POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

| ey, S e . o
\‘."l" i s IIIII i’ d I To rl no

#
A\
\\ 1859 s

Master’s Degree Thesis

In collaboration with University of Calgary

An In-Depth Study of Smart Building
Systems: Firmware Analysis and Device
Emulation

Supervisors Candidate
Prof. Riccardo SISTO Gabriele GARDOIS
Prof. Lorenzo DE CARLI

July 2025

Summary

The Internet of Things (IoT) devices have become key components in modern
systems, serving a diverse range of functions, including environmental monitoring,
management of critical appliances and automation of processes. This study presents
a comprehensive security assessment of IoT devices deployed in Building Automa-
tion Systems (BAS), with a focus on firmware analysis and dynamic emulation
techniques.

As Smart Buildings evolve and increasingly connect to the internet, security
practices often do not keep pace, resulting in the deployment of vulnerable systems
with insufficient protection. This research introduces a novel dataset, currently
missing in the field, comprising 56 firmware images exclusively associated with
BAS-related IoT devices. A tailored methodology was developed to emulate
these firmware images, achieving basic emulation for 60% of them. Full network
environments were established for 15 images, enabling testing of network services.

Additionally, static analysis revealed an average of 1,570 Common Vulnerabilities
and Exposures (CVEs) per firmware image. Further examination of kernel and GCC
toolchains versions shed light on vendors’ practices in selecting and maintaining
core software components.

The goal of this research is to collect firmware, develop an automated analysis
methodology, identify software vulnerabilities, investigate firmware components, and
conduct case studies to evaluate the emulation process. These findings contribute
new empirical data to the domain of Smart Building security, providing a foundation
for future research and highlighting the urgent need for improved security standards
in the development and deployment of IoT devices.

11

Ringraziamenti

A mia nonna Margherita

Dedico questo spazio al ringraziamento delle persone che in vari modi hanno
contribuito alla creazione di questo elaborato o che mi hanno aiutato lungo il mio
percorso universitario e di vita.

Ringrazio i professori Riccardo Sisto e Lorenzo De Carli per avermi permesso
di effettuare una bellissima esperienza presso 1'universita di Calgary e di aver
contribuito alla realizzazione di questo lavoro, garantendomi sostegno e guidandomi
nella ricerca.

Ringrazio di cuore le due persone che sono il mio punto di riferimento nella vita,
mia mamma e mio papa. Mi avete sostenuto lungo questo impegnativo percorso
universitario, permettendomi di raggiungere l’ambizioso traguardo della laurea.
Tuttavia, vi voglio ringraziare soprattutto perché mi avete cresciuto e aiutato in
tutte le fasi della vita a diventare la persona che sono oggi.

A Giulia, la mia sorella preferita, grazie per essermi stata da guida fin dai miei
primi passi, quando io spingevo quella coccinella e tu, da vero capitano, ti limitavi
a guidarla. Sei fonte d’ispirazione e di tanti miei sorrisi.

Ringrazio tutti i miei amici, parte integrante della mia vita. Vi ringrazio non perché
mi abbiate spronato a studiare o consigliato con particolare saggezza, ma perché,
togliendo tempo allo studio avete dato vita a quella parte di me che altrimenti non
saprei esprimere. Ringrazio Pol, con cui sono cresciuto, per essere sempre stato al
mio fianco e aver condiviso tantissime avventure. So di poter sempre contare sul tuo
appoggio, come tu sul mio, e ti sono grato per avermi spinto ad andare oltre ai miei
limiti. Ringrazio Ricuz per essere il mio consigliere di fiducia e per saper sempre
trovare il lato positivo delle cose. Ringrazio Dado, che non si tira mai indietro
quando c’e bisogno di aiuto, consigli o di uscire. Ringrazio Albi, perché sa sempre
come tirarmi su il morale e rendere ogni esperienza un’avventura. Ringrazio Andre
per le lunghe chiacchierate, i consigli e le riflessioni sulla vita. Ringrazio Ferle
per avermi insegnato la pazienza; non ottenere mai una tua risposta a messaggi
e telefonate mi ha permesso di padroneggiare la frustrazione e affrontare con piu
serenita esami e avversita.

Ringrazio il mio compagno di avventure canadesi, Francesco, per tutto il suo aiuto
e la sua amicizia.

Infine, un ringraziamento speciale va alle mie nonne, per I’amore che mi hanno
sempre dimostrato.

Table of Contents

List of Tables
List of Figures
Acronyms

1 Introduction
1.1 Contributions
1.2 Thesis Outline

2 Background and Related Work

2.1 Background
2.1.1 Smart Buildingso oo
2.1.2 Security threats o

2.2 Related Work

3 Dataset

3.1 Motivation and Overview
3.1.1 BAS Vendors
3.1.2 Firmware acquisition
3.1.3 Firmware preliminary analysis

3.2 Dataset structure o
3.2.1 Firmware collection
3.2.2 firmwareDB.csv
3.2.3 Scripts

3.3 The dataset in numbers
3.3.1 Overview
3.3.2 Protocols

4 Methodology
4.1 Analysis methodology oL

VII

VIII

XI

16
16
17
19
20
23
23
23
24
24
24
27

31

4.1.1 Fetching Firmware,
4.1.2 Firmware extraction
4.1.3 Firmware analysis L.
4.1.4 Firmware emulation,
4.2 Scaling the analysis L
421 EMBA
4.2.2 Supporting scripts
Results
5.1 Statistics
5.1.1 High level data analysis
5.1.2 Statistical Analysis
5.1.3 Kernel analysis oL
514 GCCanalysis
5.2 Case Studies
5.2.1 Report on Johnson Controls FW-8-8V-14 V1.0b16i
5.2.2 Report on Johnson Controls FG V2.0b52
5.2.3 Case studies summary
Discussion
6.1 Implications
6.2 Limitations of our work oL
6.3 Future Work Lo

7 Conclusions
A Dataset Binwalk commands
B Data summary

C EMBA commands

Bibliography

VI

74

77

30

83

List of Tables

3.1
3.2

3.3

5.1
5.2

B.1
B.2

Number of firmware grouped by manufacturer 25
Device models per manufacturer and their respective number of

firmwareo 26
Summarizing dataset 30
Number of firmware grouped by architecture 42
Top 10 most frequent CWE identifiers in the data set 49
Vulnerabilities summary in the analysed firmware 7
Services detected in the emulated firmware, during the startup phase

and by Nmap in a network scan 79

VII

List of Figures

2.1

3.1
3.2
3.3
3.4

5.1
5.2
5.3
5.4
9.5
0.6

5.7
5.8

Smart building network topology L.

Entropy Analysis of Unencrypted and Uncompressed Firmware . . .
Entropy Analysis of Firmware: Encrypted vs. Compressed
Vendors and Architectures
Frequency of Protocols in the Dataset

Comparison between CVSSv2 and CVSSv3 score.
CVSSv3 CVEs distribution
Firmware by year in the dataset
Firmware split by kernel version and year
Median kernel integration delay
Kernel support compared to firmware release. In this plot is repre-
sented in each row a Linux kernel span life, from its release to its
end of life The scattered points represent the number of firmware
released by year The analysis date line represents when the analysis
has been conducted oL L
Firmware split by GCC version and year
Median GCC integration delay

VIII

Listings

5.1

5.2

Al
A2
A3
C.1
C.2
C.3

Nmap result FW-8-8V-14 V1.0b16i 61
Nmap result FG V2.0b52, 64
Binwalk analysis of CC100 v4.6.3 74
Binwalk analysis of FS V3.0b62 75
Binwalk analysis of QMX7.E38 V01.16.53.44 75
QEMU command 81
Kernel Command-Line Parameters 81
Passwd file. 82

IX

Acronyms

Al
Artificial Intelligence

BAS
Building Automation System

BMS
Building Management System

CVE

Common Vulnerabilities and Exposures

CWE

Common Weakness Enumeration

DNS

Domain Name System

FTP

File Transfer Protocol

HTTPS

Hypertext Transfer Protocol Secure

HTTP
Hypertext Transfer Protocol

IB
Intelligent Building

XI

IoT
Internet of Things

1P

Internet Protocol

LAN
Local Area Network

MAC

Medium Access Control

MQTT
MQ Telemetry Transport

NAT
Network Address Translation

RAM

Random Access Memory

SB
Smart Building

SoC
System on a Chip

SSH
Secure Shell Protocol

TCP

Transmission Control Protocol

UDP

User Datagram Protocol

VLAN
Virtual Local Area Network

XII

VM
Virtual Machine

WAN

Wide Area Network
Wi-Fi

Wireless Fidelity
WSL

Windows Subsystem for Linux

XIII

Chapter 1
Introduction

Smart Buildings (SBs) are rapidly increasing in popularity all over the world, driven
by the increasing integration of Internet of Things (IoT) technologies into building
operations. By embedding IoT devices into their infrastructure, modern buildings
can achieve a high level of automation and responsiveness. These systems are
being deployed in a wide variety of contexts: in offices and residential spaces, they
manage heating, ventilation, and access control; in airports, they oversee window
shutters, smoke detectors, surveillance systems, and fire alarms; in hospitals, they
control elevators, lighting, and air conditioning; and in factories and greenhouses,
they monitor and adjust parameters such as temperature, humidity, and other
environmental variables.

The ability to collect real-time environmental metrics, combined with data
analysis, enables significant optimization of resource consumption, reducing energy
and water usage while providing user comfort. The seamless integration of smart
technologies promotes more adaptive and efficient environments, allowing occupants
to flexibly configure their spaces.

At the heart of these buildings lies a complex network of smart devices consisting
of sensors, actuators and controllers. This infrastructure is managed by a Building
Management System (BMS), which is responsible for orchestrating, monitoring,
coordinating, and responding to environmental conditions. These ecosystems
are often highly heterogeneous, comprising devices from multiple vendors and
incorporating both modern and legacy technologies. In many cases, these systems
evolve over time through incremental upgrades, leading to fragmented architectures.

With the advent of internet connectivity for Building Automation Systems
(BAS), new capabilities have emerged: remote monitoring, predictive maintenance,
and user-driven control. Yet this increased connectivity also opens the door to
cyber threats. Many BAS implementations expose critical infrastructure to the
internet without adequate security measures, making them vulnerable to remote
attacks [1, 2, 3, 4].

Introduction

In this context, it is essential to conduct a security-focused assessment of
commercially available BMS devices. Analysing firmware components in depth
can uncover critical vulnerabilities and poor design choices. To facilitate such
research, this study presents a novel dataset and a structured methodology to
support automated security assessments of smart building firmware. The goal is
to contribute to the research in the realm of SB security by offering insightful
evaluations, findings, and resources that can aid future investigations.

1.1 Contributions

This research aims to investigate the security landscape of Smart Buildings by
reviewing relevant scientific literature and conducting an independent analysis of
[oT firmware. To this end, detailed information about BMS was gathered, offering
a comprehensive overview of key technologies and innovations in the field. The
study places particular emphasis on security issues that hinder the safe development
of smart infrastructures, and highlights the widespread vulnerabilities found in IoT
devices deployed in such environments.

A central contribution of this work is the creation of a firmware dataset specifi-
cally tailored to the domain of BAS resource notably lacking in existing literature.
The dataset comprises 56 firmware images from four different vendors, weight-
ing approximately 14 GB. It is intended as a starting point for future research,
providing ready-to-use material for analysis and experimentation.

Another core aspect of the research is the development of a methodology for
assessing firmware security. This process encompasses multiple phases: acquisition,
unpacking, reverse engineering, and ultimately, firmware emulation to enable
dynamic analysis. Furthermore, the process was scaled to process the whole
dataset.

A security evaluation was performed on the firmware samples collected. By
identifying Common Vulnerabilities and Exposures (CVEs), the study outlines the
current state of security within the smart building ecosystem. This evaluation
also includes an assessment of the overall cybersecurity posture, supported by
observations of security trends over time.

Additionally, two case studies were conducted using penetration testing tech-
niques to evaluate the security perimeter of selected firmware. These case studies are
presented in a tutorial-like format, providing an in-depth, step-by-step walkthrough
of the analysis process and demonstrating how to replicate the methodology.

Finally, the study concludes with a discussion of key challenges and urgent
actions required to strengthen security in the BAS domain. It highlights areas
for improvement and offers guidance for advancing research in the field of smart
building cybersecurity.

Introduction

1.2 Thesis Outline

This section provides a brief overview of the discussed topics for each chapter of
this thesis.

Chapter 2:

Chapter Two offers an introduction to Smart Buildings by examining their key
functionalities. It analyses the systems that constitute this infrastructure and
discuss how they are structured. The discussion then focuses on the devices
employed, the actions they perform, and the communication protocols commonly
used in BAS. The background section concludes with an overview of the main
security threats that can compromise the reliability and integrity of these systems.

Following this, the thesis presents the related work section, which aims to provide
a comprehensive overview of the main challenges in this field through a review
of the most relevant academic literature. This analysis covers various aspects of
BMS, with particular attention to the efforts required to conduct dynamic firmware
testing.

Chapter 3:

Chapter Three focuses on the creation of the dataset. It begins by analysing the
current state of vendors operating in the BAS domain, with particular attention
to emerging trends in firmware distribution. The chapter then details the process
of acquiring firmware from various vendor websites and the methods employed to
carry out this task.

The discussion continues with an explanation of the filtering process used to
distinguish between encrypted, compressed, and unprocessed firmware samples.
This is followed by a description of the organizational structure developed to store
the firmware and how it supports subsequent operations. Finally, the chapter
presents statistics on the types of devices and communication protocols included in
the dataset.

Chapter 4:

Chapter Four outlines the methodology used to process the firmware collected in
the dataset. The chapter details the approach, which consists of four main steps:
firmware fetching, firmware extraction, firmware analysis, and firmware emulation.
Each of these steps is described in terms of the actions performed, the tools utilized,
and the challenges encountered during the analysis process.

Finally, to process all the firmware samples in the dataset, this approach is
automated using the EMBA tool [5], a framework designed to streamline firmware

3

Introduction

analysis and facilitate the creation of emulation environments. The chapter provides
an explanation of the tool’s functionalities, as well as some of its limitations.

Chapter 5:

Chapter Five presents the results obtained from the conducted research. It is
divided into two main sections. The first section provides aggregated results in
the form of statistics and analyses of components such as the kernel. A detailed
explanation of the collected CVEs and their associated CWEs is also included.

The second section presents two case studies, each corresponding to a specific
firmware sample. These analyses explore the status of the emulations generated by
processing the firmware, highlighting some troubleshooting interventions required
to fully access the system’s functionality.

Chapter 6:

Chapter Six further elaborates on the implications of our results. It discusses the
limitations of the work, identifying areas for potential improvement. Finally, the
chapter offers recommendations for future research in this field, suggesting ways to
enhance the depth and scope of the study.

Chapter 7:

The final chapter provides a summary of the work conducted throughout this
thesis, with a focus on the contributions made by the study. It summarizes the
key findings, highlights the innovations introduced, and presents some noteworthy
reflections on the research process.

Chapter 2

Background and Related
Work

This chapter provides a brief introduction about smart buildings and a literature
review about how these systems work and how to assess their security.

2.1 Background

2.1.1 Smart Buildings

Smart buildings are structures that automate part of their functions through
electronic devices, making them cyber-physical systems. This need arises from the
necessity of managing complex buildings such as hospitals, airports, residences, and
offices, which must efficiently handle resources like ventilation, lighting, and heating.
In this context, computing devices such as sensors, actuators, and controllers play
a crucial role by collecting data, automating actions, and continuously monitoring
the environmental conditions of the building. Among these devices there are heat
sensors, photocells, pressure sensors, cameras, smoke detectors, card readers and
many others. These devices encompass a wide range of components, such as heat
sensors, photocells, pressure sensors, cameras, smoke detectors, card readers, fire
alarms, door locks and others.

Within the building, these devices are distributed across a network and they
are capable of sensing the environment and responding to the users needs by
undertaking actions. The core of this network is the BMS, consisting of both
software and hardware components that function as the “brain” of the entire
infrastructure. The BMS can be programmed with specific parameters and actions
and is then able to enforce these through the network of devices under its control.
To facilitate management, this architecture is divided into subsystems, which

5

Background and Related Work

include: Heating, Ventilation, and Air Conditioning (HVAC), lighting controls,
hydraulic systems, fire safety subsystems, electrical systems, security and access
control, and CCTV.

The primary goal of these buildings is to optimize energy consumption, ensure
the enforcement of safety measures, improve comfort within the spaces, and provide
immediate responses in case of emergencies. Additionally, the connection of these
systems to the internet enable remote maintenance, security image monitoring, and
diagnostic data access outside the building. This integration allows buildings to be
more efficient, environmentally friendly, safe, and effective.

Devices

For an IB to operate effectively, a variety of devices are required. These include
sensors, actuators, and controllers, each functioning at distinct levels within the
system. The scientific literature typically identifies three layers, each responsible
for specific functionalities [3, 6, 7]. These levels are:

o Field Level: This is the lowest level of the system, where sensors and
actuators are located. These devices are responsible to collect metrics about
the environment, tracking the location of people within the building, and
providing responses. In essence, they serve as the “eyes” and “arm” of the
system.

o Automation Level: This intermediate layer predominantly consists of con-
trollers. Their primary role is to collect and aggregate data from field-level
devices. They are often responsible for managing specific subsystems, execut-
ing predefined routines, and monitoring the status of the equipment under
their control.

e Management Level: This is the topmost layer, where the entire system can
be accessed and managed. It consolidates data from all subsystems, performing
analysis and generating reports. This level is also responsible for logging
activities, archiving data, and forecasting future actions. Administrators
interact with the system at this level to review statistics, modify system
parameters, and set rules.

The devices within SBs serve a variety of purposes and can range from dedicated
computers designed for specific tasks to very small sensors, often measuring just a
few centimeters. These devices are commonly referred to as IoT devices, and they
are vital to the operations of a BAS. Although their functions are mission-critical,
they are subject to several limitations.

Many of these devices operate in environments where reliable power supply is not
always available, which makes them dependent on batteries. This reliance imposes

6

Background and Related Work

constraints on their operational lifespan and computational power. Additionally,
their compact form factor limits processing capabilities and memory capacity, as
they are typically equipped with low-power processors and minimal storage. These
technical limitations, when combined, render IoT devices particularly attractive
targets for cyber-attacks. Moreover, from a business perspective, security is
often perceived as a cost weighed against its potential impact and likelihood of
exploitation. As a result, companies frequently make trade off during development,
opting to reduce costs and accelerate time-to-market by skipping the implementation
of comprehensive security best practices. This approach worsen the inherent
constraints of loT devices, increasing their vulnerability when manufacturers choose
not to invest adequate resources in security during the design and development
phases.

BAS Protocols and Network Topology

In smart buildings, IoT devices are interconnected through a network, and commu-
nication between them is crucial to carry out operations effectively. Within the
context of BMS, both open and proprietary protocols are widely used to enable
these communications [8, 9, 10, 4]. Below is a list of some of the most commonly
used protocols:

» Wired (with potential wireless support): BACnet, KNX, LonWorks, DALI,
Mbus, Modbus

o Wireless (which may support wired protocols or manage devices directly):
ZigBee, EnOcean, Z-Wave

BACnet, KNX, and LonWorks are the most widely used for managing communi-
cations across all levels, from management level to field level operations. The other
protocols are typically designed for communication at the field level or automation
level and generally lack the structure required to handle a comprehensive Building
Automation and Control System.

In most BMS implementations, a single communication protocol is rarely used
across the entire infrastructure. This is primarily because, as previously noted, indi-
vidual protocols are typically designed to serve specific layers, such as management,
automation, or field levels, rather than all levels simultaneously. Furthermore,
automated systems are often expanded or upgraded incrementally over time, which
results in the integration of components that rely on different communication
protocols. To illustrate this multi-protocol approach, an example network topology
has been developed and is presented in Figure 2.1, based on a review of the scientific
literature [4, 11, 7, 3].

The network topology consists of two networks interconnected via an intranet-
work, where the central management system resides. This configuration aligns with

7

Background and Related Work

INI

>

Local Management BEMD
PC
’Q Firewall VLAN
s
BACnet
BAS sbftware BACne!l BAChet olior BACnet/MSTP
management - = gateway controller
KNX KNX o) 0— &
- LC & PS Backbone coupler ™N) <)
ﬁll— | o] = Smart Alarm Air quality
! : I Temperature Humidity Vibration - Lightbulb sensor
Firewall Y"AN | sensor KNX Elevator
Central sensor sensor |
media coupler
management
server i %
Photocell
o Shutters
B
Firewall VLAN Smartdcard"'.: Door lock
@J g reader zigBee .
router -
g BBMD BACnet } - N,
Local Management I \, ZigBee .
PG ontroller - " router Security
. I camera
ModBus BACnet BACnet ZigBee -3l
=) < gateway router coordinator N
. St == | BACnet | ZigBee ZigBee
Boiler ajr Conditioning Fan Heater rouer pronitor

Figure 2.1: Smart building network topology

realistic scenarios, as BAS often need to manage multiple buildings. Additionally,
the intranetwork introduces networking challenges that can be leveraged to high-
light important aspects, such as the use of firewalls and VLANs, which should be
implemented as security layers.

For the management and automation layers, BACnet has been selected as the
primary protocol. BACnet facilitates communication between the central server and
the main controllers across subnetworks. To manage broadcast traffic between these
subnetworks, BACnet Broadcast Management Devices (BBMDs) are deployed.

The field layer in this topology utilizes a variety of protocols to emphasize the
heterogeneous nature of a SB. To ensure interoperability between these diverse
protocols, the use of gateways and routers is critical. In the context of BAS,
gateways are devices that connect networks using different protocols, effectively
mapping information between two domains. Routers, on the other hand, enable
communication between networks that employ the same high-level protocol but
differ in the underlying medium (e.g., BACnet/IP to BACnet/MSTP).

Sensors and actuators are deployed within subsystems to handle specific tasks.
These devices communicate with controllers that are compatible with the corre-
sponding protocols in the hierarchy. The controllers are responsible for collecting

8

Background and Related Work

data and transmitting it to higher-level controllers through gateways and routers,
facilitating data exchange across the network.

