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Abstract

The increasing adoption of the computing continuum, where applications span
across cloud, edge, and on-premise infrastructures, has introduced new challenges
in securing network communications. In such heterogeneous and dynamic envi-
ronments, Kubernetes has emerged as the standard platform for orchestrating
containerized workloads. However, its native networking model and built-in Net-
workPolicies are often insufficient to guarantee fine-grained and adaptive traffic
control, especially in multi-cluster scenarios.

This thesis investigates how to achieve precise and automated network isolation
within Kubernetes-based multi-cluster topologies, with a focus on deployments
extended through Liqo, an open-source framework for transparent multi-cluster
resource sharing. The proposed solution introduces multiple Kubernetes controllers
capable of observing shared resources between different clusters, and dynamically
generate security policies mapped to low-level nftables firewall rules or through
Kubernetes Network Policies.

Specifically the aim is to define and enforce clear security boundaries around a
Kubernetes cluster that is part of a multi-cluster topology. To achieve this, the
proposed system introduces a mechanism for selectively blocking network traffic
within a peered cluster by dynamically applying fine-grained filtering rules. This
is accomplished through the combined use of low-level nftables rules for precise
traffic control, and Kubernetes-native controllers. The controllers continuously
monitor the environment and adapt network isolation strategies based on workload
placement, origin, and namespace context. In doing so, this thesis delivers a flexible
and extensible framework that automates network policy enforcement and reduces
manual configuration overhead, while ensuring robust workload isolation across
cluster boundaries.
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Chapter 1

Introduction

In recent years, the evolution of distributed systems and the increasing availability
of heterogeneous resources have led to the emergence of the computing continuum
paradigm. This model envisions a seamless integration of cloud, edge, and on-
premise infrastructures, allowing applications to dynamically span across multiple
execution layers. While this approach enables new levels of flexibility and scalability,
it also introduces non-trivial challenges in terms of security, especially regarding
communication across infrastructure boundaries.

Kubernetes has become the de facto standard for orchestrating containerized
workloads, providing primitives for scalability, scheduling, and service abstraction.
However, when Kubernetes clusters are interconnected, particularly in multi-cluster
and federated setups, enforcing consistent and granular network policies becomes a
critical concern. In such environments, traditional Kubernetes Network Policies
may not provide the level of expressiveness or control required to securely isolate
workloads, especially when those workloads are dynamically moved or replicated
across clusters.

This thesis focuses on addressing this problem by designing and implementing
a system that dynamically generates fine-grained network policies, capable of
adapting to the evolving nature of the computing continuum. The proposed
solution integrates a Kubernetes-native controller, enabling a more expressive and
low-level filtering mechanism by combining nftables rules and Kubernetes Network
Policies, depending on the context. The implementation is evaluated in the context
of Liqo, an open-source project for Kubernetes multi-cluster federation, where
workloads can be transparently offloaded from one cluster to another.
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Introduction

1.1 Goal of the thesis
The thesis aims to define and enforce clear security boundaries around a Kubernetes
cluster that is part of a multi-cluster topology. To achieve this, the proposed
system introduces a mechanism for selectively blocking network traffic within
a peered cluster by dynamically applying fine-grained filtering rules. This is
accomplished through the combined use of low-level nftables rules for precise
traffic control, and Kubernetes-native controllers. The controllers continuously
monitor the environment and adapt network isolation strategies based on workload
placement, origin, and namespace context. In doing so, this thesis delivers a flexible
and extensible framework that automates network policy enforcement and reduces
manual configuration overhead, while ensuring robust workload isolation across
cluster boundaries.
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Chapter 2

Background

To fully understand the design choices, implementation details, and the overall
contribution of this thesis, it is essential to first introduce the core technologies on
which the work is based. In particular, the system designed and implemented relies
heavily on Kubernetes, as well as on Liqo, a framework that extends Kubernetes to
support multi-cluster topologies, and on nftables, a framework for packet filtering
and firewalling. A solid understanding of Kubernetes and its internal components is
especially important, as the proposed system integrates tightly with the Kubernetes
control plane and resource model. Concepts such as Pods, Namespaces, Controllers
and Custom Resource Definitions (CRDs) are fundamental to appreciate how
security policies are generated and enforced dynamically in response to changes in
the cluster topology and workload placement. In addition to Kubernetes, a thorough
understanding of Liqo is crucial to fully understand the scope and challenges
addressed by this work. Liqo extends Kubernetes by enabling seamless federation
of independent clusters, allowing resources such as Pods and Namespaces to be
offloaded across administrative boundaries. This capability introduces new security
challenges, as traditional intra-cluster isolation mechanisms are no longer sufficient.
The system proposed in this thesis builds upon Liqo’s offloading mechanisms to
implement network isolation and access control policies that span multiple clusters,
ensuring that cross-cluster interactions respect strict security boundaries.
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Background

2.1 Kubernetes
Kubernetes is an open-source container orchestration platform designed to automate
the deployment, scaling, and management of containerized applications. Origi-
nally developed by Google and now maintained by the Cloud Native Computing
Foundation (CNCF), Kubernetes has become the de facto standard for managing
distributed workloads in cloud-native environments. This section introduces the
key components of Kubernetes that are essential for understanding the architecture
and implementation of the system proposed in this thesis. In particular, it focuses
on the concepts of clusters, workloads, resource isolation, extensibility mechanisms,
and network policy enforcement.

2.1.1 Cluster Architecture
A Kubernetes cluster is composed of a control plane and a set of worker machines,
known as nodes, which are responsible for running containerized applications. At
least one worker node is required in every cluster to host and execute Pods. The
control plane is responsible for managing the worker nodes and the Pods running
within the cluster. In production-grade deployments, it is typically distributed
across multiple machines to ensure fault tolerance and high availability. Similarly,
the cluster itself is composed of several nodes to support scalability and resilience.

Control plane components are responsible for maintaining the desired state
of the cluster, scheduling workloads, and managing resources. The key components
of the control plane include:

• kube-api-server: The API server is a component of the Kubernetes control
plane that exposes the Kubernetes API. The API server is the front end for
the Kubernetes control plane.

• etcd: A distributed key-value store that stores all cluster data, including
configuration, state, and metadata.

• kube-scheduler: The scheduler is responsible for assigning Pods to nodes
based on resource requirements and constraints.

• kube-controller-manager: The controller manager runs controllers that
monitor the state of the cluster and make decisions to ensure that the desired
state matches the actual state.

• cloud-controller-manager: This component interacts with the underlying
cloud provider to manage resources such as load balancers, storage, and
networking.
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Background

Figure 2.1: Kubernetes Cluster Architecture

Node components are responsible for running the actual workloads and
managing the lifecycle of Pods. Each node in a Kubernetes cluster runs several key
components:

• kubelet: An agent that runs on each node and ensures that containers are
running as expected. It communicates with the control plane to report the
status of Pods and to receive instructions.

• container runtime: The software responsible for running containers. Kuber-
netes supports various container runtimes, such as Docker, containerd, and
CRI-O.

• kube-proxy (optional): A network proxy that maintains network rules
on nodes, allowing Pods to communicate with each other and with external
services.
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Background

2.1.2 Workload Abstractions
Kubernetes provides several high-level abstractions to define and manage workloads:

ReplicaSet: Ensures that a specified number of identical Pods are running at
all times.

Deployment: A higher-level abstraction that manages ReplicaSets and provides
declarative updates to Pods.

DaemonSet: Ensures that a copy of a Pod is running on each node in the
cluster.

StatefulSet: Manages stateful applications by providing stable network identi-
ties and persistent storage.

