recurrence. The dataset was split as
follows: 80% for training, 20% for validation, and a separate subset of 1,000 images reserved for
preliminary experiments and debugging.

The images and object crops were preprocessed by resizing to 224×224 pixels, normalization
according to ImageNet statistics, and conversion into PyTorch-compatible tensors.

Below is a summary of the main configurations adopted for each architecture:

Baseline

• Backbone: ResNet50 (ResNet18 used in some variants)

• Embedding: 2048 dimensions

• Classifier: MLP (32-16-1) with ReLU and Sigmoid

• FIFO memory: 20 frames

• Decision strategy: fixed threshold or supervised MLP

74

Dataset and Methodology

Memory-Augmented Network

• Backbone: ResNet50 (softmask variant or ResNet18)

• Visual embedding: 512 dimensions

• Memory Transformer: static or learnable encoder (4 heads)

• Final classifier: MLP (64-32-1) with ReLU and Sigmoid

• FIFO memory: 30 frames

Siamese Networks

• Backbone: ResNet50 without final fully connected layer

• Final embedding: 128 dimensions (MLP 2048→512→128)

• Loss functions: Binary Cross Entropy (pairs), Triplet Loss (triplets)

• Margins: m = 1.0 for Contrastive Loss, α = 0.2 for Triplet Loss

• Optimizer: Adam with learning rate 10−4

• Batch size: 32 for the Siamese network, 64 for the final binary MLP

• Epochs: 10 for the backbone, 20 for the final classifier

• FIFO memory: 30 frames

All models were validated at the end of each epoch by computing the average loss on the
validation set. The best-performing model was saved via checkpointing. For the binary classifier,
a 1:1 balance between the new and not new classes was maintained using undersampling or
oversampling techniques.

The main evaluation metrics include accuracy, precision, recall, F1-score, and AUC,
computed both globally and on a per-frame basis. The dataset split was kept consistent across
all architectures to ensure fairness in comparison.

75

Chapter 4

Results and Discussion

The evaluation of the effectiveness of the proposed architectures for temporal object tracking is
based on a structured experimental protocol, which integrates multiple classification metrics, a
coherent validation logic, and an inference mechanism based on visual temporal memory.

During the inference phase, each visible object in a new frame is compared with those stored
in the FIFO memory, whose size varies depending on the architecture: 20 frames for the baseline
and 30 for the Memory-Augmented Network and the Siamese network. This approach allows
simulating the availability of a visual history to detect recurrences.

The comparison between the current object and those in memory generates a set of descriptive
features — such as cosine similarity between embeddings, Intersection over Union (IoU), centroid
distance, and area ratio — which are used to decide whether an object is new or already seen.
The decision can be made through a fixed threshold or by means of a supervised MLP classifier,
depending on the variant considered.

The evaluation metrics adopted to quantify the performance of the architectures in the binary
classification task are as follows:

• Accuracy: percentage of correct predictions over the total.

• Precision: proportion of objects classified as “already seen” that actually are.

• Recall: proportion of “already seen” objects correctly recognized.

• F1-score: harmonic mean between precision and recall, indicative of the balance between
the two metrics.

• AUC (Area Under the ROC Curve): overall measure of the model’s discriminative
capability.

Metrics are computed on the validation set and, in some experiments, across multiple runs
with different random seeds to assess their stability. The reported results represent the average
of the observed performances.

All experiments were carried out using PyTorch, keeping the main parameters shared across
architectures constant:

• Backbone: ResNet18 or ResNet50 pretrained on ImageNet

• Input: crops from bounding boxes resized to 224× 224 pixels

• Optimizer: Adam or SGD, with a learning rate between 10−3 and 10−4

• Batch size: ranging from 16 to 64

76

Results and Discussion

• Loss function: Binary Cross Entropy for supervised networks; Contrastive and Triplet Loss
for metric learning

Finally, the adopted classification strategies include two configurations:

• Fixed threshold applied to cosine similarity or to the classifier output

• Supervised MLP combining visual and geometric features

The following sections present and discuss the results obtained by each architecture, compar-
ing the various experimental variants from both a quantitative and qualitative perspective.

4.1 Experimental results

4.1.1 Baseline

As a starting point for comparing the different proposed architectures, a reference solution (base-
line) was implemented, built around a simple yet effective principle, easily interpretable and low
in computational cost. The approach, described in detail in Section 3.5, is based on two main
components: a visual feature extractor, represented by a pretrained ResNet network, and a deci-
sion module — either supervised or heuristic — responsible for determining whether the current
object has been previously observed or represents a new occurrence.

During inference, each object identified within an image is cropped based on the corresponding
bounding box, normalized and resized, then passed through the ResNet network. The output of
the backbone is a visual embedding that captures the semantic information of the object in a
vector space. This embedding is compared with those stored from the last 20 images, thanks to
a FIFO structure shared by all baseline variants. For each current object–memory object pair,
four comparison features are computed:

• Cosine similarity between the current embedding and those in memory

• IoU between the respective bounding boxes

• Euclidean distance between centroids

• Ratio between the areas of the two bounding boxes

These features are then aggregated into a vector and used for the decision phase. In some con-
figurations, this vector is passed to a supervised MLP classifier, which estimates the probability
that the object has been “already seen”; in others, the decision is based on fixed thresholds applied
to the cosine similarity or to a combined score with IoU. During experimentation, various config-
urations were tested, with the aim of evaluating the impact of architectural and decision-making
choices on system behavior. In particular, the following scenarios were analyzed:

• ResNet18 + cosine similarity, with empirical similarity threshold between 0.50 and
0.75

• ResNet50 + cosine similarity, with the same reference thresholds

• ResNet18 + cosine similarity + IoU, with a combined score according to the formula:
score = 0.6 · cosine_similarity + 0.4 · IoU

• ResNet50 + cosine similarity + IoU, same combined scheme

• ResNet18 + supervised MLP, trained on the 4 features described above

77

Results and Discussion

• ResNet50 + supervised MLP, with the same classifier architecture

The design of the MLP classifier required an initial exploratory phase. Several designs were
tested, inspired by visual classification and matching models. In particular, the first versions
used the direct concatenation of visual embeddings, but showed poor stability and discriminative
capability. Subsequently, attention shifted to the use of geometric and similarity features between
pairs, appropriately normalized. After several iterations, the configuration that offered the best
trade-off between simplicity and performance turned out to be a three-layer MLP, with the
following structure:

• Linear(4 → 32) + ReLU

• Linear(32 → 16) + ReLU

• Linear(16 → 1) + Sigmoid

This network, trained with binary loss (Binary Cross-Entropy), proved particularly effective
in synergistically combining the various features, managing to accurately predict the probability
that an object had already been seen before.

In parallel, for the fixed-threshold variants, a tuning activity was carried out over a range
of values between 0.50 and 0.75. Using lower thresholds, around 0.50–0.58, favored recall but
introduced numerous false positives. Conversely, higher thresholds (above 0.70) led to an increase
in false negatives and a worsening of recall. The optimal values, selected by maximizing the F1-
score on the validation set, were found to be 0.64 for the ResNet18 + cosine configuration, 0.60
for ResNet50 + cosine, and 0.66 for the variants combined with IoU.