2.1.2 Security threats

The ability of SBs to collect information about the building, its environments,
and its users, as well as to take actions such as regulating heating, ventilation,
and controlling access to areas, is both their greatest strength and their greatest
vulnerability. This is because the information they manage is highly sensitive, and
the same applies to the actions they can perform. Cyber-physical systems, such as
those in SBs, are inherently risky, as demonstrated by the Google Australia Office
Attack [1] and Finland Heating System Attack [2] cases. By compromising the IT
side of these systems, physical damage can happen.

A list of potential attacks on an IB may involve the following data and actions:
tracking users movements and habits, manipulating video streams or alarms, stealing
personal and environmental data, locking and unlocking doors, and controlling
elevators, ventilation, and heating systems. This makes SBs a perfect target for
being tampered, in order to steal their high valuable information or to hijack their
mission-critical actions in order to take control over the building, causing significant
damages.

Thus, creating secure I'T infrastructures to manage operations within BAS
should be a primary goal for those developing software and hardware for such
systems. However, looking on the internet for connected devices, using search
engines like BinaryEdge, Shodan, ZoomEye, and Censys reveals many systems
connected without adequate protection.

The root cause of this issue can be attributed to three main factors: buildings
using outdated devices that are not easily replaceable, protocols lacking proper
security measures, and IoT devices that do not adhere to necessary security
standards.

2.2 Related Work

Smart Building Technologies and their Security

Verma et al. offers a comprehensive overview [12] of the state-of-the-art technolo-
gies in smart buildings. Smart devices represent a new frontier in environmental
monitoring, enabling optimized control of heating, ventilation, and air conditioning
(HVAC), artificial lighting, daylighting systems. BMS can optimize energy con-
sumption, support remote monitoring, and assess the structural health of buildings.
However, as cyber-physical systems, these infrastructures can potentially cause
harm if they fail or are unable to deliver critical services.

9

Background and Related Work

Wendzel [13] spotlights risks and vulnerabilities affecting IoT devices in SBs. The
communication standards currently employed in SB environments were not originally
designed to support exposure to Internet-based communications. Yet, growing
automation trends are increasingly driving these systems toward remote connectivity.
This issue is exacerbated by the presence of legacy devices in these systems, lacking
the computing power necessary to implement modern security measures. Wendzel
emphasize the need for collaboration between academia and industry to develop
comprehensive solutions for both new and legacy smart buildings.

Similarly, Ciholas et al. [6] underscore that the earliest automated buildings
were never intended to be Internet connected. While remote connectivity enables
centralized data management, inter-building communication, and remote main-
tenance introduces significant cyber-attack vectors. Smart buildings, as complex
networks of interconnected nodes, must accommodate a wide variety of devices
and protocols. This heterogeneity poses substantial security challenges, especially
given that the main protocols used in Intelligent Buildings (IB) were not originally
designed with security in mind. The authors argue that collaboration between
academia and industry, as well as among companies themselves, is critical to audit
existing protocols and devices and to develop better standards.

To improve the security level of BAS Younus et al. [14] propose to leverage
Software Defined Networking (SDN) technologies. SDN enables centralized network
control and offers several advantages, including flexible network configuration,
centralized enforcement of security policies, and global visibility across the sys-
tem. These features can simplify operations and reduce overall system complexity.
Despite its numerous advantages, centralized approach could also lead to a single
point of failure taking away resilience and fault recoverability to the system.

BAS protocols and security issues

Lohia et al. [8] present an overview of several communication protocols commonly
used in IB, including LonWorks, KNX, BACnet, DALI, EnOcean, and Zigbee. Their
comparative analysis focuses on key aspects such as network topology, transmission
medium, communication modes, and security features. The authors also emphasize
the role of gateways, devices that enable integration between different protocol,
which can introduce security vulnerabilities into the system if not properly managed.

Ferreira et al. [9] investigate the issue of interoperability among protocols within
SBs. Thet split the devices within IB into three hierarchical layers: management
level, automation level, and field level. Their analysis focuses on identifying which
protocols, particularly BACnet, KNX, and LonWorks, is most suitable for each layer.
The authors conclude that interoperability is essential in BAS, as a single protocol
is often insufficient to effectively span all layers. A combination of protocols tends
to yield better performance and flexibility.

10

Background and Related Work

In a complementary study, Domingues et al. [10] provide a systematic review of
fundamental BAS characteristics using established standards as reference points.
They offer a functional overview of widely used protocols such as BACnet, KNX,
LonWorks, Modbus, ZigBee, EnOcean, Insteon, and Z-Wave, outlining their capa-
bilities, use cases, advantages, and limitations. A key insight from their work is that
interoperability among these protocols often relies on proprietary, custom-made
extensions. This reliance hinders standardization and poses significant challenges
in terms of security and long-term maintainability.

Morales-Gonzalez et al. [4] conduct a thorough analysis about BAS protocols
and their associated security extensions. Since many of these protocols, such as
BACnet, EnOcean, KNX, LonWorks, Modbus, ZigBee, and Z-Wave, were originally
designed in the 1990s or earlier, they often lack even the most fundamental security
mechanisms. The study highlights a broad range of vulnerabilities affecting these
protocols, including brute-force attacks, covert channel attacks, cryptographic
attacks, denial-of-service attacks, eavesdropping, false data injection, fuzzing, man-
in-the-middle attacks, physical attacks, reconnaissance, replay attacks, spoofing, and
side-channel attacks. Furthermore, the authors examine recent security extensions
introduced to address these vulnerabilities. They observe that, in recent years, most
protocols, except LonWorks, have seen the development of such extensions. However,
these enhancements are generally limited to IP-based implementations, leaving
non-IP variants exposed to the same threats. Notably, when testing the extensions
some security issues persisted, indicating that the current countermeasures remain
insufficient.

Reverse engineering IoT firmware

Kaushik et al., in their work [15], highlight significant security vulnerabilities in IoT
firmware for smart home devices and propose a structured roadmap for conducting
a security analysis. From the initial extraction of firmware via hardware dumping
to subsequent analytical stages, the authors delineate the core components of
firmware and recommend the most suitable tools for performing comprehensive
security assessments.

Similarly, Shwartz et al. [16] investigate the domain of reverse engineering in
the context of IoT devices. They place particular emphasis on the methodology
for analysing file systems to retrieve critical information, which is subsequently
utilized to identify potential security vulnerabilities.

In another contribution, Chen et al. [17] describe an approach for detecting
insecure, reused libraries within IoT device firmware. To this end, they develop a
web crawler capable of collecting thousands of firmware images from online sources.
Their analysis then focuses on techniques for examining the file systems to extract
library components, assess their usage, and evaluate their security implications.

11

Background and Related Work

Emulation, Hardware Abstraction and Rehosting

Setting up an environment capable of interacting with software, which communicates
directly with hardware, at a low level presents a significant challenge. This difficulty
arises from the tight integration between firmware and the board on which it is
intended to run.

A conventional approach to address this challenge involves hardware emulation,
as demonstrated in works [18, 19, 20]. Emulation involves replacing physical hard-
ware with software that can interact transparently with the firmware, imitating the
original hardware environment without letting the program to notice it. To achieve
this, all relevant hardware components of the target board must be accurately
emulated to ensure reliable and consistent interaction during execution.

Clements et al. introduced HALucinator [21], a framework designed to enhance
firmware emulation by leveraging Hardware Abstraction Layers (HALs). HALSs
are software libraries that abstract hardware functionalities, allowing developers
to interact with hardware through high-level interfaces. The use of HALs results
in firmware that is less tightly coupled to specific hardware platforms, a property
that presents promising opportunities for emulation. By identifying the functions
provided by these libraries, it becomes possible to construct generic hardware
emulation models (i.e., peripheral models) capable of producing realistic responses.
HALucinator provides an emulation environment on top of QEMU, providing
peripherals interactions.

To address various limitations in firmware emulation, such as difficulties in
emulating System-on-Chip (SoC) components, peripheral modelling, and CPU
emulation, Fasano et al. proposed an alternative strategy for whole-system dynamic
analysis [22]. Their idea consists in modelling just the hardware features necessary
to supply firmware’s dependencies, giving as a result a reliable representation of
firmware running on its original hardware. This happens through rehosting which
is based on decoupling the system software stack from its physical hardware. A
rehosted environment is tailored to a given firmware image by modelling expected
behaviour based on: data collected from physical devices, available documentation,
and iterative refinement of responses. Through fidelity analysis, it becomes possible
to calibrate this model to accurately reproduce the hardware dependencies of the
firmware.

Framework for Emulation and Firmware Analysis

Testing software dynamically presents a significant challenge, as it necessitates the
emulation of the underlying structures that support the software. This process
can be approached through three distinct levels of analysis: the application level,
the process level, and the system level. When the goal is to emulate an entire
firmware, rather than just a single application, the system level is the only viable

12

Background and Related Work

and effective approach.

The authors Chen et al. developed FIRMADYNE [19], a framework designed
to extract firmware, create emulation images, and execute dynamic analysis. The
primary objective of this tool is to leverage software-based full system emulation to
scale the analysis process, rather than relying on hardware. A key contribution of
this framework lies in its method for creating an appropriate emulation environment,
which is built upon four fundamental components: NVRAM, the Kernel, system
configuration, and QEMU [18].

During an initial emulation learning phase, the NVRAM module is responsible
for intercepting calls to non-volatile memory and subsequently providing the
appropriate values during emulation. When combined with an orchestrated Linux
Kernel capable of hooking system calls, this module ensures a reliable software-based
substructure to replace hardware. Furthermore, once the emulated environment
is correctly configured, the network interfaces are tested. This phase is critical
for learning and inferring the correct configurations needed to enable network
communication, thus facilitating subsequent analysis.

On the trail of FIRMADYNE, Kim et al. developed FirmAE [20], a framework
designed to address some of the shortcomings of the aforementioned framework.
Their research focused on resolving issues encountered during firmware emulation
with FIRMADYNE, analysing the causes of these failures, and implementing
effective solutions. The technique proposed, called “Arbitrated Emulation” ensures
that the high-level behaviour of hardware components is replicated through software,
though it sacrifices some fidelity to the physical device’s behaviour.

The arbitrations were introduced in four main stages: boot, network, NVRAM,
and Kernel. By identifying and addressing critical errors commonly observed
during failed emulations, the authors made significant improvements about: the
boot sequence, handling of IP aliases, VLAN setup, and support for additional
kernel modules and NVRAM configurations. These enhancements resulted in
improved performance, particularly in terms of the number of firmware images that
could be emulated.

Building upon the work of these two frameworks, the Embedded Analysis Toolkit
(EMBA) was developed. This toolkit has become an essential resource, extensively
utilized in the analysis conducted throughout the research presented in this thesis.

Fuzzing in emulated environments for IoT and BAS protocols

The ability to emulate device’s hardware enables the application of fuzzing tech-
niques to firmware. Fuzzing is a software testing method that involves injecting
randomized or unexpected inputs into a system to identify security vulnerabilities
by monitoring the system’s behaviour and responses.

Zhou et al., in their survey [23], examine several challenges associated with

13

Background and Related Work

creating emulation environments suitable for fuzzing firmware on microcontroller
units (MCUs), as well as the broader obstacles in applying fuzzing to embedded
systems. Among these challenges are the scalability of automated hardware em-
ulation with high fidelity, minimizing false positives and false negatives, and the
difficulty of detecting bugs via operating system mechanisms in systems using
Real-Time Operating Systems (RTOS). Despite these difficulties, focusing research
on this area holds considerable promise. Emulated environments can potentially
support fuzzing at speeds unattainable on physical hardware, thereby significantly
accelerating vulnerability discovery.

Kim et al. [24] identify several key challenges that hinder accurate fuzzing of loT
devices. These include the difficulty of handling structured inputs, limitations of
emulation-based approaches that fail to fully account for all hardware components
(e.g., reads and writes to NVRAM that may cause crashes), and memory corruptions
classified as bugs when they are emulation errors. To address these issues, the
authors developed FIRM-COV, a framework designed to enhance the reliability
of fuzzing in such constrained environments. Their method employs a dual-layer
emulation strategy that executes firmware in user-mode by default, switching to
full-system emulation only when exceptions are raised. This is combined with
specialized handling for panic states and hardware-dependent functions, resulting
in improved fuzzing performance and reduced false positives.

In the context of Industrial Control Systems (ICS) and BAS, Programmable Logic
Controllers (PLCs) are widely used as dedicated computing platforms for executing
specific control operations. Recognizing the importance of securing these systems,
Tychalas et al. introduced ICSFuzz [25], a fuzzing framework tailored to ICS
environments. Their approach includes modelling General-Purpose Input/Output
(GPIO) ports to emulate interactions with custom devices that manage sensor
input. This enabled reliable system responses during fuzzing analysis, making it
possible to assess the security of PLCs more effectively.

Zhang et al. focus their work specifically on BAS with the development of the
Building Automation System Evaluator (BASE) [26], a fuzzer designed to assess the
security of BAS networks by targeting physical devices. They identify three main
challenges in fuzzing BAS environments: the complex structure of BAS messages
encapsulated within IP packets, the prevalence of closed-source BAS clients which
complicates code coverage analysis, and the limited throughput capacity of BAS
devices.

To address these issues, BASE integrates four core components: Protocol Ana-
lyzer, Core Fuzzer, Client Inspector, and Server Examiner; which together facilitate
effective fuzzing of BAS protocols. By extracting context-sensitive information
from network packets, the fuzzer is able to generate meaningful inputs for both
clients and servers. Furthermore, through code instrumentation, response analysis,
system functions tracking, and the application of AFL-style code coverage metrics,

14

Background and Related Work

BASE enhances visibility into the execution paths of proprietary BAS software.
To further improve performance, the framework observes normal traffic patterns,
records timestamps, and adapts traffic generation according to active session states,
thereby optimizing fuzzing efficiency.

15

Chapter 3

Dataset

In this chapter, the creation of the dataset will be discussed. The discussion begins
by detailing the selection process for the firmware and the analysis conducted to
identify the various products currently available on the market. Finally, it describes
the actual process of assembling the collection. Moreover a description of the
dataset is given with aggregated statistics of the collected software.

3.1 Motivation and Overview

The goal of creating a dataset arises from its current absence in scientific liter-
ature. As highlighted by Domingues et al. [10], there is a particular scarcity of
documentation related to smart buildings. This lack is compounded by the overall
underdevelopment of academic research in this domain. This observation was
confirmed by Xinwen Fu, a professor at University of Massachusetts Lowell and an
active researcher in the field of IoT security and privacy, who has authored studies
focusing on BAS, such as [4, 26]

The creation of this firmware collection aims to serve as a foundational resource,
enriching and supporting further research efforts. Collecting software associated
with automation devices enables and streamlines additional studies by providing;:

o A comprehensive survey of companies actively involved in the sector.

o Immediate access to material required for testing, enabling different kind of
analyses with various tools and objectives.

o Opportunities for comparative analyses:

— With similar devices if other datasets are created.
— With IoT devices across different application domains.

16

Dataset

The work by Ciholas et al. [6] supports the points outlined above and offers
some critical insights on this topic. Their research team initially collected a total
of 1,697 papers, subsequently narrowing these down to 90 through a screening
process. This systematic review highlighted how the smart building field is rapidly
growing, in parallel with increasing technological complexity. Nonetheless, it also
emphasized a notable lack of empirical evaluations. According to the study, nearly
40% of the reviewed papers did not conduct actual tests on devices or protocols,
instead focusing on guidelines or general discussions.

3.1.1 BAS Vendors

The field of smart buildings encompasses various product categories, ranging from
IoT devices capable of data collection (e.g. sensors) to dedicated computers whose
primary function is aggregating data, issuing commands, and managing the traffic
of field devices. This extensive diversity of device types has led the industry to
develop comprehensive ecosystems within the realm of BAS. To better understand
the devices employed within IB, an analysis was conducted to identify active
companies in the sector. Starting with references from selected papers, such as [3,
27], an initial list of suppliers was compiled. This list was subsequently expanded
through targeted web searches using keywords like BMS, BAS, SB, and IB. The
resulting list includes the following vendors:

« ABB

o Automated Logic
e Bosch

o Carrier

« Cisco

o Contermporary Controls
o Computrols

o Delta Controls

» Distech Controls
o Honeywell

» Johnson Controls

o Kentix

17

Dataset

e LG

« MIDITEC

o Optergy

» Paragon Controls Inc.
e Priva

» Reliable Controls

o Schneider Electric

» Semtech (formerly Sierra Wireless)
e Siemens

o Trane

e Tridium

« WAGO

Examining the list of vendors, a clear pattern was noticed in the offerings
provided by the majority of these companies. Specifically, vendors tend to create
comprehensive product packages capable of satisfying most consumer requirements,
but the systems remain essentially closed. Among the various ecosystem offer-
ings identified, were found: Automated Logic with WEBCTRL®, Honeywell with
Alerton and BMS, Johnson controls with EasylO and OpenBlue, Kentix with Ken-
tixONE, LG with LG MultiSITE™ VM3, Schneider Electric with EcoStruxure™
Siemens with Desigo and Trane with Tracer® SC+.

All these product bundles include more or less the same recurrent kind of devices,
software and services. Each company aims to provide an interoperable architecture
and platform, which enables the communications between the devices and their
management. This interoperability is achieved through a set of open standard
protocols (e.g. BACnet, KNX, LonTalk, and Modbus) and with frameworks (e.g.
Sedona), but it also often involves proprietary solutions (e.g Niagara framework).

The set of hardware and software components they typically offer includes:

o Edge devices: also called field devices, these include sensors and actuators
deployed to monitor environmental conditions and execute specific actions.

o Controllers: devices designed to manage and aggregate data from edge
devices, providing the capability to engineer and control the building’s systems.

18

Dataset

» Displays: portable and not portable devices used to monitor real-time opera-
tions and provide building statistics and performance data.

« Software and Interfaces: a broad range of software solutions specifically de-
veloped to manage controllers and sensors, monitor the building’s environment,
and function as command centers.

Moreover companies include in their offerings a whole range of services such as
consulting, deployment, integration and maintenance. These activities are typically
carried out by engineers and technicians employed directly by the company selling
the product bundle. This approach underscores their intent to provide complete
packages, minimizing the integration or mixing with products from other vendors.

3.1.2 Firmware acquisition

The acquisition of the firmware began with the vendors listed in 3.1.1. By consulting
the manufacturers’ websites, it is possible to find pages related to the commercial
solutions they offer, which include products such as controllers, sensors, and various
types of software. However, these descriptions are often very brief, and in only a
few cases is it possible to find more detailed information about the products, such
as reports and technical specifications. The preferred strategy of nearly all BAS
technology suppliers is to connect the buyer with a sales representative, who can
be contacted via email and give all kind of information about the products.

Given the initially discouraging landscape, a change in approach was deemed
necessary. Therefore, searches were conducted using search bar queries with key
phrases such as <wvendor’s name> + “firmware” + “device update” + “software
update”. This type of search yielded more promising results, uncovering vendor-
related websites, distinct from the main ones. These sites are dedicated to technical
specifications related to devices and, in some cases, containing firmware or device
updates. However, access to these sites was often restricted unless one was registered.
In most cases, registration required the submission of a specific code issued by
the manufacturer, likely provided after contacting their sales department and
purchasing the product. In a few cases, registration could be completed with just
an email address, without additional identifying information from the supplier.

Through our research work, we were able to download software from four vendors:
Contemporary Controls, Johnson Controls, Siemens, and WAGO.

The vendors Johnson Controls and Siemens provide two portals with open access
to their respective commercial solutions, Desigo [28] and EasylO [29], while WAGO
offers its product software on the portal [30], which requires registration. Finally,
Contemporary Controls provides only a limited selection of firmware in the section
dedicated to BAS automation on its main website [31], and these often contain
only the firmware file system.

19

Dataset

The selection of these vendors was driven by the greater ease and accessibility
of downloadable materials. Indeed, many others did not provide downloadable
material in the same manner, requiring authenticated registrations or not offering
their firmware online at all. This highlights the difficulty in obtaining such materials
and how challenging it is for the academic world to conduct tests on products
originating from the industrial sector.

3.1.3 Firmware preliminary analysis

To incorporate firmware into the dataset while adhering to quality constraints, it
was necessary to filter the material downloaded from the previously mentioned
sources. In most cases, the firmware image was not the only piece of software
available for download. Instead, the downloads often consisted of archives containing
various materials, such as technical specifications, manuals, other types of software,
auxiliary files in proprietary formats and the firmware image. The filtering process
was conducted manually; however, in addition to identifying the actual firmware,
it was crucial to assess its usability. Specifically, certain formats were deemed
unsuitable for our analysis, including the following: Encrypted firmware and
Firmware updates.

These two types are deemed unacceptable as they preclude the possibility of
conducting a comprehensive analysis of the firmware. Encrypted firmware, in fact,
is unusable because its content is obscured, while a firmware update provides only
portions of the firmware rather than a complete image. During the manual analysis
to identify the nature of the firmware, the decision was made by using Binwalk
software [32] [33]. This tool can provide valuable information about the firmware,
including entropy and composition, which are crucial for determining whether the
firmware should be categorized as one of the two types to be excluded.

Unencrypted and uncompressed firmware

To understand the composition of a firmware image, it is necessary to unpack its
contents. However, it is possible to analyse its entropy for an initial, immediate
assessment. As introduced by Shannon in [34], in information theory, entropy
measures the randomness or unpredictability of a data stream. Thus, entropy
values in a file can indicate whether it is encrypted or compressed, or not. In figure
3.1, two plots are shown depicting the entropy of two firmware images, one for the
WAGO CC100 device and one for the Contemporary Controls BASRT-B device.
The x-axis represents the file offset, that is, the position of bytes from the beginning
to the end of the file, while the y-axis indicates the corresponding entropy values.
As can be seen, the entropy varies significantly in both cases, with values changing
steeply in 3.1a, whereas they are locally more stable in 3.1b.

