

POLITECNICO DI TORINO

Department of Automation and Computer Science
Class LM-32

Master’s Thesis in Computer Engineering

Development of an AI-enhanced microlearning

platform for enterprise knowledge transfer

In collaboration with Reply S.p.A.

Academic Year 2024/2025

Tutor:

Prof. Laura Farinetti

Company tutor:

Andrea Lupo

Candidate:

Veronica Mattei

SUMMARY

1. INTRODUCTION ... 1

1.1 Context and motivation .. 1

1.2 Research objectives .. 1

1.3 Thesis structure .. 2

2. STATE OF THE ART .. 3

2.1 Microlearning definition and context ... 3

2.1.1 Benefits of microlearning .. 3

2.1.2 Limitations of microlearning .. 5

2.2 Existing technologies for enterprise training .. 7

2.2.1 E-learning platforms ... 7

2.2.3 Microlearning platforms ... 7

2.2.3 Learning Management Systems ... 7

2.2.4 Authoring tools .. 8

2.2.5 AI-powered tools and chatbots .. 8

2.2.6 Key limitations of existing technologies ... 8

2.3 Application of Artificial Intelligence in e-learning .. 9

2.3.1 Personalized and adaptive learning ... 9

2.3.2 Intelligent Tutoring Systems and Virtual Assistants .. 9

2.3.3 AI in learning analytics and assessment ... 9

2.3.4 Enhancing accessibility and inclusion .. 10

2.3.5 Recent trends and innovations ... 10

2.3.6 Ethical considerations and challenges .. 11

2.4 Standards and formats for digital training (SCORM, xAPI) .. 12

2.4.1 SCORM use cases, advantages, and limitations ... 12

2.4.2 xAPI use cases, advantages, and limitations .. 13

2.4.3 Comparison of technical architectures .. 14

2.4.4 Applications in corporate and academic settings ... 15

3. PLATFORM DESIGN AND ARCHITECTURE .. 16

3.1 Functional and non-functional requirements .. 16

3.1.1 Functional requirements ... 17

3.1.2 Non-functional requirements ... 18

3.2 User personas and use cases ... 19

3.2.1 Training Manager ... 19

3.2.2 Domain Expert .. 19

3.2.3 User profiles summary .. 19

3.3 Survey of AI techniques for automated content generation ... 20

3.3.1 AI for content summarization .. 20

3.3.2 Document parsing and preprocessing ... 22

3.3.3 Online resource retrieval ... 24

3.3.4 Slide generation techniques and quiz generation ... 25

3.3.5 Image generation .. 25

3.3.6 Multilingual support ... 26

3.4 Technology stack selection ... 26

3.4.1 Backend architecture and technologies ... 27

3.4.2 AI models ... 32

3.4.3 Frontend architecture and technologies .. 33

3.4.4 Cloud infrastructure and security layer ... 37

4. PLATFORM IMPLEMENTATION AND FEATURES ... 43

4.1 State management .. 43

4.1.1 React Context Providers .. 44

4.1.2 Custom hooks for stateful logic .. 44

4.1.3 State transitions and side effect handling .. 45

4.1.4 Benefits of the architecture ... 45

4.2 Content upload and management .. 45

4.2.1 Supported resource types .. 46

4.2.2 Resource structure and metadata .. 46

4.2.3 Upload workflow ... 46

4.2.4 Resource management features ... 46

4.2.5 User interface and experience .. 46

4.2.6 File management logic ... 48

4.2.7 Security and validation mechanisms ... 48

4.2.8 UI state management ... 48

4.2.9 Utility functions ... 48

4.2.10 Backend integration .. 49

4.3 Online resource retrieval ... 49

4.4 Automated generation of learning modules ... 50

4.5 Editing and customization of content .. 52

4.6 Integration of a chatbot for user assistance ... 53

4.7 Multilingual support .. 54

4.8 Development tools ... 54

5. EXPERIMENTAL RESULTS AND FUTURE WORK .. 56

5.1 Manual testing methodology ... 56

5.1.1 Example of user interaction flow: from user query to microlearning slides.................... 57

5.1.2 Aggregated metrics from the interaction flow ... 67

5.1.3 Aggregated metrics from repeated interaction experiments .. 69

5.1.4 Discussion and analysis .. 70

5.2 Automated testing methodology... 70

5.2.1 Planned performance evaluation .. 71

5.2.2 User experience and usability testing .. 71

5.2.3 Conclusions ... 72

6. CONCLUSIONS AND FUTURE DEVELOPMENTS .. 73

6.1 Limitations and challenges encountered.. 73

6.1.1 Limited input modalities ... 73

6.1.2 Inefficiencies in image generation ... 73

6.1.3 Lack of a visual editing interface ... 73

6.1.4 Basic authentication scheme .. 73

6.1.5 File size limitations and lack of persistent storage ... 74

6.1.6 Absence of structured evaluation ... 74

6.1.7 Fixed slide template and limited customization ... 74

6.1.8 Inaccessibility of source files .. 74

6.1.9 Dependency on external APIs and third-party services ... 74

6.1.10 Summary of key limitations .. 75

6.2 Potential enhancements and future work... 75

6.2.1 Support for expanded input modalities ... 75

6.2.2 Advanced visual asset handling ... 75

6.2.3 Parallel image generation ... 75

6.2.4 Visual slide editing interface .. 76

6.2.5 Flashcard module for spaced repetition .. 76

6.2.6 Formal evaluation and benchmarking ... 76

6.2.7 LLM model selection and customization .. 76

6.2.8 Enhanced authentication and security .. 76

6.3 Strengths of the developed application .. 78

6.4 Conclusion .. 78

BIBLIOGRAPHY .. 79

1

Chapter 1

1. INTRODUCTION
This thesis is the result of an internship carried out at Reply S.p.A., during which I developed
the proposed application.

1.1 Context and motivation
In the contemporary landscape, which is characterized by very rapid technological changes,
there is an ever-increasing need for companies to train their employees effectively in order to
maintain their competitiveness.

However, traditional methods are beginning to show their limitations, often offering long
learning sessions that do not fit well with the current pace of the working world and do not fully
meet the learners’ needs, not considering their pre-existing skills and learning methods.
Uniform content for all, not tailored to individual preferences, fails to stimulate and motivate
learners, who also struggle to maintain high levels of concentration. Traditional courses are
poorly scalable, require physical presence at pre-established times, potentially creating conflicts
with workloads and limiting participation. In addition to these aspects, using traditional
methods for knowledge transfer also presents significant economic disadvantages: the costs of
qualified teachers, equipped classrooms, and the production of learning materials must all be
considered. This lack of customization and flexibility, therefore, reduces the effectiveness of
learning.

In this context, microlearning aims to overcome these limitations, offering more flexible and
dynamic learning experiences. It allows the learner to access the necessary information exactly
when needed and to test the acquired knowledge through practical exercises and quizzes. This
is possible thanks to the division of the teaching material into small “pills” that can be consumed

in a few minutes, so that learners maintain high concentration and can focus on learning one
topic at a time or on acquiring one skill at a time. Even from an economic point of view,
microlearning is advantageous because it reduces the required time and resources to create
content compared to traditional training formats.

At the same time, Artificial Intelligence (AI) is revolutionizing the e-learning sector as it offers
companies powerful tools to automate educational content generation, quickly analyze data,
and provide real-time support to students, thereby greatly increasing system efficiency and
student performance, while reducing costs for companies.

1.2 Research objectives
The present thesis work studies this synergy between microlearning and generative AI with the
aim of creating a web application that allows companies to easily convert complex business

2

content into concise and personalized learning modules, complete with descriptive slides and
interactive quizzes for learner self-assessment. Before actually implementing the platform, an
analysis of the state of the art in the e-learning sector was conducted, focusing on microlearning.
The research highlighted that current tools offer limited customization and often require
advanced technical skills for content creation. To address these limitations, the introduction of
a chatbot assistant was proposed to enhance user experience and reduce manual workload.

In short, the main goal of the project is to develop an intelligent and user-friendly platform for
enterprise knowledge transfer. This platform aims to reduce the manual effort required for
learning content preparation through the use of AI models. It is designed to be accessible even
to users without technical skills and integrates chatbot assistance to guide users during the
creation and editing of slides. Additionally, it offers multilingual support to allow companies
to effortlessly translate training materials.

1.3 Thesis structure
This thesis is divided into six chapters. After the introduction, the second chapter offers an
overview of the state of the art, examining the benefits and the limitations of microlearning, the
main technologies currently used in corporate training, and the potential offered by Artificial
Intelligence tools in the educational field. The third chapter describes the design of the platform,
defining the functional and non-functional requirements, the user personas, and use cases; after
an overview of the AI techniques currently used for automated content generation, the selection
of the adopted software technologies is presented. The fourth chapter illustrates in detail the
implementation of the system, analyzing the developed functionalities, the workflows, and the
architectural logics underlying the prototype. The fifth chapter is dedicated to the experimental
evaluation of the platform: the manual test results are presented, and the generated outputs are
analyzed to demonstrate the capabilities of the system and identify its strengths and limitations.
After the first phase of manual testing, a planned automated test implementation is also
presented. Finally, the sixth chapter offers a conclusive reflection on the results achieved,
highlighting strengths, limitations, and possible directions for future development of the
application.

This path aims to demonstrate how the integration of microlearning and Artificial Intelligence
can be a concrete, innovative, and effective solution to address the challenges of modern
corporate training, contributing to the improvement of knowledge transfer processes in
increasingly complex and interconnected organizations.

3

Chapter 2

2. STATE OF THE ART
This chapter emphasizes the significant role of microlearning training in boosting learner
performance across both professional and educational environments. In particular, the first
paragraph introduces the concept of microlearning, providing the definition and the context and
then focusing on its benefits and limitations. The second and third paragraphs examine the
current technologies used for enterprise training purposes and the integration of Artificial
Intelligence in e-learning. The fourth paragraph, finally, illustrates the standards and formats
used for digital training.

2.1 Microlearning definition and context
Microlearning, also known as bite-sized learning, is a teaching strategy designed to deliver
content in easily digestible chunks, typically through digital platforms [1]. This method focuses
on one specific concept or skill at a time, enabling learners to assimilate “pills” of knowledge
easily. The small learning units involve learning activities that can be completed in a matter of
minutes (usually, a session lasts between 2 and 10 minutes), and can include videos, slides,
quizzes, infographics, games, diagrams, interactive elements, simulations, or short reading
materials to make learning more engaging and provide learners with quick and relevant
information they can apply immediately.

This approach is particularly useful in an enterprise environment for staff training or rapid skills
development. It also proves valuable in educational settings, such as schools or universities,
where microlearning courses can complement traditional ones, offering a more flexible and
dynamic study experience.

An extensive review of literature conducted through the Scopus database and Google Trends,
Leong et al. [2] found that microlearning, although a relatively new concept, is emerging as an
educational tool of global significance and has the potential to soon become an established and
significant trend.

2.1.1 Benefits of microlearning
One of the defining characteristics of the microlearning approach is its on-demand nature,
which aligns closely with the concept of "Just-In-Time" (JIT) knowledge [3]. JIT knowledge,
defined as “delivering the right knowledge at the right time,” emphasizes the practical value of

microlearning, enabling learners to access specific content whenever and wherever needed [4],
also because the content is accessible via mobile devices. This flexibility ensures that learning
can be tailored to individual schedules, making it especially useful for professionals managing

4

a busy workload or students requiring immediate clarification on a topic. It is clear, therefore,
that in work situations with time constraints, this flexibility is particularly advantageous
compared to traditional long and demanding training courses [5].

Several empirical studies show that learning in short and targeted units facilitates more effective
learning. As an illustrative example, Gross et al. [6] conducted experimental studies that
examined the impact of microlearning in the context of Crew Resource Management (CRM)
training. In this study, participants were divided into two groups: one viewed a concise practical
video demonstrating CRM principles in action, while the other watched a traditional lecture on
the same topic. The group engaged with microlearning-based courses not only demonstrated
better knowledge retention immediately after the training, but also retained that knowledge two
weeks later. This effect is largely due to the way microlearning reduces cognitive overload by
presenting content in manageable and focused chunks, allowing learners to internalize one
concept at a time.

The ability to retrieve content at the exact moment of need improves not only knowledge
retention but also supports the immediate application of new skills in real-life contexts. Studies
conducted by Branzetti et al. [7], Cheng et al. [8], and Gross et al. [6] highlight how
microlearning promotes skill acquisition more effectively than traditional methods.

Closely linked to flexibility is the higher level of learner engagement that microlearning fosters.
Research by Sawarynski et al. [9] examined the implementation of an online module system,
and, since its introduction, students were able to personalize their learning paths through a
library of microlearning modules. The impact was significant: the percentage of students
engaging with the modules rose from just 10% to 71% in two years. This data highlights how
short and interactive content is more effective in keeping the attention of students than
traditional long sessions. In addition, microlearning makes use of multimedia resources (such
as videos, quizzes, animations, and simulations), which contribute to making the learning
experience more dynamic and stimulating. This type of interactive approach stimulates
learners’ motivation and also facilitates the immediate application of the knowledge learned,
strengthening learning through practical exercise and real-time feedback. Studies [5], [10]
confirm that learners report greater satisfaction and motivation when interacting with
microlearning content, a crucial factor in professional training contexts where intrinsic
motivation plays a major role in continuous learning.

Even from an economic point of view, the microlearning approach presents many advantages.
Due to the fact that microlearning modules are relatively short and focused, they require less
time and fewer resources to produce compared to traditional training formats. This makes them
inherently more economical, reducing costs associated with physical infrastructure, instructor
time, and printed materials [11], [12]. This economic advantage makes microlearning
particularly attractive to businesses looking for scalable and efficient employee training
solutions. According to findings in [1], companies can reduce overall training costs while still
achieving solid educational outcomes, thus maximizing return on investment.

Furthermore, microlearning offers opportunities for personalization, which is increasingly
recognized as a key factor in successful education and training. Content can be tailored to the
specific needs, goals, and learning styles of individual users, often with the support of AI-based
tools. Several studies confirm the validity of this approach. Hamdan Alamri et al. argue that to
better engage students and improve knowledge retention, it is necessary to consider individual
preferences and adapt learning content accordingly [13]. In particular, adjusting the complexity,

5

format, and pace of lessons enables the creation of personalized experiences that maximize
effectiveness. These adaptive capabilities also promote inclusiveness and accessibility, making
educational materials more widely usable and equitable.

Another significant advantage of this methodology is the immediacy with which students can
put the knowledge they have just acquired into practice. This derives from the fact that the small
learning modules are focused on developing a single competency or skill at a time. This targeted
method not only reinforces retention but also leads to measurable performance improvements.
Studies [14] highlight the benefits of this immediate application, particularly in dynamic
business settings where employees must constantly adapt to evolving tools, processes, or
market conditions. By integrating learning directly into daily tasks, microlearning fosters a
seamless transition from education to execution, making it an essential strategy for modern
workplaces.

In these sectors where knowledge changes quickly (such as technology, healthcare, and
finance), microlearning is a powerful tool for continuous education, satisfying the need of
employees to update their skills frequently and stay informed about emerging trends to remain
competitive. The microlearning short lessons help to reinforce what has already been learned
and to introduce new information quickly and in a non-invasive way. The research [5]
emphasizes its value in competitive and dynamic business environments where having access
to updated information can make the difference.

Microlearning also has positive effects on self-confidence and self-perception, particularly
because it enables learners to achieve small frequent successes that reinforce their sense of
competence and progress [15], [16]. Breaking information into simple units reduces cognitive
overload and allows learners to gradually increase confidence in their abilities.

In summary, microlearning is perfectly suited to the needs of modern businesses and the
behaviors of today’s workers. It is flexible, engaging, and helps people remember information

better, thus promoting continuous learning. Furthermore, it is affordable, easy to adapt, and
allows immediacy in knowledge application, making it very effective for companies. As
industries continue to evolve and the demand for personalized training solutions increases,
microlearning is set to become always more important. The use of Artificial Intelligence will
make it even more powerful, offering customized and easily accessible learning paths.
Companies that choose this path can count on employees who are better prepared, motivated,
and ready for change.

2.1.2 Limitations of microlearning
Despite its growing popularity and proven benefits in modern educational and corporate
contexts, microlearning is not without limitations. While it offers a flexible, efficient, and
engaging learning experience, this approach is not universally suitable across all learning
scenarios. The effectiveness of microlearning depends heavily on the nature of the content, the
complexity of the subject matter, the learning objectives, and the learners’ technological

proficiency.

Microlearning is most effective when applied to topics that can be broken down into self-
contained units, such as procedural knowledge, terminology, or best practices. However, for
subjects that are inherently complex, abstract, or interdependent (such as strategic decision-
making, critical thinking, or comprehensive systems analysis), microlearning may not provide

6

sufficient depth or scaffolding [17]. These topics often require extensive exploration, more in-
depth explanations, iterative learning cycles, and sustained engagement, which are better
facilitated through traditional learning methodologies [18]. The microlearning model may
oversimplify such topics, leading to a fragmented learning experience and superficial
understanding.

While microlearning helps maintain focus for learners with short attention spans and is very
helpful for those with limited time, sustaining long-term motivation can be difficult. Learners
who prefer immersive educational experiences may find microlearning’s brevity disengaging,

particularly when rich discussions, reflective practices, and deeper analysis are minimized or
absent. Furthermore, completing short modules may give a false sense of accomplishment,
where learners believe they have mastered a subject without sufficient reinforcement or
application. This illusion of mastery can discourage further study, potentially compromising
long-term retention and skill development [17].

Additionally, not all learners respond equally well to technology-driven approaches. A
significant proportion of the workforce, particularly those less familiar with digital tools or
online learning platforms, may experience discomfort, skepticism, or disengagement when
confronted with microlearning formats. This resistance can be attributed to several factors,
including lack of exposure to digital learning environments, low confidence in navigating AI-
based interfaces, or a simple preference for the interpersonal and structured dynamics of
traditional classroom settings [19], [20]. Some learners may perceive microlearning as overly
simplistic or lacking the depth and rigor of conventional instruction. Educators and corporate
trainers, too, may exhibit hesitancy in adopting microlearning, particularly if they are
accustomed to established pedagogical methods that offer predictable outcomes and clearly
defined instructional sequences [10].

Although microlearning is intended to reduce cognitive load by delivering content in
manageable segments, it can paradoxically contribute to cognitive overload if not carefully
designed. Densely packed modules or rapid sequencing without sufficient time for reflection
may overwhelm learners. Consuming multiple modules in succession can result in information
overload and mental fatigue, diminishing the effectiveness of the learning process. Therefore,
pacing, structure, and opportunities for consolidation are critical in preventing learner burnout
[17].

Another important issue is related to accessibility and technological equity, which emerges
from the fact that the microlearning approach is based on digital platforms (such as Learning
Management Systems and web applications). Learners who do not have consistent internet
access may not be able to fully engage in microlearning programs and this deepens educational
gaps. Technical problems (such as poor interface design, app malfunctions, or connectivity
troubles) can disrupt the learning experience, leading to frustration and dropout. These
challenges underscore the importance of designing intuitive and inclusive platforms that take
into account different levels of technological access and proficiency [17].

Another important limitation lies in the perception that microlearning, especially when
delivered via AI-powered web platforms, may diminish opportunities for social interaction and
peer-to-peer learning. In traditional settings, learners benefit from discussions, group activities,
and real-time feedback, which foster deeper understanding and collaborative skills.
Microlearning environments must therefore evolve to incorporate interactive elements, such as
discussion boards, chatbots, collaborative tasks, or gamified challenges, to mitigate this

7

perceived isolation and enhance learner engagement. In designing an AI-powered application
for business knowledge transfer, it becomes essential to consider these human-centric elements
and ensure that the platform is not only efficient but also intuitive, inclusive, and socially
responsive [17].

In summary, while microlearning offers significant advantages in terms of flexibility,
adaptability, and scalability, especially when integrated with AI, it is not a solution that works
in every context. The successful application of this approach requires a good understanding of
the content domain, learner profiles, and organizational goals. Combining the microlearning
approach with traditional learning methods can create a balanced system that optimizes training
outcomes. With this hybrid model, companies can address a wider range of learner needs and
preferences, ensuring that technology enhances rather than replaces the foundational principles
of effective learning. Therefore, the proposed AI-driven web application must be designed with
versatility and user-centricity in mind, enabling it to adapt to different learning contexts while
maximizing the benefits of microlearning for business knowledge transfer.

2.2 Existing technologies for enterprise training
In recent decades, enterprise training methods have undergone profound changes due to the use
of digital technologies to improve accessibility, skills development, knowledge retention,
efficiency, and personalization of learning experiences, while reducing the time and cost
associated with traditional training.

This chapter focuses on presenting the commonly used technologies and AI tools for corporate
knowledge transfer, paying particular attention to their strengths and limitations.

2.2.1 E-learning platforms
E-learning refers to education delivered via digital means. It offers a fast and effective way to
deliver and share knowledge with learners across the globe [21]. Services such as LinkedIn
Learning, Coursera for Business, and Udemy Business offer curated video courses on a wide
range of professional topics, including technical skills, leadership, and compliance. These
platforms provide high-quality content and support self-paced learning. However, they do not
facilitate company-specific knowledge transfer and lack tools for adapting content to the
internal processes, tools, or terminology of a given organization.

2.2.3 Microlearning platforms
Microlearning platforms, like Axonify, LearnUpon, and Spekit [22], just to name a few, deliver
short focused learning modules designed to be completed quickly. These tools are better suited
to modern attention spans and mobile-first use cases. Integrating microlearning content into
traditional e-learning platforms allows for more flexible and accessible learning experiences,
meeting time constraints and specific needs of employees [23]. However, they still rely largely
on manual content creation and often lack AI-driven automation or advanced personalization.

2.2.3 Learning Management Systems
Learning Management Systems (LMS) offer dynamic platforms that support both synchronous
and asynchronous learning environments, thus becoming an integral part of the structure and
delivery of online education. These platforms facilitate the distribution of course materials,
monitoring of student progress, and promotion of collaborative learning through discussion
forums and group activities. The flexibility of LMS platforms allows for tailoring their use to

8

specific instructional goals and technological capacities, contributing to improving learner
outcomes and satisfaction [24].

LMS platforms typically are designed to support SCORM [25] and xAPI [25] standards,
allowing for seamless content integration and tracking of learner progress across multiple
systems. Despite these technological capabilities, LMS may not be well-suited for developing
skills that require direct interaction, such as oral communication, and may contribute to feelings
of isolation due to limited face-to-face interaction and social presence in fully virtual settings
[26]. Nonetheless, platforms such as Moodle, SAP Litmos, Cornerstone, Blackboard, and
TalentLMS continue to represent essential tools for corporate training in many organizations.

2.2.4 Authoring tools
The use of e-learning authoring tools has become a fundamental component of digital learning
strategies. These platforms allow businesses to develop interactive training content tailored to
contemporary educational demands. Authoring tools vary in complexity and purpose, from
simple, drag-and-drop interfaces to advanced platforms requiring programming skills, allowing
companies to choose among them based on their technical capabilities and instructional goals.
Solutions like Articulate, Adobe Captivate, and GLO Maker are designed to produce SCORM-
compliant modules, ensuring integration across different Learning Management Systems [27].
By simplifying the content creation process as well as supporting reusability and adaptive
learning paths, these tools reduce training costs and help make knowledge transfer more
effective.

2.2.5 AI-powered tools and chatbots
Emerging tools are beginning to incorporate Artificial Intelligence to automate parts of the
content creation and personalization process [28]. For example, some platforms use Natural
Language Processing (NLP) to generate quizzes from text, while others integrate AI chatbots
for learner support. Tools like Docebo and Tovuti LMS have started incorporating machine
learning for learner analytics and content suggestions.

2.2.6 Key limitations of existing technologies
While the technologies discussed above offer numerous benefits to businesses, they often suffer
from:

• Significant costs associated with installation and maintenance;
• High complexity in design tools, making them difficult for content developers to

master;
• Limited capacity to tailor learning experiences to individual needs;
• Lack of integration across content creation, delivery, and performance tracking;
• Inadequate support for real-time assistance or contextual learning.

