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Chapter 1 

1. INTRODUCTION 
This thesis is the result of an internship carried out at Reply S.p.A., during which I developed 
the proposed application. 

1.1 Context and motivation 
In the contemporary landscape, which is characterized by very rapid technological changes, 
there is an ever-increasing need for companies to train their employees effectively in order to 
maintain their competitiveness.  

However, traditional methods are beginning to show their limitations, often offering long 
learning sessions that do not fit well with the current pace of the working world and do not fully 
meet the learners’ needs, not considering their pre-existing skills and learning methods. 
Uniform content for all, not tailored to individual preferences, fails to stimulate and motivate 
learners, who also struggle to maintain high levels of concentration. Traditional courses are 
poorly scalable, require physical presence at pre-established times, potentially creating conflicts 
with workloads and limiting participation. In addition to these aspects, using traditional 
methods for knowledge transfer also presents significant economic disadvantages: the costs of 
qualified teachers, equipped classrooms, and the production of learning materials must all be 
considered. This lack of customization and flexibility, therefore, reduces the effectiveness of 
learning.  

In this context, microlearning aims to overcome these limitations, offering more flexible and 
dynamic learning experiences. It allows the learner to access the necessary information exactly 
when needed and to test the acquired knowledge through practical exercises and quizzes. This 
is possible thanks to the division of the teaching material into small “pills” that can be consumed 

in a few minutes, so that learners maintain high concentration and can focus on learning one 
topic at a time or on acquiring one skill at a time. Even from an economic point of view, 
microlearning is advantageous because it reduces the required time and resources to create 
content compared to traditional training formats. 

At the same time, Artificial Intelligence (AI) is revolutionizing the e-learning sector as it offers 
companies powerful tools to automate educational content generation, quickly analyze data, 
and provide real-time support to students, thereby greatly increasing system efficiency and 
student performance, while reducing costs for companies. 

1.2 Research objectives 
The present thesis work studies this synergy between microlearning and generative AI with the 
aim of creating a web application that allows companies to easily convert complex business 
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content into concise and personalized learning modules, complete with descriptive slides and 
interactive quizzes for learner self-assessment. Before actually implementing the platform, an 
analysis of the state of the art in the e-learning sector was conducted, focusing on microlearning. 
The research highlighted that current tools offer limited customization and often require 
advanced technical skills for content creation. To address these limitations, the introduction of 
a chatbot assistant was proposed to enhance user experience and reduce manual workload. 

In short, the main goal of the project is to develop an intelligent and user-friendly platform for 
enterprise knowledge transfer. This platform aims to reduce the manual effort required for 
learning content preparation through the use of AI models. It is designed to be accessible even 
to users without technical skills and integrates chatbot assistance to guide users during the 
creation and editing of slides. Additionally, it offers multilingual support to allow companies 
to effortlessly translate training materials. 

1.3 Thesis structure 
This thesis is divided into six chapters. After the introduction, the second chapter offers an 
overview of the state of the art, examining the benefits and the limitations of microlearning, the 
main technologies currently used in corporate training, and the potential offered by Artificial 
Intelligence tools in the educational field. The third chapter describes the design of the platform, 
defining the functional and non-functional requirements, the user personas, and use cases; after 
an overview of the AI techniques currently used for automated content generation, the selection 
of the adopted software technologies is presented. The fourth chapter illustrates in detail the 
implementation of the system, analyzing the developed functionalities, the workflows, and the 
architectural logics underlying the prototype. The fifth chapter is dedicated to the experimental 
evaluation of the platform: the manual test results are presented, and the generated outputs are 
analyzed to demonstrate the capabilities of the system and identify its strengths and limitations. 
After the first phase of manual testing, a planned automated test implementation is also 
presented. Finally, the sixth chapter offers a conclusive reflection on the results achieved, 
highlighting strengths, limitations, and possible directions for future development of the 
application. 

This path aims to demonstrate how the integration of microlearning and Artificial Intelligence 
can be a concrete, innovative, and effective solution to address the challenges of modern 
corporate training, contributing to the improvement of knowledge transfer processes in 
increasingly complex and interconnected organizations.
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Chapter 2 

2. STATE OF THE ART 
This chapter emphasizes the significant role of microlearning training in boosting learner 
performance across both professional and educational environments. In particular, the first 
paragraph introduces the concept of microlearning, providing the definition and the context and 
then focusing on its benefits and limitations. The second and third paragraphs examine the 
current technologies used for enterprise training purposes and the integration of Artificial 
Intelligence in e-learning. The fourth paragraph, finally, illustrates the standards and formats 
used for digital training. 

2.1 Microlearning definition and context 
Microlearning, also known as bite-sized learning, is a teaching strategy designed to deliver 
content in easily digestible chunks, typically through digital platforms [1]. This method focuses 
on one specific concept or skill at a time, enabling learners to assimilate “pills” of knowledge 
easily. The small learning units involve learning activities that can be completed in a matter of 
minutes (usually, a session lasts between 2 and 10 minutes), and can include videos, slides, 
quizzes, infographics, games, diagrams, interactive elements, simulations, or short reading 
materials to make learning more engaging and provide learners with quick and relevant 
information they can apply immediately. 

This approach is particularly useful in an enterprise environment for staff training or rapid skills 
development. It also proves valuable in educational settings, such as schools or universities, 
where microlearning courses can complement traditional ones, offering a more flexible and 
dynamic study experience. 

An extensive review of literature conducted through the Scopus database and Google Trends, 
Leong et al. [2] found that microlearning, although a relatively new concept, is emerging as an 
educational tool of global significance and has the potential to soon become an established and 
significant trend. 

2.1.1 Benefits of microlearning 
One of the defining characteristics of the microlearning approach is its on-demand nature, 
which aligns closely with the concept of "Just-In-Time" (JIT) knowledge [3]. JIT knowledge, 
defined as “delivering the right knowledge at the right time,” emphasizes the practical value of 

microlearning, enabling learners to access specific content whenever and wherever needed [4], 
also because the content is accessible via mobile devices. This flexibility ensures that learning 
can be tailored to individual schedules, making it especially useful for professionals managing 
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a busy workload or students requiring immediate clarification on a topic. It is clear, therefore, 
that in work situations with time constraints, this flexibility is particularly advantageous 
compared to traditional long and demanding training courses [5].  

Several empirical studies show that learning in short and targeted units facilitates more effective 
learning. As an illustrative example, Gross et al. [6] conducted experimental studies that 
examined the impact of microlearning in the context of Crew Resource Management (CRM) 
training. In this study, participants were divided into two groups: one viewed a concise practical 
video demonstrating CRM principles in action, while the other watched a traditional lecture on 
the same topic. The group engaged with microlearning-based courses not only demonstrated 
better knowledge retention immediately after the training, but also retained that knowledge two 
weeks later. This effect is largely due to the way microlearning reduces cognitive overload by 
presenting content in manageable and focused chunks, allowing learners to internalize one 
concept at a time. 

The ability to retrieve content at the exact moment of need improves not only knowledge 
retention but also supports the immediate application of new skills in real-life contexts. Studies 
conducted by Branzetti et al. [7], Cheng et al. [8], and Gross et al. [6] highlight how 
microlearning promotes skill acquisition more effectively than traditional methods. 

Closely linked to flexibility is the higher level of learner engagement that microlearning fosters. 
Research by Sawarynski et al. [9] examined the implementation of an online module system, 
and, since its introduction, students were able to personalize their learning paths through a 
library of microlearning modules. The impact was significant: the percentage of students 
engaging with the modules rose from just 10% to 71% in two years. This data highlights how 
short and interactive content is more effective in keeping the attention of students than 
traditional long sessions. In addition, microlearning makes use of multimedia resources (such 
as videos, quizzes, animations, and simulations), which contribute to making the learning 
experience more dynamic and stimulating. This type of interactive approach stimulates 
learners’ motivation and also facilitates the immediate application of the knowledge learned, 
strengthening learning through practical exercise and real-time feedback. Studies [5], [10] 
confirm that learners report greater satisfaction and motivation when interacting with 
microlearning content, a crucial factor in professional training contexts where intrinsic 
motivation plays a major role in continuous learning. 

Even from an economic point of view, the microlearning approach presents many advantages. 
Due to the fact that microlearning modules are relatively short and focused, they require less 
time and fewer resources to produce compared to traditional training formats. This makes them 
inherently more economical, reducing costs associated with physical infrastructure, instructor 
time, and printed materials [11], [12]. This economic advantage makes microlearning 
particularly attractive to businesses looking for scalable and efficient employee training 
solutions. According to findings in [1], companies can reduce overall training costs while still 
achieving solid educational outcomes, thus maximizing return on investment.  

Furthermore, microlearning offers opportunities for personalization, which is increasingly 
recognized as a key factor in successful education and training. Content can be tailored to the 
specific needs, goals, and learning styles of individual users, often with the support of AI-based 
tools. Several studies confirm the validity of this approach. Hamdan Alamri et al. argue that to 
better engage students and improve knowledge retention, it is necessary to consider individual 
preferences and adapt learning content accordingly [13]. In particular, adjusting the complexity, 
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format, and pace of lessons enables the creation of personalized experiences that maximize 
effectiveness. These adaptive capabilities also promote inclusiveness and accessibility, making 
educational materials more widely usable and equitable. 

Another significant advantage of this methodology is the immediacy with which students can 
put the knowledge they have just acquired into practice. This derives from the fact that the small 
learning modules are focused on developing a single competency or skill at a time. This targeted 
method not only reinforces retention but also leads to measurable performance improvements. 
Studies [14] highlight the benefits of this immediate application, particularly in dynamic 
business settings where employees must constantly adapt to evolving tools, processes, or 
market conditions. By integrating learning directly into daily tasks, microlearning fosters a 
seamless transition from education to execution, making it an essential strategy for modern 
workplaces. 

In these sectors where knowledge changes quickly (such as technology, healthcare, and 
finance), microlearning is a powerful tool for continuous education, satisfying the need of 
employees to update their skills frequently and stay informed about emerging trends to remain 
competitive. The microlearning short lessons help to reinforce what has already been learned 
and to introduce new information quickly and in a non-invasive way. The research [5] 
emphasizes its value in competitive and dynamic business environments where having access 
to updated information can make the difference. 

Microlearning also has positive effects on self-confidence and self-perception, particularly 
because it enables learners to achieve small frequent successes that reinforce their sense of 
competence and progress [15], [16]. Breaking information into simple units reduces cognitive 
overload and allows learners to gradually increase confidence in their abilities.  

In summary, microlearning is perfectly suited to the needs of modern businesses and the 
behaviors of today’s workers. It is flexible, engaging, and helps people remember information 

better, thus promoting continuous learning. Furthermore, it is affordable, easy to adapt, and 
allows immediacy in knowledge application, making it very effective for companies. As 
industries continue to evolve and the demand for personalized training solutions increases, 
microlearning is set to become always more important. The use of Artificial Intelligence will 
make it even more powerful, offering customized and easily accessible learning paths. 
Companies that choose this path can count on employees who are better prepared, motivated, 
and ready for change. 

2.1.2 Limitations of microlearning 
Despite its growing popularity and proven benefits in modern educational and corporate 
contexts, microlearning is not without limitations. While it offers a flexible, efficient, and 
engaging learning experience, this approach is not universally suitable across all learning 
scenarios. The effectiveness of microlearning depends heavily on the nature of the content, the 
complexity of the subject matter, the learning objectives, and the learners’ technological 

proficiency.  

Microlearning is most effective when applied to topics that can be broken down into self-
contained units, such as procedural knowledge, terminology, or best practices. However, for 
subjects that are inherently complex, abstract, or interdependent (such as strategic decision-
making, critical thinking, or comprehensive systems analysis), microlearning may not provide 
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sufficient depth or scaffolding [17]. These topics often require extensive exploration, more in-
depth explanations, iterative learning cycles, and sustained engagement, which are better 
facilitated through traditional learning methodologies [18]. The microlearning model may 
oversimplify such topics, leading to a fragmented learning experience and superficial 
understanding. 

While microlearning helps maintain focus for learners with short attention spans and is very 
helpful for those with limited time, sustaining long-term motivation can be difficult. Learners 
who prefer immersive educational experiences may find microlearning’s brevity disengaging, 

particularly when rich discussions, reflective practices, and deeper analysis are minimized or 
absent. Furthermore, completing short modules may give a false sense of accomplishment, 
where learners believe they have mastered a subject without sufficient reinforcement or 
application. This illusion of mastery can discourage further study, potentially compromising 
long-term retention and skill development [17]. 

Additionally, not all learners respond equally well to technology-driven approaches. A 
significant proportion of the workforce, particularly those less familiar with digital tools or 
online learning platforms, may experience discomfort, skepticism, or disengagement when 
confronted with microlearning formats. This resistance can be attributed to several factors, 
including lack of exposure to digital learning environments, low confidence in navigating AI-
based interfaces, or a simple preference for the interpersonal and structured dynamics of 
traditional classroom settings [19], [20]. Some learners may perceive microlearning as overly 
simplistic or lacking the depth and rigor of conventional instruction. Educators and corporate 
trainers, too, may exhibit hesitancy in adopting microlearning, particularly if they are 
accustomed to established pedagogical methods that offer predictable outcomes and clearly 
defined instructional sequences [10]. 

Although microlearning is intended to reduce cognitive load by delivering content in 
manageable segments, it can paradoxically contribute to cognitive overload if not carefully 
designed. Densely packed modules or rapid sequencing without sufficient time for reflection 
may overwhelm learners. Consuming multiple modules in succession can result in information 
overload and mental fatigue, diminishing the effectiveness of the learning process. Therefore, 
pacing, structure, and opportunities for consolidation are critical in preventing learner burnout 
[17]. 

Another important issue is related to accessibility and technological equity, which emerges 
from the fact that the microlearning approach is based on digital platforms (such as Learning 
Management Systems and web applications). Learners who do not have consistent internet 
access may not be able to fully engage in microlearning programs and this deepens educational 
gaps. Technical problems (such as poor interface design, app malfunctions, or connectivity 
troubles) can disrupt the learning experience, leading to frustration and dropout. These 
challenges underscore the importance of designing intuitive and inclusive platforms that take 
into account different levels of technological access and proficiency [17]. 

Another important limitation lies in the perception that microlearning, especially when 
delivered via AI-powered web platforms, may diminish opportunities for social interaction and 
peer-to-peer learning. In traditional settings, learners benefit from discussions, group activities, 
and real-time feedback, which foster deeper understanding and collaborative skills. 
Microlearning environments must therefore evolve to incorporate interactive elements, such as 
discussion boards, chatbots, collaborative tasks, or gamified challenges, to mitigate this 
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perceived isolation and enhance learner engagement. In designing an AI-powered application 
for business knowledge transfer, it becomes essential to consider these human-centric elements 
and ensure that the platform is not only efficient but also intuitive, inclusive, and socially 
responsive [17]. 

In summary, while microlearning offers significant advantages in terms of flexibility, 
adaptability, and scalability, especially when integrated with AI, it is not a solution that works 
in every context. The successful application of this approach requires a good understanding of 
the content domain, learner profiles, and organizational goals. Combining the microlearning 
approach with traditional learning methods can create a balanced system that optimizes training 
outcomes. With this hybrid model, companies can address a wider range of learner needs and 
preferences, ensuring that technology enhances rather than replaces the foundational principles 
of effective learning. Therefore, the proposed AI-driven web application must be designed with 
versatility and user-centricity in mind, enabling it to adapt to different learning contexts while 
maximizing the benefits of microlearning for business knowledge transfer. 

2.2 Existing technologies for enterprise training 
In recent decades, enterprise training methods have undergone profound changes due to the use 
of digital technologies to improve accessibility, skills development, knowledge retention, 
efficiency, and personalization of learning experiences, while reducing the time and cost 
associated with traditional training. 

This chapter focuses on presenting the commonly used technologies and AI tools for corporate 
knowledge transfer, paying particular attention to their strengths and limitations. 

2.2.1 E-learning platforms 
E-learning refers to education delivered via digital means. It offers a fast and effective way to 
deliver and share knowledge with learners across the globe [21]. Services such as LinkedIn 
Learning, Coursera for Business, and Udemy Business offer curated video courses on a wide 
range of professional topics, including technical skills, leadership, and compliance. These 
platforms provide high-quality content and support self-paced learning. However, they do not 
facilitate company-specific knowledge transfer and lack tools for adapting content to the 
internal processes, tools, or terminology of a given organization. 

2.2.3 Microlearning platforms 
Microlearning platforms, like Axonify, LearnUpon, and Spekit [22], just to name a few, deliver 
short focused learning modules designed to be completed quickly. These tools are better suited 
to modern attention spans and mobile-first use cases. Integrating microlearning content into 
traditional e-learning platforms allows for more flexible and accessible learning experiences, 
meeting time constraints and specific needs of employees [23]. However, they still rely largely 
on manual content creation and often lack AI-driven automation or advanced personalization. 

2.2.3 Learning Management Systems 
Learning Management Systems (LMS) offer dynamic platforms that support both synchronous 
and asynchronous learning environments, thus becoming an integral part of the structure and 
delivery of online education. These platforms facilitate the distribution of course materials, 
monitoring of student progress, and promotion of collaborative learning through discussion 
forums and group activities. The flexibility of LMS platforms allows for tailoring their use to 
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specific instructional goals and technological capacities, contributing to improving learner 
outcomes and satisfaction [24]. 

LMS platforms typically are designed to support SCORM [25] and xAPI [25] standards, 
allowing for seamless content integration and tracking of learner progress across multiple 
systems. Despite these technological capabilities, LMS may not be well-suited for developing 
skills that require direct interaction, such as oral communication, and may contribute to feelings 
of isolation due to limited face-to-face interaction and social presence in fully virtual settings 
[26]. Nonetheless, platforms such as Moodle, SAP Litmos, Cornerstone, Blackboard, and 
TalentLMS continue to represent essential tools for corporate training in many organizations. 

2.2.4 Authoring tools 
The use of e-learning authoring tools has become a fundamental component of digital learning 
strategies. These platforms allow businesses to develop interactive training content tailored to 
contemporary educational demands. Authoring tools vary in complexity and purpose, from 
simple, drag-and-drop interfaces to advanced platforms requiring programming skills, allowing 
companies to choose among them based on their technical capabilities and instructional goals. 
Solutions like Articulate, Adobe Captivate, and GLO Maker are designed to produce SCORM-
compliant modules, ensuring integration across different Learning Management Systems [27]. 
By simplifying the content creation process as well as supporting reusability and adaptive 
learning paths, these tools reduce training costs and help make knowledge transfer more 
effective. 

2.2.5 AI-powered tools and chatbots 
Emerging tools are beginning to incorporate Artificial Intelligence to automate parts of the 
content creation and personalization process [28]. For example, some platforms use Natural 
Language Processing (NLP) to generate quizzes from text, while others integrate AI chatbots 
for learner support. Tools like Docebo and Tovuti LMS have started incorporating machine 
learning for learner analytics and content suggestions. 

2.2.6 Key limitations of existing technologies 
While the technologies discussed above offer numerous benefits to businesses, they often suffer 
from: 

• Significant costs associated with installation and maintenance; 
• High complexity in design tools, making them difficult for content developers to 

master; 
• Limited capacity to tailor learning experiences to individual needs; 
• Lack of integration across content creation, delivery, and performance tracking; 
• Inadequate support for real-time assistance or contextual learning. 

These limitations underscore the importance of adopting an integrated, intelligent, and user-
centric approach, which the proposed AI-enhanced microlearning platform aims to address by 
combining automated content creation, interactive chatbot support, and modular learning units 
in a cohesive digital environment. 



 

9 

2.3 Application of Artificial Intelligence in e-learning 
AI is transforming the e-learning landscape by introducing intelligent systems that personalize 
learning experiences, streamline administrative processes, and support adaptive learning. This 
section examines how AI is being integrated into digital learning environments, highlighting its 
benefits, challenges, and future prospects. 

2.3.1 Personalized and adaptive learning 
AI facilitates the development of tailored learning experiences by analyzing individual learner 
data to customize content and learning pathways. Methods such as content recommendation, 
curriculum sequencing, and automated feedback are leveraged to align instruction with each 
learner’s unique needs. 

For instance, content recommender algorithms use collaborative filtering to suggest learning 
materials aligned with a learner's preferences, knowledge level, and learning goals. Combining 
these approaches in hybrid recommender systems results in increased engagement, improved 
outcomes, and more effective adaptive learning experiences [29]. Additionally, AI-powered 
platforms dynamically adjust content presentation based on learner responses, fostering deeper 
understanding and retention. 

2.3.2 Intelligent Tutoring Systems and Virtual Assistants 
AI-based Intelligent Tutoring Systems (ITS) and Virtual Teaching Assistants (VTAs) are 
commonly used to provide real-time support and feedback to learners. These systems use 
Natural Language Processing to understand and respond to student requests, generate quizzes, 
flashcards, and offer personalized learning paths, tailored to individual learning needs [30]. 
They are also used to automatically translate content, adapting it to learners from different 
linguistic regions and supporting the global deployment of e-learning programs. 

Intelligent Tutoring Systems incorporate interactive elements that simulate human-like social 
interactions, fostering greater learner engagement and improving the effectiveness of the 
educational process. 

