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Summary

Financial Crime poses a persistent and evolving threat to the integrity of the global financial
system, especially in the forms of money laundering and terrorist financing. To combat
these offences, financial institutions, government regulatory bodies, law enforcment and
international agencies coordinate their efforts, sharing expertise and innovative technologies.
The ensemble of said knowledge and technologies goes under the name of Anti Financial
Crime (AFC). However, as banking institutions handle ever-growing volumes of transactions,
their traditional, rule-based AFC monitoring pipelines strain under the scale and complexity
of modern laundering schemes. Banks like Intesa Sanpaolo need to manage millions of
monthly wire transfers, thus exposing the limitations of current transaction-monitoring
systems. Moreover, particularly problematic are, in general, the high false-positive rates
in suspiscious activity reports, that burden the downstream monitoring pipeline and
divert experts’ attention from truly suspicious activity. This misallocation not only
slows investigations, but also increases the risk that sophisticated illicit networks remain
undetected.

To address these challenges, this work introduces a dual, AI-driven approach based on
Network Analysis (NA) principles to improve the efficiency of the Transaction Monitoring
(TXM) section of the Intesa Sanpaolo’s AFC pipeline. Representing transactions as directed
graphs, where each account or institution is a node and each transfer an edge, allows to
leverage powerful principles of graph theory, community detection, and graph temporal
deep learning. This work proposes two innovative models, TRACED and GRAND-Net,
each one starting from two complementary perspectives, distinguished by their scale of
application.

TRACED (Temporal Relational Analysis for Criminal Entities Detection) employs a
bottom-up strategy, starting from the transaction history of one—or a small group—of
ISP clients over a given period of time. These transactions, initially stored in raw Excel
files, are ingested and mapped into a directed graph using standard libraries. This allows
to extract topological and temporal features of each client that were hidden and difficult
to detect in the original Excel data. Starting from this network, advanced Network
Analytics and machine-learning techniques are applied to reconstruct potential criminal
subgraphs among the clients’ counterparties, expanding the initial investigative perimeter.
TRACED produces two innovative visualizations: an interactive cumulative-balance chart
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that highlights anomalous transaction patterns and a counterpart-centric timeline that
reveals temporal flows. TRACED is also equipped with another novel proposal of this
work: a community-detection algorithm — TRACED-FastMaN — that isolates clusters
of transactions correlated by amount, timing, or frequent co-occurrence. By feeding
these clusters into a linear regression model, TRACED computes an automated ML-
based risk score for each client. The combination of rich visual outputs and quantitative
scoring provides analysts with a concise, combined qualitative and quantitative overview of
each client’s transactional risk, allowing to automate the exploration of possible criminal
networks starting from a single suspect, and to capture deeper, multi-step laundering
patterns that conventional methods often miss.

GRAND-Net (Graph Recurrent ANomaly Detection Network) adopts a complemen-
tary top-down approach that contrasts with TRACED’s bottom-up focus. It employs a
graph-recurrent neural network trained to detect anomalies in large-scale, macroscopic
financial flows. Starting from the complete network spanned by the totality of trans-
actions managed by Intesa Sanpaolo over a defined period, GRAND-Net leverages an
innovative dual-head reconstruction architecture to learn robust relational, topological
and temporal embeddings—capturing both inter-node interactions and their evolution
over time. Using these embeddings, the model forecasts the network’s structure for future
intervals. This reconstructed graph can then support various downstream tasks; in this
thesis, we explore its use for edge-level anomaly detection by validating on test graphs
augmented with synthetic anomalies derived from documented money-laundering and
terrorist-financing patterns. By isolating anomalous subgraphs, GRAND-Net assigns an
anomaly score to each edge, empowering analysts to flag unusual high-volume flows or
abrupt macroeconomic shifts—without relying on predefined suspects or rigid rule-based
scenarios. Importantly, GRAND-Net is trained in a fully unsupervised manner, eliminating
the need for transaction-level labels—a common constraint in existing financial anomaly-
detection models. Additionally, leveraging existing graph downsampling algorithms applied
to transactional data, and applying principles of transfer learning and fine-tuning, GRAND-
Net enables training on a much smaller subset of nodes and edges, drastically reducing time
and memory requirements while still supporting full-scale inference on future networks
with no loss in accuracy or performance.

Both models have been tested on real data taken from ISP proprietary databases,
and exhibit superior performance with respect to existing state of the art related models.
Particularly, TRACED achieves an AUC of 0.86 in separating legitimate clients from
accounts used to perform money laundering operations, and GRAND-Net outperforms
static graph baselines (including DeepWalk and spectral clustering) by large margins,
achieving edge-level AUCs above 0.93 and robust performance even as the fraction of
injected anomalies rises up to twenty percent of total network’s edges.

A key contribution of this thesis is models’ integration in existing AFC systems. Both
TRACED and GRAND-Net have been deployed within Intesa Sanpaolo’s existing Transac-
tion Monitoring pipeline without requiring fundamental changes to the IT infrastructure.
TRACED leverages the bank’s scheduled SAS exports, producing interactive dashboards
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that slot into analysts’ web portals. GRAND-Net operates in ISP’s cloud-based GPU
environment, retraining on rolling windows of 24–36 months and scoring fresh monthly
basetables to generate edge-level alerts. Analysts teams can now consume these AI-powered
insights alongside traditional rule-based alerts, prioritizing investigations by risk score or
anomaly level rather than arbitrary thresholds.

The practical impact of the proposed models in the ISP’s TXM pipeline will be
evaluated in the months following the publication of this work. However, an estimate of its
contributions can be performed by looking at the features and technological innovations
implemented. First, by reducing the reliance on rigid, rule-based scenarios and flagging
only those accounts or flows with high-confidence AI scores, the system goes in the
direction of achieving a significant drop in false positives—freeing compliance officers to
focus on genuinely suspicious cases. Second, the combination of detailed visualizations
and quantitative risk/anomaly scores accelerates the investigation process: this will allow
analysts to better face the observed annual increase in money-laundering and terrorism
financing related offences, making the overall TXM pipeline more solid and able to manage
an higher number of cases.

This thesis outlines several avenues for expansion. Incorporating external data sources,
such as sanctions lists or corporate registries, could enrich node attributes and further
improve detection. In the same way, training the two algorithms on longer, more complex
data available in ISP’s internal databases will allow to achieve a more robust embedding and
better generalization, tailoring the models to the precise ISP’s needs and tasks, hopefully
improving accuracy results on real money laundering and terrorism financing cases.

Network Analysis tools are still far from being fully exploited in the AFC field, and
combining AI and NA is a further level of progress that, in the AFC domain, presents still
limited research literature and industrial experiences. This work goes in the direction of
building one step more in this process, and finally brings two novel, proprietary algorithms
to the field of NA in AFC. Together, they transform terabytes of raw transaction data
into prioritized, investigator-ready intelligence—strengthening the bank’s defenses against
the increasingly sophisticated and globalized threat of financial crime.
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Chapter 1

Introduction to Anti
Financial Crime

1.1 What is Financial Crime
The expression Financial Crime refers to all kinds of illicit activities targeting
financial and economic systems, tools, and operations, with the goal of obtaining
unlawful benefits—either through direct economic gain or by securing indirect
advantages for the perpetrators.

There are many forms of financial crime; the ones that this work will deal with are
Money Laundering (ML) and Terrorism Financing. Money Laundering is the process
which aims to disguise illegally obtained funds through a number of seemingly
lawful operations, such as structuring deposits, routing money through multiple
accounts, and investing in legitimate-looking assets. Those operations are designed
to confuse and deceive authorities and make dirty money appear clean. Terrorist
Financing, on the other hand, is the provision of financial resources—whether
obtained through legal or illicit means—to support terrorist organizations or
activities. These examples represent only a subset of financial-related offenses,
whose number and complexity continue to grow with the emergence of new financial
instruments and technologies that introduce novel risks and opportunities for abuse
[1].

Indeed, the digitalization of financial systems has given rise to new and so-
phisticated threats, making financial crime harder to detect and prevent. The
emergence of cryptocurrencies and blockchain technologies has enabled anonymous
transactions that can be exploited for money laundering and terrorist financing.
Additionally, cyber-enabled financial crimes such as ransomware attacks, phishing
schemes, and deepfake fraud have become more prevalent, allowing criminals to
exploit vulnerabilities in digital banking, payment systems, and online transactions
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Introduction to Anti Financial Crime

[2] [3]. The use of artificial intelligence and machine learning has also contributed to
financial crime, with advanced algorithms being used to automate fraud, manipulate
financial markets, or evade detection by compliance systems.

Organized crime groups, corrupt officials, and even individuals may perpetrate
these offenses, leveraging loopholes in regulatory frameworks or unsufficient mon-
itoring of financial entities to achieve their objectives. To reduce the risk posed
by these threats, it is crucial for all involved entities to build an encompassing,
multi-disciplinary infrastructure of legal enforcement, advanced technological tools
and robust international cooperation to trace and recover illicitly obtained assets
[4].

1.1.1 Focus on Money Laundering
Money Laundering (ML), among the various financial crime (FC) offenses, plays
a particularly significant role in the context of this work. This is the process of
legitimizing funds obtained from illegal activities, with the aim of concealing their
original source and integrating them into the legitimate economic system. It is a
criminal activity that typically originates from another illegal act, such as drug
trafficking, fraud, or corruption. Money Laundering generally requires three distinct
stages: placement, layering, and integration [5].

During the placement stage, illicit funds are introduced into the financial system
through methods such as falsified documentation or currency exchanges, masking
the true origin of the money with deceptive operations [6]. In the layering stage,
the funds are further obscured by moving them through a series of seemingly
legitimate transactions, which serve no purpose other than to disguise their source
and hinder detection by law enforcement and intelligence agencies (LEAs). This
often involves the use of shell companies and cross-border transfers [7] [8]. Finally,
in the integration stage, the laundered funds are reintroduced into the economy as
legitimate assets, often through investments or cash-intensive businesses such as
restaurants and bars [9].

Along this line, money laundering represents a critical challenge for the global
financial system, with far-reaching economic and social implications. For this
reason, it is important to understand the impact of this phenomenon in terms
of the total amount diverted from the legitimate economy. The complexity of
measuring this impact stems from the wide-ranging nature of predicate offenses
and the diversity of consequences associated with each laundered amount. While
various estimates have emerged in recent years, methodological limitations and data
inconsistencies have led to divergent findings. Nevertheless, the collective evidence
suggests the scale of money laundering is substantial enough to warrant significant
public policy intervention. Research by the United Nations Office on Drugs and
Crime [10], as documented in their analysis of multiple studies, suggests that annual
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Introduction to Anti Financial Crime

losses attributable to money laundering activities range from approximately 2%
to 5% of global GDP. Similar numbers are found in the italian landscape, with
estimates accounting for a loss of approximately 1.8% of GDP between 2018 and
2022 [11].

Figure 1.1: Practical illustration of the three-stage money laundering process: funds obtained
through fraudulent activities are deposited in Bank A, transferred to Bank B to obscure their
illicit origin, and finally withdrawn via ATM.

1.2 The Anti-Financial Crime: an Overview
As defined by the Financial Action Task Force (FATF)1, the Anti-Financial Crime
comprises measures to protect financial systems and the broader economy from
the threats of money laundering and terrorist financing. It encompasses the full
spectrum of anti-money laundering (AML) and counter-financing of terrorism
(CFT) measures designed to safeguard the integrity of the international financial
system by preventing, detecting and disrupting illicit financial flows.

Financial institutions (FIs) operate at the front line and must implement different
levels of preventive controls:

• Know Your Customer (KYC): identifying and assessing the money-
laundering and terrorist-financing risks posed by each client;

• Transaction Monitoring (TXM): ongoing scrutiny of transactions to detect
unusual or suspicious patterns;

• Financial Sanctions (FS): freezing the assets of designated individuals and
entities under international mandates.

When an FI detects or suspects illicit activity, it files a report with its national
Financial Intelligence Unit (FIU). The FIU serves as the centralized agency for
receiving, analyzing and disseminating financial intelligence [12]. Upon identifying
sufficient evidence of wrongdoing, the FIU refers cases to law enforcement agencies
(LEAs) or public prosecutors for investigation and prosecution.

1https://www.fatf-gafi.org/en/home.html
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As previously discussed and also stated in the annual italian FIU report [4],
money launderers greatly benefit from the discrepancies and inconsistencies between
regulatory frameworks across different jurisdictions to further their illicit activities.
These differences create significant opportunities for criminals to shift operations to
countries with weaker regulatory oversight or more permissive legal environments.
By doing so, they can more easily evade detection and avoid the more robust
monitoring systems found in other jurisdictions. Additionally, the use of cross-
border transactions allows money launderers to fragment their operations, making
it increasingly difficult for investigators to track the flow of illicit funds. This helps
criminals to bypass nation-specific law enforcement agencies (LEAs) and financial
intelligence units (FIUs), hindering their efforts to build a clear, unified picture of
the overall criminal operation .

Recognizing these challenges, the international community has made significant
progress in recent decades to combat money laundering by enhancing cooperation
and collaboration among countries [12]. Over the last century, efforts have intensified
to establish a more unified global framework aimed at coordinating the actions
of law enforcement agencies in the context of Anti-Money Laundering (AML)
operations [13].

Building on this framework, in more recent years there has been the need
to categorize activities related to combating the financial support of terrorist
organizations under a distinct terminology. These activities, while not always
falling strictly under the definition of money laundering—since the origin of the
funds may not necessarily be illegal— however share many characteristics and
behaviors with typical money laundering operations, while also requiring similar
investigative and preventive approaches. As a result, the term Counter Financing
of Terrorism (CFT) emerged, which is now commonly used alongside Anti-Money
Laundering (AML) to describe the full scope of efforts to address both money
laundering and the financial networks supporting terrorism.

1.3 Key Institutions and Organizations in the
Fight Against Financial Crime

Starting from a global perspective and narrowing down to the Italian context, this
paragraph will explore the different players responsible for AML/CFT provisions
at different levels.
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1.3.1 The Financial Action Task Force (FATF)
The Financial Action Task Force (FATF) 2 is an international standards setting
body, considered as "the United Nations" of Anti Financial Crime [14] [15]. It was
founded in 1989 as an intergovernamental body that includes over 180 countries,
with the goal to establish benchmarks that encourage the effective implementation
of regulatory, operational and legal measures to combat risks associated with money
laundering in the international financial system.

The Financial Action Task Force (FATF) plays a crucial role in shaping global
anti-money laundering (AML) and counter-terrorist financing (CTF) policies. It
develops Recommendations, known as the FATF Standards, which serve as an
international framework for preventing financial crimes. These standards consists
of 40 recommendations, divided in 7 groups, that encompass the whole landscape
of monitoring, cooperation and shared responsabilites in the field of anti financial
crime. These recommendations are regularly updated to address emerging threats,
such as the misuse of virtual assets and cryptocurrencies, or cybercrime and dark
web related crimes.

FATF conducts mutual evaluations of its member countries to assess their
compliance with Anti-Money Laundering (AML) and Countering the Financing
of Terrorism (CFT) regulations, offering guidance on necessary improvements.
Countries that fail to meet FATF’s standards may be placed on the "grey list,"
subject to increased monitoring, or the "blacklist," as high-risk jurisdictions facing
countermeasures. This system of mutual recognition and shared standards estab-
lishes an effective framework of "soft law," encouraging countries to comply with
FATF recommendations in order to maintain their standing in the global financial
system and avoid reputational and economic consequences.

In addition to the policy development, FATF also fosters international coop-
eration by working closely with regional bodies, law enforcement agencies, and
financial institutions to enhance transparency and disrupt illicit financial networks.
Its influence extends beyond its membership, as many non-member countries align
their regulations with FATF standards to maintain access to the global financial
system.

1.3.2 European Regulatory Framework
The European Union has established a comprehensive regulatory framework to
combat financial crime, particularly focusing on Anti-Money Laundering (AML).
This framework is anchored by a series of Anti-Money Laundering Directives

2https://www.fatf-gafi.org/en/home.html
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(AMLDs)3 that impose stringent requirements on financial institutions, businesses,
and designated non-financial sectors to implement customer due diligence (CDD),
report suspicious transactions, and enhance transparency.

In response to the Financial Action Task Force’s (FATF) recommendations, the
EU introduced its initial AML Directive in 1991. This directive required member
states to implement measures obliging financial institutions to identify customers,
maintain transaction records, and report suspicious activities, laying the ground-
work for a unified approach to AML across Europe. Over the following decades,
the EU has adopted additional Directives to adapt to the evolving landscape of
financial offenses. The latest directive, the Sixth Anti-Money Laundering Directive
(6AMLD)4, came into force on December 3, 2020, with a compliance deadline of
June 3, 2021. It further strengthened enforcement by expanding criminal liability,
increasing penalties, and harmonizing definitions of money laundering across EU
member states, also defining a specific list of 20 predicate offences related to money
laundering.

To enhance supervision and coordination among member states, the EU estab-
lished the central Anti-Money Laundering Authority (AMLA) through Regulation
(EU) 2024/1620, which entered into force on June 26, 2024. AMLA is tasked
with overseeing compliance and facilitating intelligence-sharing among Financial
Intelligence Units (FIUs) and the European Banking Authority (EBA) [16]. These
measures collectively ensure a unified and proactive approach to preventing financial
crime across the 27 EU member states.