These limitations underscore the importance of adopting an integrated, intelligent, and user-
centric approach, which the proposed AI-enhanced microlearning platform aims to address by
combining automated content creation, interactive chatbot support, and modular learning units
in a cohesive digital environment.

9

2.3 Application of Artificial Intelligence in e-learning
AI is transforming the e-learning landscape by introducing intelligent systems that personalize
learning experiences, streamline administrative processes, and support adaptive learning. This
section examines how AI is being integrated into digital learning environments, highlighting its
benefits, challenges, and future prospects.

2.3.1 Personalized and adaptive learning
AI facilitates the development of tailored learning experiences by analyzing individual learner
data to customize content and learning pathways. Methods such as content recommendation,
curriculum sequencing, and automated feedback are leveraged to align instruction with each
learner’s unique needs.

For instance, content recommender algorithms use collaborative filtering to suggest learning
materials aligned with a learner's preferences, knowledge level, and learning goals. Combining
these approaches in hybrid recommender systems results in increased engagement, improved
outcomes, and more effective adaptive learning experiences [29]. Additionally, AI-powered
platforms dynamically adjust content presentation based on learner responses, fostering deeper
understanding and retention.

2.3.2 Intelligent Tutoring Systems and Virtual Assistants
AI-based Intelligent Tutoring Systems (ITS) and Virtual Teaching Assistants (VTAs) are
commonly used to provide real-time support and feedback to learners. These systems use
Natural Language Processing to understand and respond to student requests, generate quizzes,
flashcards, and offer personalized learning paths, tailored to individual learning needs [30].
They are also used to automatically translate content, adapting it to learners from different
linguistic regions and supporting the global deployment of e-learning programs.

Intelligent Tutoring Systems incorporate interactive elements that simulate human-like social
interactions, fostering greater learner engagement and improving the effectiveness of the
educational process.

2.3.3 AI in learning analytics and assessment
Artificial Intelligence is rapidly reshaping e-learning, particularly in the domains of
Personalized Learning (PL) and Adaptive Assessment (AA), by leveraging insights from
cognitive neuropsychology. AI-driven systems enable the customization of educational
experiences by analyzing learners’ cognitive profiles, emotional states, and performance data
to adapt content, feedback, and assessments in real time. This integration fosters increased
engagement, motivation, and learning efficiency, as AI tailors instruction to individual needs,
learning styles, and cognitive abilities.

In addition, AI facilitates learning analytics by monitoring student progress, analyzing learning
behaviors, and predicting academic challenges. These insights support timely interventions to
assist at-risk students and enhance overall educational outcomes.

AI also plays a key role in assessments by automating grading and delivering instant feedback,
which allows educators to focus more on interactive teaching and student engagement.
Adaptive systems further enhance this process by dynamically adjusting task difficulty and
optimizing cognitive load and memory retention through the use of neurophysiological data.

10

Despite these advancements, challenges such as algorithmic bias, data privacy, and equitable
access remain critical concerns. The literature underscores the importance of empirical
validation and ethical frameworks to ensure that AI-enhanced learning environments are not
only effective but also inclusive and fair.

As AI continues to evolve, its potential to revolutionize education through cognitively
informed, personalized, and adaptive learning systems remains both promising and profound
[31].

2.3.4 Enhancing accessibility and inclusion
The integration of Artificial Intelligence with inclusive design principles offers powerful
solutions to enhance accessibility, ensuring that all learners have equitable access to educational
resources, also those with disabilities.

Adaptive learning systems customize content based on individual learning styles and needs,
increasing engagement and comprehension. Natural Language Processing (NLP) and speech
recognition tools are able to convert speech to text and vice versa, helping students with hearing
or speech impairments, while other AI tools can generate descriptive audio for visually impaired
students. AI-powered chatbots and Virtual Assistants can support learners with learning
difficulties, helping them keep pace with their peers, providing personalized guidance,
answering questions, and helping navigate complex concepts throughout the learning process.
Therefore, AI facilitates compliance with accessibility standards, promoting inclusivity across
educational platforms [32].

Despite these benefits, challenges such as data privacy concerns, technical limitations, and
implementation costs must be addressed to fully realize AI’s potential in inclusive education.

2.3.5 Recent trends and innovations
Recent literature highlights the rise of ChatGPT-style conversational agents in e-learning for
corporate and higher education. For instance, Bettayeb et al. conducted a systematic review of
ChatGPT in education, highlighting numerous benefits such as personalized assistance, instant
feedback, and improved accessibility, all contributing to greater learner engagement and
improved educational outcomes [33]. Similarly, Choudhary et al. surveyed the use of ChatGPT
in corporate training, concluding that AI-driven chatbots significantly enhance learner
satisfaction by providing on-demand, personalized guidance and automating routine support
tasks [34]. A large meta-analysis conducted by Wang et al. found that the use of ChatGPT was
associated with a large improvement in student performance and a moderate increase in their
attitudes and higher-order thinking [35]. Collectively, these studies suggest that conversational
AI has the potential to simulate human-like tutoring and engage learners dynamically.

Generative models like DALL·E are increasingly used to produce educational images and
infographics on demand. Empirical studies suggest that tailored visuals can aid learning by
leveraging visual memory. For instance, Ichimura et al. created thousands of synthetic medical
images for training ophthalmology students, finding that an image-based learning quiz
significantly outperformed a traditional video lecture for identifying eye tumors [36]. Their
analysis showed that trainees exposed to diverse AI-generated visuals achieved higher
diagnostic accuracy and faster decision times than those who only watched a narrated slide
presentation. This suggests that carefully designed AI visuals can engage pattern recognition
and reinforce learning better than text alone. Educators are therefore advised to use AI-

11

generated images in supportive roles (e.g., charts, diagrams, illustrative pictures) that are
directly in line with learning goals, while avoiding random or decorative images that may
distract rather than help. In short, generative imagery tools offer scalable ways to produce
tailored educational graphics, and preliminary evidence indicates they can enhance
comprehension and recall in technical subjects.

Meanwhile, AI-driven Text-To-Speech (TTS) and Automatic Speech Recognition (ASR)
technologies are transforming both accessibility and assessment in e-learning. High-quality
neural TTS can generate realistic narrations for any text, enabling audio-based microlearning
(podcasts, voice-over slides) without the need for human voice actors. Such dual-mode
presentation (read-along audio plus on-screen text) supports Universal Design for Learning
(UDL) by meeting diverse learner preferences and needs. For example, TTS narration allows
learners with visual impairments or reading difficulties to access content more easily and can
boost retention by combining auditory and visual input. On the other side, ASR technologies
are increasingly used in language training and assessment. Liu et al. reported positive feedback
from English learners using ASR tools in speaking practice exercises; both students and
instructors appreciated the automatic scoring and found it helpful for assessing speaking
proficiency [37]. In another controlled experiment, Wilschut et al. compared a traditional
typing-based vocabulary app with a speech-based version using ASR. They found that speaking
practice using ASR achieved equivalent learning gains to typing practice, and that an intelligent
scheduling algorithm (based on ACT-R memory models) improved vocabulary recall in both
modes [38]. These findings suggest that ASR can effectively support scalable conversational
exercises, such as pronunciation or oral exams, while maintaining learning outcomes
comparable to traditional methods. In summary, voice technologies improve accessibility and
flexibility. TTS systems provide automated narration and audio course units (benefiting all
learners, especially those with reading disabilities), while ASR can support novel interaction
modes (e.g., voice quizzes and automated oral assessments). Early studies demonstrate that
these tools are well-received by learners and can maintain, or even enhance, learning
performance.

2.3.6 Ethical considerations and challenges
The deployment of AI-driven tools (adaptive tutors, intelligent assessments, language models,
etc.) in e-learning promises personalization and efficiency, but also raises several ethical
concerns that must be carefully addressed to ensure fairness, transparency, and respect for
learners’ rights [39], [40], [41]. Key ethical considerations include:

• Data privacy and security: AI systems rely heavily on collecting and analyzing vast
amounts of learner data, including sensitive personal information. Ensuring robust data
protection mechanisms and compliance with privacy regulations (such as GDPR) is
critical to safeguard learners' confidentiality and prevent misuse of data [42];

• Bias mitigation and fairness: AI systems must be designed to avoid reinforcing existing
biases in educational content and assessment [43]. Systems trained on biased models
should incorporate bias detection and regular auditing to ensure equitable
recommendations and assessments [31];

• Transparency and explainability: Learners and educators often lack a clear
understanding of how AI systems make decisions. Students should know what data is
collected and how AI-driven feedback is generated. Ethical AI in education should

12

prioritize explainability to build trust and allow users to understand and challenge AI-
driven outcomes [44], [45];

• Accountability and governance: Clear policies and oversight mechanisms are needed.
Educational organizations are encouraged to establish governance to monitor AI use
and assign responsibility [31];

• Equity and accessibility: AI tools should ensure equal opportunities. In practice, this
means addressing technology gaps and designing non-discriminatory algorithms so that
all students or employees benefit equally [31];

• Human oversight: AI should complement and not replace human judgment [39]. Experts
recommend keeping instructors or managers in the loop (for example, faculty reviewing
AI-graded work or trainers supervising AI-driven learning paths) to maintain ethical
standards.

2.4 Standards and formats for digital training (SCORM, xAPI)
SCORM (Sharable Content Object Reference Model) is the older, widely‑adopted e‑learning

standard originally developed by the ADL Initiative for the U.S. Department of Defense. It
defines how course content is packaged (as “SCOs”) and how learning modules communicate
with a Learning Management System via a JavaScript API [46]. SCORM was created to
promote interoperability and reusability, allowing courseware developed in the SCORM format
to be efficiently shared across different LMS platforms in a standardized way [46]. In practice,
SCORM packages are launched within an LMS, which tracks course status, completions, and
simple scores via the SCORM runtime data model [46].

However, SCORM is inherently LMS‑centric. Panagiotakis et al. note that SCORM is deeply
integrated with the LMS and cannot operate independently, meaning content must be delivered
within a compliant LMS in order to record any data [47]. Its tracking model is also limited:
SCORM can record basic metrics such as course completion, test results, or time spent, but it
soon became clear that these capabilities were insufficient to meet evolving learning and data
tracking needs [48]. In short, SCORM’s architecture binds content to an LMS and only captures
formal course-based interactions.

By contrast, xAPI (the Experience API or Tin Can API) was introduced in 2013 to overcome
these limitations. It is a platform‑neutral learning data specification designed to record any
learning experience [48], [49]. Technically, xAPI uses a RESTful web service model: learning
activities send JSON‐formatted statements (actor‑verb‑object triples) over HTTP to a dedicated

Learning Record Store (LRS) [49], [50]. The LRS is a repository that stores all xAPI statements;
content and devices (from mobile apps to simulations and games) act as Learning Record
Providers (LRP) that issue statements. Panagiotakis et al. describe the LRS as more than just a
data store; it also serves as a source for data aggregation and analytics, capable of ingesting
statements from any source in a standardized format [47]. In short, xAPI decouples activity
tracking from any specific LMS and allows learning data to be collected from diverse tools and
contexts.

2.4.1 SCORM use cases, advantages, and limitations
SCORM has historically been used for formal online courses in both corporate and higher-
education LMSs. A typical use case is compliance or certification training delivered as
packaged course modules in a company LMS or university learning platform. Due to its status

13

as the de facto standard for interoperability, SCORM is supported by most commercial and
open-source LMSs [46], [51].

One of SCORM’s biggest strengths is its maturity and broad support. It established a common
model that enables content creators to distribute learning materials across a wide range of LMS
platforms efficiently [46]. Its tracking and sequencing rules (especially SCORM 2004) allow
defining simple learning paths and completion rules. Many organizations still rely on SCORM
because their existing training content and systems were built around it.

However, SCORM also has constraints. Since it requires content to run within an LMS, it
cannot track learning that occurs outside that environment [47]. It only records basic data
(completion, quiz scores, session time) and cannot capture rich behavioral data or informal
learning activity. For this reason, SCORM quickly proved to be too limited for modern learning
needs [48]. Its dependence on packaged course files (typically ZIP archives) can be
cumbersome for content authors. Furthermore, once content is launched, the SCORM data
remains locked in the LMS, with minimal support for integration into modern analytics tools
or cross‑system data sharing. Ultimately, SCORM’s LMS‑centric design makes it inflexible
and unable to exploit new learning modalities (mobile apps, games, social learning, etc.) [47].

2.4.2 xAPI use cases, advantages, and limitations
xAPI has been applied in corporate and academic contexts where richer data is needed. For
example, xAPI can record on-the-job training activities, simulations, discussions, or offline
learning. According to an ADL report, xAPI enables the tracking of learners as they carry out
work-related tasks, generate outputs, interact with others, collaborate, and participate in any
other online activities [48]. In corporate learning, xAPI is used to measure informal and social
learning, compliance exercises in realistic simulations, or mobile app usage. In education, xAPI
supports learning analytics systems by aggregating diverse student activities into a common
record [47], [49].

The core advantage of xAPI is its flexibility. Unlike SCORM, xAPI is not limited by content
format or tied to a specific LMS: any learning action (watching a video, reading a PDF,
conducting a lab, participating in a forum) can be captured as an xAPI statement [47], [49]. As
Panagiotakis et al. demonstrate, xAPI enables the tracking of diverse activities across multiple
platforms, with statements originating from sources such as websites, mobile apps, simulators,
or virtual games [47]. Another major advantage is xAPI’s support for offline learning: learners
can complete activities without an active internet connection, and once reconnected, the system
transmits the stored statements to the Learning Record Store [47]. Thanks to its structured
statement format, xAPI integrates seamlessly with Business Intelligence (BI) tools, enabling
the generation of detailed reports, an aspect increasingly emphasized by researchers for its
potential in advanced analytics [47]. Another benefit is connectivity: multiple LRSs (or an LMS
with embedded LRS) can share xAPI data, enabling federated or lifelong learning records [47].
In summary, xAPI provides much richer, granular data and frees learning data from the confines
of a single LMS [47], [49].

Despite its power, xAPI presents some challenges. Its flexible data model, while powerful,
requires careful management of semantics. As a technical report warns, xAPI does not enforce
consistent use of terminology across systems. Without standardized vocabularies, statements
generated by one system may be difficult for another to interpret [49]. To ensure meaningful
data exchange, organizations must adopt shared xAPI profiles or schemas. There are also

14

practical considerations: every xAPI deployment requires an LRS infrastructure (though many
LMS platforms now include an LRS). Adoption has been relatively slow, with many
organizations still relying on SCORM-based systems. As a more recent standard (introduced in
2013 and approved by IEEE in 2020 [50]), xAPI may not be fully supported by older tools and
content, which often need updates to ensure compatibility.

2.4.3 Comparison of technical architectures
SCORM packages content (HTML/Java/video/etc) with a manifest that describes SCOs. When
a learner launches a SCO in an LMS, the LMS provides a JavaScript API endpoint (“API

adapter”) that the SCO calls to initialize, and to get/set runtime data (CMI -Computer Managed
Instruction- data model) during the session [46]. At session end or on calls, the SCO reports
data (e.g., lesson status, score) back to the LMS API, which the LMS stores. The learner’s

interactions are thus tracked only while the content is hosted in that LMS. The architecture is
tightly coupled: without an LMS (or a SCORM player), the content cannot send or store any
data [47].

In xAPI, there is no single “master” environment. Instead, any learning application (web app,

mobile app, simulator, etc.) can act as an xAPI Learning Record Provider (LRP) and send
statements over the network to one or more LRSs [47], [49]. xAPI uses a RESTful API with
JSON: each statement is a small JSON document (who did what, when, and optional context).
For example, an LMS might send “Alice completed Quiz 1” when a quiz is done, while a mobile

app might send “Alice watched Video 3” separately. The LRS exposes REST endpoints (via

HTTP GET/POST) to receive and store these statements [50]. Any system or tool can retrieve
learning data from the LRS via HTTP as well. This distributed architecture allows xAPI to
decouple content generation from storage: learning content does not need to know where data
is going ahead of time [47]. Panagiotakis et al. illustrate that an LRS can store learning
activities from a wide range of sources; whether the statement comes from a game, a mobile
application, or a webpage, it can all be captured and stored using the same format within the
LRS [47]. Crucially, xAPI supports multiple LRSs, cross-system sharing, and offline batch
updating (statements can be sent whenever a connection is available [47]).

The table below highlights the main distinctions between SCORM and xAPI in terms of content
delivery, data storage, data scope, and interoperability, illustrating how xAPI offers greater
flexibility and extensibility for modern learning environments:

Feature SCORM xAPI

Content delivery Packaged courses (ZIP) launched
via LMS

Content and activities can run
anywhere; statements sent via REST

State storage LMS internal database (proprietary
to each platform)

Learning Record Store, either
standalone or embedded in an LMS

Data scope Limited to course/session-level data
(completion, score, time)

Any learning event (activities,
assessments, clicks, etc.)

Interoperability Based on legacy specifications with
a fixed data model

JSON-formatted statements; use shared
vocabularies and xAPI profiles for

semantic interoperability
Table 2.1: Key architectural differences between SCORM and xAPI

15

2.4.4 Applications in corporate and academic settings
In corporate training, SCORM has long been the norm for standard e‑learning modules

(compliance, product training, certifications). xAPI is now gaining traction for more dynamic
scenarios: for example, recording simulations or informal social learning (forums, peer
coaching) that occur outside the LMS. Industry reports note that xAPI enables flexible tracking
of a virtually limitless range of learning activities [48], so learning managers can connect
training to business metrics. Some corporations implement xAPI in custom apps or immersive
training, then feed all data to a corporate LRS for analytics.

In higher education, LMS platforms historically relied on SCORM for interactive content. New
research on learning analytics encourages institutions to capture data that extends beyond the
traditional confines of the university [31]. In this sense, xAPI is interesting because it allows
the integration of data from multiple sources, making it useful for university-scale analysis
projects. A recent study has identified SCORM and xAPI as key standards for interoperability
in LMSs [51]. Some universities are experimenting with using xAPI to track student
engagement across different platforms, but full institutional adoption is still limited: most
formal courses continue to rely on LMS and SCORM, while xAPI is mostly used in research
projects or blended learning initiatives.

Recent studies emphasize that SCORM and xAPI fulfill different needs. SCORM remains a
stable standard for conventional, LMS‑hosted e‑courses [46], yet it falls short in capturing the
diverse cross‑platform interactions of modern learning. Conversely, xAPI was specifically
designed to overcome SCORM’s limitations by focusing on learners and their activities [49].
Panagiotakis et al. conclude that xAPI represents a much broader technology compared to
SCORM, operating independently of LMSs and supporting the vision of “lifelong learning”
[47]. The drawback is that xAPI requires a new Learning Record Store infrastructure and
careful semantic governance, whereas SCORM leverages existing LMS databases and
workflows. In practice, many organizations blend both standards: using SCORM for legacy
courses and adopting xAPI for advanced learning experiences. Several authors note that the
emerging CMI5 standard (which combines xAPI with launch rules) aims to facilitate migration
[46]. Ultimately, the literature suggests choosing the standard based on use case: SCORM for
traditional course content delivery [46], and xAPI for broad flexible tracking of distributed
learning activities [47], [48].

16

Chapter 3

3. PLATFORM DESIGN AND

ARCHITECTURE
This chapter outlines the key requirements and design considerations guiding the development
of the AI-based microlearning platform for enterprise knowledge transfer. The goal is to define
a solution that can efficiently support Subject Matter Experts (SMEs) and employees during the
creation, customization, and fruition of microlearning content, without requiring advanced
technical skills. For this purpose, the system uses cutting-edge AI models, offering a high
degree of usability and ensuring compatibility with real-world enterprise contexts.

The first paragraph details the functional and non-functional requirements of the platform.
These requirements describe what the system must do (such as enabling AI-assisted content
generation, user interaction through a chatbot, and multilingual support) as well as qualities it
must possess, including usability, performance, scalability, reliability, availability,
maintainability, and security.

The second paragraph presents user personas and use cases, which help contextualize the
platform’s requirements through realistic user behaviors and scenarios. This section defines

typical users (such as Training Managers and Domain Experts) and explores how each interacts
with the platform to accomplish specific goals.

The third paragraph surveys the core AI techniques used for automated content generation.
These include methods for content summarization, document parsing and preprocessing, slide
and quiz generation, and multilingual support. This section provides a technical foundation for
understanding how AI capabilities will be integrated into the platform to enhance user
experience and reduce manual workload.

The fourth paragraph presents an in-depth overview of the technology stack chosen for the
development and deployment of the system. Each subsection is dedicated to a key component
of the architecture, detailing the reasons behind the selection of specific tools, frameworks, and
services.

3.1 Functional and non-functional requirements
In the development of modern educational platforms, it is essential to clearly define the system
requirements to ensure alignment with user needs and technological capabilities. This
paragraph presents both the functional and non-functional requirements that guided the design
and implementation of the proposed solution. Functional requirements focus on the core
features that the platform must provide to support content creation, management, and
personalization, while also enabling intelligent assistance through AI-driven tools. By outlining

17

these requirements, we establish a foundation for building an intuitive, flexible, and intelligent
learning environment that can adapt to diverse user scenarios and promote efficient knowledge
delivery.

3.1.1 Functional requirements
The platform has been designed to support users throughout the entire process of learning
content creation, from initial input to final delivery, combining automation, flexibility, and
intelligent assistance. One of the core functionalities is content upload and management. Users
can upload multiple document formats, including URLs, PDFs, Word documents (DOCX),
Excel spreadsheets (XLSX), and plain text files (TXT). Once uploaded, the system
automatically extracts the textual content from these sources. Users can manage the sources
and, in particular, they can add or remove them, edit the name, title, and description.

In cases where users do not upload any input or wish to supplement their material with external
information, the platform also supports online resource retrieval. Leveraging the Tavily search
engine, the system can automatically perform searches on the web to find relevant and credible
content based on user queries or contextual needs. This ensures that learning resources are
enriched with updated and reliable information, broadening the scope of the educational
material generated.

A central feature of the platform is its AI-driven content generation capability. Using Natural
Language Processing and Large Language Models (LLMs), the system is able to analyze raw
input and transform it into structured learning modules. These modules include both slide-based
presentations and interactive quizzes for learner self-assessment. Users can choose between
different levels of summarization (ranging from detailed explanations to concise overviews)
depending on their learning goals or audience. The quiz generation component produces
questions in both multiple-choice and single-choice formats, encouraging engagement and
reinforcing understanding through interactive learning.

Beyond automatic generation, the platform emphasizes user control and personalization. All
generated content can be edited to suit individual preferences or institutional standards. Users
can modify slide titles, revise descriptions, add and remove slides, as well as split or merge
them. The structure of the content can also be refined (for example, by converting paragraphs
into bullet points, emphasizing keywords, or reorganizing sections for improved clarity).
Likewise, quizzes can be customized: users can add new questions, remove or edit existing
ones, and edit answer options, allowing for highly tailored experiences.

To make the platform even more accessible and user-friendly, an integrated AI-powered chatbot
provides ongoing assistance. This virtual assistant is capable of understanding natural language
queries and can guide users through various tasks, such as managing uploaded resources,
editing content, generating new modules, or navigating the platform’s features. This

conversational support system enhances usability, particularly for users who may not be
familiar with more technical tools or interfaces.

Lastly, recognizing the global nature of modern education and collaboration, the platform
includes multilingual support. All content generated can be automatically translated into
multiple languages, making it easier to share learning resources across different regions, teams,
or linguistic backgrounds. This feature not only broadens the platform’s reach but also promotes

accessibility and knowledge sharing on an international scale.

18

In summary, the system brings together robust functionality, intelligent automation, and user-
centered design to create a versatile learning content generation platform. Each feature (whether
related to document handling, AI-powered synthesis, personalization, or multilingual support)
contributes to an integrated workflow aimed at simplifying the creation of rich, engaging, and
adaptable educational materials.

3.1.2 Non-functional requirements
In addition to the core functional capabilities, the platform must also meet a series of non-
functional requirements that are crucial to ensuring a seamless, secure, and sustainable user
experience. These requirements address aspects such as usability, performance, reliability,
maintainability, and security (each contributing to the platform’s overall effectiveness and long-
term viability).

