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Abstract

Understanding how biological systems spontaneously generate spatial pat-
terns is fundamental to developmental biology. While quantitative frameworks
for positional information have been successful in simple model organisms like
Drosophila, extending these approaches to mammalian systems has been lim-
ited by technical challenges in imaging dense tissues and extracting single-cell
information. This thesis establishes a comprehensive methodological frame-
work for quantifying gene expression patterns in gastruloids, self-organizing
stem cell aggregates that recapitulate key aspects of mammalian embryonic de-
velopment. An optimized optical clearing protocol was developed that enables
complete 3D confocal immunofluorescence imaging of these dense structures
while preserving morphology and fluorescence. Combined with state-of-the-
art deep learning segmentation, this pipeline successfully extracts single-cell
information throughout entire gastruloid volumes. Spatial analysis revealed
characteristic anterior-posterior expression patterns of key transcription fac-
tors, while single-cell resolution uncovered complex expression heterogeneity
that would not have been detected with previous approaches. These technical
advances provide the foundation for quantitative studies of self-organization
in mammalian developmental models, enabling future investigations into how
complex spatial patterns emerge spontaneously from initially symmetric con-
ditions.



Contents

1 Introduction
1.1 Quantifying positional information in self-organizing systems . . . . .
1.2 Gastruloids as a model for self-organization. . . . . . . ... ... ..
1.3 Overview . . . . . . . . .
2 Methods
2.1 In-depth optical clearing for full-gastruloid 3D imaging . . . . . . . .
2.1.1  Optimization of the clearing protocol . . . . . . . .. .. ...
2.1.2  Microscopy setup and imaging parameters . . . . .. . .. ..
2.1.3 Quantitative evaluation of clearing quality . . . . .. ... ..
2.2 Automated cell segmentation with machine learning models . . . . .
2.2.1 Cellpose-SAM architecture and implementation . . . .. . ..
2.2.2  Experimental approach to gastruloid segmentation. . . . . . .
2.2.3 Final segmentation pipeline . . . . . . ... .. .. ... ...
2.3 Spatial analysis of gene expression patterns . . . . . . .. .. ... ..
2.3.1 Medial axis projection of the intensity values . . . . . . . . ..
2.3.2  Average profile extraction . . . ... ... oL L.
3 Results and Discussion
3.1 Enhanced optical clearing enables complete 3D imaging of gastruloids
3.2  Automated segmentation achieves reliable single-cell identification . .
3.3 Spatial gene expression patterns reveal complex tissue organization
4 Conclusions
References



1 Introduction

Understanding how biological systems spontaneously generate spatial patterns is a
fundamental challenge in developmental biology. This introduction examines the
theoretical framework of positional information that has guided quantitative studies
of pattern formation, explores how emerging model systems can extend these insights
to mammalian development, and outlines the scope of the present work.

1.1 Quantifying positional information in self-organizing sys-
tems

Biological self-organization is the term utilized to describe a whole host of phenom-
ena in which biological systems form structured patterns from an initially disordered
set of components. These processes arise as the result of natural selection and typ-
ically display a complex balance of diverse biological mechanisms, but at the same
time show a remarkable capacity for resilience against disturbances. This robustness
allows for the same outcome (a biologically functional and evolutionarily motivated
one) to be realized in the midst of the disorder of natural life.

The way in which the inherently stochastic biological mechanisms interact with
each other to give reproducible outcomes is, for the physicist interested in complex
interacting systems, an extremely interesting subject of study.

One of the areas in which this study can be fruitful is the field of developmen-
tal biology, concerned with the way in which the genetically identical cells of the
developing embryo rearrange themselves in precise spatial patterns of epigenetically
different tissues. To achieve such patterning, cells must somehow know where they
are within the developing embryo. This requires spatial information to be encoded
in the cellular environment (through biochemical signals, mechanical forces, or other
cues) and cells to be able to read and interpret these signals. This notion, formal-
ized as "positional information" by Lewis Wolpert, proposes that cells measure local
environmental signals to infer their position and then use this information to deter-
mine their developmental fate. The positional information framework has pushed
developmental biology toward more quantitative approaches, as it allows researchers
to measure precisely how much information is encoded in environmental cues and
how reliably cells can decode it to guide pattern formation (Tkacik and Gregor,
2021).

These quantitative methods have been very fruitful in simple model systems,
particularly in the study of the Drosophila (fruit fly) embryo, where the expression
patterns of gap genes provide a clear encoding of positional information along the
anterior-posterior axis. Measuring these gene expression domains, and comparing
them to the theoretical constraints on the required information, has allowed for
precise and mechanism-independent predictions on the mode of interaction between
cells and on the flow of information along the process (McGough et al., 2024).



While these studies in Drosophila have validated the positional information
framework, they have focused on a system in which spatial information is largely
pre-determined by maternal inputs. Mammalian development presents an interest-
ing counterpoint: spatial patterns emerge dynamically through self-organizing pro-
cesses rather than being imposed by pre-existing morphogen gradients. Successfully
extending the theory to such systems would not only test the generality of the prin-
ciples established in simpler models, but could also reveal new mechanisms by which
biological systems spontaneously break symmetry and encode spatial information.

1.2 Gastruloids as a model for self-organization

A fundamental symmetry-breaking process in animal development is the transition
from an undifferentiated mass of stem cells to a structured organism defined by dis-
tinct tissue layers and axes. This event, known as gastrulation, is a highly conserved
process across species, including both insects such as Drosophila and mammals. Gas-
trulation typically involves a simultaneous burst of cell migration, differentiation,
and global morphogenetic movements that structure the embryo into three layers
of cell populations (the ectodermal, endodermal and mesodermal tissues) organized
according to the animal’s future body plan.

The context in which gastrulation occurs, however, differs drastically between
these systems. In Drosophila, gastrulation follows the establishment of maternal
morphogen gradients that pre-pattern the embryo, making the differentiation pro-
cess essentially a readout of previously encoded symmetry-breaking positional in-
formation. In mammals, in contrast, gastrulation represents the first observable
instance of symmetry breaking and spatial patterning. The mammalian embryo
before this event presents itself as a highly symmetric hollow sphere of largely iden-
tical cells, with only subtle and often transient molecular inhomogeneities. It is only
with gastrulation that positional information can undeniably be observed to arise
through the emergence of structured arrangements of tissues and germ layers.

This makes the quantification of spatial patterns during mammalian gastrula-
tion a powerful experimental setting for understanding how symmetry breaking and
positional information can emerge de novo in self-organizing systems. Additionally,
such measurements may help guide biological investigation into the mechanisms that
produce these patterns, revealing the nature of these mechanisms and whether they
operate through global gradients or local cell-cell interactions. Gaining a quanti-
tative understanding of these questions requires high-resolution measurements of
spatial patterning as it emerges during gastrulation.