1.3.3 Italian authorities for AML/CTF
The Italian anti–money laundering framework has evolved in accordance with
international standards and European directives. Several legal provisions have been
introduced to ensure compliance with supranational Directives and Recommenda-
tions: Decree Law 22 June 2007 n. 109; Legislative Decree 231/2007 (as amended by
Legislative Decree 90/2017, transposing EU Directive 2015/849, and further aligned
by Legislative Decree 125/2019, transposing EU Directive 2018/843); Decree Law
30 October 2019 n. 125; and Decree Law 26 October 2019 n. 124. Legislative Decree
231/2007, Italy’s primary AML/CFT law, transposed EU Directive 2005/60/EC
and introduced a risk-based approach, customer due-diligence and record-keeping
obligations, suspicious-transaction reporting duties, and established the UIF as
the national Financial Intelligence Unit. Its subsequent amendments strengthened

3Anti-Money Laundering Directives (EU).
4https://www.europarl.europa.eu/legislative-train/theme-an-economy-that-works-for-people/

file-6th-directive-on-amlcft-(amld6)
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beneficial-ownership transparency, extended the perimeter of obliged entities (e.g.,
cross-border service providers), imposed more stringent internal controls and train-
ing obligations, and expanded due-diligence duties to virtual-asset service providers
and prepaid-card issuers [4]. The application and enforcement of these laws is
distributed across both the public and private sectors.

Minister of Economic and Finance is the central governmental body re-
sponsible for formulating and implementing economic and financial policies in
Italy. Within the MEF, the Financial Security Committee (FSC) plays a pivotal
role in developing national strategies to prevent money laundering and terrorist
financing. Established by Decree Law 369/2001 and governed by Legislative Decree
109/2007, the FSC coordinates efforts among various national authorities and
ensures compliance with international sanctions, including the freezing of assets
belonging to designated individuals and entities.

Figure 1.2: The main italian actors in AML/CTF efforts

Anti-Mafia Investigation Department (DIA) and Special Currency
Police Unit (NSPV) are specialized law enforcment structures dedicated to
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respectively combating organized crime and economic and financial violations.
They are responsible of processing UIF reports related to their field of application,
and in turn to inform UIF of relevant investigative results obtained in the same
field.

The Italian Financial Intelligence Unit (UIF), operating under the auspices
of the Bank of Italy, serves as the central agency for collecting and analyzing
information related to potential cases of money laundering and terrorist financing.
It works in direct contact with LEAs and financial institutions to process and
coordinate reports of suspicious activities and investigations on a national level.
Financial institutions like Intesa Sanpaolo and other national banks directly transmit
suspicious cases to UIF, primarily through reports of suspicious transactions (SOS),
which in turn performs a more in-depth analysis of the case, integrating the report
with information acquired from other entities under the coordination of UIF. Based
on its findings, UIF produces reports for cases which are significant enough to
be transmitted to NSPV and DIA for investigative inquiries. For this reason is
important that institutions like Intesa Sanpaolo are able to research and employ
advanced technological and intelligence tools like the ones proposed in this work.
This assure that only significant and high-risk cases are escalated, reducing the
number of false positives and improving efficiency across the investigative pipeline.
Additionally, UIF serves a regulatory function by publishing guidelines, identifying
trends and vulnerabilities in the financial system, and issuing recommendations
to Italian obliged entities. To ensure compliance with international AML/CFT
obligations, UIF also conducts inspections aimed at verifying adherence to reporting
requirements, assessing communication protocols, and acquiring relevant data from
financial and non-financial entities when necessary.

1.3.4 Obliged Entities

Aside from national public organizations and regulatory bodies, a wide range of
public and private entities are classified as obliged entities under Italy and UE’s
anti-financial crime framework. These entities are legally required to cooperate
with the Financial Intelligence Unit (UIF) and law enforcement agencies (LEAs)
in preventing, detecting, and reporting financial crimes. This cooperation can
take various forms, including monitoring customer activities for potential links to
criminal actions and reporting suspicious behavior directly observed in operational
settings—such as bank branches, where employees interact with customers in
person.

The scope of obliged entities has significantly expanded in the recent years,
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particularly with the Fifth European Directive 2018/843 5. Initially limited to
banks and financial institutions, the designation now includes a broader range
of professionals such as notaries, lawyers, certified public accountants, auditors,
and audit firms. Additionally, non-financial operators involved in money-related
activities—such as debt recovery agencies, companies providing custody and trans-
portation of cash, securities, or valuables, and professional gold traders—are also
subject to these obligations.

This mechanism is designed to eliminate blind spots in the financial system
and ensure that those working closely with potential criminals are not incentivized
to overlook or facilitate illicit activities. Failure to comply with these obligations
can result in severe penalties, including administrative sanctions and criminal
liability. By broadening the scope of obliged entities and reinforcing their legal
responsibilities, the regulatory framework strengthens Italy’s overall capacity to
combat money laundering, terrorist financing, and other financial crimes.

1.4 Intesa Sanpaolo’s positioning in the
AML/CTF

Given its prominent effort in the landscape of Italian financial institutions, Intesa
Sanpaolo plays an important role in AML/CFT operations, not only as a legally
obliged entity but also as a key contributor of research and expertise to the
AML/CFT community. As a well-established and deeply integrated institution, it
provides valuable insights and know-how that support the broader fight against
financial crime. ISP’s primary obligations include reporting any suspicious or
potentially criminal activities among its customers to the Financial Intelligence
Unit (UIF). To comply with this obligation, the AML activities are grouped in the
Compliance Area within a specialised Central Department, namely Anti Financial
Crime Central Department, that acts as a pivotal unit in charge of the overall
AML/CFT activities in the Intesa Sanpaolo Group.[13] Considering the Italian
market, namely ISP Head Office directly enforces the AML/CFT provisions in
the pertinent Business Units such as Banca dei Territori (BdT), Corporate and
Investment Banking (CIB) and the Private banking pole. In this perspective,
the transaction monitoring (TXM) and reporting of suspicious activities within
Intesa Sanpaolo are structured through multiple processes involving various central
organisational units, each responsible for one or more aspects of the overall process.

The pipeline is structured in four different levels, assigned to offices belonging
to different directions, to ensure a broader point of view and mutual assurance

5https://eur-lex.europa.eu/eli/dir/2018/843/oj/eng
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Figure 1.3: Operational pipeline from detection to SAR

of the quality of the overall process. In the first stage, the business activity of
all bank’s customers is analyzed at the lowest possible aggregation level, which
consists of the transactions operated by customers in all its forms. This monitoring
process involves different kind of payments, such as wire transfers, debit and credit
card payments, and cash operations. This broad scope of monitoring assures that
criminals cannot hope to go unnoticed by using a specific kind of payments methods.
The output of this step, which is the one of main interest in the context of this
thesis, are Detections. Detections are then sent to the first level Competence Center
that has to refine them and discard irrelevant or wrong ones. The output of this
filtering operation, which is called an Alert, is sent to the second level Competence
Center, which again refines the input, possibly integrating it with other sources
of information or linking together alerts at an higher level to produce a Case.
Finally, relevant cases are sent to the last level of the pipeline which is responsible
of reporting relevant ones to UIF in the form of Suspicious Activity Report, or
SAR. By analyzing this kind of pipeline it is clear the importance of producing
accurate detections already in the first level, with a particular focus on assuring
low number of false positives, to limit the workload on downstream teams and
ensure that investigative resources are focused on genuinely suspicious behaviors.
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1.5 AML Transaction Monitoring
As stated previously, the term Transaction Monitoring (TXM) refers to the set
of procedures and operations designed to continuously monitor transaction flows
in order to detect potential money-laundering and terrorist-financing patterns. A
significant portion of the transactions processed by financial institutions is conducted
via wire transfers, and research conducted by leading law-enforcement and financial-
intelligence agencies indicates that wire transfers constitute the primary method
by which money mules channel illicit funds6. Since all proposed solutions in this
thesis are based on data drawn from Intesa Sanpaolo’s wire-transfer dataset, the
following section provides a concise overview of the wire-transfer mechanism.

1.5.1 Wire Transfers
A wire transfer is an electronic method for moving funds between financial institu-
tions or through specialized transfer agencies. The sender provides the recipient’s
details—name, account number, bank information, and purpose of the transfer—and
pays any fees upfront. The sending institution then transmits payment instructions
via a secure messaging system. Upon receipt, the beneficiary’s bank credits its own
reserves to the recipient’s account, and the two banks settle the transaction later.

Wire transfers rely on three core components:

1. Clearing System: Reconciles and nets transactions before settlement, ensur-
ing that obligations among participants are calculated accurately.

2. Settlement System: Executes the final exchange of funds. Settlement
systems may operate as:

• Net Settlement Systems, which aggregate and net payment obligations
before settlement;

• Real-Time Gross Settlement (RTGS) Systems, which settle each payment
individually and immediately without netting;

• Real-Time Final Settlement Systems, which combine RTGS with irrevoca-
ble, immediate settlement.

3. Messaging: Facilitates the secure exchange of transaction details between
banks and the clearing/settlement infrastructure.

6https://www.europol.europa.eu/crime-areas/forgery-of-money-and-means-of-payment/
money-muling
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In many regions, banks are connected through a centralized clearing and settle-
ment system, managed by a central bank or designated operator. This avoids the
complexity of every bank maintaining direct bilateral links. In the Euro area, for
instance, retail payments (typically up to €500 000) are processed through “ancillary
systems” using net settlement in multiple daily cycles. The main platform for SEPA
credit transfers is STEP2—a clearing and settlement mechanism operated by EBA
Clearing [17]. STEP2 receives payment orders, calculates net positions among
participating banks, and sends settlement requests to TARGET2. TARGET2,
managed by the European Central Bank and national central banks, is an RTGS
system that settles each payment individually and in real time. SEPA messages on
STEP2 and TARGET2 follow the ISO 20022 standard.

1.5.2 SEPA
Within the Single Euro Payments Area (SEPA), euro-denominated transactions are
harmonized across participating EU and EEA countries under a common rulebook
and technical standards. SEPA does not move funds itself; rather, it defines
the specifications that payment service providers (PSPs) implement to exchange
payment instructions. SEPA credit transfers and direct debits use ISO 20022
XML message formats leveraging IBAN and BIC identifiers to ensure consistent
party identification. Governed by the European Payments Council (EPC), SEPA
transactions are cleared and settled via TARGET2 or domestic clearing systems,
enabling efficient, low-cost cross-border euro payments.

1.5.3 SWIFT
Outside of centralized regional networks, global transfers leverage the SWIFT
(Society for Worldwide Interbank Financial Telecommunication) system. SWIFT
also does not move funds itself; it provides a standardized, secure messaging system
that connects banks worldwide. Each SWIFT message has a defined structure
and a three-digit code (e.g., “MT 103”) indicating its category, group, and specific
purpose.

1.5.4 New Regulatory Expectation: From MT to MX (ISO
20022)

As payment methods evolve, regulators and market infrastructures are migrating
from MT to ISO 20022 XML-based messages (often called “MX” messages). The
transition, which began in March 2023 and spans roughly two years, aims to:

• Enhance Communication: XML’s structured, self-descriptive format im-
proves interoperability across systems.
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• Provide Data-Rich Messages: A single ISO 20022 message can include more
comprehensive information—such as new roles (Ultimate Debtor, Ultimate
Creditor)—reducing errors and facilitating compliance (e.g., AML checks,
regulatory reporting).

• Ensure Global Adoption: Over 70 markets are planning or executing
migration strategies, affirming ISO 20022’s role as the emerging global standard
for financial messaging.

MX message names encode their function and category similarly to MT codes,
but take advantage of rich XML schemas to deliver structured, extensible data.
This migration is a key step toward making cross-border and domestic payments
more efficient, transparent, and interoperable.

1.6 TXM Guidelines and Challenges
Transaction Monitoring (TXM) is the first line of defense in the field of Anti-
Financial Crime, as it enables financial institutions to detect illicit behaviors
already at the transactions level. To support TXM, the UIF defined a list of
34 “anomaly indicators,” which serve as rules and scenarios to guide analysts in
identifying potential financial offenses and to harmonize the Italian TXM landscape.
These indicators are grouped into three sections:

• Section A (1–8) focuses on the behavior and qualifying characteristics of
the subject (e.g., refusal to provide required information, artificially complex
ownership structures, involvement of high-level politically exposed persons).

• Section B (9–32) addresses the features and configuration of the operations
themselves, often in relation to specific sectors (e.g., repeated or fragmented
high-value cash or crypto-asset transfers, suspicious real-estate or precious-
metal dealings and money-transfer activity).

• Section C (33–34) covers activities potentially linked to terrorist financing
and to the proliferation of weapons of mass destruction (e.g., transfers to
counterparties in high-risk or embargoed jurisdictions, transactions involving
entities with inadequate AML controls).

Despite relying on these fundamental indicators, detecting all money-laundering
and financial-crime patterns at the transaction level remains a challenging, open
problem for financial institutions. There are many factors that make this challenge
difficult. First, although the total volume of laundered funds worldwide is huge,
money laundering still represents only a small fraction of overall banking activity
and thanks to money launderers efforts it can easily go undetected without proper
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monitoring structures and methods. Second, the sheer scale of data itself represents
a problem: Intesa Sanpaolo, for instance, processes nearly 60 million wire transfers
each month across a wide variety of customers and sectors, and must accurately
flag the few operations that may be illicit in as little time as possible. Third, money
laundering is all but a static procedure: every year, the rise of new technologies
(such as cryptocurrencies) introduces new, less traditional laundering channels,
which are often difficult to trace thanks to their relative anonymity. Stacking all
these challenges, performing Transaction Monitoring effectively becomes a massive
undertaking for analysts, who must still heavily rely on human expertise and
weakily automated frameworks. To give an idea of the challenges posed by this
task, it can be observed that, despite deep human domain knowledge, advanced
technological tools and regulatory efforts at supranational level, at the current state
of TXM pipelines and operations, only a small fraction of produced SOS actually
represented real criminal operations.

Another key consideration is that the vast volume of data financial institutions
must process is inherently unstructured (as explained in Chapter 2) and does not
directly expose properties useful for detecting money-laundering patterns, such
as temporal sequences, relational ties, or logical connections among transaction
counterparties. For these reasons, it is paramount to develop robust, automated
frameworks that can extract and leverage the latent structure within transactional
data. In particular, Network Analysis (NA) offers a powerful paradigm: by
representing transactions as graphs—where nodes denote entities and edges repre-
sent financial flows—techniques such as community detection, centrality measures,
and graph-based anomaly detection can uncover hidden relationships and identify
atypical interaction patterns [18] [19] [20]. Furthermore, the incorporation of Arti-
ficial Intelligence (AI), including machine learning and deep learning models,
enables the capture of underlying, complex patterns and evolving schemes that
rule-based or manual methods may overlook, thereby significantly enhancing the
predictive accuracy and adaptive capacity of TXM systems.

This thesis presents two novel, proprietary algorithms grounded in NA/AI
methodologies. The first algorithm provides analysts with a systematic framework
for detecting money-muling patterns in the transactional behaviour of a given target
under the Bank’s oversight scope. The second algorithm is a graph-based recurrent
neural network that both embeds and forecasts macro-economic trends across the
millions of transactions processed by the Bank each month, thereby enabling auto-
matic flagging of suspicious money flows at a high level of aggregation—potentially
indicative of money laundering, terrorist financing or sanctions-evasion. Both
approaches achieve performance on par, or better, with state-of-the-art solutions
and are already deployed within the Anti-Financial Crime (AFC) department of
Intesa Sanpaolo.
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Chapter 2

Networks and Network
Analysis

This chapter provides an overview of fundamental definitions in the field of complex
networks and network analysis as a scientific discipline. Initially, general concepts
related to network definitions, representations, and classifications are introduced,
followed by an examination of both local and global properties relevant to this
study. Subsequently, the focus shifts to applications within the financial sector,
particularly in the context of Anti-Money Laundering (AML) and Countering of
Financing of Terrorism (CFT).

2.1 Network Theory

A network consists of a set of entities, usually called nodes, along with a set of
connections, or edges, of a specified type that link them. Edges connect nodes,
to form paths in the networks that indirectly link nodes that are not directly
tied. The pattern of ties in a network yields a particular structure, and nodes
occupy positions within this structure. Much of the theoretical wealth of network
analysis consists of characterizing network structures (e.g., small-worldness) and
node positions (e.g., centrality) and relating these to group and node outcomes.

Network theory is a subset of graph theory, which was developed to answer
questions about connectivity and optimization of systems that can be represented
by nodes and edges. This theoretical framework has been used to answer questions
regarding a vast range of different topics, as for example human social networks,
biology related applications like genes expression, and finally financial related
problems like the one this work focuses on [21].
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2.1.1 Historical Background
Graph theory is one of the few mathematical fields with a well-defined origin,
dating back to 1736, when Leonhard Euler introduced a mathematical formulation
of the Königsberg Bridge Problem [22]. The challenge was to determine whether it
was possible to cross all the bridges in the city of Königsberg (now Kaliningrad,
Russia) exactly once and return to the starting point. By representing the problem
as a graph, Euler demonstrated that such a path was impossible, introducing key
concepts like nodes (vertices) and edges as fundamental components of a network.
His work laid the foundation for graph theory and topology, influencing modern
studies in network analysis and connectivity.