Usability stands as a cornerstone in the platform’s design philosophy. The interface must be

intuitive and user-friendly, enabling individuals of varying technical backgrounds to navigate
and utilize the system. Whether the user is a corporate trainer or a learner, the interface should
feel natural and require minimal instruction.

Equally important is the system’s performance and scalability. Given the computational

demands of AI-driven content generation and real-time online search integration, it is essential
that the platform delivers fast response times. Users should experience minimal delay when
generating slides or quizzes, retrieving external resources, or interacting with the AI assistant.
Moreover, the platform must be designed to support multiple users simultaneously. As
organizations grow and more users interact with the system at once, the underlying
infrastructure should be capable of scaling accordingly, maintaining high performance even
under increased load.

Reliability and availability are also critical aspects to consider, especially given the platform’s

goal of supporting continuous learning and uninterrupted content development. Technical
downtimes or unexpected failures can significantly hinder user productivity and compromise
trust in the system. At this stage, no specific mechanisms such as fault tolerance, server
redundancy, or real-time monitoring have been implemented. However, introducing such
measures in the future could prove highly beneficial. Ensuring high system availability would
allow the platform to remain functional even in the event of partial outages, thus improving
user experience and making the system more resilient to unforeseen issues. As the platform
evolves and scales to accommodate a growing number of users and more complex use cases,
integrating these kinds of reliability strategies could play a key role in maintaining performance
and user confidence over time.

Maintainability is another key requirement, especially in a rapidly evolving technological
landscape. The platform should be constructed using a modular architecture that supports easy
updates and extensions. This modularity allows new AI models or features to be integrated
without requiring major changes to the existing codebase, facilitating ongoing innovation while
preserving system stability. Developers should be able to isolate and update specific
components without affecting the rest of the system.

Security considerations are fundamental, particularly when dealing with sensitive user-
generated content and external data sources. At a basic level, the platform must implement an
authentication system to ensure that only authorized users can access its features. This protects

19

both the users and the integrity of the system itself. In addition, a dedicated middleware layer
should act as a gatekeeper between the frontend and backend, filtering incoming requests and
blocking any unauthorized access attempts from external sources. This not only safeguards the
application from malicious attacks but also reinforces data privacy. File handling must be
conducted with care, using secure protocols such as temporary storage and base64 encoding for
data transfer. These measures reduce the risk of data leaks and ensure that files are not
permanently stored unless explicitly required by the user.

3.2 User personas and use cases
To better contextualize the platform’s functional requirements and validate its design choices,
it is essential to identify the typical user personas and analyze the core use cases they engage
in. The platform is intended to support a broad range of enterprise users with varying levels of
technical expertise, knowledge ownership, and learning objectives. This section defines two
primary user personas: the Training Manager and the Domain Expert. Each persona represents
a different perspective in the knowledge transfer lifecycle and contributes to a distinct phase of
the microlearning workflow.

3.2.1 Training Manager
The Training Manager plays a key role in supervising the creation, delivery, and tracking of
corporate training materials. Their main objective is to ensure that learning modules are aligned
with the organization’s objectives and are easily accessible to employees across different
departments and locations. They interact with the platform to review AI-generated content
before publication, ensuring that all microlearning materials meet quality and consistency
standards. By streamlining the content approval process and maintaining alignment with
internal guidelines, the Training Manager helps accelerate the launch of training programs
while improving overall compliance and efficiency.

3.2.2 Domain Expert
The Domain Expert is a Subject Matter Specialist (e.g., engineer, HR lead, or sales trainer) who
possesses deep knowledge in a specific business area but may not have formal skills in
instructional design. Their main objective is to share their expertise, ensuring that their
specialized knowledge is accurately represented. On the platform, the Domain Expert interacts
by uploading documents (such as technical reports, procedures, or internal guides) and using
the AI-powered assistant to automatically generate learning modules, including slides and
quizzes. They then edit and refine the generated content through the chatbot. This process
empowers experts to contribute directly to training materials, eliminates technical barriers, and
accelerates the availability of content.

3.2.3 User profiles summary
Persona Primary role Main interactions with the

platform
Expected benefit

Training
Manager

Supervises learning
delivery

Reviews, customizes, and
approves content; monitors

training progress

Ensures quality and
alignment of

learning programs
Domain Expert Contributes domain

knowledge

Uploads content; generates
and edits modules using an

AI assistant

Shares expertise
efficiently without

technical bottlenecks
Table 3.1: Use case interactions

20

By mapping these user personas and their respective behaviors, the platform’s user experience

and feature set can be tailored to better meet the diverse needs of stakeholders involved in
corporate knowledge transfer.

3.3 Survey of AI techniques for automated content generation
AI-driven automation plays a foundational role in the development of modern microlearning
platforms. Recent advancements in Natural Language Processing (NLP) and Large Language
Models have enabled a variety of intelligent operations that streamline the transformation of
raw enterprise content into interactive learning materials. This section provides an overview of
the key AI techniques leveraged in the system for automating content generation.

3.3.1 AI for content summarization
In the proposed microlearning platform, automated content summarization plays a fundamental
role because it enables the transformation of complex corporate documents into concise and
easily consumable learning content. This capability is supported by advanced Natural Language
Processing algorithms and is typically implemented using two primary approaches [52]:

• Extractive summarization: This technique focuses on selecting the most relevant
sentences directly from the original text. The resulting summary preserves the exact
wording and sentence structure. While this method is efficient and grammatically
reliable, it may lack coherence and smooth transitions between the extracted segments;

• Abstractive summarization: Abstractive methods interpret the meaning of the text and
generate entirely new sentences to convey the main ideas. Although this approach is
more sophisticated and computationally demanding, it produces summaries that are
more natural, fluid, and similar in quality to those written by humans.

The most advanced summarization systems are built on Transformer-based architectures
(which excel in understanding context and relationships within long sequences of text) such as:

• GPT-4.1 (OpenAI): An internal advancement over GPT-4, GPT-4.1 delivers improved
summarization quality, especially in instruction-following, long-context retention (up
to 128k tokens), and robustness across diverse domains. Frequently used via OpenAI’s

API and integrated into advanced copilots [53];
• GPT-4.5 / GPT-4o (OpenAI): These are the latest iterations of the GPT family. GPT-4o

(Omni) introduces multimodal capabilities (text, images, and audio) and significantly
improved efficiency, while maintaining high summarization fluency, coherence, and
contextual retention [54].

• BART (Meta AI): A hybrid model combining BERT (for encoding) and GPT (for
decoding), capable of both extractive and abstractive summarization. It delivers fluent
outputs with strong contextual coherence [55];

• T5 / FLAN-T5 (Google): T5 (Text-To-Text Transfer Transformer) frames all NLP tasks
(including summarization) as a text-to-text problem, offering flexibility and high-
quality outputs even for domain-specific texts [56]. FLAN-T5 is a fine-tuned variant that
excels in instruction-based tasks, including summarization;

• PEGASUS / PEGASUS-X (Google): Optimized specifically for summarization,
PEGASUS is trained using a gap-sentence generation objective, making it particularly
effective for long documents [57]. PEGASUS-X extends these capabilities to longer
input sequences with improved scalability;

21

• DistilBART: A lighter version of BART, designed for faster execution and lower
computational load, while retaining a significant portion of BART’s summarization

quality [58];
• Longformer / LongformerEncoderDecoder (Allen AI): Designed for handling very long

documents, Longformer uses sparse attention mechanisms to reduce computational
complexity and memory usage [59].

These models can be integrated through APIs or hosted frameworks such as Hugging Face,
depending on the desired balance between cost, performance, and scalability. Overall, content
summarization through AI enables the platform to rapidly generate accurate and engaging
learning material while reducing the manual effort required from Subject Matter Experts.

The following table summarizes the performance characteristics of key models used for
summarization, based on criteria such as output quality, execution time, resource needs, and
integration complexity:

Model Type Cost Quality
output

Execution
time

Integration
complexity

Scala-
bility

GPT-4.1 Extractive/
Abstractive

Per token
(input: $2/1M

tokens,
cached input:

$0.5/1M
tokens,

output: $8/1M
tokens) [60]

Excellent
coherence

and
accuracy

Medium-
slow (long

texts)

Medium (via
OpenAI API)

High
(cloud-
native)

GPT-4.5 Extractive/
Abstractive

Per token
(input: $75/1M

tokens,
cached input:

$37.5/1M
tokens,
output:

$150/1M
tokens) [60]

Very high,
human-like
summaries

Medium-
slow (long

texts)

Medium (via
OpenAI API)

High
(cloud-
native)

GPT-4o Extractive/
Abstractive

Per token
(input:

$2.5/1M
tokens,

cached input:
$1.25/1M

tokens,
output:
$10/1M

tokens) [60]

Very high,
human-like
summaries

Medium-
slow (long

texts)

Medium (via
OpenAI API)

High
(cloud-
native)

BART Extractive/
Abstractive

Open source Good
contextual
summaries

Medium Medium (via
Hugging

Face)

Medium

T5 Abstractive Open source Flexible
and

Medium-
slow

Medium Medium

22

accurate
summaries

PEGASUS Abstractive Open source High
accuracy
for long

texts

Slow Medium Medium
-High

DistilBART Extractive
Abstractive

Open source Fast and
lightweight

Fast Low (easy
Hugging

Face setup)

Medium

Longformer Extractive Open source Optimized
for long

input
handling

Medium High Medium

Table 3.2: Comparison of AI models for content summarization

In the proposed microlearning platform, summarization models are integrated as part of a larger
content pipeline. The selected models must provide a balance between high-quality output and
operational efficiency to support real-time, scalable learning content generation. For this
reason, GPT-4.1 was chosen as the primary model for content summarization. GPT-4.1
combines advanced natural language understanding with strong abstractive capabilities,
producing highly fluent, coherent, and contextually accurate summaries across a wide range of
business and technical domains. Compared to open-source alternatives, GPT-4.1 offers superior
handling of long and complex documents, requires minimal fine-tuning, and integrates
seamlessly via API. Despite its higher token-based cost, its reliability, multilingual support, and
reduced need for pre- and post-processing make it ideal for production environments where
consistency and quality are essential.

3.3.2 Document parsing and preprocessing
One of the fundamental steps in the automated content generation pipeline is document parsing
and preprocessing, because it allows unstructured or semi-structured data to be transformed into
structured formats, thus making them suitable for processing by AI models.

To handle the variety of existing document formats (such as PDF, Word, Excel, PowerPoint,
audio files, scanned images, or real-time speech), there are numerous tools and libraries
available, both open-source and commercial.

In the specific case of text documents, real-world applications use Python libraries for content
extraction and preprocessing, depending on the source file type. For PDF files, for example,
PyPDF2 is commonly used for simple parsing tasks, such as continuous text extraction or basic
metadata retrieval [61]. When dealing with more complex PDFs (such as those containing
multi-column layouts, tables, or embedded images), tools like pdfplumber and pdfminer.six are
more effective, as they can handle complex document structures more accurately. pdfplumber
allows for granular extraction of elements like bounding boxes, table structures, and line
coordinates, which are essential when aiming to preserve the spatial integrity of educational
materials (e.g., diagrams or tabular data) [62]. pdfminer, on the other hand, provides access to
typographic features such as font weight, style (bold, italics), and character spacing, which can
be useful for detecting emphasized text (e.g., definitions, titles, key terms) [63]. PyMuPDF
(fitz) offers a superior handling of layout structure compared to simpler libraries like PyPDF2

23

and includes support for text and image extraction, layouts, annotations, and fonts, proving very
useful in complex document pipelines [64].

Instead, python-docx provides access to text contained in Word documents (.docx), as well as
applied styles (headings, bold, italics), tables, embedded images, and other structural elements
[65]. It is suitable for analyzing administrative, academic documents, or formatted reports.

In the case of Excel files, two libraries are mainly used: openpyxl and pandas. openpyxl allows
reading, writing, and editing Excel (.xlsx) files [66]. It allows the extraction of values from
cells, formatting, formulas, styles, tables, and charts. It is useful in contexts where data are
already structured in tabular form. pandas, although it is a data analysis library, offers a high-
level interface for reading Excel and CSV files [67]. It uses openpyxl (for .xlsx) or xlrd and
xlsxwriter internally, simplifying the import and manipulation of numeric and textual datasets.

Meanwhile, python-pptx provides tools for reading and manipulating PowerPoint presentations
(.pptx) [68]. It allows the extraction of slide text, titles, text box content, images, and speaker's
notes. It is very useful for generating or analyzing multimedia and educational content.

Python's native functions (open, read, readlines) can be used to easily read .txt files [69]. This
method is suitable for linear content without complex formatting, such as logs, scripts, and
simple text documents.

File format Library/tool Key features

PDF pdfplumber, pdfminer.six,
pyPDF2, PyMuPDF

Extraction of text, tables,
layout info, and metadata

Word (.docx) python-docx Access to paragraphs,
headings, and table content

Excel (.xlsx) pandas, openpyxl Tabular data extraction and
manipulation

PowerPoint (.pptx) python-pptx Slide content extraction
(titles, bullet points)

Plain text (.txt) Native Python I/O Direct text file reading
Table 3.3: Common Python libraries for document parsing by file type

In cases where documents are scanned or presented as images, Optical Character Recognition
(OCR) becomes essential. Tesseract, an open-source solution, is used for printed text and offers
multilingual support [70], though it is less accurate with cursive handwriting. Google Cloud
Vision API and Microsoft Azure Computer Vision provide more robust support for handwritten
text, layout detection, and multilingual content [71], [72]. Amazon Textract is specialized in
reading structured documents, such as forms or invoices, and can extract tables and key-value
pairs [73]. The following table provides an overview of key OCR technologies used in
production environments for digitizing printed or handwritten text.

Tool/service Type Key features

Tesseract OCR On-device Open-source, suitable for printed
text

Google Cloud Vision, Azure OCR,
Amazon Textract

Cloud-based High accuracy, support for complex
layouts and handwriting

recognition
Table 3.4: OCR tools and services

24

When audio input needs to be transcribed into a textual format (e.g., for processing webinars,
meetings, or podcasts), Speech-to-Text services are often integrated. These services differ by
supported languages, real-time capability, and specialization. The table below outlines some of
the most relevant options:

Service Key features

Google Cloud Speech-to-Text [74] High accuracy, keyword and punctuation support
Microsoft Azure STT [75] Customizable model
Amazon Transcribe [76] Optimized for call transcription
IBM Watson STT [77] Domain-adaptive transcription

Table 3.5: Speech-to-Text services

For privacy-conscious scenarios or offline use, open-source alternatives such as Vosk and
Mozilla DeepSpeech offer on-device speech recognition. Vosk is lightweight, compatible with
platforms like Raspberry Pi, and supports multiple languages, making it suitable for real-time
transcription in low-resource environments [78]. DeepSpeech, although more resource-
intensive, is based on neural networks and supports fine-tuning, making it flexible for custom
applications [79].

After text extraction, the preprocessing pipeline often includes language-specific NLP analysis,
such as tokenization, sentence segmentation, named entity recognition, and keyword extraction.
For this process, the platform may use Google Cloud Natural Language API or Azure Text
Analytics, both of which provide real-time entity extraction, sentiment analysis, and
classification capabilities in multiple languages [80], [81]. These tools help enrich the extracted
data before it is passed to summarization models, allowing for more context-aware learning
content.

In summary, the document parsing and preprocessing phase is based on a broad set of libraries
and APIs, designed to handle a wide range of heterogeneous input formats. It not only extracts
the raw text but also preserves the structure, context, and semantic information of the content.
This process builds a solid, high-quality foundation, essential for transforming corporate
knowledge into interactive microlearning experiences powered by artificial intelligence.

The technologies adopted, considered among the most advanced in the field of document
parsing, are widely used in business contexts such as automatic transcription, compliance
management, customer support, and the digitization of data from legacy archives. However, the
current version of the proposed platform is specifically focused on structured, text-based file
formats and does not include support for audio or image-based content at this stage. It employed
PyMuPDF for accurate and layout-aware text extraction, especially effective with complex
PDFs such as reports and corporate documents. python-docx was chosen to process structured
Word documents, where preserving styles and headings was important. For Excel files, pandas
was preferred due to its concise syntax and efficient handling of tabular data. Simple .txt files
were processed using Python’s native I/O functions, given their linear structure.

3.3.3 Online resource retrieval
A key step in automatic content generation is efficient online research. Among the most
innovative tools in this field is Tavily, a search engine designed for research purposes, which
uses Artificial Intelligence to provide accurate, high-quality, and contextually relevant results

25

[82]. Unlike traditional search engines, Tavily is able to filter out unhelpful or noisy content,
making it particularly suitable for academic or technical contexts. Among the other AI-based
alternatives are Perplexity, which provides conversational answers with cited sources [83], or
Exa.ai, which is geared towards intelligent semantic search.

In the proposed project, Tavily was chosen for its ability to quickly retrieve high-quality
information, a crucial aspect for ensuring the accuracy and relevance of the generated
microlearning content. Moreover, the availability of a free plan for up to 1,000 requests made
this tool perfectly compatible with the project's operational needs.

Tool Key features Pricing

Tavily Filters noise, delivers high-quality,
contextually relevant results

Free under 1,000 requests +
$30/month (4,000 req/month) [84]

Perplexity Provides answers with cited
sources, conversational interface

$6/month (1,000 req/month) [85]

Exa.ai Semantic search, real-time
crawling

$5/month (1,000 req/month) [86]

Table 3.6: Search engine services

3.3.4 Slide generation techniques and quiz generation
In the proposed microlearning platform, automatic slide and quiz generation is based on the use
of advanced linguistic models. To create slides, models such as GPT and BART are used to
identify central concepts, suggest effective titles, and structure content into bullet points. This
process is guided by heuristic rules or thematic segmentation techniques, while the visual aspect
is managed through the use of predefined templates or multimodal models capable of
integrating textual and visual elements to optimize layout and design.

Quiz generation, on the other hand, is based on Question Generation (QG) models, often
specialized through fine-tuning on educational datasets. These models allow for the production
of a variety of questions, including multiple-choice, true/false, single-answer, or short-answer
questions. Specific techniques are employed, such as constructing cloze-style questions, using
named entity recognition to generate distractors, and applying principles derived from Bloom's
Taxonomy to ensure an adequate level of cognitive depth. Integration of these techniques within
e-learning platforms facilitates scalable personalized content creation and assessment.

In the proposed microlearning application, OpenAI’s GPT4.1 was chosen to generate both slides
and quizzes due to its versatility, fluency, and strong contextual understanding.

3.3.5 Image generation

Image generation is a rapidly advancing field within AI-based content creation, playing a
crucial role in enhancing the visual dimension of automatically generated materials. Recent
techniques leverage deep generative models such as Generative Adversarial Networks (GANs)
[87], Variational Autoencoders (VAEs) [88], and, most notably, diffusion models [89]. These
approaches can synthesize high-quality images from textual prompts or structured data. Among
the latest breakthroughs, diffusion-based systems like OpenAI’s DALL·E 2 [90] and DALL·E 3
[91] have demonstrated remarkable capabilities in generating detailed, semantically accurate
images directly from natural language input. DALL·E 3, in particular, offers significant
improvements in prompt understanding and image fidelity compared to earlier versions, making
it especially suitable for academic and educational content generation [91]. In this thesis project,

26

DALL·E 3 was adopted for image generation tasks due to its ability to consistently produce
visually coherent and contextually relevant images aligned with the instructional goals of the
generated materials. Its integration ensured that the visual elements complemented the text
content both aesthetically and semantically, contributing to a more engaging and informative
learning experience.

3.3.6 Multilingual support
Multilingual support represents a fundamental component of modern AI-based content
generation systems, especially in educational and corporate learning contexts. As organizations
increasingly operate globally, it is essential that learning materials are accessible to users with
different languages and cultures. This means not only making content understandable to
speakers of other languages, regardless of their technical skill level, but also adapting it to be
culturally appropriate and familiar to the target audience. Content must be adapted to idiomatic
expressions, formatting conventions, and regional language nuances (ensuring that the material
feels natural and relevant to the target audience rather than appearing as a word-for-word
translation).

To address these challenges. The most advanced solutions leverage Neural Machine Translation
(NMT) systems, such as MarianMT [92], mBART [93], and multilingual versions of language
models developed by OpenAI [94]. These models are designed to preserve the meaning, style,
and narrative coherence of the original text, offering more natural and contextually appropriate
translations.

In the proposed project, OpenAI’s GPT-4.1 was adopted as the primary model for both content
summarization and multilingual support. Its ability to interpret context and generate coherent
texts makes it particularly suitable for translating training materials, where maintaining
semantic clarity and consistency across language versions is crucial. By integrating GPT-4.1
into the AI pipeline, the system was able to automatically create microlearning modules in
multiple languages, eliminating the need for human intervention while simultaneously ensuring
high quality and consistency in content delivery internationally.

3.4 Technology stack selection
To support the objectives of the AI-enhanced microlearning platform, a carefully designed
technology stack was chosen, combining frontend agility, backend robustness, and cutting-edge
AI capabilities. The overall architecture is designed to be modular, scalable, and easily
maintainable.

The internal data flow follows an event-driven linear model:

1. The process begins when the user uploads a document or asks the chatbot to retrieve
some sources about a specific topic;

2. The backend handles file parsing and extracts the content;
3. The processed data is then forwarded to the AI layer, where it is summarized, converted

into slides, and enriched with automatically generated quizzes;
4. The final content is returned to the frontend, where the user can view, edit, and

customize it.

A chatbot-based virtual assistant guides the interaction in real time, making this process
seamless and accessible. Through structured prompts or conversational input, it guides the user

27

in the entire process, making managing the generated content simple and intuitive, even for
those without specific technical skills.

3.4.1 Backend architecture and technologies
The backend architecture is built to support a wide set of advanced capabilities, ranging from
AI-driven research and content analysis to secure, scalable file processing. By integrating
FastAPI and CopilotKit with state-of-the-art LLMs and custom agents, the system provides a
versatile and high-performance backend suitable for intelligent real-time applications.

The modular and layered design ensures extensibility, while security, monitoring, and
validation layers maintain system integrity under load. Built in Python 3.12 to leverage its
mature ecosystem for document processing and AI integration, this architecture offers a
powerful, flexible, and secure foundation for modern AI applications, whether processing
documents, answering queries, or managing agent workflows.

FastAPI framework

The backend is built around FastAPI, a modern, high-performance web framework optimized
for creating APIs with Python 3.7 and later versions. Its native support for asynchronous
programming makes it especially well-suited for handling multiple concurrent I/O-bound tasks
(such as managing API requests) efficiently and reliably. FastAPI also takes advantage of
Python’s type hints to perform automatic request validation and data conversion, ensuring
consistent and robust input handling throughout the application. This is complemented by
seamless integration with Pydantic, which provides powerful models for data serialization,
parsing, and validation, resulting in robust and clearly defined data structures. These features
not only boost developer productivity by reducing boilerplate code but also enhance code
quality and maintainability. As the primary entry point for client requests, FastAPI orchestrates
interactions among the various backend modules.

CopilotKit integration and configuration

The project builds upon CopilotKit, an open-source framework available on GitHub, which
served as a reliable starting point for integrating AI agents into the web application. CopilotKit
offers high-level abstractions for managing conversational agents and connecting them with AI
models. Among its features is the LangGraphAgent, which enables the design of modular,
stateful agents capable of multi-step reasoning. The framework supports various Large
Language Models, including OpenAI’s GPT-4 and Google GenAI; in this microlearning
application, OpenAI’s GPT-4.1 is specifically used. Additionally, CopilotKit provides custom
action handlers (flexible tools that agents can invoke to perform operations such as file analysis,
resource management, search, and summarization), greatly enhancing the system’s interactivity

and adaptability.

The decision to use the CopilotKit project rather than starting from scratch was driven by both
technical and strategic considerations. It provides a good foundation for managing
conversational agents and orchestrating AI workflows. It allows to reduce development time
and focus on implementing application-specific microlearning features. By adopting an
existing, robust infrastructure, the project benefited from proven patterns and tools, avoiding
the need to reinvent core functionalities.