This quantitative study faces significant practical obstacles. Mammalian em-
bryos develop within the maternal reproductive tract, making direct observation of
the gastrulation process impossible without embryo extraction and culture. Once
extracted, embryos are extremely fragile and difficult to maintain in culture condi-
tions that preserve normal development. The small numbers of embryos that can be
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seeding addition of Chir medium change medium change collection
(~300 cells) (Chir removed)

Figure 1: Schematic of the 6-day gastruloid formation protocol. Mouse embryonic stem
cells are seeded at t=0 at a concentration allowing for the desired number of cells per well
(300 in this study), and spontaneously aggregate. At t=48h, Chir (Wnt pathway activator)
is added to stimulate differentiation and patterning. The medium is changed at t=72h to
remove Chir, allowing continued development. Gastruloids are collected at t=120h after
characteristic elongation has occurred.

obtained from each pregnancy, the time-intensive nature of embryo collection and
the associated costs, make it challenging to generate the large sample sizes required
for statistical analysis. These practical limitations are compounded by ethical con-
siderations surrounding the use of mammalian embryos in research, which further
restrict experimental scope and scale (Shahbazi et al., 2019).

Recent advances in stem cell biology and tissue engineering have opened new pos-
sibilities for addressing these challenges through the development of three-dimensional
cellular models known as organoids. Organoids are synthetic biological systems that
recreate key features of specific tissues or organs by providing cells with the appropri-
ate biochemical and physical environment to self-organize into structured, functional
units. These systems have revolutionized biological research by enabling controlled,
reproducible studies of complex biological processes that would otherwise be difficult
to access (Zhao et al., 2022).

For studying mammalian gastrulation specifically, a particularly valuable organoid
system has emerged: gastruloids. Gastruloids are embryonic stem cell-based aggre-
gates that can be stimulated to undergo a gastrulation-like process, developing the
major tissue types found in the posterior part of the embryo and organizing them
according to the three major body axes, closely mimicking the spatiotemporal se-
quence of events observed during posterior axis formation in the mammalian embryo
(Beccari et al., 2018). They can be generated reproducibly in large numbers under
precisely controlled conditions, enabling the statistical analysis necessary for quan-
titative studies.

Their production (here focusing on mouse gastruloids, though other species in-
cluding humans have been used) involves the aggregation of mouse embryonic stem



cells (mESCs), which are originally derived from the inner cell mass of a mouse
embryo and maintained under culture conditions that preserve their pluripotency.
When seeded into U-bottom ultra-low-adhesion wells, these cells spontaneously ag-
gregate and self-organize into a gastruloid. The size of the resulting structure can
be precisely controlled by adjusting the number of mESCs seeded per well, typically
ranging from 100 to 600 cells. This straightforward protocol allows for controlled
and reproducible generation of high numbers of gastruloids (figure 1), offering a
powerful system to model early embryonic development in vitro.

In order to stimulate differentiation and patterning, a specific signaling molecule
called Chir, that activates the Wnt pathway, is added at 48 hours after seeding and
removed 24 hours later. In in-vivo mouse embryos, Wnt signaling is active in one
region (what will become the tail end of the embryo) and inhibited in the region
that will become the head. In gastruloids, instead, the whole organism is exposed to
the same uniform Wnt activation impulse, after which symmetry is spontaneously
broken by the beginning of the elongation of the gastruloid, accompanied by the
differentiation of cells into distinct germ layer identities (Beccari et al., 2018). This
elongation replicates the events happening in the posterior, Wnt-stimulated region
of the embryo. The elongation of the gastruloids begins to be visible at the 96
hours-after-seeding timepoint, then accelerates to become quite marked at the 120
hour mark (figure 2).

It must be noted that while gastruloids recapitulate many key features of mam-
malian gastrulation, they represent a simplified version of the process. Like mam-
malian embryos, gastruloids begin from a symmetric initial state of pluripotent
cells. However, they develop in isolation from the complex signaling environment
that emerges after embryo implantation, lacking inputs from maternal tissues and
extraembryonic structures that could potentially provide additional patterning cues.

Despite this simplified context, gastruloids develop structured patterns with re-
markable precision and reproducibility (Merle et al., 2024). They generate gene ex-
pression patterns comparable to those found in the posterior region of mammalian
embryos, complete with appropriate spatial organization of the three germ lay-
ers. This reproducible self-organization from an initially symmetric state, achieved
through what must be predominantly stochastic symmetry-breaking mechanisms,
makes gastruloids an ideal system for studying how biological systems can sponta-
neously generate and encode positional information.

While the work in Merle et al. (2024) demonstrated the reproducibility of gastru-
loid patterning, their analytical approach did not fully exploit the three-dimensional
nature of gastruloids. Their analysis relied on maximum intensity projections to
compress fluorescent signals onto a single plane, potentially missing critical spatial
information distributed throughout the three-dimensional structure. To fully under-
stand how positional information emerges and flows through these self-organizing
systems, we need methodologies that can capture and analyze the complete three-
dimensional cellular landscape at single-cell resolution.
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Figure 2: Temporal development of a gastruloid showing spontaneous elongation. Bright-
field images taken at 48, 72, 96, and 120 hours after seeding, captured with a 4x objective.
The initially spherical aggregate undergoes spontaneous symmetry breaking and elongates
along a single axis by 120h, recapitulating key aspects of embryonic body axis formation.
Scale bars: 250 um (shown on t=120h image; scale identical for all timepoints).

1.3 Overview

This work represents an attempt to push forward the development of a method-
ological framework for the characterization of positional information in mammalian
development, using gastruloids as the model system of choice. The goal is to es-
tablish the technical capabilities necessary for precisely evaluating the structures
formed by these self-organizing systems by addressing the challenges of complete
3D imaging and automated cell identification and phenotyping.

The thesis is structured to reflect the experimental nature of this work, where
the development of robust methods constitutes the primary result. Accordingly, the
methodological development represents the largest portion of this thesis, as is ap-
propriate for a work focused on establishing new technical capabilities rather than
applying existing methods to answer specific biological questions. The Results and
Discussion section demonstrates how this methodology enables discovery of complex
spatial organization that would be missed by conventional approaches, including the
observation of bimodal expression distributions that suggest discrete cell populations
rather than continuous gradients. The technical advantages of full 3D analysis, in-
cluding preservation of native cellular distributions and extraction of true anatomi-
cal midlines, represent significant improvements over previous maximum projection
approaches.

The Conclusions section considers the broader implications of these methodologi-
cal advances, discussing how single-cell resolution throughout entire 3D samples now
enables quantitative studies of how spatial patterns emerge from initially symmetric
conditions. This framework expands the analysis from simple average expression
levels to full probabilistic distributions of heterogeneous cell states, opening new
avenues for testing quantitative theories about biological self-organization.



2 Methods

All gastruloids in this work were generated following established protocols for mouse
gastruloid formation, seeding an Ny, = 300 initial number of cells and collecting
them at 120 hours after seeding. These conditions were maintained identical to
those reported in Merle et al. (2024) to ensure direct comparability with published
work. Following collection, gastruloids were fixed, permeabilized and labeled with
fluorescent antibodies for immunofluorescent imaging on a confocal microscope.