Figure 2.1: Konigsberg Bridges problem and Euler graph representation

Despite scattered contributions in the 18th and 19th centuries from figures
like Cauchy, Kirchhoff, Hamilton, and Poincaré, a formal and systematic study
emerged only in 1936 with Dénes "Kőnig’s Theorie der endlichen und unendlichen
Graphen" [23]. This book provided the first comprehensive treatment of graph
theory, covering fundamental concepts such as graph connectivity, planarity, and
matching theory, forming the basis for modern graph research.

In parallel, sociologists in the early 20th century began applying graph theory
to analyze social structures. Jacob Moreno [24] pioneered sociometry, introducing
sociograms to map relationships within groups. His work explored how interpersonal
connections influence group dynamics, an approach that later evolved into Social
Network Analysis (SNA). Expanding on this, Mark Granovetter [25] introduced
the concept of weak ties, demonstrating their importance in the diffusion of
information and job opportunities. Around the same time, Stanley [26] conducted
his small-world experiment, which provided empirical evidence for the “six degrees
of separation” phenomenon.

A major breakthrough came in the late 1950s, when Paul Erdős and Alfréd
Rényi introduced random graph theory, providing a probabilistic framework for
understanding how networks form and evolve [27]. Their ER model showed that
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random connections between nodes could lead to the emergence of large-scale
network structures, laying the groundwork for network science. However, by the
late 1990s, researchers realized its limitations in explaining real-world networks,
such as the Internet, biological systems, and financial networks.

This led to the development of new models, notably the Watts-Strogatz small-
world model [28], which demonstrated that real-world networks exhibit short path
lengths and high clustering—explaining the “small-world” property observed in
social, biological, and technological networks. Around the same time, Barabási
and Albert (1999) introduced the scale-free network model, showing that many
real-world networks follow a power-law degree distribution, where a few highly
connected nodes (hubs) dominate the structure [29].

Figure 2.2: Random network and its nodes degrees distribution (a) against Scale Free network
(b)

Since then, network science has become a highly interdisciplinary field, integrat-
ing contributions from physics, mathematics, computer science, biology, economics,
and sociology. Today, network analysis plays a crucial role in studying complex
systems, including financial networks and, and can be employed to map and
characterize money laundering offences that this work aims to detect (see [30]).

2.1.2 Networks Representation
Once a network is defined, it becomes necessary to establish a mathematical formula-
tion that captures its key properties in a functional and theoretically robust manner.
In most cases, this is achieved by representing networks as graphs—mathematical
structures composed of nodes and edges. Nodes encapsulate relevant information
about distinct entities within the network, while edges define various types of
logical connections between pairs of nodes. By leveraging the well-established
definitions, properties, and algorithms of graph theory, this representation naturally
accommodates a broad range of network characteristics, including not only nodes
and edges in their simplest form but also paths, structural patterns, connected and
disconnected components, and analytical measures such as centrality, betweenness,
and degree, among other key network attributes.
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While embedding information in nodes is relatively straightforward, representing
edges presents a more complex challenge. In complex networks, the number of
connections often greatly exceeds the number of entities, creating the need for an
efficient and scalable method to store connection data. Various representations exist
for this purpose, each with its own advantages and trade-offs. Edge lists provide a
compact and memory-light format suitable for algorithms that iterate over all edges.
However, they carry a linear O(E) cost to access a specified edge amongst the edges
set E. Adjacency lists, on the other hand, store edges on a per-node basis, typically
using arrays or linked lists, making them efficient for neighbor lookups. Adjacency
matrices, though more memory-intensive—particularly for sparse networks—enable
O(1) access to edges, making them advantageous for operations requiring fast
indexing. The choice of representation depends on factors such as network size,
density, computational requirements, and memory constraints.

2.1.3 Network Types
Graphs, and consequently networks, can be classified into different types based
on the properties of their nodes and edges [21]. The first distinction concerns the
presence of self-loops and parallel edges. A self-loop is an edge that connects a
node to itself, while parallel edges are multiple edges linking the same pair of nodes.
A graph that contains neither self-loops nor parallel edges is classified as a Simple
Graph. However, this category is relatively simplistic and is not well suited to
model real-world complex networks. If a graph includes self-loops or parallel edges,
it is referred to as a Multigraph.

The second major distinction relates to the directionality of the relationships
between entities in the network. If connections have a well-defined direction, the
graph is classified as a Directed Graph, meaning edges can be traversed only in the
specified direction. Conversely, if directionality is either unnecessary or undefined
within the original network, the graph is considered an Undirected Graph.

Finally, edges can be further categorized based on their weight, which repre-
sents the significance or strength of the connection. In a Weighted Graph, edges
carry a numerical value—such as cost, capacity, or distance—associated with the
relationship they represent. If all edges are treated as equally significant regardless
of their properties, the graph is classified as an Unweighted Graph.

Graph Representation in AML
In the context of Anti-Money Laundering (AML), this study models follows [31]

notation, embedding nodes as financial entities—such as individuals, companies,
and financial institutions—identified through unique identifiers like IBAN codes
(for bank accounts) or BIC codes (for financial institutions). Transactions between
these entities are represented as edges connecting the graph nodes, with attributes
such as transaction amount and timestamp defining their characteristics.

18



Networks and Network Analysis

It is important to note that this representation is not universal. Several studies
take alternative approaches, one of the most common being the direct embedding of
transactions as nodes (see [30]), while edges represent other types of relationships
between transactions, such as temporal correlations or statistical dependencies.
Different modeling choices reflect varying analytical needs and research perspectives
within the number of possible AML applications.

2.2 Network Analysis in AML/CFT
In order to spot suspicious activities, the unit of analysis in a transaction monitoring
framework (TXM) may focus on individual transactions, if the condition being
assessed pertains to specific attributes of them. Alternatively, it may analyze groups
of transactions when the condition to be investigated requires identifying patterns
across multiple transactions. In the latter case, this approach can naturally be
framed as a "network" problem, where the distinguishing features of illicit behaviors
emerge only by analyzing and extracting meaningful patterns from the structure of
the network. In such solutions the network is modeled as a graph, where nodes
represents the entities of interest and edges can represent any logical connection
between two or more of them. This data representation can be extremely versatile, as
it allows to represent and visualize the same set of data in different ways depending
on the choice of node and edges. The approach of combining different features
extracted from the network can be applied throughout the financial intelligence
supply chain: from the financial activity data used in the TXM stage to the
processing of FIU reports by law enforcement agencies. This work primarily focuses
on the TXM stage, exploring various potential enhancements achievable through
Network Analysis.

Works applying Network Analysis to AML/CTF problems have become increas-
ingly common in recent years. Authors of [32] estimate a 61% annual increase
in related scientific publications since 2010. This growing interest underscores
the potential of network-based tools but has also led to a fragmented landscape
of approaches, where no clear standard has emerged in terms of techniques and
validation methods. The rising importance of Network Analysis, along with the
lack of cohesion between institutions, has been recognized by Europol1, which
includes network analysis automation, development, and integration in its 2024-26
programming document for AML/CFT pipelines.

Another major challenge in the field is the limited collaboration between research
institutions and frontline entities, such as Banks, Financial Intelligence Units, and
Law Enforcement Agencies. While recent years have seen improvements in this

1Europol Programming Document 2024-26.
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regard, a widespread and structured cooperation that effectively guides research
directions and consolidates findings remains lacking. This gap is particularly evident
in data sharing. Most real-world money laundering cases involve proprietary
financial data that institutions cannot or do not wish to share, often due to
strict regulatory constraints. User transaction data is protected by GDPR and
similar laws, making it difficult for researchers to access real-world data for model
evaluation. As a result, authors of [32] report that only half of the analyzed models
have been trained or tested on real proprietary data, while the other half rely on
publicly available or synthetic datasets, that are often lacking or simply too old to
keep pace with the fast changing landscape of possible ML patterns and offenses.

Despite the above difficulties, a significant number of innovative approaches has
been proposed. Analyzing existing literature on the subject, it is possible to draw a
general picture of the areas of innovations, the methods utilized to achieve results
and the current limitations of the state of the art solutions.

2.2.1 New Directions of Research
There are many possible objectives that can be reached by applying Network
Analysis principles in the Transaction Monitoring and AML/CTF problem. In the
following, the most notable ones that emerge from existing literature are listed,
accompanied by a brief description of motivations and goals of each analysis.

The most common objective in the observed publications is client classification.
This process involves analyzing payments made over a period of time along with
a client’s objective and subjective characteristics to construct a representation
of their typical behavior. This in turn enables the application of supervised or
unsupervised classification and clustering methods to distinguish between legitimate
and potentially criminal users within the network. This task essentially translates
into an Anomaly Detection problem, a well-established and robust area in Machine
Learning and AI research. Beyond identifying anomalous users, this behavioral
representation also facilitates the comparison of a client’s activity over different
time periods, allowing for the detection of sudden transactional shifts that may
indicate the onset of suspicious operations. This capability is particularly valuable
in the context of AML/CTF efforts, as it is fairly common for money mules and
launderers to exploit seemingly "dormant" accounts—those with little to no prior
activity in the databases—to carry out criminal operations. By identifying sudden
shifts in operativity, such as an unexpected increase in transaction volume or
frequency, these methods can help detect and flag potentially illicit activities at an
early stage.

Shifting focus from clients to the transactions themselves, another key area of
innovation is the detection of suspicious “flows” of transactions. The definitions of
what constitutes a transaction flow, as well as what makes a flow suspicious, are not
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universal and vary across different studies, further highlighting the fragmentation
of the research landscape in this field. Some authors [33] [34] focus solely on the
temporal properties of transactions, linking two or more transactions if they occur
within the same time window. The range of this window is typically determined
either by optimizing the proposed models on test data or by leveraging prior sector-
specific knowledge from the AML/CTF domain. Generally, these time windows
range from a few hours to several days. Other studies [35] [36] also take into account
the overall monetary value that characterizes a transaction flow, filtering out cases
where transactions are temporally related but involve amounts that do not suggest
real correlation, or that are simply too small to suggest any meaningful criminal
intent. In more complex formulations, some authors [37] [38] [34] define metrics
to assess statistical correlations between transactions within the network. These
correlations may be based on time and amount parameters or may work alongside
them to provide additional insights into transactional relationships. These kinds
of models, although still not optimal, enable researchers to expand their set of
mathematical tools by incorporating probabilities and statistical concepts. This, in
turn, allows for the development of models that are better suited to capturing and
mapping complex behaviors within the network—behaviors that closely reflect real-
world phenomena, such as those under investigation in this study. By identifying
suspicious flows, these models enable investigators to isolate the involved nodes and
uncover hidden structures within money laundering schemes, ultimately enhancing
the effectiveness of AML/CTF operations.

Finally, another promising area of research involves the visualization of financial-
related networks. While not inherently tied to efforts in combating money launder-
ing, this challenge is part of the broader field of complex network analysis. When
the network under investigation consists of millions of nodes and potentially billions
of edges, effectively conveying all relevant information in a human-readable manner
becomes a highly non-trivial task.

At the same time, for models to be practical and usable by real-world AML/CTF
professionals, it is essential to develop methods that allow for the isolation and
exploration of different perspectives within the same network structure. Given that
the sheer volume of elements far exceeds the feasible range for direct visualization,
the key lies in aggregating data in meaningful and flexible ways.

The approaches found in the literature vary widely, with aggregation methods
based on factors such as geographical location, keywords in remittance information,
temporal patterns, and other domain-specific attributes. Developing effective
visualization techniques not only enhances interpretability but also aids investigators
in identifying hidden patterns, tracking illicit flows, and generating actionable
intelligence more efficiently.

The first algorithm proposed in this thesis (see Chapter 3) addresses the three key
objectives outlined above within a unified framework, equipping analysts with client
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classification, transaction-flow detection, and an innovative time-based visualization
tool to enhance human interpretability.

2.2.2 Characterization Methods

Aside from the different objectives of analysis, the proposed solutions can also
be categorized based on the methods used to achieve results. The two main
methodological families observed in the existing literature are Supervised methods
and Unsupervised methods.

Supervised methods refer to models that learn patterns or data representa-
tions using labeled data and generalize them to make predictions on new, unseen
data. Common supervised techniques include classification (e.g., fraud detection,
where transactions are labeled as fraudulent or legitimate) and regression (e.g.,
predicting transaction amounts). Unsupervised methods, on the other hand, work
with datasets where no explicit labels are provided. These models identify hidden
structures or patterns within the data without prior knowledge of expected out-
comes. Common unsupervised techniques include clustering (e.g., grouping similar
customers based on transaction behavior), features auto-encoding and anomaly
detection. Finally, models that leverage both labeled and unlabeled data, or gen-
erate labels even when not explicitly given, fall into the category of Hybrid or
Semi-supervised methods.

A key observation when analyzing existing literature through this framework is
that the vast majority of studies rely on unsupervised methods [32]. While these
might not seem the most intuitive choice for some of the tasks mentioned earlier,
the reasoning behind this preference lies in the already discussed data availability
challenge. Money laundering is an inherently complex and elusive phenomenon,
where a significant portion of illicit activity remains undetected [11]. Furthermore,
the landscape of financial crime is constantly evolving, with new schemes and
typologies emerging each year. Additionally, money laundering represents only a
small fraction of overall financial activity, resulting in highly imbalanced datasets
with very few labeled examples of illicit behavior.

For these reasons, constructing a reliable labeled dataset—where all money
laundering attempts are correctly identified as fraudulent, and all legitimate trans-
actions are accurately classified as genuine—is an immense challenge. As a result,
unsupervised methods often become the most practical and viable approach. More-
over, even when labeled datasets are available, such procedures would be more
accurately described as semi-supervised rather than fully supervised. This is due
to the fact that, in real-world scenarios, many money laundering activities go
undetected by authorities, meaning that datasets labeled as "genuine" may, in
reality, contain unidentified instances of financial crime.
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2.2.3 Related Works

Amongst all existing literature on Network Analysis applied to AML/CFT, some
works are notably interesting for the scope of this study. They mainly concern flow
chains detection, anomaly detection and visualization techniques. Several innovative
systems and frameworks have been proposed for detecting money laundering
through network analysis and visualization. Starting from their previous work
Money Laundering Detection System (MLDS), a tool that performs data mining on
transactional databases to extract frequent patterns and visualize them , Dreżewski,
Sepielak, and Filipkowski (2015), propose [39] by incorporating Social Network
Analysis (SNA) algorithms to analyze networks of bank account holders and entities
from the National Court Register. Their work aims to classify entities in the network
leveraging a set of known graph metrics, assigning roles based on pre determined
metrics interval. Moreover, they also make an attempt at entity resolution, that
is the process of recognizing same entities if they appear more than once in the
network, by computing cosine similarities on the obtained metrics vectors.

Zhou et al (2017). introduced HOSPLOC [40], a local clustering framework for
modeling higher-order network structures. HOSPLOC searches fo "structure-rich"
higher-order subgraph that are scarcely connected to the rest of the network,
suggesting a possibly suspicious behavior. The usage of higher-order representation
networks, where original networks entities are aggregated based on defined heuristics
is particularly interesting to obtain a more refined view of the huge original dataset,
and is reproposed in FaSTMaN [34], a framework for constructing temporal graphs
of sequential transactions proposed by Tariq and Hassani (2024), detecting closely
related transaction sequences, and forming communities of flows. This works also
stands out for its temporal approach to the transaction networks, introducing
tools to robustly model temporal dependencies between nodes in order to validate
found flows. FlowScope [41], developed by Li et al. (2020), marks a shift in the
nature of the densest subgraph of interest: instead of just focusing on the densest
graphs in terms of entities, it also take into account the cumulative amount of
money that flows across those subgraphs. It models money laundering detection
by identifying the densest multi-step flow in bank transaction graphs and offers
theoretical guarantees on near-optimal dense flow detection, defining a limit on
the amount of money that criminals can move without being detected. Starnini
et al. (2021) [33] focused on detecting suspicious patterns inside the transaction
network, defining two "smurf-like" motifs that criminal can use to divide large sums
into smaller transactions—proposing a pipeline to identify suspicious subgraphs.
Finally, Ovelgönne, Kang, Sawant, and Subrahmanian introduced the concept of
Covertness Centrality (CC) [42] as a measure of an actor’s ability to remain hidden
within a network. It defines the similarity between actors based on the variance
of centrality measures and proposes two "commonness" metrics to quantify how
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similar an actor is to others in the network, demonstrating optimal concealment
capability for nodes associated with max values

Figure 2.3: WireVis transactions visualization, heatmap and timeline

For the visualization tools, Chang et al. (2007) developed WireVis [43], in
collaboration with Bank of America, to monitor wire transactions using coordinated
visualizations based on keywords in the remittance info of wire transfers. This
system, although quite old, has been really inspirational for this work, particularly
for the focus it has on visualizing the temporal dimension of the network through
a timeline, and the combination of different visualization tools to convey different
aspects of the case in analysis. Furthermore, Cheong et al. (2010) proposed an
event-based approach for money laundering data analysis and visualization in
[44], leveraging a structured database to store crime records and detect clusters,
suspicion degrees, and associations by iterating on node neighbors and computing
subjective and objective metrics to assess the risk potential of the nodes
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Figure 2.4: Suspicious network neighborhood generation, [44]
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Chapter 3

TRACED Algorithm -
Temporal Relational
Analysis for Criminal
Entities Detection

The first major contribution of this work is the development of TRACED: an
algorithm designed to identify moneymuling-like transaction patterns associated
with a given financial target managed by the bank.