2.3.3 AI in learning analytics and assessment 
Artificial Intelligence is rapidly reshaping e-learning, particularly in the domains of 
Personalized Learning (PL) and Adaptive Assessment (AA), by leveraging insights from 
cognitive neuropsychology. AI-driven systems enable the customization of educational 
experiences by analyzing learners’ cognitive profiles, emotional states, and performance data 
to adapt content, feedback, and assessments in real time. This integration fosters increased 
engagement, motivation, and learning efficiency, as AI tailors instruction to individual needs, 
learning styles, and cognitive abilities. 

In addition, AI facilitates learning analytics by monitoring student progress, analyzing learning 
behaviors, and predicting academic challenges. These insights support timely interventions to 
assist at-risk students and enhance overall educational outcomes. 

AI also plays a key role in assessments by automating grading and delivering instant feedback, 
which allows educators to focus more on interactive teaching and student engagement. 
Adaptive systems further enhance this process by dynamically adjusting task difficulty and 
optimizing cognitive load and memory retention through the use of neurophysiological data. 
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Despite these advancements, challenges such as algorithmic bias, data privacy, and equitable 
access remain critical concerns. The literature underscores the importance of empirical 
validation and ethical frameworks to ensure that AI-enhanced learning environments are not 
only effective but also inclusive and fair. 

As AI continues to evolve, its potential to revolutionize education through cognitively 
informed, personalized, and adaptive learning systems remains both promising and profound 
[31]. 

2.3.4 Enhancing accessibility and inclusion 
The integration of Artificial Intelligence with inclusive design principles offers powerful 
solutions to enhance accessibility, ensuring that all learners have equitable access to educational 
resources, also those with disabilities. 

Adaptive learning systems customize content based on individual learning styles and needs, 
increasing engagement and comprehension. Natural Language Processing (NLP) and speech 
recognition tools are able to convert speech to text and vice versa, helping students with hearing 
or speech impairments, while other AI tools can generate descriptive audio for visually impaired 
students. AI-powered chatbots and Virtual Assistants can support learners with learning 
difficulties, helping them keep pace with their peers, providing personalized guidance, 
answering questions, and helping navigate complex concepts throughout the learning process. 
Therefore, AI facilitates compliance with accessibility standards, promoting inclusivity across 
educational platforms [32]. 

Despite these benefits, challenges such as data privacy concerns, technical limitations, and 
implementation costs must be addressed to fully realize AI’s potential in inclusive education. 

2.3.5 Recent trends and innovations 
Recent literature highlights the rise of ChatGPT-style conversational agents in e-learning for 
corporate and higher education. For instance, Bettayeb et al. conducted a systematic review of 
ChatGPT in education, highlighting numerous benefits such as personalized assistance, instant 
feedback, and improved accessibility, all contributing to greater learner engagement and 
improved educational outcomes [33]. Similarly, Choudhary et al. surveyed the use of ChatGPT 
in corporate training, concluding that AI-driven chatbots significantly enhance learner 
satisfaction by providing on-demand, personalized guidance and automating routine support 
tasks [34]. A large meta-analysis conducted by Wang et al. found that the use of ChatGPT was 
associated with a large improvement in student performance and a moderate increase in their 
attitudes and higher-order thinking [35]. Collectively, these studies suggest that conversational 
AI has the potential to simulate human-like tutoring and engage learners dynamically. 

Generative models like DALL·E are increasingly used to produce educational images and 
infographics on demand. Empirical studies suggest that tailored visuals can aid learning by 
leveraging visual memory. For instance, Ichimura et al. created thousands of synthetic medical 
images for training ophthalmology students, finding that an image-based learning quiz 
significantly outperformed a traditional video lecture for identifying eye tumors [36]. Their 
analysis showed that trainees exposed to diverse AI-generated visuals achieved higher 
diagnostic accuracy and faster decision times than those who only watched a narrated slide 
presentation. This suggests that carefully designed AI visuals can engage pattern recognition 
and reinforce learning better than text alone. Educators are therefore advised to use AI-
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generated images in supportive roles (e.g., charts, diagrams, illustrative pictures) that are 
directly in line with learning goals, while avoiding random or decorative images that may 
distract rather than help. In short, generative imagery tools offer scalable ways to produce 
tailored educational graphics, and preliminary evidence indicates they can enhance 
comprehension and recall in technical subjects. 

Meanwhile, AI-driven Text-To-Speech (TTS) and Automatic Speech Recognition (ASR) 
technologies are transforming both accessibility and assessment in e-learning. High-quality 
neural TTS can generate realistic narrations for any text, enabling audio-based microlearning 
(podcasts, voice-over slides) without the need for human voice actors. Such dual-mode 
presentation (read-along audio plus on-screen text) supports Universal Design for Learning 
(UDL) by meeting diverse learner preferences and needs. For example, TTS narration allows 
learners with visual impairments or reading difficulties to access content more easily and can 
boost retention by combining auditory and visual input. On the other side, ASR technologies 
are increasingly used in language training and assessment. Liu et al. reported positive feedback 
from English learners using ASR tools in speaking practice exercises; both students and 
instructors appreciated the automatic scoring and found it helpful for assessing speaking 
proficiency [37]. In another controlled experiment, Wilschut et al. compared a traditional 
typing-based vocabulary app with a speech-based version using ASR. They found that speaking 
practice using ASR achieved equivalent learning gains to typing practice, and that an intelligent 
scheduling algorithm (based on ACT-R memory models) improved vocabulary recall in both 
modes [38]. These findings suggest that ASR can effectively support scalable conversational 
exercises, such as pronunciation or oral exams, while maintaining learning outcomes 
comparable to traditional methods. In summary, voice technologies improve accessibility and 
flexibility. TTS systems provide automated narration and audio course units (benefiting all 
learners, especially those with reading disabilities), while ASR can support novel interaction 
modes (e.g., voice quizzes and automated oral assessments). Early studies demonstrate that 
these tools are well-received by learners and can maintain, or even enhance, learning 
performance. 

2.3.6 Ethical considerations and challenges 
The deployment of AI-driven tools (adaptive tutors, intelligent assessments, language models, 
etc.) in e-learning promises personalization and efficiency, but also raises several ethical 
concerns that must be carefully addressed to ensure fairness, transparency, and respect for 
learners’ rights [39], [40], [41]. Key ethical considerations include: 

• Data privacy and security: AI systems rely heavily on collecting and analyzing vast 
amounts of learner data, including sensitive personal information. Ensuring robust data 
protection mechanisms and compliance with privacy regulations (such as GDPR) is 
critical to safeguard learners' confidentiality and prevent misuse of data [42]; 

• Bias mitigation and fairness: AI systems must be designed to avoid reinforcing existing 
biases in educational content and assessment [43]. Systems trained on biased models 
should incorporate bias detection and regular auditing to ensure equitable 
recommendations and assessments [31]; 

• Transparency and explainability: Learners and educators often lack a clear 
understanding of how AI systems make decisions. Students should know what data is 
collected and how AI-driven feedback is generated. Ethical AI in education should 
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prioritize explainability to build trust and allow users to understand and challenge AI-
driven outcomes [44], [45]; 

• Accountability and governance: Clear policies and oversight mechanisms are needed. 
Educational organizations are encouraged to establish governance to monitor AI use 
and assign responsibility [31]; 

• Equity and accessibility: AI tools should ensure equal opportunities. In practice, this 
means addressing technology gaps and designing non-discriminatory algorithms so that 
all students or employees benefit equally [31]; 

• Human oversight: AI should complement and not replace human judgment [39]. Experts 
recommend keeping instructors or managers in the loop (for example, faculty reviewing 
AI-graded work or trainers supervising AI-driven learning paths) to maintain ethical 
standards. 

2.4 Standards and formats for digital training (SCORM, xAPI) 
SCORM (Sharable Content Object Reference Model) is the older, widely‑adopted e‑learning 

standard originally developed by the ADL Initiative for the U.S. Department of Defense. It 
defines how course content is packaged (as “SCOs”) and how learning modules communicate 
with a Learning Management System via a JavaScript API [46]. SCORM was created to 
promote interoperability and reusability, allowing courseware developed in the SCORM format 
to be efficiently shared across different LMS platforms in a standardized way [46]. In practice, 
SCORM packages are launched within an LMS, which tracks course status, completions, and 
simple scores via the SCORM runtime data model [46]. 

However, SCORM is inherently LMS‑centric. Panagiotakis et al. note that SCORM is deeply 
integrated with the LMS and cannot operate independently, meaning content must be delivered 
within a compliant LMS in order to record any data [47]. Its tracking model is also limited: 
SCORM can record basic metrics such as course completion, test results, or time spent, but it 
soon became clear that these capabilities were insufficient to meet evolving learning and data 
tracking needs [48]. In short, SCORM’s architecture binds content to an LMS and only captures 
formal course-based interactions.  

By contrast, xAPI (the Experience API or Tin Can API) was introduced in 2013 to overcome 
these limitations. It is a platform‑neutral learning data specification designed to record any 
learning experience [48], [49]. Technically, xAPI uses a RESTful web service model: learning 
activities send JSON‐formatted statements (actor‑verb‑object triples) over HTTP to a dedicated 

Learning Record Store (LRS) [49], [50]. The LRS is a repository that stores all xAPI statements; 
content and devices (from mobile apps to simulations and games) act as Learning Record 
Providers (LRP) that issue statements. Panagiotakis et al. describe the LRS as more than just a 
data store; it also serves as a source for data aggregation and analytics, capable of ingesting 
statements from any source in a standardized format [47]. In short, xAPI decouples activity 
tracking from any specific LMS and allows learning data to be collected from diverse tools and 
contexts.  

2.4.1 SCORM use cases, advantages, and limitations 
SCORM has historically been used for formal online courses in both corporate and higher-
education LMSs. A typical use case is compliance or certification training delivered as 
packaged course modules in a company LMS or university learning platform. Due to its status 
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as the de facto standard for interoperability, SCORM is supported by most commercial and 
open-source LMSs [46], [51]. 

One of SCORM’s biggest strengths is its maturity and broad support. It established a common 
model that enables content creators to distribute learning materials across a wide range of LMS 
platforms efficiently [46]. Its tracking and sequencing rules (especially SCORM 2004) allow 
defining simple learning paths and completion rules. Many organizations still rely on SCORM 
because their existing training content and systems were built around it. 

However, SCORM also has constraints. Since it requires content to run within an LMS, it 
cannot track learning that occurs outside that environment [47]. It only records basic data 
(completion, quiz scores, session time) and cannot capture rich behavioral data or informal 
learning activity. For this reason, SCORM quickly proved to be too limited for modern learning 
needs [48]. Its dependence on packaged course files (typically ZIP archives) can be 
cumbersome for content authors. Furthermore, once content is launched, the SCORM data 
remains locked in the LMS, with minimal support for integration into modern analytics tools 
or cross‑system data sharing. Ultimately, SCORM’s LMS‑centric design makes it inflexible 
and unable to exploit new learning modalities (mobile apps, games, social learning, etc.) [47]. 

2.4.2 xAPI use cases, advantages, and limitations 
xAPI has been applied in corporate and academic contexts where richer data is needed. For 
example, xAPI can record on-the-job training activities, simulations, discussions, or offline 
learning. According to an ADL report, xAPI enables the tracking of learners as they carry out 
work-related tasks, generate outputs, interact with others, collaborate, and participate in any 
other online activities [48]. In corporate learning, xAPI is used to measure informal and social 
learning, compliance exercises in realistic simulations, or mobile app usage. In education, xAPI 
supports learning analytics systems by aggregating diverse student activities into a common 
record [47], [49]. 

The core advantage of xAPI is its flexibility. Unlike SCORM, xAPI is not limited by content 
format or tied to a specific LMS: any learning action (watching a video, reading a PDF, 
conducting a lab, participating in a forum) can be captured as an xAPI statement [47], [49]. As 
Panagiotakis et al. demonstrate, xAPI enables the tracking of diverse activities across multiple 
platforms, with statements originating from sources such as websites, mobile apps, simulators, 
or virtual games  [47]. Another major advantage is xAPI’s support for offline learning: learners 
can complete activities without an active internet connection, and once reconnected, the system 
transmits the stored statements to the Learning Record Store [47]. Thanks to its structured 
statement format, xAPI integrates seamlessly with Business Intelligence (BI) tools, enabling 
the generation of detailed reports, an aspect increasingly emphasized by researchers for its 
potential in advanced analytics [47]. Another benefit is connectivity: multiple LRSs (or an LMS 
with embedded LRS) can share xAPI data, enabling federated or lifelong learning records [47]. 
In summary, xAPI provides much richer, granular data and frees learning data from the confines 
of a single LMS [47], [49]. 

Despite its power, xAPI presents some challenges. Its flexible data model, while powerful, 
requires careful management of semantics. As a technical report warns, xAPI does not enforce 
consistent use of terminology across systems. Without standardized vocabularies, statements 
generated by one system may be difficult for another to interpret [49]. To ensure meaningful 
data exchange, organizations must adopt shared xAPI profiles or schemas. There are also 
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practical considerations: every xAPI deployment requires an LRS infrastructure (though many 
LMS platforms now include an LRS). Adoption has been relatively slow, with many 
organizations still relying on SCORM-based systems. As a more recent standard (introduced in 
2013 and approved by IEEE in 2020 [50]), xAPI may not be fully supported by older tools and 
content, which often need updates to ensure compatibility. 

2.4.3 Comparison of technical architectures 
SCORM packages content (HTML/Java/video/etc) with a manifest that describes SCOs. When 
a learner launches a SCO in an LMS, the LMS provides a JavaScript API endpoint (“API 

adapter”) that the SCO calls to initialize, and to get/set runtime data (CMI -Computer Managed 
Instruction- data model) during the session [46]. At session end or on calls, the SCO reports 
data (e.g., lesson status, score) back to the LMS API, which the LMS stores. The learner’s 

interactions are thus tracked only while the content is hosted in that LMS. The architecture is 
tightly coupled: without an LMS (or a SCORM player), the content cannot send or store any 
data [47]. 

In xAPI, there is no single “master” environment. Instead, any learning application (web app, 

mobile app, simulator, etc.) can act as an xAPI Learning Record Provider (LRP) and send 
statements over the network to one or more LRSs [47], [49]. xAPI uses a RESTful API with 
JSON: each statement is a small JSON document (who did what, when, and optional context). 
For example, an LMS might send “Alice completed Quiz 1” when a quiz is done, while a mobile 

app might send “Alice watched Video 3” separately. The LRS exposes REST endpoints (via 

HTTP GET/POST) to receive and store these statements [50]. Any system or tool can retrieve 
learning data from the LRS via HTTP as well. This distributed architecture allows xAPI to 
decouple content generation from storage: learning content does not need to know where data 
is going ahead of time [47]. Panagiotakis et al. illustrate that an LRS can store learning 
activities from a wide range of sources; whether the statement comes from a game, a mobile 
application, or a webpage, it can all be captured and stored using the same format within the 
LRS [47]. Crucially, xAPI supports multiple LRSs, cross-system sharing, and offline batch 
updating (statements can be sent whenever a connection is available [47]).  

The table below highlights the main distinctions between SCORM and xAPI in terms of content 
delivery, data storage, data scope, and interoperability, illustrating how xAPI offers greater 
flexibility and extensibility for modern learning environments: 

Feature SCORM xAPI 

Content delivery Packaged courses (ZIP) launched 
via LMS 

Content and activities can run 
anywhere; statements sent via REST 

State storage LMS internal database (proprietary 
to each platform) 

Learning Record Store, either 
standalone or embedded in an LMS 

Data scope Limited to course/session-level data 
(completion, score, time) 

Any learning event (activities, 
assessments, clicks, etc.) 

Interoperability Based on legacy specifications with 
a fixed data model 

JSON-formatted statements; use shared 
vocabularies and xAPI profiles for 

semantic interoperability 
Table 2.1: Key architectural differences between SCORM and xAPI 
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2.4.4 Applications in corporate and academic settings 
In corporate training, SCORM has long been the norm for standard e‑learning modules 

(compliance, product training, certifications). xAPI is now gaining traction for more dynamic 
scenarios: for example, recording simulations or informal social learning (forums, peer 
coaching) that occur outside the LMS. Industry reports note that xAPI enables flexible tracking 
of a virtually limitless range of learning activities [48], so learning managers can connect 
training to business metrics. Some corporations implement xAPI in custom apps or immersive 
training, then feed all data to a corporate LRS for analytics.  

In higher education, LMS platforms historically relied on SCORM for interactive content. New 
research on learning analytics encourages institutions to capture data that extends beyond the 
traditional confines of the university [31]. In this sense, xAPI is interesting because it allows 
the integration of data from multiple sources, making it useful for university-scale analysis 
projects. A recent study has identified SCORM and xAPI as key standards for interoperability 
in LMSs [51]. Some universities are experimenting with using xAPI to track student 
engagement across different platforms, but full institutional adoption is still limited: most 
formal courses continue to rely on LMS and SCORM, while xAPI is mostly used in research 
projects or blended learning initiatives. 

Recent studies emphasize that SCORM and xAPI fulfill different needs. SCORM remains a 
stable standard for conventional, LMS‑hosted e‑courses [46], yet it falls short in capturing the 
diverse cross‑platform interactions of modern learning. Conversely, xAPI was specifically 
designed to overcome SCORM’s limitations by focusing on learners and their activities [49]. 
Panagiotakis et al. conclude that xAPI represents a much broader technology compared to 
SCORM, operating independently of LMSs and supporting the vision of “lifelong learning” 
[47]. The drawback is that xAPI requires a new Learning Record Store infrastructure and 
careful semantic governance, whereas SCORM leverages existing LMS databases and 
workflows. In practice, many organizations blend both standards: using SCORM for legacy 
courses and adopting xAPI for advanced learning experiences. Several authors note that the 
emerging CMI5 standard (which combines xAPI with launch rules) aims to facilitate migration 
[46]. Ultimately, the literature suggests choosing the standard based on use case: SCORM for 
traditional course content delivery [46], and xAPI for broad flexible tracking of distributed 
learning activities [47], [48].  
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Chapter 3 

3. PLATFORM DESIGN AND 

ARCHITECTURE 
This chapter outlines the key requirements and design considerations guiding the development 
of the AI-based microlearning platform for enterprise knowledge transfer. The goal is to define 
a solution that can efficiently support Subject Matter Experts (SMEs) and employees during the 
creation, customization, and fruition of microlearning content, without requiring advanced 
technical skills. For this purpose, the system uses cutting-edge AI models, offering a high 
degree of usability and ensuring compatibility with real-world enterprise contexts. 

The first paragraph details the functional and non-functional requirements of the platform. 
These requirements describe what the system must do (such as enabling AI-assisted content 
generation, user interaction through a chatbot, and multilingual support) as well as qualities it 
must possess, including usability, performance, scalability, reliability, availability, 
maintainability, and security. 

The second paragraph presents user personas and use cases, which help contextualize the 
platform’s requirements through realistic user behaviors and scenarios. This section defines 

typical users (such as Training Managers and Domain Experts) and explores how each interacts 
with the platform to accomplish specific goals. 

The third paragraph surveys the core AI techniques used for automated content generation. 
These include methods for content summarization, document parsing and preprocessing, slide 
and quiz generation, and multilingual support. This section provides a technical foundation for 
understanding how AI capabilities will be integrated into the platform to enhance user 
experience and reduce manual workload. 

The fourth paragraph presents an in-depth overview of the technology stack chosen for the 
development and deployment of the system. Each subsection is dedicated to a key component 
of the architecture, detailing the reasons behind the selection of specific tools, frameworks, and 
services. 

3.1 Functional and non-functional requirements 
In the development of modern educational platforms, it is essential to clearly define the system 
requirements to ensure alignment with user needs and technological capabilities. This 
paragraph presents both the functional and non-functional requirements that guided the design 
and implementation of the proposed solution. Functional requirements focus on the core 
features that the platform must provide to support content creation, management, and 
personalization, while also enabling intelligent assistance through AI-driven tools. By outlining 
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these requirements, we establish a foundation for building an intuitive, flexible, and intelligent 
learning environment that can adapt to diverse user scenarios and promote efficient knowledge 
delivery. 

3.1.1 Functional requirements 
The platform has been designed to support users throughout the entire process of learning 
content creation, from initial input to final delivery, combining automation, flexibility, and 
intelligent assistance. One of the core functionalities is content upload and management. Users 
can upload multiple document formats, including URLs, PDFs, Word documents (DOCX), 
Excel spreadsheets (XLSX), and plain text files (TXT). Once uploaded, the system 
automatically extracts the textual content from these sources. Users can manage the sources 
and, in particular, they can add or remove them, edit the name, title, and description. 

In cases where users do not upload any input or wish to supplement their material with external 
information, the platform also supports online resource retrieval. Leveraging the Tavily search 
engine, the system can automatically perform searches on the web to find relevant and credible 
content based on user queries or contextual needs. This ensures that learning resources are 
enriched with updated and reliable information, broadening the scope of the educational 
material generated. 

A central feature of the platform is its AI-driven content generation capability. Using Natural 
Language Processing and Large Language Models (LLMs), the system is able to analyze raw 
input and transform it into structured learning modules. These modules include both slide-based 
presentations and interactive quizzes for learner self-assessment. Users can choose between 
different levels of summarization (ranging from detailed explanations to concise overviews) 
depending on their learning goals or audience. The quiz generation component produces 
questions in both multiple-choice and single-choice formats, encouraging engagement and 
reinforcing understanding through interactive learning. 