2.1.3 Namespaces and Resource Isolation
Namespaces provide a mechanism for isolating groups of resources within the
same cluster. They are commonly used to divide environments (e.g., development,
staging, production) or to separate different tenants in multi-tenant architectures.
Namespaces are a key concept in this thesis because the system implements
fine-grained network policies based on the namespace origin of workloads. For
example, offloaded Pods from remote clusters are automatically placed in dedicated
namespaces, which can be used as a identifier for policy boundary.

2.1.4 Controllers and Operators
Controllers are control loop processes that watch the state of the cluster and
reconcile it with a desired state. Kubernetes provides built-in controllers for core
resources (e.g., Pods, Deployments), but the platform is also extensible through the
concept of Operators. An Operator is a specialized controller that encodes domain-
specific knowledge to manage custom resources and complex applications. In this
thesis, custom controllers are implemented to observe and manage network isolation
policies dynamically, based on the presence of offloaded Pods and contextual
information such as namespaces and peer clusters.

2.1.5 Custom Resource Definitions (CRDs)
Custom Resource Definitions are a powerful feature of Kubernetes that allows
users to extend the Kubernetes API with their own resource types. CRDs enable
the creation of custom resources that behave like native Kubernetes resources,
allowing users to define and manage their own application-specific objects and
workflows. A CRD is defined by creating a YAML manifest that specifies the name,
schema, and behavior of the new resource type. Once applied to the cluster, users
can create, read, update, and delete instances of the custom resource using standard
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Kubernetes tools such as kubectl. The Kubernetes API server stores these custom
resources in etcd alongside native resources, and controllers can watch and react
to changes in their state.

CRDs are a powerful Kubernetes extension mechanism that allows users to
define new types of resources. They are the foundation for building Operators and
other Kubernetes-native extensions. In the proposed system, CRDs are used to
represent high-level network isolation intents, which are then translated by the
controller into low-level firewall rules and Kubernetes Network Policies.

2.1.6 Networking and Network Policies
Kubernetes provides a flexible networking model where each Pod gets its own
IP address, and Pods can generally communicate with each other across Nodes.
However, this model is too permissive for many use cases that require stricter
security boundaries. To address this, Kubernetes supports Network Policies, which
allow administrators to define rules that control traffic flow between Pods based on
labels and namespaces. Network Policies are enforced by the Container Network
Interface (CNI) plugin used by the cluster (e.g., Calico, Cilium). In this thesis,
Network Policies are used in conjunction with nftables to implement a layered
filtering mechanism. While Network Policies provide a Kubernetes-native way to
express security rules, nftables enables low-level enforcement that is independent
of the container runtime or network plugin.

2.1.7 Admission Webhooks
Webhooks are a powerful mechanism in Kubernetes that allows users to extend
the API server’s functionality by intercepting requests to create, update, or delete
resources. They can be used for validation, mutation, or admission control of
resources before they are persisted in the cluster. Webhooks main use case is to
validate and mutate resources before they are stored in the cluster. For example,
a validation webhook can check if a new resource meets certain criteria (e.g.,
required fields, valid values) before allowing it to be created. A mutation webhook
can modify the resource to add default values or apply transformations. Official
kubernetes documentation defines Admission Webhooks as:

Admission webhooks are HTTP callbacks that receive admission requests
and do something with them. [...] Mutating admission webhooks are
invoked first, and can modify objects sent to the API server to enforce
custom defaults. After all object modifications are complete, and after
the incoming object is validated by the API server, validating admission
webhooks are invoked and can reject requests to enforce custom policies.
[1]
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There are two types of webhooks in Kubernetes:

• Validating Webhooks: These webhooks are called before a resource is
persisted in the cluster. They can reject requests that do not meet validation
criteria, preventing invalid resources from being created or updated.

• Mutating Webhooks: These webhooks are called after a resource is validated
but before it is stored. They can modify the resource, adding default values
or applying transformations.

In this thesis, webhooks are used to validate and mutate custom resources
related to the extended Custom Resource Definition for Network Security Engine
part. They ensure that only well-formed and secure configurations are applied to
the cluster, preventing misconfigurations that could lead to security vulnerabilities
or network disruptions.
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2.2 Liqo
Liqo is an open-source framework designed to extend Kubernetes with multi-
cluster capabilities, enabling seamless workload sharing and resource management
across multiple Kubernetes clusters. It provides a set of APIs and controllers that
facilitate the discovery, communication, and synchronization of resources between
clusters, allowing users to create a unified environment for deploying and managing
applications across different Kubernetes instances. Liqo’s architecture is based on
a peer-to-peer model, where clusters can dynamically discover and connect to each
other, forming a federated network of Kubernetes clusters. This approach allows
for efficient resource sharing, workload offloading, and cross-cluster communication,
making it suitable for scenarios such as hybrid cloud deployments, multi-cloud
strategies, and edge computing. Liqo’s key features include:

• Workload Offloading: Liqo allows users to offload workloads from one
cluster to another, enabling efficient resource utilization and load balancing
across clusters.

• Cross-Cluster Communication: Liqo provides mechanisms for secure
and efficient communication between clusters, allowing applications to access
resources and services across different Kubernetes instances.

• Resource Sharing: Liqo enables the sharing of resources such as Pods,
Services, and ConfigMaps between clusters, facilitating collaboration and
resource optimization.

• Dynamic Discovery: Clusters can dynamically discover each other and
establish connections, allowing for flexible and scalable multi-cluster architec-
tures.
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2.2.1 Architecture
In this section we will introduce the architecture of Liqo, focusing on its key
components and how they interact to enable multi-cluster capabilities in Kubernetes.
Liqo defines the concept of Peering and Offloading as the two main operations
that allow clusters to interact and share resources.

Peering

Liqo defines Peering

as a unidirectional resource and service consumption relationship between
two Kubernetes clusters. [2]

Peering is initiated by one cluster and accepted by the other cluster. To establish
a successful peering, both clusters must have the Liqo components installed and
configured correctly. The peering process involves exchanging information, where
two kind of traffic are required:

• Authentication and Offloading traffic: Liqo uses a token-based authen-
tication mechanism to securely establish trust between clusters, but provider
cluster API server must be reachable by the consumer.

• Network traffic: this is required for pod-to-pod and pod-to-service com-
munication. The network fabric is established by exposing a UDP endpoint
(through a Service). See Controller Manager.

Offloading

Liqo defines Offloading

as a solution to enable the transparent extension of the local cluster. Is
enabled by a virtual node, which is spawned in the local (i.e., consumer)
cluster at the end of the peering process, and represents (and aggregates)
the subset of resources shared by the remote cluster. [3]

Offloading is a key feature of Liqo that enables clusters to share workloads dynami-
cally based on resource availability and workload requirements. When a cluster
offloads a workload, it creates a representation of the workload in the target cluster,
allowing it to run seamlessly as if it were native to that cluster.
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2.2.2 Components
Liqo consists of several components that work together to enable multi-cluster
capabilities. The main components include:

Controller Manager

The controller-manager contains the control plane of the Liqo network
fabric. It runs as a pod (liqo-controller-manager) and is responsible for
setting up the network CRDs during the connection process to a remote
cluster. [4]

In particular, the network fabric constitutes the Liqo subsystem responsible
for transparently extending the Kubernetes networking model across multiple
independent clusters. This enables offloaded pods to communicate with one another
as if they were running within the same local cluster.

The network fabric ensures full connectivity between pods of a local cluster
and those of remote peered clusters, supporting both direct communication and
communication via Network Address Translation (NAT). Given the heterogeneity
of the clusters involved, including differences in configuration parameters and
CNI plugins, it is not always possible to avoid overlapping PodCIDR ranges.
In such cases, address translation mechanisms are employed, although NAT-less
communication is preferred when address spaces are disjoint.