Two key innovations are proposed in this section. First, TRACED automates
large parts of the process of detecting complex money-laundering schemes, particu-
larly those involving money mules, by replacing time-consuming, rule-based manual
analyses with a fully automated, machine-learning–driven pipeline that ingests raw
banking transaction records for any target—be it an individual, a company, or
any other organization—and rapidly isolates money mule-style transactions flows.
Second, TRACED introduces an innovative user interface (UI) to enhance the
interpretability of its results. Its novel visualization tool provides a timeline-based
representation of transactional flows, combining the strengths of both relational and
temporal information acquired during the analysis. This visual framework allows
investigators to accelerate the review of suspect targets and supports seamless
export of annotated timelines and pattern summaries directly into intelligence
reports—bridging the gap between algorithmic detection and actionable insight.

The following sections highlight the key components of TRACED design, its
main outputs and an evaluation of its performance on a set of real-world money
mules accounts taken from Intesa Sanpaolo’s databases.
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3.1 TRACED’s Design and Workflow

TRACED’s pipeline is made of six main steps (see 3.1): the first step is retrieving
relevant transactional data corresponding to the target’s activities within a specified
period of interest (Sec. 3.2). This data is then structured into a meaningful and
analyzable format, specifically a graph representation, to facilitate the extraction
of relevant, relational and temporal based features for classifying each transaction
(Sec. 3.3). The algorithm then leverages a combination of statistical methods,
machine-learning strategies and domain-specific knowledge to analyze the data
and produce three main outputs: a visualization of the target cumulative balance
(Sec. 3.4), annotated with transactions values and circuit (SEPA/SWIFT/cash
deposit-withdrawal); an innovative timeline representation of the transactions
operativity of the target (Sec. 3.5), where transactions are aggregated in "flows"
of related ones using a novel algorithm named TRACED-FaSTMaN, based on
findings proposed in [34], and finally a target-level risk score (Sec. 3.6) generated
with a topology-agnostic community detection algorithm inspired by [34] and a
linear regression model applied to predictions regarding the likelihood of suspicious
activity for each transaction.

Figure 3.1: Operational pipeline of TRACED: (1) retrieve target transactions; (2) embed data
as a graph; (3) build cumulative balance; (4) isolate suspicious flows via TRACED-FastMaN; (5)
generate interactive timeline; (6) compute regression-based risk score.
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3.2 Transactions Operativity Retrieval in TXM
Pipelines

Although largely outside of the primary scope of the architecture proposed, it is
essential to provide some context regarding the retrieval of transactional data for
the selected targets, as it serves as the foundation for the subsequent stages of the
algorithm. In this research, data extraction has been conducted using the data
mining infrastructure of the AFC/MAS office of Intesa Sanpaolo. These extraction
routines are implemented in SAS.

3.2.1 SAS (Statistical Analysis System)
SAS1 is a powerful software suite used for advanced analytics, data management,
business intelligence, and predictive modeling. Developed by SAS Institute, it is
widely employed across industries such as finance, healthcare, and government
for tasks including statistical analysis, fraud detection, and risk assessment. It
provides both a comprehensive programming language and a graphical user interface,
enabling users to manipulate large datasets, apply machine learning techniques, and
generate insightful visualizations. Its capability to efficiently handle vast amounts
of structured and unstructured data makes it a largely diffused tool in the world of
data analysis and management.

The extraction routines facilitate a standardized and user-friendly procedure
for retrieving operational data related to various payment circuits, such as wire
transfers, debit and credit card transactions, and cash deposits or withdrawals. This
data forms the fundamental core of the transactional network on which subsequent
analyses are performed.

3.2.2 Workflows Currently in Use
Data extracted through SAS is typically output as large Excel spreadsheets, where
each row represents a transaction conducted within the selected period, described by
a huge number (in the range of almost hundred) of numerical and categorical features.
While these files contain valuable information, they also present several limitations
that make direct analysis challenging. The data can be noisy, potentially containing
duplicated transactions, and lacks explicit relational properties, such as links
between related transactions, temporal dependencies, or value-based correlations.

At the current state of most Anti-Money Laundering (AML) applications,
workflows based on SAS output heavily rely on manual analysis of these large

1https://www.sas.com
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Figure 3.2: Example of SAS visual interactive queries system

transaction tables to identify potentially suspicious activities. Investigators must sift
through extensive datasets, searching for anomalies, inconsistencies, or transaction
patterns indicative of illicit financial behavior. This process can be really time-
consuming, requiring investigators to recognize meaningful connections within raw
data manually. Once suspicious activity is identified, findings are compiled into a
dossier, which progresses through different stages of the AML/Counter-Terrorism
Financing (CTF) operational chain, ultimately leading to reporting to regulatory
authorities or legal proceedings.

While this manual approach is functional, it is far from optimal. It demands a
significant workload and carries the inherent risk of overlooking complex, hidden
patterns due to human limitations. The TRACED algorithm aims to address these
challenges by providing investigators with an advanced analytical tool capable of
automating the initial stag of the investigation. By systematically identifying and
flagging potentially suspicious transaction patterns within the unordered dataset,
the algorithm significantly reduces the time required for manual screening. This
allows investigators to focus on refining the results, applying their domain expertise
to interpret flagged transactions effectively, and ultimately producing high-quality
intelligence reports.

29



TRACED Algorithm - Temporal Relational Analysis for Criminal Entities Detection

3.3 TRACED’s Transactions Graph
Representation

Starting from transactions extracted through SAS queries, the initial task of the
TRACED algorithm is to construct a meaningful network representation of these
transactions. As discussed in Chapter 2, there is no universally established encoding
of features into nodes and edges in the literature. The most common approaches
include: (i) representing financial entities (e.g., IBANs, bank coordinates, or
personal information) as nodes, with transactions forming the edges that connect
them, or (ii) encoding transaction details directly into nodes while utilizing edges to
map higher-level relationships between transactions, such as temporal, statistical,
or logical connections.

TRACED leverages both representations to combine their strengths and capture
different layers of information. In the data loading stage, the chosen approach is to
encode customer-related information in nodes, ensuring that entities involved in
transactions are clearly mapped. The algorithm provides users with the flexibility
to select a specific field of interest from the database as the node key. This design
choice provides a great degree of flexibility to the algorithm, allowing analysts
to perform investigations at different aggregation levels by simply modifying the
selected key while maintaining the same underlying software architecture.

Once the algorithm has created the graph-based representation of the original
transactions data, it can use it to produce innovative and functional outputs for
different doownstream tasks, that are explained in detail in the following section.

NetworkX Library for TRACED: To create the graph data-structures neces-
sary for TRACED, the NetworkX2 library is chosen. NetworkX is a Python package
designed for the creation, manipulation, and study of the structure, dynamics, and
functions of complex networks. By providing data structures for representing both
undirected and directed graphs, as well as multigraphs, NetworkX allows researchers
to model real-world systems—ranging from social networks to biological path-
ways—using a flexible, dictionary-based approach. Its rich set of built-in algorithms
includes routines for computing shortest paths, clustering coefficients, network
centrality measures, and community detection, enabling comprehensive topological
analysis without the need to reimplement core graph algorithms. Furthermore,
NetworkX’s seamless integration with the wider Python scientific ecosystem (e.g.,
NumPy, SciPy, Matplotlib) facilitates data preprocessing, numerical computation,
and high-quality visualization necessary for the different outputs of TRACED.

2https://networkx.org/documentation/stable/reference/index.html
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3.4 TRACED Output/1: Balance Account
Visualization

After the transaction data from an Excel spreadsheet have been accurately stored
in a NetworkX Graph object, TRACED can produce its first output: the target’s
account balance visualization tool. This plot, and all the subsequent ones, are
written using functions from Bokeh library, which is briefly described in the following
paragraph, before delving into more details about the proposed visualizations.

UI Package for TRACED: Bokeh Bokeh3 is an open-source Python library
designed for creating interactive, browser-based visualizations. It leverages a
high-level API that seamlessly translates Python code into dynamic HTML and
JavaScript (via BokehJS), allowing researchers to build rich plots—such as scatter
plots, line graphs, and heatmaps—with features like zooming, panning, and hover
tooltips. Bokeh integrates smoothly with common data-science tools (e.g., NumPy,
Pandas, and Jupyter Notebooks), enabling real-time data streaming and server-
driven updates for dashboards. Consequently, Bokeh is widely used in academic
and industrial contexts to prototype and deploy interactive visual analytics without
requiring deep expertise in web development.

3.4.1 Balance Account Plot
In the account balance plot, the amounts of all transactions associated with the
target during the analysis period are displayed over time, with colors denoting
the transaction type or channel (e.g., SEPA, SWIFT, or cash deposit/withdrawal).
This representation provides the analyst with an immediate quantitative overview
of the target’s activity trend and volume, thereby facilitating the rapid detection
of potentially suspicious patterns. For instance, Fig. 3.3 compares two operational
profiles: the first corresponds to an account linked to a wholesale dealer, which
appears in the databases solely as a recipient of payments from the target; the
second is drawn from adocumented financial fraud cause (specifically, money muling)
extracted from ISP’s closed-cases archives. The characteristic rapid, almost square-
wave pattern of the fraudulent operations is readily discernible, in stark contrast to
the legitimate accumulation observed in the wholesale-dealer account. Furthermore,
employing distinct colours enables analysts to identify suspicious patterns related to
transaction types, beyond mere volume or timing. For example, several case studies
have demonstrated that cash deposits and withdrawals are commonly utilized in
money-mule operations to facilitate rapid placement and layering of illicit funds [45].

3https://docs.bokeh.org/en/latest/
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Likewise, SWIFT transfers directed toward jurisdictions flagged by the Financial
Action Task Force as high-risk for money laundering frequently serve as red flags
for potential transactions to non-EU countries of concern [46].

Figure 3.3: Comparison of two operational profiles: (1) a wholesale-dealer account, which only
collects payments from the target; (2) a known money-mule account from the bank’s closed-case
database.

3.5 TRACED Output/2: Timeline Visualization
TRACED’s second output offers an innovative visualization that allows to capture
both temporal and relational dimensions of a target entity. Conventional network-
centric approaches—such as those based on NetworkX’s plotting functions (see
NetworkX4 or GraphViz5)—primarily emphasize the spatial arrangement of nodes
and edges, providing many ready-to-use layouts taken from academic literature.
However, as graph size increases, these layouts rapidly become cluttered and none
of them can convey readily accessible information about the temporal distribution
of transactions or edges more generally.

Within the TRACED framework, the algorithm first constructs the complete

4https://networkx.org/documentation/stable/reference/drawing.html
5https://graphviz.org/docs/layouts/
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transaction graph and then computes the 1-hop enclosing neighborhood (the so-
called egonet of the node) for the target node. All transactions involving the target
are subsequently grouped by counterpart and mapped onto a temporal axis. This
representation enables analysts to observe both the relational aspect—identifying
which entities interact with the target—and the temporal aspect—revealing the
timing and sequence of those interactions. By delineating the “shape” of rela-
tionships over time, TRACED facilitates the detection of patterns (e.g., bursts of
activity with particular counterparts) that would remain obscured in purely spatial
network depictions.

Figure 3.4: Timeline visualization for a money-mule target: the central blue line denotes the
target entity, and each horizontal line represents a distinct counterpart. Incoming transactions
are marked with green dots; outgoing transactions are marked with red dots. The interface is
fully interactive, allowing users to pan and zoom to inspect different temporal segments.

3.6 TRACED Output/3: Detection of Suspicious
Communities and Mule Risk Score

Aside from providing an innovative visualization framework for AML/CTF analysts,
TRACED also performs data-driven, automated intelligence tasks to support
analysts’ work. In particular, it can identify and select suspicious transactions and
counterparties associated with a given target, by leveraging graphs theory and
machine-learning techniques. To this end, a new version of the algorithm proposed
in [34] has been introduced —termed TRACED-FastMaN—enhancing and adapting
the previous methodology for the specific AML/CTF scenario under consideration.
The following sections highlight the key points in the original FastMaN methodology,
and the difference and improvements proposed in TRACED-FastMaN.

3.6.1 FastMaN
FastMaN implements a topology-agnostic, temporal-graph approach to detect
money-laundering flows across large transaction networks, as originally proposed
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by Tariq and Hassani [34]. The algorithm begins by constructing a temporal graph
in which each bank account is represented by a separate node at each distinct
timestamp (or time bucket). In this representation, a directed edge from node At

to node Bt′ exists if and only if account A transfers funds to account B at time
t < t′.

Figure 3.5: Original end-to-end architecture diagram of the FaSTMaN framework. The dashed
grey section is not an integral part of the framework, and it is not taken into consideration in
this work

To capture short-term sequential dependencies, FastMaN then builds a second-
order transition graph: for each triple of consecutive transfers A → B at time t
followed by B → C at time t′, a directed edge is created between the ordered pair
(A→B) and the next-hop pair (B→C). The weight of each second-order edge is
defined as

W (A→ B, B → C) = max
1
P (A→ B, B → C), P ′(A→ B, B → C)

2
, (3.1)

where

P (A→ B, B → C) =

---S1A→B ∼ B→C
2------S1A→B ∼ B→ [∗]
2--- (3.2)

P ′(A→ B, B → C) =

---S1A→B ∼ B→C
2------S1[∗]→B ∼ B→C
2--- . (3.3)

Here,
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• S(A → B ∼ B → C) denotes the set of all observed two-hop sequences1
A→B, B→C

2
in the dataset;

• S(A→B ∼ B→ [∗]) denotes the set of all observed continuations of A→ B
to any subsequent transfer out of B;

• S([∗]→B ∼ B→C) denotes the set of all observed two-hop sequences ending
at (B → C) from any predecessor into B.

More generally, if we denote an arbitrary source-edge by es = (fs → bs) and a
destination-edge by ed = (fd → bd), the corresponding second-order weight is

W (es, ed) = max
1
P (fs → bs, fd → bd), P ′(fs → bs, fd → bd)

2
, (3.4)

using the analogous definitions of P and P ′ over sets of two-hop edge-pairs1
fs→bs, fd→bd

2
.

Figure 3.6: 2nd Order Graph construction workflow.

Transitions whose weights W fall below an adaptive threshold—determined
by examining the empirical distribution of second-order counts—are pruned to
eliminate spurious or one-off transaction patterns.

Once pruning is complete, FastMaN applies the Leiden community-detection
algorithm to the weighted, pruned temporal graph. Each resulting community cor-
responds to a candidate laundering network, comprising accounts and time-ordered
transfers that exhibit unusually dense connectivity. Because Leiden optimizes
modularity on weighted graphs without requiring a predefined number of clusters
or hop lengths, FastMaN remains agnostic to specific laundering typologies (e.g.,
number of interim “layering” accounts or “sink” endpoints).
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Figure 3.7: Weights computed on the 2nd Order Graph are backpropagated into the original
graph and community detection is performed.

In the original evaluation, FastMaN was tested on a real-world dataset containing
approximately 1.1 billion transactions aggregated from five major Dutch banks
over a two-year period (January 2021–December 2022). FastMaN achieved over 95
% recall and 88 % precision at the 0.05 % injection level; by comparison, baseline
approaches (e.g., FlowScope and motif-based database joins) attained only 60 %–70
% recall with significantly lower precision under identical conditions. On unlabeled,
real-world data, FastMaN flagged approximately 2,400 high-risk communities, of
which 390 (16.3 %) were subsequently confirmed by domain experts as genuine
money-laundering flows. These results demonstrate that FastMaN’s temporal,
second-order methodology can scale to billion-edge graphs while maintaining high
detection accuracy and low false-positive rates.

3.6.2 Limitations of FastMaN for TRACED’s Egonet-Scale
Analysis

The FastMaN architecture provides a robust starting point for the suspicious-
transactions community-detection task outlined at the beginning of this section. In
particular, it offers a feature-less, topology-agnostic metric that groups transactions
based on their mutual co-occurrence in time. However, the original algorithm’s
context differs substantially from TRACED’s. FastMaN is designed to analyze
graphs on the order of billions of nodes and edges, leveraging a rich, complex
topology to yield meaningful results even without using node or edge features. In
TRACED’s case, the algorithm must instead operate on the egonet of a selected
target node (i.e., the node itself and all its direct counterparts). Such egonets
typically contain only dozens to a few hundred nodes and edges—far less structure
than FastMaN assumes—often resulting in uniformly assigned weights that hinder
the quality of community assignments.