28

Core endpoints

The backend exposes a well-structured, RESTful API that acts as the main interface for client
interactions. At its core is the /copilotkit endpoint, which processes requests directed to the AI
agent and returns structured responses. To support system monitoring and reliability, a /health
endpoint is provided, offering real-time information about backend availability and operational
status. Furthermore, the CopilotKit framework includes custom action endpoints, enabling the
triggering of specific functions (such as file uploads, data analysis, or other auxiliary processes)
directly through the API. The custom actions are registered with the CopilotRuntime and can
be called by the AI when needed, allowing it to perform specific tasks and interact with other
services.

Request Handling

The system implements asynchronous processing through FastAPI and aiohttp, enabling non-
blocking operations for resource-intensive tasks. Concurrent execution is achieved using
Python's asyncio, particularly for parallel downloads and searches. The application uses event
streams for real-time updates and implements caching mechanisms for downloaded resources.

Authentication

The backend secures API access using a simple token-based authentication system. A valid
token is retrieved from environment variables, with a fallback to a default hardcoded token if
none is specified. Authentication is enforced through middleware that intercepts all incoming
HTTP requests, except those targeting the root endpoint (/), which remains publicly accessible
to serve the application.

For all other requests, the middleware requires the token to be provided as a query parameter
named ‘token’. It verifies that the token is present and matches the configured valid token. If
the token is missing or incorrect, the middleware immediately returns a ‘403 Forbidden error’
response, effectively blocking unauthorized access.

After successful validation, the middleware rewrites the request path by removing the token
from the query parameters while preserving any other parameters. This ensures that
downstream request handlers receive a clean URL without the authentication token exposed.

On the frontend, the token is appended as a query parameter to all API calls directed to protected
endpoints. This simple yet effective approach provides a basic security layer for the API,
ensuring that only requests with a valid token are processed, while keeping the root endpoint
open for public access.

State management

State management plays a fundamental role in ensuring consistency, traceability, and continuity
in the execution of intelligent agents. To support these needs, the system incorporates a
dedicated structure for representing the agent’s internal state, which serves as a structured

memory. This mechanism enables the agent to:

• Retain relevant information throughout its execution lifecycle;
• Ensure data consistency across operations and interactions;

29

• Facilitate monitoring and debugging by maintaining a clear record of actions and
decisions.

The state model is designed to be flexible, operating in either ephemeral or persistent modes
depending on the nature of the task. It also supports synchronized updates across asynchronous
workflows, ensuring coherence even in complex execution scenarios.

Specific implementation details (such as the structure of the state, the types of data it manages,
and the mechanisms for updating and persisting information) are discussed in the dedicated
implementation chapter.

LangChain and LangGraph integration

The backend integrates LangChain and LangGraph to deliver advanced AI-based capabilities.
LangChain acts as a powerful abstraction layer for developing applications that leverage Large
Language Models, offering essential tools for connecting with diverse model providers and
toolchains. It also simplifies prompt management and enables the seamless chaining of context-
aware interactions.

Building upon this foundation, LangGraph introduces a stateful, graph-based architecture
designed to manage complex multi-agent workflows. In this architecture, each node represents
a distinct task or tool, allowing for modular and composable agent behavior. LangGraph further
supports agent memory and dynamic decision-making, enabling workflows to adapt flexibly
based on intermediate outcomes.

Together, LangChain and LangGraph form a cohesive framework capable of modeling and
executing sophisticated AI applications in areas such as conversational agents, information
retrieval, and content generation.

Agent architecture

The agent architecture is designed to be modular and extensible, which promotes
maintainability and clarity throughout the system. At the heart of the system lies the research
agent, an AI component tailored for tasks like document analysis, summarization, and multi-
tool reasoning. Custom actions are designed modularly, each featuring thorough input
validation, error handling, and execution logic to ensure reliable operation. To maintain
consistency, the agent’s responses are formatted in a standardized way, facilitating their use in
frontend interfaces or chaining with other workflows. Furthermore, all tools and actions within
the agent adhere to strict parameter validation schemas and incorporate fallback mechanisms to
handle unexpected inputs.

Graph architecture

The system’s workflows are orchestrated using LangGraph’s StateGraph, a declarative
framework in which nodes represent discrete functional units. Each node encapsulates a specific
operation within the broader task execution pipeline. For instance, the Download Node is
responsible for retrieving and preprocessing external resources, while the Chat Node interprets
user inputs and coordinates Large Language Model responses. The Search Node interfaces with
Tavily to conduct real-time web searches, injecting dynamic context into the agent’s reasoning.

30

Additionally, Add and Delete Nodes enable agents to modify their internal resource list,
facilitating the dynamic management of their working context.

Transitions between these nodes are governed by conditional logic and updates to the shared
state, allowing workflows to adapt based on intermediate outcomes. This architecture supports
modularity, extensibility, and precise control over agent behavior, making it well-suited for
building complex and multi-stage AI applications.

Figure 3.1: Graph architecture including the nodes and their interactions

File conversion system

The system provides robust support for handling various formats by using base64 encoding and
decoding to allow file transmission over the API. Supported file types include PDFs, Word
documents, Excel spreadsheets, and plain text files. Processing occurs either in-memory or
through secure temporary storage, with regular cleanup tasks to ensure efficient resource
management. To enhance robustness, fallback mechanisms are implemented to recover from
corrupted or unsupported files. The following Python libraries have been selected and
integrated into the backend system:

File format Library used Reason for selection

PDF pyMuPDF (fitz) Offers fast and reliable text extraction
Word (.docx) python-docx Handles structured Word documents

effectively
Excel (.xlsx) pandas Robust handling of tabular data and

spreadsheet structures
Plain text (.txt) Native Python Direct reading

Table 3.7: Tools adopted in the thesis project for file parsing

31

These choices reflect a balance between flexibility and practicality. They allow the system to
process a wide variety of document types efficiently, while keeping the architecture simple and
maintainable. Additionally, the selected libraries benefit from active community support and
thorough documentation, ensuring long-term viability and ease of future enhancement.

This multi-format document processing pipeline ensures that enterprise content can be ingested
regardless of its original source structure, enabling seamless transition into AI-driven
microlearning workflows. Future enhancements may include support for OCR and audio-based
input, broadening the platform’s functionality and enabling it to process informal or legacy

content more effectively.

File download and processing

The system includes robust capabilities for retrieving and preparing external content to support
downstream tasks handled by the language model. When a resource is specified via URL,
asynchronous downloading is performed using aiohttp, enabling efficient non-blocking
retrieval (a key requirement for maintaining responsiveness in concurrent workflows).

After download, raw HTML is converted to Markdown using the html2text library, improving
readability and ensuring prompt compatibility with the language model by eliminating
unnecessary visual styling. To further clean and structure the input, the system leverages
BeautifulSoup for HTML parsing and content extraction, removing scripts, ads, and irrelevant
formatting to produce structured text optimized for analysis.

To improve performance and reduce redundant network calls, a caching layer is employed. This
mechanism stores previously fetched content, minimizing latency and resource usage in
repeated or batch operations.

Performance optimizations

Given the computational intensity and I/O demands of the application, optimizing performance
is essential to ensure responsiveness and scalability. For this purpose, the system employs two
key strategies.

Primarily, asynchronous workflows are utilized extensively, enabling non-blocking execution
of API calls, file I/O, and resource downloads. This approach significantly enhances throughput
by allowing multiple operations to proceed concurrently without waiting for individual tasks to
complete.

Caching mechanisms play a crucial role in reducing load and improving response times.
Downloaded files and resources are cached locally or in memory to avoid redundant retrievals.
LangGraph agents benefit from graph state caching, reusing intermediate computational states
to accelerate processing.

Error management

Error management is centralized, providing standardized behavior across all API endpoints.
Errors are returned in structured JSON responses with clear status codes and descriptive
messages. Domain-specific custom exceptions improve clarity and ease debugging, while

32

comprehensive logging captures full stack traces and relevant metadata. Additionally, fallback
strategies are implemented to allow recovery from non-critical service failures.

System monitoring

To ensure high availability and system reliability, the system incorporates comprehensive
health check mechanisms implemented via dedicated HTTP GET endpoints that serve as
liveness and readiness probes, allowing orchestration tools and deployment platforms to assess
service status in real time. The liveness probe verifies that the application is still running and
not stuck in an unrecoverable state, enabling automated restarts when necessary to restore
functionality. The readiness probe, on the other hand, checks whether the application is fully
initialized and ready to serve traffic, preventing premature routing of requests during startup.

By decoupling these checks, the system provides fine-grained control over lifecycle
management, reducing downtime and ensuring that traffic is only directed to healthy instances.

Debugging and profiling

Comprehensive observability tools support efficient debugging and performance optimization.
Each request and response is logged in detail, capturing information such as HTTP method,
request path, user token, status code, and execution duration. A centralized logging
infrastructure ensures that errors are recorded in a structured and searchable format, greatly
simplifying the debugging process. Additionally, developers can inspect the internal state and
transitions of LangGraph agents in real time using LangSmith, providing valuable insight into
the system’s reasoning processes and helping in the development and tuning of AI workflows.

3.4.2 AI models

At the core of the system’s intelligence layer are integrations with OpenAI’s GPT models,
which drive natural language understanding and generation, along with DALL·E 3, which
enables image-based content creation. To further enrich the AI’s contextual awareness, the
system also leverages Tavily for advanced web search capabilities. These models are accessed
through the CopilotKit framework and play a central role in transforming static learning
materials into dynamic conversational experiences.

OpenAI integration

The backend is tightly integrated with OpenAI's suite of models to enable advanced language
and image capabilities. At the core of this integration is GPT-4.1, which is employed for a wide
range of natural language understanding and generation tasks. GPT-4.1 supports key features
such as conversational interfaces and document analysis, forming a foundational component of
the system’s intelligence layer.

Beyond text processing, the system integrates DALL·E 3 to generate high-quality images from
textual prompts, enriching the content creation process through seamless multimodal
interactions.

The backend also leverages GPT-4.1’s advanced tool-calling capabilities, including parallel
function execution. This allows the model to invoke multiple tools, such as web search or image
generation, within a single conversational turn, enhancing both contextual depth and
responsiveness.

33

To provide greater control over model behavior, configurable parameters, such as temperature
and token limits, are exposed through the system’s settings, enabling fine-tuned customization
of model outputs based on application requirements.

Tavily search integration

Tavily is integrated into the system as a high-performance web search API, enhancing the Large
Language Model’s ability to access and incorporate real-time information. This enables
dynamic context injection during conversations and task execution, ensuring that responses
remain up-to-date and relevant.

Unlike traditional keyword-based search engines, Tavily uses semantic relevance to return
results that closely match the user's intent, allowing the system to extract high-quality content
snippets tailored to the context.

Within the LangChain and LangGraph architecture, Tavily is implemented as a tool node,
making it selectively accessible to agents as needed during workflow execution. This modular
integration ensures that agents can retrieve external information when necessary, improving
both accuracy and adaptability in complex tasks.

3.4.3 Frontend architecture and technologies
The user interface is primarily developed with React, enhanced by CopilotKit components that
enable AI-powered features such as contextual chat and intelligent suggestions. A highlight of
the frontend implementation is the integration of a Svelte web component sourced from another
internal company application.

Overall, the frontend architecture of the application is designed to offer a modern, scalable, and
maintainable solution, balancing performance, usability, and seamless AI integration. It
leverages cutting-edge frameworks and libraries to ensure both development efficiency and a
rich user experience. This chapter details the core technologies, design systems, state
management strategies, and optimization techniques used to construct the user-facing side of
the application.

Core framework and technologies

The frontend is built on Next.js 14, a React framework that supports both Server-Side Rendering
(SSR) and Static Site Generation (SSG), offering flexible content delivery and improved load
performance. The application leverages App Router, a modern Next.js routing architecture,
which introduces advanced features such as nested layouts, server components, and co-located
routing logic.

The codebase is written in TypeScript, enabling static typing and type safety, which helps
prevent runtime errors. For client-side interactivity, the "use client" directive is employed to
clearly define which components should be rendered on the client, allowing for fine-grained
control over hydration and performance optimization.

Underlying the framework is React 18, which serves as the core UI library. The application
uses React Hooks for managing state and effects, ensuring a clean and functional code structure.
React Context is used for handling global or shared states, simplifying data flow and avoiding
prop drilling.

34

UI components and design system

The application’s interface is built using custom-built UI components based on Radix UI
primitives, ensuring accessibility and composability at the core.

Core elements, such as Dialogs, Cards, Buttons, Inputs, and Textareas, have been tailored to
meet the unique functional and aesthetic requirements of the platform, with a focus on usability,
visual clarity, and themability.

Styling is managed with Tailwind CSS, a utility-first CSS framework that accelerates
development by allowing components to be styled directly via composable class names. To
maintain a cohesive visual identity, the application defines a custom color palette and a set of
design tokens, supporting consistent theming across all components and layouts.

Slide visualization

In the project, a custom web component named <challenges-app> is used to encapsulate a self-
contained reusable part of the user interface dedicated to slide visualization. This cross-project
integration demonstrates the system’s capability to reuse components across different projects
within the same enterprise ecosystem. Leveraging an existing production-tested module helped
accelerate development, ensure visual and functional consistency, and minimize maintenance
overhead by centralizing component logic. This approach reflects a strategic emphasis on
scalability, efficient resource utilization, and interoperability between internal tools and
applications.

The web component is built in Svelte and integrated into the React page, but it operates
independently from the React application itself. When the React page is loaded, an external
JavaScript file is executed. This file defines and registers the <challenges-app> custom
element, making it available in the DOM. After a brief initialization period (to ensure the
component is registered and ready), the component is dynamically inserted into the page using
its custom HTML tag. The React app communicates with the web component by setting
properties directly on the DOM element. The slides object is passed to the component in this
way, allowing it to render the appropriate content. Once initialized, the component takes full
responsibility for rendering and managing the slide presentation. It handles its own internal
state and user interactions, without relying on React for rendering or lifecycle management.

The primary function of the <challenges-app> component in this project is to present a
sequence of slides to the user. By offloading this functionality to a dedicated web component,
the slide viewer benefits from focused, encapsulated logic and a clean interface for integration.

State management

The application adopts a context-based state management approach, using React’s built-in
Context API in combination with custom hooks to create a shared state container. This design
enhances clarity and modularity by minimizing prop drilling and ensuring that all components
can access and update the state they need.

At the core of this system is Copilot Context, which manages application-level data in a single
unified store. Components interact with the Context through a custom hook that abstracts
internal state logic, providing a clean separation between state logic and UI rendering.

35

The design organizes the state into distinct domains, each serving a specific function:

• Actions management: Handles user actions and updates related to frontend logic;
• Context and document handling: Manages contextual information relevant to the user

or session;
• Chat and Co-Agent state: Supports conversational features, including instructions,

suggestions, and dynamic agent behavior;
• API configuration: Centralizes endpoint and authentication settings for external

communication.

This architecture enforces boundaries between concerns, making the application easier to
understand, scale, and maintain.

The state management system is guided by several core principles that align with React’s

component-driven architecture. First, type safety is ensured through the use of TypeScript,
allowing the entire application state to be strongly typed (this reduces runtime errors and
improves developer tooling support). Second, encapsulation is achieved by restricting state
access to well-defined interfaces, minimizing coupling between components, and promoting
modularity. Lastly, the provider pattern is used to expose the context through a <CopilotKit>
component, ensuring that any part of the application accessing shared state is properly scoped
within the component tree.

This context-based approach offers strong benefits in terms of scalability, as new state slices or
features can be integrated with minimal disruption to existing code. It also enhances
maintainability by enforcing a clear separation of logic and structure, while strong typing
simplifies debugging and code navigation. Finally, the use of custom hooks and clearly defined
interfaces improves the overall developer experience by streamlining interaction with shared
state and encouraging code reuse.

AI integration

A defining feature of the frontend is its deep integration with AI capabilities, achieved through
the comprehensive use of the CopilotKit library suite. The system uses @copilotkit/react-core
to manage AI interaction logic, @copilotkit/react-ui to provide interface components that
expose AI functionalities to the user, and @copilotkit/runtime to handle communication with
backend services and AI models.

At the center of the user experience is a highly interactive chat interface that allows users to
engage in real-time conversations with the AI agent. This interface supports sending and
receiving messages, presenting contextual suggestions, and dynamically generating follow-up
prompts (creating a fluid, responsive dialogue that adapts to user input).

Advanced features such as file processing, image generation, and context-aware suggestions
are embedded directly into the UI, enhancing the user's ability to interact with and benefit from
AI assistance in practical, task-oriented workflows.

File handling and resources

To support diverse user workflows, the frontend incorporates comprehensive file management
capabilities. Users can upload and edit a variety of file types (including PDF, DOCX, XLSX,

36

and TXT formats) directly within the application. Files are encoded and decoded using base64,
allowing transmission in the browser environment.

The user interface consists of intuitive components (such as resource cards, edit dialogs, and
upload panels) that make file interaction simple and accessible. Progress indicators provide
real-time feedback during lengthy operations, while rigorous file type validation ensures only
supported formats are processed. The system is designed so that users can manage and edit their
resources without interrupting the main application workflow.

Performance optimizations

Optimizing performance is a core concern throughout the frontend codebase. React’s built-in
features, like useCallback, are widely adopted to memorize functions and computed values,
reducing redundant calculations and re-renders.

UI performance is further enhanced by leveraging React 18’s concurrent rendering, which

improves responsiveness during intensive operations. Responsive design principles and
feedback mechanisms, including loading states and progress indicators, contribute to a smooth
and intuitive user experience.

Development tools and configuration

To ensure high code quality and support efficient development, the project adopts a robust set
of configuration and tooling practices. The entire codebase is written in TypeScript, providing
strong type safety and enhancing developer productivity through improved editor support and
static analysis. ESLint is integrated to enforce a consistent code style and proactively catch
potential issues during development.

Styling is managed using a customized Tailwind CSS configuration, which includes project-
specific themes and plugins to maintain visual consistency and flexibility. Additionally,
environment variables are securely handled across multiple deployment stages, enabling
dynamic configuration of critical features such as API keys.

The build and deployment pipeline takes full advantage of Next.js build optimizations,
balancing SSR and SSG for performance. API routes are defined within the Next.js project
structure, allowing seamless frontend-backend communication.

User experience features

User experience is a core focus of the frontend design. Interactivity is elevated through a real-
time chat interface, intuitive file management tools, and visual feedback mechanisms such as
error messages and loading spinners. The latter not only informs users about the current system
status but also serves a psychological purpose: by providing clear feedback during
asynchronous operations, they reduce the perceived waiting time and make interactions feel
faster and smoother.

Accessibility features are seamlessly embedded within the component structure. Use of ARIA
roles and labels, keyboard navigation, and screen reader compatibility ensures that the
application is usable by a diverse range of users, including those relying on assistive
technologies.

37

This architecture reflects a modern frontend implementation that harmoniously blends
performance, accessibility, and AI functionality. By leveraging the capabilities of Next.js, React
18, Tailwind CSS, and CopilotKit, it achieves a high level of interactivity and responsiveness
while maintaining clean code organization and developer ergonomics. The result is a frontend
that is not only technologically advanced but also user-centric.

3.4.4 Cloud infrastructure and security layer
The solution is built using a modern serverless approach on Amazon Web Services (AWS),
leveraging the AWS Cloud Development Kit (CDK) to provision and manage infrastructure. The
design prioritizes scalability, maintainability, and cost-effectiveness while following best
practices in cloud-native development.

Architectural overview

The application follows a serverless-first architecture, built around two key computational
components:

• UI function: A frontend application implemented in Next.js, deployed as a Lambda
function.

• Agent function: A Python-based backend responsible for handling core logic and
external API communication, deployed as a Lambda function.

These components are independently deployed as AWS Lambda functions using container
images, enabling flexible dependency management and consistent runtime environments.

Region and identity management

The application stack is deployed in the eu-west-1 (Ireland) AWS region and secured using AWS
Single Sign-On (SSO) for administrator access.

The complete infrastructure is defined and provisioned using AWS CDK. The main
infrastructure stack is named CoAgentsDemoStack and is version-controlled within the source
code repository. This approach ensures repeatability, traceability, and facilitates continuous
integration and delivery (CI/CD).

Key AWS services used

The architecture is built upon a tightly integrated set of AWS services, each playing a critical
role in supporting the application's functionality, scalability, and security. At its core, the system
relies on AWS Lambda as the primary compute layer for both the frontend and backend
components. This serverless execution model eliminates the need for managing infrastructure
and enables automatic scaling based on demand, ensuring responsiveness and cost-efficiency.

Both Lambda functions are deployed using container images hosted on Amazon Elastic
Container Registry (ECR), which provides a secure, scalable, and highly available registry for
Docker images. By packaging the application logic in containers, the development team gains
full control over runtime dependencies, simplifies the build and deployment process, and
ensures consistency across executions. This approach also enables the use of custom runtimes
and native libraries, which are essential for the AI-powered backend services. In our case, the
entire system is currently configured to operate within a single development environment,

38

eliminating the complexity of managing multiple deployment stages. However, the architecture
is designed to be easily extendable to additional environments (such as test or production) if
needed in the future.

For secure handling of sensitive credentials (such as third-party API keys), AWS Secrets
Manager is used. Secrets are stored centrally and accessed securely at runtime, avoiding
hardcoding sensitive data into the codebase. In this case, both the OpenAI and the Tavily API
keys are stored using the Secrets Manager.

At the network edge, AWS CloudFront is used not only to accelerate content delivery globally
but also to enhance security at the infrastructure level. A layer of Basic Authentication is
configured at the CloudFront distribution, acting as a gatekeeper by requiring valid credentials
before users can even reach the application entry point. This provides an additional barrier
against unauthorized access and protects the system from casual probing and misuse.

Amazon CloudWatch is used to monitor the application's behavior and operational health.
Dedicated log groups are created for each Lambda function, enabling real-time monitoring and
log retention (limited to one week). This observability layer allows developers to track
performance metrics, detect anomalies, and debug issues efficiently.

Infrastructure provisioning (that is, automatic creation and configuration of infrastructure
resources) and lifecycle management are handled through AWS CloudFormation, using the
AWS Cloud Development Kit (CDK). This Infrastructure as Code (IaC) approach ensures
reproducibility and version control. With CDK, the infrastructure is defined in a programmatic
and modular way, making it easy to update, audit, and replicate environments consistently
across stages such as development, testing, and production.

The architecture intentionally omits any storage system or database because the application is
designed to operate in a stateless real-time manner. Each interaction is handled independently,
with no need to retain data across sessions or requests. This approach simplifies the system
considerably and aligns well with the serverless model provided by AWS Lambda, allowing it
to scale automatically and remain highly cost-effective without the additional complexity of
managing persistent state.

Moreover, by not storing user data or logs long-term, the application inherently strengthens its
security and privacy approach. It reduces the risk associated with data breaches and makes it
easier to comply with data protection regulations, since there's simply less data to secure or
audit. When data is needed during execution (such as for generating responses or processing
input), it can be fetched on demand from external APIs, removing the necessity for a local
database.

This design also helps minimize operational overhead. There's no need to manage database
configurations, backups, or schema migrations, which makes the system easier to maintain and
deploy. The focus remains on delivering responsive, AI-assisted interactions in real time,
without the burden of persisting or managing state. If future requirements change, a storage
layer can be added modularly, but for now, the lean and stateless design serves the application's
goals perfectly.

The following diagram provides a visual overview of the system architecture described above.
It illustrates how the various AWS services are interconnected to support the application's core

39

functionality, security, scalability, and observability in a serverless and containerized
environment.

Figure 3.2: High-level architecture of the AI-assisted serverless application deployed on AWS

Although not shown in the accompanying figure, the application leverages AWS Identity and
Access Management (IAM) to enforce secure and granular control over resource access. IAM
policies and roles are carefully defined to ensure that each component has only the permissions
it requires, adhering to the principle of least privilege and reducing the risk of misconfiguration.
As it is a foundational component of any AWS architecture, its presence is considered implicit
in the overall architecture.