The results obtained for each configuration are reported in Table 4.1. The performances were
calculated over the entire validation set and, where necessary, averaged over multiple runs to
increase significance.

Table 4.1: Results of the baseline configurations: comparison between heuristic and supervised
methods with different backbones.

Configuration Backbone Method Accuracy Precision Recall F1 AUC
Baseline (threshold 0.64) ResNet18 Similarity 0.688 0.643 0.920 0.757 0.76
Baseline (threshold 0.60) ResNet50 Similarity 0.696 0.665 0.895 0.765 0.77
Baseline (combined score) ResNet18 Cosine + IoU 0.695 0.660 0.878 0.752 0.76
Baseline (combined score) ResNet50 Cosine + IoU 0.708 0.674 0.884 0.766 0.78
Baseline (with MLP) ResNet18 Supervised MLP 0.711 0.682 0.869 0.764 0.78
Baseline (with MLP) ResNet50 Supervised MLP 0.703 0.678 0.872 0.761 0.78

From the comparison between the variants, it emerges that the fixed-threshold approach,
although simple and efficient, is particularly sensitive to the choice of threshold value, with
evident effects on the balance between precision and recall. The use of ResNet50 compared
to ResNet18 results in a marginal performance increase, at the cost of higher computational
demand. The integration of IoU in the combined score proved useful for improving geometric
coherence, but did not yield benefits comparable to those obtained with a supervised classifier.
The MLP variant, in fact, showed greater stability and generalization capacity, with higher values
in terms of F1-score and AUC.

In particular, the MLP classifier proved capable of exploiting the various available features
to compensate for visual ambiguities and similar geometries, providing more robust predictions
even in complex scenarios. This observation suggests that, even in the absence of a sophisticated
memory mechanism, the introduction of a learning component can bring tangible benefits in
terms of final decision-making.

A further advantage of the baseline lies in its implementation simplicity, which makes it
a good candidate for resource-constrained contexts, such as edge or embedded environments.

78

Results and Discussion

However, the limitations that emerged in handling temporal and contextual variability highlight
the need to move toward more advanced solutions. Such solutions, as will be described in the
following sections, are designed to explicitly integrate the historical context of observations and
further enhance the system’s generalization capabilities.

R18-Sim R50-Sim R18-Comb R50-Comb R18-MLP R50-MLP
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0
.6
9

0
.7

0
.7 0
.7
1

0
.7
1

0
.7

0
.6
4 0
.6
7

0
.6
6 0
.6
7

0
.6
8

0
.6
8

0
.9
2

0
.9

0
.8
8

0
.8
8

0
.8
7

0
.8
7

0
.7
6

0
.7
7

0
.7
5 0
.7
7

0
.7
6

0
.7
6

0
.7
6

0
.7
7

0
.7
6 0
.7
8

0
.7
8

0
.7
8

Configurazione

Sc
or

e

Accuracy Precision Recall F1 AUC

Figure 4.1: Comparison between the baseline configurations in terms of Accuracy, Precision,
Recall, F1-score, and AUC.

Overall, the baseline proved useful not only as an initial reference point but also as a tool
for analyzing the contribution of each system component. The simpler versions helped high-
light the structural limitations of heuristic approaches, while the introduction of a supervised
MLP network demonstrated that, even with a relatively simple design, it is possible to achieve
significantly better performance.

This analysis thus laid the groundwork for the introduction of more sophisticated architec-
tures, capable of explicitly and adaptively integrating temporal context, as described in the
following sections.

4.1.2 Memory-Augmented Network (MAN)

The second architecture analyzed is a Memory-Augmented Network (MAN), designed to over-
come the structural limitations of the baseline by introducing an explicit mechanism for con-
textual memory. As described in Section 3.6, the goal of this model is to exploit the history of
past observations in a more structured way, through a Transformer-based attention module that
allows the current object to be contextualized with respect to a visual memory.

The architecture consists of four main modules: (i) extraction of crops from bounding boxes,
(ii) a CNN backbone for feature extraction, (iii) a Transformer encoder module serving as a
learnable memory, and (iv) a final classifier, based on either a fixed threshold or a supervised
MLP. For each object in an image, an RGB crop centered on the bounding box is extracted, with
a slight padding to include visual context. The image is then normalized and resized to 224×224
pixels before being processed by the backbone.

79

Results and Discussion

Once again, various architectural variants were explored to understand the specific contribu-
tion of each component. The tested combinations include all possible choices of backbone, visual
input, type of memory, and decision strategy. In particular, the following were evaluated:

• Type of visual input:

– Bbox (Bounding-box)

– Soft-mask (grayscale binary masks)

• Backbone used for feature extraction:

– ResNet18

– ResNet18 with fine-tuning on the target dataset

– ResNet50

• Type of Transformer memory:

– Static (non-learnable)

– Learnable (trained jointly with the rest of the system)

• Final decision:

– Fixed threshold on cosine similarity (empirical)

– Supervised MLP, fed with visual and geometric features

As with the baseline, in this case too a FIFO memory is used to store the history of objects
observed in the last 30 images. Each current object is compared with those in memory, which
act as keys and values in the Transformer module. The Transformer output represents a new
contextualized embedding, which can then be compared with the memory in terms of cosine
similarity, or used as input to an MLP classifier.

At decision time, in addition to the maximum cosine similarity with memory objects, the same
geometric features used in the baseline are also computed: maximum IoU, centroid distance, and
area ratio. These four features are concatenated and passed to the supervised MLP for binary
classification.

For each variant described, an independent experiment was conducted, keeping all other
training and validation parameters constant. The results obtained are reported in Table 4.2.

Table 4.2: Results of the Memory-Augmented Network (MAN) variants with static or learnable
memory and different decision strategies.

Configuration Accuracy Precision Recall F1 AUC

Softmask + ResNet18 + static memory + fixed threshold 0.684 0.645 0.905 0.756 0.76
Softmask + ResNet50 + static memory + fixed threshold 0.681 0.640 0.907 0.751 0.76
BBox + ResNet18 + static memory + fixed threshold 0.703 0.665 0.895 0.762 0.78
BBox + ResNet18 FT + static memory + fixed threshold 0.715 0.672 0.889 0.766 0.79
BBox + ResNet50 + static memory + fixed threshold 0.719 0.681 0.881 0.768 0.79
BBox + ResNet50 + learnable MAN + fixed threshold 0.727 0.690 0.875 0.768 0.80
BBox + ResNet50 + learnable MAN + MLP 0.756 0.725 0.843 0.781 0.82

The analysis of the results highlights significant differences among the tested variants, each of
which allowed for a deeper understanding of the role of individual architectural components. One
of the most relevant aspects emerged in the choice of visual input type. Initially, the system was
designed using RGB crops obtained from the bounding boxes of the objects. Subsequently, two
alternative experiments were conducted: the direct use of binary object masks, and, in a later

80

Results and Discussion

phase, the introduction of a soft-mask representation, in which the object was isolated within a
window on a uniform gray background, without visual context.