Furthermore, because FastMaN relies solely on topological structure and ignores
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transaction features, its co-occurrence weights can be sometimes overly naive. For
example, two transactions of €10 and €10 million could receive a weight of 1
if their timestamps align closely, causing them to fall into the same community.
Such amount-agnostic grouping is unacceptable for money-mule detection, since
a significant mismatch in transaction values generally indicates little to no direct
correlation.

Finally, once communities are detected, the original algorithm does not provide
a built-in method for distinguishing anomalous communities from legitimate ones,
instead relying on more generic anomaly-detection strategies from the related
literature.

3.6.3 TRACED-FastMaN
To address the issues reported above, several modifications are proposed in order to
adapt FastMaN’s weighting and community-detection mechanisms to TRACED’s
egonet-scale context, resulting in a new algorithm called TRACED-FastMaN.

• Amount-based weights assignment: the first improvement to the original
algorithm is a direct modification of the weight assignment formulas reported
in (3.2) and (3.3). Let

Ramt(A→ B, B → C) =
min

1
amt(A→ B), amt(B → C)

2
max

1
amt(A→ B), amt(B → C)

2 .

That is the amounts ratio between two possibly linked transactions. Then
define

P amt(A→ B, B → C) = P (A→ B, B → C) × Ramt(A→ B, B → C),
(3.5)

P ′amt(A→ B, B → C) = P ′(A→ B, B → C) × Ramt(A→ B, B → C).
(3.6)

Consequently, the adjusted second-order weight becomes

W amt(A→ B, B → C) = max
î

P amt(A→ B, B → C),

P ′amt(A→ B, B → C)
ï
.

(3.7)

In situations where the original weight would have been 1, the adjusted
weight reaches at most Ramt(A → B, B → C), that is the ratio of the two
transactions’ raw amounts. This guarantees that the algorithm never treats
two transactions as more similar than their raw-amount ratio allows, resulting
in more representative and robust weights across the network.
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• Linear regression–based score for anomaly scoring: To separate le-
gitimate targets from suspicious ones, a score comprising three elements is
defined. These elements are computed at the target level, starting from the
set of transactions that have been grouped together by the Leiden algorithm
in the first-order graph. Let:

nt = number of communities found for target t,

ρt = average in/out ratio across all communities of target t,

at = total amount exchanged in all transactions flagged for target t.

A higher nt indicates a more suspect target, a lower ρt suggests a money-
mule–like pattern, and a higher at implies greater suspicion. The final score is
computed as a weighted sum of these three components:

Score(t) = β0 + β1 nt + β2 ρt + β3 at . (3.8)

The coefficients β0, β1, β2, β3 are estimated by training a linear regression
model on a dataset of legitimate and criminal targets drawn from the bank
fraud case repository. Further details about the fitting process are provided in
the Experiments section of this chapter.

3.7 Experiments
Experiments for this chapter are divided into two sections: the first estimates
the model hyperparameters with the use of a huge synthetic transactional dataset
to determine a suitable range of values, while the second leverages a dataset of
legitimate and criminal targets—constructed with the aid of Intesa Sanpaolo fraud
case repository—to estimate and test the weights of the linear regression task used
for the final target-level score.

3.7.1 Hyperparameter Estimation
The hyperparameters required by TRACED-FastMaN are the same as those in the
original algorithm:

• Time Window δT : the number of days over which to perform first-order
graph aggregation.

• In/Out Ratio of Communities ρth: the ratio between total incoming
and total outgoing transaction amounts for each community; any community
exceeding the selected ratio is discarded by the algorithm when computing
the anomaly score.
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• Weight Threshold Wth: threshold applied to first-order graph edges after
weight assignment; any edge with weight less than the selected value is
discarded before community creation.

Dataset: The hyperparameter estimation in this work leverages the AMLworld
synthetic dataset generator as described in Altman et al. [47]. This dataset com-
prises on the order of hundreds of millions of transaction records generated by an
agent-based simulator calibrated to mirror real-world banking patterns (multiple
banks, multiple currencies, various payment types). Each synthetic transaction in-
cludes a timestamp, source and destination account identifiers, transaction amount,
currency, and payment method. Ground-truth labels indicate whether each trans-
action is part of a money-laundering pattern (e.g., fan-out, gather-scatter, cycle,
bipartite, etc.), enabling precise evaluation of community-detection performance.

The choice to rely on a synthetic dataset rather than real ISP data arises from
the need for transaction-level labels, rather than target-level labels. No existing
in-bank dataset provides the granularity required to flag individual money-muling
transactions; cases are typically reported only at the target or group level. Training
hyperparameters at that higher level of aggregation would be unsuitable for this
model’s objectives. It is enough to consider that, even if a target is labeled as
part of a money laundering scheme, not all transactions performed by him/her
should be flagged as fraudulent: on the contrary, most of them will still be perfectly
legitimate and only a small fraction will be part of the actual criminal operation
due to the very nature of money-laundering operations (See Chapter 1). For this
reason, training a model on such premises would inevitably yield an incorrect
embedding. However, using synthetic data introduces its own challenges, such as
distributional shifts between the synthetic training set and the real-world test set
(since final predictions occur at the target level) and the generally lower fidelity
of synthetic transactions—even in state-of-the-art generators like AMLworld [47].
The implications of these choices, as well as potential model enhancements and
directions for future research, are discussed more in detail in the next section.

For each parameter, an array of candidate values is defined leveraging findings
in [48] and domain-specific knowledge. The value ranges are reported in Table 5.1.

Table 3.1: Hyperparameter search ranges

Parameter Candidate Values

in_out_th (In/Out ratio) {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
delta_t (Time window δT ) {1, 2, 3, 4, 5, 6, 7, 8}
cut_weight_th (Wth) {0.00, 0.025, 0.05, 0.075, 0.01}

A GridSearch optimization is then performed over all combinations, and the
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resulting F1 score is recorded for each. The results can be seen in 3.8, 3.9, 3.10 for
the three best values of cut-weight threshold. Other values yield almost random
classification and are not displayed.

Figure 3.8: F1 score for δT and ρth at cut-weight 0.0

Results indicate that the algorithm struggles to robustly identify fraudulent
transactions when using the smallest time window (δT ) combined with a very strict
in/out amount ratio. This behavior is expected given the nature of the egonet
graphs. As noted above, target egonets are typically small, and partitioning them
into too many time buckets produces first-order graphs that are too sparse to
capture meaningful temporal patterns. Likewise, enforcing a very tight in/out ratio
excludes many legitimate laundering structures and reduces coverage of diverse
ML schemes. However, when these constraints are relaxed slightly, the algorithm
demonstrates a strong ability to distinguish fraudulent from legitimate transactions,
achieving an F1 score near 0.7 across multiple hyperparameter combinations. This
finding suggests that TRACED, with appropriately tuned settings, can serve as a
reliable tool for isolating communities of related transactions.

3.7.2 Linear Regression and Target Accuracy
To assess TRACED’s capability of separating money-mule targets from legitimate
ones, a linear regression model was trained on a dataset of real transactions taken
from 25 fraud cases identified by Italian law enforcement agencies and stored by
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Figure 3.9: F1 score for δT and ρth at cut-weight 0.025

Figure 3.10: F1 score for δT and ρth at cut-weight 0.05

the bank between March 2023 and January 2025. These cases were injected into
a dataset of 1,000 legitimate targets drawn from normal bank operations. The
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combined dataset was split 70/30 into train and test sets, and the linear regression
model was trained and evaluated using the ROC AUC metric. The resulting weights
and intercept are shown in Table 3.2.

Table 3.2: Linear regression weights and intercept

Parameter Value

β1 (number of communities) 1.48845
β2 (average in/out ratio) –0.66195
β3 (total amount) –0.16766
β0 (intercept) –0.62699
ROC 0.856

Training the linear regression score on real-world labeled fraud and non-fraud
cases guarantees that each learned coefficient βn accurately captures the predictive
importance of its associated metric—whether community count, aggregate balance,
or total exchanged amount—so that the resulting risk score not only discriminates
effectively between legitimate and illicit profiles, reaching an AUC-ROC of almost
0.86, but also remains interpretable and robust to overfitting through appropriate
regularization.

Leveraging these learned coefficients, TRACED assigns to each target a risk score
computed from the three selected metrics, each one weighted by its corresponding
learned βn parameter. This real-valued, ML-based score integrates with TRACED’s
visualization tools, providing analysts with both intuitive visual narratives and data-
driven risk assessments to inform their investigative decisions. In its raw form, this
score facilitates direct comparison between targets (with higher values indicating
greater suspicion). Alternatively, it can be normalized to a fixed interval—for
example by applying a softmax to map scores into [0,1]—to produce an absolute
suspicion grade for any single target.

3.8 Conclusions on TRACED
Summing up the procedures and strategies listed in the previous sections, TRACED
proposes itself as a lightweight, egonet-scale community-detection framework that
combines temporal-graph topology with transaction-level features to isolate money-
mule patterns in banking data. By adapting FastMaN’s second-order weighting to
include amount-based adjustments, TRACED is able to operate on small egonets
(tens to hundreds of nodes) while still capturing meaningful temporal and value-
based correlations. Its clustering algorithm approach ensures robust community
identification, and the subsequent linear-regression scoring model prioritizes truly
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suspicious targets based on the number of communities, in/out-ratio patterns,
and total exchanged amounts. Altogether, TRACED offers a practical, tunable
solution for banks to detect money-muling activity at the egonet level, achieving
strong separation between legitimate and fraudulent targets even when only lim-
ited local structure is available. Moreover, TRACED’s interactive visualization
tools—anchored around a zoomable, timeline-centric representation of transactional
flows and enriched with relational community overlays—greatly enhance result
interpretability: investigators can intuitively trace fund movements, filter and drill
into high-risk flows, and export annotated timelines and pattern summaries directly
into intelligence reports. Supported by its promising results on synthetic data and
past fraud cases, TRACED is currently operational in the TXM pipeline of Intesa
Sanpaolo: the months following the publication of this work will serve to test its
real effectiveness on supporting AML/CFT analysts on the real field of TXM.

Figure 3.11: Overview of the user interface: communities can be highlighted separately to
analyze different temporal sections of the plot
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Chapter 4

Deep Learning on Temporal
Graphs and Sampling
Algorithms

This chapter provides an overview of the fundamental concepts behind the second
model proposed in this thesis, beginning with a review of Artificial Neural Networks
(ANN) principles and Deep Learning (DL) methodologies. It then offers a formal
definition and basic notations of temporal graphs—networks whose nodes, edges,
and attributes evolve over discrete time steps—and surveys specialized deep archi-
tectures for capturing their dynamics, including Temporal Graph Neural Networks
and recurrent graph models. Temporal Networks represent a robust and very well
suited structure to model the problem under investigation, capturing the dynamic
and evolving nature of financial transactions with greater accuracy [21]. Next,
graph downsampling algorithms are introduced as means of reducing the size and
complexity of large transactional graphs data used for models’ input. Leveraging
those algorithms and applying transfer-learning principles, these techniques en-
able scalable, efficient training for financial transaction forecasting and anomaly
detection in large-scale financial flows.

4.1 Introduction to ANN
The field of artificial neural networks (ANNs) traces its origins to the perceptron
(see Fig 4.1), introduced by Frank Rosenblatt [49] in 1958 as “the first machine
which is capable of having an original idea” – a single-layer binary classifier that
learned to distinguish left-marked from right-marked signs on punch cards.

Despite its promise, the perceptron’s inability to solve non-linearly separable
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Figure 4.1: The original perceptron architecture proposed by Rosenblatt in 1958: weights
are learned and then passed into a non-linearity activation function to approximate the desired
function.

problems led to skepticism and a temporary decline in ANN research. This impasse
was broken nearly three decades later by the invention of the backpropagation
algorithm, which enabled efficient training of multi-layer perceptrons (MLPs) via
gradient descent on a differentiable loss function. In 1986 Rumelhart, Hinton, and
Williams demonstrated that backpropagation could learn internal representations
in deeper networks, publishing the landmark paper “Learning representations by
back-propagating errors”[50] .

However, simply adding layers did not immediately yield better models: training
very deep networks remained challenging due to vanishing gradients and local
minima. A major turning point came in 2012, when AlexNet [51] was proposed: a
deep convolutional neural network for image classification trained on the ImageNet
dataset that reduced top-5 error rates from 26.2% to 15.3%, demonstrating the
power of large-scale, GPU-accelerated deep models for complex pattern recognition.

Since then, neural networks have experienced an extraordinary improvement,
driven by advances in algorithms, hardware, and data availability. Researchers
scaled up deep architectures—convolutional nets for image understanding, recurrent
and transformer models for language, and graph neural networks for relational
data—fueled by the parallel compute power of GPUs and, more recently, TPUs.
This revolution has touched virtually every domain, from computer vision to natural
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language processing to generative tasks such as image synthesis, text and code
generation with transformer-based language models, music and speech synthesis,
video generation, and even molecular graph design.

4.2 ANN Structures and Learning
Modern ANNs models rely on a handful of canonical building blocks and a uniform
learning framework based on gradient-based optimization. The following paragraphs
provide a brief functional overview of the most widely used modules, with particular
emphasis on those central to the following sections of this work.

4.2.1 Convolutional Blocks
One of the first and most used architectural blocks employed in ANNs are convolu-
tional block: they apply a set of learnable filters (kernels) to their input feature
maps, producing new feature maps that encode localized patterns. Formally, given
an input tensor X ∈ RH×W ×Cin and a bank of Cout kernels {Kk} ⊂ Rh×w×Cin , each
output channel is

Y k
i,j =

CinØ
c=1

hØ
u=1

wØ
v=1

Kk
u,v,c X i+u−1, j+v−1, c + bk ,

where bk is a bias term. A non-linear activation (e.g. ReLU: max(0, ·)) follows
each convolution to introduce model capacity on the feature maps beyond linear
filters. Pooling layers (max or average) optionally reduce spatial resolution by
aggregating over local neighborhoods. By stacking multiple convolutional blocks,
deeper networks learn hierarchical representations, from edges in early layers to
high-level semantics in later layers (see Fig 4.2).

4.2.2 Recurrent Blocks
Recurrent blocks are used to create Recurrent Neural Networks. They define a new
variable, called hidden state ht ∈ RH , i.e. a vector encoding the network’s internal
memory at time t, updates as

ht = ϕ
1
Whh ht−1 + Wxh xt + bh

2
, ŷt = Why ht + by,

where Whh propagates information from the previous state, Wxh projects the current
input xt, bh and by are bias vectors, and ϕ is an element-wise nonlinearity; by
iterating this compact update the model continuously blends past context and new
observations into ht, enabling it to embed temporal patterns at multiple levels of
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Figure 4.2: The 96 "features detectors" learned by AlexNet [51]: the network can tell for each
point of an input image "how much" it resembles each one of the filters, and hierarchically build
complex features for classification.

Figure 4.3: RNN Unit architecture.

abstraction before decoding them into ŷt. The typical architecture of an RNN cell
is shown in Fig 4.3

In recurrent neural networks (RNNs), problems related to the training process
can be more severe than in convolutional architectures; to address this, gated
variants such as the Long Short-Term Memory (LSTM) and Gated Recurrent
Unit (GRU) introduce multiplicative gating mechanisms that dynamically regulate
information flow and gradient propagation across time steps.

LSTM Long Short-Term Memory units extend vanilla RNNs with gating mecha-
nisms that control the flow of information and enable the network to learn long-range
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dependencies. At each time step, an input gate decides how much new information
enters the memory cell, a forget gate determines which past information to discard,
and an output gate controls what is passed to the next layer. This structure
allows LSTMs to capture both short-term fluctuations and longer-term patterns in
sequential data without suffering from vanishing gradients.

GRU Gated Recurrent Units simplify the LSTM architecture by merging the
input and forget gates into a single update gate, and by using a reset gate to
modulate how much of the previous hidden state contributes to the candidate
activation. With fewer parameters and a more streamlined design, GRUs often
match LSTM performance while training faster and requiring less memory.

4.2.3 Activation Functions and Pooling Layers
Non-linear activations are usually applied immediately after each convolution to
introduce non-linear model capacity. Common choices include the Rectified Linear
Unit (ReLU: max(0, x)), which accelerates convergence and mitigates vanishing
gradients, and its variants (leaky-ReLU, ELU). Sigmoid and hyperbolic-tangent
functions were historically popular but are now less common in deep architectures
due to saturation effects.

Pooling layers optionally follow activations to reduce spatial dimensions and
introduce translation invariance. Max pooling selects the largest activation over
non-overlapping windows, preserving the strongest response, while average pooling
computes the mean. Pooling both reduces computational cost and helps the network
build hierarchical, multi-scale representations.