2.1 In-depth optical clearing for full-gastruloid 3D imaging

Fluorescence microscopy is a fundamental technique of biological research that al-
lows for the collection of information about specific structures and molecules in a
sample by labeling with fluorescent probes. These fluorescent probes are excited by
lasers at the appropriate wavelength, and the emitted light is collected by sensors
to reconstruct images.

In this context, modern microscopy allows for the three-dimensional imaging of
biological samples by leveraging the partial transparency of tissues. The excitation
light can be focused to excite specific points at different depths in the sample; the
light emitted by each of those points is then collected and associated to a voxel in
the three-dimensional digital representation of the sample.

Although the emitted photons may be coming from fluorescent probes anywhere
in the excitation path, sectioning in the axial direction (z) can be achieved through
the use of a pinhole in the collection path so that only the photons from the point
of interest at a given time, the one in focus at that instant, may be collected. This
is the principle of laser scanning confocal microscopy, by which entire volumes may
be imaged one voxel at a time while the sample is displaced by precise piezoelectric
actuators (Pawley, 2006).

The imaging of points deep in the sample, however, becomes quickly difficult due
to the scattering and absorption of light as it penetrates the heterogeneous mix of
molecules in the tissue (Richardson et al., 2021). Both the incoming excitation light
and the outgoing emitted light suffer from this limitation, so that the signal-to-noise
ratio in slices of tissue deeper in the sample becomes too low to yield useful data.

Gastruloids are characterized by very densely packed cells, which creates size-
dependent imaging challenges. While smaller gastruloids (those with lower initial
seeding numbers Ny) can be imaged completely, larger ones (including the Ny = 300
gastruloids used in this study) exhibit severe decay of light intensity and detail in
deeper sections away from the surface boundaries, precluding complete imaging.
This could partially be compensated for by compressing the gastruloids between
closely spaced glass slides, but this approach would introduce morphological mod-
ifications that would be undesirable given the goal of analyzing naturally arising
structures.
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Figure 3: Visual comparison of clearing quality at different depths within gastruloids.
(a) Sub-optimally cleared gastruloid showing significant signal degradation between surface
(left) and deep (right) sections. (b) Gastruloid treated with an optimized clearing protocol
showing maintained image quality even in deeper sections. For both samples, the left and
right images are taken from z-planes spaced Az = 80 um apart.

In contrast, optical clearing addresses these imaging limitations while preserving
natural tissue architecture by chemically modifying the refractive index of tissues
to reduce light scattering. The difference in imaging quality between cleared and
uncleared samples is illustrated in figure 3, which demonstrates the necessity of
systematic protocol optimization for achieving complete three-dimensional imaging
of gastruloids.

2.1.1 Optimization of the clearing protocol

In order to minimize light loss, the refractive index of all the sections along the opti-
cal path must be as uniform as possible. Given the constraint that a glass coverslip,
whose refractive index is close to 1.52, must be present to hold the sample in place,
the entire optical system must be optimized around this value. This optimization
involves three key components: the use of an objective optimized for the desired
refractive index, the application of a drop of compound between the objective and
the coverslip to fill in the gap that would otherwise be occupied by air, and the
suspension of the sample in a solution of similar refractive index, commonly referred
to as a mounting medium.

Mounting media are solutions of various composition specifically formulated not
only to achieve optimal refractive index matching, but also to remove unwanted
light-scattering molecules from the sample, to preserve samples over longer periods
of time, and to increase the photostability of fluorescent probes to avoid, or at least
delay, the onset of photobleaching (Ravikumar et al., 2014).

Due to all these effects, and to the varying degrees of efficacy with which different
solutions can penetrate the sample to clear it effectively, it was not obvious that
the mounting medium with the highest refractive index would perform the best.
Therefore, four different mounting media formulations were compared:



e VectaShield (Vector Laboratories), a widely used commercial mounting medium
with a refractive index of 1.45

e A laboratory-prepared solution of water, glycerol and fructose, prepared ac-
cording to Dekkers et al. (2019), with a measured refractive index of 1.471

e FOCM (Fast Optical Clearing Method), prepared according to Zhu et al.
(2019), containing DMSO, urea, glycerol and sorbitol, with a measured re-
fractive index of 1.496

e RapiClear (SunJin Lab), a commercial clearing solution specifically formulated
to achieve a refractive index of 1.52

The RapiClear solution was observed to display significant batch-to-batch vari-
ability in formulation and efficacy, with initial experiments revealing that an older
batch showed suboptimal clearing performance compared to a fresh batch under
identical conditions.

Moreover, it was observed that mounting medium performance in general was
critically dependent on the degree of tissue permeabilization. Permeabilization is
the step of the immunostaining protocol in which a detergent (in our case, Triton X-
100) is applied to the sample to solubilize the lipids of the cell membranes, creating
pores that allow better penetration of both the fluorescently labeled antibodies and
the mounting medium. While established protocols recommended Triton X-100
concentrations between 0.03% and 0.2%, I found that using 0.5% Triton during
the initial permeabilization step, followed by 0.2% throughout subsequent steps,
significantly enhanced clearing medium penetration and imaging quality without
compromising tissue integrity.

To systematically evaluate all these variables (mounting medium formulation,
batch effects, permeabilization degree), my comparative analysis comprised six ex-
perimental conditions in total:

e Fresh RapiClear batch with enhanced permeabilization (0.5% Triton X-100)

Fresh RapiClear with standard permeabilization (0.1% Triton X-100)

Original RapiClear batch with enhanced permeabilization

VectaShield with enhanced permeabilization

Glycerol-fructose solution with enhanced permeabilization
e FOCM with enhanced permeabilization

Each of these conditions was evaluated using the quantitative metrics described
below, with n = 26 gastruloids tested for the fresh RapiClear with enhanced per-
meabilization condition, and n = 5 gastruloids for each of the other conditions.
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2.1.2 Microscopy setup and imaging parameters

For the objective lens, I chose a 25x oil immersion objective rather than the 40x
objective previously used in the laboratory for this type of sample. Oil immersion
objectives are designed to work with compounds that have a refractive index very
close to that of the glass coverslip, and thus provide the best optical conditions.
The choice of 25x over 40x magnification was motivated by the significantly longer
working distance that the lower magnification provides (570 um as compared to the
40x objective’s 130 um), which allowed me to use thicker spacers between the glass
slides thus avoiding compression of the samples. The modest reduction in numerical
aperture (0.8 as compared to the 40x objective’s 1.4) was acceptable given sufficient
detail for single-cell analysis could still be achieved. All final imaging was performed
at a voxel size of 0.404 x 0.404 x 0.800 pum?3.

Image acquisition employed sequential four-channel scanning to minimize spec-
tral bleed-through between fluorophores. The channels were configured according
to the following fluorescent probes: DAPI nuclear staining, AlexaFluor 488, Alex-
aFluor 546, and AlexaFluor 647. Laser powers were optimized individually for each
channel to maximize signal-to-noise ratio while avoiding photobleaching, typically
ranging from 0.5-2% of maximum laser output.