Agent Function

The Agent Function, implemented in Python 3.12, operates as the backend logic layer and is
deployed as a containerized AWS Lambda Function with the following characteristics:

Attribute Details

Memory 1024 MB
Timeout 600 s
Runtime Python 3.12

Environment variables OPENAI_API_KEY
TAVILY_API_KEY

LANGCHAIN_API_KEY

40

LANGCHAIN_ENDPOINT
LANGCHAIN_PROJECT

LANGCHAIN_TRACING_V2
AWS_LWA_INVOKE_MODE

PORT: 8000
Table 3.8: Agent Function characteristics

The function exposes a Lambda Function URL with CORS enabled and without IAM
authentication. While the Lambda URL itself does not require IAM authentication, the backend
is protected by a token-based middleware that validates each request. This architecture allows
direct communication between the UI component and the backend while maintaining security
through token validation, and still minimizing latency in inter-service communication.

Advantages of using AWS Lambda over Amazon EC2

The choice to adopt AWS Lambda instead of traditional Amazon EC2 instances was guided by
a clear set of architectural, operational, and strategic benefits that align closely with the goals
of this project. Lambda's serverless model offers a level of agility, scalability, and efficiency
that is particularly well-suited for modern cloud-native applications, including AI-driven
workflows and interactive learning platforms.

One of AWS Lambda’s most interesting advantages is its ability to scale automatically and
instantly with incoming traffic. Each invocation runs independently, enabling the system to
scale from zero to thousands of concurrent executions without manual intervention. In contrast,
EC2 requires predefined scaling policies and infrastructure setup, which introduces latency and
operational complexity during traffic spikes.

Lambda's pay-per-use billing model charges only for the exact execution time and number of
invocations, making it highly cost-effective for workloads with variable or unpredictable usage
(such as demo environments, sporadic user activity, or bursty AI queries). EC2 may be more
economical for consistently high-throughput workloads, but it typically incurs continuous costs
regardless of actual usage.

By abstracting away server management, Lambda eliminates the need to provision, patch,
monitor infrastructure, or scale virtual machines, allowing developers to focus purely on
application logic. In contrast, EC2 requires full lifecycle management, including OS
maintenance and performance monitoring, increasing the operational overhead.

Lambda functions run in isolated execution environments managed by AWS, with automatic
handling of security updates and operating system patching. This built-in security model
reduces the attack surface and simplifies compliance. EC2, in comparison, places more
responsibility on the user to secure the operating system, configure firewalls, and manage
updates.

Using Lambda with containerized deployment significantly shortens release cycles. Functions
can be deployed quickly with minimal setup, while infrastructure changes are easily
manageable through version-controlled configurations using tools like AWS CDK. This
approach supports faster iterations and agile delivery.

41

Lambda integrates seamlessly with a wide range of AWS services, including CloudWatch for
monitoring and logging, and Secrets Manager for secure configuration management. These
integrations reduce boilerplate code and enhance the reliability and observability of the
application.

In summary, AWS Lambda offers a robust, scalable, and cost-effective foundation for the
system's architecture. Its serverless nature supports rapid development cycles, simplifies
infrastructure management, and enhances security strategy (all essential elements for building
and maintaining an efficient AI-assisted learning application).

Requirement Lambda + containers EC2 instances

Compute granularity Per request Per VM instance
Scaling Instant and automatic Manual or slower Auto Scaling

Cost model Millisecond billing Hourly or longer-term
Operational overhead Minimal High (OS, patching, infrastructure)
Custom environment

control
Container-level OS-level full control

Task suitability Event-driven, short Long-running, stateful tasks
Table 3.9: Comparison between AWS Lambda and EC2

UI Function

The frontend is built with Next.js and deployed as a Lambda Function using a Node.js 20
container image. It is configured with Lambda streaming features to support real-time
interactivity.

Attribute Details

Memory 4096 MB
Timeout 600 s
Runtime Node.js 20

Environment variables REMOTE_ACTION_URL (points to the
Agent Function URL)

SECRET_NAME (Secrets Manager
reference)

AWS_LWA_INVOKE_MODE
PORT: 3000

Table 3.10: UI Function characteristics

Similar to the Agent Function, it exposes a Function URL with CORS enabled and without IAM
authentication, optimized for seamless direct access from browsers.

Advantages of using AWS Lambda over AWS Amplify

While AWS Amplify is a popular choice for deploying frontend applications, we opted to use
AWS Lambda for the following reasons:

• Custom runtime and streaming support: The frontend requires features like Lambda
streaming for real-time interactivity, which are not natively supported by Amplify

42

hosting. Deploying it as a Lambda function allows to use a custom Node.js 20 runtime
and advanced features such as HTTP response streaming;

• Containerized deployment: The frontend is packaged as a Docker container, offering
full control over the runtime environment. Amplify supports static site hosting but does
not support container-based deployments.

• Unified serverless architecture: Using Lambda for both the frontend and backend results
in a uniform serverless infrastructure. This simplifies configuration, deployment, and
scaling across the stack;

• Greater flexibility: Lambda provides more control over request handling, environment
configuration, and integration with services like Secrets Manager (capabilities that are
limited or require workarounds in Amplify);

• Minimal dependencies: Unlike Amplify, which introduces an opinionated framework
and CLI, Lambda allows for a leaner, more controlled deployment process using
standard AWS tools.

In summary, Lambda offered the flexibility, advanced features, and runtime control required
by this application (capabilities that go beyond what Amplify was designed to offer).

Containerization and Lambda adapter

To bridge the gap between traditional web server patterns and AWS Lambda’s event-driven
model, both Lambda functions are packaged as container images that include the AWS Lambda
Web Adapter. In our case, the application runs on Node.js, allowing us to use familiar
frameworks and HTTP request handling patterns.

Using the adapter, each container can listen on a defined port (e.g., 3000), handling requests as
if it were a conventional web server. This avoids the need to rearchitect existing application
logic for Lambda’s native event structure. As a result, standard web server code, middleware,
and routing logic can be reused without significant changes.

Ultimately, the Lambda Web Adapter allows containerized functions to behave like persistent
web services while benefiting from Lambda’s elasticity, low overhead, and simplified
operations. It enables a seamless serverless deployment path without sacrificing development
familiarity or application consistency.

Conclusion

In conclusion, this architecture is intentionally designed to support growth, ease of
maintenance, and efficient development workflows. By centering the system on a serverless
model, leveraging containerized deployments through AWS Lambda, and integrating with
managed AWS services, the application achieves a balance of flexibility and security. These
design decisions reduce the need for manual infrastructure management, allowing the team to
focus on evolving the product quickly and reliably as requirements change.

43

Chapter 4

4. PLATFORM IMPLEMENTATION

AND FEATURES
This chapter presents the technical foundation and practical implementation of the AI-driven
platform developed during this thesis project. It focuses on the core functionalities, architectural
decisions, and software components that enable the system to operate effectively as a
microlearning content generator and editor. Built with a strong emphasis on modularity,
scalability, and user-focused design, the platform integrates modern development frameworks
and cutting-edge AI technologies.

The discussion opens with a detailed look at the system's internal state management approach.
It explains how the platform preserves context and logical consistency throughout user
interactions by employing custom classes, React Context Providers, and custom hooks.

The chapter then shifts focus to the resource management system, highlighting how the
application handles content uploads across multiple file types.

Subsequently, the chapter delves into the online resource retrieval mechanisms that integrate
external APIs for automated content sourcing, followed by a detailed description of the
automated generation of learning modules, which are structured as slide-based presentations
enhanced by AI-generated quizzes and images.

Next, it describes the editing and customization interface, which enables users to personalize
slides and questions through an intuitive AI-assisted editor. This is complemented by the
integration of a context-aware chatbot, designed to assist users throughout the process with
intelligent suggestions and conversational support.

The chapter concludes with a discussion on multilingual capabilities, ensuring accessibility
across diverse user bases, and outlines the development tools and frameworks employed to
build, test, and deploy the system. Each section demonstrates how the platform harmoniously
combines frontend technologies, backend processing, and advanced AI to deliver a seamless
and intelligent user experience.

4.1 State management
A custom-designed AgentState class serves as the foundation for structured and persistent
memory within the system’s AI agents. This class plays a critical role in enabling the agents to
maintain coherence throughout their execution lifecycle. It is responsible for tracking all

44

relevant information during execution, ensuring data consistency across operations, and
enabling the saving and restoration of the agent’s state when needed. Additionally, it facilitates

debugging and monitoring, making it easier to trace and understand the agent’s behavior in

complex workflows. The AgentState class encapsulates several key components:

• A Report object that contains a list of Slides. Each slide can include a title, an image
description, a textual description, the type of question (RADIOBUTTON or
MULTICHECKBOX), a label, and a list of possible answers;

• A list of Resources representing the resources used by the agent. Each resource can be
a URL, a PDF, a Word document (DOCX), an Excel spreadsheet (XLSX), or a text file
(TXT). Each resource includes metadata such as ID, name, type, title, description, and
content;

• A Log list that records actions performed by the agent, with a message and completion
status, useful for tracking and debugging the agent’s activity;

• The name of the AI model used (model).

The system’s state management architecture is designed to accommodate a wide range of task
complexities by supporting both ephemeral and persistent memory modes. This dual-mode
capability allows agents to flexibly handle anything from lightweight interactions to complex
multi-step operations. To maintain coherence across concurrent workflows, the architecture
enables synchronized updates even within asynchronous execution environments.

To ensure scalability and modularity, state is organized using a layered strategy. At the core of
this approach is a combination of React Context Providers and custom hooks, which together
facilitate the separation of global and domain-specific logic while preserving accessibility and
performance throughout the application.

4.1.1 React Context Providers
The application relies heavily on React’s Context API to manage shared state in a modular and
isolated way. Several dedicated context providers are used to encapsulate specific areas of
functionality. At the core is the CopilotContext, which serves as the primary source of global
application state. It coordinates key aspects such as interaction with the AI assistant, function
invocation logic, agent state and lifecycle management, API configuration, session tracking,
chat prompts and suggestions, as well as UI indicators like loading states.

Complementing this is the CopilotMessagesContext, which is responsible for maintaining the
chat message stream. It supports frequent real-time updates as users engage with the assistant,
ensuring a responsive and dynamic experience.

Although the system architecture supports dynamic model selection, in this project, only one
model is actively used: OpenAI’s GPT-4.1. As such, the ModelSelectorContext is present for
architectural completeness but operates in a fixed configuration, simplifying model
management by consistently routing requests through a single model.

4.1.2 Custom hooks for stateful logic
To encapsulate complex and reusable logic, the system uses a set of custom React hooks:

45

• useCoAgent: Manages the lifecycle of an AI agent’s state, including initialization,

updates, and thread handling. It abstracts away the underlying mechanisms for
interacting with AgentState;

• useCopilotChat: Encapsulates the chat logic and provides handlers for user interaction,
message flow, and assistant responses;

• useCopilotChatSuggestions: Dynamically generates real-time suggestions and prompt
completions from the AI, enhancing the conversational experience.

By abstracting logic into reusable hooks, the system minimizes code duplication, promotes
consistency across components, and streamlines the development of AI-driven interfaces.

4.1.3 State transitions and side effect handling
State transitions within the application are primarily managed through dedicated functions
provided by custom hooks and context objects. These include:

• setState for performing localized updates to the agent’s internal state;
• Context methods such as setAction, removeAction, or setCoAgentStateRender for

orchestrating more complex interactions between the agent and the UI.

To handle side effects and respond to changes in application state, the system relies on React’s

useEffect hook. This ensures that updates to both agent logic and user interface components are
executed only when relevant dependencies change, thereby preserving performance and
avoiding unnecessary re-renders.

4.1.4 Benefits of the architecture
The chosen state management strategy delivers multiple benefits across both developer
experience and application performance:

• Separation of concerns: Each part of the application state is managed in isolation,
improving modularity and reducing coupling;

• Targeted updates: Context providers and custom hooks enable fine-grained control over
state changes, preventing unnecessary re-renders;

• Optimized performance: Memoization and selective rendering strategies help maintain
responsiveness even under heavy interaction;

• Maintainability: A modular, abstracted architecture simplifies debugging and future
enhancements;

• Scalability: The system can accommodate more complex workflows and growing data
requirements without compromising reliability.

Together, these design principles ensure that agent memory, contextual logic, and user-facing
behavior are managed cohesively, making the platform both robust and adaptable.

4.2 Content upload and management
The content upload and management system is built to flexibly handle both local file uploads
and remote resource retrieval. It offers an intuitive interface that enables users to seamlessly
upload, edit, and manage a variety of content types. By enforcing consistent formatting and
metadata standards, this system ensures that all incoming data is properly normalized. Its design

46

is critical to maintaining data integrity across the entire pipeline, enabling smooth integration
with the platform’s intelligent operations.

4.2.1 Supported resource types
The application categorizes content into five distinct resource types, as defined in the
ResourceType enumeration: PDF, URL, DOCX, XLSX, and TXT. This classification enables
the system to process a diverse range of formats, including web-based content, text documents,
and spreadsheets, ensuring broad compatibility with various user inputs.

4.2.2 Resource structure and metadata
Each resource is represented by a well-defined structure that includes a unique identifier (id),
the original file or URL name (name), the resource type (type), a user-defined title and
description, and an optional content field. The content field stores the base64-encoded version
of the file, which is used during transmission and backend processing. This consistent resource
schema ensures smooth integration across the frontend and backend modules.

4.2.3 Upload workflow
Content can be added to the system through two primary methods: uploading local files or
submitting URLs.

• File upload: Users can upload files in PDF, DOCX, XLSX, or TXT formats, with a strict
size limit of 420 KB. Upon selection, files are immediately read and encoded to base64
via the FileReader API. The application determines the file type based on the file
extension and assigns the corresponding ResourceType. Both the original file name and
the encoded content are retained for downstream processing;

• URL input: Alternatively, users may submit web-based resources by entering a valid
URL, accompanied by a title and an optional description. The system fetches the
webpage asynchronously using aiohttp, parses the HTML with BeautifulSoup to extract
relevant text, and converts it into a clean Markdown format via html2text. This ensures
consistent formatting and structure, aligning web-based content with the treatment of
uploaded files.

4.2.4 Resource management features
The resource management interface provides comprehensive capabilities for adding, editing,
and deleting resources. To prevent duplicates, the system checks resource filenames before
creation. Each resource is assigned a Universally Unique Identifier (UUID) at the time of
creation to ensure distinct identification. Users interact with resources through the
AddResourceDialog and EditResourceDialog components, which facilitate input, modification,
and removal of both metadata and content. All changes are reflected immediately in the
application state.

Resource deletion is performed using the resource’s unique ID, guaranteeing accuracy and

minimizing the risk of unintended data loss. The resource list updates reactively, delivering
real-time visual feedback to users.

4.2.5 User interface and experience
The user interface presents a resource list and provides intuitive controls for adding, editing, or
deleting items. Uploaded file names are clearly displayed, allowing users to easily remove files

47

with a single click. Resource addition and editing are managed through modal dialogs, creating
a clean and focused interaction flow. The system provides real-time feedback during file
selection and validation to enhance usability and reduce common mistakes.

Figure 4.1: Interface for viewing, adding, editing, and deleting resources within the web application

Figure 4.2: Example of a user session interacting with the application to add new resources

Figure 4.3: Example of a user session interacting with the application to edit an already existing resource

48

4.2.6 File management logic
The system enforces strict validation to accept only supported file types. Once a file is selected,
it is automatically encoded into base64 to enable the transmission between client and server, as
well as backend processing. On the backend, temporary file storage is used for decoding and
converting files into readable formats. Text extraction is handled using specialized libraries:
PyMuPDF for PDFs, python-docx for Word documents, and pandas for Excel spreadsheets,
while TXT files are decoded directly. These temporary files facilitate the transformation of
content into a standardized textual format suitable for further processing. Additional utilities
support file validation, type detection, and format conversion.

4.2.7 Security and validation mechanisms
To ensure robustness and prevent misuse, several layers of validation are in place:

• File type verification ensures that only .pdf, .docx, .xlsx, and .txt files are accepted;
• Required fields such as title and name are validated before submission;
• Errors encountered during upload or content extraction are caught and communicated

to the user.

These validations are applied on both the client and server sides to ensure data integrity and
enhance application security.

4.2.8 UI state management
Managing user interface state is essential for delivering a smooth and intuitive experience. The
application extensively uses React state hooks to control dialog visibility, file handling, and
form inputs. Key elements include:

• Dialog states: Modal visibility for adding and editing resources is governed by boolean
flags such as isAddResourceOpen and isEditResourceOpen, enabling clear and
controlled user navigation;

• File upload states: Variables like uploadedFileName and isFileNameSet monitor the file
upload process, influencing UI behavior like displaying the filename, toggling save
buttons, and permitting file removal;

• Resource form states: Separate state objects for newResource and editResource hold the
input data during creation or modification. The originalUrl is preserved during edits to
prevent accidental changes, allowing for intentional updates and easy rollback when
canceled.

Transitions between states are managed via dedicated functions responsible for initializing
dialog contents, resetting states on closure, and synchronizing the resource list after any change.
This multi-layered state management approach ensures a consistent, reliable, and user-friendly
interface.

4.2.9 Utility functions
Utility functions play a vital role in promoting modularity and code reuse across the application.
They are grouped into several key categories:

• ID generation and normalization: Functions like generateId() create unique identifiers
for resources, while normalizeResources() ensures all resources adhere to a consistent
format, simplifying both UI rendering and backend processing;

49

• File management utilities: Helpers such as getFileType() and formatFileSize() extract
metadata and present readable information, helping validation and improving the
display of file details in the interface;

• Error handling: The custom ResourceError class categorizes different error types, and
handleResourceError() centralizes error management. This approach enhances
maintainability and guarantees uniform user feedback across the system;

• Validation functions: Methods including isValidFileType(), isValidFileSize(), and
validateFile() enforce upload constraints, preventing unsupported files from being
processed and providing immediate alerts to users when issues arise.

Together, UI state and utility functions form the backbone of the application’s robustness.

While UI state ensures responsiveness and clarity for the end user, utility functions abstract
away common logic, reduce duplication, and enhance maintainability.

4.2.10 Backend integration
Uploaded files are sent to the backend in base64 format. The backend decodes these files,
temporarily stores them, and processes them using the appropriate parser for their type. The
temporary file infrastructure enables isolation and cleanup, reducing security risks and resource
usage.

Caching mechanisms are in place for downloaded URLs, ensuring that repeated processing is
avoided. This improves performance and ensures consistent content availability for AI
pipelines.

4.3 Online resource retrieval
To support automated content generation, the system includes an advanced mechanism for
searching and managing online resources. At the core of the online search capability lies the
integration with the Tavily API, a service designed for fast and accurate web querying. The
application establishes a Tavily client using an API key obtained securely from environment
variables, avoiding the exposure of sensitive information in the codebase. This setup enables
the application to execute external searches programmatically and retrieve structured results.

The primary logic for performing searches is encapsulated in a function called Search Node.
This function is responsible for orchestrating the full search process. Given a list of search
queries, it initiates logging for tracking progress, sends each query to Tavily, and handles the
response by extracting relevant data and updating the internal application state. Once complete,
it logs the conclusion of the operation.

To support automated content generation, the system incorporates a sophisticated mechanism
for retrieving and managing web-based information. Upon executing a search query, the system
identifies and selects the top three to five most relevant results based on Tavily’s ranking

algorithm. Each result is enriched with metadata, including the source URL, title, brief
description, and content type (URL). When available, the actual content of the resource is also
extracted and stored. The search process itself is designed to be asynchronous and non-
blocking. Once initiated, each query is dispatched to Tavily, and its results are handled
independently. This architecture allows the system to remain responsive and scalable,
especially when dealing with multiple concurrent queries.

50

The application represents each result as a structured resource object that encapsulates essential
metadata and full textual content. The HTML content is fetched and converted into a readable
format. The system dynamically tracks the state of each resource, including its availability,
download status, processing logs, and caching metadata. This dynamic management ensures
consistency and performance during intensive or large-scale operations.

The user interface plays a central role in how resources are presented and managed. Retrieved
items are displayed as interactive cards containing the title, description, URL (complete with
favicon), and resource type. Users can remove individual resources, edit details, or upload
additional documents to expand the dataset. This visual approach simplifies user interaction
and provides immediate feedback, which is essential for applications involving research,
synthesis, or assisted writing.

To ensure robustness, the system implements comprehensive error-handling mechanisms. It
detects and manages various failure scenarios, including download interruptions, invalid URLs,
unsupported file formats, content decoding errors, and response timeouts. In all such cases, the
affected resources are excluded from further processing, while unaffected operations continue
without interruption. This fault-tolerant design is essential for maintaining stability in real-
world network and data conditions.

Performance is further enhanced by a local caching mechanism that stores previously retrieved
and processed resources. This reduces the number of redundant calls to the Tavily API and
minimizes loading times when frequently used content is accessed. Caching helps to improve
responsiveness and efficiency overall, especially when the system is deployed in environments
with limited connectivity or high resource turnover.

4.4 Automated generation of learning modules
The automated generation of instructional modules represents a significant advancement in the
field of educational technology, particularly in the area of microlearning. This system is
designed to autonomously create interactive and pedagogically effective modules, structured as
slide-based presentations enriched with quizzes and visual content. These learning modules are
designed to support rapid knowledge acquisition and are ideal for a variety of educational
contexts, from corporate training to self-paced academic study.

At the heart of the system lies a clear and coherent structure. Each module consists of a sequence
of informative slides, seamlessly integrated with interactive quizzes that assess the learner’s

understanding of the presented material. The content is supported visually by automatically
generated images tailored to the theme of each slide. In addition, the modules are equipped with
intuitive navigation tools that enhance user engagement and ensure a smooth progression
through the learning path.

The generation process begins with the collection of educational resources. The system is
capable of ingesting various formats provided by the user, including web links, PDF documents,
Word files, Excel spreadsheets, and plain text. Furthermore, if needed, the system can
autonomously search for relevant materials online, selecting from a wide range of languages to
ensure accessibility for a global audience.

Once the resources are collected and processed, the content of the documents is converted into
microlearning objects. These objects are then used to build modular and targeted instructional

51

elements. Advanced AI models are used to facilitate this transformation. In particular, AI plays
a central role in generating the core learning components:

• Slide generation is conducted using Large Language Models that interpret and
summarize the source material into structured slide components formatted as JSON
objects. Each slide typically includes a title, a brief explanatory text, and an image
prompt derived from the content. Images are then automatically generated using the
DALL·E model, based on these prompts. The layout and language style of each slide are
dynamically adjusted according to pedagogical heuristics to enhance clarity and
retention.

• Quiz creation is also handled through language models, which are prompted to identify
key concepts within the source material. These concepts are then rephrased into well-
structured questions, with the generation of plausible distractors to support both single-
choice and multiple-choice formats. The system allows for the configuration of
difficulty levels and the adjustment of topic coverage, making the quizzes adaptable to
different learning goals and audiences.

The introductory slide of each module serves a pivotal role, containing the general title of the
module, a generated image, and a concise summary limited to 15 to 25 words. Subsequent slides
are dynamically composed, with flexible formats that may include a combination of titles,
images, and descriptions. Some slides may focus solely on visual content, while others pair
imagery with explanatory text. The closing slide mirrors the structure of the opening slide,
summarizing the module with a concluding title, image, and brief descriptive commentary. The
system employs a variety of templates to structure the slides.

Each slide is meticulously crafted to ensure clarity and coherence. Titles are designed to be
brief and impactful, guiding the learner through the core themes. Descriptions are typically
composed of 60 to 120 words, written in a clear and accessible style. To aid readability and
highlight key concepts, the content is formatted using HTML tags: bold text marks important
keywords, while italicized words add emphasis. The images accompanying each slide are not
stock visuals but are generated based on contextually relevant prompts, ensuring consistency
with the narrative and educational purpose of the module.

To evaluate comprehension, the system integrates interactive quizzes. These may be single-
choice questions (radiobuttons) or multiple-choice questions (multicheckboxes). Each quiz is
designed with pedagogical rigor, including features such as a passing score threshold set at
80%, immediate feedback on answers, and the ability to retry the quiz. Importantly, module
progression is often gated, preventing learners from advancing until they have successfully
completed the required assessments.