20

Dataset

Entropy Entropy

0 1 2 3 4 5 0 50000 100000 150000 200000
Offset le8 Offset

(a) CC100 V4.6.3 (b) BASRT-B V3.0.13

Figure 3.1: Entropy Analysis of Unencrypted and Uncompressed Firmware

Low and highly variable entropy values are indicative of repetitive patterns and
ordered structures within the files. Uncompressed files and unencrypted data keep
their original structure which is usually made of:

o Repetition: Certain byte values appear more often than others. For example,
spaces and common letters dominate plain text.

o Predictable structures: Formats like XML or HTML contain repeated tags
and have common headers.

« Patterns: Uncompressed images might have large areas of the same colour
and file formats impose structure (e.g., a PDF file starts with %PDF-1.7).

The detected entropy immediately reveals that the analysed files are neither
encrypted nor compressed. It can be observed that the firmware shown in 3.1b
contains two distinct high-entropy sequences, suggesting that these sections may
contain encrypted data or compressed archives.

For the CC100 and BASRT-B devices, the firmware content is monolithic,
embedded within files with the extensions .img and .bin, respectively. When the
CC100’s onboard software was analyzed using Binwalk, the output consisted of an
extensive list of results—more than 1,000 files—of which only a subset is shown
in A.1. These findings should be interpreted with caution, as Binwalk’s analysis
focuses on detecting file signatures, a process that is susceptible to false positives.

Encrypted and compressed firmware

The plots in figure 3.2 show the entropy analysis conducted on two other firmware
images: one for the FS device from Johnson Controls and the other for the

21

Dataset

QMX7.E38 device from Siemens.

Entropy Entropy

e,

Entropy
Entropy

0 1 2 3 4 5 0 1 2 3 4 5 6 7

Offset le7 Offset le7
(a) FS V3.0b62 (b) QMX7.E38 V01.16.53.44
Encrypted Compressed

Figure 3.2: Entropy Analysis of Firmware: Encrypted vs. Compressed

The Binwalk analysis of the F'S firmware is presented in Appendix A.2, showing
a very short output. It reports an encrypted file using OpenSSL and the presence
of a salt used during the encryption process. The entropy plot is consistent with
the presence of the encrypted file, as high entropy throughout the data stream is
what one would expect from the output of an encryption algorithm. When data is
encrypted using strong algorithms (e.g. AES), the process transforms the original
data into a completely new, pseudo-random sequence of bytes [35].

In the plot depicting the entropy of the QMX7.E38 device, there is a strong
resemblance to the one previously described. The entropy is almost constant at
the maximum value. However, there are slight fluctuations that are absent in the
previous plot. If this firmware was also encrypted, there would be issues with
the functioning of the encryption algorithm, as any fluctuation would indicate
predictability in the data stream, and thus potential vulnerabilities. In fact, this
firmware is not encrypted but compressed. The algorithms responsible for data
compression work indirectly on entropy. They do not explicitly aim to increase
entropy like encryption algorithms do, but since they seek to remove redundancy
and represent the data more efficiently, as a side effect, their outcome has a very high
entropy. Indeed, these algorithms exploit repeated patterns or frequent occurrences
of certain values by replacing them with shorter representations.

Thus, it is possible to immediately distinguish between compressed and encrypted
files simply by observing the entropy. Additionally, a more in-depth analysis with
Binwalk reveals a series of compressed archives for the QMX7.E38 device firmware
A.3.

22

Dataset

3.2 Dataset structure

During the firmware collection process, it became immediately evident that a
systematic approach was necessary to support the operations of downloading,
analysing, and collecting data. To address this requirement, the dataset was
structured in an organized manner to facilitate maintenance and streamline related
operations.

The structure of the dataset is organized into three main components:

o Firmware collection: A collection of files and directories containing the
firmware binaries and associated metadata, as downloaded from the official
websites of the manufacturers.

o firmwareDB.csv: A CSV formatted file that stores metadata and descriptive
information related to the downloaded firmware.

 Scripts: A set of Python scripts designed to perform various operations (e.g.,
consistency checks, analysis execution) on the dataset. These scripts ensure
consistency between the firmwareDB. csv file and the actual firmware content.

3.2.1 Firmware collection

The downloaded firmware is stored in a systematic manner to ensure both consis-
tency and modularity within the dataset. At the root level of the dataset, directories
are organized by manufacturer, with each directory grouping all device models associ-
ated with that brand. Within each device model directory (a subdirectory of the cor-
responding manufacturer), folders are further organized by firmware version, as mul-
tiple versions may be stored for a given model. The resulting hierarchical structure
can be represented as follows: Manufacturer/DeviceModel/FirmwareVersion.

Each firmware version directory contains the firmware exactly as it was down-
loaded from the manufacturer’s official website. This may be a single file or a
folder comprising multiple files and subdirectories. The firmware itself can take
various forms, such as a standalone file (e.g., .fmws, .bin, .img, .zip, .tar.gz)
or a directory containing multiple components. Additionally, any supplementary
materials present at the time of download, such as documentation, auxiliary soft-
ware, or metadata, are preserved within the same directory. These materials are
retained as they may provide valuable context for understanding the purpose of
the firmware and the functionality of the corresponding device.

3.2.2 firmwareDB.csv

The firmwareDB.csv file is the index of the entire dataset, with each row correspond-
ing to a specific firmware version. Each entry is uniquely identified by three fields:

23

Manufacturer / Device Model / Firmware Version

Dataset

manufacturer, device model, and firmware version. Additional fields include the
firmware release date, device functionality, supported protocols, CPU architecture,
encryption status, EMBA emulation status, download URL, technical specifications
URL, and the relative path to the firmware within the dataset.

Firmware release dates were retrieved from the manufacturers’ websites when
available. In cases where the release date was not explicitly stated, it was inferred
through an analysis of the firmware files” metadata. Information on device function-
ality, supported protocols, and CPU architecture was primarily obtained from the
manufacturers’ websites. Typically, functionality and protocol support are clearly
documented, as they are key selling points. In contrast, CPU architecture is rarely
disclosed.

Although encrypted firmware was initially intended to be excluded, some en-
crypted samples were retained to enable further investigation into their structure
and usability. To reflect this, the dataset includes an “encryption” column that
flags whether each firmware sample is encrypted.

The “firmware relative path” field specifies the location of the firmware file or
folder, relative to the corresponding Firmware Version directory.

3.2.3 Scripts

The scripts were developed to support and manage operations related to the
dataset, with the primary goal of ensuring consistency between the index file and
the stored firmware. Implemented in Python, the scripts operate in close interaction
with the file system and the operating system. Their integration is essential for
maintaining consistency between the firmwareDB.csv index and the actual firmware
stored in the dataset. These scripts automate tasks such as consistency checking,
analysis execution, monitoring the status of ongoing analyses, cleaning temporary
files generated during analysis, and generating statistical reports according to
predefined rules.

3.3 The dataset in numbers

This section presents several key figures related to the dataset to provide a clearer
understanding of its composition. The aim is to briefly outline the types of firmware
included and their respective characteristics, thereby offering a comprehensive
overview.

3.3.1 Overview

In the dataset are stored 56 firmware from 4 different manufacturers, the catego-
rization of firmware is showed in Table 3.1.

24

Dataset

Manufacturer N°€ of firmware
Contemporary Controls 9
Johnson Controls 16
Siemens 20
WAGO 11

Table 3.1: Number of firmware grouped by manufacturer

The dataset reveals a significant bias toward ARM-based architectures, with
72.5% of devices using ARM (32-bit) and 25% using ARM64 (64-bit). This brings
the total ARM representation to 97.5%, highlighting its widespread adoption in
embedded devices. In contrast, MIPS accounts for only 2.5%, indicating its rare
presence in the dataset. All devices in the dataset use little-endian byte order,
which aligns with the prevailing industry standard for most modern architectures
such as ARM and x86.

Johnson Controls

ARM

Contemporary
Controls
' MIPS
. WAGO
Siemens ARM64
(a) Vendors (b) Architectures

Figure 3.3: Vendors and Architectures

During the firmware download process, attention was paid to selecting a variety
of software types. However, in order to perform comparative analyses, different
firmware versions for the same device were also downloaded. Table 3.2 presents the
number of firmware versions for each device, which are in total 35. This allowed us
to observe that, in most cases, if one firmware version can be emulated, subsequent
versions are likely to be as well. However, in certain instances, partial emulation
was successful only for older firmware versions, failing with more recent ones.

Table 3.3 provides a summary of the dataset used in this study. Each row
corresponds to a specific firmware and includes several key characteristics. The

25

Dataset

Manufacturer Device Model N€ of firmware per device
BASGLX-M1 2
BASR-8M
BASRT-B
ContemporaryControls BASRTLX-B
BASRTP-B
BASpi-IO6U4R2A
BASpi-IO6UGR
30P
FC20
FD-20i
FG
FS
FT
FW
FW-28
FW-8-8V-14
FW-VAV
DXR2
PXC3
PXC4
PXC5.E003
PXC5.E24
Siemens PXC7
PXG3
PXG3.WX00-1
PXG3.WX00-2
PXM
QMX7.E38
750-891
BC100
CC100
WAGO PFC
PFC300
TP600
WP400

JohnsonControls

F NN R NNNDNEFERFRFNDNDNNDARFENDNNDNNDNNNNNNDNEFE NN, R WWR R RFRERFAEDND -

Table 3.2: Device models per manufacturer and their respective number of
firmware

26

Dataset

firmware is identified by its manufacturer, device model, and firmware version.
Metadata regarding the devices, such as their intended functionality and the
communication protocols they support, were extracted from the official websites of
the respective vendors.

Among the various functionalities observed, the most common designation is
“Controller”. Although the term is employed with slight variations across manufac-
turers, it generally refers to a device designed for multiple purposes. Typically, a
controller manages a network of peripheral devices either through physical inter-
faces or wireless communication (e.g., antennas). It also possesses internal logic
for scheduling and executing operations on the devices it controls. Additionally,
controllers are often equipped with local storage and computational capabilities
that enable them to perform preliminary data analysis on information received
from connected sensors.

Other characteristics reported in the table include the firmware’s underlying
architecture, endianness, and kernel version. However, this technical information
is not available for all firmware samples. In some cases, the analysis could not
reliably determine these attributes due to insufficient identifiable components. It’s
worth noting that all the images for which the OS could be detected use a Kernel
Linux, outlining its predominance in the realm of building automation.

Finally, the table uses colour-coding to indicate the outcome of the firmware
emulation process: green represents firmware where emulation was successful, blue
indicates partial emulation, and white denotes failed emulation attempts.

The collected firmware samples exhibit considerable variance in size. Specifically,
they range from a minimum of 183.39 KB for the FC20 device to a maximum of 4.17
GB for the BASpi-IO6U6R device. This significant variability, with a median size
of 51.98 MB, can be attributed to several factors. Among these, we can observe the
presence of compressed firmware, as well as those that have not been optimized for
download. Additionally, the intended purpose of the firmware must be considered:
some are designed to manage very simple devices (e.g., touch panel) and execute
relatively trivial tasks, while others are closer to general-purpose computers (e.g.,
controllers at the management level). The choice of operating system also plays a
role, as it may include basic kernels or, in some cases, additional functionalities that
heavily influence the size. Finally, preinstalled software can significantly impact
the size, particularly with the inclusion of images and other audiovisual content.

3.3.2 Protocols

During the inclusion of the firmware in the dataset, the supported network com-
munication protocols of each device were recorded. Each device utilizes different

protocols and may support various variants of the same protocol (e.g., BACnet/IP,
BACnet/MSTP).

27

Dataset

Protocol occurence in the dataset

BACNet LonTaIk Modbus DALI MQTT Others
Protocols

Frequency
N w A (&) [} ~l
o o o o o o

—_
o

o

Figure 3.4: Frequency of Protocols in the Dataset

Figure 3.4 illustrates the frequency with which these protocols appear in the
dataset. The most widely supported protocol is BACnet, with 76 occurrences.
This is particularly noteworthy as it allows for the identification of a trend in the
evolution of the most widely used protocols in the context of Building Automation
Systems (BAS). In fact, BACnet appears to be gaining dominance, increasingly
overtaking other protocols like KNX and LonTalk. However, it should be noted
that the collected firmware primarily belongs to controllers, which are typically
used for management and automation purposes. In contrast, protocols like KNX
and LonTalk seem to be gaining traction in the field level.

Of the four manufacturers listed, three are European and only one is American.
This seems to challenge the stereotype of a closed European market, traditionally
associated with KNX, and suggests a shift towards broader acceptance of BACnet
as an industrial standard.

Equally interesting is the significant presence of the Modbus protocol, with 42
occurrences. Originally designed for communication between industrial electronic
devices, it is noteworthy that Modbus has found its place in Building Management
Systems (BMS) as well. This trend can be attributed to the fact that industrial
automation has been established and mature for a longer period, allowing its
protocols to become more structured and adaptable for use in other domains.

Finally, it is evident that the MQTT protocol is still struggling to gain traction
28

Dataset

in the BAS field, with its usage in the dataset being quite limited. The protocols
listed as “others” encompass a wide range of protocols, often proprietary.

For the vendors Contemporary Controls, Johnson Controls, and Siemens, the
most commonly used protocol is BACnet, whereas for WAGO, Modbus is more
prevalent. Both Siemens and Johnson Controls tend to utilize less common pro-
tocols such as Tcom, Sox, and Island Bus. This is not the case for WAGO and
Contemporary Controls, which predominantly rely on BACnet and Modbus. It is
also noteworthy that BACnet is supported in many of its variants, ranging from
MSTP and IP to its security extension, BACnet/SC.

29

Dataset

‘ Manufacturer Device ‘ Firmware ‘ Functionality ‘ Architecture ‘ Endianess Kernel
Siemens PXG3 V01.21.152.8-3236 BACnet router ARM EL Linux v4.4.302
Siemens PXC3 V01.21.194.18-6633 Automation Station ARM EL Linux v4.4.302
Siemens PXC3 V01.21.172.22-6095 Automation Station ARM EL Linux v4.4.302

‘ Siemens PXG3.WX00-1 V02.21.194.25-22980 ‘ Web Interface ARM EL -
Siemens PXG3.WX00-1 V02.20.172.47-21561 Web Interface ARM EL -

‘ Siemens PXG3.WX00-2 | V02.21.194.25-22980 ‘ Web Interface ARMG64 EL Linux v5.15.71
Siemens PXG3.WXO00-2 V02.20.172.47-21561 Web Interface ARM64 EL Linux v5.10.35
Siemens QMX7.E38 V01.16.53.44 Touch Panel ARM EL Linux v3.18.10
Siemens DXR2 V01.21.194.18-6633 Automation Station ARM EL Linux v4.4.302
Siemens DXR2 V01.21.172.22-6095 Automation Station ARM EL Linux v4.4.302

‘ Siemens PXM V02.21.194.25-22980 ‘ Touch Panel ARM EL -
Siemens PXM V02.20.172.47-21561 Touch Panel ARM EL -

‘ Siemens PXC4 V02.21.194.25-22980 ‘ Automation Station ARM EL Linux v4.4.302
Siemens PXC4 V02.20.172.47-21561 Automation Station ARM EL Linux v4.4.302

‘ Siemens PXC5.E003 V02.21.194.25-22980 ‘ Automation Station ARMG64 EL Linux v5.15.71
Siemens PXC5.E003 V02.20.172.47-21561 Automation Station ARM64 EL Linux v5.10.35
Siemens PXC5.E24 V02.21.194.25-22980 Automation Station ARMG64 EL Linux v5.15.71
Siemens PXC5.E24 V02.20.172.47-21561 Automation Station ARMG64 EL Linux v5.10.35
Siemens PXC7 V02.21.194.25-22980 Automation Station ARMG64 EL Linux v5.15.71
Siemens PXC7 V02.20.172.47-21561 Automation Station ARMG64 EL Linux v5.10.35

JohnsonControls FG V2.0b52 Plant Controller ARM EL Linux v2.6.39.4
JohnsonControls FG V2.0b51 Plant Controller ARM EL Linux v2.6.39.4
JohnsonControls FG V1.5b51 Plant Controller ARM EL Linux v2.6.29.2
‘ JohnsonControls FS V3.0b62 * ‘ Controller - - -
JohnsonControls FS V3.0b51d Controller ARM EL Linux v3.4.39
JohnsonControls FS V3.0b55b * Controller - - -
JohnsonControls FW-8-8V-14 V1.0b24 * Controller - - -
JohnsonControls FW-8-8V-14 V1.0b16i Controller MIPS EL Linux v4.14.105
JohnsonControls FW V3.0b24 * Controller - - -
JohnsonControls FW-28 V2.0b17a * Controller - - -
JohnsonControls FW-28 V3.0b22a * Controller - - -
JohnsonControls FW-VAV V3.0b22a * Controller - - -
JohnsonControls 30P V2.0.5.24 Controller - - -
JohnsonControls FC20 V2.2.07 Controller - - -
JohnsonControls FD-20i V1.1.00 Controller - - -
JohnsonControls FT V2.2b14 Controller - - -
ContemporaryControls BASRT-B V3.0.13 BACnet router - - -
ContemporaryControls BASRTLX-B V1.3.8 BACnet router ARM EL -
ContemporaryControls BASRTLX-B V1.3.0 BAChnet router ARM EL -
ContemporaryControls ~ BASpi-IO6U6R V1.0.33 Controller ARM EL Linux v5.10.63
ContemporaryControls BASpi-IO6U4R2A V1.0.33 Controller ARM EL Linux v5.10.63
ContemporaryControls BASGLX-M1 V2.0.19 BAS gateway ARM EL -
ContemporaryControls BASGLX-M1 V2.0.1a BAS gateway ARM EL -
ContemporaryControls BASR-8M V3.7.8 BAS gateway ARM EL -
ContemporaryControls BASRTP-B V3.0.13 BACnet router - - -
WAGO PFC V4.6.1 Controller ARM EL Linux v5.15.107
WAGO PFC V4.1.10 Controller ARM EL Linux v5.15.19
| WAGO 750-891 V164 | Controller - - -
WAGO CC100 V4.6.3 Controller ARM EL Linux v5.15.107
WAGO CC100 V4.1.10 Controller ARM EL Linux v5.15.19
WAGO BC100 V1.4.7 Controller - - -
WAGO BC100 V1.2.0 Controller - - -
WAGO PFC300 V4.6.1 Controller ARMG64 EL Linux v6.6.15
WAGO ‘WP400 V4.6.3 Touch Panel ARMG64 EL Linux v6.6.3
WAGO TP600 V4.6.1 Touch Panel ARM EL Linux v5.15.107
WAGO TP600 V4.2.13 Touch Panel ARM EL Linux v5.15.86

Table 3.3: Summarizing dataset

The green rows report the firmware that were successful emulated

The blue rows report the firmware that were only partially emulated

For the other firmware the emulation failed
* indicates encrypted firmware

30

Chapter 4

Methodology

This chapter introduces the methodology adopted to conduct the analyses performed
on the firmware. The process consists of multiple steps, each necessary to carry out
a thorough investigation in accordance with the guidelines established by leading
organizations in the field of embedded security. Finally, to scale the analysis and
increase its efficiency, we relied on EMBA a tool that enables automation of several
key stages in the workflow.

Firmware

Firmware is a low-level software essential to take control over a device’s hardware
and peripherals. It is typically embedded in the device’s non-volatile memory
(e.g., ROM, EEPROM, or flash memory) and can operate either as stand-alone
software or in conjunction with an operating system. Executing directly on the
microcontroller or processor, firmware manages critical functions such as hardware
initialization, peripheral communication, memory management, and coordination
with other system components.

A firmware is typically responsible for hardware initialization, controlling the
boot-up process, and activating hardware components. Its role may include loading
an operating system or operating directly on bare metal, managing the device
without any additional software support. In simpler systems, firmware often handles
all operational tasks, whereas in more complex architectures, it typically functions
as an intermediary between the hardware and higher-level software layers.

Given its central role in defining a device’s behaviour, firmware must be secure
and free from vulnerabilities. Exploitation of firmware flaws can grant attackers
low-level access, enabling manipulation not only of the targeted device but also
potentially compromising the security of the network. This is a primary reason
why proprietary firmware often poses a risk to system security; its closed-source
nature and lack of independent review increase susceptibility to a wide range of

31

Methodology

attacks.

4.1 Analysis methodology

The idea of developing a methodology emerged from the need to standardize the
analysis of firmware. Initially, individual analysis were conducted on firmware
samples in order to understand their structure and behaviour. This led to specific
observations about each piece of software analysed, along with the necessity of
collecting data in a structured way. What began as a rudimentary process gradually
evolved into a more structured approach, ultimately requiring the creation of a
dedicated pipeline through which all firmware samples could be systematically
evaluated.

To learn how to perform firmware analysis and to define the necessary steps,
inspiration was drawn from studies such as [15, 17, 36]. Additionally, the OWASP
website [37] proved to be a fundamental resource, not only supporting the work
overall but also aiding in the breakdown of the process into discrete steps, in
accordance with established methodologies for firmware analysis.

The methodology is structured into four phases:

1. Fetching Firmware
2. Firmware Extraction
3. Firmware Analysis
4. Firmware Emulation

These phases therefore cover the entire process, from acquisition, through the
analysis of the firmware components, up to its emulation.

4.1.1 Fetching Firmware

The first step in the process involves obtaining the firmware to enable subsequent
analysis. This step is described in detail in subsection 3.1.2. Therefore, the following
discussion aims to briefly outline the options considered for acquiring software
related to BAS.

The first option consists of searching directly on the websites of vendors. Man-
ufacturers sometimes provide the software used in their devices on their official
websites, allowing users to reinstall or update the firmware if newer versions have
been released. However, in the domain of smart buildings, publicly accessible
software is relatively scarce, reflecting a broader tendency to restrict access to this
kind of material.

32

Methodology

Another possibility is to consult online repositories, whether open access or made
available specifically for research purposes. Nevertheless, repositories containing
firmware samples directly related to BMS were not found.

An interesting alternative approach involves browsing online forums dedicated
to firmware support. In such forums, users occasionally upload firmware files when
seeking technical assistance. Similarly, video tutorials on platforms like YouTube
may sometimes include links to cloud storage or repositories from which firmware
can be downloaded.