Liqo Gateway

The Liqo Gateway is a component of the network fabric that runs as
a pod on each cluster. It is responsible for managing the VPN tunnels
between peered clusters and ensuring secure communication. The gateway
also updates routing tables and configures NAT rules to handle address
conflicts (i.e. overlapped CIDR).

Virtual Kubelet

A virtual kubelet replaces a traditional kubelet when the controlled entity
is not a physical node. In the context of Liqo, it interacts with both the
local and the remote clusters. [3]

Virtual Node

A virtual node summarizes and abstracts the amount of resources (e.g.,
CPU, memory, . . . ) shared by a given remote cluster. Specifically, the
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virtual kubelet automatically propagates the negotiated configuration
into the capacity and allocatable entries of the node status. [3]

2.2.3 Intra-Cluster Communication
Intra-cluster communication in Liqo is managed through the Kubernetes networking
model, which allows Pods to communicate with each other using their IP addresses.
Each Pod is assigned a unique IP address, and Kubernetes provides a flat network
space where Pods can reach each other without Network Address Translation
(NAT). However, a distinct mechanism is employed for external communication,
specifically for traffic flowing between the gateway and the individual pods. In this
particular scenario, the data packets are not routed directly. Instead, the traffic
between the gateway and the pods is orchestrated to first traverse through the
node where the target pod resides. From that node, the communication is then
securely directed to the pod utilizing Geneve tunnels.

2.2.4 Inter-Cluster Communication
The interconnection between peered clusters is implemented via secure VPN tunnels
using WireGuard, which are dynamically established at the end of the peering
process based on the negotiated parameters. These tunnels are managed by Liqo
Gateways components of the network fabric running as pods. Each remote cluster
has a dedicated Liqo Gateway pod on both ends of the tunnel. The gateways also
update the routing tables with the relevant Liqo custom resources and configure the
necessary NAT rules to handle address conflicts, leveraging nftables. The overlay
network is used to route all traffic originating from local pods or nodes that is
destined for a remote cluster through the gateway, where it enters the VPN tunnel.
On the receiving side, traffic exiting the VPN tunnel enters the overlay network to
reach the node hosting the target pod. As said before Liqo employs a Geneve-based
setup, managed by a network fabric component that runs on every physical node in
the cluster as a DaemonSet. This component creates tunnels connecting nodes to
gateways. The endpoints of these tunnels correspond to node and pod IP addresses,
allowing Liqo to leverage the CNI for connections between nodes and gateways
and to benefit from CNI features such as encryption. Additionally, it manages the
routing entries on each node to ensure proper traffic forwarding.
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2.3 NFTable
Nftables is the new framework for packet filtering and manipulation that replaces
the legacy iptables framework and offers a more flexible and efficient way to manage
network traffic rules. Nftables uses a single, unified syntax for defining rules, making
it easier to manage complex firewall configurations. It supports both IPv4 and IPv6,
as well as various protocols and connection tracking features. It operates at the
kernel level, allowing it to filter and manipulate network packets before they reach
user-space applications. This makes it suitable for implementing high-performance
firewalls and network security policies.

2.3.1 Key Features of nftables
• Unified Rule Syntax: uses a single syntax for defining rules, making it

easier to manage and understand complex configurations.

• Stateful Filtering: It supports stateful packet filtering, allowing rules to
match packets based on their connection state (e.g., established, related).

• Sets and Maps: nftables allows the use of sets and maps to group multiple
addresses or ports, simplifying rule management and improving performance.

Advanced Capabilities and Advantages
In addition to its basic features, nftables introduces several advanced capabilities
that significantly enhance its flexibility and scalability compared to legacy tools
like iptables:

• Reduced Rule Duplication: Through the use of sets and maps, adminis-
trators can define large groups of IP addresses, ports, or interfaces, applying
rules collectively rather than duplicating similar rules for each element.

• Improved Performance: Operating within the kernel’s Netfilter framework,
nftables processes packets efficiently with minimal overhead, which is critical
for high-throughput environments or systems handling large volumes of network
traffic.

• Atomic Rule Updates: Rules can be modified or replaced atomically,
reducing the risk of inconsistent states during configuration changes and
ensuring uninterrupted traffic filtering during updates.

• Rich Matching Capabilities: Beyond traditional matching on IP addresses
and ports, nftables can inspect packet headers, protocols, interfaces, connec-
tion states, and other attributes, enabling fine-grained control over traffic.
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• Scripting and Automation Friendly: Rules can be defined using declar-
ative configuration files or managed dynamically via the nft command-line
tool, which simplifies integration with automation tools and custom security
solutions.

Comparison with iptables
The transition from iptables to nftables represents a significant evolution in
Linux’s packet filtering capabilities, driven by the limitations of iptables in
modern, complex networking environments. While iptables has been a robust
solution for many years, its design, which essentially duplicated the filtering logic for
IPv4, IPv6, ARP, and bridging, became increasingly cumbersome and inefficient.

nftables addresses these challenges by offering a unified syntax and frame-
work. Unlike iptables, which required separate utilities and rule sets for different
protocols (e.g., iptables for IPv4, ip6tables for IPv6, arptables for ARP, and
ebtables for Ethernet bridging), nftables provides a single command-line tool,
nft, to manage all aspects of packet filtering. This simplifies rule creation, man-
agement, and debugging. For instance, a single inet table can handle both IPv4
and IPv6 traffic with one consistent set of rules.

From a performance perspective, iptables processes rules linearly, which can
degrade performance significantly with large rule sets. In contrast, nftables
leverages optimized kernel data structures such as sets and maps, which allow
for more efficient rule lookups, especially when managing large numbers of IP
addresses, ports, or other elements. The rules are compiled into bytecode for a
virtual machine running in the kernel, resulting in faster execution.

One of the major advantages of nftables is its support for atomic rule updates.
With iptables, updating rules often required flushing the entire rule set and
reloading it, leading to brief moments of inconsistency or insecurity. nftables
allows users to define a new rule set or make incremental changes, and then
apply them as a single atomic operation, eliminating race conditions and ensuring
consistency, a critical feature in dynamic environments like Kubernetes.

nftables also introduces greater flexibility in rule management. While iptables
enforces a rigid structure with predefined tables and base chains, nftables allows
administrators to explicitly define tables, chains, and rules from scratch. It supports
key concatenation (e.g., matching both IP address and port in a single condition)
and allows a single rule to perform multiple actions (e.g., logging and dropping a
packet), simplifying complex configurations.

Advanced features are also better supported. Unlike iptables, which relied
on external tools like ipset for managing large groups of IP addresses, nftables
includes native support for sets and maps. It also provides enhanced logging options
and built-in tracing features that aid in debugging.
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Additionally, nftables reduces code duplication within the Linux kernel. The
protocol-specific design of iptables resulted in significant duplication across differ-
ent filtering utilities, while nftables simplifies and unifies the packet classification
framework, making the firewalling codebase more maintainable and adaptable to
new protocols.

In summary, nftables overcomes the limitations of iptables by offering a
more modern, efficient, and flexible approach to packet filtering. Its unified syntax,
improved performance, atomic updates, and support for advanced features make
it a better fit for dynamic and large-scale environments, such as cloud-native
deployments and federated Kubernetes clusters. Although iptables remains
in use—often with nftables acting as a backend through compatibility layers—
nftables clearly represents the future of Linux firewalling.