User interactivity is further enhanced through navigational controls that allow learners to move
forward or backward within the module, jump to the beginning or end, retry quizzes, or revisit
previously seen content. A visual progress indicator helps maintain motivation and orientation
throughout the learning experience.

The system supports high levels of personalization. It accommodates multiple languages,
ensuring a broad reach. The visual identity of generated images is consistent, maintaining
aesthetic and cognitive harmony.

52

The final output of the system is a structured package containing a unique module ID, the
module’s title and description, a complete list of the resources used, metadata relevant to
microlearning, and a detailed breakdown of the templates applied during generation.

Through this integrated and automated process, the system empowers educators, trainers, and
content creators to generate engaging and interactive learning modules rapidly. By blending
rich content, dynamic quizzes, and intelligent design supported by state-of-the-art AI, it ensures
a user-centered learning experience that is both effective and intuitive.

4.5 Editing and customization of content
The system described herein is a comprehensive slide editor designed to enable AI-assisted
customization, providing users with an intuitive and efficient workflow to create presentations
that are not only content-rich but also dynamically engaging.

A key strength of this system lies in its set of AI-powered tools that substantially simplify the
content creation process. Users can use Artificial Intelligence to automatically generate
complete slides from given topics or outlines, receive smart suggestions for content
improvements, and obtain tailored recommendations for relevant images. These features greatly
speed up the presentation building process and prove especially beneficial for users who may
lack experience in visual design or narrative structuring.

The editing interface is deliberately designed to maximize usability and clarity. At its core, a
central panel prominently displays the current slide, while navigation controls are positioned
directly below the slide. A chatbot panel is located beside the workspace, enabling real-time
interaction and assistance. This layout ensures users receive instant visual feedback during AI
interactions, as any adjustments are reflected immediately on the slide panel. Furthermore, the
interface grants quick access to all major functions, fostering a productive and user-friendly
editing environment. Underpinning this live-update system is a robust state management
architecture that consistently tracks all slide data and metadata, maintaining reliability and
coherence throughout the entire editing session.

Within this environment, users have extensive control over their presentations. They can
seamlessly add new slides or remove unwanted ones, as well as merge or split existing slides
according to their needs. Navigating between slides is made easy with straightforward forward
and backward controls. Beyond basic slide management, users can deeply customize individual
slides by editing titles, descriptions, and images, adapting the structure of the text through
different formats such as bullet points or highlighted keywords to better suit their narrative
goals. The system also supports interactive content creation, allowing users to add, modify, or
delete questions and answers, and choose among various types of quizzes (radiobuttons or
multicheckboxes) to enrich the presentation.

In addition to content editing, users can modify attached files, providing further flexibility in
managing supplementary materials associated with each slide. To further enhance accessibility
and global reach, the system offers automatic translation of content into multiple languages,
facilitating multilingual presentations without additional manual effort.

Collectively, these capabilities empower users to produce sophisticated and engaging
presentations with minimal friction, leveraging intelligent automation and a thoughtfully
designed interface that balances power with ease of use.

53

Figure 4.4: Example of a user session interacting with the application to add another radiobutton quiz

4.6 Integration of a chatbot for user assistance
The chatbot integration and conversation features operate through a carefully designed system
that enhances user interaction with context-aware assistance. When a user first engages with
the chatbot, it begins with an initial welcome message, which can be customized via the
CopilotChatLabels interface. This message is a default greeting that sets a friendly and
approachable tone. The chatbot maintains a context-aware state throughout the interaction,
allowing it to deliver suggestions and responses that are relevant to the ongoing conversation.

A key component of the system is its sophisticated suggestion mechanism. Suggestions are
dynamically generated based on several factors, including the current state of the conversation,
the tools and actions available within the application, the user’s previous interactions, and the

specific context in which the chatbot operates. This ensures that the prompts offered are always
pertinent and tailored to the user's needs.

The suggestion system is highly configurable. Developers can configure parameters such as the
minimum and maximum number of suggestions (which default to one and three, respectively)
and can also define custom instructions to guide how suggestions are generated. Visual
consistency is ensured through the use of predefined CSS classes that align the styling of
suggestions with the overall application design.

To maintain responsiveness without overloading the system, suggestions are generated using a
debounced approach with a 1000ms delay. This means suggestions are not triggered
immediately but are instead refreshed thoughtfully, minimizing unnecessary computations
while keeping recommendations up to date.

The system recalculates suggestions whenever there are changes in the conversation state, the
addition of new messages, or shifts in the loading status. If a new event occurs while a previous
suggestion is still being processed, the system aborts the ongoing generation and starts over,
ensuring that users always receive relevant and current suggestions.

54

Each suggestion consists of a title (displayed as a clickable button) and an associated message
that is submitted when the button is clicked. These suggestions are presented in a dedicated
section positioned just below the chat messages. The interface is designed to handle multiple
suggestions at once, updating them dynamically in real time as the conversation evolves. This
ensures users are continually presented with relevant and actionable prompts throughout their
interaction.

Integration with the overall chat flow is seamless. Suggestions appear naturally after messages
are sent or received, with the system managing loading indicators and handling error scenarios
gracefully.

Finally, robust error handling mechanisms are built into the system. These safeguard against
failures in suggestion generation, interruptions during processing, invalid states, and network
issues, ensuring a smooth and reliable user experience.

Overall, this implementation delivers a robust and flexible framework that guides users through
conversations with contextually relevant suggestions, making interactions more natural,
intuitive, and productive.

4.7 Multilingual support
To address the need for multilingual accessibility within the chatbot component of the
application, GPT-4.1 was also used as the core engine for language translation and natural
language understanding. This model was selected due to its robust performance across a wide
range of languages and its ability to maintain semantic fidelity during translation tasks. Within
the implementation pipeline, user inputs in various languages are first detected using a
lightweight language identification module. Once the language is identified, GPT-4.1 processes
the input to both comprehend the user’s intent and, if necessary, translate the response from a
base language into the target language. This ensures that interactions remain fluid, natural, and
contextually appropriate for users regardless of their language preferences.

In cases where the uploaded resources (such as textual, PDF, WORD, EXCEL content, or
URLs) are written in different languages from each other or in a language other than the one
used by the user to interact with the AI, the chatbot prompts the user to explicitly choose the
target language to be used to generate slide content. This interactive clarification step ensures
that the generated materials align with the user’s expectations and intended audience.

Furthermore, GPT-4.1’s generative capabilities were also employed to localize responses by

incorporating idiomatic expressions and culturally relevant language patterns, rather than
relying solely on literal translations. This strategy significantly enhances user experience and
engagement, especially in educational settings where clarity and relatability of content are
crucial.

4.8 Development tools
The backend is developed within a well-defined reproducible environment to allow consistency
and ease of maintenance. Dependency management and project configuration are streamlined
using Poetry, which facilitates precise package versioning and virtual environment creation.
Environment variables are securely handled through python-dotenv to safeguard sensitive
configuration details.

55

For logging, the backend utilizes Python’s built-in logging module, extended with contextual
features to support centralized log aggregation and detailed analysis. During development, the
backend runs on the Uvicorn server, configured with debugging and hot-reload enabled,
allowing rapid feedback and efficient troubleshooting.

On the frontend side, as well as the wider TypeScript ecosystem, the project employs a
monorepo structure managed with PNPM (version 9.5.0). This approach enhances dependency
management across multiple packages within a single codebase and improves the development
workflow. The primary technologies powering the frontend include TypeScript (version 5.2.3)
and React (version 18), while Next.js (version 14.2.15) is used as the web framework, offering
optimized routing and server-side rendering capabilities for an improved developer experience.

The development environment emphasizes maintainability and code quality, employing ESLint
and Prettier with custom configurations for linting and formatting, respectively. Pre-commit
hooks are enforced using Husky, which ensures that linting and testing scripts run before any
code is committed, thereby maintaining a consistent codebase.

Styling and UI composition are managed using Tailwind CSS for utility-first design, while
Radix UI and Headless UI provide accessible, unstyled components that support consistent
design patterns across the application.

In terms of AI integration, the project includes support for various SDKs, with LangChain used
to orchestrate advanced AI workflows. This setup allows seamless interaction with language
models and supports both inference and toolchain integration.

Infrastructure is defined using AWS CDK, allowing infrastructure as code practices that align
closely with the rest of the application’s TypeScript codebase.

The TypeScript configuration is set up in strict mode, ensuring strong type safety throughout
the codebase. The project includes multiple configurations tailored to different environments,
such as a base configuration and another specific to Next.js.

A comprehensive set of development scripts is provided to manage builds for various
environments, run the development server with hot reloading, execute tests and linters, and
perform clean builds. These scripts facilitate a streamlined development experience and ensure
that every part of the codebase adheres to rigorous standards for quality and consistency.

Overall, this project is built upon a modern, well-structured development environment that
emphasizes type safety, scalability, code quality, and developer productivity through a cohesive
and carefully selected toolchain.

56

Chapter 5

5. EXPERIMENTAL RESULTS AND

FUTURE WORK
In the first part of the chapter, the manual testing phase that was conducted is presented,
reporting an example of user interaction with the chatbot for creating and editing educational
content. In this phase, multiple evaluation metrics are reported and analyzed, such as execution
time, computational cost, economic cost, Time To First Token (TTFT), and completion token,
in order to demonstrate the capabilities of the system, identifying performance bottlenecks and
validating its applicability in the real world. Aggregate metrics on repeated experiments are
then reported. These tests were conducted internally within the company, involving colleagues
and department heads. Their participation provided valuable insights into the usability and core
functionality of the platform.

In the second part of the chapter, a plan is defined for future automated test implementations.
This will include unit, integration, system, end-to-end, and security testing in order to ensure
scalability, robustness, and maintainability of the platform under broader usage scenarios.

5.1 Manual testing methodology
To ensure a comprehensive and objective evaluation of the system's performance, a set of key
performance indicators was defined. These metrics were selected based on their relevance to
the goals of the project and their prevalence in related work in the fields of AI-based educational
technology and enterprise automation.

The main evaluation criteria include:

• Execution time: Measures the time required to complete core system operations, such
as content ingestion, pre-processing, image generation, and module generation. The
values reported below were recorded using LangSmith;

• Computational cost: Tracks the usage of the CPU during execution, providing insight
into the platform’s efficiency. The values reported below were extracted from print
statements embedded in the Python code. The computational cost (% CPU)
measurements were performed on a system with the following hardware and software
specifications:

57

Attribute Details

Processor (CPU) 13th Gen Intel® Core™ i7-1355U
Physical cores 10
Logical cores 12

Base frequency 1.70 GHz
Operating system Microsoft Windows 11 Pro

 Table 5.1: System specifications (hardware and software)

• Economic cost: Takes into account costs to run the system. It includes expenses related
to the OpenAI APIs, Tavily APIs, and Amazon Web Services. The values reported below
were calculated using LangSmith for OpenAI-related costs. AWS costs were estimated
using the pricing on the official website. Costs for Tavily are currently zero, as we are
using the free tier, but pricing information from their official website is also included
for reference;

• Input prompt: Measures the length of input provided to the system, expressed in number
of tokens. This metric helps evaluate the impact of prompt complexity on response
latency and overall efficiency. The values sent were recorded via LangSmith;

• Time To First Token: Measures the latency between a user's request and the generation
of the first output token, giving an idea of the perceived responsiveness. The values
reported below were recorded using LangSmith;

• Completion token: Represents the number of pieces of text (tokens) generated in
response to a request. In terms of length, on average, a token is about 0.75 words or 4
characters in English, but these are language dependent. The values reported below were
recorded using LangSmith.

Experimental tests were conducted using a diverse dataset of enterprise documents, and
performance was measured under controlled and repeatable conditions.

5.1.1 Example of user interaction flow: from user query to microlearning slides
As mentioned above, this section presents a sample user interaction with the platform’s AI

assistant through a conversational interface. The goal of the experiment is to evaluate the
model’s ability to generate structured content on demand.

Initially, the assistant is asked to generate a complete set of slides on the topic of microlearning
and, subsequently, the user requests a series of modifications to the generated content. Below
are the various interaction steps along with the corresponding performance metrics. In addition
to performance metrics, there is also a description of what happens behind the scenes during
the interaction.

The conducted manual test is executed locally.

Computational costs, when not specified, are negligible.

58

First interaction (slide generation)

Figure 5.1: Example of a user session interacting with the application to create a set of slides about microlearning

The user uploads one or more resources (in the specific example, just one PDF) and specifies
that the slide generation must occur only using these resources, without external search. When
the user asks to generate slides, the message is forwarded to the backend via the CopilotKit
pipeline.

The backend system, based on a graph architecture composed of processing nodes, receives the
user’s input along with the uploaded resource. The uploaded file, if it is a PDF (as in the

example above), is first encoded in base64 to ensure proper handling within the CopilotKit data
flow. This encoded file and the user's textual prompt are sent to the backend service, which
starts a multi-step pipeline to process, analyze, and convert the resource into structured
microlearning content.

59

The first component in this pipeline is the Download Node. In a general use case, this node
retrieves external content; however, since the user explicitly asked the system to work only with
the provided PDF file, no actual download occurs. Instead, the encoded PDF is handed off
directly to the next processing node.

The core of the generation logic, therefore, takes place in the Chat Node. Here, the system
decodes the file, extracts its textual content, and constructs a formatted prompt for the Large
Language Model. This prompt includes several important constraints: the model must use only
the uploaded resource; it must structure the content as a presentation composed of slides; and it
must follow specific formatting guidelines regarding slide titles, descriptions, and the possible
use of illustrative elements.

Once the language model processes the prompt and completes its internal generation phase, it
triggers a specific backend tool called WriteReport. This tool is responsible for compiling the
generated slides into a structured JSON report. Each slide in the report includes a title, a short
description, and the prompt used later for image generation. This JSON report is then returned
to the backend system, where it undergoes validation and further processing (using parsing
functions).

After validation, the final report is serialized and stored in the backend state under a dedicated
field (state[“report”]). At this point, the frontend interface becomes aware of the new data.
Specifically, the ResearchCanvas component detects the updated report, decodes its contents,
and passes it to the slide visualization module (i.e., challenges-app web component). The user
now sees the generated presentation in a structured and editable format. They can review the
slides, change titles and descriptions, add new resources or remove provided ones, modify
quizzes, or request automatic translation of the content into another language.

It is important to emphasize that in this flow, no external data retrieval is performed. The Search
Node of the system’s graph, which typically handles external searches, is entirely bypassed. In
enterprise environments, this strict adherence to the user's instruction to use only the uploaded
file is a key aspect that ensures that the generated content only contains controlled information
retrieved by the provided resources.

Below are the metrics recorded in this phase:

• Download node duration: 15.01 s
• Chat node duration: 610.02 s
• Chat node duration: 10.82 s
• Total duration: 635.85 s
• TTFT: 78,841 ms
• Tokens: 6,153

o Prompt: 11,497/ $0.022994
o Completion: 59/ $0.000472

• Cost (OpenAI): $0.023466
• Computational cost (% CPU):

Image Computational
cost (% CPU)

1 0.8
2 0.7

60

3 0.9
4 1.1
5 1.3
6 0.7
7 1.1
8 0.9
9 1.0

10 1.0
11 1.5
12 1.1
13 1.2
14 1.0

Table 5.2: Computational cost for image generation

Second interaction (slide modification)

Figure 5.2: Example of a user session interacting with the application while asking for more detailed slides

After the initial slide generation is completed, users can request to enhance and refine the
existing content. In this case, the user asks the system to add some details about microlearning
in enterprises.

As the request enters the backend, the processing pipeline is reactivated, following a similar
route as before. The input is first passed through the Download Node, which is the initial node
of the graph. Then, the Chat Node serves as the central logic node for interpreting user
intentions and constructing the appropriate prompts for the Large Language Model.

At this stage, the AI system asks the user whether they would like the model to search for
external sources in order to enrich the content or whether the addition of details should be based
strictly on the original resources already provided.

This explicit request serves an important purpose: to maintain user control. Some users may
prefer to keep the learning content strictly tied to internal documentation, ensuring that all
generated output remains verifiable, traceable, and compliant with corporate standards. Others
may welcome the opportunity to enrich the material with broader knowledge from external

61

publicly available sources. By offering a clear choice, the system empowers users to guide the
direction of the enrichment process.

Below are the metrics recorded in this phase:

• Download node duration: 0.29 s
• Chat node duration: 11.01 s
• Total duration: 11.30 s
• TTFT: 5,650 ms
• Tokens: 8,385

o Prompt: 8,307/ $0.016614
o Completion: 78/ $0.000624

• Cost (OpenAI): $0.017238

Third interaction (online resource retrieval)

62

Figure 5.3: Example of a user session interacting with the application while asking for more detailed slides

The user responds to the system's request for clarification and, in this case, chooses to expand
the initial presentation by inserting external information. The system does not regenerate the
entire presentation from scratch, but when it receives an instruction that seems to be a
continuation of the previous activity (thanks to the agent state, which preserves the session
context), it promptly proceeds to make the requested change while keeping the remaining
textual content unchanged. In this case, it adds a new slide, without modifying the text and
structure of the others. However, even if the text of the previous slides remains unchanged, the
images are still regenerated. This behavior is justified by the need to ensure visual consistency
across all slides: even a minimal textual change (such as adding a detail or rewording) can imply
a change in the conceptual content, tone, or focus of the slide, making it appropriate to also
update the image to keep it aligned.

The process begins in the Download Node and then proceeds to the Chat Node. Here, the AI
interprets the user's request (to enrich the existing content with additional web-sourced details)
and creates a high-level plan for how to proceed: the model identifies the thematic areas or slide
topics that require further elaboration and formulates targeted search queries accordingly. Then,
these queries are passed to the next component: the Search Node.

The Search Node serves as the orchestrator of online information retrieval. It uses the Tavily
API, which returns a ranked list of the most relevant results (usually from 3 to 5).

Each result includes a title, a URL, and a brief description. This content is retrieved, parsed,
cleaned, converted from HTML into readable text, and stored in the Resource object. The
system tracks the state of each resource and handles any failures.

Once the search is complete, the newly acquired resources are sent back through the Download
Node. At this point, the node processes the incoming set of external documents. With all
resources available (both the original internal files and the newly fetched external ones), the
pipeline returns once again to the Chat Node. In this phase, the AI is prompted to re-analyze
the slides in light of the expanded content base. It identifies opportunities to enhance existing
sections, introduce clarifying examples, or add new explanatory notes. The model is instructed
to preserve the structure and tone of the original slides, changing only necessary textual parts
and regenerating the images.

At this point, the AgentState is changed: it is enriched with all the information related to the
new resources. This change is propagated to the frontend, which updates the interface and
displays the new content to the user.

Finally, a final pass through the Chat Node is triggered, whose purpose is to create the final
response to inform the user that the slides have been successfully enriched.

63

Below are the metrics recorded in this phase:

• Download node duration: 0.34 s
• Chat node duration: 11.01 s
• Search node duration: 48.07 s
• Download node duration: 7.43 s
• Chat node duration: 510.79 s
• Chat node duration: 14.69 s
• Total duration: 592.33 s
• TTFT: 8,078 ms
• Tokens: 50,253

o Prompt: 50,199/ $0.100398
o Completion: 54/ $0.000432

• Cost (OpenAI): $0.10083
• Computational cost (CPU):

o Download node: 97.7%
o Search node: 64.9%
o Download node:

Resource Computational
cost (% CPU)

1 30.2
2 18
3 15.9
4 22
5 29.4

Table 5.3: Computational cost for resource downloading

o Image generation:

Image Computational
cost (% CPU)

1 1.6
2 2.3
3 2.2
4 4.6
5 2.1
6 3.1
7 1.9
8 1.9
9 1.9

10 2.3
11 2.9
12 4.1
13 3.1
14 2.3
15 1.7

Table 5.4: Computational cost for image generation

64

Fourth interaction (slide translation)

In this interaction, the user asks the assistant to translate the set of slides into Italian.

As with all actions initiated by the user, the workflow begins in the Download Node, where the
AgentState is retrieved (it also includes the content of the resources).

Figure 5.4: Example of a user session interacting with the application while asking for the translation of the entire content

Then, the flow continues to the Chat Node and here the actual translation of the content takes
place. The AI receives a prompt that explicitly asks to perform a translation of each slide from
English into Italian (also quizzes are modified). The model is guided not only to translate text
accurately, but also to preserve the integrity of the slide format, including headings, bullet
points, examples, etc.

The translation is performed in-place within the slide structure: rather than regenerating slides
from scratch, the model modifies only the necessary parts (always regenerating images). Once
completed, the translated slides are written back into the application state.

Finally, the workflow returns to the Chat Node in order to create a message for the user that
confirms that the set of slides has been successfully translated. This message, along with the
updated slide content, is sent back to the frontend and the user can view the new version.

65

Below are the metrics recorded in this phase:

• Download node duration: 0.30 s
• Chat node duration: 492.01 s
• Chat node duration: 13.57 s
• Total duration: 506.2 s
• TTFT: 10,650 ms
• Tokens: 39,161

o Prompt: 39,109/ $0.078218
o Completion: 52/ $0.000416

• Cost (OpenAI): $0.078634
• Computational cost (CPU):

Image Computational
cost (% CPU)

1 2.1
2 1.5
3 1.8
4 2.5
5 3.0
6 1.8
7 1.6
8 1.5
9 1.7

10 3.3
11 2.7
12 3.0
13 2.2
14 2.4
15 2.2

Table 5.5: Computational cost for image generation

Fifth interaction (slide split)

66

Figure 5.5: Example of a user session interacting with the application while asking to split a slide

At this point, the user asks the system to split a dense slide into two, in order to allow the learner
to focus on one aspect at a time and improve the understanding of the content.

The pipeline starts, as always, with the Download Node, where the current state (including the
most recent version of the slides) is loaded.

The process then moves to the Chat Node, where the model is prompted to interpret and execute
the user’s intent: splitting a single slide into two separate ones. The model analyzes the
previously generated slide and looks for the right point to split, which allows each new slide to
remain autonomous and meaningful, but still coherent with the others. The new slides preserve
the original tone and formatting while redistributing content in a way that enhances cognitive
load management for the learner. In this node, image regeneration is performed.

Once this process is complete, the set of slides is updated in the internal state and passed again
through the Chat Node. This second call to the node is not about modifying content but about
composing the final system response to confirm that the operation has been successfully
completed.

This response, along with the modified set of slides, is sent to the frontend interface. The user
can view the updated set of slides, now including the two new slides in place of the original
one. The interface allows further iterative refinements, ensuring full user control over the final
structure.

Below are the metrics recorded in this phase:

• Download node duration: 0.30 s
• Chat node duration: 492.01 s
• Chat node duration: 13.57 s
• Total duration: 506.2 s
• TTFT: 8,738 ms
• Tokens: 40,309

o Prompt: 40,237/ $0.080474
o Completion: 72/ $0.000416

• Cost (OpenAI): $0.08089
• Computational cost (% CPU):

Image Computational
cost (% CPU)

1 1.7
2 1.7
3 2.7

67

4 2.3
5 4.7
6 2.2
7 2.4
8 2.4
9 2.5

10 2.5
11 3.1
12 2.8
13 2.1
14 3.3
15 2.1
16 3.2

Table 5.6: Computational cost for image generation

5.1.2 Aggregated metrics from the interaction flow
After detailing the five key user interactions within the AI-powered content generation pipeline
(ranging from the initial slide creation to enrichment, translation, and structural edits) and
recording the various associated metrics, we can get a general idea of the overall system
performance during this single run. Therefore, this section presents a summary of the most
relevant metrics collected during the execution of these interactions, with the goal of offering a
quantitative perspective on the behavior, efficiency, and responsiveness of the underlying
architecture. Indeed, by measuring system latency, costs, and number of tokens across different
stages, we can better understand how well the pipeline supports real-time microlearning content
creation and further editing. Depending on the nature of the metric, values are presented either
as totals or as averages.