Finally, an approach employed in studies such as [4, 16] involved purchasing
the physical devices in order to obtain the firmware. The firmware is extracted by
performing an hardware dump, leveraging interfaces available on the integrated
circuits, such as UART and JTAG ports.

For the dataset created in this thesis, the decision was made to include only
firmware obtained from vendors through manual extraction. While this approach
could be improved by developing a web crawler to automate the download process,
it presents several challenges. Many websites explicitly prohibit the use of web
crawlers, and any automatically retrieved firmware would still require manual
verification. The option of performing hardware dumps was not considered, as the
objective of this work is to analyse a substantial number of firmware samples. IoT
devices tend to be quite expensive, with prices ranging from several hundred dollars
for the most affordable models to over a thousand dollars for others. Acquiring a
significant number of devices for firmware extraction would lead to prohibitively
high costs, making large-scale analysis economically unfeasible.

4.1.2 Firmware extraction

The second step involves extracting the firmware in order to analyse its fundamental
components. Firmware can be distributed in various formats: as a single file, a
compressed archive, an encrypted file, or as a collection of files and directories.
As discussed in subsection 3.1.3, it is possible to distinguish between encrypted,
compressed, and regular files through entropy analysis.

Once it is confirmed that the firmware is not encrypted, the first task is to
identify its internal components. If the firmware is compressed, the appropriate
decompression algorithm must be determined, this can often be inferred from the
file extension, so that the archive can be properly unpacked.

Tools and procedure

When the firmware is provided as a single file, a binary blob, it becomes necessary
to analyse its structure in order to identify its components. To accomplish this
task, Binwalk [32, 33| is the tool of choice. Binwalk is designed to carry on binary

33

Methodology

analysis, especially for firmware images, helping in inspecting the structure of these
files and extract hidden components. By identifying byte sequences, file signatures,
and structural patterns, Binwalk can effectively parse the binary blob and detect
its constituent parts. Moreover, it is capable of automatically decompressing
recognized sections and extracting their contents, including recursively unpacking
nested structures when present. Additionally, the firmware-mod-kit, a utility
built on top of Binwalk, can be employed to enhance this process. It offers
extended functionality and broader file type recognition, including support for
certain proprietary formats that Binwalk alone may not detect.

In some cases, automated extraction may not be feasible using Binwalk or other
automated tools such as Binextractor. However, it is still possible to identify
offsets that indicate where specific components are located within the data blob.
These offsets can be discovered using Binwalk itself or through data recovery tools
such as Foremost e Scalpel. The components can then be manually extracted
using the command-line utility dd, which allows for precise slicing of files based on
specified offsets.

At the end of this procedure, a collection of files separated by functionality is
obtained. However, in some cases, the firmware may already be distributed in this
way from the outset. When that is the case, it is often possible to infer the function
of each component from the filenames. If the filenames are not descriptive, several
command-line tools can be employed to perform further investigations.

The file command in Linux is employed to determine the type of a file by
examining its content rather than relying on its extension. It performs a series of
tests to classify the file, such as detecting specific data formats and distinguishing
between text and binary files. Additionally, valuable information is often embedded
within files in the form of strings. In this context, the strings command is
particularly useful, as it can extract printable character sequences from data files.
These strings can then be examined manually or filtered using tools such as grep
to uncover relevant information. Another useful utility for data inspection is
Hexdump, a hex editor that displays the contents of files in hexadecimal and other
representations. It can be used to detect file signatures and to localize strings
inside a file.

Firmware components

The following section outlines the most commonly encountered components within
firmware and their respective roles.

Every device requires a bootloader capable of initializing its software, a process
common to both advanced computers and embedded systems. It is not unusual
to encounter files named bootloader, SPL (Secondary Program Loader), MLO
(Memory Loader), and similar. These software components are specifically tailored

34

Methodology

for SoC for which they are designed. They typically contain memory addresses
and configuration data necessary to initiate the next stage loader or the operating
system itself.

To support the loading of an operating system, the final-stage bootloader often
includes an environment configuration file. A widely used bootloader in embedded
systems is U-Boot, which commonly utilizes a file named uEnv.txt. Such files
define environment variables and parameters that are essential for configuring the
kernel prior to its execution.

Another widely used file in embedded systems is the device tree. While advanced
hardware platforms often feature buses with built-in discoverability mechanisms (e.g.
PCI, USB) many other buses lack this capability. Embedded systems, in particular,
make extensive use of non-discoverable buses (e.g. 12C, SPI). In scenarios where
on-board hardware and peripherals cannot be automatically detected, a formal
hardware description is required. This need is addressed by device tree files, which
provide a structured description of the hardware components present on a board.
These files also specify the physical memory addresses at which each device is
located, enabling the bootloader or operating system to interact with them. With
this information, the system can identify the components, their associated buses,
communication protocols, and addresses. Device tree files are typically stored in
the binary format .dtb (Device Tree Blob), but they can be decompiled into the
human-readable .dts (Device Tree Source) format using the command-line utility
device-tree-compiler.

One of the most critical components of firmware is the kernel, which serves as
the core of the operating system. It manages communication between hardware and
software and controls essential system resources such as memory and processing
power. In IoT devices, it is common to find either an embedded Linux kernel or
a Real-Time Operating System (RTOS) kernel. Bare-metal software, where no
kernel is present, is significantly less common and was not observed in the devices
analysed. Kernel images typically use one of the following file extensions: .bin,
.img, .zImage, or .uIlmage. The .bin and .img formats are generally used for
raw or generic binary images. The .zImage format represents a compressed Linux
kernel image that includes a self-extracting mechanism. In contrast, the .uImage
format wraps the kernel with a U-Boot header, containing metadata such as the
operating system type and loading information.

Finally, the firmware image contains the file system. It constitutes the core
of the firmware, as it contains the majority of system information including user
accounts, passwords, and all installed programs. File systems can come in a wide
variety of formats, such as SquashFS, JFFS2, UBIFS, cramfs, ext, YAFFS2, FAT,
exFAT, and ROMFS.

Additionally, other files may be present in some firmware images but not in all;

35

Methodology

these can be specific to certain vendors or products. Nevertheless, the aforemen-
tioned files represent the most common and essential elements. A representative
example of the contents of a firmware image is provided in Appendix A.3.

4.1.3 Firmware analysis

Once the various components have been extracted, the next step is to proceed
with the firmware analysis. This analysis aims to understand how the different
components interact with each other and to conduct an examination of the file
system in order to identify interesting artifacts.

Boot process

First, a clear depiction of how firmware initializes and how the previously described
components interact is necessary. Firmware booting typically consists of three
main phases: the initial system boot driven by low-level software, the execution of
the kernel, and finally the execution of user-level programs.

During the boot stage, usually two or three bootloaders are involved. When the
SoC is powered on, the ROM bootloader is executed. Its address is specified in
the reset vector, and its primary task is to load the first stage bootloader into the
SoC’s internal RAM. This step is essential because, at power-up, the CPU cannot
access external memory (RAM), so a minimal first-stage bootloader, small enough
to fit into the internal RAM, must be loaded to initialize memory control. Once
the CPU gains control over the memory, the second stage bootloader takes over.

The second stage bootloader is responsible for reading configuration settings
and loading the kernel. It must identify the location of the kernel image and
the device tree file, then load the kernel into RAM while passing the necessary
arguments to establish the kernel’s environment. After completing these steps,
control is transferred to the kernel, which then sets up its environment and initializes
hardware components using the device tree.

In the final stage, the operating system completes its setup. Using boot argu-
ments, it locates and mounts the root filesystem. Subsequently, the init process
is launched to start the user space. Finally, the init process spawns user-space
processes according to its configuration file.

Information extraction

Files such as the bootloader and the device tree are often crucial to inspect. They
can reveal key information about the processor architecture and more. Specifically,
they provide details about the types of installed memory, including RAM, ROM, and
flash memory. Additionally, the device tree can offer extensive information about
the hardware present on the integrated circuit, potentially allowing identification of

36

Methodology

the specific board in use, an information that can be essential during the emulation
phase.

However, the most compelling element to analyse is the filesystem. It can
be examined manually by navigating through its structure to understand its
composition and to identify the files and directories. Through this process, valuable
information for dynamic and runtime analysis can be gathered.

By analysing binary files containing executables, valuable information about
the system architecture and operating system can be obtained. In UNIX-like
systems, directories of particular interest for these types of files include /bin, /sbin,
/usr/bin, and /usr/sbin, which typically contain general-purpose executables
related to default system utilities, as well as /1ib, where dynamically loaded
kernel modules reside. Using the command-line utility Readelf, it is possible to
inspect various components of an executable, such as headers, segments, symbols,
and more. When combined with the tool checksec, it allows verification of
several security features implemented in executables, including stack canaries,
RELRO (Relocation Read-Only), NX (No Execute), and PIE (Position Independent
Executable). Furthermore, it is often valuable to analyse binaries specifically created
for the firmware in question, as proprietary software can frequently harbour security
vulnerabilities if not thoroughly audited.

Other important files to review are the various scripts. These can be analysed
to understand their functionalities and to determine whether they automatically
execute actions at startup, such as configuring system files or launching programs.
The /etc directory is of particular interest when investigating system settings. It
may contain web server configurations, the definition of the init script, certificates,
and, more generally, a variety of valuable information for the analysis.

It is vital to check for the presence of network-related daemons and servers. If
these are not properly updated or inherently secure, they can serve as easy entry
points for attackers. Additionally, it is always advisable to search for hardcoded
credentials within configuration files or server binaries. Although this is a highly
insecure practice, it is still frequently used or forgotten after debugging, thereby
making the entire systems vulnerable.

Many of these search operations can be automated using the tool Firmwalker.
This tool scans the filesystem for items of interest such as common web servers
used on IoT devices, binaries such as ssh, tftp, dropbear, configuration files and
passwords.

4.1.4 Firmware emulation

Ultimately, the process aims to emulate the firmware, or specific components of it,
in order to perform dynamic evaluations. This step enables a more comprehensive
assessment of the software under analysis by observing the runtime behaviour of

37

Methodology

certain components.

To perform emulation, an emulator is required; in this study, QEMU (Quick
Emulator) was employed for this purpose [38]. QEMU is an open-source emulator
capable of emulating a broad range of CPU architectures. It supports various
instruction set architectures (ISAs), including x86, x86-64, MIPS, ARM, PowerPC,
RISC-V, SPARC, ETRAX CRIS, and MicroBlaze. Its versatility lies not only
in its ability to emulate CPU instructions, but also in its capacity to replicate
hardware components. QEMU can emulate nearly the entire system-on-chip (SoC),
encompassing the processor, memory, and peripheral devices such as network
adapters.

To enhance the fidelity of the emulation, QEMU provides architecture-specific
virtual boards that replicate the corresponding on-board hardware, offering high
reliability in execution. QEMU supports three primary modes of operation:

o User-mode emulation: This mode allows for the emulation of individual
executables. It is limited to the instructions of a single binary, enabling
the execution of programs compiled for different architectures and operating
systems on an x86 host system.

o System emulation: This mode emulates an entire system, including the
CPU, memory, and peripheral devices, thus allowing complete board-level
emulation.

o Hypervisor support: In this mode, QEMU functions either as a Virtual
Machine Manager (VMM) or as a backend for device emulation in virtual
machines managed by an external hypervisor.

During the emulation process, both user and system modes were employed. The
user mode enabled attempts to emulate individual files; however, the focus was
primarily on system emulation. This approach is more comprehensive, as it allows
the full firmware to be emulated, from the boot sequence to its operational state.
Such emulation enabled runtime analysis of the firmware, allowing for testing of
programs within the file system as well as available network services. A more
detailed discussion of this process, including two practical examples, is provided in
Section 5.2.

One of the main challenges associated with system emulation is debugging.
Emulating an entire system is inherently complex, as it requires the accurate
replication of critical components such as certain kernel modules and dynamic
libraries. These dependencies often cause the emulation to fail, necessitating a time
consuming effort to identify and replace the problematic components. Furthermore,
emulating the network stack adds an additional layer of complexity and is not
always feasible, which can further limit the scope of dynamic testing.

38

Methodology

It is also important to highlight that devices within BAS frequently rely on
communication protocols that utilize specialized hardware interfaces. For example,
BACnet MS/TP and Modbus RTU require physical ports and cabling that comply
to their respective standards, and do not operate over standard Ethernet. QEMU,
by contrast, supports emulation of the ISO/OSI network stack only for protocols
that operate over Ethernet and IP-based technologies. This results in inherent
limitations when attempting to fully emulate devices that depend on such hardware-
specific communication standards.

4.2 Scaling the analysis

One of the objective of this thesis is to apply the previously described methodology
to the entire dataset. This goal prompted a consideration of how to scale the process
from a manual, sequential analysis of individual firmware images to a broader,
parallelized evaluation. This transition highlighted the necessity of automation as
a means to improve efficiency and scalability. Consequently, efforts were directed
toward identifying tools capable of automating portions, or ideally the entirety,
of the analysis workflow. This search led to the adoption of EMBA [5], a tool
well-suited for comprehensive firmware analysis.

4.2.1 EMBA

EMBA is a tool designed for penetration testing focused on executing firmware
analysis. It is able to perform various actions such as firmware extraction, static
analysis and dynamic analysis via emulation. EMBA aims at automatically discover
possible weak spots and vulnerabilities in firmware, by investigating insecure
binaries, old and outdated software components, potentially vulnerable scripts, or
detecting hard-coded passwords.

EMBA is written almost totally in bash scripting language and has a long
list of dependencies helping it to achieve its goal. It relies on Binwalk, Ghidra,
Radare2, QEMU, NMAP and a long list of other tools and command line utilities.
It supports multiple operational modes, which can be selected via configurable
options, enabling either a comprehensive or a targeted, partial analysis of the
firmware.

EMBA’s operations can be assimilated to the methodology depicted previously.
Through the command-line interface, it is possible to specify a folder or file
containing the firmware, and, by using the appropriate options, both static analysis
and emulation can be executed. As first step EMBA analyses the composition of
the firmware by identifying the main parts of the firmware image (e.g. zlmage, file
system, bootloader), along with the foremost information for creating an emulation
environment (e.g. architecture, OS).

39

Methodology

Once the relevant components are identified, EMBA proceeds by analysing them
separately, with a primary focus on the kernel and the file system. Three dedicated
modules are responsible for detecting kernel related vulnerabilities. These modules
determine the kernel version and other characteristics to compile a list of known
vulnerabilities associated with that configuration. Additionally, three other modules
are tasked with analysing the file system, focusing on the detection of potentially
vulnerable artifacts. This includes identifying insecure packages and performing
static analysis of binaries and scripts to uncover potential vulnerabilities.

After extracting useful information from the previous steps, EMBA attempts to
launch the emulation environment. This phase is non-trivial, as it must overcome
numerous obstacles, including missing files and misconfigurations. EMBA addresses
these issues by automatically detecting and correcting errors, repeatedly attempting
to achieve a successful emulation.

This stage involves several key challenges. First, a suitable kernel image must
be selected to handle hardware-specific firmware calls effectively. Subsequently,
the original file system is modified to include a dedicated directory containing
various diagnostic tools and an enhanced version of BusyBox, which provides a
more comprehensive set of command-line utilities. This directory also includes a
Bash script responsible for configuring the network interface.

A significant contribution of EMBA to the emulation process is its capability to
identify and test a range of potential initialization (init) files. EMBA iteratively
attempts to boot the system using these files, switching between them until it
finds one that successfully initiates the system and activates the network interface.
If both the system boot and network configuration succeed, the emulation is
considered successful and a QEMU image is generated. Otherwise, the result may
be a partial emulation, where the system boots but the network remains inactive,
or a complete failure to emulate.

At the conclusion of all analysis phases, EMBA generates comprehensive re-
ports summarizing the results obtained. These reports include a wide range of
files detailing identified vulnerabilities, insecure services, and, when possible, an
assessment of the network services exposed by the firmware.

4.2.2 Supporting scripts

To support EMBA'’s operation, a set of Python scripts was developed to assist both
during the initialization phase and after the final results are generated.

EMBA analyses can be highly time-consuming, particularly during emulation
attempts, which may take between 7 to 10 hours per firmware image. The scripts
enable remote execution of the analysis on a server via SSH, providing functionality
to monitor the progress of the analysis while it is running.

A crucial aspect of this workflow is the consolidation of the information produced

40

Methodology

once the analysis is complete. Although EMBA generates a comprehensive web-
based report, the relevant data is scattered across numerous files in various formats.
Through a manual review process, the most informative output files were identified.
By employing regular expressions (regex), it was possible to extract and organize
key data into structured tables that summarize the most relevant analysis results.
Finally, the scripts also facilitated the generation of aggregated statistics and
summary tables, which are instrumental in assessing the status and characteristics
of the analysed firmware samples.

41

Chapter 5

Results

5.1 Statistics

In the following sections, data will be presented concerning: the composition of the
dataset, the vulnerabilities identified within the firmware, and statistics derived
from the collected information. The primary objective is to analyse the data
obtained through the information extraction process applied to the dataset, with
the aim of providing a comprehensive overview of the current state of firmware
development for devices employed in BMS.

5.1.1 High level data analysis

The analysis conducted over the firmware images had as objective to detect key
components within the firmware, including: architecture, kernel and various pieces
of software used. Out of 56 firmware samples, the architecture of 40 was successfully
identified, as shown in Table 5.1 (the endianess of all of them is Little Endian). Of
the remaining images, six were encrypted, and ten could not be unambiguously
identified by EMBA.

Architecture N©¢ of firmware
ARM 29
ARMG64 10

MIPS 1

Table 5.1: Number of firmware grouped by architecture

The data collected from the dataset clearly indicates that ARM is the predomi-
nant architecture among the devices analysed. This observation is not aligned with
trends in the IoT ecosystem. Previous studies, such as those by Kim et al. [20] and

42

Results

Chen et al. [19], report that IoT firmware across various domains predominantly
targets the MIPS architecture, with ARM accounting for only 10% to 25% of
observed cases.

Table B.1 in the appendix provides an overview of the analysed firmware images.
The table presents aggregated statistics obtained from the EMBA automated
analysis tool and includes data for 31 firmware samples. For the remaining 25
images, it was not possible to identify the kernel version. Kernel information was
successfully identified for all the 31 firmware, however, the GCC version used was
detected in only 29 cases. The two undetected instances are both from the vendor
Contemporary Controls. Across all analysed firmware images, a total of 48,692
Common Vulnerabilities and Exposures (CVEs) were identified, the vast majority
of which pertain to the kernel. This results in an average of approximately 1,570
CVEs per firmware image. When considering only those vulnerabilities assessed
using the CVSSv3 scoring system, the distribution is as follows:

Number of Critical CVEs [Score: 9.0-10.0]: 237

Number of High CVEs [Score: 7.0-8.9]: 14,270

Number of Medium CVEs [Score: 4.0-6.9]: 31,220

Number of Low CVEs [Score: 0.1-3.9]: 831

The overall average severity score across all CVSSv3 rated vulnerabilities is
approximately 6.1.

Table 3.3 gives an overview of the results of firmware emulation. Among the
56 firmware 30 were emulated, 15 partially and 15 completely. The EMBA tool
achieves emulation through a trial and error process that can lead to different
outcomes. This process must ensure not only the correct initialization and booting
of the system but also the proper configuration of the network interface. The
emulation process can be split in 4 phases:

Booting

IP detection

ICMP packets exchange
o Nmap scan

The first step involves detecting whether emulation through the QEMU emulator
has actually started, which is verified by the booting process. Once the firmware
successfully completes the startup phase, without encountering technical issues
related to hardware emulation, the next step is to determine the IP address. If

43

Results

the IP interface is set, the functionality of the network layer protocol is tested
by sending and receiving ICMP packets. Finally, if this stage is also successfully
completed, a scan is performed using the Nmap tool, which identifies open services
on the firmware, thereby providing an overview of the available services. This list,
however, may not be exhaustive, as not all services listen on standard ports, and
firewalls may filter traffic, preventing some services from being detected. In the
analysis conducted across 30 firmware the following stages were reached:

o Number of firmware with detected IP addresses: 1
o Number of firmware capable of exchanging [CMP packets: 14
o Number of firmware successfully scanned with Nmap: 15

A comprehensive overview of the software running within the analysed firmware
is presented in Table B.2 in the appendix. The table reports for each firmware
the services detected in two distinct analysis phases. The first phase involves
EMBA probing the system during startup to detect services launched for debugging
purposes. These services can later be verified during emulation by using the ps
command. In the second phase, once the firmware has successfully completed its
boot process, network services are scanned using Nmap.

EMBA leverages Nmap to perform this task using an approach that consists of
two scans. Initially, a general scan is executed on well-known ports. Following this,
a tailored scan is carried out. To guide this second phase, the netstat command
is used to identify services actively listening on network interfaces. Based on this
information, a refined scan is launched, focusing on the specific ports detected.
The results of both scans are made available into separate reports. It is important
to note that this automated analysis may fail to detect some services even if they
are running. As such, while the results offer valuable insights into exposed services,
they may not be exhaustive. The final summarized findings are reported in the
table.

The first eight firmware images (from PXG3 to PXM) correspond to devices
released by Siemens. A notable observation is the widespread use of web servers
such as nginz and lighttpd. These servers are embedded within the firmware to
provide services either to other devices or to a network administrator, who can
access device functionality via a graphical web interface. Given their purpose, these
services are typically discoverable by other devices within the same network. Nmap
was able to detect the presence of web servers in all cases except one. Another
frequently observed service is labelled as ba-device. Although it is not a well known
program, online research [39] suggests that it is likely a daemon responsible for
handling BACnet communications. This hypothesis is plausible, given that, as
discussed in the dataset chapter, many devices in the BAS domain use the BACnet
protocol. However, this service was not detected by Nmap during the automated

44

Results

scans, nor was it identified in subsequent, more targeted scans specifically designed
to detect BACnet traffic. It was only observed during the boot phase, when EMBA
detects services launched at system startup.