Limitations and Considerations
Despite its many advantages, nftables also presents certain limitations. One of
the main challenges is the learning curve for system administrators familiar with
iptables, as the new syntax and configuration model may require adaptation.
Furthermore, backward compatibility can be an issue; existing iptables-based
scripts and tools might need modifications or complete rewrites. Finally, while
nftables is well-supported in most modern Linux distributions, some legacy
systems or third-party tools still rely on iptables, potentially requiring hybrid
configurations.

Nonetheless, in the context of this thesis, nftables has proven to be a powerful
tool for enforcing inter-cluster security, providing the flexibility and performance
needed to implement dynamic and fine-grained filtering policies in a federated
Kubernetes environment.
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2.3.2 Types of Chains in nftables

A chain is an ordered set of rules that is triggered at specific points during packet
processing. Chains can be classified into:

1. Base Chains (Hook Chains) These chains are directly linked to kernel
hooks, meaning they intercept packets at well-defined points in the networking
stack. When creating a base chain, you must specify:

• Hook: the interception point (e.g., prerouting, input, forward, output,
postrouting).

• Priority: the execution order among multiple chains hooked at the same
point.

• Policy (optional): the default behavior (e.g., accept, drop) if no rule matches.

Common hook points:

Hook Description
prerouting Before routing decision
input Packets destined to local system
forward Packets being routed through the system
output Packets generated locally
postrouting Just before leaving the system

2. Regular Chains (Non-Hook Chains) These chains are internal chains
that can be called from other chains using actions like jump or goto. They are
used to modularize rulesets for better readability and reuse.

Difference between jump and goto:

• jump: After executing the called chain, return to the next rule in the calling
chain.

• goto: After executing the called chain, continue processing from the next rule
in the target chain.

Types of Rules in nftables

Rules consist of conditions and actions applied to packets. Each rule contains:

• Match conditions: Filters based on packet attributes, such as:

– Source/destination IP addresses
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– TCP/UDP ports
– Protocol types (TCP, UDP, ICMP, etc.)
– Network interface
– Connection tracking state (conntrack)
– TCP flags (e.g., SYN, ACK)

• Actions: What to do if the condition matches, for example:

– accept: allow the packet
– drop: silently discard the packet
– reject: discard the packet with an error
– log: record the packet information in the system log
– counter: increment a counter for matched packets
– jump/goto: transfer processing to another chain
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2.3.3 Nftables in Multi-Cluster Kubernetes Security
The system presented in this thesis leverages nftables as a fundamental component
to enforce network-level isolation and security policies within federated Kubernetes
environments. Specifically, nftables is used to:

• Implement strict filtering rules on gateway pods responsible for inter-cluster
traffic, ensuring that only authorized connections between clusters are permit-
ted.

• Dynamically adapt filtering policies based on changes in the multi-cluster
topology, such as the offloading of workloads or the establishment of new
peering relationships via Liqo.

• Allowing for disjoint address spaces through NAT in gateway pods, enabling
communication between Pods in different clusters without IP address conflicts.

Thanks to its kernel-level efficiency, extensibility, and dynamic management
capabilities, nftables is particularly well-suited to the requirements of secure, dis-
tributed Kubernetes deployments, where maintaining control over traffic boundaries
across clusters is essential.
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2.3.4 Nftables and Liqo
By default Liqo uses nftables to enforce NAT rules for cross-cluster communication.
This allows Pods in different clusters to communicate with each other while main-
taining network isolation. Currently, Liqo can operate with nftables in NAT-less
or NAT mode, meaning, in the first case, that it does not perform any address
translation for offloaded Pods. This is possible because the offloaded Pods are
placed in dedicated namespaces, which allows for disjoint address spaces across
clusters. However, this mode requires careful management of network policies to
ensure that traffic is correctly routed and filtered without overlapping IP addresses.

Liqo introduces also the support for NAT-based offloading, in case where the
offloaded Pods share the same address space as the local cluster (overlapped CIDR).
In this case, nftables is used to implement NAT rules that allow Pods in different
clusters to communicate without IP address conflicts. This is particularly useful
in scenarios where clusters have overlapping PodCIDR ranges or when offloaded
workloads need to interact with local services.

In order to enforce NAT rules, Liqo uses NFTables Chains of type pre-routing,
post-routing, and output. These chains are responsible for handling the traffic that
enters and exits the cluster, ensuring that packets are correctly translated and
routed to their intended destinations. The rules in these chains are dynamically
generated based on the peering relationships and offloaded workloads, allowing for
flexible and adaptive network policies. The implementation chapter will explore the
implementation of chain type forward and how nftables is used in conjunction with
Liqo to implement fine-grained network isolation policies that adapt dynamically
to changes in the cluster topology and workload placement by applying network
filtering rules.
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Chapter 3

The Problem of Interest

Modern Kubernetes deployments increasingly rely on multi-cluster architectures to
improve scalability, resilience, and resource utilization. In this context, Liqo enables
seamless workload offloading by allowing a “consumer” cluster to run its Pods
on a remote “provider” cluster without modifying application logic or networking
configurations. While this abstraction offers flexibility and resource sharing, it
introduces critical security and isolation challenges: Offloaded Pods are executed
within the provider cluster but originate from and belong to the consumer cluster;
Liqo automatically establishes network peering between the clusters, exposing data
plane connectivity across administrative boundaries. By default, all Pods in the
consumer cluster, not just those offloaded, may gain network-level access to remote
resources within the provider cluster.
This default behavior can lead to unauthorized cross-cluster access, especially
problematic in multi-tenant scenarios or collaborative environments where clusters
are owned by different organizations or departments.

Without proper isolation, a consumer cluster could interact with offloaded Pods
or even sensitive components belonging to other consumers within the same provider
cluster. This highlights the necessity of fine-grained network policies and explicit
traffic control mechanisms to ensure that: the consumer cluster only accesses the
Pods and namespaces it has offloaded. Offloaded Pods are reachable from their
source cluster but isolated from other consumers.
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3.1 Enforcing Isolation at the Peering Gateway
Level

To effectively control cross-cluster communication in a Liqo-enabled environment,
it is not sufficient to apply Kubernetes-native constructs like NetworkPolicies alone.
These policies control traffic at the IP and port level (OSI layer 3 and 4), but
they have limitations in enforcing strict isolation across clusters, especially for
inter-cluster traffic. In particular, NetworkPolicies are not designed to handle the
complexities of multi-cluster networking, where Pods from different clusters may
need to communicate while still maintaining strict boundaries.

3.1.1 Why Not (only) NetworkPolicies?
NetworkPolicies in Kubernetes are primarily designed to manage traffic within a
single cluster, focusing on Pod-to-Pod communication based on labels and selectors.
However, in a multi-cluster setup like Liqo, where Pods from different clusters
can be offloaded and executed in a provider cluster, NetworkPolicies alone are
insufficient for several reasons:

• CNI Dependecy: NetworkPolicies rely on the underlying Container Network
Interface (CNI) plugin to enforce rules. Not all CNI plugins support advanced
features required for cross-cluster isolation, leading to inconsistent behavior.

• Single-Cluster Scope: NetworkPolicies are scoped to a single cluster and do
not inherently understand the context of offloaded Pods from other clusters.
This makes it difficult to enforce policies that span multiple clusters.