2.1.3 Quantitative evaluation of clearing quality

For the quantitative analysis of clearing quality, I focused specifically on the DAPI
channel of the fluorescence images. DAPI (4’,6-diamidino-2-phenylindole) is a fluo-
rescent stain that binds specifically to DNA, thereby labeling the nucleus of every
cell in the sample with blue fluorescence when excited with UV light (A = 405nm).
This compound is added to make all cells visible, regardless of whether they express
the specific genes being labeled with fluorescent antibodies.

The fact that it binds everywhere in the sample makes DAPI an ideal reference
for assessing image quality throughout the three-dimensional structure of the gastru-
loids. Moreover, DAPI fluorescence is particularly sensitive to clearing inefficiences,
as its short excitation wavelength is more prone to scattering than the longer wave-
lengths used for other fluorescent markers (Jacques, 2013). Consequently, if the
DAPI channel demonstrates good penetration and image quality at depth, it can
be assumed that the other fluorescent channels (using green, red and far-red wave-
lengths) will perform even better.

The ideal clearing protocol should achieve three goals: maintain high image
resolution, preserve fluorescent signal intensity, and retain sufficient contrast to dis-
tinguish individual cells all throughout the sample depth. Therefore, I employed
three complementary metrics to objectively assess clearing quality across different
protocols:

1. Fourier Ring Correlation Quality Estimate (FRC-QE), developed by Preusser
et al. (2021) specifically for evaluating clearing protocols in 3D organoid imag-
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Figure 4: Tllustration of absolute versus relative depth classification for clearing analysis.
Cross-sectional view of a gastruloid (gray) with the full 3D mask boundary shown as a
white outline. For the highlighted pixel (yellow square), absolute depth (blue arrow) is
measured from the minimum z-position of the entire gastruloid mask, while relative depth
(red arrow) is measured from the minimum z-position at the same xy coordinate. This
distinction accounts for the variable thickness of the gastruloid: pixels at the same absolute
depth may experience different amounts of light attenuation depending on their local tissue
environment.

ing. This metric quantifies image quality by measuring the correlation between
successive z-slices, based on the principle that well-cleared samples should show
high consistency between adjacent optical sections. In poorly cleared samples,
scattering and aberrations introduce random noise that reduces this correla-
tion, particularly at greater depths. The FRC-QE values have arbitrary units
and therefore no direct interpretation when in isolation, but the metric enables
direct comparison between different clearing conditions when imaging param-
eters (particularly voxel size and z-step) are held constant. The metric was
computed using the Fiji plugin provided by the original authors.

2. Depth-dependent average intensity analysis. This approach aimed to quantify
the intuitive observation that better-cleared samples should maintain brighter
fluorescence at greater depths. To account for the irregular shape of gastru-
loids, I developed a masking algorithm that excluded background pixels and
analyzed intensity values within the sample based on both absolute depth (z-
position from the minimum z-coordinate of the entire gastruloid mask) and
relative depth (z-position from the minimum z-coordinate at each xy location,
accounting for local sample thickness at that position, figure 4). This dual
analysis was motivated by the observation that signal degradation typically
occurs first in the thickest regions of the sample, where light must traverse the
most tissue.

The metric itself consisted of computing the mean DAPI intensity of all pixels
at each depth level, after normalizing the intensity values of each individual
gastruloid to its maximum intensity to account for sample-to-sample varia-
tion in absolute brightness (due to e.g. variations in staining efficiency or
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fluctuations in laser power).

3. Coefficient of variation analysis. The ratio of standard deviation to mean in-
tensity at each depth level was computed to assess contrast preservation, using
the same absolute and relative depth organization as before. This metric was
motivated by the hypothesis that image quality depends not just on absolute
signal intensity, but on the preservation of contrast as a measure of the amount
of detail in an image. In well-cleared samples, individual nuclei should remain
distinguishable at depth (high contrast), whereas poor clearing could lead to
a uniform haze that reduces local intensity variations and obscures detail (low
contrast).

For each clearing condition, these three metrics were computed individually for
each gastruloid in the dataset, then averaged across samples to produce summary
statistics. Based on the evaluation of these metrics, the combination of fresh Rapi-
Clear with enhanced permeabilization (0.5% Triton X-100) demonstrated the most
consistently good performance, maintaining image quality throughout the full depth
of gastruloid samples. This protocol was therefore selected as the standard clearing
method for all subsequent experiments.

2.2 Automated cell segmentation with machine learning mod-
els

The quantification of positional information in gastruloids requires identifying and
characterizing individual cells throughout the three-dimensional structure. Compu-
tationally, this is a significant challenge: converting large three-dimensional arrays of
fluorescent intensity values into discrete cellular objects with defined boundaries. In
the terms of the computer vision community, this is an instance segmentation prob-
lem, where each cell must not only be classified as distinct from the background,
but also separated from its neighbors and assigned a unique identifier (Hafiz and
Bhat, 2020).

The classical methods to solve this problem are based on treating pixel inten-
sities as elevation maps, iteratively detecting object contours through energy min-
imization, or clustering pixels based on similarity of features like intensity or color
(Bachani et al., 2024). While these can work for simple images with well separated
objects, they face significant limitations in dense biological tissues. They typically
require manual parameter tuning for each dataset, struggle with overlapping or
touching cells, and cannot easily incorporate complex contextual information about
cell morphology. Most critically, they lack the ability to learn from examples, mean-
ing they cannot adapt to the specific characteristics of different imaging conditions
or cell types.

The introduction of deep learning has revolutionized biological image segmenta-
tion. Modern approaches differ fundamentally not just in model architecture, but
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also in how they represent the segmentation problem: some methods predict seg-
mentation masks directly, while others generate intermediate representations that
are subsequently processed to identify individual objects. For example, StarDist
(Schmidt et al., 2018) takes the latter approach by predicting star-convex polygons,
learning to output radial distances from object centers to their boundaries at fixed
angular intervals, making it particularly effective for roughly spherical objects like
nuclei.

2.2.1 Cellpose-SAM architecture and implementation

For this work, I mainly employed Cellpose (Stringer et al., 2021), which takes a
distinctive approach by decomposing segmentation into two complementary tasks.
Rather than predicting masks directly, Cellpose trains a neural network to output
two intermediate representations that are then combined through classical post-
processing to identify individual cells.

The first output is a cell probability map that assigns to each pixel the likeli-
hood of it belonging to a cell rather than background. The second is a gradient
field that encodes directional information pointing from cell boundaries toward cell
centers. To generate the final segmentation, the algorithm follows these gradients
from each high-probability pixel until a singular point is reached. All pixels whose
gradient paths converge to the same singular point are assigned to the same cell
instance. In this way, the complex instance segmentation problem is decomposed
into two simpler tasks that neural networks can learn more effectively. During train-
ing, manually annotated cell masks are converted into the corresponding probability
maps (straightforward binary conversion) and gradient fields (generated by simulat-
ing heat diffusion from each cell centroid to its boundaries). The network then learns
to reconstruct these target representations from raw microscopy images.