The firmware images ranging from FG to FW-8-8V-14 were released by Johnson
Controls. These firmware versions expose a wide variety of services. As with
the previously discussed firmware, web servers are also present in this group.
Additionally, the service tls _tunnel is deployed to provide security at the transport
layer. Among the more commonly observed services are daemons for SSH and
FTP, which allow secure remote access to the device and support file transfers,
respectively. Other notable services include nmbd and smbd, components of the
NetBIOS suite responsible for session layer communication and file/printer sharing
capabilities. Furthermore, some firmware samples utilize Redis and SQL databases
for storing information collected from other devices. The presence of mosquitto,
a lightweight message broker that implements the MQTT protocol, also reflects
a trend toward publish-subscribe messaging in these systems. This tendency is
confirmed by redis-server being not only able to host an in-memory database but
also acting as a message broker supporting publish-subscribe messaging framework
to send messages between services in real-time.

The remaining firmware images (from PFC to TP600) were released by WAGO.
The services in these images cover an heterogenous range of purposes. Similar
to previously analysed firmware, they include web servers, along with FTP and
SSH daemons. Additionally, the inted service is present, which is used to intercept
network requests and spawn the appropriate process in response to client demands.

It is worth noting that firmware from Contemporary Controls is not included in
this section. Although two samples from this vendor were successfully analysed,
neither of them could be emulated, preventing further inspection of the services
they might expose.

5.1.2 Statistical Analysis

In this section, the data obtained from the analysis of various firmware samples are
examined to generate aggregate statistics and temporal trends aimed at providing
insights into the security of their development processes. The information covers
several aspects of the firmware, including kernel versions, GCC versions, onboard
software versions, and the related vulnerabilities identified.

To analyse vulnerabilities that are present in firmware, it was necessary to
develop an infrastructure that could detect such vulnerabilities and collect related
data. The tool EMBA was employed for extracting vulnerabilities. It is able to
perform a comprehensive analysis of the firmware image, initially checking whether
the kernel is present and subsequently analysing other common pieces of software.
Upon completion of this procedure, EMBA creates a set of heterogeneous reports

45

Results

summarizing the vulnerabilities identified for every component being researched.

To retrieve specific information on identified vulnerabilities, the NVD database
maintained by NIST has been utilized. NVD is the U.S. government repository of
standards based vulnerability. It includes databases of security checklist references,
security-related software flaws, product names, and impact metrics. The entire
dataset was downloaded in JSON and imported into a MongoDB database for
analysis. This was due to the fact that the format of vulnerability entries is very
heterogeneous, and a non-relational database was thus the best choice for flexible
querying and data handling.

Finally, a Python script was used for extracting data, querying the NVD database,
and inserting the relevant information into a relational PostgreSQL database. The
script extracts CVEs identifiers from EMBA output files and, and using the info in
MongoDB can populate any gaps in missing data in PostgreSQL databases. This
approach enables continuous updates of the analyses, even when new firmware
images are introduced.

CVSS analysis

The analysis of 31 firmware samples revealed a total of 48,692 CVEs. The identified
security vulnerabilities span a broad time range, from 1998 up to the date of
the firmware analysis. As a result, the dataset includes vulnerabilities assessed
using various versions of the base score metric, which is employed to determine
their severity. [40] The Common Vulnerability Scoring System (CVSS) provides
a way to capture the principal characteristics of a vulnerability and produce a
numerical score reflecting its severity. The numerical score can then be translated
into a qualitative representation (such as low, medium, high, and critical) to
help organizations properly assess and prioritize their vulnerability management
processes. The evaluation systems present in the dataset include CVSSv2 and
CVSSv3. CVSSv2 was introduced in 2007, while CVSSv3 was designed to correct
shortcomings in v2 and was introduced in 2015. The identified vulnerabilities fall
into three categories: those containing only a CVSSv2 base score, those containing
only a CVSSv3 base score, and those for which both assessments are available.
Specifically, the database includes 3,594 unique CVEs: 611 are assessed solely with
CVSSv2, 1,792 solely with CVSSv3, and 1,178 include both scoring versions. The
remaining 13 CVEs are marked as 'rejected’, indicating that they were initially
added to the NVD database but were later deemed invalid.

Given the differences between the two scoring systems, an analysis was conducted
to assess the consistency between them. To this end, only vulnerabilities with
both CVSSv2 and CVSSv3 scores were selected. The absolute difference between
the two scores was calculated for each vulnerability, resulting in the distribution
shown in Figure 5.1. The mean absolute difference was found to be 1.445. This

46

Results

is consistent with the difference reported by Santos [41] which states that “the
average base score increased from 6.5 (CVSSv2) to 7.4 (CVSSv3)” with a mean
difference increase of 0.9. (To be noted that the mean difference increase of 0.9 is
computed without the absolute value).

Based on:

« An average absolute difference of 1.445 between CVSSv2 and CVSSv3 base
score

e The number of vulnerabilities containing only CVSSv3 being considerably
larger than the ones containing only CVSSv2

o The CVSSv3 is being released more recently to overcome the shortcoming in
CVSSv2

the subsequent analyses consider only vulnerabilities with a CVSSv3 base score to
ensure greater consistency in severity assessment.

Distribution

w Y

Score difference
N

Figure 5.1: Comparison between CVSSv2 and CVSSv3 score

Among the various aspects considered in the analysis, one of the most significant
is the presence of vulnerabilities within different firmware images. Indeed, in order
to assess the current security posture of firmware, identifying the vulnerabilities it
contains is essential to understanding and reporting its level of security.

47

Results

In the constructed database, the vast majority of identified vulnerabilities pertain
to the firmware’s kernel. Only 26 vulnerabilities, related to two different versions of
Dropbear SSH found in four distinct firmware instances, do not involve the kernel.

For the purposes of analysis, it was observed that the 31 firmware samples include
only 14 distinct kernel versions. Consequently, in evaluating the vulnerabilities, a
decision was made to focus on unique vulnerabilities rather than counting repeated
occurrences across multiple firmware versions. This approach reduced the total
number of vulnerabilities from 48,692 to 3,594. Thereby offering a clearer picture
of the distinct issues present across the dataset

CVSSv3 Base Score Frequency Distribution

1400 Severity
1300 I Critical

1200 B High

1000 'I:I°W

. 900 one
S 800
Q%) 700
i 600
500
400
300
200
100

0 . —
0 1 2 3 4 5 6 7 8 9 10
Base Score

Figure 5.2: CVSSv3 CVEs distribution

Figure 5.2 presents the distribution of vulnerability severity base scores, catego-
rized according to the NVD CVSS ratings [42]. The scores, which range from 0
to 10 with a precision of one decimal place, are binned in the figure into integer
values only (e.g., scores ranging from 5.0 to 5.9 are labelled as 5). The graph
clearly illustrates that the majority of vulnerabilities are concentrated between
scores of 5 and 7, with an average score of 6.25. This distribution indicates that
vulnerabilities predominantly fall within the medium to high severity categories,
with relatively few categorized as low or critical. These findings suggest that
most firmware vulnerabilities are sufficiently severe to be exploitable, though not
necessarily critical. However, it is important to note that the vulnerabilities are
primarily associated with the kernel component of the firmware. A deeper analysis

48

Results

of other firmware components, particularly those tailored to specific vendors, would
be necessary to gain a comprehensive understanding of their security posture.

CWE ID | Frequency | Name Description

CWE-476 557 NULL Pointer Dereference | A NULL pointer dereference occurs when the application
dereferences a pointer that it expects to be valid, but is
NULL, typically causing a crash or exit.

CWE-416 482 Use After Free Referencing memory after it has been freed can cause
a program to crash, use unexpected values, or execute
code.

CWE-362 196 Concurrent Execution us-| The program contains a code sequence that can run con-
ing Shared Resource with | currently with other code, and the code sequence requires
Improper Synchronization | temporary, exclusive access to a shared resource, but a
('Race Condition’) timing window exists in which the shared resource can

be modified by another code sequence that is operating
concurrently.

CWE-401 164 Missing Release of Memory | The software does not sufficiently track and release al-
after Effective Lifetime located memory after it has been used, which slowly

consumes remaining memory.

CWE-200 162 Exposure of Sensitive Infor- | The product exposes sensitive information to an actor
mation to an Unauthorized | that is not explicitly authorized to have access to that
Actor information.

CWE-787 152 Out-of-bounds Write The software writes data past the end, or before the

beginning, of the intended buffer.

CWE-119 149 Improper Restriction of Op- | The software performs operations on a memory buffer,
erations within the Bounds | but it can read from or write to a memory location that
of a Memory Buffer is outside of the intended boundary of the buffer.

CWE-125 134 Out-of-bounds Read The software reads data past the end, or before the
beginning, of the intended buffer.

CWE-20 116 Improper Input Validation | The product receives input or data, but it does not
validate or incorrectly validates that the input has the
properties that are required to process the data safely
and correctly.

CWE-667 98 Improper Locking The software does not properly acquire or release a
lock on a resource, leading to unexpected resource state
changes and behaviors.

Table 5.2: Top 10 most frequent CWE identifiers in the data set

To classify vulnerabilities not only by severity but also by type, the CWE system
[43] provides a comprehensive taxonomy. Maintained by The MITRE Corporation,
CWEs are often assigned to CVE upon approval. This association enables a more
precise characterization of the nature and impact of each vulnerability, facilitating
a deeper understanding of which aspects of a system are affected.

Table 5.2 summarizes the top 10 most frequent CWEs identified during the
analysis of firmware CVEs, in conformity with NVD directives [44]. The table omits
372 CWEs labelled as NVD-CWE-noinfo and 113 labelled as NVD-CWE-Other.
NVD-CWE-noinfo are CWEs where there is insufficient information about the issue
to classify it, while NVD-CWE-Other is due to the fact that NVD is only using a
subset of CWE for mapping instead of the entire CWE, and the weakness type is
not covered by that subset. The majority of CWEs are related to memory safety

49

Results

issues, as shown by the following vulnerabilities: NULL pointer dereference (CWE-
476), use-after-free (CWE-416), and out-of-bounds access (CWE-787, CWE-125).
These are indicative of vulnerabilities primarily affecting kernel-space components
of the firmware, which lack robust memory protection mechanisms. Additionally,
the relatively high incidence of race conditions (CWE-362) and improper locking
(CWE-667) highlights the risks associated with concurrent execution, a common
feature in low-level firmware kernels. These results are aligned with the predominant
presence of vulnerabilities tied to the Linux kernel.

Only a small subset of vulnerabilities were associated with Dropbear, making not
possible to analyse deeper the vulnerabilities tied to the userland and specifically
related to network activities. Investigate these aspects is crucial to get a better
understanding of the security posture of BAS devices. Overall, the table provides
valuable insights into the primary issues affecting devices within the BMS ecosystem,
particularly concerning low-level components.

5.1.3 Kernel analysis

This subsection presents a qualitative analysis of the extracted kernels, aiming
to understand their distribution across different vendors, the timelines for their
updates, and the policies governing their selection.

The dataset consists of 56 firmware images, but kernel-related information
could be retrieved for only 31 of them. Figure 5.3 illustrates the software images
collected in the archive, organized by year of release. A clear skew toward the
year 2024 is observed, most likely due to vendors routinely updating their software
products, search engines prioritizing more recently updated pages, and the frequent
unavailability of historical versions, as many vendors do not maintain publicly
accessible archives of past releases.

To assess the maintenance status of the firmware included in the dataset, the
analysis focused on the versions of the kernels used. Extracting and examining
kernel versions provides insights into the reliability of the firmware and the security
standards adopted by manufacturers in developing these products. It is reasonable
to assume that the use of more recent kernels reflects more deliberate and informed
choices regarding various components within the software.

Figure 5.4 presents a bar chart showing the Linux kernel versions used in firmware
releases, grouped by release year. For clarity, kernel versions are represented by
their major and minor numbers, omitting the full version strings. The dataset
includes Linux kernel versions ranging from 2.6 to 6.6. Version 2.6.29 was released
in 2009, while version 6.6 came out in 2023 [45]. This range highlights the wide
variability in software freshness across [oT devices, with differences of up to five
major kernel versions. Notably, none of the firmware images released in the past
three years have used a kernel older than version 4.4, that was released in 2016.

50

Results

20 Ne of firmware by year in the data set Ne of firmware by year whose CVEs analysis was completed
Manufacturers Manufacturers

Bl ContemporaryControls B ContemporaryControls
B JohnsonControls B JohnsonControls

25 MW Siemens B Siemens
. WAGO e WAGO

20

15

Ne° of firmware

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Year Year

5

Figure 5.3: Firmware by year in the data set

Kernel version by year

20
mm Linux v2.6
Linux v3.4 -
o Linux v3.18
15 ==m Linux v4.4
e Linux v4.14
o == Linux v5.10
g mm Linuxv5.15
E 10 ™= Linux v6.6
qa l
o
z
5 (2]
1 =
, I N -

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Year

Figure 5.4: Firmware split by kernel version and year

51

Results

To better understand trends in the delay of kernel integration within firmware,
Figure 5.5 illustrates the median delay per year in the integration of kernels into
firmware images, relative to their release date. The median was chosen instead
of the mean due to the limited amount of data available (making it difficult to
conduct robust statistical analyses). Additionally, the median when just limited
data are available is less sensitive to outliers. It is worth noting that the mean
values do not differ significantly from the median values in this case. The graph
indicates that using old kernel releases in not a practice that is increasing over
time, which is encouraging regarding the general health status of these devices. In
2024, the year with the most available data, the median delay is 4 years. This is
significantly better compared to the 8 year delay observed in 2018. Moreover, aside
from the six firmware instances using kernel version 4.4, all other firmware utilize
versions 5.10 or newer, released after 2020. The firmware exhibiting the greatest
delay between kernel release and implementation into the images belong to the
years 2018 and 2019. However, since these years include only five firmware samples,
drawing meaningful conclusions from such limited data remains challenging.

Kernel integration delay per year

Delay (years)
N w BN (@] » ~!

—_

o

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Year

Figure 5.5: Median kernel integration delay

To gain a deeper understanding of the security status of commercially available
firmware, it is important to consider not only the delay in kernel release and its
integration inside the firmware but also its maintenance over time. Each Linux
kernel version has not only a release date but also a defined support duration,

52

Results

known as its End of Life (EOL). Once a kernel reaches its EOL, it no longer receives
updates about: security patches, bug fixes, stability or performance improvements.
Therefore, choosing the appropriate kernel type is crucial to ensure adequate ongoing
maintenance. Linux kernel can be categorized into several types for maintenance,
including mainline kernels, stable kernels, and long-term support (LTS) kernels.
Mainline kernels introduce new features, stable kernels receive regular bug fixes,
and LTS kernels are maintained for extended periods to ensure ongoing support
and security updates.

Linux Kernel Support vs Firmware Release by Year

Linux 6.6 Firmware maintanance: i
e Never maintained 5

Linux 5.15 e Maintained ° |
------ Analysis Date !

Linux 5.10 ®

o> @O~

-

Linux 4.14 °

@

Linux 4.4

Linux 3.18 °

-

Linux 3.4 o

1
Linux 2.6.39 e e

1
Linux 2.6.29 °

-

2010 2012 2014 2016 2018 2020 2022 2024 2026
Year

Figure 5.6: Kernel support compared to firmware release.

In this plot is represented in each row a Linux kernel span life, from its release to
its end of life The scattered points represent the number of firmware released by
year The analysis date line represents when the analysis has been conducted

Figure 5.6 illustrates the various firmware versions, organized by release year
(x-axis) and kernel version used (y-axis). Additionally, the figure depicts the
lifecycle duration of each kernel version, thereby enabling an evaluation of the
appropriateness of kernel selection in each firmware.

The firmware versions using Linux 2.6 kernels released in 2018 and 2019 imme-
diately stand out. Both kernel versions had notably short maintenance periods and
were initially released approximately 7 to 9 years prior. Similarly, the firmware
employing the Linux 3.4 kernel, despite benefiting from a slightly longer mainte-
nance duration, was already obsolete at the time of the firmware’s release. It is

53

Results

crucial to highlight that selecting a kernel version no longer receiving maintenance
poses significant security risks, as the lack of ongoing security updates makes these
systems vulnerable to well-known and easily reproducible attacks.

Fortunately, it can also be observed that all other firmware versions were released
using kernel versions actively maintained at the time of release. Notably 25 of these
employ kernels that will remain supported until early 2027. The remaining two
firmware versions, using Linux kernels 3.18 and 4.14, deserve separate consideration.
The firmware released in December 2014 by Siemens for the QMX7.E38 device
employs Linux kernel version 3.18. This choice is not optimal, as kernel 3.18 was
officially maintained only until January 2017, resulting in a support lifespan of
just two years. An LTS kernel would have been preferable. Moreover, subsequent
firmware updates for this device are not available in the dataset, suggesting the
firmware may have never been updated. Conversely, the firmware using Linux
kernel version 4.14, released in 2019 by Johnson Controls for FW-8-8V-14 device,
appears to represent an appropriate kernel choice due to its extensive support
period and LTS. Additionally, the dataset includes a subsequent firmware version
released in 2023. Unfortunately, determining whether this newer firmware utilizes
a more updated kernel is impossible, as the analysis could not unpack it due to
encryption.

It is important to notice that the choice of the Linux kernel in IoT firmware
development is strongly influenced by hardware constraints and driver availability.
Most IoT boards are tied to a specific BSP (Board Support Package) provided by the
SoC vendor, which includes a particular kernel version and custom drivers. These
drivers are often tightly coupled with the kernel, making upgrades difficult without
extensive modifications. As a result, developers often rely on older LTS kernels that
balance stability and long-term security updates. Additionally, compatibility with
build systems like Yocto or Buildroot further narrows the kernel options. These
constraints often result in devices shipping with outdated kernels, increasing their
exposure to known vulnerabilities if not properly maintained.

In summary, the firmware included in the dataset exhibits a generally strong
security posture regarding kernel updates. Out of 31 firmware images analysed, 25
employ kernel versions that are still actively maintained, 2 use kernel versions that,
although no longer supported, were maintained at the time of firmware release, and
only 4 firmware versions were initially released with outdated kernels. Additionally,
the kernel integration delay is generally short, with only a few firmware images
raising notable concern.

5.1.4 GCC analysis

Assuming firmware update status age from kernel version could be overly simplis-
tic. Hence, another common item in these firmware images, the GNU Compiler

o4

Results

Collection (GCC), was examined. GCC is a key element within the toolchain used
to compile kernels and executables contained in firmware, when combined with
kernel version data, analysing GCC versions gives a clearer indication of firmware
image components.

Figure 5.7 presents the distribution of firmware by year of release and GCC
version used. With respect to the previous kernel analysis here two firmware
images have been left out, due to the fact that was not possible to determine
the GCC version employed. GCC version is identified by looking into strings in
compiled objects, based on which the most probable GCC version is guessed. The
firmware images that are missing are from vendor Contemporary Controls and were
published in 2022. The GCC versions seen in the dataset vary between version
3.4.1, published in 2004, and version 11.4.0, published in 2023 [46]. Obviously,
using a version dating back to 2004 is well out of date and has potential security
implications.

The use of outdated compiler toolchains, particularly older versions of GCC,
presents a significant security concern in firmware development. More modern GCC
versions include essential security patches and enhancements for stack canaries,
position independent executables (PIE), and control-flow integrity (CFI), which
mitigate common exploitation techniques. Older compilers not only lack these
defences but may also contain bugs that can lead to faulty or insecure binary
generation. In constrained environments, such as the ones for embedded systems,
where older toolchains are often retained for compatibility, this can result in
firmware that is inherently more vulnerable to memory corruption and code reuse
attacks.

It is possible to carry out a comparative analysis of the integrating delays
between kernels and GCCs. Figure 5.8 illustrates the delay in GCC integration
using median values (an explanation for this choice was provided in subsection 5.1.3).
The graph somewhat reflects the pattern seen earlier in Figure 5.5. Especially, a
considerably integration delay can be noted for firmware released in 2018 and 2019.
As aforementioned, these are critical years and all firmware of these years belongs
to Johnson Controls. Conversely, an observable improvemente is noted in the most
recent three years with a declining trend. The newer firmware versions belong to
the manufacturers WAGO and Siemens.

This analysis emphasize the consistency between the findings derived from kernel
and GCC version analysis. Significant issues were identified with the components
used in firmware released during 2018 and 2019. That said, they do not indicate a
broader or general trend. On the other hand, in recent years, time range when a
larger number of samples are available, use of new components appears to have
been the norm.

Overall, while security within the realm of BMS still requires improvement,
it does not appear to be in a critical state. As demonstrated by the statistical

59

Results

N° of firmware

Delay (years)

20

15

10

12

10

GCC version by year

|

2024

== GCC 3.4.1
s GCC 4.3.2
GCC 4.5.1
e GCC 4.6.3
s GCC7.4.0
e GCC 8.2.0
B GCC 9.2.1
mmm GCC 930
mm GCC 11.2.1
mmm GCC 11.3.1
== GCC 11.4.0
N
1 I e N
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Year
Figure 5.7: Firmware split by GCC version and year
GCC integration delay per year
2015 2016 2017 2018 2019 2020 2021 2022 2023
Year

Figure 5.8: Median GCC integration delay

56

Results

analysis of the CVEs, the majority fall within the medium to high severity range.
This indicates that these systems require frequent updates to keep pace with
evolving threats that could compromise their security posture. However, the
analysis of kernel and GCC component versions suggests that vendors have recently
shown greater awareness of security concerns. In particular, there is evidence
that more modern versions of kernels and toolchains have been adopted in recent
years. Additionally, the preference for LTS kernel versions over those with shorter
maintenance windows highlights an increased sensitivity to security best practices.
In conclusion, although there remain areas where significant improvements are
needed, the findings suggest that meaningful steps have been taken in recent years
to enhance the security of the analysed firmware.

5.2 Case Studies

This section presents two in-depth case studies conducted using EMBA to analyse
firmwares from the dataset. The goal is to get a better insight in the analysis
procedure and identify gaps between the current state and a scalable, in-depth
analysis framework. Two fundamental steps to reach this objective are:

» Establishing a working network connection for the device, where its services
can be reached

o Gaining terminal access to control the device

Network access is crucial to assess all services exposed by the device on its
network interface. A connection enables monitoring of device traffic and could allow
fuzzing analysis. While terminal access is essential to carry out internal firmware
inspection, including process analysis, service discovery, and log/metrics retrieval.