• Total duration: 2,251.88 s
• TTFT: 22,391.4 ms
• Tokens: 144,261

o Prompt: 149,349/$0.28698
o Completion: 315/$0.00252

• Cost (OpenAI): $0.277592
• Average computational cost (CPU): 6.05%
• Number of slides generated: 38
• Number of images generated: 61

All reported data comes from direct observation of the system during execution and analysis of
its logs. This approach ensures a realistic representation of the system usage, useful for
evaluating performance, estimating throughput, and guiding future improvements.

From an economic point of view, the costs associated with searching for online resources should
also be considered. With Tavily's free plan, 1,000 credits per month are available at no cost.
Each chatbot cycle, which includes a basic search (1 credit) and the basic extraction of 3-5
resources (1 credit), consumes 2 credits. So, with the free plan, up to 500 complete queries per
month can be managed for free. Once this threshold is exceeded, there is the need to upgrade
to a paid plan like the Project one (the most basic one after the free one, which guarantees 3,000

68

credits per month), where each credit costs $0.0075. In this case, each complete query would
cost 2 × $0.0075 = $0.015. Anyway, in our case:

• Tavily cost: $0 (free plan)

Moreover, in the case the execution takes place on AWS infrastructure, the costs related to the
services used must also be added to the previous costs, in particular those related to AWS
Lambda, AWS Secrets Manager, and Amazon CloudWatch.

Actually, it is currently not possible to precisely isolate costs related to a single execution of
the application, but we can estimate them using the pricing on the official AWS website.

AWS Lambda costs depend on how many times the function is executed and how long it remains
active, on the memory allocated, and on the region in which it runs. For AWS Secrets Manager,
you pay a monthly fee for each secret stored, such as API keys, tokens, or credentials, and
additional costs when the secrets are accessed. Finally, with Amazon CloudWatch, costs are
related to the logs generated by Lambda, i.e., the amount of data sent and stored there.

To provide a concrete estimate, we can consider an application used by 20 users monthly. It is
assumed that each user accesses the app once a day, for a total of 30 uses per month, thus
producing 600 monthly invocations (20 users × 30 accesses).

Each access involves:

• the activation of two Lambda functions: a UI Lambda (4096 MB, average duration 300
seconds) and an Agent Lambda (1024 MB, average duration 300 seconds);

• two requests to the Secrets Manager to retrieve the API keys stored;
• the generation of about 5 KB of logs, saved in Amazon CloudWatch.

AWS Lambda costs depend on how many times the function is executed and how long it remains
active (in seconds), on the memory allocated (in GB), and on the region in which it runs (eu-
west-1). The cost per execution can be calculated using the following formula:

CostLamba = Memory (GB) × Duration (s) × Cost ($) × Iterations

In the case of UI Lambda (4096 MB = 4 GB, duration = 300 s), the reference price is
$0.0000000667 per GB-second, so:

CostUI_Lambda = 4GB × 300s × $0.0000000667 × 600 = $0.048024

For Agent Lambda (1024 MB = 1 GB, duration = 300 s), with price $0.0000000167 per GB-
second, the total cost is:

CostAgent_Lambda = 1GB × 300s × $0.0000000167 × 600 = $0.003006

The total cost for Lambda functions is then:

TotalLambda = $0.048024 + $0.003006 = $0.05103

AWS Secrets Manager charges a flat fee of $0.40/month for each secret stored. This is in
addition to a variable cost for API calls, equal to $0.05 per 1,000 requests.

With a single secret stored and 600 monthly requests:

CostSecrets = $0.40 × 2 = $0.80

69

CostRequest = 600 × 0.05 / 1,000 = $0.03

TotalSecretManager = $0.80 + $0.03 = $0.83

Amazon CloudWatch charges a log ingestion fee of $0.50 per GB. In our case, each invocation
produces about 5 KB of logs. The total volume generated in a month is therefore:

TotalCloudWatch = 600 × 5 KB = 3,000 KB = 3 MB = 0.003 GB

CostCloudWatch = 0.003 × 0.50 = $0.0015

However, since AWS offers 5 GB/month of free logs, this cost is within the free threshold. The
actual cost will therefore be:

TotalCloudWatch = $0.00

In conclusion:

Total20_users = $0.83 + $0.0015 = $0.8315

One of the most important advantages of the serverless approach is the linear scalability of
costs. If the number of users were to grow, for example, to 100 monthly users (3,000
invocations), the costs would increase proportionally. Applying the same formulas, we obtain:

• Lambda:
CostUI_Lambda = 4GB × 300s × $0.0000000667 × 3,000 = $0.24012

CostAgent_Lambda = 1GB × 300s × $0.0000000167 × 3,000 = $0.01503
TotalLambda = $0.24012 + $0.01503 = $0.25515

• Secrets Manager:
TotalSecretManager = 0.80 × 1 + 3,000 × 0.05 / 1,000 = $0.80 + $0.15 = $0.95

• CloudWatch: 15 MB of logs (still under free threshold)
TotalCloudWatch = $0.00

• Total:

Total100_users = $0.25515 + $0.95 = $1.20515

This model shows how the system can grow with users; costs increase only based on real traffic,
avoiding waste due to an infrastructure that is designed too large from the beginning (trying to
predict the expansion of the user base).

5.1.3 Aggregated metrics from repeated interaction experiments
Repeated experiments were conducted to simulate real-world usage scenarios, involving the
insertion of different input formats (such as URLs, PDFs, Word, Excel, and text files), according
to the previously defined interaction flow model. The simulated activities included common
operations such as content creation, editing, and translation, useful for analyzing system
performance and stability.

By aggregating the results of these 10 sessions, a set of average metrics that reflect the typical
resource consumption of the application was computed:

• Average total duration per interaction: 1,349.5 s
• Average TTFT: 13,601 ms
• Average number of tokens per interaction: 87,993

70

• Average OpenAI API cost per interaction: $0.341704
• Average Tavily API cost per interaction: $0 (free plan, under 500 complete queries)
• Average computational load (% CPU): 3.29
• Average number of slides generated: 31
• Average number of images generated: 40

These metrics confirm the system's ability to deliver high-quality output while maintaining
acceptable latency and low resource consumption. They also serve as a benchmark for future
optimizations and for estimating performance at scale.

5.1.4 Discussion and analysis
The tests conducted demonstrate that the platform guarantees good performance in terms of low
costs and quality of content. Although it is not very fast in generating content, it still proves
effective in using Artificial Intelligence to transform knowledge, solving critical issues such as
the high cost of producing teaching materials and the lack of customization. By working on
enhancing the parallelization of operations, this aspect can certainly be improved as well.

Among the main strengths that emerged:

• Automation: Automatic generation of content with minimal human intervention,
reducing time and costs;

• Flexibility: Modular architecture that facilitates the integration of new features and
adaptation to different business contexts;

• User Experience: Multilingual support and chatbots improve accessibility and
interaction.

The addition of human feedback could also further improve the quality and evolution of the
system.

5.2 Automated testing methodology
This section presents an automated testing strategy planned for future development phases to
ensure greater performance, reliability, repeatability, and security of the microlearning
application. Given the multifaceted nature of the platform (which integrates AI-powered
content generation, multilingual processing capabilities, and interactive learning features), a
rigorous and multi-layered testing approach is essential.

The planned automated testing activities include:

• Unit testing: Individual software modules (such as document parsers, text summarizers,
language models, and quiz generators) will be tested in isolation to confirm they behave
as expected under a variety of input conditions. Testing will be automated using
frameworks such as PyTest for Python components;

• Integration testing: This will focus on the interactions among various modules in the
processing pipeline. For example, it will test the successful handoff from the content
extraction module to the summarization engine, and then to the learning content
formatter. This type of testing is crucial to validate the system's internal cohesion and
data flow correctness;

71

• System testing: The platform will be tested as a whole to confirm that the complete
application meets functional and non-functional requirements. This includes testing the
deployment architecture, APIs, databases, and frontend interface in coordination;

• End-to-End (E2E) testing: These tests will simulate real-world usage scenarios,
covering the entire workflow from document upload through to user interaction with
the generated learning material and the chatbot;

• Security and input validation testing: Specific attention will be given to input validation,
file upload handling, user authentication, and access control. Tests will check for
common vulnerabilities such as injection attacks, insecure file handling, and broken
session management. Static and dynamic analysis tools like Bandit and OWASP ZAP
will assist in identifying security flaws.

By transitioning towards automated testing, the development process will benefit from faster
feedback loops, improved test coverage, and enhanced confidence in platform stability and
security before broader deployment.

5.2.1 Planned performance evaluation
Performance testing is essential to ensure that the platform maintains good levels of
responsiveness and efficiency, even under high loads. The following evaluation strategies are
planned:

• Load testing: Concurrent users will be simulated to measure the scalability of the
system. Using tools like Locust, it will be possible to apply virtual loads and monitor
indicators, such as average response time, throughput, and resource use;

• Stress testing: Tests will be performed beyond normal operating limits to analyze the
behavior of the system under extreme conditions. This kind of testing will help identify
critical thresholds and points of failure, such as memory leaks or CPU saturation, which
may not emerge during standard loads;

• Scalability and concurrency testing: These tests aim to verify how the platform reacts
to increasing number of concurrent users or parallel processes, evaluating the possibility
of scaling horizontally or vertically. The infrastructure, with elements such as load
balancers, container orchestrators, and caching mechanisms, will be analyzed in terms
of flexibility and adaptability;

• Profiling and bottleneck identification: To identify bottlenecks in the backend,
especially in AI models or data processing, performance profiling tools such as New
Relic, Datadog, or Python’s cProfile will be used. The goal will be to optimize
execution times and improve memory usage in crucial operations, such as AI-based
content generation.

In addition to quantitative metrics, logs and exception reports will be analyzed to identify
anomalies and performance degradation patterns.

5.2.2 User experience and usability testing
A core pillar of platform success lies in its usability, especially since it targets users with diverse
backgrounds and varying levels of digital literacy. Usability testing will be undertaken in
multiple phases to gather qualitative and quantitative insights from end users.

72

• Participant recruitment: Users will be selected to reflect the platform’s key personas,

including training managers, subject matter experts, and employees participating in
learning programs;

• Test design: Participants will be asked to complete representative tasks, such as
uploading content, interpreting AI-generated summaries, navigating between slides, and
interacting with AI. These sessions will be conducted in controlled environments, either
remotely via screen sharing or in person;

• Data collection techniques:

o Observation and think-aloud protocols: Observers will note user behavior and
friction points as participants verbalize their thought processes;

o Surveys and questionnaires: Standardized instruments like the System Usability
Scale (SUS), Net Promoter Score (NPS), and custom Likert-scale surveys will
be administered to assess satisfaction and usability;

o Interviews: Follow-up interviews will allow participants to elaborate on their
experiences, expectations, and any perceived limitations;

o Interaction logs: Behavioral data from user sessions will be anonymized and
analyzed to detect common navigation paths, drop-off points, and interaction
errors.

These insights will be triangulated to prioritize usability issues and design refinements.

5.2.3 Conclusions

This chapter has provided a comprehensive overview of the results obtained during the
development and evaluation of the AI-powered microlearning platform. The combination of
computational efficiency and content accuracy highlights how AI technologies can
revolutionize learning flows in enterprises.

The metric analysis confirmed the potential of the platform, especially in the automatic
generation of content and its usability in different contexts. However, areas of optimization also
emerged, especially regarding content generation speed.

Overall, the results obtained support the basic idea of this thesis: AI is able to increase the
content quality in terms of coherence, clarity, and effectiveness in corporate training. This
reflects the broader process of digital transformation of the world of work, where intelligent
systems are becoming protagonists in the evolution of learning and innovation.

73

Chapter 6

6. CONCLUSIONS AND FUTURE
DEVELOPMENTS

This final chapter presents an overall reflection on the results obtained, outlining both the main
strengths of the application and the critical issues encountered, as well as suggesting possible
future developments. Finally, the aspects that make the platform a promising tool for knowledge
transfer in dynamic and complex contexts, such as corporate ones, are highlighted.

6.1 Limitations and challenges encountered
While the current implementation of the platform has demonstrated promising capabilities and
lays a solid foundation for intelligent and automated slide generation, several limitations and
challenges have been identified throughout the development and testing phases. These
constraints span technical, architectural, and user experience domains, and must be
acknowledged to contextualize the scope of the platform in its current state and guide future
enhancements.

6.1.1 Limited input modalities
At present, the platform primarily accepts textual inputs for content generation. This restricts
its ability to process and extract information from non-textual or multimedia sources such as
audio recordings, video lectures, scanned documents, or handwritten notes. As a result, a
significant portion of enterprise knowledge (particularly content from meetings, interviews, and
legacy files) is excluded from the knowledge ingestion pipeline.

6.1.2 Inefficiencies in image generation
Image generation is performed sequentially, which can result in noticeable delays, especially
when creating a set of slides with many visual elements. Moreover, the system relies on
generating images based on textual slide content rather than extracting or reusing visuals from
uploaded materials, which may limit the contextual relevance and consistency of visual assets.

6.1.3 Lack of a visual editing interface
Currently, users must interact with the platform exclusively through a conversational interface,
even for minor edits. This can become cumbersome when users wish to make quick, targeted
adjustments to individual slide elements such as titles, bullet points, or formatting. The absence
of a canvas-style editor limits editing efficiency and user control over the final output.

6.1.4 Basic authentication scheme
The existing authentication mechanism is based on Basic Authentication, which lacks
robustness and scalability. This approach can present security risks and does not support more

74

advanced user management features such as token-based session control, role-based access, or
integration with enterprise authentication systems (e.g., Single Sign-On).

6.1.5 File size limitations and lack of persistent storage
The current system architecture transmits files via base64 encoding directly between the
frontend and backend. This technique introduces a hard limit of approximately 420 KB for
uploaded documents, which restricts the ability to process large or complex inputs.
Additionally, the absence of persistent file storage means that uploaded resources, generated
slides, and chatbot conversations are not retained across sessions, limiting version control and
long-term usability.

6.1.6 Absence of structured evaluation
To date, the platform has not undergone formal usability testing or performance benchmarking.
Without structured user studies or adherence to established evaluation frameworks (e.g., SUS,
Nielsen heuristics), it remains difficult to identify usability bottlenecks or validate its impact in
real-world educational or enterprise environments.

6.1.7 Fixed slide template and limited customization
The platform currently employs a static slide template, without offering users the ability to
customize layout, color scheme, fonts, or branding elements. This reduces flexibility for
enterprise clients who may require consistency with corporate visual identities or desire tailored
presentation formats for different contexts.

6.1.8 Inaccessibility of source files
Users are not currently able to download the original source that was used to generate slides.
This complicates content revision and restricts the potential reuse of materials for other
educational or professional workflows.

6.1.9 Dependency on external APIs and third-party services
A notable architectural limitation lies in the platform’s strong dependence on third-party
services and APIs (most prominently, the OpenAI GPT models for content generation and the
Tavily search engine for information retrieval). While these tools provide advanced capabilities
out of the box, their integration introduces several concerns:

• Data privacy risks, particularly when handling sensitive or proprietary enterprise
content that must be transmitted to external servers;

• Variable response times and latency, which can impact the perceived responsiveness of
the platform;

• Availability risks, where service downtimes or interruptions in third-party API services
may render the system partially or entirely unusable;

• Output variability, as LLM-generated content may not always meet expected standards
of factual accuracy or consistency;

• Cost-related concerns, due to reliance on usage-based pricing models, which may not
scale economically with high user volumes.

These factors highlight a critical trade-off between leveraging state-of-the-art AI capabilities
and maintaining control over infrastructure, privacy, and long-term operational costs.

75

6.1.10 Summary of key limitations

Limitation Impact

Limited input modalities Inability to ingest audio/video/scanned
images/handwritten content

Sequential image generation Increased waiting times during slide creation
No canvas-style editor Low editing efficiency and flexibility
Basic Authentication Poor security and scalability
File size restriction Inability to process large documents

No persistent storage Loss of files and outputs across sessions
No formal evaluation Lack of validated UX and performance metrics
Static slide template Limited branding and layout flexibility
No source file access Reduced transparency and reuse potential

Dependency on external APIs Risks related to data privacy, availability, latency, output
quality, and costs

Table 6.1: Summary of key limitations in the application

6.2 Potential enhancements and future work

Building upon the current implementation, several future decisions are envisioned to enhance
the platform’s capabilities, improving its usability and increasing its adaptability across various

enterprise and educational contexts. These potential enhancements span improvements in input
handling, user experience, infrastructure, and system intelligence, and they are critical to
unlocking the platform’s full potential.

6.2.1 Support for expanded input modalities
One of the most significant areas for enhancement involves broadening the range of input
formats that the platform can process. By incorporating multimedia inputs (such as audio
recordings, video lectures, scanned images, and handwritten notes), the system would become
significantly more inclusive and versatile in capturing enterprise knowledge. This would
require integration with advanced speech-to-text services (e.g., Google Cloud STT, Microsoft
Azure STT, Amazon Transcribe, or IBM Watson STT) and Optical Character Recognition
engines to extract meaningful content from diverse data sources (such as meetings, webinars,
or legacy documents).

6.2.2 Advanced visual asset handling
Future iterations of the platform could support both improved generation and intelligent
extraction of images. Instead of solely relying on text-based prompts to create visuals, the
system could analyze uploaded documents to extract embedded images, diagrams, or figures
relevant to the slide content. This would improve contextual fidelity.

6.2.3 Parallel image generation
To address latency issues during content generation, the system could be enhanced to support
parallelized image rendering. This would allow multiple visual assets to be created
simultaneously, significantly reducing wait times and improving the perceived responsiveness
of the slide creation process.

76

6.2.4 Visual slide editing interface
Introducing a visual, drag-and-drop interface for slide editing would greatly improve user
control and interaction efficiency. Users would be able to directly modify elements (such as
titles, bullet points, images, and formatting) without relying entirely on chatbot prompts. This
would enable quick and targeted refinements and offer a hybrid workflow that balances
automation with manual precision.

6.2.5 Flashcard module for spaced repetition
Integrating a flashcard system based on the platform’s generated content would support

knowledge retention through spaced repetition techniques. This would provide users with a
lightweight structured method for reviewing and assessing their understanding of key concepts.

6.2.6 Formal evaluation and benchmarking

Conducting structured usability studies and performance benchmarks would allow the platform
to be evaluated systematically. User feedback could be collected using standardized tools such
as the System Usability Scale or through heuristic evaluations. Both qualitative and quantitative
data would guide refinements in user interface design, model output quality, and system
accessibility.

6.2.7 LLM model selection and customization
Enabling users to choose from a selection of Large Language Models would allow for
customization based on performance, use-case specificity, language support, or compliance
requirements. This modular approach could also facilitate experimentation with fine-tuned or
domain-specific models tailored to enterprise applications.

6.2.8 Enhanced authentication and security
To improve platform security and align with enterprise standards, the current Basic
Authentication mechanism could be replaced with more robust and scalable solutions such as
OAuth 2.0 or JSON Web Tokens (JWT). These enhancements would facilitate secure user
session management, multi-factor authentication, and role-based access control.

6.2.9 Cloud-Based persistent storage
Introducing persistent cloud storage would provide long-term access to uploaded documents,
generated slides, and conversation history. This would support version control, facilitate
collaboration across sessions, and remove the existing file size constraints imposed by direct
base64 encoding.

6.2.10 Integration with enterprise ecosystems

To encourage adoption within corporate environments, the platform could be extended to
support integration with existing Learning Management Systems, Single Sign-On frameworks,
and enterprise compliance standards such as SCORM, xAPI, and ISO 27001. This would ensure
compatibility with organizational workflows.

6.2.11 Mobile and offline access
Developing mobile applications and offline access modes would expand the platform’s reach,

enabling usage in low-connectivity environments and enhancing flexibility for asynchronous
learners. Offline synchronization could further improve the user experience on mobile devices.

77

6.2.12 Customizable slide templates
Allowing users to choose from or create custom slide templates (adjusting parameters such as
layout, color scheme, font style, and branding) would offer greater personalization and align
outputs with institutional visual identities.

6.2.13 Access to underlying source files
Finally, enabling the download of underlying content sources (e.g., transcripts, markdown files,
extracted summaries) would increase transparency, support iterative revisions, and facilitate
downstream reuse for different documentation or training needs.

6.2.14 Strategies to mitigate API dependency
Given the current reliance on external APIs such as OpenAI GPT for natural language
generation and Tavily for web search functionalities, future versions of the platform could
explore strategies to reduce risk and increase system resilience. Several directions are worth
considering:

• On-premise or self-hosted LLMs: Developing proprietary enterprise language models
could significantly improve data privacy, reduce reliance on external providers, and
allow fine-tuning on domain-specific datasets. This approach provides greater control
over cost, performance, and compliance but requires substantial investment in hardware,
expertise, and ongoing maintenance;

• Hybrid inference pipelines: Implementing a system that dynamically chooses among
different models based on task complexity, cost, and user policy;

• Caching mechanisms: Implement a caching mechanism to reduce repeated API calls
and lower latency.

These initiatives would help balance the benefits of external APIs with improved control over
privacy, performance, and long-term sustainability, making the platform more robust and
enterprise-ready.

6.2.15 Summary of future enhancement directions

Future work Goal

Multimedia input support Broader knowledge ingestion
Visual extraction/generation Context-aware slide visuals

Parallel image rendering Improved performance
Visual editor Intuitive user control
Flashcards Better knowledge retention

Usability studies Evidence-based system improvement
Model selection Customization and compliance

Secure authentication Robust and scalable security
Persistent storage File retention and versioning

Enterprise integration Corporate adoption readiness
Mobile/offline support Greater accessibility

Template customization Visual branding flexibility
Source file access Transparency and content reuse

Mitigate API dependency Improve privacy, reliability, and cost control
Develop proprietary enterprise model Full control over data, customization, and compliance

78

Table 6.2: Summary of future enhancement directions

6.3 Strengths of the developed application
Despite the limitations outlined previously, the developed AI-enhanced microlearning platform
demonstrates several strengths that make it a highly promising tool for enterprise knowledge
transfer:

• Seamless content automation: The platform significantly reduces the manual effort
required for content creation by leveraging state-of-the-art AI models for
summarization, quiz generation, slide composition, and image generation. This
automation accelerates the development cycle and empowers subject matter experts to
generate structured learning content with minimal technical intervention;

• User-centered design: The interface is intuitive and designed for users with varying
technical backgrounds. The inclusion of a natural language chatbot further simplifies
navigation and task execution, making the platform accessible to non-technical
stakeholders;

• Modularity: Built with a modular architecture, the system is easily maintainable and
extensible. Its design supports integration with additional AI services and content
formats in the future, ensuring long-term adaptability;

• Multilingual capabilities: The integration of multilingual support broadens the
platform’s applicability across diverse linguistic contexts, enabling global organizations

to translate training materials effortlessly;
• Real-time assistance: The chatbot assistant enhances usability by offering interactive

help and reducing the learning curve for new users. It acts as a bridge between complex
AI functionalities and user-friendly experiences;

• Cloud-native infrastructure: The underlying architecture supports cloud deployment,
allowing the application to scale efficiently based on organizational demand.

These strengths collectively contribute to a versatile and forward-thinking learning platform,
well-suited to the dynamic and evolving needs of enterprise training environments.

6.4 Conclusion
In conclusion, the developed platform represents a solid starting point for the adoption of
intelligent microlearning solutions in the context of corporate training. Among the main
strengths are the effective automation of content, the user-friendly interface, the scalability of
the architecture, the ability to operate in multiple languages, and the presence of a virtual
assistant for real-time support. These features allow to improve the efficiency in the creation of
training materials, reducing the time and costs traditionally associated with internal training.

At the same time, some limitations have emerged that open interesting ideas for the future
evolution of the system, such as the absence of a visual editor, the limited management of
images, and the need for formal evaluations of teaching effectiveness. The proposed future
developments aim to overcome these critical issues, further enhancing accessibility,
customization, and integration with real corporate environments.

Ultimately, the proposed approach proves to be consistent with the needs of modern
organizations, oriented towards flexible, customizable, and scalable training solutions. The
integration of Artificial Intelligence in this area not only makes content production more
sustainable but also helps make the learning process more engaging, accessible, and effective.