This representation has been demonstrated to enable well-trained networks with
superior performance across diverse real-world segmentation tasks (Stringer et al.,
2021). Moreover, it generalizes quite naturally to three-dimensional image segmen-
tation, without requiring a separate architecture. In fact, the same neural network
is used to predict two-dimensional gradients in all three orthogonal directions by
slicing the volume along each axis. These orthogonal gradient predictions are then
combined to construct 3D gradient fields, enabling the same gradient-following algo-
rithm to operate in three dimensions and identify cells throughout the entire volume.

Previous releases of Cellpose mainly employed a U-Net architecture with addi-
tional skip connections. The models could be trained on datasets of a given type
of image (e.g. fluorescent microscopy, brightfield microscopy, nucleus-only segmen-
tation) to produce a variety of pre-trained models that the users could choose from
depending on their intended application. However, with the recent release of version
4 of Cellpose, also called Cellpose-SAM, the whole architecture has been simplified
to only providing a single, extremely well-generalizing model for all applications
(Pachitariu et al., 2025).
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Cellpose-SAM fully replaces the U-Net architecture with the image encoder from
Meta’s Segment Anything Model (SAM). SAM is a transformer-based vision foun-
dation model trained on over one billion segmentation masks across diverse image
domains, designed to segment any object in an image given a user prompt in the
form of a bounding box, a set of points, a rough outline, or a text prompt (Kirillov
et al., 2023). The input image and the prompt are embedded into high-dimensional
vectors by two separate embedding models; the embeddings are then combined and
interpreted by a fast, efficient lightweight mask decoder which predicts the segmen-
tation masks directly.

Cellpose-SAM only leverages the image embedding component of the SAM ar-
chitecture, utilizing its pretrained weights that have learned general visual features
across diverse image domains. This image encoder is then retrained to predict the
cell probabilities and vector gradients required by the Cellpose framework. This
hybrid approach yields a system that substantially outperforms the previous U-Net-
based models and can generalize to diverse imaging datasets without any specific
fine-tuning.

For this application, this new framework offered two critical advantages over pre-
vious segmentation models. First, its native adaptability to diverse cell diameters
allowed me to work at my chosen imaging resolution (0.404 x 0.404 x 0.8 um? voxel
size) without requiring oversampling, which would have produced prohibitively large
image files that were computationally intractable. Second, unlike previous models
that typically accepted only a single channel (either nuclear staining or membrane
staining), Cellpose-SAM can effectively utilize information from up to three flu-
orescent channels simultaneously, providing much richer context for accurate cell
boundary determination.

2.2.2 Experimental approach to gastruloid segmentation

To evaluate segmentation performance and optimize parameters, I created a ground-
truth dataset by manually annotating two high-resolution volumes (0.202 x 0.202 x
0.800 um? voxel size) using the SAMJ plugin in Fiji. This plugin employs the same
Segment Anything Model that forms the backbone of Cellpose-SAM, but in its
original interactive form, enabling efficient manual annotation through point-and-
click interfaces. Nine orthogonal slices (three per axis) were annotated from each
volume to capture the full three-dimensional complexity of nuclear morphologies.
One volume served as a training set for parameter optimization, while the other
functioned as an independent test set. The final test set comprised 1703 manually
segmented masks, providing a substantial ground truth dataset for validation.

I compared the results from two segmentation frameworks: Stardist-Tapenade
(Gros et al., 2024), a StarDist model specifically fine-tuned on organoid data, to
benchmark against existing literature and assess the transferability of published
models to our clearing protocol and imaging conditions; and Cellpose-SAM, which
I selected for further optimization. While this model captured essentially all cells,
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it exhibited two systematic biases compared to my manual annotations: a tendency
toward oversegmentation (splitting individual nuclei into multiple objects) and the
production of more compact masks that left fewer background pixels between adja-
cent cells.

To address these issues, I first explored fine-tuning the Cellpose-SAM model on
my manually annotated training data to potentially improve performance on this
specific dataset. However, the performance of trained models degraded dramatically
after as little as 15 epochs, with segmentation quality dropping to zero. This behav-
ior could indicate rapid overfitting due to the limited size of my training dataset,
or may reflect instabilities in the still young Cellpose-SAM training interface that
have also been reported by other users on GitHub. Given the strong performance of
the base model with optimized parameters, I chose to proceed with the pre-trained
model rather than pursue further fine-tuning experiments.

Given these technical difficulties, I reverted to the base model and instead focused
on systematically optimizing the post-processing hyperparameters that control how
Cellpose converts predicted gradients and cell probabilities into final segmentation
masks. These are:

e cellprob threshold: sets the minimum probability value for pixel inclusion in
cells. This parameter controls the boundary tightness of segmented masks,
with higher values producing more conservative, compact masks by excluding
lower-confidence boundary pixels.

e flow3D smooth: controls the width of Gaussian blur applied to gradient fields
before the gradient-following algorithm. Higher smoothing values reduce sen-
sitivity to small gradient fluctuations that might otherwise cause oversegmen-
tation of individual nuclei.

The optimization process involved systematically varying these parameters across
a grid of values and evaluating the resulting segmentations against the manual
ground truth using standard metrics.

2.2.3 Final segmentation pipeline

Based on the parameter optimization analysis, I selected the following configuration
for all final segmentations:

e cellprob threshold: 1.0
e flow3D smooth: 3.0

These parameters were chosen to balance completeness and accuracy while pro-
ducing masks with biologically reasonable morphology and consistent boundaries
across the dataset.

Finally, to further refine segmentation quality, I implemented a series of mor-
phological operations applied to the masks output by Cellpose-SAM:
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1. Small object removal: masks smaller than 30 voxels were eliminated to remove
noise and spurious detections that likely represent imaging artifacts rather
than genuine nuclei.

2. Binary hole filling: internal gaps within masks were filled to ensure solid nu-
clear representations, as true nuclei should not contain large internal voids.

3. Morphological closing: a combination of dilation followed by erosion using a
spherical structuring element (radius = 3 voxels) to smooth mask boundaries
and close small gaps that might arise from imaging noise.

The complete pipeline, comprising Cellpose-SAM segmentation with optimized
parameters followed by morphological post-processing, was applied uniformly to all
gastruloids in the dataset. The pipeline was designed to be fully automated, re-
quiring no manual intervention or sample-specific parameter adjustments, ensuring
consistent processing across the entire experimental dataset. The resulting seg-
mentation masks provided the foundation for all subsequent single-cell analysis and
spatial pattern quantification.

2.3 Spatial analysis of gene expression patterns

Once a robust method for imaging gastruloids in full and isolating single cells from
the 3D stacks was developed, quantitative analysis of gene expression patterns re-
quired extracting fluorescence intensities and spatial coordinates for each identified
cell. For each segmented cell, mean fluorescence intensity was calculated across
four fluorescence channels, providing quantitative measures of expression for each
marker. Combined with the 3D spatial coordinates of each cell’s centroid, this ap-
proach yields a dataset with seven features per cell.