The testing environment comprised the following components:

e Host device: Windows 11 machine

o Virtual Machine: Ubuntu 22.04 running on either VirutalBox or Windows
Subsytem for Linux

o Emulated device: QEMU emulator running on Ubuntu, emulating Johnson
Controls firmwmare FW-8-8V-14 V1.0b16i or FG V2.0b52

The tested firmware require the interaction with a proprietary Windows software
(provided as a .exe executable) to evaluate specific network services. However, since
the QEMU emulation is reachable only via the Ubuntu VM, the Windows host
machine and the VM were configured to bridge the communication between the
executable and the emulated environment. The following steps were implemented
to establish this configuration:

57

Results

1. Creating a LAN between the Windows host and the Ubuntu VM

o VirtualBox: network between VM and host is configurable via the Network
Manager

o WSL: by default has a network between the host machine and the virtual
environment

2. On the Ubuntu VM

o Enabling IP forwarding: sudo sysctl -w net.ipv4.ip_forward=1

o Setting NAT postrouting rule: sudo iptables -t nat -A POSTROUTING
-0 <TAP_NAME> -j SNAT --to-source <IP_UBUNTU> to make the Win-
dows traffic appear as sent by the Ubuntu VM. <TAP__NAME>: name
of the TAP device created by the run.sh script. <IP_ UBUNTU>: IP
address of the Ubuntu machine used by the network interface enabled to
communicate with the emulated firmware.

3. On the Windows host creating a route rule to address the traffic sent to
the emulated device towards the Ubuntu VM that acts as a gateway: route
add <destination_network> MASK <subnet mask> <gateway_ip>. <des-
tination_network>: TP address of the network shared by the Ubuntu VM
and the emulated device <subnet mask>: subnet mask of the destination
network <gateway ip>: IP address of the Ubuntu VM in the network shared
with the Windows host

5.2.1 Report on Johnson Controls FW-8-8V-14 V1.0b16i

Introduction

The device FW-8-8V-14, running firmware version V1.0b16i, made by Johnson
Control is characterized by a MIPS architecture and little endian mode. It is the
only MIPS based architecture in the data set. The original Linux version used in
the firmware is v4.14.105, but for creating an emulation compatible image Linux
v4.1.52 is used. The device belongs to the EasylO FW series, it is a controller
that can be used as part of an existing network or as an isolated BMS Wi-Fi
network. The main function of this controller is to handle Variable Air Volume
applications and sensors. It is designed to manage field devices through its four
universal inputs ports and integrated antenna, it is also equipped with a differential
pressure transducer. Additionally, the controller is capable of initiating routines,
storing data in its internal database and performing analysis. It supports multiple
communication protocols, including BACnet IP client/server, BACnet MSTP
client/server, Modbus TCP/RTU M/S as well as Sox, TCOM, P2P and MQTT.

58

Results

These are used to provide services and also to coordinate with other nodes in the
network when available. It exposes a web server and a Sox server (Sox is a Sedona
framework protocol) through which it can be programmed.

The FW-8-8V-14 V1.0b16i firmware was selected because it is the only device
that supports a working telnet connection. However, the TCP services booted by
the emulation are not discoverable by Nmap, which means an investigation should
take place. Using this firmware as the starting point was considered the optimal
approach for investigating emulation, as it provided the necessary connectivity to
access the system during runtime.

System overview

To fully understand the emulation process and how the device works, it is crucial to
first give an overview of the steps taken to achieve the emulation. EMBA, through-
out its analysis, identifies the main parts of the firmware image (e.g. zImage, file
system, bootloader), along with the foremost information for creating an emulation
environment (e.g. architecture, OS). Once EMBA obtains this information, it
attempts to run the emulation environment with different configurations until the
firmware boots successfully with a working TCP connection. At the end of this
process a folder with all the components required to rerun the emulation with
QEMU is created. Appendix C provides the command to run the emulation on
QEMU.

The serial connection that can be established via the -serial telnet:localh-
ost:4321,server,nowait option using the command telnet localhost 4321
enables a telnet connection from the VM to the device. Although this behaviour
should be available for all the devices starting successfully the emulation in practice
it is not. Just this device enables a working telnet connection, all the others open
the connection but then the terminal becomes unresponsive. Asking to Michael
Messner, a creator and maintainer of EMBA, about this issue he replied that is
not the first time someone reported this behaviour as can be seen by two github
issues: Issue 459 and Issue 382. Maintainers say that this happens primarily on
ARM architectures, so most likely there are issues with the ARM compiled kernel,
console or code.

Furthermore, since a network configuration has been set up, the device is also
accessible over the network. EMBA configures a TAP interface, which serves as
the gateway to reach the emulated device from the VM.

Manual analysis

This phase focuses on understanding which services are running within the system.
This involves analysing their behaviour both from a network perspective and an
internal perspective, with the goal of identifying any discrepancies between the

59

https://github.com/e-m-b-a/emba/issues/459
https://github.com/e-m-b-a/emba/issues/382

Results

two. Following this assessment, troubleshooting can be performed to address any
issues that may hinder the proper deployment of the services. Finally, an analysis
is conducted to evaluate the state of the services and so the ability to perform
operations on them.

The initial test conducted on the device involved scanning its ports with Nmap
to assess the response from the services. The scan aimed to identify which ports
were active during system boot. The services booted were tracked by EMBA during
its analysis along with the ports and protocols they use. It targeted 9 TCP ports
and 3 UDP ports. The outcome indicated that the UDP ports were open, while the
TCP ports were filtered. The results were not aligned with other scans executed on
products of the same vendor, specifically on Johnson Controls FG and FS series,
where all the services booted resulted open with no distinction between TCP and
UDP.

The manual analysis continued by looking into the network configurations and
processes running on the system to gain a deeper understanding of the system’s
behaviour during runtime. Executing the command ip addr revealed a total of
11 interfaces. Among these were taken into consideration: lo (loopback interface),
eth0, eth0.1@eth0, eth0.2@eth0 and br-lan. The main interface was ethO which
had two subinterfaces eth(0.1 and eth0.2, likely used for handling a VLAN. The
bridge interface, br-lan, was configured by EMBA and was assigned an IP address
reachable via the TAP interface on the VM. It shared the same MAC address as
eth0.1.

By using commands such as ifconfig or inspecting the contents of /proc/net/
dev an overview of the traffic transmitted through the interfaces was obtained.
It was noticed that the traffic was mainly transmitted by the two subinterfaces,
eth(0.1 and eth0.2. The subinterface eth(.1 transmitted and received traffic, likely
originating from the network linked to the VM, while the subinterface eth0.2 just
transmitted traffic but did not receive any.

Identifying listening services was possible using netstat -tulp and netstat
-tuln. When combined, these commands provide information about which services
are listening on specific ports and their respective origins. The output indicated
that all services previously detected as filtered were, in fact, actively listening.

The analysis proceeded by verifying whether firewall rules were in place. To
accomplish this task the command iptables -L was used. The output, which
was extensive and complex, was analysed using ChatGPT Al tool. Querying the
AT agent about whether the configured rules could have potentially blocked the
traffic, it answered negatively. To validate the Al’s assessment, the firewall rules
were saved using the command iptables-save > iprules and then flushed with
iptables -F. With no rules in place, an additional Nmap scan was performed.
The results of this scan, as shown in 5.1, revealed no TCP filtered ports, only open
and closed ones. This outcome contradicted the Al’s earlier analysis, which stated

60

/proc/net/dev
/proc/net/dev

Results

that the firewall rules were not blocking the traffic.
Listing 5.1: Nmap result FW-8-8V-14 V1.0b16i

Nmap scan report for 192.168.10.30
Host is up (0.0059s latency).

PORT STATE SERVICE VERSION

22/tcp open ssh Dropbear sshd (protocol 2.0)
53/tcp open domain Cloudflare public DNS
80/tcp open http nginx 1.17.5

139/tcp open netbios—ssn Samba smbd 3.X — 4.X (
workgroup : WORKGROUP)

443 /tcp open ssl/http nginx 1.17.5

445/tcp open netbios—ssn Samba smbd 3.X — 4.X (
workgroup : WORKGROUP)

2812/tcp closed atmtcp

3333/tcp closed dec—notes

53/udp open domain Cloudflare public DNS
137/udp open netbios—ns Microsoft Windows netbios—ms (

workgroup : WORKGROUP)
138/udp open|filtered netbios—dgm

MAC Address: 38:D1:35:02:00:00 (EasyIO Sdn. Bhd.)

With the services reachable was possible to perform further analysis useful
for assessing their state. For each device sold from Johnson Controls there are
multiple guides, aimed at helping the final user getting a better understanding
of their products. Particularly useful are the FAQ guides developed for all the
EasylO series. In these documents it is possible to find interesting insights ranging
from the network configurations and login credentials to protocol limitations.
Using the credential extracted from the FAQ document it was possible to test
the SSH service. It was responsive and allowed the login with the command ssh
-oHostKeyAlgorithms=+ssh-rsa sdcard@192.168.10.30 and using the password
123456. Other credentials were also tried but they did not provide access much
less root privileges.

The Web services were checked as well. From the Firefox web browser the
connection to the URL http://192.168.10.30 was redirected the to http://192.
168.10.30/sdcard/cpt/app/signin.php. The page displayed correctly a login
form asking for credential to access the CPT Tools via web. The attempt to login
into the services with the credential listed in the FAQ was unsuccessful, it also
failed the attempt of trying credentials of different EasylO series. Furthermore it
was possible testing, setting up a proper network configuration, the Sedona sox
protocol. CPT Tools is an open source software programming tool that provides
third party configuration and management tools for products that run in a Sedona
environment, such as the FG series, the FC series, the FW series and the 30P.
Testing it required establishing a working network communication between the

61

http://192.168.10.30
http://192.168.10.30/sdcard/cpt/app/signin.php
http://192.168.10.30/sdcard/cpt/app/signin.php

Results

host machine and the emulated device as explained at the beginning of the section.

With this configuration deployed the communication between the Windows host
and the emulated device was working correctly as confirmed by the web services
reachability. However the connection by mean of CPT Tools was unsuccessful,
most likely because of the incorrect credentials listed in the FAQ document.

System insights

Further analysis revealed that the system operates on top of OpenWrt, a Linux
operating system targeting embedded devices. Given this information, a better
understanding of the various configurations of the system was achieved. OpenWrt
configurations can be found at /etc/config. The network configurations show
the creation of 3 interfaces. The loopback interface, the “lan” interface and the
“wan” interface. The “lan” interface is associated with the ifname eth0.1 while
the wan interface is associated with the ifname eth0.2. These settings explain
why traffic was tracked on the eth0.1 subinterface, probably booted services were
trying to communicate with other devices over the LAN area. While the outbound
traffic recorded on subinterface eth0.2 was likely generated by the DNS services. A
more accurate analysis of the traffic transmitted by eth0.2 could not be conducted
because the interface was not connected to a network and the commands available
inside the firmware were not suitable.

OpenWrt’s firewall management is mainly configured through the file /etc/
config/firewall. Reviewing this file it was observed that no rules were set for the
LAN zone, allowing both outgoing and ingoing communications. Instead, roughly
all services were blocked for the WAN zone. Given this, the necessity of flushing
the iptables rules to establish a connection was unclear, as no rules were defined for
the LAN zone. A plausible explanation is that some rules might be set elsewhere,
outside of this configuration file.

5.2.2 Report on Johnson Controls FG V2.0b52
Introduction

The device FG, running firmware version V2.0b52, made by Johnson Control is
characterized by an ARM architecture and operates in little endian mode. The
original Linux version used by the firmware is v2.6.39.4a, but during the emulation
Linux v4.1.52 is used. The device is part of the FG+ series of EasylO, it is a plant
controller, meter and data aggregator. It supports multiple, concurrent protocols
including BACnet, Modbus, TCOM, and web services. It is equipped with 16 input
ports able to communicate with sensors of different types, from which can collect
data inside is internal SQL database. It also has hardware to perform actions such
as starting routines and aggregate data.

62

/etc/config
/etc/config/firewall
/etc/config/firewall

Results

Manual analysis

The device FG, which is based on ARM architecture, was inaccessible via telnet
communication. Specifically, upon establishing a connection, the terminal became
unresponsive. This issue hindered any further analysis, since there was not a way
to access the running firmware.

To establish network-based connections and initialise some custom services
EMBA infers few essential scripts (preInit.sh, network.sh, and run_service.sh)
in the firmware’s filesystem. It is possible to trigger the initialization of Netcat and
Telnet daemons by passing the parameter EMBA__NC=true during the kernel
boot as shown in C.2.

Testing this mechanism by explicitly setting EMBA__NC=true in the kernel
parameters failed. The expected daemons listening on ports 9876 and 9877 at the
IP address 192.168.10.11 were unreachable.

Further validation on FW-8-8V-14 showed no active daemons via ps and netstat
-tulp, though manual daemon initiation succeeded. Attempts to capture script
output by redirecting stdout and stderr resulted in unpredictable system behav-
ior, and live-system edits of run_service.sh caused file corruption, prompting
abandonment of this debugging method.

Although no ways to get access to the system were found it was still possible to
assess the network services. A Nmap scan identified four services: Pure-FTPd on
port 21 listening for FTP connections over TCP, Dropbear on port 22 listening
for SSH connections over TCP, and Embedthis webapp on ports 80 and 443
listening for HTTP and HTTPS connections. In contrast to the FW-8-8V-14
firmware, this firmware seemed to have no firewall rules set in place. To better
understand the network configuration within the device, an examination was
conducted regarding the settings of the interfaces on the VM. This analysis revealed
a difference compared to the previously examined device. Specifically, instead
of creating a TAP interface followed by the creation of a subinterface, only a
single TAP interface was instantiated. This suggested a potential difference in
network configuration between the devices, where the absence of subinterfaces
might implicate the absence of VLANSs.

The device’s manual was consulted revealing a list of services, along with their
respective credentials. Among these were found credentials for Sedona service, file
transfer via FTP, CPT graphics deployment via web browser. Nmap was able to
detect the services showed in 5.2.

63

preInit.sh
network.sh
run_service.sh
run_service.sh

Results

Listing 5.2: Nmap result FG V2.0b52

Nmap scan report for 192.168.10.11
Host is up (0.0017s latency).

PORT STATE SERVICE VERSION

21/tcp open ftp Pure—FTPd

22/tcp open ssh Dropbear sshd 2015.67 (
protocol 2.0)

80/tcp open http

443 /tcp open ssl/https?

3333/tcp closed dec—notes

1001/udp open|filtered unknown

1876 /udp open ewcappsrv?

5021 /udp open| filtered zenginkyo—2

The Web services were accessible through a web browser. The page http:
//192.168.10.11/fg _utility_app/app/signin.php displayed a login form for
accessing the CPT tools. This time, the credentials listed in the manual were
successful, allowing to sign in. Afterwards the CPT tools were accessed via the
sox protocols. The application, running on the host Windows machine, displayed a
working interface. Through the app, it was possible to check the firmware status
and view the available services. Additionally, the available Sedona kits could be
reviewed, with the option to install new ones.

The next step involved testing the SSH connection. Although this service was not
listed in the device’s manual, the Nmap scan highlighted its presence. Upon estab-
lishing the connection, the SSH daemon prompted for a password. Surprisingly, two
pairs of credentials, intended for different services, were accepted during login: using
the commands ssh sdcard@192.168.10.11 or ssh webuser©192.168.10.11 and
entering the password 123456. This allowed access to the system with the two
accounts, sdcard and webuser.

Eventually, by exploiting the SSH service it was possible to access the live system
but not as root user. Examination of the file system confirmed that the network
setup differed from that of FW-8-8V-14. Moreover, the FG firmware was found to
be not based on OpenWrt.

In appendix C is possible to see the procedure followed to recover a password
and take control of the system as admin.

In this case study presented, initially, it was only possible to access the exposed
network services without direct terminal access. Through a deeper investigation of
EMBA, device documentation, and the device itself, it became possible to achieve
terminal access. Unlike the previously analysed device, this time control was
obtained via network using the SSH protocol.

64

http://192.168.10.11/fg_utility_app/app/signin.php
http://192.168.10.11/fg_utility_app/app/signin.php

Results

5.2.3 Case studies summary

The case studies presented in this section are useful for understanding the current
state of EMBA’s emulation capabilities. As observed, this valuable tool is capable
of performing an in-depth analysis of a firmware image, from which it can extract
a wealth of highly useful data. Furthermore, it can consolidate this information
into various reports and leverage it to attempt the reconstruction of an emulated
environment.

In many instances, as illustrated in Section 5.1, EMBA is not able to automati-
cally carry out the emulation process. Nevertheless, as demonstrated in the two
preceding examples, there are cases in which successful automatic emulation is
indeed achieved. This represents a significant advancement in terms of automation
and the potential for large-scale firmware analysis.

Unfortunately, even when emulation is successful, the firmware is often not
immediately ready for direct use. As previously outlined, two criteria have been
defined to determine whether a firmware is suitable for deeper analysis: the firmware
must be capable of network communication and service exposure, and it must allow
terminal access to the running system.

The case studies also highlight the manual efforts required to prepare firmware
for analysis, enabling the setup of an environment suitable for conducting more
advanced investigations.

The outcome of this experience serves as a representative example of the current
scalability level of this technique.

65

Chapter 6

Discussion

This chapter aims at gathering the results and considerations made in Chapter 5
to grasp the implications of them and outline the state of health in the realm of
BAS IoT devices. Moreover it will highlight the spots where this method shows
bottlenecks and further work should be done to achieve better performance and a
deeper analysis.

6.1 Implications

The implications of this work combine some of the results presented in Chapter 5
with a critical discussion aimed at contextualizing them. This serves to investigate
the current state of security of IoT devices within the domain of SB.

Vulnerabilities and Attacks

The statistical analysis conducted on the identified vulnerabilities aims to highlight
one of the most critical aspects of firmware: their security status. In the research
that was carried out, vulnerabilities were found to be almost exclusively related
to the kernel. This provides insight into the low-level types of weaknesses that
affect these devices, as well as the potential severity of their impact on the overall
system. However, this focus excludes an important portion of the software stack,
particularly the network services exposed by the firmware.

The presence of a high number of vulnerabilities classified as medium and high
severity raises significant concerns about the potential attacks that these firmware
images may be subjected to. This observation should be considered alongside
another noteworthy metric presented in the appendix, in Table B.1. The final
column of the table lists the number of publicly available exploits associated with
each firmware. These exploits are ready-to-use modules designed for Metasploit,
which is commonly used to automate attacks. As a result, not only are these

66

Discussion

vulnerabilities present, but practical attack methods are also readily available; even
to individuals with limited technical expertise. On average, there are 47 exploit
modules per firmware.

Software components and Updates

The analysis conducted on the kernels and compilers versions within firmware aims
to highlight the level of awareness vendors apply when selecting system components.
The results are not discouraging; they indicate a trend in recent years toward
releasing firmware that incorporates up-to-date software. The same cannot be said,
however, for certain firmware versions released prior to 2020, which were found to
use kernels and compilers already outdated at the time of release.

Choosing secure components for devices that are expected to operate over long
periods of time is a critical consideration. Once smart buildings are constructed,
the devices within them are typically expected to remain in use for as long as
possible. IoT devices, once purchased, may have a lifespan of several decades
and firmware running on them are generally released after being tested with that
specific hardware. The introduction of new low-level software can destabilize the
system, therefore selecting a kernel version with long-term support ensures that
the device can receive updates without jeopardizing system stability.

Closely tied to this issue is the problem of firmware updates. Every day, new
vulnerabilities are discovered worldwide, and, depending on responsiveness, patches
are released by vendors or maintainers. However, the release of a patch alone is
insufficient. The responsibility for applying these updates lies with those managing
the infrastructure. As shown in studies such as [3], search engines like Shodan and
Censys reveal a vast number of internet-connected devices that remain vulnerable
to well-known attacks.

This raises important questions about how firmware updates should be managed.
An internet-connected smart building would enable automatic software updates
for its devices, which could significantly reduce the burden on system administra-
tors while improving security posture through timely patching. However, such
connectivity also exposes the building to potential remote attacks. An alternative
approach would be to avoid connecting smart devices to the internet altogether,
thereby reducing the attack surface for remote exploits that could compromise
critical building functions. Nonetheless, this strategy does not inherently guarantee
security unless accompanied by regular installation of security updates. Moreover,
this choice would then require on-site technical intervention and potentially delayed
deployment.

67

Discussion

6.2 Limitations of our work

Data collection and Research

The creation of the dataset is undoubtedly a valuable contribution to research in
the field of IoT devices used in smart buildings. However, the current sample of 50
firmware images is insufficient for conducting broader and more robust statistical
analyses. A larger dataset would be necessary to obtain a comprehensive overview
of the state of security in this domain.

Unfortunately, acquiring additional firmware is not merely a matter of investing
more research hours. As highlighted in Chapter 3, resources in this area are scarce,
and the research is quite limited. This challenge is further hindered by the growing
trend of encrypting firmware, as seen in recent releases from Johnson Controls [29].

Therefore, both the availability of analysable material and the overall state of
research in this area are quite discouraging. As emphasized in previous works [13,
6], collaboration among all stakeholders involved in this field is essential to raise
security standards.

Methodology scalability

The methodology presented in Chapter 4 aims to standardize the analyses performed
on firmware, enabling systematic processing and subsequent testing. Achieving
automation of these steps represents a significant milestone, as it allows for the
analysis of a large number of firmware images and the extraction of meaningful
insights without the need for manual inspection of each one. This objective is
partially realized through the use of the EMBA tool.