Contrary to initial expectations, the mask-based variants — both binary and soft — yielded
inferior results compared to full RGB crops. This behavior can be attributed to several factors.
Although masks represent the exact shape of the object, they completely remove the surrounding
spatial context. In a realistic scenario such as the one analyzed, where objects may slightly
change shape, position, or be partially occluded, the visual context plays a fundamental role.
Information such as the presence of adjacent objects, their spatial arrangement, and even the
background color contribute to making the object recognizable over time. Moreover, masks
overemphasize shape and size, which in this domain are features highly subject to variation (e.g.,
deformed, rotated, or truncated objects), effectively introducing noise rather than stability in
the representation. The soft-masks, while partially preserving the bounding box area, suffered
from the same limitation: the removal of context in favor of a uniform background reduced the
global information useful for comparing the current object with previous observations.

The choice of backbone also had a significant impact on performance. ResNet50 proved to be
more effective than ResNet18 in all scenarios, offering more robust and consistent representations.
The greater depth and abstraction capability of ResNet50 allows it to capture complex visual
patterns, making it more suitable for distinguishing similar objects with subtle differences. Al-
though ResNet18, even with fine-tuning on the dataset, provides faster inference, it is less suited
in the presence of visual variability or noisy conditions.

SM
-R

18

SM
-R

50

B18
-S
ta
t

B18
FT

-S
ta
t

B50
-S
ta
t

B50
-M

AN

B50
-M

LP
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0
.6
8

0
.6
8 0
.7 0

.7
2

0
.7
2

0
.7
3

0
.7
6

0
.6
5

0
.6
4

0
.6
7

0
.6
7

0
.6
8

0
.6
9

0
.7
3

0
.9
1

0
.9
1

0
.9

0
.8
9

0
.8
8

0
.8
8

0
.8
4

0
.7
6

0
.7
5

0
.7
6

0
.7
7

0
.7
7

0
.7
7 0
.7
8

0
.7
6

0
.7
6 0
.7
8

0
.7
9

0
.7
9

0
.8

0
.8
2

Configurazione

Sc
or

e

Accuracy Precision Recall F1 AUC

Figure 4.2: Comparison between MAN variants in terms of Accuracy, Precision, Recall, F1-score,
and AUC.

Another critical element was the comparison between the static and the learnable Transformer
module. In the static configuration, the Transformer acts as a simple projector of embeddings into

81

Results and Discussion

a latent space, but it lacks the ability to learn how to weigh the stored observations. This makes
it less effective in distinguishing between relevant elements and noise. Conversely, the learnable
version — trained end-to-end with the rest of the system — is capable of dynamically modeling
the relationships between the current object and the memory. This enables a contextualized
and adaptive representation, able to strengthen the importance of strong semantic matches and
reduce the influence of less informative or misleading memories. This led to a clear increase in
precision and consistency across consecutive frames.

Finally, the classification strategy also had a decisive impact. The fixed-threshold variants,
similarly to what was observed in the baseline, are highly sensitive to the distribution of similar-
ities and incapable of effectively integrating multiple features. The introduction of a supervised
MLP, fed with contextualized cosine similarity together with geometric features (IoU, centroid
distance, and area ratio), enabled more stable and accurate classification. In particular, the MLP
showed better capabilities in handling ambiguous cases, such as partially overlapping objects or
those with similar characteristics but different spatial relationships.

Overall, the combination of the four most effective architectural choices — RGB input,
ResNet50, learnable Transformer, and supervised MLP — led to the configuration BBox +
ResNet50 + MAN Learnable + MLP, which achieved the best performance across all main met-
rics. This version not only outperformed the baseline but also showed more stable behavior,
reduced sensitivity to false positives, and greater adaptability to dynamic scenarios. Although
more complex to train and slightly more computationally demanding, this architecture represents
a substantial step forward in temporal memory management for visual object tracking.

4.1.3 Siamese Network

The third family of architectures analyzed in this work is based on Siamese networks, a paradigm
widely used in visual instance similarity tasks. As detailed in Section 3.7, the approach adopted
in this context does not merely aim to verify generic semantic affinity between two objects, but
rather to answer a more subtle and concrete question: is this the same physical instance observed
at different points in time? This type of challenge, which we might define as temporal identity
recognition, requires sophisticated modeling of visual representations, capable of capturing con-
tinuity even in the presence of variations in scale, viewpoint, lighting, and partial occlusions.

The architecture is divided into two main variants: a binary Siamese network, trained using
contrastive loss, and a triplet network, based on the optimization of the triplet loss. In both
cases, the backbone used is a ResNet (either 18 or 50 version), shared between the network
branches, responsible for extracting a normalized visual embedding from an RGB crop centered
on the object to be analyzed. Training was made possible through the automatic generation of
object pairs and triplets, using heuristics that leverage semantic coherence, spatial proximity,
and temporal persistence, as described in Chapter 3.

Inference is based on comparing the current object with a set of recent observations stored in
memory. Depending on the configuration, the decision can be made using a fixed threshold on
cosine similarity or through a supervised MLP classifier, which takes as input a combination of
visual and geometric features. In this case as well, the four features used are: maximum cosine
similarity, IoU, distance between centroids, and area ratio — the same used in the baseline and
MAN architectures, to ensure consistency in comparison. During the experiments, six distinct
configurations were evaluated, obtained by combining: type of network (pairs or triplets), back-
bone (ResNet18 or ResNet50), and decision strategy (fixed threshold or supervised MLP). The
results, reported in Table 4.3, clearly show how the architectural choice and the decision-making
component significantly impact performance.

The comparison between the different configurations clearly highlights the superiority of
the triplet-based approach, especially when paired with a supervised decision strategy. The
best combination — Triplets – ResNet50 + supervised MLP — not only achieved the highest
values across all key metrics (F1-score, AUC, Recall), but also showed greater stability across
runs, confirming the robustness of the approach. This result underscores the strength of the

82

Results and Discussion

Table 4.3: Results of pairwise and triplet-based configurations: comparison between decision
strategies and backbones.

Configuration Accuracy Precision Recall F1 AUC

Pairs – ResNet18 + fixed threshold 0.678 0.650 0.685 0.667 0.72
Pairs – ResNet50 + fixed threshold 0.694 0.667 0.680 0.673 0.74
Triplets – ResNet18 + fixed threshold 0.715 0.680 0.802 0.736 0.78
Triplets – ResNet50 + fixed threshold 0.738 0.700 0.845 0.765 0.81
Pairs – ResNet50 + supervised MLP 0.710 0.685 0.740 0.711 0.77
Triplets – ResNet50 + supervised MLP 0.787 0.747 0.906 0.818 0.85

relative learning paradigm introduced by the triplet loss, which does not merely evaluate absolute
similarity between two elements but forces the network to structure a coherent embedding space,
where proximity and distance relationships reflect identity continuity across objects.

In contrast, networks trained with contrastive loss exhibited limitations in terms of precision,
due to difficulties in learning an effective discriminative threshold in the presence of visually sim-
ilar but distinct objects. Specifically, the binary formulation of the supervised task proved more
fragile, showing a higher rate of false positives in ambiguous cases, where visual appearance alone
was not sufficient to distinguish between different instances. Nevertheless, these configurations
proved valid as internal baselines within the Siamese family, offering a simple and interpretable
structure.