• Node-Level Traffic: Pods can always communicate with each other at the
node level, bypassing NetworkPolicies. This is particularly problematic in a
multi-cluster setup where Pods from different clusters may share the same
nodes in the provider cluster. [5]

Additionally, Liqo encapsulates cross-cluster communication through its peering
gateways, which handle the routing of traffic between clusters. This abstraction
layer makes invisible to some CNIs, and thus to NetworkPolicies, the actual source
and destination of the traffic, complicating the enforcement of isolation rules.
From tests done, Cilium CNI is able to enforce NetworkPolicies for offloaded
Pods, but this is not the case for all CNIs. For example, Calico does not support
this feature, leading to potential security risks in multi-cluster deployments. The
solution proposed includes using nftables-based packet filtering directly on the Liqo
gateways in the provider cluster, ensures precise traffic filtering, enforcing security
before packets reach the node’s network stack.
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3.2 Case Studies
This work focuses on analyzing the security challenges related to Provider Protec-
tion, where a consumer cluster offloads Pods to a provider cluster, and strict traffic
control is required to avoid unintended interactions with the provider environment.
In particular, offloaded Pods may need to access specific services on the provider
side (e.g., networking or storage components exposed by the provider), but they
must be prevented from interacting with other Pods or namespaces unrelated to the
consumer cluster. To better frame this problem, consider the following scenarios:

• Provider Protection (Focus of this thesis): A consumer cluster offloads
Pods to a provider cluster. The offloaded Pods are allowed to access only
selected resources within the provider environment. Communication towards
other Pods or namespaces that do not belong to the same consumer cluster
must be strictly prohibited to prevent lateral movement or unintended access
to shared infrastructure.

• Consumer Isolation in Multi-Tenant Environments: Multiple consumer
clusters offload Pods to the same provider cluster. In this scenario, additional
safeguards are needed to ensure that Pods belonging to different consumers
remain completely isolated from each other.

• Consumer Protection (Out of Scope): A consumer cluster offloads Pods
to a provider cluster, but requires mechanisms to prevent the provider cluster
from initiating unsolicited communication towards the consumer’s resources.

• – Consumer Protection Leaf-to-Leaf Traffic (Out of Scope): A con-
sumer cluster offloads Pods to a provider cluster, but requires mechanisms
to prevent Pods offloaded to different provider clusters from communicat-
ing with each other. This is particularly relevant in scenarios like federated
learning, where strict isolation between offloaded Pods is required.

• Internet Protection (Out of Scope): A consumer cluster offloads Pods
to a provider cluster, but requires mechanisms to redirect traffic from the
provider cluster to the internet, ensuring that offloaded Pods can only access
external resources through controlled gateways, or come back to the consumer
cluster.

This thesis provides a detailed design and implementation of Provider Protec-
tion, proposing a solution to enforce strict network isolation for offloaded workloads
on the provider side. The other scenarios are acknowledged for completeness but
are left as future work.
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3.2.1 Provider Protection
Consumer cluster can only contact their offloaded pods in the provider
cluster

For the sake of simplicity in this scenario, we will consider a single consumer
cluster that offloads Pods (and the relative namespaces) to the provider cluster.
The key requirement is to ensure that consumer cluster can only access its own
offloaded resources, without any possibility of interacting with non-offloaded Pods
or namespaces within the provider cluster.

The proposed solution enforces traffic filtering directly at the gateway level,
ensuring that:

• The consumer cluster can only reach the Pods and namespaces offloaded by
itself.

• Traffic from the consumer cluster to the provider cluster is restricted to
offloaded Pods and namespaces, preventing access to any other resources in
the provider cluster.

• Offloaded Pods can communicate with each other, but they are isolated from
non-offloaded Pods in the provider cluster.

Figure 3.1: Provider Protection Scenario
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Green arrows indicate allowed traffic within the same consumer’s offloaded
resources. Red arrows indicate blocked traffic between different consumers.
Dotted arrows represent logical traffic paths.

This level of protection guarantees strict tenant isolation in shared provider
environments, preventing unauthorized cross-consumer access while maintaining
full functionality for legitimate offloaded workloads.

Note that the Pod M1 in the namespace only-local-milan will not be able to
communicate with any other pod in the provider cluster, as it is not offloaded to
the provider cluster. This is a key aspect of the isolation mechanism, ensuring
that only Pods explicitly offloaded by the consumer cluster can interact with the
provider’s resources. So, specifically, each traffic that traverse the ‘liqo tunnel‘ will
be filtered by the gateway pod.
Another different case is when the consumer performs an ‘exec‘ command on an
offloaded Pod, which is allowed by default. In this case, the consumer cluster can
interact with the offloaded Pod, and the traffic from the offloaded Pod travels
directly in the provider cluster’s network stack, bypassing the gateway pod. This
is the case when the provider cluster needs to enforce Network Policies on the
offloaded namespace (see implementation).
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Provider Protection Feature: Consumer Isolation in Multi-Tenant Envi-
ronments

In this scenario, multiple consumer clusters offload Pods to the same provider cluster.
The key requirement is to ensure that each consumer cluster can only access its own
offloaded resources, without any possibility of interacting with Pods or namespaces
belonging to other consumer clusters within the same provider cluster. This setup
represents a common multi-tenant environment, where different organizations or
departments share the same provider cluster for workload offloading but require
strict isolation of their respective workloads for security and compliance reasons.

Figure 3.2: Provider Protection (multi-tentant) Scenario

The proposed solution enforces traffic filtering directly at the gateway level, (not
shown in the figure) but the results are the same as in the previous scenario. In this
case, arrows represent the allowed traffic between offloaded Pods and namespaces,
while red arrows indicate blocked traffic between different consumers. The dotted
arrows represent logical traffic paths, showing how offloaded Pods can communicate
with each other within the same consumer cluster but are isolated from Pods
belonging to other consumers. Note that the traffic is blocked in the gateway pod,
before it reaches the provider cluster’s network stack, ensuring that no unauthorized
traffic can traverse the provider cluster’s infrastructure.
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3.2.2 Consumer Protection
Provider pods cannot contact consumer pods in non-offloaded names-
paces

With this feature enabled, Pods running in the provider cluster outside of offloaded
namespaces are prevented from initiating connections to consumer cluster Pods.
Only offloaded Pods are allowed to communicate with consumer Pods, and even
in that case, communication is restricted to Pods belonging to the same offloaded
namespace, regardless of whether they are offloaded to different provider clusters
(i.e., leaf-to-leaf traffic is allowed). A practical example of this requirement is
applications like database replication, where each replica (potentially offloaded to
different provider clusters) must be able to communicate with other replicas in
the same namespace (for example, in a full-mesh topology), while strict isolation
from other namespaces is preserved. This mechanism is conceptually similar to
the provider protection feature but is applied on the consumer cluster, ensuring
that its Pods are shielded from unwanted or unauthorized traffic originating from
provider clusters. The technical implementation is expected to mirror the approach
used for provider protection, likely leveraging the same components and logic.

Figure 3.3: Consumer Protection Scenario
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3.2.3 Consumer Protection (2)
Disable Leaf-to-Leaf Traffic

With this feature enabled, the consumer cluster blocks all traffic between pods
offloaded to different provider clusters (commonly referred to as "leaf-to-leaf"
traffic). This extends the first consumer protection mechanism, where leaf-to-leaf
communication was still permitted. Such an approach is suitable for use cases
where pods running on different providers should remain fully isolated from each
other. A typical example is federated learning, where client pods are offloaded to
different providers, and strict policies require that these clients cannot communicate
directly with one another — they should only exchange data with a central server
pod running on the consumer cluster.

Figure 3.4: Provider Protection Scenario
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Chapter 4

Implementation Overview

The implementation of the proposed solution involves several key components
and steps to ensure effective isolation and security in Liqo-enabled multi-cluster
environments. The main focus is on leveraging nftables for packet filtering at the
peering gateway level, in particular the actual implementation will be based on
first case study, where the provider cluster is protected from unauthorized access
by consumer clusters.