Beyond automatic generation, the platform emphasizes user control and personalization. All 
generated content can be edited to suit individual preferences or institutional standards. Users 
can modify slide titles, revise descriptions, add and remove slides, as well as split or merge 
them. The structure of the content can also be refined (for example, by converting paragraphs 
into bullet points, emphasizing keywords, or reorganizing sections for improved clarity). 
Likewise, quizzes can be customized: users can add new questions, remove or edit existing 
ones, and edit answer options, allowing for highly tailored experiences. 

To make the platform even more accessible and user-friendly, an integrated AI-powered chatbot 
provides ongoing assistance. This virtual assistant is capable of understanding natural language 
queries and can guide users through various tasks, such as managing uploaded resources, 
editing content, generating new modules, or navigating the platform’s features. This 

conversational support system enhances usability, particularly for users who may not be 
familiar with more technical tools or interfaces. 

Lastly, recognizing the global nature of modern education and collaboration, the platform 
includes multilingual support. All content generated can be automatically translated into 
multiple languages, making it easier to share learning resources across different regions, teams, 
or linguistic backgrounds. This feature not only broadens the platform’s reach but also promotes 

accessibility and knowledge sharing on an international scale. 
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In summary, the system brings together robust functionality, intelligent automation, and user-
centered design to create a versatile learning content generation platform. Each feature (whether 
related to document handling, AI-powered synthesis, personalization, or multilingual support) 
contributes to an integrated workflow aimed at simplifying the creation of rich, engaging, and 
adaptable educational materials. 

3.1.2 Non-functional requirements 
In addition to the core functional capabilities, the platform must also meet a series of non-
functional requirements that are crucial to ensuring a seamless, secure, and sustainable user 
experience. These requirements address aspects such as usability, performance, reliability, 
maintainability, and security (each contributing to the platform’s overall effectiveness and long-
term viability). 

Usability stands as a cornerstone in the platform’s design philosophy. The interface must be 

intuitive and user-friendly, enabling individuals of varying technical backgrounds to navigate 
and utilize the system. Whether the user is a corporate trainer or a learner, the interface should 
feel natural and require minimal instruction.  

Equally important is the system’s performance and scalability. Given the computational 

demands of AI-driven content generation and real-time online search integration, it is essential 
that the platform delivers fast response times. Users should experience minimal delay when 
generating slides or quizzes, retrieving external resources, or interacting with the AI assistant. 
Moreover, the platform must be designed to support multiple users simultaneously. As 
organizations grow and more users interact with the system at once, the underlying 
infrastructure should be capable of scaling accordingly, maintaining high performance even 
under increased load. 

Reliability and availability are also critical aspects to consider, especially given the platform’s 

goal of supporting continuous learning and uninterrupted content development. Technical 
downtimes or unexpected failures can significantly hinder user productivity and compromise 
trust in the system. At this stage, no specific mechanisms such as fault tolerance, server 
redundancy, or real-time monitoring have been implemented. However, introducing such 
measures in the future could prove highly beneficial. Ensuring high system availability would 
allow the platform to remain functional even in the event of partial outages, thus improving 
user experience and making the system more resilient to unforeseen issues. As the platform 
evolves and scales to accommodate a growing number of users and more complex use cases, 
integrating these kinds of reliability strategies could play a key role in maintaining performance 
and user confidence over time. 

Maintainability is another key requirement, especially in a rapidly evolving technological 
landscape. The platform should be constructed using a modular architecture that supports easy 
updates and extensions. This modularity allows new AI models or features to be integrated 
without requiring major changes to the existing codebase, facilitating ongoing innovation while 
preserving system stability. Developers should be able to isolate and update specific 
components without affecting the rest of the system. 

Security considerations are fundamental, particularly when dealing with sensitive user-
generated content and external data sources. At a basic level, the platform must implement an 
authentication system to ensure that only authorized users can access its features. This protects 
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both the users and the integrity of the system itself. In addition, a dedicated middleware layer 
should act as a gatekeeper between the frontend and backend, filtering incoming requests and 
blocking any unauthorized access attempts from external sources. This not only safeguards the 
application from malicious attacks but also reinforces data privacy. File handling must be 
conducted with care, using secure protocols such as temporary storage and base64 encoding for 
data transfer. These measures reduce the risk of data leaks and ensure that files are not 
permanently stored unless explicitly required by the user. 

3.2 User personas and use cases 
To better contextualize the platform’s functional requirements and validate its design choices, 
it is essential to identify the typical user personas and analyze the core use cases they engage 
in. The platform is intended to support a broad range of enterprise users with varying levels of 
technical expertise, knowledge ownership, and learning objectives. This section defines two 
primary user personas: the Training Manager and the Domain Expert. Each persona represents 
a different perspective in the knowledge transfer lifecycle and contributes to a distinct phase of 
the microlearning workflow. 

3.2.1 Training Manager 
The Training Manager plays a key role in supervising the creation, delivery, and tracking of 
corporate training materials. Their main objective is to ensure that learning modules are aligned 
with the organization’s objectives and are easily accessible to employees across different 
departments and locations. They interact with the platform to review AI-generated content 
before publication, ensuring that all microlearning materials meet quality and consistency 
standards. By streamlining the content approval process and maintaining alignment with 
internal guidelines, the Training Manager helps accelerate the launch of training programs 
while improving overall compliance and efficiency. 

3.2.2 Domain Expert 
The Domain Expert is a Subject Matter Specialist (e.g., engineer, HR lead, or sales trainer) who 
possesses deep knowledge in a specific business area but may not have formal skills in 
instructional design. Their main objective is to share their expertise, ensuring that their 
specialized knowledge is accurately represented. On the platform, the Domain Expert interacts 
by uploading documents (such as technical reports, procedures, or internal guides) and using 
the AI-powered assistant to automatically generate learning modules, including slides and 
quizzes. They then edit and refine the generated content through the chatbot. This process 
empowers experts to contribute directly to training materials, eliminates technical barriers, and 
accelerates the availability of content. 

3.2.3 User profiles summary 
Persona Primary role Main interactions with the 

platform 
Expected benefit 

Training 
Manager 

Supervises learning 
delivery 

Reviews, customizes, and 
approves content; monitors 

training progress 

Ensures quality and 
alignment of 

learning programs 
Domain Expert Contributes domain 

knowledge 

Uploads content; generates 
and edits modules using an 

AI assistant 

Shares expertise 
efficiently without 

technical bottlenecks 
Table 3.1: Use case interactions 
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By mapping these user personas and their respective behaviors, the platform’s user experience 

and feature set can be tailored to better meet the diverse needs of stakeholders involved in 
corporate knowledge transfer. 

3.3 Survey of AI techniques for automated content generation 
AI-driven automation plays a foundational role in the development of modern microlearning 
platforms. Recent advancements in Natural Language Processing (NLP) and Large Language 
Models have enabled a variety of intelligent operations that streamline the transformation of 
raw enterprise content into interactive learning materials. This section provides an overview of 
the key AI techniques leveraged in the system for automating content generation. 

3.3.1 AI for content summarization 
In the proposed microlearning platform, automated content summarization plays a fundamental 
role because it enables the transformation of complex corporate documents into concise and 
easily consumable learning content. This capability is supported by advanced Natural Language 
Processing algorithms and is typically implemented using two primary approaches [52]: 

• Extractive summarization: This technique focuses on selecting the most relevant 
sentences directly from the original text. The resulting summary preserves the exact 
wording and sentence structure. While this method is efficient and grammatically 
reliable, it may lack coherence and smooth transitions between the extracted segments; 

• Abstractive summarization: Abstractive methods interpret the meaning of the text and 
generate entirely new sentences to convey the main ideas. Although this approach is 
more sophisticated and computationally demanding, it produces summaries that are 
more natural, fluid, and similar in quality to those written by humans. 

The most advanced summarization systems are built on Transformer-based architectures 
(which excel in understanding context and relationships within long sequences of text) such as: 

• GPT-4.1 (OpenAI): An internal advancement over GPT-4, GPT-4.1 delivers improved 
summarization quality, especially in instruction-following, long-context retention (up 
to 128k tokens), and robustness across diverse domains. Frequently used via OpenAI’s 

API and integrated into advanced copilots [53]; 
• GPT-4.5 / GPT-4o (OpenAI): These are the latest iterations of the GPT family. GPT-4o 

(Omni) introduces multimodal capabilities (text, images, and audio) and significantly 
improved efficiency, while maintaining high summarization fluency, coherence, and 
contextual retention [54]. 

• BART (Meta AI): A hybrid model combining BERT (for encoding) and GPT (for 
decoding), capable of both extractive and abstractive summarization. It delivers fluent 
outputs with strong contextual coherence [55]; 

• T5 / FLAN-T5 (Google): T5 (Text-To-Text Transfer Transformer) frames all NLP tasks 
(including summarization) as a text-to-text problem, offering flexibility and high-
quality outputs even for domain-specific texts [56]. FLAN-T5 is a fine-tuned variant that 
excels in instruction-based tasks, including summarization; 

• PEGASUS / PEGASUS-X (Google): Optimized specifically for summarization, 
PEGASUS is trained using a gap-sentence generation objective, making it particularly 
effective for long documents [57]. PEGASUS-X extends these capabilities to longer 
input sequences with improved scalability; 
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• DistilBART: A lighter version of BART, designed for faster execution and lower 
computational load, while retaining a significant portion of BART’s summarization 

quality [58]; 
• Longformer / LongformerEncoderDecoder (Allen AI): Designed for handling very long 

documents, Longformer uses sparse attention mechanisms to reduce computational 
complexity and memory usage [59]. 

These models can be integrated through APIs or hosted frameworks such as Hugging Face, 
depending on the desired balance between cost, performance, and scalability. Overall, content 
summarization through AI enables the platform to rapidly generate accurate and engaging 
learning material while reducing the manual effort required from Subject Matter Experts. 

The following table summarizes the performance characteristics of key models used for 
summarization, based on criteria such as output quality, execution time, resource needs, and 
integration complexity: 

Model Type Cost Quality 
output 

Execution 
time 

Integration 
complexity 

Scala-
bility 

GPT-4.1 Extractive/ 
Abstractive 

Per token  
(input: $2/1M 

tokens, 
cached input: 

$0.5/1M 
tokens, 

output: $8/1M 
tokens) [60] 

Excellent 
coherence 

and 
accuracy 

Medium-
slow (long 

texts) 

Medium (via 
OpenAI API)

  

High 
(cloud-
native) 

GPT-4.5 Extractive/ 
Abstractive 

Per token  
(input: $75/1M 

tokens, 
cached input: 

$37.5/1M 
tokens, 
output: 

$150/1M 
tokens) [60] 

Very high, 
human-like 
summaries 

Medium-
slow (long 

texts) 

Medium (via 
OpenAI API) 

High 
(cloud-
native) 

GPT-4o Extractive/ 
Abstractive 

Per token  
(input: 

$2.5/1M 
tokens, 

cached input: 
$1.25/1M 

tokens, 
output: 
$10/1M 

tokens) [60] 

Very high, 
human-like 
summaries 

Medium-
slow (long 

texts) 

Medium (via 
OpenAI API) 

High 
(cloud-
native) 

BART Extractive/ 
Abstractive 

Open source Good 
contextual 
summaries 

Medium Medium (via 
Hugging 

Face) 

Medium 

T5 Abstractive Open source Flexible 
and 

Medium-
slow 

Medium Medium 
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accurate 
summaries 

PEGASUS Abstractive Open source High 
accuracy 
for long 

texts 

Slow Medium Medium
-High 

DistilBART Extractive 
Abstractive 

Open source Fast and 
lightweight 

Fast Low (easy 
Hugging 

Face setup) 

Medium 

Longformer Extractive Open source Optimized 
for long 

input 
handling 

Medium High Medium 

Table 3.2: Comparison of AI models for content summarization 

In the proposed microlearning platform, summarization models are integrated as part of a larger 
content pipeline. The selected models must provide a balance between high-quality output and 
operational efficiency to support real-time, scalable learning content generation. For this 
reason, GPT-4.1 was chosen as the primary model for content summarization. GPT-4.1 
combines advanced natural language understanding with strong abstractive capabilities, 
producing highly fluent, coherent, and contextually accurate summaries across a wide range of 
business and technical domains. Compared to open-source alternatives, GPT-4.1 offers superior 
handling of long and complex documents, requires minimal fine-tuning, and integrates 
seamlessly via API. Despite its higher token-based cost, its reliability, multilingual support, and 
reduced need for pre- and post-processing make it ideal for production environments where 
consistency and quality are essential. 

3.3.2 Document parsing and preprocessing 
One of the fundamental steps in the automated content generation pipeline is document parsing 
and preprocessing, because it allows unstructured or semi-structured data to be transformed into 
structured formats, thus making them suitable for processing by AI models.  

To handle the variety of existing document formats (such as PDF, Word, Excel, PowerPoint, 
audio files, scanned images, or real-time speech), there are numerous tools and libraries 
available, both open-source and commercial. 

In the specific case of text documents, real-world applications use Python libraries for content 
extraction and preprocessing, depending on the source file type. For PDF files, for example, 
PyPDF2 is commonly used for simple parsing tasks, such as continuous text extraction or basic 
metadata retrieval [61]. When dealing with more complex PDFs (such as those containing 
multi-column layouts, tables, or embedded images), tools like pdfplumber and pdfminer.six are 
more effective, as they can handle complex document structures more accurately. pdfplumber 
allows for granular extraction of elements like bounding boxes, table structures, and line 
coordinates, which are essential when aiming to preserve the spatial integrity of educational 
materials (e.g., diagrams or tabular data) [62]. pdfminer, on the other hand, provides access to 
typographic features such as font weight, style (bold, italics), and character spacing, which can 
be useful for detecting emphasized text (e.g., definitions, titles, key terms) [63]. PyMuPDF 
(fitz) offers a superior handling of layout structure compared to simpler libraries like PyPDF2 
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and includes support for text and image extraction, layouts, annotations, and fonts, proving very 
useful in complex document pipelines [64].  

Instead, python-docx provides access to text contained in Word documents (.docx), as well as 
applied styles (headings, bold, italics), tables, embedded images, and other structural elements 
[65]. It is suitable for analyzing administrative, academic documents, or formatted reports. 

In the case of Excel files, two libraries are mainly used: openpyxl and pandas. openpyxl allows 
reading, writing, and editing Excel (.xlsx) files [66]. It allows the extraction of values from 
cells, formatting, formulas, styles, tables, and charts. It is useful in contexts where data are 
already structured in tabular form. pandas, although it is a data analysis library, offers a high-
level interface for reading Excel and CSV files [67]. It uses openpyxl (for .xlsx) or xlrd and 
xlsxwriter internally, simplifying the import and manipulation of numeric and textual datasets.  

Meanwhile, python-pptx provides tools for reading and manipulating PowerPoint presentations 
(.pptx) [68]. It allows the extraction of slide text, titles, text box content, images, and speaker's 
notes. It is very useful for generating or analyzing multimedia and educational content. 

Python's native functions (open, read, readlines) can be used to easily read .txt files [69]. This 
method is suitable for linear content without complex formatting, such as logs, scripts, and 
simple text documents. 

File format Library/tool Key features 

PDF pdfplumber, pdfminer.six, 
pyPDF2, PyMuPDF 

Extraction of text, tables, 
layout info, and metadata 

Word (.docx) python-docx Access to paragraphs, 
headings, and table content 

Excel (.xlsx) pandas, openpyxl Tabular data extraction and 
manipulation 

PowerPoint (.pptx) python-pptx Slide content extraction 
(titles, bullet points) 

Plain text (.txt) Native Python I/O Direct text file reading 
Table 3.3: Common Python libraries for document parsing by file type 

In cases where documents are scanned or presented as images, Optical Character Recognition 
(OCR) becomes essential. Tesseract, an open-source solution, is used for printed text and offers 
multilingual support [70], though it is less accurate with cursive handwriting. Google Cloud 
Vision API and Microsoft Azure Computer Vision provide more robust support for handwritten 
text, layout detection, and multilingual content [71], [72]. Amazon Textract is specialized in 
reading structured documents, such as forms or invoices, and can extract tables and key-value 
pairs [73]. The following table provides an overview of key OCR technologies used in 
production environments for digitizing printed or handwritten text. 

Tool/service Type Key features 

Tesseract OCR On-device Open-source, suitable for printed 
text 

Google Cloud Vision, Azure OCR, 
Amazon Textract 

Cloud-based High accuracy, support for complex 
layouts and handwriting 

recognition 
Table 3.4: OCR tools and services 
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When audio input needs to be transcribed into a textual format (e.g., for processing webinars, 
meetings, or podcasts), Speech-to-Text services are often integrated. These services differ by 
supported languages, real-time capability, and specialization. The table below outlines some of 
the most relevant options: 

Service Key features 

Google Cloud Speech-to-Text [74] High accuracy, keyword and punctuation support 
Microsoft Azure STT [75] Customizable model 
Amazon Transcribe [76] Optimized for call transcription 
IBM Watson STT [77] Domain-adaptive transcription 

Table 3.5: Speech-to-Text services 

For privacy-conscious scenarios or offline use, open-source alternatives such as Vosk and 
Mozilla DeepSpeech offer on-device speech recognition. Vosk is lightweight, compatible with 
platforms like Raspberry Pi, and supports multiple languages, making it suitable for real-time 
transcription in low-resource environments [78]. DeepSpeech, although more resource-
intensive, is based on neural networks and supports fine-tuning, making it flexible for custom 
applications [79].  

After text extraction, the preprocessing pipeline often includes language-specific NLP analysis, 
such as tokenization, sentence segmentation, named entity recognition, and keyword extraction. 
For this process, the platform may use Google Cloud Natural Language API or Azure Text 
Analytics, both of which provide real-time entity extraction, sentiment analysis, and 
classification capabilities in multiple languages [80], [81]. These tools help enrich the extracted 
data before it is passed to summarization models, allowing for more context-aware learning 
content. 

In summary, the document parsing and preprocessing phase is based on a broad set of libraries 
and APIs, designed to handle a wide range of heterogeneous input formats. It not only extracts 
the raw text but also preserves the structure, context, and semantic information of the content. 
This process builds a solid, high-quality foundation, essential for transforming corporate 
knowledge into interactive microlearning experiences powered by artificial intelligence. 

The technologies adopted, considered among the most advanced in the field of document 
parsing, are widely used in business contexts such as automatic transcription, compliance 
management, customer support, and the digitization of data from legacy archives. However, the 
current version of the proposed platform is specifically focused on structured, text-based file 
formats and does not include support for audio or image-based content at this stage. It employed 
PyMuPDF for accurate and layout-aware text extraction, especially effective with complex 
PDFs such as reports and corporate documents. python-docx was chosen to process structured 
Word documents, where preserving styles and headings was important. For Excel files, pandas 
was preferred due to its concise syntax and efficient handling of tabular data. Simple .txt files 
were processed using Python’s native I/O functions, given their linear structure. 

3.3.3 Online resource retrieval 
A key step in automatic content generation is efficient online research. Among the most 
innovative tools in this field is Tavily, a search engine designed for research purposes, which 
uses Artificial Intelligence to provide accurate, high-quality, and contextually relevant results 
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[82]. Unlike traditional search engines, Tavily is able to filter out unhelpful or noisy content, 
making it particularly suitable for academic or technical contexts. Among the other AI-based 
alternatives are Perplexity, which provides conversational answers with cited sources [83], or 
Exa.ai, which is geared towards intelligent semantic search.  

In the proposed project, Tavily was chosen for its ability to quickly retrieve high-quality 
information, a crucial aspect for ensuring the accuracy and relevance of the generated 
microlearning content. Moreover, the availability of a free plan for up to 1,000 requests made 
this tool perfectly compatible with the project's operational needs. 

Tool Key features Pricing 

Tavily Filters noise, delivers high-quality, 
contextually relevant results 

Free under 1,000 requests + 
$30/month (4,000 req/month) [84] 

Perplexity Provides answers with cited 
sources, conversational interface 

$6/month (1,000 req/month) [85] 

Exa.ai  Semantic search, real-time 
crawling 

$5/month (1,000 req/month) [86] 

Table 3.6: Search engine services 

3.3.4 Slide generation techniques and quiz generation 
In the proposed microlearning platform, automatic slide and quiz generation is based on the use 
of advanced linguistic models. To create slides, models such as GPT and BART are used to 
identify central concepts, suggest effective titles, and structure content into bullet points. This 
process is guided by heuristic rules or thematic segmentation techniques, while the visual aspect 
is managed through the use of predefined templates or multimodal models capable of 
integrating textual and visual elements to optimize layout and design. 

Quiz generation, on the other hand, is based on Question Generation (QG) models, often 
specialized through fine-tuning on educational datasets. These models allow for the production 
of a variety of questions, including multiple-choice, true/false, single-answer, or short-answer 
questions. Specific techniques are employed, such as constructing cloze-style questions, using 
named entity recognition to generate distractors, and applying principles derived from Bloom's 
Taxonomy to ensure an adequate level of cognitive depth. Integration of these techniques within 
e-learning platforms facilitates scalable personalized content creation and assessment. 

In the proposed microlearning application, OpenAI’s GPT4.1 was chosen to generate both slides 
and quizzes due to its versatility, fluency, and strong contextual understanding. 