C-R
18

-S

C-R
50

-S

C-R
50

-M
LP

T-R
18

-S

T-R
50

-S

T-R
50

-M
LP

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0
.6
8 0
.6
9 0
.7
1

0
.7
2 0

.7
4

0
.7
9

0
.6
5 0
.6
7 0
.6
9

0
.6
8 0
.7

0
.7
5

0
.6
9

0
.6
8

0
.7
4

0
.8

0
.8
5

0
.9
1

0
.6
7

0
.6
7

0
.7
1

0
.7
4

0
.7
7

0
.8
2

0
.7
2 0
.7
4

0
.7
7

0
.7
8

0
.8
1

0
.8
5

Configurazione

Sc
or

e

Accuracy Precision Recall F1 AUC

Figure 4.3: Comparison between Siamese configurations (Pairs and Triplets) in terms of Accuracy,
Precision, Recall, F1-score, and AUC.

83

Results and Discussion

Another important finding from the experiments is the impact of the backbone. Using
ResNet50 instead of ResNet18 consistently improved all metrics, suggesting that higher ex-
pressive capacity in the visual module allows for the generation of more robust embeddings,
especially under complex conditions. The MLP classifier also showed clear benefits: its ability to
integrate heterogeneous features significantly increased precision, mitigating the risk of incorrect
associations caused by spurious similarity.

A visual comparison of the results is presented in Figure 4.3, which summarizes the perfor-
mance of the six tested configurations. The clear separation between the triplet loss variants
and all others is particularly evident in the recall, indicating the network’s greater sensitivity in
correctly identifying previously seen objects, even under partial transformations or occlusions.

Overall, Siamese networks — and in particular the triplet network combined with a supervised
classifier — proved to be the most effective solution among those explored, both in absolute
terms and relative to computational complexity. The ability to directly model the distance
between instances, rather than classifying objects individually, enabled the network to naturally
capture temporal dynamics. This turned out to be particularly advantageous in real-world, high-
variability scenarios such as those represented in the test datasets, confirming the suitability of
Siamese networks for applications involving object tracking, recurrent recognition, and identity
continuity.

4.1.4 Comparison between architectures

After analyzing in detail the three families of proposed architectures, some comparative consid-
erations can be drawn, highlighting the strengths, limitations, and structural differences between
the models.

In terms of overall accuracy and the balance between precision and recall, the best con-
figurations of each architecture showed competitive performance, but with noticeably different
behaviors. Table 4.4 summarizes the results obtained from the best variants of the three families,
evaluated using the main metrics: Accuracy, Precision, Recall, F1-score, and AUC.

Table 4.4: Comparison between the best variants of each architecture: baseline, memory-
augmented network (MAN), and Siamese approach.

Architecture Accuracy Precision Recall F1 AUC

Baseline – ResNet50 + supervised MLP 0.703 0.678 0.872 0.761 0.78
MAN – Bbox + ResNet50 + learnable Transformer + supervised MLP 0.756 0.725 0.843 0.781 0.82
Siamese – Triplets + ResNet50 + supervised MLP 0.787 0.747 0.906 0.818 0.85

The baseline architectures, in the supervised MLP version, represented a simple yet sur-
prisingly effective solution, especially due to the combination of visual and geometric features.
However, the absence of an explicit temporal context and the reliance on thresholds or local
classifiers make them sensitive to sudden variations and ambiguous objects.

The Memory-Augmented Network introduced a significant improvement thanks to the in-
tegration of a learnable memory. The Transformer module enabled the modeling of temporal
relationships between objects, producing contextualized and flexible embeddings. This resulted
in greater precision in difficult cases and improved overall stability, making the MAN architecture
particularly suitable for realistic and dynamic scenarios. Nevertheless, the computational cost
— both during training and inference — is noticeably higher than the baseline.

Siamese networks, and in particular the triplet network, proved very effective in building a
coherent metric space for instance comparison. Although they do not include an explicit memory,
the structure of the loss function allowed the network to learn how to distinguish between objects
observed at different times based on their identity, rather than mere visual similarity. The
addition of a supervised MLP in the decision phase further improved precision, narrowing the
gap with memory-based architectures. The main limitation of the Siamese approach lies in the

84

Results and Discussion

higher complexity of data generation (pairs and triplets) and the need to carefully manage the
balance between positives and negatives during training.

The configuration that achieved the best absolute performance was Triplets – ResNet50
+ supervised MLP, closely followed by MAN Learnable + ResNet50 + MLP. Both architectures
demonstrated high generalization capacity, robustness to visual variations, and temporal decision
consistency. The supervised baseline, although simpler, provided an important reference point,
especially for low-complexity computational contexts.

Baseline MAN Siamese
0.7

0.75

0.8

0.85

0.9

0.95

1
0
.7
6 0
.7
8

0
.8
2

0
.7
8

0
.8
2

0
.8
5

Architecture

V
al

ue

F1-score AUC

Figure 4.4: Synthetic comparison between the best configurations for each architecture in terms
of F1-score and AUC.

The choice of the best architecture ultimately depends on the application context: if absolute
precision and temporal stability are prioritized, Siamese networks and MAN represent the best
options. Conversely, if lightness and simplicity are the main constraints, the supervised baseline
offers an effective solution at a low computational cost. In the following sections, these aspects
will be further explored in relation to the practical and industrial implications of the proposed
system.

4.2 Qualitative visualizations of the results

In addition to quantitative analyses, it was useful to complement the evaluation with a qualitative
assessment of the results obtained by the different architectures. Direct observation of the visual
predictions allows us to capture aspects that are not immediately evident from the numerical
results: temporal coherence, label stability, geometric correctness of associations, and sensitivity
to local ambiguities. This section presents some representative examples, selected both among
correctly handled cases and among the most problematic ones.

The images shown are taken from the validation set and illustrate the behavior of the three
main architectures analyzed: the supervised baseline with MLP, the Memory-Augmented Net-
work with learnable Transformer, and the Siamese network trained with triplet loss and MLP in
the decision phase.

The first group of examples presents cases where all architectures produced correct and tem-
porally stable predictions. These examples highlight the models’ ability to maintain a consistent

85

Results and Discussion

identity for the same object across image sequences, even in the presence of slight changes in
position or rotation.

Figure 4.5: Example of correct tracking for a glass jar: all architectures succeed in maintaining
temporal coherence and recognizing the object as already seen, despite the change in perspective.

However, it is in ambiguous or incorrect cases that the differences between architectures
become more evident. In particular, there were situations where the supervised baseline failed
to recognize a previously seen object, especially in the presence of geometric changes or partial
occlusions. In these same images, the MAN or the Siamese network managed to maintain the
correct association, thanks respectively to the learnable visual memory and the learned metric
structure.

A typical case is when an object undergoes a partial rotation or a change in scale: the
baseline tends to treat it as “new,” whereas the other architectures, having access to contextual
or relational information, manage to identify it correctly.

Figure 4.6: Ambiguous example: the paper packaging is rotated between two consecutive frames.
The supervised baseline incorrectly labels the object as “new” in the second frame, while the MAN
and Siamese architectures correctly maintain the identity.

Another example concerns situations where multiple similar objects appear simultaneously
in the scene. In these contexts, it was observed that the MAN — thanks to the Transformer —
can disambiguate identity by leveraging historical information, while the Siamese network relies
more on metric and spatial coherence. The baseline, instead, may confuse the instances if visual
similarity is high and geometric features do not provide sufficient contrast.