Beyond the baseline DAPI nuclear staining that labels all cells uniformly, ex-
pression analysis focused on the intensity values from antibody staining for three
key transcription factors selected for their roles in gastruloid patterning:

e Sox2, a posterior neural ectoderm marker
e Foxcl, an anterior mesoderm marker

e Bra (Brachyury/T), a posterior mesoderm marker

These transcription factors are proteins that bind to DNA and regulate the
expression of other genes, thus controlling cell fate decisions. By visualizing their
spatial distribution, researchers can map how different cell identities emerge and
organize themselves within the gastruloid.

The immunostaining protocol employed a standard two-step approach. First,
gastruloids were incubated with primary antibodies from different animal species
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Figure 5: Four-channel fluorescence imaging of a representative gastruloid showing the
characteristic DAPT (blue), Sox2 (green), Foxcl (magenta), and Bra (red) expression pat-
terns.

(rat anti-Sox2, rabbit anti-Foxcl, and goat anti-Bra) to specifically bind each tran-
scription factor. Second, fluorophore-conjugated secondary antibodies were applied
to detect each primary antibody independently:

e Anti-rat antibody conjugated to AlexaFluor 488 (\., = 488 nm excitation,
green emission)

e Anti-rabbit antibody conjugated to AlexaFluor 546 ()., = 546 nm excitation,
red emission)

e Anti-goat antibody conjugated to AlexaFluor 647 (\., = 647 nm excitation,
far-red emission)

This approach enables simultaneous visualization of all three markers plus DAPI
in each gastruloid (figure 5).

The relationship between measured fluorescence intensity and actual molecular
content requires careful consideration. In principle, the detected fluorescence inten-
sity is proportional to the number of emitted photons, which depends on several
factors: the number of target molecules present in the cell, the number of antibody-
fluorophore complexes bound to these targets, the quantum efficiency of the fluo-
rophore, and the excitation power used. Each fluorophore has different quantum
efficiencies and requires wavelength-specific excitation powers optimized for signal
detection rather than absolute quantification. Furthermore, different transcription
factors may be produced at vastly different absolute concentrations within cells.

However, for the purposes of analyzing spatial patterns and cell type distribu-
tions, absolute molecular counts are not necessary. The key biological questions
concern relative changes in expression, i.e. which cells express more or less of a
given marker compared to their neighbors, and how these relative expression levels
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vary across the tissue. Therefore, throughout this analysis, fluorescence intensities
are treated as relative measurements and normalized appropriately when compar-
ing across samples. This approach avoids the complex calibration that would be
required for absolute quantification while preserving all information relevant to un-
derstanding spatial patterning and cell fate decisions.

2.3.1 Medial axis projection of the intensity values

The most well-characterized feature of gastruloids is the differentiation of cells into
anterior and posterior tissues along the elongation axis, making this the natural
starting point for spatial gene expression analysis. This anterior-posterior pattern-
ing represents a fundamental aspect of embryonic development, where cells adopt
different identities based on their position along the body axis. To quantitatively
analyze this patterning, robust methods for extracting expression patterns along the
gastruloid’s primary elongation axis are essential.

While previous published work (Merle et al., 2024) has analyzed this axis using
the midline of 2D images obtained through maximum projections of the fluorescent
signals on a single plane, the 3D imaging capability developed here enables extrac-
tion of the true three-dimensional curvilinear medial axis, directly improving upon
previous approaches. This methodology provides a more accurate representation of
the actual tissue geometry and cellular organization.

Computing the 3D medial axis requires several geometric processing steps. First,
all segmented cells are pooled to create a binary mask distinguishing gastruloid tis-
sue from background. The binary volume is then converted to a triangulated sur-
face mesh using the marching cubes algorithm (Lewiner et al., 2003), which creates a
smooth surface representation by connecting points of equal value (the tissue bound-
ary) with triangles. This mesh is refined using Laplacian smoothing (Vollmer et al.,
1999), an iterative process that moves each vertex toward the average position of its
neighbors, reducing surface roughness while preserving overall shape. The smoothed
volume is then re-converted to voxels and reduced to a one-dimensional skeleton us-
ing morphological thinning operations (Lee et al., 1994), which iteratively remove
voxels from the surface while preserving connectivity, ultimately yielding a graph
structure representing the core geometry. Finally, the medial axis is identified as the
diameter (the longest of the shortest paths) of the skeletal graph, then smoothed
and extended to reach the tissue boundaries (figure 6).

To analyze expression patterns along the anterior-posterior (A-P) axis, each cell’s
3D centroid position is reduced to a single coordinate representing its position along
the axis. For each cell, this medial axis projection involves finding the nearest point
on the medial axis using a k-d tree spatial data structure (Maneewongvatana and
Mount, 1999). The arc length along the medial axis from one end to this nearest
point defines the curvilinear coordinate of that cell along the medial axis. The
curvilinear coordinates were normalized by the total length of the axis to lie in
a [0, 1] range, because it has been shown (Merle et al., 2024) that gastruloids of
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Figure 6: Three-dimensional medial axis extraction illustrated for a representative gas-
truloid. Orthogonal projections (XY, XZ, YZ views) showing the smoothed tissue mask
(white) and the computed medial axis (red curve). The axis captures the primary anterior-
posterior elongation direction while adapting to the curved 3D morphology of the sample.

different absolute sizes show similar relative patterning.

To identify the anterior and posterior ends of what would otherwise be an adi-
rectional axis, the expression pattern of Bra, an exclusively posterior marker, is used
as a reference. The average gradient of Bra expression along the curve is computed,
and the coordinate system is oriented so that Bra expression consistently increases
from anterior to posterior, with 0 corresponding to the anterior end and 1 to the
posterior end.

Having characterized depth-dependent signal attenuation in the DAPI channel
as a measure of clearing efficiency, it is important to consider whether similar ef-
fects might compromise the antibody channel measurements. However, I chose not
to apply depth corrections to the antibody channel intensities for several reasons.
First, the longer excitation wavelengths used for the antibody channels (488 nm, 546
nm, 647 nm) are significantly less prone to scattering than the shorter DAPI exci-
tation wavelength (405 nm), as are the emitted wavelengths from each fluorophore,
making the depth effect less pronounced. Second, and more critically, unlike the
uniformly expressed DAPI signal, the antibody channels exhibit highly structured
spatial expression patterns that are intrinsically heterogeneous.

Attempting to decouple systematic technical artifacts from genuine biological ex-
pression gradients would require a prior: assumptions about the expected expression
patterns, which could introduce bias into the analysis. In fact, examination of the
z-dependence of the expression patterns revealed instances where cells deep within
the sample exhibited higher antibody intensities than cells near the surface, a pat-
tern that would be impossible if depth-dependent attenuation were the dominant
effect. This observation suggests that biological expression heterogeneity, rather
than technical limitations, is the primary source of intensity variation in the anti-
body channels. Therefore, the uncorrected intensity values were used directly for
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this analysis, with the understanding that any residual depth effects are likely small
compared to the biological signal of interest. Moreover, since the primary focus
of this analysis is on relative differences along the anterior-posterior axis, which is
largely orthogonal to the depth axis, any systematic depth-dependent effects would
be unlikely to significantly alter the observed spatial expression patterns.