3.3.5 Image generation 

Image generation is a rapidly advancing field within AI-based content creation, playing a 
crucial role in enhancing the visual dimension of automatically generated materials. Recent 
techniques leverage deep generative models such as Generative Adversarial Networks (GANs) 
[87], Variational Autoencoders (VAEs) [88], and, most notably, diffusion models [89]. These 
approaches can synthesize high-quality images from textual prompts or structured data. Among 
the latest breakthroughs, diffusion-based systems like OpenAI’s DALL·E 2 [90] and DALL·E 3 
[91] have demonstrated remarkable capabilities in generating detailed, semantically accurate 
images directly from natural language input. DALL·E 3, in particular, offers significant 
improvements in prompt understanding and image fidelity compared to earlier versions, making 
it especially suitable for academic and educational content generation [91]. In this thesis project, 
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DALL·E 3 was adopted for image generation tasks due to its ability to consistently produce 
visually coherent and contextually relevant images aligned with the instructional goals of the 
generated materials. Its integration ensured that the visual elements complemented the text 
content both aesthetically and semantically, contributing to a more engaging and informative 
learning experience. 

3.3.6 Multilingual support 
Multilingual support represents a fundamental component of modern AI-based content 
generation systems, especially in educational and corporate learning contexts. As organizations 
increasingly operate globally, it is essential that learning materials are accessible to users with 
different languages and cultures. This means not only making content understandable to 
speakers of other languages, regardless of their technical skill level, but also adapting it to be 
culturally appropriate and familiar to the target audience. Content must be adapted to idiomatic 
expressions, formatting conventions, and regional language nuances (ensuring that the material 
feels natural and relevant to the target audience rather than appearing as a word-for-word 
translation). 

To address these challenges. The most advanced solutions leverage Neural Machine Translation 
(NMT) systems, such as MarianMT [92], mBART [93], and multilingual versions of language 
models developed by OpenAI [94]. These models are designed to preserve the meaning, style, 
and narrative coherence of the original text, offering more natural and contextually appropriate 
translations. 

In the proposed project, OpenAI’s GPT-4.1 was adopted as the primary model for both content 
summarization and multilingual support. Its ability to interpret context and generate coherent 
texts makes it particularly suitable for translating training materials, where maintaining 
semantic clarity and consistency across language versions is crucial. By integrating GPT-4.1 
into the AI pipeline, the system was able to automatically create microlearning modules in 
multiple languages, eliminating the need for human intervention while simultaneously ensuring 
high quality and consistency in content delivery internationally. 

3.4 Technology stack selection 
To support the objectives of the AI-enhanced microlearning platform, a carefully designed 
technology stack was chosen, combining frontend agility, backend robustness, and cutting-edge 
AI capabilities. The overall architecture is designed to be modular, scalable, and easily 
maintainable. 

The internal data flow follows an event-driven linear model: 

1. The process begins when the user uploads a document or asks the chatbot to retrieve 
some sources about a specific topic; 

2. The backend handles file parsing and extracts the content; 
3. The processed data is then forwarded to the AI layer, where it is summarized, converted 

into slides, and enriched with automatically generated quizzes; 
4. The final content is returned to the frontend, where the user can view, edit, and 

customize it. 

A chatbot-based virtual assistant guides the interaction in real time, making this process 
seamless and accessible. Through structured prompts or conversational input, it guides the user 
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in the entire process, making managing the generated content simple and intuitive, even for 
those without specific technical skills. 

3.4.1 Backend architecture and technologies 
The backend architecture is built to support a wide set of advanced capabilities, ranging from 
AI-driven research and content analysis to secure, scalable file processing. By integrating 
FastAPI and CopilotKit with state-of-the-art LLMs and custom agents, the system provides a 
versatile and high-performance backend suitable for intelligent real-time applications. 

The modular and layered design ensures extensibility, while security, monitoring, and 
validation layers maintain system integrity under load. Built in Python 3.12 to leverage its 
mature ecosystem for document processing and AI integration, this architecture offers a 
powerful, flexible, and secure foundation for modern AI applications, whether processing 
documents, answering queries, or managing agent workflows. 

FastAPI framework 

The backend is built around FastAPI, a modern, high-performance web framework optimized 
for creating APIs with Python 3.7 and later versions. Its native support for asynchronous 
programming makes it especially well-suited for handling multiple concurrent I/O-bound tasks 
(such as managing API requests) efficiently and reliably. FastAPI also takes advantage of 
Python’s type hints to perform automatic request validation and data conversion, ensuring 
consistent and robust input handling throughout the application. This is complemented by 
seamless integration with Pydantic, which provides powerful models for data serialization, 
parsing, and validation, resulting in robust and clearly defined data structures. These features 
not only boost developer productivity by reducing boilerplate code but also enhance code 
quality and maintainability. As the primary entry point for client requests, FastAPI orchestrates 
interactions among the various backend modules. 

CopilotKit integration and configuration 

The project builds upon CopilotKit, an open-source framework available on GitHub, which 
served as a reliable starting point for integrating AI agents into the web application. CopilotKit 
offers high-level abstractions for managing conversational agents and connecting them with AI 
models. Among its features is the LangGraphAgent, which enables the design of modular, 
stateful agents capable of multi-step reasoning. The framework supports various Large 
Language Models, including OpenAI’s GPT-4 and Google GenAI; in this microlearning 
application, OpenAI’s GPT-4.1 is specifically used. Additionally, CopilotKit provides custom 
action handlers (flexible tools that agents can invoke to perform operations such as file analysis, 
resource management, search, and summarization), greatly enhancing the system’s interactivity 

and adaptability. 

The decision to use the CopilotKit project rather than starting from scratch was driven by both 
technical and strategic considerations. It provides a good foundation for managing 
conversational agents and orchestrating AI workflows. It allows to reduce development time 
and focus on implementing application-specific microlearning features. By adopting an 
existing, robust infrastructure, the project benefited from proven patterns and tools, avoiding 
the need to reinvent core functionalities. 
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Core endpoints 

The backend exposes a well-structured, RESTful API that acts as the main interface for client 
interactions. At its core is the /copilotkit endpoint, which processes requests directed to the AI 
agent and returns structured responses. To support system monitoring and reliability, a /health 
endpoint is provided, offering real-time information about backend availability and operational 
status. Furthermore, the CopilotKit framework includes custom action endpoints, enabling the 
triggering of specific functions (such as file uploads, data analysis, or other auxiliary processes) 
directly through the API. The custom actions are registered with the CopilotRuntime and can 
be called by the AI when needed, allowing it to perform specific tasks and interact with other 
services. 

Request Handling 

The system implements asynchronous processing through FastAPI and aiohttp, enabling non-
blocking operations for resource-intensive tasks. Concurrent execution is achieved using 
Python's asyncio, particularly for parallel downloads and searches. The application uses event 
streams for real-time updates and implements caching mechanisms for downloaded resources. 

Authentication 

The backend secures API access using a simple token-based authentication system. A valid 
token is retrieved from environment variables, with a fallback to a default hardcoded token if 
none is specified. Authentication is enforced through middleware that intercepts all incoming 
HTTP requests, except those targeting the root endpoint (/), which remains publicly accessible 
to serve the application. 

For all other requests, the middleware requires the token to be provided as a query parameter 
named ‘token’. It verifies that the token is present and matches the configured valid token. If 
the token is missing or incorrect, the middleware immediately returns a ‘403 Forbidden error’ 
response, effectively blocking unauthorized access. 

After successful validation, the middleware rewrites the request path by removing the token 
from the query parameters while preserving any other parameters. This ensures that 
downstream request handlers receive a clean URL without the authentication token exposed. 

On the frontend, the token is appended as a query parameter to all API calls directed to protected 
endpoints. This simple yet effective approach provides a basic security layer for the API, 
ensuring that only requests with a valid token are processed, while keeping the root endpoint 
open for public access. 

State management 

State management plays a fundamental role in ensuring consistency, traceability, and continuity 
in the execution of intelligent agents. To support these needs, the system incorporates a 
dedicated structure for representing the agent’s internal state, which serves as a structured 

memory. This mechanism enables the agent to: 

• Retain relevant information throughout its execution lifecycle; 
• Ensure data consistency across operations and interactions; 
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• Facilitate monitoring and debugging by maintaining a clear record of actions and 
decisions. 

The state model is designed to be flexible, operating in either ephemeral or persistent modes 
depending on the nature of the task. It also supports synchronized updates across asynchronous 
workflows, ensuring coherence even in complex execution scenarios. 

Specific implementation details (such as the structure of the state, the types of data it manages, 
and the mechanisms for updating and persisting information) are discussed in the dedicated 
implementation chapter. 

LangChain and LangGraph integration 

The backend integrates LangChain and LangGraph to deliver advanced AI-based capabilities. 
LangChain acts as a powerful abstraction layer for developing applications that leverage Large 
Language Models, offering essential tools for connecting with diverse model providers and 
toolchains. It also simplifies prompt management and enables the seamless chaining of context-
aware interactions. 

Building upon this foundation, LangGraph introduces a stateful, graph-based architecture 
designed to manage complex multi-agent workflows. In this architecture, each node represents 
a distinct task or tool, allowing for modular and composable agent behavior. LangGraph further 
supports agent memory and dynamic decision-making, enabling workflows to adapt flexibly 
based on intermediate outcomes. 

Together, LangChain and LangGraph form a cohesive framework capable of modeling and 
executing sophisticated AI applications in areas such as conversational agents, information 
retrieval, and content generation. 

Agent architecture 

The agent architecture is designed to be modular and extensible, which promotes 
maintainability and clarity throughout the system. At the heart of the system lies the research 
agent, an AI component tailored for tasks like document analysis, summarization, and multi-
tool reasoning. Custom actions are designed modularly, each featuring thorough input 
validation, error handling, and execution logic to ensure reliable operation. To maintain 
consistency, the agent’s responses are formatted in a standardized way, facilitating their use in 
frontend interfaces or chaining with other workflows. Furthermore, all tools and actions within 
the agent adhere to strict parameter validation schemas and incorporate fallback mechanisms to 
handle unexpected inputs. 

Graph architecture 

The system’s workflows are orchestrated using LangGraph’s StateGraph, a declarative 
framework in which nodes represent discrete functional units. Each node encapsulates a specific 
operation within the broader task execution pipeline. For instance, the Download Node is 
responsible for retrieving and preprocessing external resources, while the Chat Node interprets 
user inputs and coordinates Large Language Model responses. The Search Node interfaces with 
Tavily to conduct real-time web searches, injecting dynamic context into the agent’s reasoning. 
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Additionally, Add and Delete Nodes enable agents to modify their internal resource list, 
facilitating the dynamic management of their working context. 

Transitions between these nodes are governed by conditional logic and updates to the shared 
state, allowing workflows to adapt based on intermediate outcomes. This architecture supports 
modularity, extensibility, and precise control over agent behavior, making it well-suited for 
building complex and multi-stage AI applications. 

 

Figure 3.1: Graph architecture including the nodes and their interactions 

File conversion system 

The system provides robust support for handling various formats by using base64 encoding and 
decoding to allow file transmission over the API. Supported file types include PDFs, Word 
documents, Excel spreadsheets, and plain text files. Processing occurs either in-memory or 
through secure temporary storage, with regular cleanup tasks to ensure efficient resource 
management. To enhance robustness, fallback mechanisms are implemented to recover from 
corrupted or unsupported files. The following Python libraries have been selected and 
integrated into the backend system: 

File format Library used Reason for selection 

PDF pyMuPDF (fitz) Offers fast and reliable text extraction 
Word (.docx) python-docx Handles structured Word documents 

effectively 
Excel (.xlsx) pandas Robust handling of tabular data and 

spreadsheet structures 
Plain text (.txt) Native Python Direct reading 

Table 3.7: Tools adopted in the thesis project for file parsing 
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These choices reflect a balance between flexibility and practicality. They allow the system to 
process a wide variety of document types efficiently, while keeping the architecture simple and 
maintainable. Additionally, the selected libraries benefit from active community support and 
thorough documentation, ensuring long-term viability and ease of future enhancement. 

This multi-format document processing pipeline ensures that enterprise content can be ingested 
regardless of its original source structure, enabling seamless transition into AI-driven 
microlearning workflows. Future enhancements may include support for OCR and audio-based 
input, broadening the platform’s functionality and enabling it to process informal or legacy 

content more effectively. 

File download and processing 

The system includes robust capabilities for retrieving and preparing external content to support 
downstream tasks handled by the language model. When a resource is specified via URL, 
asynchronous downloading is performed using aiohttp, enabling efficient non-blocking 
retrieval (a key requirement for maintaining responsiveness in concurrent workflows). 

After download, raw HTML is converted to Markdown using the html2text library, improving 
readability and ensuring prompt compatibility with the language model by eliminating 
unnecessary visual styling. To further clean and structure the input, the system leverages 
BeautifulSoup for HTML parsing and content extraction, removing scripts, ads, and irrelevant 
formatting to produce structured text optimized for analysis. 

To improve performance and reduce redundant network calls, a caching layer is employed. This 
mechanism stores previously fetched content, minimizing latency and resource usage in 
repeated or batch operations. 

Performance optimizations 

Given the computational intensity and I/O demands of the application, optimizing performance 
is essential to ensure responsiveness and scalability. For this purpose, the system employs two 
key strategies. 

Primarily, asynchronous workflows are utilized extensively, enabling non-blocking execution 
of API calls, file I/O, and resource downloads. This approach significantly enhances throughput 
by allowing multiple operations to proceed concurrently without waiting for individual tasks to 
complete. 

Caching mechanisms play a crucial role in reducing load and improving response times. 
Downloaded files and resources are cached locally or in memory to avoid redundant retrievals. 
LangGraph agents benefit from graph state caching, reusing intermediate computational states 
to accelerate processing. 

Error management 

Error management is centralized, providing standardized behavior across all API endpoints. 
Errors are returned in structured JSON responses with clear status codes and descriptive 
messages. Domain-specific custom exceptions improve clarity and ease debugging, while 
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comprehensive logging captures full stack traces and relevant metadata. Additionally, fallback 
strategies are implemented to allow recovery from non-critical service failures. 

System monitoring 

To ensure high availability and system reliability, the system incorporates comprehensive 
health check mechanisms implemented via dedicated HTTP GET endpoints that serve as 
liveness and readiness probes, allowing orchestration tools and deployment platforms to assess 
service status in real time. The liveness probe verifies that the application is still running and 
not stuck in an unrecoverable state, enabling automated restarts when necessary to restore 
functionality. The readiness probe, on the other hand, checks whether the application is fully 
initialized and ready to serve traffic, preventing premature routing of requests during startup. 

By decoupling these checks, the system provides fine-grained control over lifecycle 
management, reducing downtime and ensuring that traffic is only directed to healthy instances. 

Debugging and profiling 

Comprehensive observability tools support efficient debugging and performance optimization. 
Each request and response is logged in detail, capturing information such as HTTP method, 
request path, user token, status code, and execution duration. A centralized logging 
infrastructure ensures that errors are recorded in a structured and searchable format, greatly 
simplifying the debugging process. Additionally, developers can inspect the internal state and 
transitions of LangGraph agents in real time using LangSmith, providing valuable insight into 
the system’s reasoning processes and helping in the development and tuning of AI workflows. 

3.4.2 AI models 

At the core of the system’s intelligence layer are integrations with OpenAI’s GPT models, 
which drive natural language understanding and generation, along with DALL·E 3, which 
enables image-based content creation. To further enrich the AI’s contextual awareness, the 
system also leverages Tavily for advanced web search capabilities. These models are accessed 
through the CopilotKit framework and play a central role in transforming static learning 
materials into dynamic conversational experiences. 

OpenAI integration 

The backend is tightly integrated with OpenAI's suite of models to enable advanced language 
and image capabilities. At the core of this integration is GPT-4.1, which is employed for a wide 
range of natural language understanding and generation tasks. GPT-4.1 supports key features 
such as conversational interfaces and document analysis, forming a foundational component of 
the system’s intelligence layer. 

Beyond text processing, the system integrates DALL·E 3 to generate high-quality images from 
textual prompts, enriching the content creation process through seamless multimodal 
interactions. 

The backend also leverages GPT-4.1’s advanced tool-calling capabilities, including parallel 
function execution. This allows the model to invoke multiple tools, such as web search or image 
generation, within a single conversational turn, enhancing both contextual depth and 
responsiveness. 
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To provide greater control over model behavior, configurable parameters, such as temperature 
and token limits, are exposed through the system’s settings, enabling fine-tuned customization 
of model outputs based on application requirements. 

Tavily search integration 

Tavily is integrated into the system as a high-performance web search API, enhancing the Large 
Language Model’s ability to access and incorporate real-time information. This enables 
dynamic context injection during conversations and task execution, ensuring that responses 
remain up-to-date and relevant. 

Unlike traditional keyword-based search engines, Tavily uses semantic relevance to return 
results that closely match the user's intent, allowing the system to extract high-quality content 
snippets tailored to the context.  

Within the LangChain and LangGraph architecture, Tavily is implemented as a tool node, 
making it selectively accessible to agents as needed during workflow execution. This modular 
integration ensures that agents can retrieve external information when necessary, improving 
both accuracy and adaptability in complex tasks. 

3.4.3 Frontend architecture and technologies 
The user interface is primarily developed with React, enhanced by CopilotKit components that 
enable AI-powered features such as contextual chat and intelligent suggestions. A highlight of 
the frontend implementation is the integration of a Svelte web component sourced from another 
internal company application. 

Overall, the frontend architecture of the application is designed to offer a modern, scalable, and 
maintainable solution, balancing performance, usability, and seamless AI integration. It 
leverages cutting-edge frameworks and libraries to ensure both development efficiency and a 
rich user experience. This chapter details the core technologies, design systems, state 
management strategies, and optimization techniques used to construct the user-facing side of 
the application. 

Core framework and technologies 

The frontend is built on Next.js 14, a React framework that supports both Server-Side Rendering 
(SSR) and Static Site Generation (SSG), offering flexible content delivery and improved load 
performance. The application leverages App Router, a modern Next.js routing architecture, 
which introduces advanced features such as nested layouts, server components, and co-located 
routing logic. 

The codebase is written in TypeScript, enabling static typing and type safety, which helps 
prevent runtime errors. For client-side interactivity, the "use client" directive is employed to 
clearly define which components should be rendered on the client, allowing for fine-grained 
control over hydration and performance optimization. 

Underlying the framework is React 18, which serves as the core UI library. The application 
uses React Hooks for managing state and effects, ensuring a clean and functional code structure. 
React Context is used for handling global or shared states, simplifying data flow and avoiding 
prop drilling. 



 

34 

UI components and design system 

The application’s interface is built using custom-built UI components based on Radix UI 
primitives, ensuring accessibility and composability at the core. 

Core elements, such as Dialogs, Cards, Buttons, Inputs, and Textareas, have been tailored to 
meet the unique functional and aesthetic requirements of the platform, with a focus on usability, 
visual clarity, and themability. 

Styling is managed with Tailwind CSS, a utility-first CSS framework that accelerates 
development by allowing components to be styled directly via composable class names. To 
maintain a cohesive visual identity, the application defines a custom color palette and a set of 
design tokens, supporting consistent theming across all components and layouts. 

Slide visualization 

In the project, a custom web component named <challenges-app> is used to encapsulate a self-
contained reusable part of the user interface dedicated to slide visualization. This cross-project 
integration demonstrates the system’s capability to reuse components across different projects 
within the same enterprise ecosystem. Leveraging an existing production-tested module helped 
accelerate development, ensure visual and functional consistency, and minimize maintenance 
overhead by centralizing component logic. This approach reflects a strategic emphasis on 
scalability, efficient resource utilization, and interoperability between internal tools and 
applications. 

The web component is built in Svelte and integrated into the React page, but it operates 
independently from the React application itself. When the React page is loaded, an external 
JavaScript file is executed. This file defines and registers the <challenges-app> custom 
element, making it available in the DOM. After a brief initialization period (to ensure the 
component is registered and ready), the component is dynamically inserted into the page using 
its custom HTML tag. The React app communicates with the web component by setting 
properties directly on the DOM element. The slides object is passed to the component in this 
way, allowing it to render the appropriate content. Once initialized, the component takes full 
responsibility for rendering and managing the slide presentation. It handles its own internal 
state and user interactions, without relying on React for rendering or lifecycle management. 

The primary function of the <challenges-app> component in this project is to present a 
sequence of slides to the user. By offloading this functionality to a dedicated web component, 
the slide viewer benefits from focused, encapsulated logic and a clean interface for integration. 

State management 

The application adopts a context-based state management approach, using React’s built-in 
Context API in combination with custom hooks to create a shared state container. This design 
enhances clarity and modularity by minimizing prop drilling and ensuring that all components 
can access and update the state they need. 

At the core of this system is Copilot Context, which manages application-level data in a single 
unified store. Components interact with the Context through a custom hook that abstracts 
internal state logic, providing a clean separation between state logic and UI rendering. 
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The design organizes the state into distinct domains, each serving a specific function: 

• Actions management: Handles user actions and updates related to frontend logic; 
• Context and document handling: Manages contextual information relevant to the user 

or session; 
• Chat and Co-Agent state: Supports conversational features, including instructions, 

suggestions, and dynamic agent behavior; 
• API configuration: Centralizes endpoint and authentication settings for external 

communication. 