BIBLIOGRAPHY
[1] A. Taylor e W. Hung, «The Effects of Microlearning: A Scoping Review», Educ. Technol. Res. Dev.,

vol. 70, fasc. 2, pp. 363–395, apr. 2022, doi: 10.1007/s11423-022-10084-1.
[2] R. Sankaranarayanan, J. Leung, V. Abramenka-Lachheb, G. Seo, e A. Lachheb, «Microlearning in

Diverse Contexts: A Bibliometric Analysis», TechTrends, vol. 67, fasc. 2, pp. 260–276, mar. 2023,
doi: 10.1007/s11528-022-00794-x.

[3] J. Zhang e R. E. West, «Designing Microlearning Instruction for ProfessionalDevelopment Through
a Competency Based Approach», TechTrends, vol. 64, fasc. 2, pp. 310–318, mar. 2020, doi:
10.1007/s11528-019-00449-4.

[4] «An assessment of a just-in-time training intervention in a manufacturing organization -
ProQuest». Consultato: 8 aprile 2025. [Online]. Disponibile su:
https://www.proquest.com/openview/b6826a9499190621b9bb95579b3d5d79/1?cbl=18750&p
q-origsite=gscholar

[5] K. Leong, A. Sung, D. Au, e C. Blanchard, «A review of the trend of microlearning», J. Work-Appl.
Manag., vol. 13, fasc. 1, pp. 88–102, dic. 2020, doi: 10.1108/JWAM-10-2020-0044.

[6] B. Gross et al., «Microlearning for patient safety: Crew resource management training in 15-
minutes», PLOS ONE, vol. 14, fasc. 3, p. e0213178, mar. 2019, doi: 10.1371/journal.pone.0213178.

[7] J. B. Branzetti et al., «Randomised controlled trial to assess the effect of a Just-in-Time training on
procedural performance: a proof-of-concept study to address procedural skill decay», BMJ Qual.
Saf., vol. 26, fasc. 11, pp. 881–891, nov. 2017, doi: 10.1136/bmjqs-2017-006656.

[8] Y.-T. Cheng, D. R. Liu, e V. J. Wang, «Teaching Splinting Techniques Using a Just-in-Time Training
Instructional Video», Pediatr. Emerg. Care, vol. 33, fasc. 3, p. 166, mar. 2017, doi:
10.1097/PEC.0000000000000390.

[9] K. E. Sawarynski e D. M. and Baxa, «Utilization of an online module bank for a research training
curriculum: development, implementation, evolution, evaluation, and lessons learned», Med.
Educ. Online, vol. 24, fasc. 1, p. 1611297, gen. 2019, doi: 10.1080/10872981.2019.1611297.

[10] P. Prasittichok e P. Smithsarakarn, «The Effects of Microlearning on EFL Students’ English Speaking:
A Systematic Review and Meta-Analysis», Int. J. Learn. Teach. Educ. Res., vol. 23, fasc. 4, Art. fasc.
4, apr. 2024.

[11] R. Sankaranarayanan e S. Mithun, «Exploring the Effectiveness of AI-Enabled Microlearning in
Database Design and Programming Course», in 2024 IEEE Frontiers in Education Conference (FIE),
ott. 2024, pp. 1–7. doi: 10.1109/FIE61694.2024.10892916.

[12] M. A. Allela, B. O. Ogange, M. I. Junaid, e P. B. Charles, «Effectiveness of Multimodal Microlearning
for In-service Teacher Training», J. Learn. Dev., vol. 7, fasc. 3, Art. fasc. 3, nov. 2020, doi:
10.56059/jl4d.v7i3.387.

[13] H. Alamri, Lowell ,Victoria, Watson ,William, e S. L. and Watson, «Using personalized learning as
an instructional approach to motivate learners in online higher education: Learner self-
determination and intrinsic motivation», J. Res. Technol. Educ., vol. 52, fasc. 3, pp. 322–352, lug.
2020, doi: 10.1080/15391523.2020.1728449.

[14] B. Sathiyaseelan, J. Mathew, e S. Nair, «Microlearning and Learning Performance in Higher
Education: A Post-Test Control Group Study», J. Learn. Dev., vol. 11, fasc. 1, Art. fasc. 1, mar. 2024,
doi: 10.56059/jl4d.v11i1.752.

[15] L. P. A. Simons, F. Foerster, P. A. Bruck, L. Motiwalla, e C. M. Jonker, «Microlearning mApp raises
health competence: hybrid service design», Health Technol., vol. 5, fasc. 1, pp. 35–43, giu. 2015,
doi: 10.1007/s12553-015-0095-1.

[16] A. Hesse, P. Ospina, M. Wieland, F. A. L. Yepes, B. Nguyen, e W. Heuwieser, «Short communication:
Microlearning courses are effective at increasing the feelings of confidence and accuracy in the
work of dairy personnel», J. Dairy Sci., vol. 102, fasc. 10, pp. 9505–9511, ott. 2019, doi:
10.3168/jds.2018-15927.

[17] «View of Microlearning and its Effectiveness in Modern Education: A Mini Review». Consultato:
11 maggio 2025. [Online]. Disponibile su:
https://tecnoscientifica.com/journal/apga/article/view/496/258

[18] T. N. Fitria, «Microlearning in Teaching and Learning Process: A Review», CENDEKIA J. Ilmu Sos.
Bhs. Dan Pendidik., vol. 2, fasc. 4, pp. 114–135, nov. 2022, doi: 10.55606/cendikia.v2i4.473.

[19] P. Opas, «THE IMPLEMENTATION OF TIKTOK TO PROMOTE ENGLISH LISTENING AND SPEAKING
FOR EFL LEARNERS», J. Fac. Educ. Pibulsongkram Rajabhat Univ., vol. 10, fasc. 1, Art. fasc. 1, giu.
2023, Consultato: 11 maggio 2025. [Online]. Disponibile su: https://so02.tci-
thaijo.org/index.php/edupsru/article/view/261783

[20] I. nur Aziz e R. H. Sabella, «TikTok as Media of Learning English»:, JEET J. Engl. Educ. Technol., vol.
2, fasc. 02, Art. fasc. 02, giu. 2021, doi: 10.59689/jeet.v2i02.51.

[21] M. Ouadoud, N. Rida, e T. Chafiq, «Overview of E-learning Platforms for Teaching and Learning»,
Int. J. Recent Contrib. Eng. Sci. IT IJES, vol. 9, fasc. 1, p. 50, mar. 2021, doi: 10.3991/ijes.v9i1.21111.

[22] «(PDF) A study of employees’ utilization of microlearning platforms in organizations»,
ResearchGate, doi: 10.1108/TLO-07-2022-0080.

[23] R. P. Díaz-Redondo, M. Caeiro-Rodríguez, J. J. López-Escobar, e A. Fernández-Vilas, «Integrating
micro-learning content in traditional e-learning platforms», 11 dicembre 2023. doi:
0.1007/s11042-020-09523-z.

[24] V. M. Bradley, «Learning Management System (LMS) Use with Online Instruction», Int. J. Technol.
Educ., vol. 4, fasc. 1, pp. 68–92, 2021.

[25] N. N. Mohd Kasim e F. Khalid, «Choosing the Right Learning Management System (LMS) for the
Higher Education Institution Context: A Systematic Review», Int. J. Emerg. Technol. Learn. IJET, vol.
11, fasc. 06, p. 55, giu. 2016, doi: 10.3991/ijet.v11i06.5644.

[26] Y. N. Asrida, F. Amanda, e J. U. Fadilah, «Effectiveness and Limitations on Learning Management
Systems (LMS) in Learning and Teaching: A Systematic Review», ICOERESS, vol. 1, fasc. 1, Art. fasc.
1, dic. 2024.

[27] M. Haghshenas, M. Khademi, e H. Kabir, «E-LEARNING AND AUTHORING TOOLS : At a Glance»,
2012.

[28] «(PDF) Application of Artificial Intelligence in Employee Training and Development»,
ResearchGate. Consultato: 12 maggio 2025. [Online]. Disponibile su:
https://www.researchgate.net/publication/378347256_Application_of_Artificial_Intelligence_in
_Employee_Training_and_Development

[29] M. Ilić, V. Mikić, L. Kopanja, e B. Vesin, «Intelligent techniques in e-learning: a literature review»,
Artif. Intell. Rev., vol. 56, fasc. 12, pp. 14907–14953, dic. 2023, doi: 10.1007/s10462-023-10508-1.

[30] R. Sajja, Y. Sermet, M. Cikmaz, D. Cwiertny, e I. Demir, «Artificial Intelligence-Enabled Intelligent
Assistant for Personalized and Adaptive Learning in Higher Education», 19 settembre 2023, arXiv:
arXiv:2309.10892. doi: 10.48550/arXiv.2309.10892.

[31] C. Halkiopoulos e E. Gkintoni, «Leveraging AI in E-Learning: Personalized Learning and Adaptive
Assessment through Cognitive Neuropsychology—A Systematic Analysis», Electronics, vol. 13,
fasc. 18, Art. fasc. 18, gen. 2024, doi: 10.3390/electronics13183762.

[32] C. R, K. S. Babu, K. S. Ranjith, A. K. Sinha, V. Neerugatti, e D. S. Reddy, «Enhancing E-learning
Accessibility through AI(Artificial Intelligence) and Inclusive Design», in 2025 6th International
Conference on Mobile Computing and Sustainable Informatics (ICMCSI), gen. 2025, pp. 1466–1471.
doi: 10.1109/ICMCSI64620.2025.10883148.

[33] A. M. Bettayeb, M. Abu Talib, A. Z. Sobhe Altayasinah, e F. Dakalbab, «Exploring the impact of
ChatGPT: conversational AI in education», Front. Educ., vol. 9, lug. 2024, doi:
10.3389/feduc.2024.1379796.

[34] P. Choudhary, R. Choudhary, e S. Garaga, «Enhancing Training by Incorporating ChatGPT in
Learning Modules: An Exploration of Benefits, Challenges, and Best Practices», vol. 9, fasc. 11,
2024.

[35] J. Wang e W. Fan, «The effect of ChatGPT on students’ learning performance, learning perception,
and higher-order thinking: insights from a meta-analysis», Humanit. Soc. Sci. Commun., vol. 12,
fasc. 1, pp. 1–21, mag. 2025, doi: 10.1057/s41599-025-04787-y.

[36] H. Tabuchi et al., «Comparative educational effectiveness of AI generated images and traditional
lectures for diagnosing chalazion and sebaceous carcinoma», Sci. Rep., vol. 14, fasc. 1, p. 29200,
nov. 2024, doi: 10.1038/s41598-024-80732-4.

[37] J. Liu, X. Liu, e C. Yang, «A study of college students’ perceptions of utilizing automatic speech
recognition technology to assist English oral proficiency», Front. Psychol., vol. 13, dic. 2022, doi:
10.3389/fpsyg.2022.1049139.

[38] T. Wilschut, F. Sense, e H. van Rijn, «Speaking to remember: Model-based adaptive vocabulary
learning using automatic speech recognition», Comput. Speech Lang., vol. 84, p. 101578, mar.
2024, doi: 10.1016/j.csl.2023.101578.

[39] M. Tanjga, «E-learning and the Use of AI: A Review of Current Practices and Future Directions»,
Qeios, mag. 2023, doi: 10.32388/AP0208.2.

[40] «AI Governance in Higher Education: Case Studies of Guidance at Big Ten Universities».
Consultato: 20 maggio 2025. [Online]. Disponibile su: https://arxiv.org/html/2409.02017v1

[41] S. M. Espinoza Vidaurre, N. C. Velásquez Rodríguez, R. L. Gambetta Quelopana, A. N. Martinez
Valdivia, E. A. Leo Rossi, e M. A. Nolasco-Mamani, «Perceptions of Artificial Intelligence and Its
Impact on Academic Integrity Among University Students in Peru and Chile: An Approach to
Sustainable Education», Sustainability, vol. 16, fasc. 20, Art. fasc. 20, gen. 2024, doi:
10.3390/su16209005.

[42] M. Alghodi e A. Shibani, «Privacy Enhancing Technologies for Next-Generation E-Learning Systems:
A Systematic Review», vol. 01, fasc. 01, 2025.

[43] «[2407.18745] FairAIED: Navigating Fairness, Bias, and Ethics in Educational AI Applications».
Consultato: 18 maggio 2025. [Online]. Disponibile su: https://arxiv.org/abs/2407.18745

[44] A. Nguyen, H. N. Ngo, Y. Hong, B. Dang, e B.-P. T. Nguyen, «Ethical principles for artificial
intelligence in education», Educ. Inf. Technol., vol. 28, fasc. 4, pp. 4221–4241, apr. 2023, doi:
10.1007/s10639-022-11316-w.

[45] W. Holmes, F. Iniesto, S. Anastopoulou, e J. G. Boticario, «Stakeholder Perspectives on the Ethics
of AI in Distance-Based Higher Education», Int. Rev. Res. Open Distrib. Learn., vol. 24, fasc. 2, pp.
96–117, 2023, doi: 10.19173/irrodl.v24i2.6089.

[46] B. Miller, T. Rutherford, A. Pack, e A. Johnson, «Bridging the SCORM and xAPI Gap: The Role of
cmi5».

[47] S. Panagiotakis, K. Papadokostaki, K. Vassilakis, e A. Malamos, «Towards a novel and LMS-free
Pervasive Learning System exploiting the Experience API», EAI Endorsed Trans. Creat. Technol., vol.
5, fasc. 16, p. 156383, ott. 2018, doi: 10.4108/eai.13-7-2018.156383.

[48] «The Experience API—Liberating Learning Design : Research Library | The Learning Guild».
Consultato: 24 maggio 2025. [Online]. Disponibile su:
https://www.LearningGuild.com/insights/177/the-experience-apiliberating-learning-design/

[49] K. Kitto et al., Learning analytics beyond the LMS: enabling connected learning via open source
analytics in «the wild». Canberra, ACT: Australian Government Department of Education, Skills and
Employment, 2020.

[50] «Experience API (xAPI) Standard», ADL Initiative. Consultato: 24 maggio 2025. [Online]. Disponibile
su: https://www.adlnet.gov/projects/xapi/

[51] L. Sanchez, J. Penarreta, e X. Soria Poma, «Learning management systems for higher education: a
brief comparison», Discov. Educ., vol. 3, fasc. 1, p. 58, mag. 2024, doi: 10.1007/s44217-024-00143-
5.

[52] «[1805.06266] A Unified Model for Extractive and Abstractive Summarization using Inconsistency
Loss». Consultato: 30 maggio 2025. [Online]. Disponibile su: https://arxiv.org/abs/1805.06266

[53] «Introducing GPT-4.1 in the API». Consultato: 30 maggio 2025. [Online]. Disponibile su:
https://openai.com/index/gpt-4-1/

[54] «Putting GPT-4o to the Sword: A Comprehensive Evaluation of Language, Vision, Speech, and
Multimodal Proficiency». Consultato: 30 maggio 2025. [Online]. Disponibile su:
https://www.mdpi.com/2076-3417/14/17/7782

[55] M. Lewis et al., «BART: Denoising Sequence-to-Sequence Pre-training for Natural Language
Generation, Translation, and Comprehension», 29 ottobre 2019, arXiv: arXiv:1910.13461. doi:
10.48550/arXiv.1910.13461.

[56] C. Raffel et al., «Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer»,
J. Mach. Learn. Res., vol. 21, fasc. 140, pp. 1–67, 2020.

[57] J. Zhang, Y. Zhao, M. Saleh, e P. Liu, «PEGASUS: Pre-training with Extracted Gap-sentences for
Abstractive Summarization», in Proceedings of the 37th International Conference on Machine
Learning, PMLR, nov. 2020, pp. 11328–11339. Consultato: 30 maggio 2025. [Online]. Disponibile
su: https://proceedings.mlr.press/v119/zhang20ae.html

[58] S. Alaei, An Automated Discharge Summary System Built for Multiple Clinical English Texts by Pre-
trained DistilBART Model. 2023. Consultato: 30 maggio 2025. [Online]. Disponibile su:
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-222616

[59] I. Beltagy, M. E. Peters, e A. Cohan, «Longformer: The Long-Document Transformer», arXiv.org.
Consultato: 30 maggio 2025. [Online]. Disponibile su: https://arxiv.org/abs/2004.05150v2

[60] «Pricing». Consultato: 10 luglio 2025. [Online]. Disponibile su: https://openai.com/api/pricing/
[61] «Welcome to PyPDF2 — PyPDF2 documentation». Consultato: 30 maggio 2025. [Online].

Disponibile su: https://pypdf2.readthedocs.io/en/3.x/
[62] pdfplumber: Plumb a PDF for detailed information about each char, rectangle, and line. Python.

Consultato: 30 maggio 2025. [OS Independent]. Disponibile su:
https://github.com/jsvine/pdfplumber

[63] pdfminer: PDF parser and analyzer. Consultato: 30 maggio 2025. [Online]. Disponibile su:
http://github.com/euske/pdfminer

[64] «PyMuPDF 1.26.0 documentation». Consultato: 30 maggio 2025. [Online]. Disponibile su:
https://pymupdf.readthedocs.io/en/latest/

[65] python-docx: Create, read, and update Microsoft Word .docx files. Python. Consultato: 30 maggio
2025. [OS Independent]. Disponibile su: https://github.com/python-openxml/python-docx

[66] «openpyxl - A Python library to read/write Excel 2010 xlsx/xlsm files — openpyxl 3.1.3
documentation». Consultato: 30 maggio 2025. [Online]. Disponibile su:
https://openpyxl.readthedocs.io/en/stable/

[67] «pandas - Python Data Analysis Library». Consultato: 31 maggio 2025. [Online]. Disponibile su:
https://pandas.pydata.org/

[68] «python-pptx — python-pptx 1.0.0 documentation». Consultato: 31 maggio 2025. [Online].
Disponibile su: https://python-pptx.readthedocs.io/en/latest/

[69] «Python File Open». Consultato: 31 maggio 2025. [Online]. Disponibile su:
https://www.w3schools.com/python/python_file_open.asp

[70] «An_overview_of_Tesseract_OCR_Engine-libre.pdf». Consultato: 31 maggio 2025. [Online].
Disponibile su:
https://d1wqtxts1xzle7.cloudfront.net/52539350/An_overview_of_Tesseract_OCR_Engine-
libre.pdf?1491626802=&response-content-
disposition=inline%3B+filename%3DAn_overview_of_Tesseract_OCR_Engine.pdf&Expires=1748
692112&Signature=V7ZPBR1fnrT1IJxNfF0WFHELAB~VOM24bxow3nTN5Gr2~wGneLg04aot5Juh
Mt1FEYobsjbrS1b3P7HDw7E4QjvWy~1EE8POkMxsKT4XWmCSjQ2L9TsEH8Dv1Y0pT60SgG-
nz2Dxma9bWrGf3EDBKS-v-iNuB-tTSNHXlC7Pj8vCvwl8rRhvkLFwFB4w~de86hRm-
tKMmGy1lvG48T2Kd416jFscDxEjxajjhyFrurO7LGDXg9QJgzKQFsRwP~6ls-
wf~tbVnx~Iw0P0zbRh8kWr5wuFHtC0ESiZaUCUTcmAJ8rzfXsjbdh89GJmw27BpZJo7JuiuhGmtBNU
yt~HYA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA

[71] «Vision AI: Image and visual AI tools», Google Cloud. Consultato: 31 maggio 2025. [Online].
Disponibile su: https://cloud.google.com/vision

[72] «Azure AI Vision with OCR and AI | Microsoft Azure». Consultato: 31 maggio 2025. [Online].
Disponibile su: https://azure.microsoft.com/en-us/products/ai-services/ai-vision

[73] «OCR Software, Data Extraction Tool - Amazon Textract - AWS», Amazon Web Services, Inc.
Consultato: 31 maggio 2025. [Online]. Disponibile su: https://aws.amazon.com/textract/

[74] «Speech-to-Text AI: speech recognition and transcription», Google Cloud. Consultato: 31 maggio
2025. [Online]. Disponibile su: https://cloud.google.com/speech-to-text

[75] eric-urban, «Speech to text overview - Speech service - Azure AI services». Consultato: 31 maggio
2025. [Online]. Disponibile su: https://learn.microsoft.com/en-us/azure/ai-services/speech-
service/speech-to-text

[76] «Speech To Text - Amazon Transcribe - AWS», Amazon Web Services, Inc. Consultato: 31 maggio
2025. [Online]. Disponibile su: https://aws.amazon.com/transcribe/

[77] «IBM Watson Speech to Text». Consultato: 31 maggio 2025. [Online]. Disponibile su:
https://www.ibm.com/products/speech-to-text

[78] «VOSK the Offline Speech Recognition», DEV Community. Consultato: 31 maggio 2025. [Online].
Disponibile su: https://dev.to/mattsu014/vosk-offline-speech-recognition-3kbb

[79] mozilla/DeepSpeech. (31 maggio 2025). C++. Mozilla. Consultato: 31 maggio 2025. [Online].
Disponibile su: https://github.com/mozilla/DeepSpeech

[80] «Natural Language API Basics», Google Cloud. Consultato: 31 maggio 2025. [Online]. Disponibile
su: https://cloud.google.com/natural-
language/docs/basics#:~:text=The%20Natural%20Language%20API%20provides,analysis%2C%20
use%20the%20analyzeSyntax%20method.

[81] «Tutorial: Text Analytics with Azure AI services», Microsoft Azure. Consultato: 31 maggio 2025.
[Online]. Disponibile su: https://learn.microsoft.com/en-us/azure/synapse-analytics/machine-
learning/tutorial-text-analytics-use-mmlspark

[82] «Introducing our Search API», Tavily. Consultato: 31 maggio 2025. [Online]. Disponibile su:
https://www.tavily.com/

[83] «Home», Perplexity. Consultato: 31 maggio 2025. [Online]. Disponibile su:
https://docs.perplexity.ai/home

[84] «Credits & Pricing», Tavily Docs. Consultato: 10 luglio 2025. [Online]. Disponibile su:
https://docs.tavily.com/documentation/api-credits

[85] «Pricing», Perplexity. Consultato: 10 luglio 2025. [Online]. Disponibile su:
https://docs.perplexity.ai/guides/pricing

[86] E. Labs, «Exa», Exa. Consultato: 10 luglio 2025. [Online]. Disponibile su: https://exa.ai
[87] I. J. Goodfellow et al., «Generative Adversarial Nets», in Advances in Neural Information Processing

Systems, Curran Associates, Inc., 2014. Consultato: 31 maggio 2025. [Online]. Disponibile su:
https://proceedings.neurips.cc/paper_files/paper/2014/hash/f033ed80deb0234979a61f95710d
be25-Abstract.html

[88] D. P. Kingma e M. Welling, «Auto-Encoding Variational Bayes», 10 dicembre 2022, arXiv:
arXiv:1312.6114. doi: 10.48550/arXiv.1312.6114.

[89] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, e S. Ganguli, «Deep Unsupervised Learning using
Nonequilibrium Thermodynamics», in Proceedings of the 32nd International Conference on
Machine Learning, PMLR, giu. 2015, pp. 2256–2265. Consultato: 31 maggio 2025. [Online].
Disponibile su: https://proceedings.mlr.press/v37/sohl-dickstein15.html

[90] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, e M. Chen, «Hierarchical Text-Conditional Image
Generation with CLIP Latents», 13 aprile 2022, arXiv: arXiv:2204.06125. doi:
10.48550/arXiv.2204.06125.

[91] «DALL·E 3». Consultato: 31 maggio 2025. [Online]. Disponibile su: https://openai.com/index/dall-
e-3/

[92] M. Junczys-Dowmunt et al., «Marian: Fast Neural Machine Translation in C++», 4 aprile 2018,
arXiv: arXiv:1804.00344. doi: 10.48550/arXiv.1804.00344.

[93] Y. Liu et al., «Multilingual Denoising Pre-training for Neural Machine Translation», Trans. Assoc.
Comput. Linguist., vol. 8, pp. 726–742, nov. 2020, doi: 10.1162/tacl_a_00343.

[94] OpenAI et al., «GPT-4 Technical Report», 4 marzo 2024, arXiv: arXiv:2303.08774. doi:
10.48550/arXiv.2303.08774.