86

Results and Discussion

Finally, some recurring failure cases were analyzed. For example, when an object undergoes
deformation or is partially occluded, all architectures show signs of weakness, but in different
ways: the baseline tends to “reset” the identity, the MAN can be affected by noisy information
in memory, and the Siamese network may collapse on visually similar but non-identical objects.

(a) Supervised Baseline
The object in the upper left
(plastic cup) undergoes a posi-
tion change and partial occlusion,
causing the model to mistakenly
treat it as “new.”

(b) Memory-Augmented Net-
work (MAN)
The simultaneous presence of
similar objects (red cans) causes
ambiguity in memory: a previ-
ously seen object is labeled as
“new.”

(c) Siamese Network
The cups are visually similar,
but the lack of temporal memory
leads to an incorrect identity as-
sociation.

Figure 4.7: Failure examples of the three analyzed architectures. Each image highlights a struc-
tural limitation of the respective approach in maintaining visual identity consistency.

Thus, the qualitative visualizations confirm and enrich the quantitative findings. They show
that the quality of predictions does not depend solely on the architecture type, but also on the
nature of the variations that the object undergoes between frames. The most robust architectures
are not necessarily those with the highest average metrics, but those that maintain consistency
even in borderline cases. In this sense, MAN and the Siamese network prove more reliable
in complex scenarios, while the baseline performs well only under regular or low-variability
conditions.

The integration of these visualizations into the analysis process allowed for a more refined
understanding of the models’ behavior, highlighting not only “how much” but also “why” a
network fails, and offering valuable insights for future improvements.

4.3 Error analysis

Error analysis is a crucial step for understanding the actual weaknesses of the analyzed archi-
tectures and for identifying the structural limitations of the models beyond aggregated metrics.
This section classifies the main types of observed errors and discusses their most frequent causes,
also in light of the qualitative visualizations.

Among the most common cases are the false positives, i.e., instances where a new object
is erroneously associated with one already observed. This type of error typically occurs in the
presence of visually similar objects belonging to the same category (e.g., two cans, two plastic
bottles) but representing distinct entities. It is a particularly evident issue in the fixed-threshold
baseline, where a high cosine similarity can easily lead to an incorrect association. Even in the
MAN and the Siamese network, if not properly trained or lacking geometric features during the
decision phase, false positives are observed in cases where the new object has shape, size, and
color very similar to one already stored in memory.

A second recurring error is that of false negatives, namely the failure to recognize a previ-
ously seen object. In this case, the system classifies as “new” an object that is in fact the same
instance as one that appeared in a previous image. These cases mainly occur when the object
significantly changes position, scale, or orientation, or when it is partially occluded. Such vari-
ations introduce an apparent distance in the visual embedding, which may exceed the decision
thresholds or confuse the classifier. Supervised architectures (MLP) have proven more robust to
this type of error, thanks to their ability to combine visual and geometric information, whereas
models relying solely on thresholds are particularly vulnerable.

87

Results and Discussion

Figure 4.8: Example of a false positive for each architecture. A new object (paper cup) is
mistakenly associated with a previously seen one due to strong visual similarity.

Figure 4.9: Example of a false negative: the same instance appears in two consecutive frames but
is mistakenly labeled as “new.” The variation in position and context leads to a high apparent
distance in the embedding, exceeding the model’s decision threshold.

An additional set of errors can be attributed to spatial or contextual ambiguities, which
lead to inconsistent behavior by the models. These are situations in which multiple similar objects
appear simultaneously, or in which an object undergoes partial occlusions or deformations, as
frequently occurs with flexible or transparent materials. In such cases, the quality of the visual
embedding tends to degrade, and the absence of contextual references leads to inconsistent
predictions, even from more advanced models. The MAN, despite having a learnable memory,
can suffer from noise accumulated in the FIFO, while the Siamese network, if not properly
regularized, may collapse onto similar objects in memory.

Systematic errors related to visually weak categories are also observed, such as frag-
ments of plastic, transparent bags, or irregular pieces of paper. In these cases, the shape is poorly
defined and the visual appearance varies greatly from frame to frame. Supervised architectures
struggle to generalize, while similarity-based comparisons become unreliable. Another systematic
case involves reflections, blurring, or uneven lighting conditions, which alter the visual
embedding and degrade the temporal coherence of memory.

Finally, it is important to mention errors due to temporal misalignment. In some

88

Results and Discussion

Figure 4.10: Example of inconsistent prediction in a crowded scene with spatial ambiguities.
The simultaneous presence of similar objects and partial deformations reduces the quality of the
visual embeddings. Even advanced models like MAN or the Siamese network exhibit uncertainty
— respectively due to noise in the learnable memory or metric collapse on similar instances.

sequences, the image acquisition frequency and the dynamics of the environment lead to changes
that are too rapid between one frame and the next. Under these conditions, even if the object
is in fact the same, the visual change is such that it breaks continuity, causing the system to
erroneously classify the object as “new.” MAN and the Siamese network with MLP have shown
some resilience to this problem, but in extreme cases, no model was able to maintain consistency.

Thus, the error analysis shows that, although advanced models significantly reduce the num-
ber of incorrect predictions compared to the baseline, there are still structurally critical situations
that challenge even the most complex architectures. Errors related to loss of context, visual am-
biguity, or temporal instability highlight the need for even more robust memory aggregation
mechanisms and semantic representations.

4.4 Critical reflections on the proposed solutions

The experimental analysis made it possible to precisely evaluate the behavior of the proposed
architectures in different scenarios, both from a quantitative and qualitative standpoint. This
section presents a number of cross-cutting critical reflections that emerged during the develop-
ment and validation phases, focusing on key aspects such as prediction stability, sensitivity to
decision thresholds, generalization capability, and computational complexity.

A first relevant aspect is the temporal stability of predictions. Architectures based on
local comparison (such as the baseline) exhibit good consistency under simple conditions but
tend to lose stability in the presence of deformed objects, scale changes, or lighting variations. In
such cases, the lack of an explicit temporal context leads to label oscillations (“new” – “already
seen”) even for the same instance. More advanced architectures — MAN with learnable memory
and the Siamese network with triplet loss — show greater robustness thanks to their ability to
model global information: the former leverages the context of past observations, while the latter
constructs a coherent metric space that better handles local transformations. However, even in
these cases, stability is not guaranteed in the presence of abrupt changes or visually weak objects.

Another critical issue is the sensitivity to threshold selection, which became particu-
larly evident in the unsupervised variants. In all architectures relying on a fixed threshold on
cosine similarity (or a combined score), performance is heavily influenced by the chosen value.
Thresholds that are too low lead to false positives, while excessively high thresholds increase
false negatives. This makes calibration complex and unstable, especially when the system is
to be deployed on different datasets or under new operating conditions. By contrast, the use

89

Results and Discussion

of a supervised classifier (MLP) significantly reduced this sensitivity, proving more flexible in
adapting the final decision based on visual and geometric features learned jointly.

Regarding generalization capability, all architectures performed well on common cate-
gories and objects well represented in the dataset. However, generalizing to rare, deformable, or
visually ambiguous objects proved more challenging. In particular, the baseline — while effec-
tive on canonical objects — showed fragility when faced with less frequent or low-information
instances. MAN was able to maintain a certain level of consistency even with rare objects,
provided they appeared at least once in the sequence. The Siamese network benefited from its
metric structure, which enables more continuous generalization, but only if the negatives dur-
ing training were sufficiently diverse and balanced. This highlights the importance of a good
sampling strategy in metric-based models.