As said before, the consumer cluster offloads pods to the provider cluster, which
needs to access specific resources in the provider cluster, but it should not interact
with other Pods or namespaces that do not belong to the consumer cluster. The
aim is to avoid completely the traffic between the two clusters that is not related
to the offloaded Pods, while allowing the traffic between offloaded namespaces by
the same consumer cluster.
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4.1 Components
Before delving into the implementation details, it is essential to understand the
components involved in the proposed solution. The architecture consists of two
main components: the Network Security Engine and the Liqo Security Agent. These
components work together to enforce network security policies in a Liqo-enabled
multi-cluster environment.

Network Security Engine |NSE|

A controller that applies generic nftables rules to the pods it runs on, or to the
underlying node in case the pod is using hostNetwork. These rules are defined
through a Custom Resource Definition called FirewallConfiguration. The
controller monitors these CRs, translates the specified rules into nftables format,
and enforces them accordingly on the pod or node. The FirewallConfiguration CRD
is already available within the Liqo project; however, its API does not yet support
defining filtering rules. To achieve the desired functionality, the API needs to be
extended to cover the main nftables filtering capabilities. In this document, we use
the term Network Security Engine to refer to the combined system consisting of the
extended FirewallConfiguration API and the controller responsible for enforcing
the rules. This component is designed to be integrated into the open-source Liqo
project as part of this thesis work.

Liqo Security Agent |LSA|

It is a component responsible for enforcing various security features by generat-
ing and applying all the required FirewallConfiguration and NetworkPolicy
custom resources to the cluster. Once these resources are created on the cluster’s
API server, the Network Security Engine reconciles the FirewallConfiguration
CRs,translates them into nftables rules, and applies them to the pod or node
where it is running. Enforced by the CNI plugin installed on the cluster.

4.1.1 High-Level design
To provide a comprehensive understanding of the current architecture, we can
briefly outline the general workflow, which is visually summarized in the following
image:

The proposed solution is structured around a clear separation of concerns,
involving multiple components that operate at different stages of the process to
ensure the correct application of security policies across the distributed environment,
specifically leveraging nftables in a Kubernetes and Liqo context.
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Figure 4.1: High-Level Design Architecture

In the first phase (1. CREATE), an Actor, which can be an admin user,
an application, or an external agent (i.e. |LiqoSecurityAgent|), is responsible for
defining the desired network policy. This high-level policy is then translated into a
Custom Resource (CR) and applied to the Kubernetes cluster. This CR acts
as a declarative representation of the security requirements, abstracting away the
low-level networking details.

Once the CRs have been generated and applied to the Kubernetes cluster,
a dedicated component, represented by the POD in the diagram, continuously
monitors these resources. This component, acting as a controller, performs a
second phase (2. WATCH) operation on the CRs. As part of its reconciliation
loop, it compares the desired state, as declared in the CRs, with the current
system state. Upon detecting discrepancies, new configurations, or updates to
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existing policies, it proceeds to third phase(3. GENERATE & APPLY)
the corresponding NFTrules. These NFTrules represent the specific nftables
commands required to implement the desired network policy.

These NFTrules are then programmatically applied (i.e. |NSE|) to the relevant
network nodes within the cluster, enforcing fine-grained control over inter-cluster
and intra-cluster traffic. This includes, for example, selectively allowing or denying
communication between offloaded workloads, namespaces, or entire clusters, based
on the user-defined policies encapsulated within the CRs and translated into
NFTrules.

The separation between the high-level CR creation by the Actor and the
low-level controller within the POD that generates and applies nftables rules
(NFTrules) ensures both modularity and scalability. It allows for the gradual
evolution of the system, where additional logic can be incorporated into the CR
generation process without requiring modifications to the enforcement layer. This
approach also aligns with Kubernetes-native design principles, leveraging Custom
Resources and controllers to manage complex system behavior declaratively, while
providing a robust mechanism for dynamically adapting to changes in a multi-
cluster environment, particularly relevant for distributed systems managed by
Liqo.
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4.1.2 Network Security Engine
The goal is to extend the CRD (networking.liqo.io/v1beta1/FirewallConfiguration)
to define filtering network policies, allowing rules based on IP, IP ranges, ports,
CIDR, and protocols. As we know, the firewall configuration controller reconciles
FirewallConfiguration CRs, which describe (along with others) the RulesSet that
has to be applied (natRule, routeRule, filterRule). More specifically, in the context
of filterRule, three different filterAction should be implemented: drop, accept, reject
(in addition to the existing one (ctmark)).

1 chains : # List of firewall chains
2 - type: filter # Chain type
3 rules: # List of rules
4 - filterRules :
5 - name: drop_traffic # Rule name
6 action : drop # Action to apply (drop ,

accept , reject )
7 match: # Defines match conditions
8 ip.value: # IP to match
9 - " 10.10.1.52 " # Single IP

10 - " 10.10.1.52 -10.10.1.53 " # Range
11 - " 10.10.0.0/24 " # CIDR
12 counter : true # (Optional , default true)

Tracks rule triggers

Listing 4.1: Example of FirewallConfiguration CR with filterRule

api_fields_extended

• action: drop, accept, reject (in addition to the existing one (ctmark))
• match_ip_value: range support
• counter — optional (default true): tracks the number of times

the rule is triggered
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Example

Implementation Example: Blocking Inter-Cluster Traffic
The following image illustrates the concept in a real scenario, where nftables

is used to filter traffic between two clusters, Cluster1 (Consumer) and Cluster2
(Provider), with a focus on the peering gateway.

Figure 4.2: High-Level Design Architecture of the Security Agent

For the sake of simplicity, the component that will run the firewall configuration
controller will be the Liqo Gateway Pod on Cluster2. The provided image illustrates
Liqo’s default behavior. The topology shows two clusters, Cluster1 and Cluster2,
which have been peered using Liqo. Green arrows indicate permitted connections
between pods; consequently, in the default behavior, all pods belonging to different
clusters can communicate with each other without any restrictions. For example,
Pod1 (IP address 10.10.1.67) on Cluster1 can directly ping Pod2 (IP address
10.20.1.2) on Cluster2.

Our objective is to block traffic between Pod1 (Cluster1) and Pod2 (Cluster2)
by applying a FirewallConfiguration and specifying the related IP addresses.
The applied FirewallConfiguration is as follows:

1
2 table :
3 name: " table_name "
4 family : "IPv4"
5 chains :
6 - hook: " forward "
7 name: " filter_chain_name "
8 policy : " accept "
9 priority : 0

10 type: " filter "
11 rules:
12 filterRules :
13 - name: " drop_traffic "
14 counter : true
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15 action : "drop"
16 match:
17 - ip:
18 value: " 10.10.1.67 "
19 position : "src"
20 op: "eq"
21 - ip:
22 value: " 10.20.1.2 "
23 position : "dst"
24 op: "eq"

Listing 4.2: Example of FirewallConfiguration CR with filterRule

It’s important to note that reverse traffic (from Pod2 to Pod1) could be blocked
by adding another match rule with the same IP values but with the positions
(position) inverted (i.e., src for 10.20.1.2 and dst for 10.10.1.67).

As a result of this implementation, we block traffic originating from Pod1 in
Cluster1 directed towards Pod2 in Cluster2. The effect of these enforced security
policies is illustrated by the red arrow, indicating a denied connection. For example,
Pod1 (10.10.1.67) on Cluster1 will no longer be able to ping Pod2 (10.20.1.2)
on Cluster2, as the security policy prevents such communication.