This architecture enforces boundaries between concerns, making the application easier to 
understand, scale, and maintain. 

The state management system is guided by several core principles that align with React’s 

component-driven architecture. First, type safety is ensured through the use of TypeScript, 
allowing the entire application state to be strongly typed (this reduces runtime errors and 
improves developer tooling support). Second, encapsulation is achieved by restricting state 
access to well-defined interfaces, minimizing coupling between components, and promoting 
modularity. Lastly, the provider pattern is used to expose the context through a <CopilotKit> 
component, ensuring that any part of the application accessing shared state is properly scoped 
within the component tree. 

This context-based approach offers strong benefits in terms of scalability, as new state slices or 
features can be integrated with minimal disruption to existing code. It also enhances 
maintainability by enforcing a clear separation of logic and structure, while strong typing 
simplifies debugging and code navigation. Finally, the use of custom hooks and clearly defined 
interfaces improves the overall developer experience by streamlining interaction with shared 
state and encouraging code reuse. 

AI integration 

A defining feature of the frontend is its deep integration with AI capabilities, achieved through 
the comprehensive use of the CopilotKit library suite.  The system uses @copilotkit/react-core 
to manage AI interaction logic, @copilotkit/react-ui to provide interface components that 
expose AI functionalities to the user, and @copilotkit/runtime to handle communication with 
backend services and AI models. 

At the center of the user experience is a highly interactive chat interface that allows users to 
engage in real-time conversations with the AI agent. This interface supports sending and 
receiving messages, presenting contextual suggestions, and dynamically generating follow-up 
prompts (creating a fluid, responsive dialogue that adapts to user input). 

Advanced features such as file processing, image generation, and context-aware suggestions 
are embedded directly into the UI, enhancing the user's ability to interact with and benefit from 
AI assistance in practical, task-oriented workflows. 

File handling and resources 

To support diverse user workflows, the frontend incorporates comprehensive file management 
capabilities. Users can upload and edit a variety of file types (including PDF, DOCX, XLSX, 
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and TXT formats) directly within the application. Files are encoded and decoded using base64, 
allowing transmission in the browser environment. 

The user interface consists of intuitive components (such as resource cards, edit dialogs, and 
upload panels) that make file interaction simple and accessible. Progress indicators provide 
real-time feedback during lengthy operations, while rigorous file type validation ensures only 
supported formats are processed. The system is designed so that users can manage and edit their 
resources without interrupting the main application workflow. 

Performance optimizations 

Optimizing performance is a core concern throughout the frontend codebase. React’s built-in 
features, like useCallback, are widely adopted to memorize functions and computed values, 
reducing redundant calculations and re-renders. 

UI performance is further enhanced by leveraging React 18’s concurrent rendering, which 

improves responsiveness during intensive operations. Responsive design principles and 
feedback mechanisms, including loading states and progress indicators, contribute to a smooth 
and intuitive user experience. 

Development tools and configuration 

To ensure high code quality and support efficient development, the project adopts a robust set 
of configuration and tooling practices. The entire codebase is written in TypeScript, providing 
strong type safety and enhancing developer productivity through improved editor support and 
static analysis. ESLint is integrated to enforce a consistent code style and proactively catch 
potential issues during development. 

Styling is managed using a customized Tailwind CSS configuration, which includes project-
specific themes and plugins to maintain visual consistency and flexibility. Additionally, 
environment variables are securely handled across multiple deployment stages, enabling 
dynamic configuration of critical features such as API keys. 

The build and deployment pipeline takes full advantage of Next.js build optimizations, 
balancing SSR and SSG for performance. API routes are defined within the Next.js project 
structure, allowing seamless frontend-backend communication. 

User experience features 

User experience is a core focus of the frontend design. Interactivity is elevated through a real-
time chat interface, intuitive file management tools, and visual feedback mechanisms such as 
error messages and loading spinners. The latter not only informs users about the current system 
status but also serves a psychological purpose: by providing clear feedback during 
asynchronous operations, they reduce the perceived waiting time and make interactions feel 
faster and smoother. 

Accessibility features are seamlessly embedded within the component structure. Use of ARIA 
roles and labels, keyboard navigation, and screen reader compatibility ensures that the 
application is usable by a diverse range of users, including those relying on assistive 
technologies. 
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This architecture reflects a modern frontend implementation that harmoniously blends 
performance, accessibility, and AI functionality. By leveraging the capabilities of Next.js, React 
18, Tailwind CSS, and CopilotKit, it achieves a high level of interactivity and responsiveness 
while maintaining clean code organization and developer ergonomics. The result is a frontend 
that is not only technologically advanced but also user-centric. 

3.4.4 Cloud infrastructure and security layer 
The solution is built using a modern serverless approach on Amazon Web Services (AWS), 
leveraging the AWS Cloud Development Kit (CDK) to provision and manage infrastructure. The 
design prioritizes scalability, maintainability, and cost-effectiveness while following best 
practices in cloud-native development. 

Architectural overview 

The application follows a serverless-first architecture, built around two key computational 
components: 

• UI function: A frontend application implemented in Next.js, deployed as a Lambda 
function. 

• Agent function: A Python-based backend responsible for handling core logic and 
external API communication, deployed as a Lambda function. 

These components are independently deployed as AWS Lambda functions using container 
images, enabling flexible dependency management and consistent runtime environments. 

Region and identity management 

The application stack is deployed in the eu-west-1 (Ireland) AWS region and secured using AWS 
Single Sign-On (SSO) for administrator access.  

The complete infrastructure is defined and provisioned using AWS CDK. The main 
infrastructure stack is named CoAgentsDemoStack and is version-controlled within the source 
code repository. This approach ensures repeatability, traceability, and facilitates continuous 
integration and delivery (CI/CD). 

Key AWS services used 

The architecture is built upon a tightly integrated set of AWS services, each playing a critical 
role in supporting the application's functionality, scalability, and security. At its core, the system 
relies on AWS Lambda as the primary compute layer for both the frontend and backend 
components. This serverless execution model eliminates the need for managing infrastructure 
and enables automatic scaling based on demand, ensuring responsiveness and cost-efficiency. 

Both Lambda functions are deployed using container images hosted on Amazon Elastic 
Container Registry (ECR), which provides a secure, scalable, and highly available registry for 
Docker images. By packaging the application logic in containers, the development team gains 
full control over runtime dependencies, simplifies the build and deployment process, and 
ensures consistency across executions. This approach also enables the use of custom runtimes 
and native libraries, which are essential for the AI-powered backend services. In our case, the 
entire system is currently configured to operate within a single development environment, 
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eliminating the complexity of managing multiple deployment stages. However, the architecture 
is designed to be easily extendable to additional environments (such as test or production) if 
needed in the future. 

For secure handling of sensitive credentials (such as third-party API keys), AWS Secrets 
Manager is used. Secrets are stored centrally and accessed securely at runtime, avoiding 
hardcoding sensitive data into the codebase. In this case, both the OpenAI and the Tavily API 
keys are stored using the Secrets Manager. 

At the network edge, AWS CloudFront is used not only to accelerate content delivery globally 
but also to enhance security at the infrastructure level. A layer of Basic Authentication is 
configured at the CloudFront distribution, acting as a gatekeeper by requiring valid credentials 
before users can even reach the application entry point. This provides an additional barrier 
against unauthorized access and protects the system from casual probing and misuse. 

Amazon CloudWatch is used to monitor the application's behavior and operational health. 
Dedicated log groups are created for each Lambda function, enabling real-time monitoring and 
log retention (limited to one week). This observability layer allows developers to track 
performance metrics, detect anomalies, and debug issues efficiently.  

Infrastructure provisioning (that is, automatic creation and configuration of infrastructure 
resources) and lifecycle management are handled through AWS CloudFormation, using the 
AWS Cloud Development Kit (CDK). This Infrastructure as Code (IaC) approach ensures 
reproducibility and version control. With CDK, the infrastructure is defined in a programmatic 
and modular way, making it easy to update, audit, and replicate environments consistently 
across stages such as development, testing, and production. 

The architecture intentionally omits any storage system or database because the application is 
designed to operate in a stateless real-time manner. Each interaction is handled independently, 
with no need to retain data across sessions or requests. This approach simplifies the system 
considerably and aligns well with the serverless model provided by AWS Lambda, allowing it 
to scale automatically and remain highly cost-effective without the additional complexity of 
managing persistent state. 

Moreover, by not storing user data or logs long-term, the application inherently strengthens its 
security and privacy approach. It reduces the risk associated with data breaches and makes it 
easier to comply with data protection regulations, since there's simply less data to secure or 
audit. When data is needed during execution (such as for generating responses or processing 
input), it can be fetched on demand from external APIs, removing the necessity for a local 
database. 

This design also helps minimize operational overhead. There's no need to manage database 
configurations, backups, or schema migrations, which makes the system easier to maintain and 
deploy. The focus remains on delivering responsive, AI-assisted interactions in real time, 
without the burden of persisting or managing state. If future requirements change, a storage 
layer can be added modularly, but for now, the lean and stateless design serves the application's 
goals perfectly. 

The following diagram provides a visual overview of the system architecture described above. 
It illustrates how the various AWS services are interconnected to support the application's core 
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functionality, security, scalability, and observability in a serverless and containerized 
environment. 

 
Figure 3.2: High-level architecture of the AI-assisted serverless application deployed on AWS 

Although not shown in the accompanying figure, the application leverages AWS Identity and 
Access Management (IAM) to enforce secure and granular control over resource access. IAM 
policies and roles are carefully defined to ensure that each component has only the permissions 
it requires, adhering to the principle of least privilege and reducing the risk of misconfiguration. 
As it is a foundational component of any AWS architecture, its presence is considered implicit 
in the overall architecture. 

Agent Function 

The Agent Function, implemented in Python 3.12, operates as the backend logic layer and is 
deployed as a containerized AWS Lambda Function with the following characteristics: 

Attribute Details 

Memory 1024 MB 
Timeout 600 s 
Runtime Python 3.12 

Environment variables OPENAI_API_KEY 
TAVILY_API_KEY 

LANGCHAIN_API_KEY 
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LANGCHAIN_ENDPOINT 
LANGCHAIN_PROJECT 

LANGCHAIN_TRACING_V2 
AWS_LWA_INVOKE_MODE 

PORT: 8000 
Table 3.8: Agent Function characteristics 

The function exposes a Lambda Function URL with CORS enabled and without IAM 
authentication. While the Lambda URL itself does not require IAM authentication, the backend 
is protected by a token-based middleware that validates each request. This architecture allows 
direct communication between the UI component and the backend while maintaining security 
through token validation, and still minimizing latency in inter-service communication. 

Advantages of using AWS Lambda over Amazon EC2 

The choice to adopt AWS Lambda instead of traditional Amazon EC2 instances was guided by 
a clear set of architectural, operational, and strategic benefits that align closely with the goals 
of this project. Lambda's serverless model offers a level of agility, scalability, and efficiency 
that is particularly well-suited for modern cloud-native applications, including AI-driven 
workflows and interactive learning platforms. 

One of AWS Lambda’s most interesting advantages is its ability to scale automatically and 
instantly with incoming traffic. Each invocation runs independently, enabling the system to 
scale from zero to thousands of concurrent executions without manual intervention. In contrast, 
EC2 requires predefined scaling policies and infrastructure setup, which introduces latency and 
operational complexity during traffic spikes. 

Lambda's pay-per-use billing model charges only for the exact execution time and number of 
invocations, making it highly cost-effective for workloads with variable or unpredictable usage 
(such as demo environments, sporadic user activity, or bursty AI queries). EC2 may be more 
economical for consistently high-throughput workloads, but it typically incurs continuous costs 
regardless of actual usage. 

By abstracting away server management, Lambda eliminates the need to provision, patch, 
monitor infrastructure, or scale virtual machines, allowing developers to focus purely on 
application logic. In contrast, EC2 requires full lifecycle management, including OS 
maintenance and performance monitoring, increasing the operational overhead. 

Lambda functions run in isolated execution environments managed by AWS, with automatic 
handling of security updates and operating system patching. This built-in security model 
reduces the attack surface and simplifies compliance. EC2, in comparison, places more 
responsibility on the user to secure the operating system, configure firewalls, and manage 
updates. 

Using Lambda with containerized deployment significantly shortens release cycles. Functions 
can be deployed quickly with minimal setup, while infrastructure changes are easily 
manageable through version-controlled configurations using tools like AWS CDK. This 
approach supports faster iterations and agile delivery. 
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Lambda integrates seamlessly with a wide range of AWS services, including CloudWatch for 
monitoring and logging, and Secrets Manager for secure configuration management. These 
integrations reduce boilerplate code and enhance the reliability and observability of the 
application. 

In summary, AWS Lambda offers a robust, scalable, and cost-effective foundation for the 
system's architecture. Its serverless nature supports rapid development cycles, simplifies 
infrastructure management, and enhances security strategy (all essential elements for building 
and maintaining an efficient AI-assisted learning application). 

Requirement Lambda + containers EC2 instances 

Compute granularity Per request Per VM instance 
Scaling Instant and automatic Manual or slower Auto Scaling 

Cost model Millisecond billing Hourly or longer-term 
Operational overhead Minimal High (OS, patching, infrastructure) 
Custom environment 

control 
Container-level OS-level full control 

Task suitability Event-driven, short Long-running, stateful tasks 
Table 3.9: Comparison between AWS Lambda and EC2 

UI Function 

The frontend is built with Next.js and deployed as a Lambda Function using a Node.js 20 
container image. It is configured with Lambda streaming features to support real-time 
interactivity. 

Attribute Details 

Memory 4096 MB 
Timeout 600 s 
Runtime Node.js 20 

Environment variables REMOTE_ACTION_URL (points to the 
Agent Function URL) 

SECRET_NAME (Secrets Manager 
reference) 

AWS_LWA_INVOKE_MODE 
PORT: 3000 

Table 3.10: UI Function characteristics 

Similar to the Agent Function, it exposes a Function URL with CORS enabled and without IAM 
authentication, optimized for seamless direct access from browsers. 

Advantages of using AWS Lambda over AWS Amplify 

While AWS Amplify is a popular choice for deploying frontend applications, we opted to use 
AWS Lambda for the following reasons: 

• Custom runtime and streaming support: The frontend requires features like Lambda 
streaming for real-time interactivity, which are not natively supported by Amplify 
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hosting. Deploying it as a Lambda function allows to use a custom Node.js 20 runtime 
and advanced features such as HTTP response streaming; 

• Containerized deployment: The frontend is packaged as a Docker container, offering 
full control over the runtime environment. Amplify supports static site hosting but does 
not support container-based deployments. 

• Unified serverless architecture: Using Lambda for both the frontend and backend results 
in a uniform serverless infrastructure. This simplifies configuration, deployment, and 
scaling across the stack; 

• Greater flexibility: Lambda provides more control over request handling, environment 
configuration, and integration with services like Secrets Manager (capabilities that are 
limited or require workarounds in Amplify); 

• Minimal dependencies: Unlike Amplify, which introduces an opinionated framework 
and CLI, Lambda allows for a leaner, more controlled deployment process using 
standard AWS tools. 

In summary, Lambda offered the flexibility, advanced features, and runtime control required 
by this application (capabilities that go beyond what Amplify was designed to offer). 

Containerization and Lambda adapter 

To bridge the gap between traditional web server patterns and AWS Lambda’s event-driven 
model, both Lambda functions are packaged as container images that include the AWS Lambda 
Web Adapter. In our case, the application runs on Node.js, allowing us to use familiar 
frameworks and HTTP request handling patterns. 

Using the adapter, each container can listen on a defined port (e.g., 3000), handling requests as 
if it were a conventional web server. This avoids the need to rearchitect existing application 
logic for Lambda’s native event structure. As a result, standard web server code, middleware, 
and routing logic can be reused without significant changes. 

Ultimately, the Lambda Web Adapter allows containerized functions to behave like persistent 
web services while benefiting from Lambda’s elasticity, low overhead, and simplified 
operations. It enables a seamless serverless deployment path without sacrificing development 
familiarity or application consistency. 

Conclusion 

In conclusion, this architecture is intentionally designed to support growth, ease of 
maintenance, and efficient development workflows. By centering the system on a serverless 
model, leveraging containerized deployments through AWS Lambda, and integrating with 
managed AWS services, the application achieves a balance of flexibility and security. These 
design decisions reduce the need for manual infrastructure management, allowing the team to 
focus on evolving the product quickly and reliably as requirements change. 
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Chapter 4 

4. PLATFORM IMPLEMENTATION 

AND FEATURES 
This chapter presents the technical foundation and practical implementation of the AI-driven 
platform developed during this thesis project. It focuses on the core functionalities, architectural 
decisions, and software components that enable the system to operate effectively as a 
microlearning content generator and editor. Built with a strong emphasis on modularity, 
scalability, and user-focused design, the platform integrates modern development frameworks 
and cutting-edge AI technologies. 

The discussion opens with a detailed look at the system's internal state management approach. 
It explains how the platform preserves context and logical consistency throughout user 
interactions by employing custom classes, React Context Providers, and custom hooks.  

The chapter then shifts focus to the resource management system, highlighting how the 
application handles content uploads across multiple file types. 

Subsequently, the chapter delves into the online resource retrieval mechanisms that integrate 
external APIs for automated content sourcing, followed by a detailed description of the 
automated generation of learning modules, which are structured as slide-based presentations 
enhanced by AI-generated quizzes and images. 

Next, it describes the editing and customization interface, which enables users to personalize 
slides and questions through an intuitive AI-assisted editor. This is complemented by the 
integration of a context-aware chatbot, designed to assist users throughout the process with 
intelligent suggestions and conversational support. 

The chapter concludes with a discussion on multilingual capabilities, ensuring accessibility 
across diverse user bases, and outlines the development tools and frameworks employed to 
build, test, and deploy the system. Each section demonstrates how the platform harmoniously 
combines frontend technologies, backend processing, and advanced AI to deliver a seamless 
and intelligent user experience. 

4.1 State management 
A custom-designed AgentState class serves as the foundation for structured and persistent 
memory within the system’s AI agents. This class plays a critical role in enabling the agents to 
maintain coherence throughout their execution lifecycle. It is responsible for tracking all 
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relevant information during execution, ensuring data consistency across operations, and 
enabling the saving and restoration of the agent’s state when needed. Additionally, it facilitates 

debugging and monitoring, making it easier to trace and understand the agent’s behavior in 

complex workflows. The AgentState class encapsulates several key components: 

• A Report object that contains a list of Slides. Each slide can include a title, an image 
description, a textual description, the type of question (RADIOBUTTON or 
MULTICHECKBOX), a label, and a list of possible answers; 

• A list of Resources representing the resources used by the agent. Each resource can be 
a URL, a PDF, a Word document (DOCX), an Excel spreadsheet (XLSX), or a text file 
(TXT). Each resource includes metadata such as ID, name, type, title, description, and 
content; 

• A Log list that records actions performed by the agent, with a message and completion 
status, useful for tracking and debugging the agent’s activity; 

• The name of the AI model used (model). 

The system’s state management architecture is designed to accommodate a wide range of task 
complexities by supporting both ephemeral and persistent memory modes. This dual-mode 
capability allows agents to flexibly handle anything from lightweight interactions to complex 
multi-step operations. To maintain coherence across concurrent workflows, the architecture 
enables synchronized updates even within asynchronous execution environments. 

To ensure scalability and modularity, state is organized using a layered strategy. At the core of 
this approach is a combination of React Context Providers and custom hooks, which together 
facilitate the separation of global and domain-specific logic while preserving accessibility and 
performance throughout the application. 

4.1.1 React Context Providers 
The application relies heavily on React’s Context API to manage shared state in a modular and 
isolated way. Several dedicated context providers are used to encapsulate specific areas of 
functionality. At the core is the CopilotContext, which serves as the primary source of global 
application state. It coordinates key aspects such as interaction with the AI assistant, function 
invocation logic, agent state and lifecycle management, API configuration, session tracking, 
chat prompts and suggestions, as well as UI indicators like loading states. 

Complementing this is the CopilotMessagesContext, which is responsible for maintaining the 
chat message stream. It supports frequent real-time updates as users engage with the assistant, 
ensuring a responsive and dynamic experience. 

Although the system architecture supports dynamic model selection, in this project, only one 
model is actively used: OpenAI’s GPT-4.1. As such, the ModelSelectorContext is present for 
architectural completeness but operates in a fixed configuration, simplifying model 
management by consistently routing requests through a single model. 

4.1.2 Custom hooks for stateful logic 
To encapsulate complex and reusable logic, the system uses a set of custom React hooks: 
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• useCoAgent: Manages the lifecycle of an AI agent’s state, including initialization, 

updates, and thread handling. It abstracts away the underlying mechanisms for 
interacting with AgentState; 

• useCopilotChat: Encapsulates the chat logic and provides handlers for user interaction, 
message flow, and assistant responses; 

• useCopilotChatSuggestions: Dynamically generates real-time suggestions and prompt 
completions from the AI, enhancing the conversational experience. 

By abstracting logic into reusable hooks, the system minimizes code duplication, promotes 
consistency across components, and streamlines the development of AI-driven interfaces. 

4.1.3 State transitions and side effect handling 
State transitions within the application are primarily managed through dedicated functions 
provided by custom hooks and context objects. These include: 

• setState for performing localized updates to the agent’s internal state; 
• Context methods such as setAction, removeAction, or setCoAgentStateRender for 

orchestrating more complex interactions between the agent and the UI. 