4.2.4 Learning Framework and PAC Guarantees
Training an artificial neural network involves finding parameters θ ∈ RP that
minimize the empirical risk

L(θ) = 1
n

nØ
i=1

ℓ
1
yi, ŷ(xi; θ)

2
,

where n is the number of training examples, ℓ(y, ŷ) is a pointwise loss on the
network outputs (e.g. cross-entropy ℓ(y, ŷ) = −qk y(k) log ŷ(k) or mean-squared
error ℓ(y, ŷ) = ∥ŷ − y∥2), and ŷ(xi; θ) denotes the network’s prediction for input
xi. Optimization proceeds by stochastic gradient descent, which at each iteration
computes the gradient of L with respect to θ via backpropagation and updates

θ ← θ − η∇θL(θ),
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where η > 0 is the learning rate controlling the step size; this update moves θ in the
direction of steepest descent on the loss surface, allowing the model to gradually
adjust its weights to better fit the data over successive passes.

The dataset is commonly split into three parts:

• Training set: used to update the model parameters via (stochastic) gradient
descent.

• Validation set: used to monitor performance during training, tune hyperpa-
rameters, and decide when to stop (early stopping).

• Test set: held out until final evaluation to provide an unbiased estimate of
how the model will perform on new data.

While deep learning’s success is largely empirical, statistical learning theory
provides Probably Approximately Correct (PAC) guarantees. Informally, if a model
class has limited complexity relative to the number of training examples, then—with
high probability—a model that achieves low error on the training set will also
have low error on unseen data. In the Probably Approximately Correct (PAC)
framework, if the hypothesis class H has VC–dimension dV C , then with probability
at least 1− δ over n i.i.d. samples, true risk is R(θ) ≤ ϵ with confidence 1− δ.

To reach this guarantee, it suffices to collect

n = O
3

1
ϵ2

è
dV C log 1

ϵ
+ log 1

δ

é4

training examples and find θ with R̂n(θ) ≤ ϵ/2
These bounds depend on measures of hypothesis-class complexity (such as VC-

dimension or Rademacher complexity) and quantify how much data is needed to
generalize to a desired accuracy with a specified confidence, while giving mathe-
matical guarantees about the optimality and feasibility of ANN based solutions.

4.3 ANNs models for Temporal Graphs
In this work, Temporal Graphs can be employed to model the evolving set of financial
players and interactions between them in the form of transactions managed by the
bank. This data can be stored in a graph structure, leveraging similar concepts
and tools as the one listed in Chapter 3.

To detect and predict anomalies in such temporal graphs, graph-based recurrent
neural networks provide an effective solution. These models employ specialized
encoders that extend convolutional and recurrent building blocks to irregular
graph domains by replacing standard matrix–vector products with neighborhood
aggregation via graph convolutions. Such encoders learn node representations that
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respect the evolving topology, and when coupled with temporal units (e.g. GRUs
or LSTMs) they jointly capture spatial dependencies in the graph and temporal
patterns in node and edge features.

4.3.1 Temporal Graphs
Temporal graphs (also known as dynamic or time-varying graphs) extend static
graphs by capturing how relationships appear and disappear over discrete time
steps [52]. Formally, let G = (V, E) be a static graph. A temporal graph is given
by a labeling

λ : E → 2N,

that assigns to each edge e ∈ E the set of time-labels at which e is active. Equiva-
lently, one can view a temporal graph as a sequence of static snapshots

D(t) =
1
V, A(t)

2
, A(t) = { e ∈ E : t ∈ λ(e)},

facilitating analysis with classical graph-theoretic tools. In this thesis, temporal
graphs are modeled leveraging the sequence of static snapshots approach (see Fig.
4.4).

Figure 4.4: Example of evolving set of nodes/edges in different timestamps of a Temporal Graph

4.3.2 R-GNN Encoders Architectures
Several graph-based recurrent architectures (R-GNN) have been proposed for
spatio-temporal modeling on dynamic graphs. Most models rely on a shared spatial
operator—graph convolution, typically defined as:

G(X, A) = σ
1
D̂−1/2ÂD̂−1/2XW

2
where Â = A + I adds self-loops to the adjacency matrix, D̂ is the corresponding
degree matrix, X is the input feature matrix, W is a learnable weight matrix, and
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σ(·) denotes a non-linear activation function. By normalizing and aggregating
neighbor features in this way, the convolutional stage produces embeddings that
reflect each node’s local topology. These embeddings are then fed into recurrent
components—such as gated recurrent units (GRUs), long short-term memory
(LSTM) cells, or graph-specific recurrent cells—that learn the temporal evolution
of features across successive graph snapshots.

Figure 4.5: Example of operative pipeline of a G-RNN model: the first step learns structural
dependencies and the second combines them to learn temporal patterns.

4.3.3 Related Works
Several G-RNN encoders have been proposed in literature. GConv–GRU inte-
grates the graph convolutional layer into the update equations of a Gated Recurrent
Unit, allowing hidden states to propagate across edges before gating; by embedding
neighbor information directly into both the reset and update gates, this architec-
ture enhances spatial–temporal representation learning and has been validated on
traffic speed forecasting in urban road networks, yielding significant reductions in
prediction error compared to vanilla GRUs [53]. GConv–LSTM applies graph
convolutions in place of the linear transformations within each LSTM gate and
the candidate cell update, thereby preserving spatial locality and enabling longer-
range dependency modeling; its efficacy has been demonstrated on skeleton-based
human action recognition and short-term traffic prediction tasks [53]. GCLSTM
interleaves multiple graph convolutional layers around the input, forget, and out-
put gates—stacking spatial filters both before gate activations and after the cell
update—to capture higher-order neighborhood structures within each time step;
this deep spatio-temporal filtering mechanism has shown marked improvements
in anomaly detection for power-grid stability and traffic congestion modeling [54].
LRGCN augments standard GCNs with multi-hop neighborhood aggregation
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and residual connections across successive time slices, effectively capturing both
local and global graph patterns in a single forward pass; applied to traffic fore-
casting and water distribution network analysis, it mitigates over-smoothing and
supports deeper spatial learning without degradation [55]. DyGR alternates be-
tween graph convolutional updates and parameter evolution via recurrent networks,
adapting convolutional kernels to the evolving topology and preserving temporal
context; evaluated on dynamic citation and social-interaction networks, this ap-
proach outperforms static GCNs in link prediction and node classification under
changing conditions [56]. Finally, TGCN couples a graph convolutional layer with
a causal 1D convolution over time steps—eschewing recurrent units in favor of
parallelizable temporal convolutions—offering reduced training latency and robust
performance; originally introduced for traffic speed forecasting in Beijing and Los
Angeles road networks, it achieves competitive accuracy while enabling efficient,
real-time deployment [57].

4.4 Graph Sampling Algorithms and Transfer
Learning

When working on large-scale financial flows modeled as graphs structures, scale and
complexity of data can become a huge challenge [58]. These graphs can easily span
thousands of nodes and tens of millions of edges, pushing the limits of memory
and computation on a single machine and often necessitating costly distributed or
parallel infrastructures. Moreover, ANN-based solutions are typically data-hungry
at the training stage, requiring extensive information to robustly model complex,
long-range dependencies inherent in transaction sequences.

Transfer Learning and Graph Sampling Algorithms offer a promising way to
mitigate these challenges: by training models on much smaller, representative
samples of the original graphs and then transferring the learned parameters to
full-scale data at test time, it is possible to preserve accuracy while dramatically
reducing computational overhead. To introduce this intuition in practical TXM
pipelines, this section presents an overview of several graph-sampling strategies
drawn from the scientific literature.

4.4.1 Transfer Learning
Transfer learning leverages knowledge acquired from a source domain DS and
task TS to improve model performance on a related target domain DT and task
TT , especially when labeled data in the target is scarce or data size becomes a
challenge [59]. Formally, a domain D is characterized by its feature space X , and
a task T by its label space Y and prediction function f . In practice, a model is
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first pre-trained on a smaller (DS, TS), learning representations or parameters that
capture general patterns, and then fine-tuned or directly transferred on the more
challenging (DT , TT ), thus reducing the need for extensive and heavy tranining
frameworks and accelerating convergence to an accurate solution. .

4.4.2 Graph Sampling Methods
Graph sampling methods may pursue several objectives, such as obtaining a smaller
yet representative set of vertices, preserving key structural characteristics of the
original graph, or even generating new random instances based on a larger input. In
this work, the primary goal is to minimize the divergence between the distributions
of selected graph properties in the sample and in the original. By doing so, it
becomes possible to train a neural-network model on a substantially reduced graph,
thereby achieving notable savings in training time and computational resources
while retaining sufficient generalization to transfer learned parameters back onto
the full-scale graph with only minor adjustments or fine-tuning.

In the related literature [60], sampling algorithms are typically classified into
three families based on their selection mechanism:

• Vertex-based sampling: selects a subset of vertices and induces the subgraph
on them.

• Edge-based sampling: selects a subset of edges and induces the subgraph on
their endpoints.

• Traversal-based sampling: grows the sample by walking through the graph,
following its connectivity.

The following paragraphs provide a brief overview of some algorithms belonging
to the three categories cited above.

Uniform Vertex Sampling (VS) Selects k vertices uniformly at random from
V and forms the sample by inducing the subgraph on those vertices. Formally,
given G = (V, E) with |V | = n and k < n, choose Vs ⊂ V , |Vs| = k, uniformly;
then Gs = (Vs, Es) with Es = {(u, v) ∈ E : u, v ∈ Vs} [60].

Vertex Sampling with Neighborhood (VSN) Begins by selecting k seed
vertices uniformly, then adds their immediate neighbors—optionally up to r per
seed—to form Vs, and induces Es on Vs. This preserves more local connectivity at
the cost of a larger sample [60].
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Edge Sampling (ES) Chooses q edges uniformly at random from E and lets
Vs be the set of their endpoints; the sampled graph is Gs = (Vs, Es) with Es the
selected edges [60].

Breadth-First Sampling (BFS) Starts from a random seed v0 and explores
neighbors layer by layer (FIFO queue) until k vertices are visited, then induces
the subgraph. BFS preserves connectivity and short-path properties but tends to
over-sample dense regions [61].

Depth-First Sampling (DFS) Uses a LIFO stack from a random seed v0,
diving along a path until no new neighbors remain, then backtracking, until k
vertices are sampled and the subgraph induced [61].

Forest Fire Sampling (FFS) Simulates a “burning” process: each burned node
selects a geometric(p) number of unburned neighbors to burn next, repeating until
k vertices, then induces the subgraph. The burn parameter p controls exploration
width, balancing local clustering and component-size fidelity [62].

Snowball Sampling (SNOW) Proceeds in waves from a seed v0; each frontier
node recruits up to r unvisited neighbors per wave until k vertices are collected,
then induces the subgraph. Limiting recruits per node mitigates high-degree bias
[63].

Random-First Sampling (RFS) Maintains a frontier like BFS but selects
the next vertex to expand uniformly at random from the frontier. Continues
until k vertices sampled, then induces the subgraph. RFS balances connectivity
preservation with reduced layer bias [61].

Random Walk Escape (RWE) Alternates between local random-walk steps
and global jumps: with probability α, jumps to a new random node; otherwise
moves to a random neighbor. After k distinct vertices, induces the subgraph. The
escape rate α tunes the mix of uniformity and locality.

In Chapter 5, these sampling algorithms will be evaluated as preprocessing
strategies for the R-GNN anomaly detection model, measuring their ability to
produce reduced yet representative subsets of the original graph data and quantify-
ing the resulting gains in training scalability—namely, reductions in runtime and
memory footprint—while ensuring sufficient fidelity for accurate model learning.
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Chapter 5

GRAND-Net: Graph
Recurrent Anomaly
Detection in Large-Scale
Financial Flows

The second major contribution of this thesis is the design and implementation of
GRAND-Net, a novel recurrent graph neural network architecture designed to model
data from bank’s large-scale financial flows and perform anomaly detection on the
generated embedding. GRAND-Net is trained to both forecast future transaction
volumes at an high aggregation level, and also to flag abrupt, potentially anomalous
shifts in those flows as they occur.

GRAND-Net addresses the need for obliged entities such as Intesa Sanpaolo to
continuously oversee the integrity of all managed transactions, uncover recurring
patterns across multiple levels of abstraction, and detect shifts in those patterns
that may signal illicit fund movements—whether large-scale money-laundering
networks or terrorism-financing schemes. Ideally, this monitoring should be robust,
adaptable, and largely automated, sparing analysts and domain experts from the
difficult and time-consuming task of manually sifting through vast data in search
of suspicious entities or behaviors.

Starting from the collection of all transactions managed by the bank on a
given period of time, GRAND-Net is able to map them in a graph structure,
produce a robust internal embedding of the relational and temporal features of
those transactions, and finally produce forecasts for upcoming intervals, predicting
the evolving graph topology and the distribution of transaction volumes on each
edge, and finally compute an anomaly score on edges based on learned features for
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analysts support.
To produce those outputs, this work proposes leveraging Artificial Neural Net-

works (ANN), and specifically graph-based models, to build a tool capable of
real-time anomaly detection on temporal transaction data. The next sections pro-
vides a detailed description of the proposed model’s architecture and feature design,
including how transaction flows are ingested, processed, and scored at multiple
levels of abstraction. A comparative study then evaluates several encoder–decoder
combinations on real bank data, assessing their ability to detect anomalous patterns
and shifts in macroscopic financial flows.

5.1 GRAND-Net Design and Workflow
The proposed model is a ANN that is able to integrate spatiotemporal graph
convolution with gated recurrent modules and a unified edge-scoring mecha-
nism—combining edges existence probability and weight prediction—to directly
identify anomalous edges in dynamic financial networks. The architecture of the
model can be seen in 5.4. Extensive experiments, provided in the following sections,
demonstrate that this approach significantly outperforms existing methods under
varying anomaly-injection rates.

The proposed model comprises two principal components. The first is a graph-
based recurrent neural network (R-GNN) that consumes a sequence of historical
transaction graphs

GT −N , GT −N+1, . . . , GT −1,

each encoding the topology of transactions processed by the bank over a desired
time window, and is trained to reconstruct the future transaction graph ĜT at time
step T by combining outputs from two parallel heads: one for link prediction and
the other for edge-weight regression.

In the second stage, the pretrained embeddings of each temporal snapshot are
used to evaluate test graphs into which synthetic anomalies have been injected. A
regression-based decoder then predicts edges existance probability and weights and
compares them to the observed values, assigning each edge an anomaly score that
quantifies its deviation from expected behavior—thereby enabling the identification
of edges most likely involved in money-laundering or terrorist-financing schemes.

5.2 Data Loading and Preprocessing
GRAND-Net can ingest any transactional dataset that provides a minimal set of
required fields—namely sender, receiver, transaction timestamp, and transaction
amount. It then maps these transactions onto a graph structure (as described in
Chapter 3), enabling aggregation of nodes and edges at multiple levels of abstraction.
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Figure 5.1: R-GNN proposed Encoder-Decoder architecture.

In this work, we use each transaction’s sender and receiver BIC code as the node
identifier. By selecting different character ranges within the BIC (see Fig. 5.2), we
can flexibly adjust geographic granularity—for example, using characters 1–6 to
group all ISP offices in Italy or characters 6–9 to isolate branches in Milan.

Figure 5.2: BIC code example for Intesa Sanpaolo’s Italian branch in Milan. By selecting
different character ranges within the code—e.g. characters 1–6 to group all ISP offices in Italy, or
characters 6–9 to isolate all Milan branches—the model can perform analyses at varying levels of
geographic granularity.

Once the desired geographic granularity is set, we partition the graph into
successive temporal snapshots, yielding a dynamic representation of money flows.
This evolving graph allows the model to learn both topological and temporal
relationships among entities, producing embeddings that feed into downstream
prediction tasks.
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5.2.1 Anomalies Injection
Once the model has learned robust temporal and relational embeddings, it can
be applied to detect anomalies in future transaction graphs. However, as noted
in Chapter 2, Section “Related Works,” publicly available datasets with labeled
financial-transaction anomalies are scarce and Intesa Sanpaolo’s internal records
currently anomalies labeled at transaction level taken from real fraud cases. Conse-
quently, this work relies on synthetic anomaly generation. Combining intuitions
taken from both related literature and domain knowledge, three classes of anomalies
are injected into the graph:

• Structural anomalies: these affect the topology of the graph. Following
[64, 65], m random nodes are selected and fully connected to form a clique—a
structure widely considered to be anomalous in many contexts, including
financial fraud related ones. Repeating this n times yields n×m < injected
cliques.

• Contextual anomalies: those are represented by edges whose weights deviate
significantly from the model’s prediction despite normal connectivity patterns
(e.g. sudden and unusually large or small transaction amounts). They are
obtained as in 5.4, by perturbing the edge-weight features: n edges are selected,
and for each one its weight is substituted by the most distant one randomly
chosen among k candidates in the network.

• Domain-based anomalies: following domain knowledge acquired from the
ISP office, this anomaly models sanction-evasion routing. When economic
exchange between two nations is restricted (e.g. due to embargos, wars, or
tariffs), transactions are often funneled through third-party jurisdictions, an
illegal practice that has led private companies and obliged entites to fines
and investigations in the past1. To emulate this behavior, a pair of nodes is
randomly selected and its exchanged amount in the real graph is perturbed
by rerouting it along low-probability multi-hop paths in the network.