However, while EMBA has proven to be useful and essential to the research
conducted, it cannot be considered a complete solution. Written entirely in Bash,
it suffers from several limitations related to customization, readability, debugging,
and computational efficiency. Although Bash is a powerful tool for automating
tasks involving Linux utilities and file system interactions, it is best suited for short
scripts rather than large-scale applications involving thousands of lines of code.
Its syntax is prone to errors and inconsistencies, particularly in the handling of
conditional statements and other control structures, making it a language that is
difficult to maintain. These shortcomings also affect debugging and customization
processes when adjustments are required.

Additionally, it is important to note that EMBA relies on two frameworks,
FIRMADYNE and FirmwAE, which suffer from lack of maintenance. This trend
may eventually affect EMBA itself in the coming years.

68

Discussion

Kernel study and vulnerabilities

Chapter 5 presents the results of the conducted research, which include a statistical
analysis of the vulnerabilities primarily found in the kernel of the investigated
devices. While this analysis provides valuable insights, it focuses exclusively on the
kernel, thus be limiting when aiming for a more comprehensive assessment.

The kernel is undoubtedly a core component in the execution of firmware, and
analysing it allows for the identification of some of the most critical vulnerabilities.
However, extending the analysis to include a deeper inspection of the applications
installed within the firmware would broaden the scope of the investigation. This
expanded focus could help uncover vulnerabilities present in these additional
software modules, thus offering a more complete understanding of the overall
security posture.

Emulation shortcomings

One of the objectives of this thesis is to achieve emulation of the collected firmware
images. Among the 50 unencrypted firmware samples in the dataset, full emulation
was successfully achieved for 15 of them, with partial emulation reached for another
15. This results in a total emulation rate of 60%. While this is certainly an
encouraging outcome, further work is needed to improve this metric.

A key limitation of this approach lies in the method of emulation itself. Although
the substantial efforts behind FIRMADYNE, FirmAE, and EMBA greatly support
automation in the emulation process, there are still several areas that require
improvements. In particular, the unpacking phase and component recognition need
to be revisited and refined in order to increase the proportion of firmware images
that can be successfully emulated. Furthermore, considerable work remains in
configuring the emulation environment, specifically in the booting process and in
supporting a broader range of hardware configurations.

It is also essential to address the issues encountered once an emulation is deemed
complete. As highlighted in the case studies presented in Section 5.2, achieving
full emulation does not necessarily enable all types of analysis. In some cases, even
gaining terminal access to the emulated device can be non-trivial.

Additionally, a structural challenge associated with devices used in BAS is their
reliance on communication protocols that do not operate over Ethernet or IP. This
poses a significant obstacle, as emulating non-standard networking interfaces would
require extensive hardware modelling efforts. Nevertheless, it is encouraging to
observe a growing trend toward the adoption of IP-oriented protocols, suggesting
that this model is likely to dominate in the future of IB.

69

Discussion

6.3 Future Work

Fuzzing

In this work, a fuzzer was not deployed to assess the various firmware images.
However, fuzzing represents a crucial step in identifying vulnerabilities that may
be hidden within the service-providing daemons. As demonstrated in previous
studies [24, 25, 26|, fuzzing can uncover a wide range of potential security issues.
Nevertheless, setting up a comprehensive fuzzing environment is a non-trivial task.
As shown in the aforementioned works, effective fuzzing requires more than simply
establishing communication with the service daemon; it also depends on selecting
appropriate input seeds and implementing mechanisms to monitor code coverage.

Although the current emulated systems achieve a reasonable level of stability,
they sometimes could generate unexpected errors. The lack of accessibility of some
systems complicates the instrumentation of services, making it difficult to assess
how much of the code has been covered during testing. Despite these challenges,
fuzzing remains a highly promising technique that should be further explored.

One potential approach is to perform code coverage analysis even when full
system access is not available, evaluating test results to infer coverage indirectly.
Moreover, fuzzing could also contribute to improve the throughput efficiency. As
noted in [23, 26], physical devices such as PLCs typically scan for inputs at fixed
intervals. This behaviour imposes strict timing constraints that can slow down
fuzzing, requiring synchronization to not overflow of requests the device. Emulation,
on the other hand, may help overcome this limitation by enabling higher input
rates, thus facilitating faster and more effective fuzz testing.

Emulation

An open research topic in this domain is firmware emulation itself. Significant work
remains to be done in supporting a wider range of hardware devices. As discussed
in Section 2, emerging approaches seek to emulate or rehost firmware by leveraging
high-level abstractions of hardware interfaces. These methods may offer improved
portability and scalability over traditional low-level emulation techniques.

Nevertheless, building upon existing frameworks and platforms could also benefit
the ongoing research. A promising direction would involve rethinking tools such as
EMBA at a structural level. This could begin with the design and development
of a new tool, implemented in a more suitable programming language (e.g., Rust)
to improve maintainability and performance. While EMBA represents a valuable
tool, there is considerable potential to improve its architecture and expand its
capabilities. A new implementation could still rely on proven tools like Binwalk,
Radare2, and QEMU for core analysis tasks, while re-implementing and integrating
selected EMBA components in a more modern and efficient manner.

70

Discussion

In addition, enhancements could be made directly to EMBA itself. These may
include extending support to additional processor architectures and improving
support for those already implemented. As observed in the case studies, for
instance, ARM-based firmware exhibited issues with Telnet terminal. Furthermore,
this research could benefit of improvements to EMBA’s network environment,
augmenting the number of complete emulations.

Verification and Exploitability of Identified Vulnerabilities

An important extension of the work carried out could involve verifying the identified
vulnerabilities. In this study, vulnerabilities were discovered using the EMBA tool
and subsequently aggregated into the results discussed. However, no further
verification was performed to assess whether these vulnerabilities are exploitable,
and if so, how an attacker might leverage them. This type of verification could
be guided by existing exploits identified during the analysis phase. These are
readily available exploit modules, such as those provided through the Metasploit
framework, as shown in Table B.1. Starting from such existing attack modules,
one could evaluate whether the firmware is vulnerable or whether the exploitation
chain is complex and not easily actionable. Moreover, a deeper investigation into
the vulnerabilities for which no exploits currently exist would allow for a more
comprehensive assessment of the weaknesses present across the various firmware
samples.

71

Chapter 7
Conclusions

This thesis presented a comprehensive investigation into the security posture of
[oT devices used in SBs systems. The study addressed a significant gap in the
current literature by constructing a dataset, from scratch, containing 56 firmware
images collected from four different manufacturers. These firmware samples form a
basis for subsequent analysis.

From the outset, the research aimed to explore the vulnerabilities inherent
in smart building infrastructures, emphasizing how increased connectivity and
the reliance on legacy devices can introduce significant security risks. The thesis
demonstrated the feasibility of analysing embedded firmware at scale, using a
carefully crafted methodology that included firmware acquisition, extraction, static
and dynamic analysis, and full-system emulation. By developing a pipeline for
firmware processing and leveraging tools such as EMBA, the analysis was efficiently
extended across the entire dataset.

A key outcome of this study was the successful emulation of 30 firmware samples,
with 15 achieving partial emulation and the remaining 15 reaching full emulation.
This enabled active probing of exposed services and further inspection of system be-
haviours. Static analysis revealed a concerning average of 1,570 CVEs per firmware
image, indicating widespread vulnerabilities within the ecosystem. Additional
insights were gained by analysing kernel and GCC toolchain versions. Although
some firmware incorporated kernels released as early as 2009 and compilers dating
back to 2004, highlighting significant delays in the adoption of security updates,
the majority of firmware released between 2022 and 2024 relied on substantially
more recent components.

The research also included two detailed case studies, which served to validate
the methodology and investigate in-depth two devices. These studies aimed at
evaluate the emulation outcomes by diagnosing issues and highlighting both miscon-
figurations and security oversights. It was observed that the emulation process may
require manual intervention, such as modifying firmware rules to enable network

72

Conclusions

services and recovering passwords to gain access to the devices.

Overall, the study contributes valuable resources and empirical data to the
field of smart building security. It emphasizes the urgent need for more rigorous
practices in firmware development, timely patching, and transparent documentation
from vendors. Furthermore, the thesis underscores the value of emulation-based
testing as a practical approach to exposing latent vulnerabilities in embedded
systems. Future research can build on these results by expanding the dataset,
refining emulation fidelity, and applying dynamic testing techniques such as fuzzing
to further uncover vulnerabilities in BAS environments.

In conclusion, the findings of this thesis not only shed light on the current security
state of smart building devices but also offer a foundation for the advancement of
secure testing in [oT field. As Smart Buildings continue to proliferate in critical
infrastructure, such research is essential to ensuring the safety, reliability, and
resilience of the environments they control.

73

15

Appendix A

Dataset Binwalk commands

Listings A.1, A.2, and A.3 display the results of Binwalk analysis performed on
different firmware images. The analysis was conducted using the command binwalk
<firmware name>, which identifies known file signatures within the binary data
blob. In Listing A.1, only a subset of the output is presented, as the whole result

was too long.

Listing A.1: Binwalk analysis of CC100 v4.6.3

DECIMAL HEXADECIMAL DESCRIPTION

65536 0x10000 Flattened device tree, size: 19491

bytes, version: 17

445228 0x6CB2C LZO compressed data

1895326 0x1CEB9E Executable script , shebang: "/bin/
sh"

141523175 0x86F78E7 mcrypt 2.2 encrypted data,
algorithm: blowfish —448, mode: CBC, keymode: 8bit

143435144 0x88CA588 SHA256 hash constants, little
endian

143901696 0x893C400 ELF, 32—bit LSB executable , ARM,

version 1 (SYSV)

150141788 0x8F2FB5C Zip archive data, encrypted
compressed size: 123469, uncompressed size: 94953810, name:

152481792 0x916B000 Linux EXT filesystem , blocks count:

115200, image size: 117964800, rev 1.0, extd filesystem data,
UUID=5de99579—fe67 —4129—a007—£f2358df28d {2

270924799 0x1025FBFF eCos RTOS string reference: "ecos'

74

=

NN N
w N

SR R

Dataset Binwalk commands

271343107 0x102C5E03 mcrypt 2.2 encrypted data,
algorithm: 3DES, mode: ECB, keymode: 4bit

274864453 0x10621945 Certificate in DER format (x509 v3)
, header length: 4, sequence length: 1288

274988659 0x1063FE73 OpenSSH RSA1l private key, version '
—FEND OPENSSH PRIVATE KEY- !

275007876 0x10644984 Unix path: /usr/sbin/ssh—askpass
275008423 0x10644BA7 PARity archive data — file number
19534

Listing A.2: Binwalk analysis of F'S V3.0b62

DECIMAL HEXADECIMAL DESCRIPTION

0 0x0 OpenSSL encryption, salted, salt: 0
xBCE06841CB086723

42825612 0x28D778C VMware4d disk image

Listing A.3: Binwalk analysis of QMX7.E38 V01.16.53.44

DECIMAL HEXADECIMAL DESCRIPTION

0 0x0 Zip archive data, at least v2.0 to

extract , compressed size: 1708, uncompressed size: 9243, name:

fmwz . xsd

1774 0x6EE Zip archive data, at least v2.0 to

extract , compressed size: 655, uncompressed size: 2381, name: init

.xml

2495 0x9BF Zip archive data, at least v2.0 to

extract , compressed size: 33889, uncompressed size: 60836, name:

MLO

36445 0x8E5D Zip archive data, at least v2.0 to

extract , compressed size: 394772, uncompressed size: 2158592, name
qmx7.e38—release image—01.16.53.44 —rut.configuration.ubifs
431333 0x694E5 Zip archive data, at least v2.0 to

extract , compressed size: 66325692, uncompressed size: 83804160,

name: qmx7.e38—release—image—01.16.53.44—rut.ubifs

66757127 0x3FAA207 Zip archive data, at least v2.0 to

extract , compressed size: 727004, uncompressed size: 3578350, name
Readme3rdPartySoftware. txt

67484215 0x405BA37 Zip archive data, at least v2.0 to

extract , compressed size: 1430, uncompressed size: 8192, name: u—

boot—rut .env

67485717 0x405C015 Zip archive data, at least v2.0 to

extract , compressed size: 281684, uncompressed size: 585212, name:
u—boot—rut .img

75

Dataset Binwalk commands

11 67767473 0x40A0CB1 Zip archive data, at least v2.0 to
extract , compressed size: 3294317, uncompressed size: 3328116,
name: ulmage—rut.bin

12 71062681 0x43C5499 End of Zip archive, footer length:
22

76

Appendix B

Data summary

Table B.1 presents a summary of the firmware components alongside the results of
the vulnerability analysis. The column titled “Number of Exploits” refers to ready-
to-use exploits available through Metasploit, a widely used framework designed to
automate the execution of known attacks.

‘ Device Firmware Kernel GCC N° CVE N° CVE high N° CVE medium N° CVE low N° exploits
PXG3 V01.21.152.8-3236 Linux v4.4.302 1677 437 1128 112 60
PXC3 V01.21.194.18-6633 2CC 8.2 1677 437 1128 112 60
PXC3 V01.21.172.22-6095 1677 437 1128 112 60
PXG3.WX00-2 V02.21.194.25-22980 1325 448 863 14 23
PXG3.WXO00-2 V02.20.172.47-21561 . 1571 546 1000 25 38
QMX7.E38 V01.16.53.44 Linux v3.18.10 . 1952 615 1208 129 88
DXR2 V01.21.194.18-6633 Linux v4.4.302 GCC 8.2.0 1677 437 1128 112 60
DXR2 V01.21.172.22-6095 2 GCC820 1677 437 1128 112 60
PXC4 V02.21.194.25-22980 GCC 11.4.0 1677 437 1128 112 60
PXC4 V02.20.172.47-21561 GCC 9.3.0 1677 437 1128 112 60
PXC5.E003 V02.21.194 r GCC 11.4.0 1325 448 863 14 23
PXC5.E003 V02.20.17: Linux v5.10.35 GCC 9.3.0 1571 546 1000 25 38
PXC5.E24 V02.21. Linux v5.15.71 GCC 11.4.0 1325 448 863 14 23
PXC5.E24 V02.20. Linux v5.10.35 GCC 9.3.0 1571 546 1000 25 38
PXC7 V02.21. Linux v5.15.71 GCC 11.4.0 1325 448 863 14 23
PXC7 V02.20.172.47-21561 Linux v5.10.35 ~ GCC 9.3.0 1571 546 1000 25 38
FG V2.0b52 Linux v2.6.39.4 GCC 4.3.2 2134 540 1395 199 105
FG V2.0b51 Linux v2.6.39.4 GCC 4.3.2 2134 540 1395 199 105
FG V1.5b51 Linux v2.6.29.2 GCC 3.4.1 2348 600 1487 261 143
FS V3.0b51d Linux v3.4.39 GCC 4.6.3 2118 572 1355 191 103
FW-8-8V-14 V1.0b16i Linux v4.14.105 GCC 7.4.0 1702 548 1090 64 46
BASpi-IO6UGR V1.0.33 Linux v5.10.63 - 1535 527 985 23 35
BASpi-IO6U4R2A V1.0.33 Linux v5.10.63 - 1535 527 985 23 35
PFC V4.6.1 Linux v5.15.107 GCC 11.3.1 1185 372 799 14 18
PFC V4.1.10 Linux v5.15.19 GCC 9.2.1 1501 540 944 17 30
CC100 V4.6.3 Linux v5.15.107 GCC 11.3.1 1185 372 799 14 18
CC100 V4.1.10 Linux v5.15.19 GCC 9.2.1 1502 540 945 17 31
PFC300 V4.6.1 Linux v6.6.15 GCC 11.3.1 1036 291 736 9 7
WP400 V4.6.3 Linux v6.6.3 GCC 11.3.1 1085 323 753 9 7
TP600 V4.6.1 Linux v5.15.107 GCC 11.3.1 1185 372 799 14 18
TP600 V4.2.13 Linux v5.15.86 GCC 11.2.1 1232 400 818 14 23

Table B.1: Vulnerabilities summary in the analysed firmware

Table B.2 presents the services detected for the firmware images for which
emulation was successfully completed. The column titled “Startup services” lists
the services identified by EMBA during the firmware startup process. It is worth
noting that EMBA detects only a subset of the services during startup, primarily
for debugging purposes; therefore, this list may be incomplete. The “Nmap services”

7

Data summary

column displays the services detected by Nmap after the firmware was deployed
and brought online by EMBA. This list may also be incomplete, particularly if
certain services were configured to run on non-standard ports that EMBA was
unable to trace.

78

Data summary

Device Firmware Startup services Nmap services
PXG3 V01.21.152.8-3236 nginx nginx
PXC3 V01.21.194.18-6633 ba-device
nginx
ba-device
nginx
PXG3.WX00-1 V02.20.172.47-21561 ba-device -
nginx
, o dheped
QMX7.E38 V01.16.53.44 lighttpd lighttpd
ba-device
nginx

nginx

PXC3 V01.21.172.22-6095 nginx

DXR2 V01.21.194.18-6633 nginx

DXR2 V01.21.172.22-6095 ba-device
nginx

PXM V02.20.172.47-21561 watchdogd -
inetd

FG V2.0b52 SVILEeXe Dropbear sshd 2015.67 (protocol 2.0)

tls tunnel
pure-ftpd Pure-FTPd

inetd

FG V2.0b51 SVILEeXe Dropbear sshd 2015.67 (protocol 2.0)

tls tunnel
pure-ftpd Pure-FTPd

inetd
FG V1.5b51 svi.exe
pure-ftpd
redis-server
nginx
nmbd
tls tunnel
FS V3.0b51d TComSQL nginx 1.10.1
pure-ftpd Pure-FTPd
smbd
monit
mosquitto

nginx

nginx
tls_tunnel
dropbear
FW-8-8V-14 V1.0b16i smbd Cloudflare public DNS
dnsmasq Microsoft Windows netbios-ns
monit
nmbd
PFC V4.6.1 lighttpd -
PFC V4.1.10 lighttpd -
lighttpd
syslog-ng
CC100 V4.6.3 dropbear Dropbear sshd 2022.83 (protocol 2.0)
inetd lighttpd
CMHooksTask
lighttpd
syslog-ng
CC100 V4.1.10 dropbear Dropbear sshd 2022.82 (protocol 2.0)
inetd lighttpd
CMHooksTask
lighttpd
syslog-ng
TP600 V4.6.1 dropbear Dropbear sshd 2022.83 (protocol 2.0)
inetd lighttpd
CMHooksTask
lighttpd
syslog-ng
TP600 V4.2.13 dropbear Dropbear sshd 2022.82 (protocol 2.0)
inetd lighttpd
CMHooksTask

Table B.2: Services detected in the enftdated firmware, during the startup phase
and by Nmap in a network scan

Appendix C
EMBA commands

The following Bash command C.1 is taken from the script run.sh located inside
the emulation folder, and shows the QEMU command used to start the emulation.
An explanation of the options used is provided in the following list:

o —m: sets guest startup RAM size to megs megabytes, in this case 2 GB
e -M: selects the emulated machine by its name
e —drive: defines a new drive

—-if: defines on which type on interface the drive is connected

—-format: specifies which disk format will be used rather than detecting
the format

—-file: defines which disk image to use with this drive

—-append: pass the string as a command line to the kernel

» -nographic: disables graphical output so that QEMU is a simple command
line application

e ~device and -netdev: these commands are used together for creating a
network device and configuring the relative interface

e —serial: redirects the virtual serial port to a host character device

e -monitor: redirects the monitor to a host device

80

oW o =

EMBA commands

Listing C.1: QEMU command

gemu—system—mipsel —m 2048 \
—M malta \

—kernel

./vmlinux . mipsel .4 \

—drive if=ide ,format=raw, file=./1569030—14254692.
squashfs_v4 le_ extract_mipsel —8623 \

—append

"root=/dev/sdal console=ttySO nandsim.

parts=64,64,64,64,64,64,64,64,64,64 rdinit=/firmadyne/prelnit.sh
rw debug ignore_ loglevel print—fatal—signals=1 EMBA NEI=true
EMBA NVRAME=true EMBA KERNEI=true EMBA ETC=true user_debug=0

firmadyne.syscall=1" \

—nographic \

—device
—netdev
—device
—netdev
—device
—netdev
—device
—netdev
—serial
—serial
—serial

1000 ,netdev=net0 \

tap ,id=net0 ,ifname=tap290_0, script=no \
e1000 ,netdev=netl \

socket ,id=netl,listen=:2001 \

e1000 ,netdev=net2 \

socket ,id=net2 ,listen =:2002 \

e1000 ,netdev=net3 \

socket ,id=net3 ,listen =:2003 \
file:./qemu. serial.log \

telnet :localhost:4321,server ,nowait \
unix:/tmp/qemu.1569030—14254692.

squashfs_v4_ le_ extract_mipsel —8623.51,server ,nowait \
—monitor unix:/tmp/qemu.1569030—14254692.
squashfs_v4 le_ extract_ mipsel —8623,server ,nowait

Listing C.2: Kernel Command-Line Parameters

—append "root=/dev/vdal

console=ttyS0O nandsim. parts

=64,64,64,64,64,64,64,64,64,64 rdinit=/firmadyne/prelnit.sh rw
debug ignore_ loglevel print—fatal—signals=1 EMBA NEI=true
EMBA NVRAMEtrue EMBA KERNEI=true EMBA ETC=true user_debug=0

firmadyne.syscall=1"

Password recovery

Further exploration revealed an unusual format in the /etc/passwd file. Typically,
Linux systems authenticate users by referencing /etc/passwd and /etc/shadow.
The /etc/passwd file lists user accounts with fields: Username, Password (usually
“" or X’ if stored in /etc/shadow), UID, GID, Home directory, and Login shell.
However, in the FG firmware, the /etc/shadow file was missing, and the password
field in /etc/passwd contained hashed passwords, as illustrated in C.3.

Since the hash appeared relatively short and insecure the three hashed password

correlated to the root, sdcard and webuser accounts were processed with John

81

/etc/passwd
/etc/passwd
/etc/shadow
/etc/passwd
/etc/shadow
/etc/shadow
/etc/passwd

EMBA commands

the Ripper. The sdcard and webuser passwords were cracked within seconds,
revealing the already known password 123456. Cracking the root password required
approximately seven days, but ultimately, the password FébeasT was found. This
enabled root access to the system via the SSH service using the root credentials.