2.3.2 Average profile extraction

To enable comparison with previously published approaches, a binning strategy was
employed to compute smoothed expression profiles along the normalized medial axis
coordinate. For each gastruloid and each channel, cells were grouped into 50 bins
spanning the full anterior-posterior extent, and mean intensities were calculated
within each bin. This yielded smooth expression profiles for individual gastruloids,
which could then be averaged across samples to obtain population-level expression
patterns.

The methodology presented here provides a robust framework for quantitative
analysis of spatial gene expression patterns in three-dimensional self-organizing sys-
tems, enabling direct comparison with existing literature while preserving the capa-
bility for more detailed single-cell analyses.

3 Results and Discussion

3.1 Enhanced optical clearing enables complete 3D imaging
of gastruloids

The systematic evaluation of clearing protocols revealed dramatic differences in
imaging depth and quality between conditions. The optimal protocol was found
to be the combination of a fresh batch of RapiClear with enhanced permeabilization
(0.5% Triton X-100).

The Fourier Ring Correlation Quality Estimate (FRC-QE) analysis provided the
most discriminating metric for clearing quality (figure 7). While suboptimal condi-
tions showed rapid decay of image quality with increasing depth into the sample, the
optimal protocol maintained high FRC-QE values throughout the entire gastruloid
volume. This metric, which quantifies the consistency between adjacent optical sec-
tions, effectively captured the visual impression of maintained resolution at depth.

While average fluorescence intensity might seem like a natural metric for as-
sessing clearing quality, it failed to differentiate clearly between clearing conditions
and to highlight the best one (figure 8). This counterintuitive result could be ex-
plained by considering that poorly cleared samples may show uniformly elevated
background fluorescence due to scattered light, which elevates the average intensity
even as useful signal is lost.

The coefficient of variation analysis proved more informative, revealing that the
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Figure 7: Fourier Ring Correlation Quality Estimate mean curves for six different clearing
protocols. For each condition, the FRC-QE was computed individually for each gastruloid,
then averaged to produce the mean curve shown (shading indicates standard error of the
mean across gastruloids within each condition). The optimal protocol, utilizing a fresh
RapiClear (RC) batch and enhanced permeabilization, was evaluated on n = 26 gastruloids
and is highlighted in red; the other five conditions were each evaluated on n = 5 gastruloids.

optimal protocol better preserved image contrast at depth (figure 9). This metric,
which measures the relative standard deviation of pixel intensities, effectively cap-
tured the preservation of cellular detail that enables accurate segmentation. This
metric aligned well with both visual assessment and the FRC-QE results, confirming
that the optimal protocol provides significantly better optical clearing throughout
the three-dimensional structure of the gastruloids.

The practical impact of these improvements was substantial. Prior to optimiza-
tion, complete imaging of Ny = 300 gastruloids was impossible without physical
compression, which would have introduced unacceptable morphological artifacts.
The optimized protocol enabled routine imaging of entire gastruloids while pre-
serving their natural three-dimensional architecture, providing the foundation for
comprehensive single-cell analysis throughout the complete sample volume.

3.2 Automated segmentation achieves reliable single-cell iden-
tification

Developing an effective segmentation pipeline for gastruloid imaging data involved
exploring diverse computational approaches, as described in the Methods section.
Despite being fine-tuned on organoid data, StarDist-Tapenade (Gros et al., 2024)
only produced sparse, incomplete segmentations on my data (figure 10). The poor
performance likely stems from differences in imaging conditions: my enhanced clear-
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Figure 8: Mean intensity profiles as a function of depth for six clearing protocols. Left:
absolute depth measured from the global minimum z-position of each gastruloid. Right:
relative depth measured from the local minimum z-position at each xy coordinate. Intensity
values were normalized to the maximum intensity within each gastruloid before averaging.
Optimal protocol (n = 26 gastruloids) shown in red; other conditions evaluated on n =5
gastruloids each. Note that the optimal protocol does not show the highest intensity
at depth, illustrating why average intensity is a misleading metric for clearing quality
assessment.

ing protocol may have produced image characteristics (contrast profiles, signal-
to-noise ratios) that differ significantly from the training data used for StarDist-
Tapenade. Additionally, StarDist models are limited to working on single-channel
nuclear staining, which may limit their robustness when the nuclear channel alone
provides insufficient information for reliable segmentation.

In contrast, Cellpose-SAM’s multi-channel capability allowed it to leverage in-
formation from all available fluorescence markers, providing additional context for
resolving ambiguous boundaries and ultimately yielding more complete and accurate
segmentations. This stark performance difference illustrates the advantage of foun-
dation model approaches over domain-specific fine-tuning. While StarDist-Tapenade
relies on a smaller network fine-tuned within a narrow organoid domain, Cellpose-
SAM employs a transformer backbone trained on billions of images from diverse
and unrelated domains, enabling the model to leverage vastly broader visual knowl-
edge when encountering novel conditions. Furthermore, Cellpose’s gradient-based
mask representation may be better suited than StarDist’s star-convex polygons for
capturing the irregular nuclear shapes common in dense tissues.

The systematic optimization of Cellpose’s post-processing parameters (final pa-
rameter selection: cellprob threshold = 1.0, flow3D smooth = 3.0) yielded seg-
mentations that captured the essential cellular organization while maintaining con-
sistency across the dataset.

The optimized parameters still produced masks that differed visually from my
manual annotations, but offered a valid alternative segmentation of the same cells.
In this optimization process, I reached a fundamental limit of what constitutes
"correct" segmentation. As discussed by Pachitariu et al. (2025), manual masks

23



FOCM, Triton 0.5%
Glycerol/fructose, Triton 0.5% 124
RC new batch, Triton 0.1%
RC old batch, Triton 0.5%
1.0 Vectashield, Triton 0.5%
—— RC new batch, Triton 0.5%

FOCM, Triton 0.5%
Glycerol/fructose, Triton 0.5%
RC new batch, Triton 0.1%
RC old batch, Triton 0.5%
1.04 Vectashield, Triton 0.5%

—— RC new batch, Triton 0.5%

12

0.6 — W > V“'jv\

0.4

Coefficient of Variation (SD/Mean)
Coefficient of Variation (SD/Mean)

0 5‘0 160 1_’;0 260 25‘)0 0 5‘0 160 1_‘;0 260 2_’;0
Absolute z depth (um) Relative z depth (um)

Figure 9: Coefficient of variation profiles as a function of depth for six clearing protocols,
measuring contrast preservation as an indicator of clearing quality. Left: absolute depth;
Right: relative depth. At a given depth, higher coefficient of variation indicates better
preservation of cellular detail and contrast. The optimal protocol (red, n = 26 gastruloids)
exhibits superior performance with higher contrast values, especially at intermediate and
deep regions, compared to other conditions (n = 5 gastruloids each).

from different human annotators can vary significantly due to subjective preferences
and segmentation styles, while still representing equally valid interpretations of the
underlying biological structures. In this context, my manual annotations cannot be
considered definitive ground truth, but rather one valid interpretation among many
possible ones, and the automated predictions from Cellpose-SAM represent another
equally legitimate interpretation.