5.3 GRAND-Net Model Definition and Training
Pipeline

Once the structures, inputs and outputs of the model have been declared, it is
necessary to perform a series of task to define and optimize model’s training

1https://english.scenarieconomici.it/economy-and-business/
volkswagens-shadow-play-german-jetta-brand-defies-sanctions-returns-to-russia/
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Figure 5.3: Examples of structural and re-routing anomalies.

and testing procedures. The following paragraphs describe the Hyperparameters
Optimization, Decoder Architectures and Training Metrics definitions designed for
GRAND-Net’s training.

5.3.1 Hyperparameter Optimization
Enhancing the model’s ability to generate accurate embeddings for financial tempo-
ral networks requires selecting feasible ranges for the model’s hyperparameters, in
this case being the learning rate, weight decay, temporal snapshot interval (number
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Figure 5.4: GRAND-Net Training and Testing Pipeline.

of days per split) and edge-weight regression decoder type, followed by systematic
hyperparameter tuning to identify the optimal configuration.

Hyperparameter tuning was carried out using Optuna’s Tree-structured Parzen
Estimator (TPE) sampler2. Continuous parameters (learning rate, weight decay)
were sampled on log-uniform scales; the temporal window length (number of days)
was an integer parameter; and the weight-regression decoder was chosen from a set
of architectures. Trials were evaluated on validation-set performance, and the best
configuration was used for final training.

Table 5.1: Hyperparameter Search Space

Hyperparameter Type Search Space

Learning rate continuous LogUniform(10−5, 10−2)
Weight decay continuous LogUniform(10−6, 10−3)
Number of days integer IntUniform(1, 30)
Decoder type categorical {SimpleMLP, ResidualMLP, EdgeConv,

EdgeAttention, SEAL, TransformerEdge,
ResidualEdgeAttention}

Decoder Architectures :The SimpleMLPDecoder concatenates source and
target node embeddings and feeds them through a two-layer MLP with ReLU
activation. The ResidualMLPDecoder augments this with LayerNorm, dropout,
and a residual skip connection between hidden layers for better gradient flow
and regularization. The EdgeConvDecoder follows the EdgeConv paradigm

2https://optuna.readthedocs.io/en/stable/
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by combining the difference (hj − hi) with the source embedding hi in an MLP,
capturing local geometric relationships. The EdgeAttentionDecoder implements
multi-head attention by computing per-head energies on concatenated embeddings,
applying a softmax over heads, and merging head-wise features via an MLP.
The TransformerEdgeDecoder uses each edge’s concatenated embedding as
a query in a scaled dot-product attention over all node embeddings, followed
by an MLP. Finally, the ResidualEdgeAttentionDecoder extends multi-head
edge-attention with LayerNorm, dropout, and a linear skip-connection on the
concatenated attended features before regression.

Results indicated optimal learning rates in the range 1 × 10−4 to 5 × 10−4

and a weight decay of 1 × 10−5. Temporal window lengths between 2 and 12
days yielded balanced graph densities—shorter windows produced overly sparse
graphs, while longer windows diminished temporal resolution. For the decoder
choice, the best one proved to be the ResidualEdgeAttentionDecoder: it is the most
complex one, but still retains a more than acceptable dimension in terms of model
complexity, so it can be safely implemented. Based on validation performance, the
final hyperparameters were set as shown in Table 5.2.

Table 5.2: Final Hyperparameter Settings

Hyperparameter Final Value

Learning rate 3× 10−4

Weight decay 1× 10−5

Number of days 3
Decoder type ResidualEdgeAttentionDecoder

5.3.2 Training and Evaluation Metrics
The model is trained by minimizing a composite loss

L = λLP LLP + λWR LWR,

where for each edge (i, j) ∈ E the model outputs a logit ŝij ∈ R predicting the
presence of the edge and a real-valued weight ŵij ∈ R, while yij ∈ {0,1} and
wij ∈ R are the corresponding ground-truth label and observed weight. The two
loss components are

LLP = 1
|E|

Ø
(i,j)∈E

BCEWithLogitsLoss
1
ŝij, yij

2
,

LWR = 1
|E|

Ø
(i,j)∈E

SmoothL1Lossβ=1.0
1
ŵij, wij

2
.
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Here

BCEWithLogitsLoss(ŝ, y) = −
è
y log σ(ŝ) + (1− y) log

1
1− σ(ŝ)

2é
,

and for error e = ŵ − w,

SmoothL1β(e) =


e2

2β
, |e| < β,

|e| − β
2 , |e| ≥ β.

Using this two-coefficients loss system allows the model to define separate
evaluation metrics for edge existence prediction and edge weight regression, and
to update the loss considering each one as a different heads performing different
tasks, each one having its own weight inside the model. The mixing coefficients
λLP and λWR are indeed not fixed but adaptively optimized during training using
a gradient-based class activation mapping (Grad-CAM) approach proposed by [66]:
at each step, gradients of the composite loss with respect to each head’s output are
aggregated and normalized to re-weight the two objectives, allowing the model to
emphasize the head providing the stronger learning signal.

In validation and testing the link-prediction quality is measured by the area
under the ROC curve AUCLP, regression accuracy by mean-absolute-error

MAE = 1
|E|

Ø
(i,j)∈E

---ŵij − wij

---,
and downstream anomaly-detection performance by ROC AUC on binary edge-
anomaly labels AUCAD.

5.4 Experiments
In this section, the results of our experiments across different model configurations
are presented in two parts: (i) encoder comparison in terms of ROC-AUC on
the link-prediction task and MAE on the weight-regression task and (ii) anomaly-
detection performance, reporting ROC-AUC and class-separability on test graphs
with varying anomaly-injection rates. All per-epoch training-loss curves are provided
in Appendix II.

5.4.1 Dataset Description
The dataset comprises approximately 60 million wire-transfer transactions over a
one-month period from the ISP archives. Each transaction is modeled as an edge
in a temporal graph, while nodes are defined by an aggregation key. In this study
the three selected keys are:
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• BIC4: the first four characters of the SWIFT/BIC code, i.e. the institution
code, grouping all branches of the same bank together.

• BIC6: the first six characters of the SWIFT/BIC code, i.e. institution and
country code, grouping banks by both institution and country.

• Country: the ISO 3166-1 alpha-2 country code (positions 5–6 of the BIC),
aggregating all banks within the same country.

Alternative aggregation keys (e.g. clients IBAN code, or different combinations
of BIC codes’ characters) yield coarser or finer graph resolutions but use the
same downstream code and architecture. Transactions are grouped into temporal
windows of fixed length (determined in the Hyperparameters section), and within
each window all edges between the same pair of nodes are aggregated by summing
their amounts. The aggregated edge weights then serve as edge-attribute inputs to
the model. Node features are constructed as time-series vectors recording, for each
node and each of the previous T timesteps, its total incoming and total outgoing
transaction amounts. This representation jointly captures spatial structure (via
the graph) and temporal dynamics (via node feature sequences).

The final size of training, validation and test data is shown in Tables 5.3, 5.4
and 5.5:

Table 5.3: BIC6 Dataset Sizes for Training, Validation and Testing

Dataset Nodes Edges Time Steps Features
Training 1603 21,587 10 4
Validation 1603 3,084 10 4
Testing 1603 6,168 10 4

Table 5.4: Country Dataset Sizes for Training, Validation and Testing

Dataset Nodes Edges Time Steps Features
Training 138 5,603 10 4
Validation 138 800 10 4
Testing 138 1,601 10 4

63



GRAND-Net: Graph Recurrent Anomaly Detection in Large-Scale Financial Flows

Table 5.5: BIC4 Dataset Sizes for Training, Validation and Testing

Dataset Nodes Edges Time Steps Features
Training 817 17,232 10 4
Validation 117 2,462 10 4
Testing 233 4,923 10 4

Figure 5.5: Gephi Visualization of one of the network timestamps used in evaluation: the left
graph is the real test network, the right one is after anomalies injection (edges in red).

5.4.2 Graph Sampling Algorithms Comparison
As part of the data preprocessing pipeline of the model, graph-downsamplint
algorithms listed in Chapter 4 are evaluated and their performance compared.
The fidelity of the reconstructed graph to the original one is measured using some
properties of the graphs. These properties can take either a distributional form (e.g.,
degree distribution or distance distribution) or a scalar form obtained by applying
an aggregate function (e.g., average degree or diameter) to the said distributions.
In the present study, we focus on the following three distributional features:

• Degree distributions of nodes (both in-degree and out-degree),

• Edge-weight distribution (transactional amounts),
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• Edge-time-occurrence distribution (timestamps of edge events).

By selecting these three distributions, we aim to ensure that both structural and
quantitative characteristics of the original graph are preserved in the sampled
subgraph. To evaluate the performance of each sampling algorithm with respect to
these distributions, three well-known and robust distributions distance evaluation
metrics are employed: the Kolmogorov–Smirnov statistic, the Kullback–Leibler di-
vergence and the Jensen–Shannon divergence. Each sampling algorithm is evaluated
via the Kolmogorov–Smirnov, Kullback–Leibler and Jensen–Shannon divergences
(DKS, DKL, DJS) on degree, edge-weight and edge-time distributions, where lower
values denote higher fidelity. Four target sizes (0.5%, 1%, 5% and 10% of original
nodes for vertex methods or edges for edge methods) are tested across ten runs
with distinct random seeds. Results of sampling experiments for degree, edges
weights and transactions timestamps metrics are shown in Fig. 5.6, 5.7 and 5.8.

Figure 5.6: Distance metrics for Nodes Degree distributions.

Figure 5.7: Distance metrics for Edges Weight distributions.
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Figure 5.8: Distance metrics for Edges Timestamps distributions.

Results shows that, as expected, VS is trivial and fails to preserve structure
(KSdeg ≈ 0.964 at 1%). SNOW/VSN tends to violate node/edge budgets and is
really dependent on seeds; BFS/DFS achieve degree fidelity (KSdeg ≈ 0.037 at 10%)
but retrieve ∼79% of edges; ES/FFS match edge targets but require ∼45–50% of
nodes. In contrast, RFS best balances both: at 1% nodes it retains 0.154% of edges
with KSdeg = 0.1429, KSweight = 0.1439; at 5% nodes it retains 6.23% of edges with
KSdeg = 0.0857, KSweight = 0.0783, achieving KS< 0.10 as suggested in [60]. The
ANNs models proposed in the following sections will be trained on a version of the
original data sampled using RFS at 10% of original nodes, and then tested on the
real, fully-sized network, demonstrating the capability of this algorithm to produce
a lighter and yet representative version of graph data.

5.4.3 Baselines
To evaluate the proposed model’s performance, three network embedding based
baselines are selected:

• DeepWalk [67]: an unsupervised node embedding method that generates
truncated random walks over the graph and applies the Skip-Gram model to
learn low-dimensional representations capturing local neighborhood structure.

• Node2Vec [68]: extends DeepWalk by using a biased random-walk strategy
(with return and in-out hyperparameters) to interpolate between breadth-
first and depth-first graph explorations, yielding embeddings that balance
community and structural equivalence.

• Spectral Clustering [69]: applies k-means clustering to the eigenvectors
of the graph Laplacian, grouping nodes into clusters based on the spectrum
of the Laplacian matrix; To preserve the local connection relationship, the
spectral embedding generates the node embedding by maximizing the similarity
between nodes in the neighborhood.
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5.4.4 Encoder Comparison
To assess encoder performance, each model is trained on the subset of train
temporal graphs, each one sampled using RFS. Each encoder is then evaluated
on the corresponding test subset. For each temporal graph, the encoder receives
as input the actual set of graph edges, considered as positive samples, along with
a set of negative samples composed of non-existent edges. A common approach
for generating such negative samples involves drawing from a context-independent
noise distribution, such as random sampling or injected sampling [70]. In this
method, negative samples are drawn independently and without reference to the
structure of observed data. However, given the vast space of potential anomalous
edges, the resulting noise distribution may differ significantly from the empirical
data distribution, which can impair model training and generalization.

To mitigate this issue, a context-dependent negative sampling strategy is adopted.
The core intuition is to generate negative samples that are informed by the graph’s
structure. Formally, the context-dependent noise distribution for a sampled edge
set E0 is defined as:

PE0 ∼ P (E) ·
A

1
N · |E|

B

where P (E) denotes the distribution of observed edges, |E| is the total number of
edges in the graph, and N is the number of nodes.

The procedure begins by randomly selecting a valid edge e = {xa, xb} from the
graph. One of the nodes, say xa, is then replaced with a randomly sampled node
x′

a from the node set, forming a new edge candidate e′ = {x′
a, xb}. If e′ does not

exist in the original graph, it is retained as a valid negative sample; otherwise, it is
discarded.

Starting from the combined set of positive and negative edges, the network
outputs both an existence probability and a predicted weight for each edge. By
assigning a weight prediction also to non-existent edges—whose ground truth weight
is zero—the model is encouraged to align low existence probabilities with low
predicted weights. This dual prediction mechanism enhances the network’s ability
to learn a coherent representation of the graph structure, ultimately improving the
reconstruction of the graph at timestep T .

Table 5.6 and Fig 5.9 summarizes link-prediction AUC and weight-regression
MAE for six temporal graph encoders on BIC4, BIC6, and Country aggrega-
tions. All models achieve strong performance—AUCs above 0.84 and MAEs
below 0.22—demonstrating that graph-based recurrent architectures can effectively
capture the structural and temporal dynamics of large-scale wire-transfer networks.

TGCN stands out in link prediction, with AUCs of 0.9894 (BIC4), 0.9890
(BIC6), and 0.9595 (Country), reflecting its superior ability to model inter-node
dependencies. In contrast, DyGR excels at weight regression, achieving the lowest
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MAEs of 0.1328 (BIC4), 0.1327 (BIC6), and 0.1358 (Country), underscoring its
precision in estimating transaction amounts. The GConv–GRU and GConv–
LSTM variants offer a balanced trade-off, delivering solid AUCs (≈0.97–0.98 on
BIC4/BIC6, ≈0.94 on Country) alongside moderate regression errors (MAE≈0.14–
0.16). Both GCLSTM and LRGCN lag behind on both tasks, with GCLSTM in
particular exhibiting elevated MAE values.

Further experiments performed in this work on the downstream Anomaly De-
tection task will serve to determine which of these strengths—high link-prediction
accuracy or low regression error—most effectively translates into identifying anoma-
lous flows of money.

Method BIC4 BIC6 Country
AUC MAE AUC MAE AUC MAE

TGCN 0.9894 0.1354 0.9890 0.1369 0.9595 0.1459
GConv–GRU 0.9733 0.1389 0.9723 0.1422 0.9400 0.1455
GConv–LSTM 0.9740 0.1492 0.9731 0.1514 0.9406 0.1578
GCLSTM 0.9427 0.2094 0.9345 0.2129 0.9323 0.2121
LRGCN 0.8443 0.1573 0.8261 0.1636 0.8592 0.1551
DyGR 0.9315 0.1328 0.9230 0.1327 0.9253 0.1358

Table 5.6: Link-prediction AUC and weight-regression MAE of GNN models on datasets
aggregated by BIC4, BIC6, and Country (best values in bold).

5.4.5 Anomaly Detection Sensitivity

Model performance on the downstream task of Anomaly Detection is assessed by
applying the pre-trained encoders to anomaly-injected subgraphs extracted from
the test set. This transforms the problem into binary classification: each edge
is assigned by the model a score computed as a weighted sum of its existence
probability and predicted weight, and ROC-AUC is evaluated against ground-truth
labels (0 for anomalous edges, 1 for normal ones). Figure 5.10 and Table 5.7
illustrates the variation in anomaly-detection ROC-AUC for each model as the
fraction of injected anomalies increases from 1% to 20%.

Results show a significant improvement upon static embedding baselines (Deep-
Walk, Node2Vec, Spectral Clustering) for temporal GNN encoders across all aggre-
gation levels and anomaly-injection rates. The baselines are confined to ROC-AUC
values below 0.76 (e.g., Spectral Clustering peaks at 0.7580 on BIC6 and 0.7416 on
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Figure 5.9: Comparison of link-prediction ROC-AUC, regression MAE, and anomaly-detection
ROC-AUC (1% injection) across encoders (averaged over the three datasets and over 10 seeds).

Country), whereas every GNN model consistently exceeds 0.88, demonstrating a
clear advantage of graph-based recurrent architectures for anomaly detection.

Among the GNNs, DyGR attains the highest AUC on both BIC6 (0.9416
at 1% injection) and BIC4 (0.9450 at 1%), while TGCN leads on the Country
aggregation (0.8800 at 1%, rising to 0.9071 at 5%), highlighting its robustness to
varying anomaly rates. The performance drop for DyGR from 1% to 20% injection
is only 0.0132 on BIC6 and 0.0103 on BIC4, and similarly modest for TGCN
(∆AUC < 0.01 on Country), indicating strong stability under increasing anomaly
prevalence.

Intermediate models (GConv–GRU, GConv–LSTM) deliver solid but lower
AUCs (approx. 0.92–0.93 on BIC6/BIC4, approx. 0.85–0.88 on Country), while
GCLSTM and LRGCN trail behind (AUCs as low as 0.6467 and 0.8521 at 20%
on BIC6, respectively).