Finally, it is important to consider the computational complexity and resource re-
quirements of each solution. The supervised baseline, based on direct comparison and an
MLP, stands out for its simplicity and low computational demands: it is a reasonable choice
in resource-constrained environments such as embedded or edge systems. MAN, on the other
hand, introduces a high computational cost, both for feature processing via the Transformer
and for managing and updating the visual memory. Training requires more time and careful
stability management. The Siamese network lies in an intermediate position: inference is fast
and lightweight, but the generation and balancing of triplets during training represents a signif-
icant overhead. Moreover, the need to compare each object with all those in memory (or with a
selected subset) can become costly as the sequence length increases.

In summary, each architecture presents specific advantages and limitations. Supervised mod-
els with memory or metric structure offer the best performance, but at the cost of increased
complexity. The most suitable model therefore depends not only on the achieved metrics, but
also on the operational context, available resources, and the requirements for temporal stability
and adaptability.

4.5 Applications and practical implications in industrial con-
texts

From the perspective of efficiency and scalability, simpler supervised architectures—such as
the baseline with MLP—are well suited for industrial scenarios where rapid response is required,
even over long image sequences. The model requires a limited number of comparisons per object
and can operate in real time on mid-range hardware. However, the lack of a more advanced
memory structure makes these solutions less appropriate in complex scenarios where multiple
similar objects appear or reappear at different times.

The Memory-Augmented Network, while offering superior performance, introduces a higher
computational cost, mainly due to the Transformer module and FIFO memory management. In
an industrial context, deploying such an architecture would require careful optimization or the
use of more powerful hardware (e.g., GPU-equipped edge devices or multi-core CPUs in cloud or
local gateways). The scalability of MAN is constrained by the memory sequence length and the
inference complexity of the Transformer, but its potential in dynamic, multi-object environments
remains significant.

The Siamese network with triplet loss presents an intermediate solution in terms of cost and
performance. Once trained, inference is lightweight, and comparisons can be executed efficiently,
making it suitable for embedded devices, provided they have sufficient computational capacity for
batch embedding processing. The main challenge lies in preprocessing and dataset construction
for training, which in a production system would require reliable automation or pre-annotated
datasets for object temporal identity.

In terms of compatibility with edge or embedded hardware, the choice of architecture
depends heavily on the constraints of the target system. The baseline with ResNet18 and MLP

90

Results and Discussion

can be integrated into existing computer vision pipelines with minimal overhead. Architectures
based on ResNet50, learnable memory, or triplet networks instead require a careful assessment
of the available computational budget and, if needed, model optimization techniques such as
quantization, pruning, or distillation.

Finally, from the perspective of operational and environmental impact, a system ca-
pable of automatically recognizing previously seen objects enables reduction of counting errors,
detection of anomalous behaviors (e.g., repeated insertion of the same waste item), and optimiza-
tion of material classification. This could lead to smarter waste cycle management, increased
collection efficiency, and reduced human intervention. In the future, such systems could be de-
ployed not only in urban smart bins but also in automated sorting facilities, recycling centers,
or industrial contexts where tracking reusable or recyclable objects over time is important.

Overall, the results obtained demonstrate that the proposed architectures are transferable to
real-world applications, provided that trade-offs between accuracy, stability, and computational
resources are considered. The ability to choose between lightweight and more sophisticated
models provides important flexibility, which can be leveraged to adapt the system to the specific
operational requirements of each industrial scenario.

91

Chapter 5

Conclusions and Future Work

5.1 Summary of the work

This thesis addressed the problem of temporal object recognition in image sequences, with partic-
ular focus on the context of smart bins—intelligent containers for waste collection. The proposed
task consists in automatically determining, for each detected object in a visual sequence, whether
it is a new occurrence or an instance already observed in a previous frame. This is a non-trivial
problem that goes beyond standard object detection and requires the integration of memory and
temporal tracking components.

The first part of the work focused on dataset preparation: starting from a corpus of approxi-
mately 7000 images annotated in COCO format, a thorough restructuring of the annotations was
carried out, with special attention to the new attribute, used to label the “novelty” of objects. A
subset of images was also created to support preliminary exploration of the architectures.

Subsequently, three families of architectures were designed and compared, each characterized
by different approaches and underlying assumptions:

• A supervised baseline, where objects are compared with those in memory using visual
and geometric features, and classified by a binary MLP;

• A Memory-Augmented Network (MAN), which introduces a learnable Transformer
module to represent the historical context of past observations;

• A Siamese network in two variants: a binary version with contrastive loss and a triplet-
based version with triplet loss, designed to learn a metric space in which object distance
reflects their temporal identity.

For each family, several variants were explored: changes in backbone (ResNet18 and ResNet50),
input types (RGB crop, masks, soft-mask), decision strategies (fixed threshold or supervised
MLP), and different memory or matching mechanisms. The non-trivial problem of automatic
pair and triplet generation was also addressed, enabling Siamese models to learn not only visual
similarity, but also the temporal continuity of objects.

The entire system was evaluated through a comprehensive and structured experimental anal-
ysis. Classical binary classification metrics (accuracy, precision, recall, F1-score, AUC) were
used, supported by qualitative visualizations and detailed error analysis. This made it possible
not only to compare the models, but also to better understand their limitations, behavior under
non-ideal conditions, and ability to adapt to realistic scenarios.

92

Conclusions and Future Work

5.2 Strengths and limitations

One of the most evident strengths of this work lies in its comparative approach, which enabled
the study of the problem from multiple perspectives. The three proposed architectures are based
on different assumptions (local decision-making, explicit memory, metric learning) and produced
complementary results. This allowed for an in-depth analysis of the trade-offs between simplicity
and power, generalization and specialization, local precision and global temporal coherence.

The supervised baseline demonstrated that, with intelligent use of visual and geometric fea-
tures, good performance can be achieved even with lightweight models. This architecture rep-
resents a viable solution for industrial contexts with limited resources, where simplicity and
computational efficiency are primary constraints.

The Memory-Augmented Network introduced a dynamic memory component capable of mod-
eling the context of past observations. The learnable Transformer showed excellent ability in
handling temporal variability, maintaining coherence across frames even in the presence of par-
tially occluded or deformed objects. However, this architecture has inherently higher complex-
ity, requiring greater computational resources, careful tuning, and robust memory management
mechanisms.

The Siamese network — especially in its triplet variant with supervised classification —
proved extremely effective in recognizing the temporal identity of objects. Its main strength lies
in its ability to learn a coherent metric space, in which similar but distinct objects are clearly
separated. Nevertheless, the generation of training data (pairs and triplets) requires a refined
logic, and the model’s quality strongly depends on the quality of positive and negative samples.

On the limitations side, the work highlighted several common weaknesses. Firstly, all archi-
tectures exhibit fragility in the presence of visually uninformative objects such as transparent
plastic, crumpled paper, reflective or deformable materials. Furthermore, memory management
— both in explicit form (MAN) and implicit (FIFO) — can introduce noise or uncertainty,
especially when objects move, rotate, or undergo scale changes across frames.