Result of the implementation after the FirewallConfiguration CR is
applied

Figure 4.3: High-Level Design Architecture of the Security Agent
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4.1.3 NSE Sub controller
The Network Security Engine sub-controller is responsible for applying the initial
configuration to the gateway pod. This configuration is crucial for establishing
a default-deny policy, which blocks all traffic from the consumer cluster to the
provider cluster. The sub-controller will create a FirewallConfiguration CR that
explicitly denies all incoming traffic from the consumer cluster, ensuring that no
unauthorized access is allowed until further rules are applied by the Liqo Security
Agent. From the moment the FirewallConfiguration CR is applied, the gateway
pod will enforce this default-deny policy, effectively preventing any traffic from the
consumer cluster from reaching the provider cluster’s network stack. After this
initial setup, the Liqo Security Agent will take over to apply more specific rules
that allow only the necessary traffic types, as defined in the provider protection
feature, adding the IP addresses of offloaded pods to the FirewallConfiguration
CRs. This ensures that the provider cluster remains secure while still allowing
legitimate traffic from offloaded pods.

1
2 table :
3 name: " table_name "
4 family : "IPv4"
5 chains :
6 - hook: " forward "
7 name: " filter_chain_name "
8 policy : "deny"
9 priority : 0

10 type: " filter "

Listing 4.3: Default deny FirewallConfiguration CR
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4.1.4 Liqo Security Agent
The Liqo Security Agent is a pivotal component responsible for implementing
Liqo’s security features. It achieves this by forging and applying the necessary
FirewallConfiguration and NetworkPolicy Custom Resources (CRs) to enforce
security policies on the cluster.
A fundamental assumption underpinning the agent’s design is that it exclusively
safeguards its own cluster. It is not tasked with protecting other clusters, nor can
it make assumptions about the security features enabled on remote clusters, given
the inherent trust boundaries in this distributed environment.

Providing a specific example of such policy application would be redundant or
misleading. Given the abstract and declarative nature of Custom Resources (CRs)
like Network Policies, the enforcement mechanism is agnostic to the underlying
application context. The agent focuses on generating and applying the necessary
CRs, which, being based on Kubernetes standards (or extensions defined via CRDs),
are universally applicable in any Kubernetes environment capable of interpreting and
enforcing such definitions. This ensures inherent flexibility and broad compatibility,
rendering a contextualized example for a particular scenario superfluous.

Specifically for the traffic that is not passing through the Liqo gateway, the
agent will generate NetworkPolicy CRs to enforce security policies on offloaded
pods. These policies will be applied to the namespaces offloaded by the consumer
cluster, ensuring that only traffic originating from the same consumer cluster is
allowed to reach its offloaded pods. While the traffic that passes through the Liqo
gateway is managed by NFTables rules, directly on the gateway pods; the agent
will focus on generating the necessary FirewallConfiguration CRs to enforce
the provider protection feature.

For the scope of this thesis, the Liqo Security Agent will focus solely on imple-
menting the Provider Protection feature. However, its architectural design
facilitates future extensions to incorporate other security features (e.g., consumer
protection).
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4.1.5 Webhook
The Webhook is a crucial component that intercepts requests to the Kubernetes
API server, allowing for dynamic validation and mutation of resources before they
are persisted in the cluster. In the context of the Liqo Security Agent, the Webhook
plays a vital role in ensuring that only valid and secure configurations are applied
to the cluster.

When a new FirewallConfiguration or NetworkPolicy CR is created or
updated, the Webhook intercepts these requests and performs validation checks.
It ensures that the specified rules conform to the expected format and semantics,
preventing misconfigurations that could lead to security vulnerabilities or network
disruptions. In order to implement the Network Security Engine, the Webhook in
Liqo must be extended to support the new FirewallConfiguration CRD. This
extension will involve defining the schema for the CRD, including the necessary
fields and validation rules. The Webhook will then be responsible for validating
incoming requests against this schema, ensuring that only well-formed and secure
configurations are accepted. In particular more specific validation rules about the
previously mentioned FirewallConfiguration CRD should be implemented, such
as:

• Action Validation: Validate that the specified actions (e.g., drop, accept,
reject) are supported and correctly applied. This prevents the application of
unsupported or potentially harmful actions.

• IP Address Validation: Ensure that the IP addresses specified in the
FirewallConfiguration CR are valid and correctly formatted. This includes
checking for valid IPv4, ranges, and CIDR notations.

• Counter Validation(Optional): Validate the presence and correctness of
the counter field, ensuring it is set to a boolean value. This field is crucial
for tracking rule triggers and should be correctly configured.
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4.2 Provider Protection Feature
The core concept behind the Provider Protection feature is to enable provider
clusters to shield their pods from undesirable or unauthorized traffic originating
from consumer clusters. Specifically, the provider cluster will explicitly permit
ONLY the following categories of traffic:

1. Traffic originating from the consumer cluster (which passes through the Liqo
gateway) and destined for pods residing in the namespaces offloaded by that
consumer cluster.

2. Traffic between offloaded pods within the provider cluster that are owned by
the same consumer cluster (i.e., pods that have been offloaded from the same
consumer cluster).

3. Traffic originating from local (non-offloaded) pods on the provider cluster.

Let’s delve into the implementation details for the first two aforementioned
traffic types:

1) Traffic Originating from the Consumer Cluster (passing through the
Liqo Gateway)

The provider cluster strictly permits traffic originating from a consumer cluster
(and traversing the Liqo gateway) only when it is specifically destined for pods
located within the namespaces that were offloaded by that particular consumer
cluster. Any other traffic from the consumer cluster is unequivocally blocked.

This blocking mechanism is enacted directly at an early stage within the gateway
through custom FirewallConfiguration rules. These rules are dynamically forged
by the Liqo Security Agent and enforced by the Network Security Engine. Relying
on Kubernetes NetworkPolicies for this specific type of traffic presents challenges,
as some CNI plugins (e.g.,Cilium/Calico) may not be able to adequately inspect
or enforce policies on traffic encapsulated within the Liqo tunnel (which utilizes
Geneve tunnels). While Cilium CNI appears to offer some capabilities in this
domain, the precise enforcement point and overall reliability remain unclear. By
explicitly blocking this traffic with nftables rules, we achieve two significant
advantages:

• CNI Agnosticism: We eliminate dependencies on the specific CNI plugin
deployed and its particular implementation of NetworkPolicies.

• Early Traffic Termination and Reduced Attack Surface: Traffic is
halted at an early stage within the gateway, preventing packets from unneces-
sarily traversing the cluster within Geneve tunnels. This strategy significantly
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reduces the overall attack surface and mitigates potential Denial of Service
(DoS) attacks.

2) Traffic Between Offloaded Pods in the Provider Cluster

Offloaded pods are designed to be able to communicate with each other, provided
they originate from the same consumer cluster. Since an offloaded namespace is
exclusively owned by a single consumer cluster, Kubernetes NetworkPolicies can
be effectively leveraged for this purpose. The Liqo Security Agent will generate a
NetworkPolicy CR for each offloaded namespace within the provider cluster. These
policies will specifically permit egress traffic only to pods residing in namespaces
that are also owned by the same consumer (i.e., where the tenant namespace label
matches the consumer cluster ID).

Visual Representation of the Provider Protection Feature
(1)

Figure 4.4: Multiple consumer clusters offloading single namespace to a Provider
Cluster

The image illustrates the Provider Protection feature, where multiple
consumer clusters offload a single namespace to a provider cluster. The
provider cluster enforces strict traffic control, allowing only specific traffic
types as described above.
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Visual Representation of the Provider Protection Feature
(2)

Figure 4.5: Consumer clusters offloading multiple namespace to a Provider Cluster

The image illustrates the Provider Protection feature, where one cluster
offloads multiple namespaces to a provider cluster, while the other offloads
just one namespace. The provider cluster enforces strict traffic control,
allowing only specific traffic types as described above.