To handle side effects and respond to changes in application state, the system relies on React’s 

useEffect hook. This ensures that updates to both agent logic and user interface components are 
executed only when relevant dependencies change, thereby preserving performance and 
avoiding unnecessary re-renders. 

4.1.4 Benefits of the architecture 
The chosen state management strategy delivers multiple benefits across both developer 
experience and application performance: 

• Separation of concerns: Each part of the application state is managed in isolation, 
improving modularity and reducing coupling; 

• Targeted updates: Context providers and custom hooks enable fine-grained control over 
state changes, preventing unnecessary re-renders; 

• Optimized performance: Memoization and selective rendering strategies help maintain 
responsiveness even under heavy interaction; 

• Maintainability: A modular, abstracted architecture simplifies debugging and future 
enhancements; 

• Scalability: The system can accommodate more complex workflows and growing data 
requirements without compromising reliability. 

Together, these design principles ensure that agent memory, contextual logic, and user-facing 
behavior are managed cohesively, making the platform both robust and adaptable. 

4.2 Content upload and management 
The content upload and management system is built to flexibly handle both local file uploads 
and remote resource retrieval. It offers an intuitive interface that enables users to seamlessly 
upload, edit, and manage a variety of content types. By enforcing consistent formatting and 
metadata standards, this system ensures that all incoming data is properly normalized. Its design 
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is critical to maintaining data integrity across the entire pipeline, enabling smooth integration 
with the platform’s intelligent operations. 

4.2.1 Supported resource types 
The application categorizes content into five distinct resource types, as defined in the 
ResourceType enumeration: PDF, URL, DOCX, XLSX, and TXT. This classification enables 
the system to process a diverse range of formats, including web-based content, text documents, 
and spreadsheets, ensuring broad compatibility with various user inputs. 

4.2.2 Resource structure and metadata 
Each resource is represented by a well-defined structure that includes a unique identifier (id), 
the original file or URL name (name), the resource type (type), a user-defined title and 
description, and an optional content field. The content field stores the base64-encoded version 
of the file, which is used during transmission and backend processing. This consistent resource 
schema ensures smooth integration across the frontend and backend modules. 

4.2.3 Upload workflow 
Content can be added to the system through two primary methods: uploading local files or 
submitting URLs. 

• File upload: Users can upload files in PDF, DOCX, XLSX, or TXT formats, with a strict 
size limit of 420 KB. Upon selection, files are immediately read and encoded to base64 
via the FileReader API. The application determines the file type based on the file 
extension and assigns the corresponding ResourceType. Both the original file name and 
the encoded content are retained for downstream processing; 

• URL input: Alternatively, users may submit web-based resources by entering a valid 
URL, accompanied by a title and an optional description. The system fetches the 
webpage asynchronously using aiohttp, parses the HTML with BeautifulSoup to extract 
relevant text, and converts it into a clean Markdown format via html2text. This ensures 
consistent formatting and structure, aligning web-based content with the treatment of 
uploaded files. 

4.2.4 Resource management features 
The resource management interface provides comprehensive capabilities for adding, editing, 
and deleting resources. To prevent duplicates, the system checks resource filenames before 
creation. Each resource is assigned a Universally Unique Identifier (UUID) at the time of 
creation to ensure distinct identification. Users interact with resources through the 
AddResourceDialog and EditResourceDialog components, which facilitate input, modification, 
and removal of both metadata and content. All changes are reflected immediately in the 
application state. 

Resource deletion is performed using the resource’s unique ID, guaranteeing accuracy and 

minimizing the risk of unintended data loss. The resource list updates reactively, delivering 
real-time visual feedback to users. 

4.2.5 User interface and experience 
The user interface presents a resource list and provides intuitive controls for adding, editing, or 
deleting items. Uploaded file names are clearly displayed, allowing users to easily remove files 
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with a single click. Resource addition and editing are managed through modal dialogs, creating 
a clean and focused interaction flow. The system provides real-time feedback during file 
selection and validation to enhance usability and reduce common mistakes. 

 
Figure 4.1: Interface for viewing, adding, editing, and deleting resources within the web application 

  
Figure 4.2: Example of a user session interacting with the application to add new resources 

 

 

Figure 4.3: Example of a user session interacting with the application to edit an already existing resource 
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4.2.6 File management logic 
The system enforces strict validation to accept only supported file types. Once a file is selected, 
it is automatically encoded into base64 to enable the transmission between client and server, as 
well as backend processing. On the backend, temporary file storage is used for decoding and 
converting files into readable formats. Text extraction is handled using specialized libraries: 
PyMuPDF for PDFs, python-docx for Word documents, and pandas for Excel spreadsheets, 
while TXT files are decoded directly. These temporary files facilitate the transformation of 
content into a standardized textual format suitable for further processing. Additional utilities 
support file validation, type detection, and format conversion. 

4.2.7 Security and validation mechanisms 
To ensure robustness and prevent misuse, several layers of validation are in place: 

• File type verification ensures that only .pdf, .docx, .xlsx, and .txt files are accepted; 
• Required fields such as title and name are validated before submission; 
• Errors encountered during upload or content extraction are caught and communicated 

to the user. 

These validations are applied on both the client and server sides to ensure data integrity and 
enhance application security. 

4.2.8 UI state management 
Managing user interface state is essential for delivering a smooth and intuitive experience. The 
application extensively uses React state hooks to control dialog visibility, file handling, and 
form inputs. Key elements include: 

• Dialog states: Modal visibility for adding and editing resources is governed by boolean 
flags such as isAddResourceOpen and isEditResourceOpen, enabling clear and 
controlled user navigation; 

• File upload states: Variables like uploadedFileName and isFileNameSet monitor the file 
upload process, influencing UI behavior like displaying the filename, toggling save 
buttons, and permitting file removal; 

• Resource form states: Separate state objects for newResource and editResource hold the 
input data during creation or modification. The originalUrl is preserved during edits to 
prevent accidental changes, allowing for intentional updates and easy rollback when 
canceled. 

Transitions between states are managed via dedicated functions responsible for initializing 
dialog contents, resetting states on closure, and synchronizing the resource list after any change. 
This multi-layered state management approach ensures a consistent, reliable, and user-friendly 
interface. 

4.2.9 Utility functions 
Utility functions play a vital role in promoting modularity and code reuse across the application. 
They are grouped into several key categories: 

• ID generation and normalization: Functions like generateId() create unique identifiers 
for resources, while normalizeResources() ensures all resources adhere to a consistent 
format, simplifying both UI rendering and backend processing; 
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• File management utilities: Helpers such as getFileType() and formatFileSize() extract 
metadata and present readable information, helping validation and improving the 
display of file details in the interface; 

• Error handling: The custom ResourceError class categorizes different error types, and 
handleResourceError() centralizes error management. This approach enhances 
maintainability and guarantees uniform user feedback across the system; 

• Validation functions: Methods including isValidFileType(), isValidFileSize(), and 
validateFile() enforce upload constraints, preventing unsupported files from being 
processed and providing immediate alerts to users when issues arise. 

Together, UI state and utility functions form the backbone of the application’s robustness. 

While UI state ensures responsiveness and clarity for the end user, utility functions abstract 
away common logic, reduce duplication, and enhance maintainability. 

4.2.10 Backend integration 
Uploaded files are sent to the backend in base64 format. The backend decodes these files, 
temporarily stores them, and processes them using the appropriate parser for their type. The 
temporary file infrastructure enables isolation and cleanup, reducing security risks and resource 
usage. 

Caching mechanisms are in place for downloaded URLs, ensuring that repeated processing is 
avoided. This improves performance and ensures consistent content availability for AI 
pipelines. 

4.3 Online resource retrieval 
To support automated content generation, the system includes an advanced mechanism for 
searching and managing online resources. At the core of the online search capability lies the 
integration with the Tavily API, a service designed for fast and accurate web querying. The 
application establishes a Tavily client using an API key obtained securely from environment 
variables, avoiding the exposure of sensitive information in the codebase. This setup enables 
the application to execute external searches programmatically and retrieve structured results. 

The primary logic for performing searches is encapsulated in a function called Search Node. 
This function is responsible for orchestrating the full search process. Given a list of search 
queries, it initiates logging for tracking progress, sends each query to Tavily, and handles the 
response by extracting relevant data and updating the internal application state. Once complete, 
it logs the conclusion of the operation. 

To support automated content generation, the system incorporates a sophisticated mechanism 
for retrieving and managing web-based information. Upon executing a search query, the system 
identifies and selects the top three to five most relevant results based on Tavily’s ranking 

algorithm. Each result is enriched with metadata, including the source URL, title, brief 
description, and content type (URL). When available, the actual content of the resource is also 
extracted and stored. The search process itself is designed to be asynchronous and non-
blocking. Once initiated, each query is dispatched to Tavily, and its results are handled 
independently. This architecture allows the system to remain responsive and scalable, 
especially when dealing with multiple concurrent queries. 
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The application represents each result as a structured resource object that encapsulates essential 
metadata and full textual content. The HTML content is fetched and converted into a readable 
format. The system dynamically tracks the state of each resource, including its availability, 
download status, processing logs, and caching metadata. This dynamic management ensures 
consistency and performance during intensive or large-scale operations. 

The user interface plays a central role in how resources are presented and managed. Retrieved 
items are displayed as interactive cards containing the title, description, URL (complete with 
favicon), and resource type. Users can remove individual resources, edit details, or upload 
additional documents to expand the dataset. This visual approach simplifies user interaction 
and provides immediate feedback, which is essential for applications involving research, 
synthesis, or assisted writing. 

To ensure robustness, the system implements comprehensive error-handling mechanisms. It 
detects and manages various failure scenarios, including download interruptions, invalid URLs, 
unsupported file formats, content decoding errors, and response timeouts. In all such cases, the 
affected resources are excluded from further processing, while unaffected operations continue 
without interruption. This fault-tolerant design is essential for maintaining stability in real-
world network and data conditions. 

Performance is further enhanced by a local caching mechanism that stores previously retrieved 
and processed resources. This reduces the number of redundant calls to the Tavily API and 
minimizes loading times when frequently used content is accessed. Caching helps to improve 
responsiveness and efficiency overall, especially when the system is deployed in environments 
with limited connectivity or high resource turnover. 

4.4 Automated generation of learning modules 
The automated generation of instructional modules represents a significant advancement in the 
field of educational technology, particularly in the area of microlearning. This system is 
designed to autonomously create interactive and pedagogically effective modules, structured as 
slide-based presentations enriched with quizzes and visual content. These learning modules are 
designed to support rapid knowledge acquisition and are ideal for a variety of educational 
contexts, from corporate training to self-paced academic study. 

At the heart of the system lies a clear and coherent structure. Each module consists of a sequence 
of informative slides, seamlessly integrated with interactive quizzes that assess the learner’s 

understanding of the presented material. The content is supported visually by automatically 
generated images tailored to the theme of each slide. In addition, the modules are equipped with 
intuitive navigation tools that enhance user engagement and ensure a smooth progression 
through the learning path. 

The generation process begins with the collection of educational resources. The system is 
capable of ingesting various formats provided by the user, including web links, PDF documents, 
Word files, Excel spreadsheets, and plain text. Furthermore, if needed, the system can 
autonomously search for relevant materials online, selecting from a wide range of languages to 
ensure accessibility for a global audience. 

Once the resources are collected and processed, the content of the documents is converted into 
microlearning objects. These objects are then used to build modular and targeted instructional 
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elements. Advanced AI models are used to facilitate this transformation. In particular, AI plays 
a central role in generating the core learning components: 

• Slide generation is conducted using Large Language Models that interpret and 
summarize the source material into structured slide components formatted as JSON 
objects. Each slide typically includes a title, a brief explanatory text, and an image 
prompt derived from the content. Images are then automatically generated using the 
DALL·E model, based on these prompts. The layout and language style of each slide are 
dynamically adjusted according to pedagogical heuristics to enhance clarity and 
retention. 

• Quiz creation is also handled through language models, which are prompted to identify 
key concepts within the source material. These concepts are then rephrased into well-
structured questions, with the generation of plausible distractors to support both single-
choice and multiple-choice formats. The system allows for the configuration of 
difficulty levels and the adjustment of topic coverage, making the quizzes adaptable to 
different learning goals and audiences. 

The introductory slide of each module serves a pivotal role, containing the general title of the 
module, a generated image, and a concise summary limited to 15 to 25 words. Subsequent slides 
are dynamically composed, with flexible formats that may include a combination of titles, 
images, and descriptions. Some slides may focus solely on visual content, while others pair 
imagery with explanatory text. The closing slide mirrors the structure of the opening slide, 
summarizing the module with a concluding title, image, and brief descriptive commentary. The 
system employs a variety of templates to structure the slides. 

Each slide is meticulously crafted to ensure clarity and coherence. Titles are designed to be 
brief and impactful, guiding the learner through the core themes. Descriptions are typically 
composed of 60 to 120 words, written in a clear and accessible style. To aid readability and 
highlight key concepts, the content is formatted using HTML tags: bold text marks important 
keywords, while italicized words add emphasis. The images accompanying each slide are not 
stock visuals but are generated based on contextually relevant prompts, ensuring consistency 
with the narrative and educational purpose of the module.  

To evaluate comprehension, the system integrates interactive quizzes. These may be single-
choice questions (radiobuttons) or multiple-choice questions (multicheckboxes). Each quiz is 
designed with pedagogical rigor, including features such as a passing score threshold set at 
80%, immediate feedback on answers, and the ability to retry the quiz. Importantly, module 
progression is often gated, preventing learners from advancing until they have successfully 
completed the required assessments. 

User interactivity is further enhanced through navigational controls that allow learners to move 
forward or backward within the module, jump to the beginning or end, retry quizzes, or revisit 
previously seen content. A visual progress indicator helps maintain motivation and orientation 
throughout the learning experience. 

The system supports high levels of personalization. It accommodates multiple languages, 
ensuring a broad reach. The visual identity of generated images is consistent, maintaining 
aesthetic and cognitive harmony.  
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The final output of the system is a structured package containing a unique module ID, the 
module’s title and description, a complete list of the resources used, metadata relevant to 
microlearning, and a detailed breakdown of the templates applied during generation. 

Through this integrated and automated process, the system empowers educators, trainers, and 
content creators to generate engaging and interactive learning modules rapidly. By blending 
rich content, dynamic quizzes, and intelligent design supported by state-of-the-art AI, it ensures 
a user-centered learning experience that is both effective and intuitive. 

4.5 Editing and customization of content 
The system described herein is a comprehensive slide editor designed to enable AI-assisted 
customization, providing users with an intuitive and efficient workflow to create presentations 
that are not only content-rich but also dynamically engaging. 

A key strength of this system lies in its set of AI-powered tools that substantially simplify the 
content creation process. Users can use Artificial Intelligence to automatically generate 
complete slides from given topics or outlines, receive smart suggestions for content 
improvements, and obtain tailored recommendations for relevant images. These features greatly 
speed up the presentation building process and prove especially beneficial for users who may 
lack experience in visual design or narrative structuring. 

The editing interface is deliberately designed to maximize usability and clarity. At its core, a 
central panel prominently displays the current slide, while navigation controls are positioned 
directly below the slide. A chatbot panel is located beside the workspace, enabling real-time 
interaction and assistance. This layout ensures users receive instant visual feedback during AI 
interactions, as any adjustments are reflected immediately on the slide panel. Furthermore, the 
interface grants quick access to all major functions, fostering a productive and user-friendly 
editing environment. Underpinning this live-update system is a robust state management 
architecture that consistently tracks all slide data and metadata, maintaining reliability and 
coherence throughout the entire editing session. 

Within this environment, users have extensive control over their presentations. They can 
seamlessly add new slides or remove unwanted ones, as well as merge or split existing slides 
according to their needs. Navigating between slides is made easy with straightforward forward 
and backward controls. Beyond basic slide management, users can deeply customize individual 
slides by editing titles, descriptions, and images, adapting the structure of the text through 
different formats such as bullet points or highlighted keywords to better suit their narrative 
goals. The system also supports interactive content creation, allowing users to add, modify, or 
delete questions and answers, and choose among various types of quizzes (radiobuttons or 
multicheckboxes) to enrich the presentation. 

In addition to content editing, users can modify attached files, providing further flexibility in 
managing supplementary materials associated with each slide. To further enhance accessibility 
and global reach, the system offers automatic translation of content into multiple languages, 
facilitating multilingual presentations without additional manual effort. 

Collectively, these capabilities empower users to produce sophisticated and engaging 
presentations with minimal friction, leveraging intelligent automation and a thoughtfully 
designed interface that balances power with ease of use. 
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Figure 4.4: Example of a user session interacting with the application to add another radiobutton quiz 

4.6 Integration of a chatbot for user assistance 
The chatbot integration and conversation features operate through a carefully designed system 
that enhances user interaction with context-aware assistance. When a user first engages with 
the chatbot, it begins with an initial welcome message, which can be customized via the 
CopilotChatLabels interface. This message is a default greeting that sets a friendly and 
approachable tone. The chatbot maintains a context-aware state throughout the interaction, 
allowing it to deliver suggestions and responses that are relevant to the ongoing conversation. 

A key component of the system is its sophisticated suggestion mechanism. Suggestions are 
dynamically generated based on several factors, including the current state of the conversation, 
the tools and actions available within the application, the user’s previous interactions, and the 

specific context in which the chatbot operates. This ensures that the prompts offered are always 
pertinent and tailored to the user's needs. 

The suggestion system is highly configurable. Developers can configure parameters such as the 
minimum and maximum number of suggestions (which default to one and three, respectively) 
and can also define custom instructions to guide how suggestions are generated. Visual 
consistency is ensured through the use of predefined CSS classes that align the styling of 
suggestions with the overall application design. 

To maintain responsiveness without overloading the system, suggestions are generated using a 
debounced approach with a 1000ms delay. This means suggestions are not triggered 
immediately but are instead refreshed thoughtfully, minimizing unnecessary computations 
while keeping recommendations up to date. 

The system recalculates suggestions whenever there are changes in the conversation state, the 
addition of new messages, or shifts in the loading status. If a new event occurs while a previous 
suggestion is still being processed, the system aborts the ongoing generation and starts over, 
ensuring that users always receive relevant and current suggestions. 
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Each suggestion consists of a title (displayed as a clickable button) and an associated message 
that is submitted when the button is clicked. These suggestions are presented in a dedicated 
section positioned just below the chat messages. The interface is designed to handle multiple 
suggestions at once, updating them dynamically in real time as the conversation evolves. This 
ensures users are continually presented with relevant and actionable prompts throughout their 
interaction. 

Integration with the overall chat flow is seamless. Suggestions appear naturally after messages 
are sent or received, with the system managing loading indicators and handling error scenarios 
gracefully. 

Finally, robust error handling mechanisms are built into the system. These safeguard against 
failures in suggestion generation, interruptions during processing, invalid states, and network 
issues, ensuring a smooth and reliable user experience. 

Overall, this implementation delivers a robust and flexible framework that guides users through 
conversations with contextually relevant suggestions, making interactions more natural, 
intuitive, and productive. 

4.7 Multilingual support 
To address the need for multilingual accessibility within the chatbot component of the 
application, GPT-4.1 was also used as the core engine for language translation and natural 
language understanding. This model was selected due to its robust performance across a wide 
range of languages and its ability to maintain semantic fidelity during translation tasks. Within 
the implementation pipeline, user inputs in various languages are first detected using a 
lightweight language identification module. Once the language is identified, GPT-4.1 processes 
the input to both comprehend the user’s intent and, if necessary, translate the response from a 
base language into the target language. This ensures that interactions remain fluid, natural, and 
contextually appropriate for users regardless of their language preferences.  

In cases where the uploaded resources (such as textual, PDF, WORD, EXCEL content, or 
URLs) are written in different languages from each other or in a language other than the one 
used by the user to interact with the AI, the chatbot prompts the user to explicitly choose the 
target language to be used to generate slide content. This interactive clarification step ensures 
that the generated materials align with the user’s expectations and intended audience. 

Furthermore, GPT-4.1’s generative capabilities were also employed to localize responses by 

incorporating idiomatic expressions and culturally relevant language patterns, rather than 
relying solely on literal translations. This strategy significantly enhances user experience and 
engagement, especially in educational settings where clarity and relatability of content are 
crucial.  

4.8 Development tools 
The backend is developed within a well-defined reproducible environment to allow consistency 
and ease of maintenance. Dependency management and project configuration are streamlined 
using Poetry, which facilitates precise package versioning and virtual environment creation. 
Environment variables are securely handled through python-dotenv to safeguard sensitive 
configuration details. 
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For logging, the backend utilizes Python’s built-in logging module, extended with contextual 
features to support centralized log aggregation and detailed analysis. During development, the 
backend runs on the Uvicorn server, configured with debugging and hot-reload enabled, 
allowing rapid feedback and efficient troubleshooting. 

On the frontend side, as well as the wider TypeScript ecosystem, the project employs a 
monorepo structure managed with PNPM (version 9.5.0). This approach enhances dependency 
management across multiple packages within a single codebase and improves the development 
workflow. The primary technologies powering the frontend include TypeScript (version 5.2.3) 
and React (version 18), while Next.js (version 14.2.15) is used as the web framework, offering 
optimized routing and server-side rendering capabilities for an improved developer experience. 