Another critical aspect is the sensitivity to data distribution. Supervised models perform well
only when trained on balanced and varied data. Some rare or underrepresented categories in
the dataset can lead to systematic errors or weak generalization. In particular, the construction
of pairs and triplets for the Siamese network required significant care: unbalanced sampling can
quickly degrade the effectiveness of the loss function, leading to overfitting or underfitting.

Finally, the trade-off between accuracy and inference time represents a concrete challenge in
terms of deployment. Although the MAN and Siamese architectures offer excellent performance,
they require resources that may not be available on embedded or real-time systems. This calls
for careful reflection on the scalability and optimization of models for practical use in production
environments.

5.3 Possible improvements and extensions

The future directions of this work are broad and varied. On the architectural level, a first
avenue involves the introduction of long-term or hierarchical memory mechanisms, to retain
persistent traces of objects across extended temporal windows. This could be achieved through
adaptive cache mechanisms or recursive structures such as Long-Term Memory Networks.

A second relevant extension concerns multimodal fusion: the integration of additional
sensory channels (e.g., weight data, sounds, temperature) could enhance object discrimination
in ambiguous cases, especially for similar materials.

Another promising area for improvement involves the automatic generation of train-
ing data. Particularly for Siamese networks, the adoption of auto-labeling techniques or self-
supervised learning guided by temporal coherence could drastically reduce annotation costs, mak-
ing the system more scalable. In parallel, exploring semi-supervised or weakly-supervised
strategies would allow for more efficient use of the large volume of unlabeled data available.

93

Conclusions and Future Work

In terms of adaptability, the introduction of continual learning or few-shot learning
capabilities would be strategic: a system capable of updating itself online — retaining memory
of previously seen objects and adapting to new classes or conditions — would be especially useful
in dynamic environments such as urban waste management.

Additionally, a possible development direction includes the systematic exploration of
architectural variants and hyperparameter optimization: modifying the depth of the
backbone, experimenting with alternatives to triplet loss (e.g., quadruplet loss, N-pair loss), or
exploring alternative attention mechanisms (e.g., Performer, Linformer) could lead to further
performance improvements.

From an application perspective, the system could be extended to broader tasks, such as
material recognition, verification of proper disposal, or automatic estimation of vol-
ume/fill level. An integrated system capable of tracking, classifying, and providing user feed-
back would be a valuable tool to promote recycling and improve waste management efficiency.

Finally, it will be essential to carry out model optimization for deployment, through
techniques such as pruning, quantization, or knowledge distillation, to ensure compatibility with
the strict hardware constraints typical of embedded and real-time applications.

In conclusion, the work carried out has allowed for a structured exploration of the temporal
instance recognition problem, comparing different approaches and helping to clarify the limita-
tions and potential of the main architectural solutions. The experimental evidence, the challenges
addressed, and the improvement opportunities identified provide a solid foundation for future
developments, with promising applications both in research and in concrete industrial scenarios.

94

Bibliography

[1] R. Girshick, «Rich feature hierarchies for accurate object detection and semantic segmen-
tation», Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2014.

[2] R. Girshick, «Fast r-cnn», Proceedings of the IEEE International Conference on Computer
Vision (ICCV), 2015.

[3] S. Ren, K. He, R. Girshick, and J. Sun, «Faster r-cnn: Towards real-time object detection
with region proposal networks», IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 39, no. 6, pp. 1137–1149, 2016.

[4] Z. Zhao, P. Wang, S. Zhang, et al., «Object detection in 20 years: A survey», arXiv preprint,
2019. eprint: 1905.05055.

[5] W. Liu, D. Anguelov, D. Erhan, et al., «Ssd: Single shot multibox detector», in European
Conference on Computer Vision (ECCV), Springer, 2016.

[6] L. Weng, «Object detection for dummies part 3: R-cnn family», lilianweng.github.io, 2017.
[Online]. Available: https://lilianweng.github.io/posts/2017- 12- 31- object-
recognition-part-3/.

[7] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, «You only look once: Unified, real-
time object detection», in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

[8] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, «Yolov4: Optimal speed and accuracy of
object detection», arXiv preprint, 2020. eprint: 2004.10934.

[9] G. Jocher et al., Yolov5 by ultralytics, https://github.com/ultralytics/yolov5, 2020–
2023.

[10] Z. Zou, Z. Shi, Y. Guo, and J. Ye, «Object detection with deep learning: A review», IEEE
Transactions on Neural Networks and Learning Systems, vol. 30, no. 11, 2019.

[11] C. Huang and e. a. Li, «Yolov4-based method for object detection in low-illumination
environments», Journal of Sensors, 2022.

[12] Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, and D. Ren, «Distance-iou loss: Faster and better
learning for bounding box regression», AI Conference on Artificial Intelligence, vol. 34,
no. 07, 2020.

[13] Z. Tian, C. Shen, H. Chen, and T. He, «Fcos: Fully convolutional one-stage object detec-
tion», in Proceedings of the IEEE International Conference on Computer Vision (ICCV),
2019.

[14] X. Zhou, D. Wang, and P. Krähenbühl, «Objects as points», arXiv preprint arXiv:1904.07850,
2019.

[15] H. Law and J. Deng, «Cornernet: Detecting objects as paired keypoints», in Proceedings
of the European Conference on Computer Vision (ECCV), 2018.

[16] K. Simonyan and A. Zisserman, «Very deep convolutional networks for large-scale image
recognition», arXiv preprint, 2014. eprint: 1409.1556.

95

1905.05055
https://lilianweng.github.io/posts/2017-12-31-object-recognition-part-3/
https://lilianweng.github.io/posts/2017-12-31-object-recognition-part-3/
2004.10934
https://github.com/ultralytics/yolov5
1409.1556

BIBLIOGRAPHY

[17] K. He, X. Zhang, S. Ren, and J. Sun, «Deep residual learning for image recognition»,
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

[18] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, «Feature pyramid
networks for object detection», in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017.

[19] X. Ma, Y. Li, Z. Yang, and H. Lin, «Dsyolo-trash: Object detection and tracking for
intelligent waste sorting systems», Preprints.org, 2024.

[20] T. Schneider, R. Urban, et al., «Deep learning-based object recognition and segmentation
using cnns for industrial environments with lidar projection», Sensors, vol. 24, no. 2483,
2024.

[21] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, «Simple online and realtime tracking»,
in 2016 IEEE International Conference on Image Processing (ICIP), IEEE, 2016.

[22] N. Wojke, A. Bewley, and D. Paulus, «Simple online and realtime tracking with a deep
association metric», in 2017 IEEE International Conference on Image Processing (ICIP),
2017, pp. 3645–3649. doi: 10.1109/ICIP.2017.8296962. [Online]. Available: https:
//doi.org/10.1109/ICIP.2017.8296962.

[23] K. Koufos, T. Protopsaltis, S. Vrochidis, and I. Kompatsiaris, «A comprehensive benchmark
and analysis for person re-identification embeddings in multi-object tracking», Proceedings
of the 18th International Conference on Informatics in Control, Automation and Robotics
(ICINCO), 2021.

[24] K. Zhou, Y. Xiang, and S. Gong, «Omni-scale feature learning for person re-identification»,
in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019.