Listing C.3: Passwd file

root :qGKU1saPeFDV2:0:0: root :/: / bin/sh

ftp::14:50:FTP User:/var/ftp:

bin:%:1:1:bin:/bin:

daemon : *:2:2:daemon:/sbin:

nobody :%:99:99: Nobody: /:

sdcard :sbjHkuuFxmSvo:1001:1001: Linux User, ,,:/sdcard:/bin/sh
webuser : HQolRVjV67MiQ:1002:1002: Linux User, , ,:/mnt/appweb/web:/
bin /sh

82

Bibliography

Infosecurity Magazine. Google Australia Office Attack. URL: https://w
ww . infosecurity -magazine . com/news / researchers - hack - googles -
australian-office/ (cit. on pp. 1, 9).

International Business Times. Finland Heating System Attack. URL: https:
//www.ibtimes.co.uk/hackers-leave-finnish-residents-cold-after-
ddos-attack-knocks-out-heating-systems-1590639 (cit. on pp. 1, 9).

Sipke Mellema Gjoko Krstic. I Own Your Building (Management System).
White Paper. Applied Risk BV, 2019. URL: https://www. slideshare.

net/slideshow/i-own-your-building-management-system/192682282
(visited on 05/27/2025) (cit. on pp. 1, 6, 7, 17, 67).

Christopher Morales-Gonzalez, Matthew Harper, Michael Cash, Lan Luo,
Zhen Ling, Qun Z. Sun, and Xinwen Fu. «On building automation system
securityy». In: High-Confidence Computing 4.3 (2024), p. 100236. 1SSN: 2667-
2952. DOT: https://doi.org/10.1016/j.hcc.2024.100236. URL: https:
//www .sciencedirect.com/science/article/pii/S2667295224000394
(cit. on pp. 1, 7, 11, 16, 33).

The EMBA Team. EMBA. 2024. URL: https://github.com/e-m-b-a/emba
(cit. on pp. 3, 39).

Pierre Ciholas, Aidan Lennie, Parvin Sadigova, and Jose Such. «The Security
of Smart Buildings: a Systematic Literature Review». In: (Jan. 2019). DOT:
10.48550/arXiv.1901.05837 (cit. on pp. 6, 10, 17, 68).

Andrzej Ozadowicz. «Generic [oT for Smart Buildings and Field-Level Au-
tomation—Challenges, Threats, Approaches, and Solutionsy». In: Comput-
ers 13.2 (2024). 18sN: 2073-431X. DOI: 10.3390/computers13020045. URL:
https://www.mdpi.com/2073-431X/13/2/45 (cit. on pp. 6, 7).

Karan Lohia, Yash Jain, Chintan Patel, and Nishant Doshi. «Open Commu-
nication Protocols for Building Automation Systemsy. In: Procedia Computer
Science 160 (2019). The 10th International Conference on Emerging Ubiqui-
tous Systems and Pervasive Networks (EUSPN-2019) / The 9th International

83

https://www.infosecurity-magazine.com/news/researchers-hack-googles-australian-office/
https://www.infosecurity-magazine.com/news/researchers-hack-googles-australian-office/
https://www.infosecurity-magazine.com/news/researchers-hack-googles-australian-office/
https://www.ibtimes.co.uk/hackers-leave-finnish-residents-cold-after-ddos-attack-knocks-out-heating-systems-1590639
https://www.ibtimes.co.uk/hackers-leave-finnish-residents-cold-after-ddos-attack-knocks-out-heating-systems-1590639
https://www.ibtimes.co.uk/hackers-leave-finnish-residents-cold-after-ddos-attack-knocks-out-heating-systems-1590639
https://www.slideshare.net/slideshow/i-own-your-building-management-system/192682282
https://www.slideshare.net/slideshow/i-own-your-building-management-system/192682282
https://doi.org/https://doi.org/10.1016/j.hcc.2024.100236
https://www.sciencedirect.com/science/article/pii/S2667295224000394
https://www.sciencedirect.com/science/article/pii/S2667295224000394
https://github.com/e-m-b-a/emba
https://doi.org/10.48550/arXiv.1901.05837
https://doi.org/10.3390/computers13020045
https://www.mdpi.com/2073-431X/13/2/45

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

Conference on Current and Future Trends of Information and Communication
Technologies in Healthcare (ICTH-2019) / Affiliated Workshops, pp. 723—
727. 18SN: 1877-0509. DOI: https://doi.org/10.1016/j.procs.2019.
11.020. URL: https://www.sciencedirect.com/science/article/pii/
$187705091931720X (cit. on pp. 7, 10).

Fébio Ferreira, A. Osorio, Joao Calado, and C Pedro. «Building automation
interoperability—A review». In: (2010). URL: https://api.semanticscholar.
org/CorpusID:26730900 (cit. on pp. 7, 10).

Pedro Domingues, Paulo Carreira, Renato Vieira, and Wolfgang Kastner.
«Building automation systems: Concepts and technology review». In: Com-
puter Standards € Interfaces 45 (2016), pp. 1-12. 1SSN: 0920-5489. DOI:
https://doi.org/10.1016/j.csi.2015.11.005. URL: https://www.
sciencedirect.com/science/article/pii/S0920548915001361 (cit. on
pp. 7, 11, 16).

James Sinopoli. Smart Building Systems for Architects, Owners and Builders.
Elsevier Inc., 2010. 1SBN: 978-1-85617-653-8. DOI: https://doi.org/10.
1016/C2009-0-20023-7 (Cit. on p. 7).

Anurag Verma, Surya Prakash, Vishal Srivastava, Anuj Kumar, and Subhas
Chandra Mukhopadhyay. «Sensing, Controlling, and IoT Infrastructure in
Smart Building: A Reviewy. In: IEEFE Sensors Journal 19.20 (2019), pp. 9036—
9046. por: 10.1109/JSEN.2019.2922409 (Cit. on p. 9).

Steffen Wendzel. «How to increase the security of smart buildings?» In:
Commun. ACM 59.5 (Apr. 2016), pp. 47-49. 1ssN: 0001-0782. por: 10.1145/
2828636. URL: https://doi.org/10.1145/2828636 (cit. on pp. 10, 68).

Muhammad Usman Younus, Saif ul Islam, Thsan Ali, Suleman Khan, and
Muhammad Khurram Khan. «A survey on software defined networking en-
abled smart buildings: Architecture, challenges and use cases». In: Journal of
Network and Computer Applications 137 (2019), pp. 62-77. 1SSN: 1084-8045.
DOIL: https://doi.org/10.1016/j. jnca.2019.04.002. URL: https:
//www.sciencedirect.com/science/article/pii/S1084804519301146
(cit. on p. 10).

Keshav Kaushik, Akashdeep Bhardwaj, and Susheela Dahiya. «Framework to
analyze and exploit the smart home IoT firmware». In: Measurement: Sensors
37 (2025), p. 101406. 1SSN: 2665-9174. DOIL: https://doi.org/10.1016/j.
measen.2024.101406. URL: https://www.sciencedirect.com/science/
article/pii/S2665917424003829 (cit. on pp. 11, 32).

84

https://doi.org/https://doi.org/10.1016/j.procs.2019.11.020
https://doi.org/https://doi.org/10.1016/j.procs.2019.11.020
https://www.sciencedirect.com/science/article/pii/S187705091931720X
https://www.sciencedirect.com/science/article/pii/S187705091931720X
https://api.semanticscholar.org/CorpusID:26730900
https://api.semanticscholar.org/CorpusID:26730900
https://doi.org/https://doi.org/10.1016/j.csi.2015.11.005
https://www.sciencedirect.com/science/article/pii/S0920548915001361
https://www.sciencedirect.com/science/article/pii/S0920548915001361
https://doi.org/https://doi.org/10.1016/C2009-0-20023-7
https://doi.org/https://doi.org/10.1016/C2009-0-20023-7
https://doi.org/10.1109/JSEN.2019.2922409
https://doi.org/10.1145/2828636
https://doi.org/10.1145/2828636
https://doi.org/10.1145/2828636
https://doi.org/https://doi.org/10.1016/j.jnca.2019.04.002
https://www.sciencedirect.com/science/article/pii/S1084804519301146
https://www.sciencedirect.com/science/article/pii/S1084804519301146
https://doi.org/https://doi.org/10.1016/j.measen.2024.101406
https://doi.org/https://doi.org/10.1016/j.measen.2024.101406
https://www.sciencedirect.com/science/article/pii/S2665917424003829
https://www.sciencedirect.com/science/article/pii/S2665917424003829

BIBLIOGRAPHY

[16]

[18]

[19]

[20]

[21]

Omer Shwartz, Yael Mathov, Michael Bohadana, Yuval Elovici, and Yossi
Oren. «Reverse Engineering IoT Devices: Effective Techniques and Methods».
In: IEEE Internet of Things Journal 5.6 (2018), pp. 4965-4976. DOI: 10.
1109/JI0T.2018.2875240 (Cit. on pp. 11, 33).

YonglLe Chen, Feng Ma, Ying Zhang, YongZhong He, Haining Wang, and
Qiang Li. AutoFirm: Automatically Identifying Reused Libraries inside IoT
Firmware at Large-Scale. 2024. arXiv: 2406 .12947 [cs.CR]. URL: https:
//arxiv.org/abs/2406.12947 (cit. on pp. 11, 32).

Fabrice Bellard. « QEMU, a fast and portable dynamic translator». In: Pro-
ceedings of the Annual Conference on USENIX Annual Technical Conference.
ATEC ’05. Anaheim, CA: USENIX Association, 2005, p. 41 (cit. on pp. 12,
13).

Daming Chen, Manuel Egele, Maverick Woo, and David Brumley. « Towards
Automated Dynamic Analysis for Linux-based Embedded Firmwarey. In:
Proceedings of the 2016 NDSS Symposium. Jan. 2016. DOI: 10.14722/ndss.
2016 . 23415. URL: https://www . ndss - symposium . org/wp- content /
uploads/2017/09/towards-automated-dynamic-analysis-linux-based-
embedded-firmware.pdf (cit. on pp. 12, 13, 43).

Mingeun Kim, Dongkwan Kim, Eunsoo Kim, Suryeon Kim, Yeongjin Jang,
and Yongdae Kim. «FirmAE: Towards Large-Scale Emulation of IoT Firmware
for Dynamic Analysis». In: Proceedings of the 36th Annual Computer Security
Applications Conference. ACSAC *20. Austin, USA: Association for Computing
Machinery, 2020, pp. 733-745. 1SBN: 9781450388580. DOI: 10.1145/3427228.
3427294. URL: https://doi.org/10.1145/3427228.3427294 (cit. on pp. 12,
13, 42).

Abraham A. Clements, Eric Gustafson, Tobias Scharnowski, Paul Grosen,
David Fritz, Christopher Kruegel, Giovanni Vigna, Saurabh Bagchi, and
Mathias Payer. «HALucinator: firmware re-hosting through abstraction layer
emulation». In: Proceedings of the 29th USENIX Conference on Security
Symposium. SEC’20. USA: USENIX Association, 2020. ISBN: 978-1-939133-
17-5 (cit. on p. 12).

Andrew Fasano et al. «SoK: Enabling Security Analyses of Embedded Sys-
tems via Rehosting». In: Proceedings of the 2021 ACM Asia Conference
on Computer and Communications Security. ASTA CCS '21. Virtual Event,
Hong Kong: Association for Computing Machinery, 2021, pp. 687-701. 1SBN:
9781450382878. DOI: 10.1145/3433210.3453093. URL: https://doi.org/
10.1145/3433210.3453093 (cit. on p. 12).

85

https://doi.org/10.1109/JIOT.2018.2875240
https://doi.org/10.1109/JIOT.2018.2875240
https://arxiv.org/abs/2406.12947
https://arxiv.org/abs/2406.12947
https://arxiv.org/abs/2406.12947
https://doi.org/10.14722/ndss.2016.23415
https://doi.org/10.14722/ndss.2016.23415
https://www.ndss-symposium.org/wp-content/uploads/2017/09/towards-automated-dynamic-analysis-linux-based-embedded-firmware.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/towards-automated-dynamic-analysis-linux-based-embedded-firmware.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/towards-automated-dynamic-analysis-linux-based-embedded-firmware.pdf
https://doi.org/10.1145/3427228.3427294
https://doi.org/10.1145/3427228.3427294
https://doi.org/10.1145/3427228.3427294
https://doi.org/10.1145/3433210.3453093
https://doi.org/10.1145/3433210.3453093
https://doi.org/10.1145/3433210.3453093

BIBLIOGRAPHY

23]

[24]

[25]

[26]

[27]

28]

[29]

Wei Zhou, Shandian Shen, and Peng Liu. «IoT Firmware Emulation and
Its Security Application in Fuzzing: A Critical Revisit». In: Future Internet
17.1 (2025). 1SSN: 1999-5903. DOT: 10.3390/£117010019. URL: https: //www.
mdpi.com/1999-5903/17/1/19 (cit. on pp. 13, 70).

Juhwan Kim, Jihyeon Yu, Hyunwook Kim, Fayozbek Rustamov, and Joobeom
Yun. «FIRM-COV: High-Coverage Greybox Fuzzing for IoT Firmware via
Optimized Process Emulationy. In: IEEE Access 9 (2021), pp. 101627-101642.
DOI: 10.1109/ACCESS.2021.3097807 (cit. on pp. 14, 70).

Dimitrios Tychalas, Hadjer Benkraouda, and Michail Maniatakos. «ICSFuzz:
Manipulating I/Os and Repurposing Binary Code to Enable Instrumented
Fuzzing in ICS Control Applicationsy». In: 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, Aug. 2021, pp. 2847-2862.
ISBN: 978-1-939133-24-3. URL: https://www . usenix . org/conference/
usenixsecurity21/presentation/tychalas (cit. on pp. 14, 70).

Yue Zhang, Zhen Ling, Michael Cash, Qiguang Zhang, Christopher Morales-
Gonzalez, Qun Zhou Sun, and Xinwen Fu. «Collapse Like A House of Cards:
Hacking Building Automation System Through Fuzzing». In: Proceedings of
the 2024 on ACM SIGSAC Conference on Computer and Communications
Security. CCS ’24. Salt Lake City, UT, USA: Association for Computing
Machinery, 2024, pp. 1761-1775. 1SBN: 9798400706363. DOI: 10.1145/3658
644.3690216. URL: https://doi.org/10.1145/3658644.3690216 (cit. on
pp. 14, 16, 70).

Marco Caselli, Emmanuele Zambon, Johanna Amann, Robin Sommer, and
Frank Kargl. «Specification mining for intrusion detection in networked
control systems». In: Proceedings of the 25th USENIX Conference on Security
Symposium. SEC’16. Austin, TX, USA: USENIX Association, 2016, pp. 791—
806. 1SBN: 9781931971324 (cit. on p. 17).

Siemens. Desigo ABT Firmware library. URL: https://support.industry.
siemens.com/cs/document /109780759 /desigo-abt-firmware-library
(cit. on p. 19).

Johnson Controls. EasylO Firmware Library. URL: https://www.soluti
onnavigator.com/s/contentnavigator?language=en_US&id=aA04w0000
00GrAM&app=Resources’,2FControls’2FEasyI0&country=US®ion=NAM
(cit. on pp. 19, 68).

WAGO. WAGO Firmware Library. URL: https://downloadcenter.wago.
com/wago/software (cit. on p. 19).

Contemporary Controls. Contemporary Controls Firmware Library. URL:
https://ccontrol.ccontrols.com/basautomation/ (cit. on p. 19).

86

https://doi.org/10.3390/fi17010019
https://www.mdpi.com/1999-5903/17/1/19
https://www.mdpi.com/1999-5903/17/1/19
https://doi.org/10.1109/ACCESS.2021.3097807
https://www.usenix.org/conference/usenixsecurity21/presentation/tychalas
https://www.usenix.org/conference/usenixsecurity21/presentation/tychalas
https://doi.org/10.1145/3658644.3690216
https://doi.org/10.1145/3658644.3690216
https://doi.org/10.1145/3658644.3690216
https://support.industry.siemens.com/cs/document/109780759/desigo-abt-firmware-library
https://support.industry.siemens.com/cs/document/109780759/desigo-abt-firmware-library
https://www.solutionnavigator.com/s/contentnavigator?language=en_US&id=aAO4w000000GrAM&app=Resources%2FControls%2FEasyIO&country=US®ion=NAM
https://www.solutionnavigator.com/s/contentnavigator?language=en_US&id=aAO4w000000GrAM&app=Resources%2FControls%2FEasyIO&country=US®ion=NAM
https://www.solutionnavigator.com/s/contentnavigator?language=en_US&id=aAO4w000000GrAM&app=Resources%2FControls%2FEasyIO&country=US®ion=NAM
https://downloadcenter.wago.com/wago/software
https://downloadcenter.wago.com/wago/software
https://ccontrol.ccontrols.com/basautomation/

BIBLIOGRAPHY

[36]

The Binwalk Team. Binwalk: A Firmware Analysis Tool for reverse engi-
neering and extracting firmware images. Version v2.3.2. 2024. URL: https:
//github.com/ReFirmLabs/binwalk (cit. on pp. 20, 33).

The Binwalk Team. Binwalk: A Firmware Analysis Tool for reverse engineer-
ing and extracting firmware images. Rust implementation. Version 3.1.1. 2024.
URL: https://github.com/ReFirmLabs/binwalk (cit. on pp. 20, 33).

C. E. Shannon. «A mathematical theory of communication». In: The Bell
System Technical Journal 27.3 (1948), pp. 379-423. pOI: 10.1002/j.1538~
7305.1948.tb01338.x (cit. on p. 20).

Apostol Vassilev and Timothy A. Hall. «The Importance of Entropy to
Information Security». In: Computer 47.2 (Feb. 2014), pp. 78-81. 1sSN: 0018-
9162. por: 10.1109/MC. 2014 .47. URL: https://doi.org/10.1109/MC.
2014 .47 (cit. on p. 22).

Elliott Wen, Jiaxing Shen, and Burkhard Wuensche. Keep Me Updated: An
Empirical Study of Proprietary Vendor Blobs in Android Firmware. 2024.
arXiv: 2410.11075 [cs.SE]. URL: https://arxiv.org/abs/2410.11075
(cit. on p. 32).

OWASP. Firmware Security Testing Methodology. URL: https://scripti
ngxss.gitbook.io/firmware-security-testing-methodology (cit. on
p. 32).

The QEMU Team. QEMU: Quick Emulator. Version v6.2.0. 2024. URL: https:
//www.qemu.org/ (cit. on p. 38).

Siemens. Climatix BACnet Library. URL: https://mybuilding . siemens .
com/d015628993239/help/engineeringhelp/en-us/index.htm1#1483333
2107 (cit. on p. 44).

Forum of Incident Response and Security Teams. C'VSS. URL: https://www.
first.org/cvss/ (cit. on p. 46).

Omar Santos. The Evolution of Scoring Security Vulnerabilities: The Sequel.
URL: https://blogs.cisco.com/security/cvssv3-study (cit. on p. 47).

National Vulnerability Database. Vulnerability Metrics. URL: https://nvd.
nist.gov/vuln-metrics/cvss (cit. on p. 48).

The MITRE Corporation. Common Weakness Enumeration. URL: https:
//cwe.mitre.org/index.html (cit. on p. 49).

National Vulnerability Database. NVD CWE Slice. URL: https://nvd.nist.
gov/vuln/categories (cit. on p. 49).

Wikipedia. Linux kernel version history. URL: https://en.wikipedia.org/
wiki/Linux_kernel version_history (cit. on p. 50).

87

https://github.com/ReFirmLabs/binwalk
https://github.com/ReFirmLabs/binwalk
https://github.com/ReFirmLabs/binwalk
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1109/MC.2014.47
https://doi.org/10.1109/MC.2014.47
https://doi.org/10.1109/MC.2014.47
https://arxiv.org/abs/2410.11075
https://arxiv.org/abs/2410.11075
https://scriptingxss.gitbook.io/firmware-security-testing-methodology
https://scriptingxss.gitbook.io/firmware-security-testing-methodology
https://www.qemu.org/
https://www.qemu.org/
https://mybuilding.siemens.com/d015628993239/help/engineeringhelp/en-us/index.html#14833332107
https://mybuilding.siemens.com/d015628993239/help/engineeringhelp/en-us/index.html#14833332107
https://mybuilding.siemens.com/d015628993239/help/engineeringhelp/en-us/index.html#14833332107
https://www.first.org/cvss/
https://www.first.org/cvss/
https://blogs.cisco.com/security/cvssv3-study
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss
https://cwe.mitre.org/index.html
https://cwe.mitre.org/index.html
https://nvd.nist.gov/vuln/categories
https://nvd.nist.gov/vuln/categories
https://en.wikipedia.org/wiki/Linux_kernel_version_history
https://en.wikipedia.org/wiki/Linux_kernel_version_history

BIBLIOGRAPHY

[46] GNU Operating System. GCC Releases. URL: https://gcc . gnu. org/
releases.html (cit. on p. 55).

88

https://gcc.gnu.org/releases.html
https://gcc.gnu.org/releases.html

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Contributions
	Thesis Outline

	Background and Related Work
	Background
	Smart Buildings
	Security threats

	Related Work

	Dataset
	Motivation and Overview
	BAS Vendors
	Firmware acquisition
	Firmware preliminary analysis

	Dataset structure
	Firmware collection
	firmwareDB.csv
	Scripts

	The dataset in numbers
	Overview
	Protocols

	Methodology
	Analysis methodology
	Fetching Firmware
	Firmware extraction
	Firmware analysis
	Firmware emulation

	Scaling the analysis
	EMBA
	Supporting scripts

	Results
	Statistics
	High level data analysis
	Statistical Analysis
	Kernel analysis
	GCC analysis

	Case Studies
	Report on Johnson Controls FW-8-8V-14 V1.0b16i
	Report on Johnson Controls FG V2.0b52
	Case studies summary

	Discussion
	Implications
	Limitations of our work
	Future Work

	Conclusions
	Dataset Binwalk commands
	Data summary
	EMBA commands
	Bibliography