The development environment emphasizes maintainability and code quality, employing ESLint 
and Prettier with custom configurations for linting and formatting, respectively. Pre-commit 
hooks are enforced using Husky, which ensures that linting and testing scripts run before any 
code is committed, thereby maintaining a consistent codebase. 

Styling and UI composition are managed using Tailwind CSS for utility-first design, while 
Radix UI and Headless UI provide accessible, unstyled components that support consistent 
design patterns across the application. 

In terms of AI integration, the project includes support for various SDKs, with LangChain used 
to orchestrate advanced AI workflows. This setup allows seamless interaction with language 
models and supports both inference and toolchain integration. 

Infrastructure is defined using AWS CDK, allowing infrastructure as code practices that align 
closely with the rest of the application’s TypeScript codebase. 

The TypeScript configuration is set up in strict mode, ensuring strong type safety throughout 
the codebase. The project includes multiple configurations tailored to different environments, 
such as a base configuration and another specific to Next.js. 

A comprehensive set of development scripts is provided to manage builds for various 
environments, run the development server with hot reloading, execute tests and linters, and 
perform clean builds. These scripts facilitate a streamlined development experience and ensure 
that every part of the codebase adheres to rigorous standards for quality and consistency. 

Overall, this project is built upon a modern, well-structured development environment that 
emphasizes type safety, scalability, code quality, and developer productivity through a cohesive 
and carefully selected toolchain. 
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Chapter 5 

5. EXPERIMENTAL RESULTS AND 

FUTURE WORK 
In the first part of the chapter, the manual testing phase that was conducted is presented, 
reporting an example of user interaction with the chatbot for creating and editing educational 
content. In this phase, multiple evaluation metrics are reported and analyzed, such as execution 
time, computational cost, economic cost, Time To First Token (TTFT), and completion token, 
in order to demonstrate the capabilities of the system, identifying performance bottlenecks and 
validating its applicability in the real world. Aggregate metrics on repeated experiments are 
then reported. These tests were conducted internally within the company, involving colleagues 
and department heads. Their participation provided valuable insights into the usability and core 
functionality of the platform. 

In the second part of the chapter, a plan is defined for future automated test implementations. 
This will include unit, integration, system, end-to-end, and security testing in order to ensure 
scalability, robustness, and maintainability of the platform under broader usage scenarios. 

5.1 Manual testing methodology 
To ensure a comprehensive and objective evaluation of the system's performance, a set of key 
performance indicators was defined. These metrics were selected based on their relevance to 
the goals of the project and their prevalence in related work in the fields of AI-based educational 
technology and enterprise automation. 

The main evaluation criteria include: 

• Execution time: Measures the time required to complete core system operations, such 
as content ingestion, pre-processing, image generation, and module generation. The 
values reported below were recorded using LangSmith; 

• Computational cost: Tracks the usage of the CPU during execution, providing insight 
into the platform’s efficiency. The values reported below were extracted from print 
statements embedded in the Python code. The computational cost (% CPU) 
measurements were performed on a system with the following hardware and software 
specifications: 
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Attribute Details 

Processor (CPU) 13th Gen Intel® Core™ i7-1355U 
Physical cores 10 
Logical cores 12 

Base frequency 1.70 GHz 
Operating system Microsoft Windows 11 Pro 

 Table 5.1: System specifications (hardware and software)  

• Economic cost: Takes into account costs to run the system. It includes expenses related 
to the OpenAI APIs, Tavily APIs, and Amazon Web Services. The values reported below 
were calculated using LangSmith for OpenAI-related costs. AWS costs were estimated 
using the pricing on the official website. Costs for Tavily are currently zero, as we are 
using the free tier, but pricing information from their official website is also included 
for reference; 

• Input prompt: Measures the length of input provided to the system, expressed in number 
of tokens. This metric helps evaluate the impact of prompt complexity on response 
latency and overall efficiency. The values sent were recorded via LangSmith; 

• Time To First Token: Measures the latency between a user's request and the generation 
of the first output token, giving an idea of the perceived responsiveness. The values 
reported below were recorded using LangSmith; 

• Completion token: Represents the number of pieces of text (tokens) generated in 
response to a request. In terms of length, on average, a token is about 0.75 words or 4 
characters in English, but these are language dependent. The values reported below were 
recorded using LangSmith. 

Experimental tests were conducted using a diverse dataset of enterprise documents, and 
performance was measured under controlled and repeatable conditions. 

5.1.1 Example of user interaction flow: from user query to microlearning slides 
As mentioned above, this section presents a sample user interaction with the platform’s AI 

assistant through a conversational interface. The goal of the experiment is to evaluate the 
model’s ability to generate structured content on demand.  

Initially, the assistant is asked to generate a complete set of slides on the topic of microlearning 
and, subsequently, the user requests a series of modifications to the generated content. Below 
are the various interaction steps along with the corresponding performance metrics. In addition 
to performance metrics, there is also a description of what happens behind the scenes during 
the interaction.  

The conducted manual test is executed locally.  

Computational costs, when not specified, are negligible. 
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First interaction (slide generation) 

 

 

 
Figure 5.1: Example of a user session interacting with the application to create a set of slides about microlearning 

The user uploads one or more resources (in the specific example, just one PDF) and specifies 
that the slide generation must occur only using these resources, without external search. When 
the user asks to generate slides, the message is forwarded to the backend via the CopilotKit 
pipeline. 

The backend system, based on a graph architecture composed of processing nodes, receives the 
user’s input along with the uploaded resource. The uploaded file, if it is a PDF (as in the 

example above), is first encoded in base64 to ensure proper handling within the CopilotKit data 
flow. This encoded file and the user's textual prompt are sent to the backend service, which 
starts a multi-step pipeline to process, analyze, and convert the resource into structured 
microlearning content. 
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The first component in this pipeline is the Download Node. In a general use case, this node 
retrieves external content; however, since the user explicitly asked the system to work only with 
the provided PDF file, no actual download occurs. Instead, the encoded PDF is handed off 
directly to the next processing node. 

The core of the generation logic, therefore, takes place in the Chat Node. Here, the system 
decodes the file, extracts its textual content, and constructs a formatted prompt for the Large 
Language Model. This prompt includes several important constraints: the model must use only 
the uploaded resource; it must structure the content as a presentation composed of slides; and it 
must follow specific formatting guidelines regarding slide titles, descriptions, and the possible 
use of illustrative elements. 

Once the language model processes the prompt and completes its internal generation phase, it 
triggers a specific backend tool called WriteReport. This tool is responsible for compiling the 
generated slides into a structured JSON report. Each slide in the report includes a title, a short 
description, and the prompt used later for image generation. This JSON report is then returned 
to the backend system, where it undergoes validation and further processing (using parsing 
functions). 

After validation, the final report is serialized and stored in the backend state under a dedicated 
field (state[“report”]). At this point, the frontend interface becomes aware of the new data. 
Specifically, the ResearchCanvas component detects the updated report, decodes its contents, 
and passes it to the slide visualization module (i.e., challenges-app web component). The user 
now sees the generated presentation in a structured and editable format. They can review the 
slides, change titles and descriptions, add new resources or remove provided ones, modify 
quizzes, or request automatic translation of the content into another language. 

It is important to emphasize that in this flow, no external data retrieval is performed. The Search 
Node of the system’s graph, which typically handles external searches, is entirely bypassed. In 
enterprise environments, this strict adherence to the user's instruction to use only the uploaded 
file is a key aspect that ensures that the generated content only contains controlled information 
retrieved by the provided resources. 

Below are the metrics recorded in this phase: 

• Download node duration: 15.01 s 
• Chat node duration: 610.02 s 
• Chat node duration: 10.82 s 
• Total duration: 635.85 s 
• TTFT: 78,841 ms 
• Tokens: 6,153  

o Prompt: 11,497/ $0.022994 
o Completion: 59/ $0.000472 

• Cost (OpenAI): $0.023466 
• Computational cost (% CPU): 

Image Computational 
cost (% CPU) 

1 0.8 
2 0.7 
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3 0.9 
4 1.1 
5 1.3 
6 0.7 
7 1.1 
8 0.9 
9 1.0 

10 1.0 
11 1.5 
12 1.1 
13 1.2 
14 1.0 

Table 5.2: Computational cost for image generation 

Second interaction (slide modification) 

 
Figure 5.2: Example of a user session interacting with the application while asking for more detailed slides 

After the initial slide generation is completed, users can request to enhance and refine the 
existing content. In this case, the user asks the system to add some details about microlearning 
in enterprises.  

As the request enters the backend, the processing pipeline is reactivated, following a similar 
route as before. The input is first passed through the Download Node, which is the initial node 
of the graph. Then, the Chat Node serves as the central logic node for interpreting user 
intentions and constructing the appropriate prompts for the Large Language Model. 

At this stage, the AI system asks the user whether they would like the model to search for 
external sources in order to enrich the content or whether the addition of details should be based 
strictly on the original resources already provided. 

This explicit request serves an important purpose: to maintain user control. Some users may 
prefer to keep the learning content strictly tied to internal documentation, ensuring that all 
generated output remains verifiable, traceable, and compliant with corporate standards. Others 
may welcome the opportunity to enrich the material with broader knowledge from external 
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publicly available sources. By offering a clear choice, the system empowers users to guide the 
direction of the enrichment process. 

Below are the metrics recorded in this phase: 

• Download node duration: 0.29 s 
• Chat node duration: 11.01 s 
• Total duration: 11.30 s 
• TTFT: 5,650 ms 
• Tokens: 8,385  

o Prompt: 8,307/ $0.016614 
o Completion: 78/ $0.000624 

• Cost (OpenAI): $0.017238 

Third interaction (online resource retrieval) 
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Figure 5.3: Example of a user session interacting with the application while asking for more detailed slides 

The user responds to the system's request for clarification and, in this case, chooses to expand 
the initial presentation by inserting external information. The system does not regenerate the 
entire presentation from scratch, but when it receives an instruction that seems to be a 
continuation of the previous activity (thanks to the agent state, which preserves the session 
context), it promptly proceeds to make the requested change while keeping the remaining 
textual content unchanged. In this case, it adds a new slide, without modifying the text and 
structure of the others. However, even if the text of the previous slides remains unchanged, the 
images are still regenerated. This behavior is justified by the need to ensure visual consistency 
across all slides: even a minimal textual change (such as adding a detail or rewording) can imply 
a change in the conceptual content, tone, or focus of the slide, making it appropriate to also 
update the image to keep it aligned. 

The process begins in the Download Node and then proceeds to the Chat Node. Here, the AI 
interprets the user's request (to enrich the existing content with additional web-sourced details) 
and creates a high-level plan for how to proceed: the model identifies the thematic areas or slide 
topics that require further elaboration and formulates targeted search queries accordingly. Then, 
these queries are passed to the next component: the Search Node. 

The Search Node serves as the orchestrator of online information retrieval. It uses the Tavily 
API, which returns a ranked list of the most relevant results (usually from 3 to 5). 

Each result includes a title, a URL, and a brief description. This content is retrieved, parsed, 
cleaned, converted from HTML into readable text, and stored in the Resource object. The 
system tracks the state of each resource and handles any failures. 

Once the search is complete, the newly acquired resources are sent back through the Download 
Node. At this point, the node processes the incoming set of external documents. With all 
resources available (both the original internal files and the newly fetched external ones), the 
pipeline returns once again to the Chat Node. In this phase, the AI is prompted to re-analyze 
the slides in light of the expanded content base. It identifies opportunities to enhance existing 
sections, introduce clarifying examples, or add new explanatory notes. The model is instructed 
to preserve the structure and tone of the original slides, changing only necessary textual parts 
and regenerating the images. 

At this point, the AgentState is changed: it is enriched with all the information related to the 
new resources. This change is propagated to the frontend, which updates the interface and 
displays the new content to the user. 

Finally, a final pass through the Chat Node is triggered, whose purpose is to create the final 
response to inform the user that the slides have been successfully enriched. 
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Below are the metrics recorded in this phase: 

• Download node duration: 0.34 s 
• Chat node duration: 11.01 s 
• Search node duration: 48.07 s 
• Download node duration: 7.43 s 
• Chat node duration: 510.79 s 
• Chat node duration: 14.69 s 
• Total duration: 592.33 s 
• TTFT: 8,078 ms 
• Tokens: 50,253  

o Prompt: 50,199/ $0.100398 
o Completion: 54/ $0.000432 

• Cost (OpenAI): $0.10083 
• Computational cost (CPU): 

o Download node: 97.7% 
o Search node: 64.9% 
o Download node:  

Resource Computational 
cost (% CPU) 

1 30.2 
2 18 
3 15.9 
4 22 
5 29.4 

Table 5.3: Computational cost for resource downloading 

o Image generation:  

Image Computational 
cost (% CPU) 

1 1.6 
2 2.3 
3 2.2 
4 4.6 
5 2.1 
6 3.1 
7 1.9 
8 1.9 
9 1.9 

10 2.3 
11 2.9 
12 4.1 
13 3.1 
14 2.3 
15 1.7 

Table 5.4: Computational cost for image generation 
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Fourth interaction (slide translation) 

In this interaction, the user asks the assistant to translate the set of slides into Italian. 

As with all actions initiated by the user, the workflow begins in the Download Node, where the 
AgentState is retrieved (it also includes the content of the resources). 

 

 
Figure 5.4: Example of a user session interacting with the application while asking for the translation of the entire content 

Then, the flow continues to the Chat Node and here the actual translation of the content takes 
place. The AI receives a prompt that explicitly asks to perform a translation of each slide from 
English into Italian (also quizzes are modified). The model is guided not only to translate text 
accurately, but also to preserve the integrity of the slide format, including headings, bullet 
points, examples, etc.  

The translation is performed in-place within the slide structure: rather than regenerating slides 
from scratch, the model modifies only the necessary parts (always regenerating images). Once 
completed, the translated slides are written back into the application state. 

Finally, the workflow returns to the Chat Node in order to create a message for the user that 
confirms that the set of slides has been successfully translated. This message, along with the 
updated slide content, is sent back to the frontend and the user can view the new version. 
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Below are the metrics recorded in this phase: 

• Download node duration: 0.30 s 
• Chat node duration: 492.01 s 
• Chat node duration: 13.57 s 
• Total duration: 506.2 s 
• TTFT: 10,650 ms 
• Tokens: 39,161  

o Prompt: 39,109/ $0.078218 
o Completion: 52/ $0.000416 

• Cost (OpenAI): $0.078634 
• Computational cost (CPU): 

Image Computational 
cost (% CPU) 

1 2.1 
2 1.5 
3 1.8 
4 2.5 
5 3.0 
6 1.8 
7 1.6 
8 1.5 
9 1.7 

10 3.3 
11 2.7 
12 3.0 
13 2.2 
14 2.4 
15 2.2 

Table 5.5: Computational cost for image generation 

Fifth interaction (slide split) 
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Figure 5.5: Example of a user session interacting with the application while asking to split a slide 

At this point, the user asks the system to split a dense slide into two, in order to allow the learner 
to focus on one aspect at a time and improve the understanding of the content. 

The pipeline starts, as always, with the Download Node, where the current state (including the 
most recent version of the slides) is loaded. 

The process then moves to the Chat Node, where the model is prompted to interpret and execute 
the user’s intent: splitting a single slide into two separate ones. The model analyzes the 
previously generated slide and looks for the right point to split, which allows each new slide to 
remain autonomous and meaningful, but still coherent with the others. The new slides preserve 
the original tone and formatting while redistributing content in a way that enhances cognitive 
load management for the learner. In this node, image regeneration is performed. 

Once this process is complete, the set of slides is updated in the internal state and passed again 
through the Chat Node. This second call to the node is not about modifying content but about 
composing the final system response to confirm that the operation has been successfully 
completed. 

This response, along with the modified set of slides, is sent to the frontend interface. The user 
can view the updated set of slides, now including the two new slides in place of the original 
one. The interface allows further iterative refinements, ensuring full user control over the final 
structure. 

Below are the metrics recorded in this phase: 

• Download node duration: 0.30 s 
• Chat node duration: 492.01 s 
• Chat node duration: 13.57 s 
• Total duration: 506.2 s 
• TTFT: 8,738 ms 
• Tokens: 40,309  

o Prompt: 40,237/ $0.080474 
o Completion: 72/ $0.000416 

• Cost (OpenAI): $0.08089 
• Computational cost (% CPU): 

Image Computational 
cost (% CPU) 

1 1.7 
2 1.7 
3 2.7 
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4 2.3 
5 4.7 
6 2.2 
7 2.4 
8 2.4 
9 2.5 

10 2.5 
11 3.1 
12 2.8 
13 2.1 
14 3.3 
15 2.1 
16 3.2 

Table 5.6: Computational cost for image generation 

 

5.1.2 Aggregated metrics from the interaction flow 
After detailing the five key user interactions within the AI-powered content generation pipeline 
(ranging from the initial slide creation to enrichment, translation, and structural edits) and 
recording the various associated metrics, we can get a general idea of the overall system 
performance during this single run. Therefore, this section presents a summary of the most 
relevant metrics collected during the execution of these interactions, with the goal of offering a 
quantitative perspective on the behavior, efficiency, and responsiveness of the underlying 
architecture. Indeed, by measuring system latency, costs, and number of tokens across different 
stages, we can better understand how well the pipeline supports real-time microlearning content 
creation and further editing. Depending on the nature of the metric, values are presented either 
as totals or as averages. 

• Total duration: 2,251.88 s 
• TTFT:  22,391.4 ms 
• Tokens: 144,261 

o Prompt: 149,349/$0.28698 
o Completion: 315/$0.00252 

• Cost (OpenAI): $0.277592 
• Average computational cost (CPU): 6.05% 
• Number of slides generated: 38 
• Number of images generated: 61 

All reported data comes from direct observation of the system during execution and analysis of 
its logs. This approach ensures a realistic representation of the system usage, useful for 
evaluating performance, estimating throughput, and guiding future improvements.  

From an economic point of view, the costs associated with searching for online resources should 
also be considered. With Tavily's free plan, 1,000 credits per month are available at no cost. 
Each chatbot cycle, which includes a basic search (1 credit) and the basic extraction of 3-5 
resources (1 credit), consumes 2 credits. So, with the free plan, up to 500 complete queries per 
month can be managed for free. Once this threshold is exceeded, there is the need to upgrade 
to a paid plan like the Project one (the most basic one after the free one, which guarantees 3,000 
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credits per month), where each credit costs $0.0075. In this case, each complete query would 
cost 2 × $0.0075 = $0.015. Anyway, in our case: 

• Tavily cost: $0 (free plan) 

Moreover, in the case the execution takes place on AWS infrastructure, the costs related to the 
services used must also be added to the previous costs, in particular those related to AWS 
Lambda, AWS Secrets Manager, and Amazon CloudWatch. 

Actually, it is currently not possible to precisely isolate costs related to a single execution of 
the application, but we can estimate them using the pricing on the official AWS website.  

AWS Lambda costs depend on how many times the function is executed and how long it remains 
active, on the memory allocated, and on the region in which it runs. For AWS Secrets Manager, 
you pay a monthly fee for each secret stored, such as API keys, tokens, or credentials, and 
additional costs when the secrets are accessed. Finally, with Amazon CloudWatch, costs are 
related to the logs generated by Lambda, i.e., the amount of data sent and stored there. 

To provide a concrete estimate, we can consider an application used by 20 users monthly. It is 
assumed that each user accesses the app once a day, for a total of 30 uses per month, thus 
producing 600 monthly invocations (20 users × 30 accesses). 

Each access involves: 

• the activation of two Lambda functions: a UI Lambda (4096 MB, average duration 300 
seconds) and an Agent Lambda (1024 MB, average duration 300 seconds); 

• two requests to the Secrets Manager to retrieve the API keys stored; 
• the generation of about 5 KB of logs, saved in Amazon CloudWatch. 

AWS Lambda costs depend on how many times the function is executed and how long it remains 
active (in seconds), on the memory allocated (in GB), and on the region in which it runs (eu-
west-1). The cost per execution can be calculated using the following formula: 

CostLamba = Memory (GB) × Duration (s) × Cost ($) × Iterations 

In the case of UI Lambda (4096 MB = 4 GB, duration = 300 s), the reference price is 
$0.0000000667 per GB-second, so: 

CostUI_Lambda = 4GB × 300s × $0.0000000667 × 600 = $0.048024 

For Agent Lambda (1024 MB = 1 GB, duration = 300 s), with price $0.0000000167 per GB-
second, the total cost is: 

CostAgent_Lambda = 1GB × 300s × $0.0000000167 × 600 = $0.003006 

The total cost for Lambda functions is then: 

TotalLambda = $0.048024 + $0.003006 = $0.05103 

AWS Secrets Manager charges a flat fee of $0.40/month for each secret stored. This is in 
addition to a variable cost for API calls, equal to $0.05 per 1,000 requests. 