[25] J. Cai, M. Xu, W. Li, et al., «Memot: Multi-object tracking with memory», in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

[26] R. Gao and L. Wang, «Memotr: Long-term memory-augmented transformer for multi-object
tracking», in Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), 2023.

[27] P. Liao, F. Yang, D. Wu, and B. Liu, «Fasttracktr: Towards fast multi-object tracking with
transformers», Multimedia Systems, 2025, Preprint.

[28] X. Zhou, T. Yin, V. Koltun, and P. Krähenbühl, «Global tracking transformers», in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2022.

[29] A. Vaswani, N. Shazeer, N. Parmar, et al., «Attention is all you need», in Advances in
neural information processing systems, vol. 30, 2017.

[30] A. Dosovitskiy, L. Beyer, A. Kolesnikov, et al., «An image is worth 16x16 words: Trans-
formers for image recognition at scale», in International Conference on Learning Repre-
sentations (ICLR), 2021.

[31] G. Bertasius, H. Wang, and L. Torresani, «Is space-time attention all you need for video
understanding?», in International Conference on Machine Learning (ICML), 2021.

[32] Z. Liu, J. Ning, Y. Cao, et al., «Video swin transformer», Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

[33] S. Li, S. Bak, P. Carr, and X. Wang, «Diversity regularized spatiotemporal attention for
video-based person re-identification», arXiv preprint arXiv:1803.09882, 2018.

[34] A. Graves, G. Wayne, and I. Danihelka, «Neural turing machines», arXiv preprint arXiv:1410.5401,
2014.

[35] A. Graves, G. Wayne, M. Reynolds, et al., «Hybrid computing using a neural network with
dynamic external memory», Nature, vol. 538, no. 7626, 2016.

[36] J. Gao, K. Zeng, Y. Chen, and R. Nevatia, «Motion-appearance co-memory networks for
video question answering», in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2018.

96

https://doi.org/10.1109/ICIP.2017.8296962
https://doi.org/10.1109/ICIP.2017.8296962
https://doi.org/10.1109/ICIP.2017.8296962

BIBLIOGRAPHY

[37] Z. Fang, L. Xu, and C. Xu, «Dawn: Temporal object tracking through memory enhanced
attention for video question answering», in Proceedings of the IEEE International Confer-
ence on Computer Vision, 2019.

[38] X. Wu, C. Liu, and Z. Wang, «Memvit: Memory-augmented video transformer for efficient
long-term video understanding», arXiv preprint arXiv:2205.12559, 2022.

[39] S.-Y. Chen et al., «Flexible hardware architecture of hierarchical k-means clustering for
large cluster number», Journal of VLSI Signal Processing, 2011.

[40] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, «Signature verification using
a "siamese" time delay neural network», in Advances in neural information processing
systems, 1993.

[41] S. Chopra, R. Hadsell, and Y. LeCun, «Learning a similarity metric discriminatively, with
application to face verification», in 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), IEEE, vol. 1, 2005.

[42] F. Schroff, D. Kalenichenko, and J. Philbin, «Facenet: A unified embedding for face recog-
nition and clustering», Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR), 2015.

[43] R. Hadsell, S. Chopra, and Y. LeCun, «Dimensionality reduction by learning an invariant
mapping», in 2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), IEEE, vol. 2, 2006.

[44] A. Hermans, L. Beyer, and B. Leibe, «In defense of the triplet loss for person re-identification»,
in arXiv preprint arXiv:1703.07737, 2017.

[45] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, «Arcface: Additive angular margin loss for deep
face recognition», in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019.

[46] Y. Sun, L. Zheng, Y. Yang, Q. Tian, and S. Wang, «Circle loss: A unified perspective of
pair similarity optimization», in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2020.

[47] Y. Zheng, Q. Liu, and W. Hu, «Re-idformer: Transformer-based architecture for video ob-
ject re-identification», Journal of Visual Communication and Image Representation, 2023.

[48] Y. Luo, W. Chen, and Z. Fang, «Crossformer: Cross-temporal transformer for video object
matching in streaming applications», in Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV), 2024.

[49] S. Zheng, X. Xu, and W. Lin, «Visual tracking via hybrid memory and metric alignment»,
Neurocomputing, vol. 525, 2023.

[50] T. Luo, J. Zhang, and J. Hu, «Temporal-aware metric learning for object re-identification
in streaming environments», in Proceedings of the IEEE/CVF Winter Conference on Ap-
plications of Computer Vision (WACV), 2024.

[51] O. Adedeji and Z. Wang, «Wastenet: A lightweight deep learning model for waste classifi-
cation on edge devices», Procedia Manufacturing, vol. 35, 2020.

[52] R. Kunwar and T. Alade, «A review on smart waste bin systems using computer vision
and iot», Sustainability, vol. 16, no. 2, 2024.

[53] C. Kuang, M. Zhao, and H. Li, «Optimizing yolov5 for real-time waste classification in
indoor and outdoor scenarios», Journal of Environmental Informatics Letters, vol. 3, no. 1,
2024.

[54] S. Mithra and S. Raj, «Yolobin: Intelligent waste classification and incentive-based recycling
system», International Journal of Computer Applications, vol. 177, no. 12, 2025.

[55] X. Ma, Y. Li, Z. Yang, and H. Lin, «Dsyolo-trash: Object detection and tracking for
intelligent waste sorting systems», Preprints.org, 2024.

[56] H. Wang, L. Zhang, Y. Chen, and Y. Liu, «A yolo-based waste classification network with
attention mechanisms for intelligent garbage sorting», Mathematics, vol. 12, no. 14, p. 2185,
2023. doi: 10.3390/math12142185.

97

https://doi.org/10.3390/math12142185

BIBLIOGRAPHY

[57] M. Abo-Zahhad, H. El-Bakry, and A. Khalifa, «Smart overflow detection and classification
of waste in bins using edge ai and iot», Sensors, vol. 25, no. 1, 2025.

98

	List of Figures
	List of Tables
	Introduction
	Application context and motivations
	Thesis objectives
	Existing technologies and current limitations
	Main contributions

	State of the Art
	Object Detection: methods and limitations
	Visual tracking and Re-Identification
	Visual memory and Memory-Based architectures
	Metric learning and Siamese Networks
	Computer vision-based waste management systems

	Dataset and Methodology
	Description of the original Dataset
	Relabeling and Annotation structure
	Preprocessing and mask management
	Initial approach: Manual image comparison
	Architecture 1: MLP on cosine similarity
	Integration into the inference pipeline
	Decision making through learned thresholds

	Architecture 2: Memory-Augmented Network
	Using the Transformer as memory
	Matching with Masks or Bounding boxes

	Architecture 3: Siamese Network
	Pair/Triplet generation and training
	Loss functions, training strategies, and tracking phase

	Hyperparameters and experimental setup

	Results and Discussion
	Experimental results
	Baseline
	Memory-Augmented Network (MAN)
	Siamese Network
	Comparison between architectures

	Qualitative visualizations of the results
	Error analysis
	Critical reflections on the proposed solutions
	Applications and practical implications in industrial contexts

	Conclusions and Future Work
	Summary of the work
	Strengths and limitations
	Possible improvements and extensions

	Bibliography