The algorithmic approach may actually offer advantages over manual annotation
in terms of consistency and reproducibility. While human annotators introduce
variability based on fatigue, subjective interpretation, and inconsistent application of
criteria, Cellpose-SAM applies the same learned priors uniformly across all cells. The
systematic nature of the differences (with Cellpose producing more regular, compact
masks) suggests that the model has learned biologically plausible constraints on
nuclear morphology.

Given that my downstream analysis required consistent identification of cell po-
sitions and reasonable morphology rather than pixel-perfect agreement with any
particular annotation style, the algorithmic segmentation proved entirely suitable
for quantifying positional information in gastruloids.

Visual inspection (figure 11) confirmed that the segmentation captured the essen-
tial spatial organization of cells throughout the three-dimensional gastruloid struc-
ture. The complete pipeline successfully segmented an average of 18,829 + 2,132
cells per gastruloid across 26 samples, yielding remarkably complete cell identifi-
cation despite the algorithm having no specific training on this tissue type. This
provided a suitable foundation for subsequent structural analysis.
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Figure 10: Comparison of StarDist-Tapenade segmentation performance against manual
ground truth annotations, for one slice of the test volume. From left to right: original
fluorescence image, manually annotated ground truth masks (each cell assigned a unique
color), StarDist-Tapenade predictions, and performance evaluation (green = true positives,
blue = false negatives, red = false positives, black = true negatives). The model detected
only a small fraction of cells present in the manual annotations, with most cells appearing
as false negatives (blue), demonstrating poor performance.
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Figure 11: Segmentation performance of the complete segmentation pipeline against man-
ual ground truth annotations, for one slice of the test volume. From left to right: original
fluorescence image, manually annotated ground truth masks (each cell assigned a unique
color), post-processed predictions, and performance evaluation (green = true positives,
blue = false negatives, red = false positives, black = true negatives).

3.3 Spatial gene expression patterns reveal complex tissue
organization

The analysis of gene expression patterns along the anterior-posterior axis revealed
structured spatial organization consistent with known gastruloid biology. The population-
averaged expression profiles (figure 12) showed characteristic patterns for each marker
which align qualitatively with those reported by Merle et al. (2024), validating our
imaging and analysis pipeline against established results.

Importantly, our approach offers significant methodological advantages over pre-
vious studies. Unlike analyses based on maximum intensity projections, our full
3D approach preserves the native three-dimensional distribution of cells and avoids
the information loss inherent to flattening complex 3D structures onto 2D images.
Furthermore, our medial axis extraction operates directly on the 3D gastruloid ge-
ometry, providing a true anatomical midline rather than the distorted midline that
results from 2D projection artifacts. These improvements enable more accurate
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Figure 12: Population-averaged expression profiles along the anterior-posterior axis. Solid
lines show mean intensity across n = 25 gastruloids; shaded regions indicate standard error.
The profiles show characteristic spatial patterns for each marker along the gastruloid axis.

quantification of spatial gene expression patterns and better preservation of the
cellular-level information that drives self-organization.

However, the true power of single-cell resolution becomes apparent when ex-
amining the full distribution of expression values rather than just averages. The
averaging approach, while useful for comparison with the literature, necessarily dis-
cards rich information present in the single-cell data. The scatter plots of individual
cell intensities (figure 13) reveal heterogeneities that would be completely masked
by population averaging. Most notably, two markers (Sox2 and Foxcl) show clear
bimodal distributions at specific positions along the axis, indicating the coexistence
of distinct cell populations rather than a continuous gradient of expression levels.

This bimodality was observed reproducibly across the majority of analyzed gas-
truloids. Given these heterogeneous distributions, taking simple averages produces
intermediate values that may not correspond to any actual cell state. This con-
sideration is important for interpreting averaged expression profiles and suggests
that more sophisticated analytical approaches incorporating cellular heterogeneity
represent an important direction for future development.

Visual inspection of the antibody channels showed little apparent relationship
between imaging depth and fluorescence intensity for the gene expression markers, in
contrast to the clear depth dependence visible in the DAPI channel. This observation
supports our decision not to apply depth correction to the antibody channels, as the
biological heterogeneity in gene expression appears to dominate over any technical
attenuation effects.

4 Conclusions

Through systematic optimization and the application of state-of-the-art computa-
tional tools, this work has established a robust pipeline for quantifying gene expres-
sion patterns in gastruloids at single-cell resolution throughout entire 3D samples.
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Figure 13: Single-cell fluorescence intensities along the medial axis of a representative
gastruloid. Each dot represents one cell, positioned according to its normalized coordinate
along the anterior-posterior axis. The four panels show DAPI, Sox2, Foxcl, and Bra
expression respectively. Datapoints are color-coded by their absolute z-depth within the
sample (red = shallow, blue = deep). While systematic intensity decay with depth is
clearly visible in the DAPI channel, the relationship is much more complex for the antibody
channels, where biological expression patterns dominate over technical artifacts.

This represents a significant methodological advance for studying self-organization
in mammalian developmental models, where previous approaches were limited by
difficulties in imaging dense tissues and reconstructing complete spatial patterns.

The key technical achievements include the development of an effective clearing
protocol that enables deep tissue imaging while preserving morphology and fluores-
cence, the construction of an automated segmentation pipeline capable of accurately
extracting single-cell information over thousands of cells per sample, and the exten-
sion of spatial analysis approaches to enable gene expression pattern analysis along
the anterior-posterior axis in a fully three-dimensional setting. These methodolog-
ical improvements enable more accurate quantification of spatial gene expression
patterns and better preservation of the cellular-level information that drives self-
organization.

27



The preliminary analysis [ performed demonstrates the existence of complex
spatial organization within this self-organizing system. The bimodal distributions
observed for multiple markers at specific axial positions suggest that positional in-
formation may be encoded not in simple gradients of mean expression, but rather
in the spatially-varying probability distributions of discrete cell states. This prob-
abilistic encoding could provide a more robust and information-rich mechanism for
pattern formation than classical morphogen gradient models suggest.

The technical capabilities established here will be crucial for understanding how
these structures emerge spontaneously and how this process relates to the genera-
tion of positional information. Furthermore, applying this analytical framework to
different developmental timepoints and initial seeding densities will enable evalua-
tion of how structures emerge over time and how they scale with system size. This
represents a critical step toward understanding the fundamental principles governing
biological self-organization.

By extending quantitative frameworks previously limited to simpler model sys-
tems like Drosophila to more complex self-organizing mammalian stem cell systems,
this work provides the flexibility to probe self-organization under controlled yet bio-
logically relevant conditions. With the ability to measure spatial patterns precisely
and comprehensively, researchers can now test quantitative theories about the fun-
damental limits and mechanisms of biological self-organization.
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