With a single secret stored and 600 monthly requests: 

CostSecrets = $0.40 × 2 = $0.80 
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CostRequest = 600 × 0.05 / 1,000 = $0.03 

TotalSecretManager = $0.80 + $0.03 = $0.83 

Amazon CloudWatch charges a log ingestion fee of $0.50 per GB. In our case, each invocation 
produces about 5 KB of logs. The total volume generated in a month is therefore: 

TotalCloudWatch = 600 × 5 KB = 3,000 KB = 3 MB = 0.003 GB 

CostCloudWatch = 0.003 × 0.50 = $0.0015 

However, since AWS offers 5 GB/month of free logs, this cost is within the free threshold. The 
actual cost will therefore be: 

TotalCloudWatch = $0.00 

In conclusion:  

Total20_users = $0.83 + $0.0015 = $0.8315 

One of the most important advantages of the serverless approach is the linear scalability of 
costs. If the number of users were to grow, for example, to 100 monthly users (3,000 
invocations), the costs would increase proportionally. Applying the same formulas, we obtain: 

• Lambda: 
CostUI_Lambda = 4GB × 300s × $0.0000000667 × 3,000 = $0.24012 

CostAgent_Lambda = 1GB × 300s × $0.0000000167 × 3,000 = $0.01503 
TotalLambda = $0.24012 + $0.01503 = $0.25515 

• Secrets Manager:  
TotalSecretManager = 0.80 × 1 + 3,000 × 0.05 / 1,000 = $0.80 + $0.15 = $0.95 

• CloudWatch: 15 MB of logs (still under free threshold) 
TotalCloudWatch = $0.00 

• Total: 

Total100_users = $0.25515 + $0.95 = $1.20515 

This model shows how the system can grow with users; costs increase only based on real traffic, 
avoiding waste due to an infrastructure that is designed too large from the beginning (trying to 
predict the expansion of the user base). 

5.1.3 Aggregated metrics from repeated interaction experiments 
Repeated experiments were conducted to simulate real-world usage scenarios, involving the 
insertion of different input formats (such as URLs, PDFs, Word, Excel, and text files), according 
to the previously defined interaction flow model. The simulated activities included common 
operations such as content creation, editing, and translation, useful for analyzing system 
performance and stability. 

By aggregating the results of these 10 sessions, a set of average metrics that reflect the typical 
resource consumption of the application was computed: 

• Average total duration per interaction: 1,349.5 s 
• Average TTFT: 13,601 ms 
• Average number of tokens per interaction: 87,993 
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• Average OpenAI API cost per interaction: $0.341704 
• Average Tavily API cost per interaction: $0 (free plan, under 500 complete queries) 
• Average computational load (% CPU): 3.29 
• Average number of slides generated: 31 
• Average number of images generated: 40 

These metrics confirm the system's ability to deliver high-quality output while maintaining 
acceptable latency and low resource consumption. They also serve as a benchmark for future 
optimizations and for estimating performance at scale. 

5.1.4 Discussion and analysis 
The tests conducted demonstrate that the platform guarantees good performance in terms of low 
costs and quality of content. Although it is not very fast in generating content, it still proves 
effective in using Artificial Intelligence to transform knowledge, solving critical issues such as 
the high cost of producing teaching materials and the lack of customization. By working on 
enhancing the parallelization of operations, this aspect can certainly be improved as well. 

Among the main strengths that emerged: 

• Automation: Automatic generation of content with minimal human intervention, 
reducing time and costs; 

• Flexibility: Modular architecture that facilitates the integration of new features and 
adaptation to different business contexts; 

• User Experience: Multilingual support and chatbots improve accessibility and 
interaction. 

The addition of human feedback could also further improve the quality and evolution of the 
system. 

5.2 Automated testing methodology 
This section presents an automated testing strategy planned for future development phases to 
ensure greater performance, reliability, repeatability, and security of the microlearning 
application. Given the multifaceted nature of the platform (which integrates AI-powered 
content generation, multilingual processing capabilities, and interactive learning features), a 
rigorous and multi-layered testing approach is essential.  

The planned automated testing activities include: 

• Unit testing: Individual software modules (such as document parsers, text summarizers, 
language models, and quiz generators) will be tested in isolation to confirm they behave 
as expected under a variety of input conditions. Testing will be automated using 
frameworks such as PyTest for Python components; 

• Integration testing: This will focus on the interactions among various modules in the 
processing pipeline. For example, it will test the successful handoff from the content 
extraction module to the summarization engine, and then to the learning content 
formatter. This type of testing is crucial to validate the system's internal cohesion and 
data flow correctness; 
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• System testing: The platform will be tested as a whole to confirm that the complete 
application meets functional and non-functional requirements. This includes testing the 
deployment architecture, APIs, databases, and frontend interface in coordination; 

• End-to-End (E2E) testing: These tests will simulate real-world usage scenarios, 
covering the entire workflow from document upload through to user interaction with 
the generated learning material and the chatbot; 

• Security and input validation testing: Specific attention will be given to input validation, 
file upload handling, user authentication, and access control. Tests will check for 
common vulnerabilities such as injection attacks, insecure file handling, and broken 
session management. Static and dynamic analysis tools like Bandit and OWASP ZAP 
will assist in identifying security flaws. 

By transitioning towards automated testing, the development process will benefit from faster 
feedback loops, improved test coverage, and enhanced confidence in platform stability and 
security before broader deployment. 

5.2.1 Planned performance evaluation 
Performance testing is essential to ensure that the platform maintains good levels of 
responsiveness and efficiency, even under high loads. The following evaluation strategies are 
planned: 

• Load testing: Concurrent users will be simulated to measure the scalability of the 
system. Using tools like Locust, it will be possible to apply virtual loads and monitor 
indicators, such as average response time, throughput, and resource use; 

• Stress testing: Tests will be performed beyond normal operating limits to analyze the 
behavior of the system under extreme conditions. This kind of testing will help identify 
critical thresholds and points of failure, such as memory leaks or CPU saturation, which 
may not emerge during standard loads; 

• Scalability and concurrency testing: These tests aim to verify how the platform reacts 
to increasing number of concurrent users or parallel processes, evaluating the possibility 
of scaling horizontally or vertically. The infrastructure, with elements such as load 
balancers, container orchestrators, and caching mechanisms, will be analyzed in terms 
of flexibility and adaptability; 

• Profiling and bottleneck identification: To identify bottlenecks in the backend, 
especially in AI models or data processing, performance profiling tools such as New 
Relic, Datadog, or Python’s cProfile will be used. The goal will be to optimize 
execution times and improve memory usage in crucial operations, such as AI-based 
content generation. 

In addition to quantitative metrics, logs and exception reports will be analyzed to identify 
anomalies and performance degradation patterns. 

5.2.2 User experience and usability testing 
A core pillar of platform success lies in its usability, especially since it targets users with diverse 
backgrounds and varying levels of digital literacy. Usability testing will be undertaken in 
multiple phases to gather qualitative and quantitative insights from end users. 
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• Participant recruitment: Users will be selected to reflect the platform’s key personas, 

including training managers, subject matter experts, and employees participating in 
learning programs; 

• Test design: Participants will be asked to complete representative tasks, such as 
uploading content, interpreting AI-generated summaries, navigating between slides, and 
interacting with AI. These sessions will be conducted in controlled environments, either 
remotely via screen sharing or in person; 

• Data collection techniques: 

o Observation and think-aloud protocols: Observers will note user behavior and 
friction points as participants verbalize their thought processes; 

o Surveys and questionnaires: Standardized instruments like the System Usability 
Scale (SUS), Net Promoter Score (NPS), and custom Likert-scale surveys will 
be administered to assess satisfaction and usability; 

o Interviews: Follow-up interviews will allow participants to elaborate on their 
experiences, expectations, and any perceived limitations; 

o Interaction logs: Behavioral data from user sessions will be anonymized and 
analyzed to detect common navigation paths, drop-off points, and interaction 
errors. 

These insights will be triangulated to prioritize usability issues and design refinements. 

5.2.3 Conclusions 

This chapter has provided a comprehensive overview of the results obtained during the 
development and evaluation of the AI-powered microlearning platform. The combination of 
computational efficiency and content accuracy highlights how AI technologies can 
revolutionize learning flows in enterprises. 

The metric analysis confirmed the potential of the platform, especially in the automatic 
generation of content and its usability in different contexts. However, areas of optimization also 
emerged, especially regarding content generation speed. 

Overall, the results obtained support the basic idea of this thesis: AI is able to increase the 
content quality in terms of coherence, clarity, and effectiveness in corporate training. This 
reflects the broader process of digital transformation of the world of work, where intelligent 
systems are becoming protagonists in the evolution of learning and innovation.  
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Chapter 6 

6. CONCLUSIONS AND FUTURE 
DEVELOPMENTS 

This final chapter presents an overall reflection on the results obtained, outlining both the main 
strengths of the application and the critical issues encountered, as well as suggesting possible 
future developments. Finally, the aspects that make the platform a promising tool for knowledge 
transfer in dynamic and complex contexts, such as corporate ones, are highlighted. 

6.1 Limitations and challenges encountered 
While the current implementation of the platform has demonstrated promising capabilities and 
lays a solid foundation for intelligent and automated slide generation, several limitations and 
challenges have been identified throughout the development and testing phases. These 
constraints span technical, architectural, and user experience domains, and must be 
acknowledged to contextualize the scope of the platform in its current state and guide future 
enhancements. 

6.1.1 Limited input modalities 
At present, the platform primarily accepts textual inputs for content generation. This restricts 
its ability to process and extract information from non-textual or multimedia sources such as 
audio recordings, video lectures, scanned documents, or handwritten notes. As a result, a 
significant portion of enterprise knowledge (particularly content from meetings, interviews, and 
legacy files) is excluded from the knowledge ingestion pipeline. 

6.1.2 Inefficiencies in image generation 
Image generation is performed sequentially, which can result in noticeable delays, especially 
when creating a set of slides with many visual elements. Moreover, the system relies on 
generating images based on textual slide content rather than extracting or reusing visuals from 
uploaded materials, which may limit the contextual relevance and consistency of visual assets. 

6.1.3 Lack of a visual editing interface 
Currently, users must interact with the platform exclusively through a conversational interface, 
even for minor edits. This can become cumbersome when users wish to make quick, targeted 
adjustments to individual slide elements such as titles, bullet points, or formatting. The absence 
of a canvas-style editor limits editing efficiency and user control over the final output. 

6.1.4 Basic authentication scheme 
The existing authentication mechanism is based on Basic Authentication, which lacks 
robustness and scalability. This approach can present security risks and does not support more 
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advanced user management features such as token-based session control, role-based access, or 
integration with enterprise authentication systems (e.g., Single Sign-On). 

6.1.5 File size limitations and lack of persistent storage 
The current system architecture transmits files via base64 encoding directly between the 
frontend and backend. This technique introduces a hard limit of approximately 420 KB for 
uploaded documents, which restricts the ability to process large or complex inputs. 
Additionally, the absence of persistent file storage means that uploaded resources, generated 
slides, and chatbot conversations are not retained across sessions, limiting version control and 
long-term usability. 

6.1.6 Absence of structured evaluation 
To date, the platform has not undergone formal usability testing or performance benchmarking. 
Without structured user studies or adherence to established evaluation frameworks (e.g., SUS, 
Nielsen heuristics), it remains difficult to identify usability bottlenecks or validate its impact in 
real-world educational or enterprise environments. 

6.1.7 Fixed slide template and limited customization 
The platform currently employs a static slide template, without offering users the ability to 
customize layout, color scheme, fonts, or branding elements. This reduces flexibility for 
enterprise clients who may require consistency with corporate visual identities or desire tailored 
presentation formats for different contexts. 

6.1.8 Inaccessibility of source files 
Users are not currently able to download the original source that was used to generate slides. 
This complicates content revision and restricts the potential reuse of materials for other 
educational or professional workflows. 

6.1.9 Dependency on external APIs and third-party services 
A notable architectural limitation lies in the platform’s strong dependence on third-party 
services and APIs (most prominently, the OpenAI GPT models for content generation and the 
Tavily search engine for information retrieval). While these tools provide advanced capabilities 
out of the box, their integration introduces several concerns: 

• Data privacy risks, particularly when handling sensitive or proprietary enterprise 
content that must be transmitted to external servers; 

• Variable response times and latency, which can impact the perceived responsiveness of 
the platform; 

• Availability risks, where service downtimes or interruptions in third-party API services 
may render the system partially or entirely unusable; 

• Output variability, as LLM-generated content may not always meet expected standards 
of factual accuracy or consistency; 

• Cost-related concerns, due to reliance on usage-based pricing models, which may not 
scale economically with high user volumes. 

These factors highlight a critical trade-off between leveraging state-of-the-art AI capabilities 
and maintaining control over infrastructure, privacy, and long-term operational costs. 
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6.1.10 Summary of key limitations 

Limitation Impact 

Limited input modalities Inability to ingest audio/video/scanned 
images/handwritten content 

Sequential image generation Increased waiting times during slide creation 
No canvas-style editor Low editing efficiency and flexibility 
Basic Authentication Poor security and scalability 
File size restriction Inability to process large documents 

No persistent storage Loss of files and outputs across sessions 
No formal evaluation Lack of validated UX and performance metrics 
Static slide template Limited branding and layout flexibility 
No source file access Reduced transparency and reuse potential 

Dependency on external APIs Risks related to data privacy, availability, latency, output 
quality, and costs 

Table 6.1: Summary of key limitations in the application 

6.2 Potential enhancements and future work 

Building upon the current implementation, several future decisions are envisioned to enhance 
the platform’s capabilities, improving its usability and increasing its adaptability across various 

enterprise and educational contexts. These potential enhancements span improvements in input 
handling, user experience, infrastructure, and system intelligence, and they are critical to 
unlocking the platform’s full potential. 

6.2.1 Support for expanded input modalities 
One of the most significant areas for enhancement involves broadening the range of input 
formats that the platform can process. By incorporating multimedia inputs (such as audio 
recordings, video lectures, scanned images, and handwritten notes), the system would become 
significantly more inclusive and versatile in capturing enterprise knowledge. This would 
require integration with advanced speech-to-text services (e.g., Google Cloud STT, Microsoft 
Azure STT, Amazon Transcribe, or IBM Watson STT) and Optical Character Recognition 
engines to extract meaningful content from diverse data sources (such as meetings, webinars, 
or legacy documents). 

6.2.2 Advanced visual asset handling 
Future iterations of the platform could support both improved generation and intelligent 
extraction of images. Instead of solely relying on text-based prompts to create visuals, the 
system could analyze uploaded documents to extract embedded images, diagrams, or figures 
relevant to the slide content. This would improve contextual fidelity. 

6.2.3 Parallel image generation 
To address latency issues during content generation, the system could be enhanced to support 
parallelized image rendering. This would allow multiple visual assets to be created 
simultaneously, significantly reducing wait times and improving the perceived responsiveness 
of the slide creation process. 
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6.2.4 Visual slide editing interface 
Introducing a visual, drag-and-drop interface for slide editing would greatly improve user 
control and interaction efficiency. Users would be able to directly modify elements (such as 
titles, bullet points, images, and formatting) without relying entirely on chatbot prompts. This 
would enable quick and targeted refinements and offer a hybrid workflow that balances 
automation with manual precision. 

6.2.5 Flashcard module for spaced repetition 
Integrating a flashcard system based on the platform’s generated content would support 

knowledge retention through spaced repetition techniques. This would provide users with a 
lightweight structured method for reviewing and assessing their understanding of key concepts. 

6.2.6 Formal evaluation and benchmarking 

Conducting structured usability studies and performance benchmarks would allow the platform 
to be evaluated systematically. User feedback could be collected using standardized tools such 
as the System Usability Scale or through heuristic evaluations. Both qualitative and quantitative 
data would guide refinements in user interface design, model output quality, and system 
accessibility. 

6.2.7 LLM model selection and customization 
Enabling users to choose from a selection of Large Language Models would allow for 
customization based on performance, use-case specificity, language support, or compliance 
requirements. This modular approach could also facilitate experimentation with fine-tuned or 
domain-specific models tailored to enterprise applications. 

6.2.8 Enhanced authentication and security 
To improve platform security and align with enterprise standards, the current Basic 
Authentication mechanism could be replaced with more robust and scalable solutions such as 
OAuth 2.0 or JSON Web Tokens (JWT). These enhancements would facilitate secure user 
session management, multi-factor authentication, and role-based access control. 

6.2.9 Cloud-Based persistent storage 
Introducing persistent cloud storage would provide long-term access to uploaded documents, 
generated slides, and conversation history. This would support version control, facilitate 
collaboration across sessions, and remove the existing file size constraints imposed by direct 
base64 encoding. 

6.2.10 Integration with enterprise ecosystems 

To encourage adoption within corporate environments, the platform could be extended to 
support integration with existing Learning Management Systems, Single Sign-On frameworks, 
and enterprise compliance standards such as SCORM, xAPI, and ISO 27001. This would ensure 
compatibility with organizational workflows. 

6.2.11 Mobile and offline access 
Developing mobile applications and offline access modes would expand the platform’s reach, 

enabling usage in low-connectivity environments and enhancing flexibility for asynchronous 
learners. Offline synchronization could further improve the user experience on mobile devices. 
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6.2.12 Customizable slide templates 
Allowing users to choose from or create custom slide templates (adjusting parameters such as 
layout, color scheme, font style, and branding) would offer greater personalization and align 
outputs with institutional visual identities. 

6.2.13 Access to underlying source files 
Finally, enabling the download of underlying content sources (e.g., transcripts, markdown files, 
extracted summaries) would increase transparency, support iterative revisions, and facilitate 
downstream reuse for different documentation or training needs. 

6.2.14 Strategies to mitigate API dependency 
Given the current reliance on external APIs such as OpenAI GPT for natural language 
generation and Tavily for web search functionalities, future versions of the platform could 
explore strategies to reduce risk and increase system resilience. Several directions are worth 
considering: 

• On-premise or self-hosted LLMs: Developing proprietary enterprise language models 
could significantly improve data privacy, reduce reliance on external providers, and 
allow fine-tuning on domain-specific datasets. This approach provides greater control 
over cost, performance, and compliance but requires substantial investment in hardware, 
expertise, and ongoing maintenance; 

• Hybrid inference pipelines: Implementing a system that dynamically chooses among 
different models based on task complexity, cost, and user policy; 

• Caching mechanisms: Implement a caching mechanism to reduce repeated API calls 
and lower latency. 

These initiatives would help balance the benefits of external APIs with improved control over 
privacy, performance, and long-term sustainability, making the platform more robust and 
enterprise-ready. 

6.2.15 Summary of future enhancement directions 

Future work Goal 

Multimedia input support Broader knowledge ingestion 
Visual extraction/generation Context-aware slide visuals 

Parallel image rendering Improved performance 
Visual editor Intuitive user control 
Flashcards Better knowledge retention 

Usability studies Evidence-based system improvement 
Model selection Customization and compliance 

Secure authentication Robust and scalable security 
Persistent storage File retention and versioning 

Enterprise integration Corporate adoption readiness 
Mobile/offline support Greater accessibility 

Template customization Visual branding flexibility 
Source file access Transparency and content reuse 

Mitigate API dependency Improve privacy, reliability, and cost control 
Develop proprietary enterprise model  Full control over data, customization, and compliance 
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Table 6.2: Summary of future enhancement directions 

6.3 Strengths of the developed application 
Despite the limitations outlined previously, the developed AI-enhanced microlearning platform 
demonstrates several strengths that make it a highly promising tool for enterprise knowledge 
transfer: 

• Seamless content automation: The platform significantly reduces the manual effort 
required for content creation by leveraging state-of-the-art AI models for 
summarization, quiz generation, slide composition, and image generation. This 
automation accelerates the development cycle and empowers subject matter experts to 
generate structured learning content with minimal technical intervention; 

• User-centered design: The interface is intuitive and designed for users with varying 
technical backgrounds. The inclusion of a natural language chatbot further simplifies 
navigation and task execution, making the platform accessible to non-technical 
stakeholders; 

• Modularity: Built with a modular architecture, the system is easily maintainable and 
extensible. Its design supports integration with additional AI services and content 
formats in the future, ensuring long-term adaptability; 

• Multilingual capabilities: The integration of multilingual support broadens the 
platform’s applicability across diverse linguistic contexts, enabling global organizations 

to translate training materials effortlessly; 
• Real-time assistance: The chatbot assistant enhances usability by offering interactive 

help and reducing the learning curve for new users. It acts as a bridge between complex 
AI functionalities and user-friendly experiences; 

• Cloud-native infrastructure: The underlying architecture supports cloud deployment, 
allowing the application to scale efficiently based on organizational demand.  

These strengths collectively contribute to a versatile and forward-thinking learning platform, 
well-suited to the dynamic and evolving needs of enterprise training environments. 

6.4 Conclusion 
In conclusion, the developed platform represents a solid starting point for the adoption of 
intelligent microlearning solutions in the context of corporate training. Among the main 
strengths are the effective automation of content, the user-friendly interface, the scalability of 
the architecture, the ability to operate in multiple languages, and the presence of a virtual 
assistant for real-time support. These features allow to improve the efficiency in the creation of 
training materials, reducing the time and costs traditionally associated with internal training. 

At the same time, some limitations have emerged that open interesting ideas for the future 
evolution of the system, such as the absence of a visual editor, the limited management of 
images, and the need for formal evaluations of teaching effectiveness. The proposed future 
developments aim to overcome these critical issues, further enhancing accessibility, 
customization, and integration with real corporate environments. 

Ultimately, the proposed approach proves to be consistent with the needs of modern 
organizations, oriented towards flexible, customizable, and scalable training solutions. The 
integration of Artificial Intelligence in this area not only makes content production more 
sustainable but also helps make the learning process more engaging, accessible, and effective.  
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