On top of the quantitative analysis, it is also possible to visualize class separation
for each model by plotting the anomaly score histograms at the 1% injection rate.
These plots highlight the distributions of scores assigned to normal edges and the
three types of anomalous edges introduced: structural, contextual, and re-routing.
In general, most models exhibit good separation between normal and anomalous
classes. An exception is observed in the case of the GCLSTM model, which fails to
outperform the static baselines, suggesting poor discriminative capability in this
setting.

Among the anomaly types, structural and re-routing anomalies consistently
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Method BIC6 BIC4 Country
1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20%

DeepWalk 0.6594 0.6506 0.6525 0.6292 0.5655 0.6070 0.5876 0.5973 0.4847 0.6380 0.6983 0.6234
Node2Vec 0.6248 0.5900 0.6156 0.6164 0.6565 0.6465 0.5840 0.5873 0.7270 0.5535 0.5966 0.5292
Spectral Clustering 0.7580 0.6614 0.6935 0.6877 0.6278 0.7118 0.6810 0.6830 0.6758 0.7416 0.7227 0.6641

TGCN 0.9383 0.9324 0.9291 0.9287 0.9310 0.9278 0.9248 0.9297 0.8800 0.9071 0.9027 0.9065
GConv_GRU 0.9286 0.9278 0.9247 0.9239 0.9291 0.9237 0.9206 0.9269 0.8516 0.8792 0.8686 0.8766
GConv_LSTM 0.9016 0.8986 0.8952 0.8939 0.9118 0.8959 0.8925 0.9018 0.8368 0.8696 0.8560 0.8666
GCLSTM 0.6690 0.6605 0.6560 0.6467 0.6951 0.6702 0.6566 0.6742 0.5671 0.5709 0.5259 0.5690
LRGCN 0.8782 0.8629 0.8563 0.8521 0.8701 0.8620 0.8570 0.8675 0.7556 0.7635 0.7382 0.7660
DyGR 0.9416 0.9339 0.9313 0.9284 0.9450 0.9288 0.9270 0.9347 0.8345 0.8546 0.8414 0.8620

Table 5.7: ROC-AUC of baseline and GNN models on datasets aggregated by BIC6, BIC4, and
Country under varying anomaly-injection rates. Highest AUC per column is highlighted in bold.

Figure 5.10: Comparison of Anomaly Detection AUC at different injection thresholds across
encoders (averaged over the three datasets and over 10 seeds).

emerge as the most difficult to detect, typically resulting in lower anomaly scores.
This behavior can be attributed to the inherent nature of these perturbations.
Unlike contextual anomalies—which involve modifying the weights of existing edges
and therefore only affect the regression head—structural and re-routing anomalies
introduce entirely new edges. As a result, they impact both prediction heads: the
regression head (since the ground truth weight is zero) and the link prediction head
(since these edges are not part of the original, non-perturbed graph and should
ideally be classified as non-existent). This dual challenge makes these anomalies
particularly difficult for the models to learn and correctly identify.
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(a) Correctly predicted edges (TP) (b) Correctly detected anomalies (TN)

(c) Missed anomalies (FN) (d) Wrongly predicted edges (FP)

Figure 5.11: An example of predicted network created by GRAND-Net: the overall structure of
the ground-truth graph is predicted correctly, with an excellent capability of detecting injected
anomalies (see the clear clique structures in figure b).

5.5 Model Deployment on ISP Systems
The model has been designed for seamless integration into the existing ISP AFC/-
MAS Transaction Monitoring workflow. It consumes the monthly transaction
basetables already produced for other AML processes with virtually no additional
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Figure 5.12: Anomalies scores distributions and ROC-AUC curve at 1% injection rate for DyGR
model

Figure 5.13: Anomalies scores distributions and ROC-AUC curve at 1% injection rate for
GCLSTM model

preprocessing. After selecting an encoder of choice, training can be carried out
on a rolling window of the desired amount of months (ideally, 24–36 months of
historical data, sufficient to capture both long-term trends and seasonal effects)
using GPU-equipped workstations provisioned on Google Cloud Platform. Once
trained, the model can be executed each time a new basetable is generated by the
office systems, producing an anomaly score for every edge of the graph induced by
the basetable. Entities whose scores exceed a configurable threshold can be reported
as alerts—targeting potential money-laundering, terrorism-financing, sanctions-
evasion and related risks - for human operators in the office. Once integrated in
the office framework, this pipeline will enable continuous, AI-driven surveillance of
the bank’s entire transaction stream, enhancing human analysts’ ability to detect -
and potentially escalate to next offices in the TXM pipeline - suspicious activity in
near real time.
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Figure 5.14: Anomalies scores distributions and ROC-AUC curve at 1% injection rate for
GConv-GRU model

Figure 5.15: Anomalies scores distributions and ROC-AUC curve at 1% injection rate for
GConv-LSTM model

5.6 Conclusions
The experiments conducted in this chapter demonstrate that Artificial Neural
Network models are a suitable tool to perform anomaly detection tasks on the
large-scale financial flows managed by Intesa Sanpaolo. In particular, the proposed
model GRAND-Net outperforms pre-existing methods by almost %10 in accuracy,
combining structural graph-based encoders and a double classification head to
predict anomaly scores for transactional temporal networks. Leveraging the selected
downsampling algorithm, the model is able to train on a smaller subset of the original
data, improving time and memory-related performances. As with the first model
introduced in this thesis, GRAND-Net is already deployed within Intesa Sanpaolo’s
TXM pipeline. Leveraging the bank’s high-performance infrastructure, it can be
trained on extended time windows of transactional data and, at predetermined
intervals, can be employed to assign anomaly scores to all managed entities at the
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Figure 5.16: Anomalies scores distributions and ROC-AUC curve at 1% injection rate for
LRGCN model

Figure 5.17: Anomalies scores distributions and ROC-AUC curve at 1% injection rate for
TGCN model

desired level of aggregation, based on their observed behaviour over the training
period. This system will add a novel, AI-based tool to the TXM framework of
the bank, providing an innovative top-bottom analysis approach to AML/CFT
operations.

74



Chapter 6

Conclusions and Directions
of Research

6.1 Conclusions
This work has introduced TRACED and GRAND-Net: two network analysis based
solutions to strengthen Intesa Sanpaolo’s Transaction Monitoring (TXM) frame-
work. Unlike conventional TXM approaches—which typically treat transactions
as isolated tabular entries—both proposed algorithms model financial flows as
graphs, capturing complex relational and structural patterns. The first algorithm
implements a classic bottom-up pipeline: it aggregates all transactions related to a
designated target, applies machine-learning techniques (e.g. community detection
on the target’s ego-graph), and visualizes the temporal-relational network through
a novel “flow-view” interface. This graph-centric visualization enables analysts to
trace suspected money-laundering and terrorist-financing patterns more naturally,
spotlight the most suspicious counterparties, and follow the directional movement of
funds. A final aggregate “suspicion score,” computed via network metrics, quantifies
each target’s overall risk level—facilitating rapid ranking, comparison of clients,
and partial automation of the TXM process.

The second algorithm adopts an innovative top-down approach, processing the
full monthly transaction data extracted from the bank’s core base tables. A Graph-
based Recurrent Neural Network takes as input the raw graph spanned by those
transactions—where nodes represent clients and edges represent transactions—to
flag anomalous edges and nodes that deviate from macro-economic flow patterns.
By leveraging both the network’s global structure, topological features of each node
and the evolution in time of those features, this model uncovers large-scale illicit
flow structures—such as hidden layering cycles or indirect fund channels—that
remain undetectable by purely local or bottom-up methods.
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Both frameworks embody a fully AI-driven, Network-Analysis system trained
and validated on proprietary Intesa Sanpaolo transaction data, tailored to the bank’s
operational requirements, and compliant with the latest AML/CFT regulations and
innovation mandates from bodies such as FATF and EUROPOL. By embedding
advanced machine-learning, deep-learning, and graph-analysis techniques into a
seamless TXM pipeline, these solutions automate detection workflows, reduce false
positives, and equip the bank with resilient, adaptive defenses against evolving
money-laundering and terrorist-financing threats.

Both models are already operative in the TXM pipeline of Intesa Sanpaolo, and
will be live tested in the following months to assess their goodness on real-world
scenarios. For this reason, it is impossible at this point of time to predict their
exact performance. However, given the solid statistical foundations of the two
algorithms and their innovative technological approach to uncovering anomalies
among millions of transactions, we anticipate a significant improvement in the
current true positive rate of 3% suggested in literature by [11].

6.2 Future Perspectives
Despite the advances presented in this work, the Transaction Monitoring landscape
remains full of unexplored or underdeveloped possibilities. A first avenue is the
deep integration of internal intelligence: by exploiting the richer counterparty
metadata enabled by ISO 20022 messaging (see Chapter 2), transaction graphs
can be enhanced with relationship hierarchies, risk-profile scores, and customer
segmentations to improve model accuracy without relying on external sources.
A second avenue is the systematic harvesting and processing of Open Source
Intelligence (OSINT)—from corporate registries and sanctions databases to news
outlets and social media—to inject complementary signals into the monitoring
pipeline, albeit at the cost of building robust extraction, linking, and normalization
workflows. A third avenue is advanced Entity Resolution: applying AI-driven name-
matching, ontology-based rules, and sequence models to reconcile ambiguous free-
text fields in payment messages (for example “John Green,” “J. Green,” or “Green
John”) with actual account holders, ensuring that every node in the transaction
graph corresponds to a real-world entity.

Pursuing these directions will not only enrich the network topologies on which
the proposed AI-driven models operate—thereby boosting precision and recall
in anomaly detection—but also fortify the bank’s overall TXM framework. By
embedding enhanced intelligence, external context, and resolved entity linkages
into existing systems, Intesa Sanpaolo will gain more comprehensive tools to
detect suspicious activity, alert authorities, and freeze assets or entities involved in
money-laundering and terrorist-financing schemes.
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Appendix A

Graph Sampling Pseudocode

VSN Pseudocode

1. Initialize random number generator with given seed.
2. Sample V_seed <- UniformRandomSubset(V, k).
3. Initialize V_s <- V_seed.
4. For each u in V_seed do
5. Let N_u <- { w in V | (u, w) in E }.
6. If r is specified then
7. Sample N_u_sample <- UniformRandomSubset(N_u, min(r, |N_u|)).
8. Else
9. N_u_sample <- N_u.
10. Add all vertices in N_u_sample to V_s.
11. Initialize E_s <- \emptyset.
12. For each edge (u, v) in E do
13. If u in V_s and v in V_s then
14. Add (u, v) to E_s.
15. Return G_s = (V_s, E_s).

VS Pseudocode

1. Initialize random number generator with given seed.
2. Sample V_s <- UniformRandomSubset(V, k).
3. Initialize E_s <- \emptyset.
4. For each edge (u, v) in E do
5. If u in V_s and v in V_s then
6. Add (u, v) to E_s.
7. Return G_s = (V_s, E_s).
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Graph Sampling Pseudocode

ES Pseudocode

1. Initialize random number generator with given seed.
2. Sample E_s <- UniformRandomSubset(E, q).
3. Initialize V_s <- \emptyset.
4. For each edge (u, v) in E_s do
5. Add u to V_s.
6. Add v to V_s.
7. Return G_s = (V_s, E_s).

BFS Pseudocode

1. Initialize random number generator with given seed.
2. Select a seed vertex v0 <- UniformRandomElement(V).
3. Initialize V_s <- {v0}, // sampled vertex set
4. Q <- [v0], // FIFO queue
5. While |V_s| < k and Q is not empty do
6. u <- Dequeue(Q).
7. For each neighbor w of u (i.e., (u,w) in E) do
8. If w not in V_s then
9. Add w to V_s.
10. Enqueue(Q, w).
11. If |V_s| = k then
12. Break out of both loops.
13. Initialize E_s <- \emptyset.
14. For each edge (u, v) in E do
15. If u in V_s and v in V_s then
16. Add (u, v) to E_s.
17. Return G_s = (V_s, E_s).

DFS Pseudocode

1. Initialize random number generator with given seed.
2. Select a seed vertex v0 <- UniformRandomElement(V).
3. Initialize V_s <- {v0}, // sampled vertex set
4. S <- [v0], // LIFO stack
5. While |V_s| < k and S is not empty do
6. u <- Pop(S).
7. For each neighbor w of u (i.e., (u, w) in E) do
8. If w not in V_s then
9. Add w to V_s.
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10. Push(S, w).
11. If |V_s| = k then
12. Break out of both loops.
13. Initialize E_s <- \emptyset.
14. For each edge (u, v) in E do
15. If u in V_s and v in V_s then
16. Add (u, v) to E_s.
17. Return G_s = (V_s, E_s).

FFS Pseudocode

1. Initialize random number generator with given seed.
2. Select seed vertex v0 <- UniformRandomElement(V).
3. Initialize V_s <- {v0}, // sampled vertex set
4. Frontier <- {v0}.
5. While |V_s| < k and Frontier is not empty do
6. Initialize NextFrontier <- { }.
7. For each u in Frontier do
8. Let U_u <- { w not in V_s | (u, w) in E }.
9. Draw x_u ~ Geometric(p), capped at |U_u|.
10. If x_u > 0 and U_u is not empty then
11. Sample B_u <- UniformRandomSubset(U_u, min(x_u, |U_u|)).
12. Add all vertices in B_u to V_s.
13. Add all vertices in B_u to NextFrontier.
14. Set Frontier <- NextFrontier.
15. If Frontier is empty and |V_s| < k then
16. Select new seed v’ <- UniformRandomElement(V \ V_s).
17. Add v’ to V_s and Frontier.
18. Initialize E_s <- \emptyset.
19. For each edge (u, v) in E do
20. If u in V_s and v in V_s then
21. Add (u, v) to E_s.
22. Return G_s = (V_s, E_s).

SNOW Pseudocode

1. Initialize random number generator with given seed.
2. Select seed vertex v0 <- UniformRandomElement(V).
3. Initialize V_s <- {v0}, // sampled vertex set
4. Frontier <- {v0}.
5. While |V_s| < k and Frontier is not empty do
6. Initialize NextFrontier <- { }.
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7. For each u in Frontier do
8. Let U_u <- { w not in V_s | (u, w) in E }.
9. If |U_u| <= r then
10. B_u <- U_u.
11. Else
12. Sample B_u <- UniformRandomSubset(U_u, r).
13. Add all vertices in B_u to V_s and NextFrontier.
14. Set Frontier <- NextFrontier.
15. If Frontier is empty and |V_s| < k then
16. Select new seed v’ <- UniformRandomElement(V \ V_s).
17. Add v’ to V_s and Frontier.
18. Initialize E_s <- \emptyset.
19. For each edge (u, v) in E do
20. If u in V_s and v in V_s then
21. Add (u, v) to E_s.
22. Return G_s = (V_s, E_s).

RFS Pseudocode

1. Initialize random number generator with given seed.
2. Select seed vertex v0 <- UniformRandomElement(V).
3. Initialize V_s <- {v0}, // sampled vertex set
4. Frontier <- {v0}.
5. While |V_s| < k and Frontier is not empty do
6. Select u <- UniformRandomElement(Frontier).
7. Remove u from Frontier.
8. Let U_u <- { w not in V_s | (u, w) in E }.
9. For each w in U_u do
10. Add w to V_s.
11. Add w to Frontier.
12. If |V_s| = k then
13. Break out of loops.
14. If Frontier is empty and |V_s| < k then
15. Select new seed v’ <- UniformRandomElement(V \ V_s).
16. Add v’ to V_s and Frontier.
17. Initialize E_s <- \emptyset.
18. For each edge (u, v) in E do
19. If u in V_s and v in V_s then
20. Add (u, v) to E_s.
21. Return G_s = (V_s, E_s).
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Graph Sampling Pseudocode

RWE Pseudocode

1. Initialize random number generator with given seed.
2. Select initial vertex v <- UniformRandomElement(V).
3. Initialize V_s <- {v}, // sampled vertex set
4. While |V_s| < k do
5. Draw u ~ Uniform(0,1).
6. If u < alpha then
7. v <- UniformRandomElement(V).
8. Else
9. Let N_v <- { w | (v, w) in E }.
10. If N_v is not empty then
11. Select v <- UniformRandomElement(N_v).
12. If v not in V_s then
13. Add v to V_s.
14. Initialize E_s <- \emptyset.
15. For each edge (u, w) in E do
16. If u in V_s and w in V_s then
17. Add (u, w) to E_s.
18. Return G_s = (V_s, E_s).
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Appendix B

Learning Curves

Figure B.1: Learning curves for the link prediction and weight regression heads of DyGR model
retrained with 10 different seeds

Figure B.2: Learning curves for the link prediction and weight regression heads of TGCN model
retrained with 10 different seeds
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Learning Curves

Figure B.3: Learning curves for the link prediction and weight regression heads of GConv-GRU
model retrained with 10 different seeds

Figure B.4: Learning curves for the link prediction and weight regression heads of GConv-LSTM
model retrained with 10 different seeds
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Learning Curves

Figure B.5: Learning curves for the link prediction and weight regression heads of GCLSTM
model retrained with 10 different seeds

Figure B.6: Learning curves for the link prediction and weight regression heads of LRGCN
model retrained with 10 different seeds
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