In this particular scenario, the provider cluster is designed to allow traffic from
the consumer cluster only to the offloaded pods in the namespaces that belong to
that specific consumer cluster. This means that even if multiple namespaces are
offloaded by different consumer clusters, each namespace is isolated from others,
while traffic between offloaded pods by the same consumer cluster is allowed.
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4.2.1 Implemented Controllers
To bring this feature to fruition, three dedicated controllers have been implemented:

Gateway Controller

This controller performs reconciliation on gateway pods.
Its primary function is to apply a FirewallConfiguration CR that initially blocks
all traffic arriving from the WireGuard gateway. This establishes a strict default-
deny policy, ensuring that no traffic from the consumer cluster is permitted into
the provider cluster unless explicitly whitelisted by the subsequent controller. As
shown in the previous section, Figure 3.1, in the Liqo Gateway Pod the NFTable
forged will be:

1 table inet liqo_gateway {
2 chain input {
3 type filter hook input priority 0; policy drop;
4 }
5 }

Listing 4.4: Initial NFTable configuration applied by the Gateway Controller

This controller in necessary to ensure that even if the Liqo Security Agent is running
and a new Liqo peering is established, the provider cluster will not allow any traffic
from the consumer cluster until the Liqo Security Agent applies the necessary
FirewallConfiguration CRs to allow specific traffic types. This is crucial for
maintaining security and preventing unauthorized access to the provider cluster’s
resources. A visual representation of the Gateway Controller’s role in the provider
protection feature is shown in the following image, where the liqo_gateway table
has been forged in Liqo Gateway G1:

Figure 4.6: Gateway Controller’s Role in Provider Protection Feature
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Gateway Controller Code

Following is reported the code of the reconcile function of the Gateway Controller,
which is responsible for applying the initial FirewallConfiguration CR to the
Liqo Gateway Pod. This code is written in Go and uses the controller-runtime
library to interact with the Kubernetes API server.

1 // Reconcile is the main logic triggered for gateway pods.
2 func (r * FirewallStartupReconciler ) Reconcile (ctx context .Context ,

req ctrl. Request ) (ctrl.Result , error) {
3 var pod corev1 .Pod
4 var err error
5
6 if getErr := r.Get(ctx , req. NamespacedName , &pod); getErr != nil

{
7 klog. Errorf ("Can ’t find pod %s: %v", req. NamespacedName ,

getErr )
8 return ctrl. Result {}, fmt. Errorf (" failed to get pod: %w",

client . IgnoreNotFound ( getErr ))
9 }

10
11 clusterID := pod. Labels [ consts . K8sAppNameKey ]
12 if clusterID == "" {
13 klog. Warningf ("Pod without label %s: missing label key %s",

pod.Name , consts . K8sAppNameKey )
14 return ctrl. Result {}, nil
15 }
16
17 fwcfg := & firewall . FirewallConfiguration {
18 ObjectMeta : metav1 . ObjectMeta {
19 Name: "block -traffic -rules -" + clusterID ,
20 Namespace : "liqo",
21 },
22 }
23
24 mutateFn := r. mutateFn (clusterID , fwcfg)
25
26 result , err := controllerutil . CreateOrUpdate (ctx , r.Client ,

fwcfg , mutateFn )
27 if err != nil {
28 klog. Errorf ("Error creating or updating firewall configuration

for cluster %s: %v", clusterID , err)
29 return ctrl. Result {}, fmt. Errorf ("%w: %w", errors .

ErrFailedCreateFirewallConfig , err)
30 }
31
32 switch result {
33 case controllerutil . OperationResultCreated :
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34 klog.Infof(" Firewall configuration created for cluster : %s",
clusterID )

35 case controllerutil . OperationResultUpdated :
36 klog.Infof(" Firewall configuration updated for cluster : %s",

clusterID )
37 case controllerutil . OperationResultNone :
38 klog.Infof("No changes made to the firewall configuration for

cluster : %s", clusterID )
39 case controllerutil . OperationResultUpdatedStatus :
40 klog.Infof(" Firewall configuration status updated for cluster :

%s", clusterID )
41 case controllerutil . OperationResultUpdatedStatusOnly :
42 klog.Infof("Only the status of the firewall configuration was

updated for cluster : %s", clusterID )
43 }
44
45 klog.Infof(" FirewallConfiguration for cluster : %s updated ",

clusterID )
46 return ctrl. Result {}, nil
47 }

Listing 4.5: Gateway Controller Code
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ShadowPod Controller

This controller reconciles on shadow pods. Its role is to ensure that the IP ad-
dress of each offloaded pod is added to a FirewallConfiguration CR, thereby
allowing it to be contacted by its corresponding consumer cluster’s gateway. This
specific FirewallConfiguration CR is applied to the respective gateway pod and
encompasses all the IP addresses of the offloaded pods for that particular consumer
cluster. The global result is that we maintain N FirewallConfiguration CRs,
one for each consumer cluster, each applied to its dedicated gateway pod. A critical
challenge in this implementation is managing the cleanup of IP addresses from
these CRs when shadow pods are deleted, and diligently handling controller restarts
(necessitating a cleanup function executed at the controller’s startup to remove
old IPs). Furthermore, it must correctly manage scenarios where IP addresses are
reassigned to other pods that do not belong to the same consumer cluster, ensuring
such IPs are promptly removed from the relevant CRs. Future improvements could
be to reconcile on more stable resources such as ShadowPods, GatewayServers,
GatewayClients, and NamespaceOffloadings, rather than reconciling directly on
pods, which are more ephemeral and numerous. This shift would reduce the overall
number of reconciliation events, improving the controller’s scalability and perfor-
mance. Additionally, leveraging the controller-runtime cache more effectively—by
minimizing unnecessary direct API server calls and relying instead on indexed
lookups or cached informer data—could lead to better responsiveness and reduced
load on the Kubernetes API server.
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ShadowPod Controller Code

Following is reported the code of the reconcile function of the ShadowPod Con-
troller, which is responsible for adding the IP address of each offloaded pod to a
FirewallConfiguration CR. This code is written in Go and uses the controller-
runtime library to interact with the Kubernetes API server.

1 func (r * FirewallReconciler ) Reconcile (ctx context .Context , req
ctrl. Request ) (ctrl.Result , error) {

2 var pod v1.Pod
3 err := r.Get(ctx , req. NamespacedName , &pod)
4 if apierrors . IsNotFound (err) {
5 klog.Infof("Pod %s not found , possibly deleted ", req.

NamespacedName )
6 return ctrl. Result {}, nil
7 }
8 if err != nil {
9 klog. Errorf ("Error retrieving pod %s: %v", req. NamespacedName ,

err)
10 return ctrl. Result {}, fmt. Errorf (" failed to retrieve pod: %w",

client . IgnoreNotFound (err))
11 }
12 if pod. Status . PodIP == "" {
13 return ctrl. Result {}, nil
14 }
15
16 // list of offloaded pods
17 offloadedPodList , err := r. GetOffloadedPods (ctx)
18 if err != nil {
19 klog. Errorf ("Error retrieving offloaded pods: %v", err)
20 }
21
22 firewallCluster := utils. FirewallCluster {}
23 utils. AddPodToFirewallCluster (& offloadedPodList , &

firewallCluster )
24
25 if err != nil {
26 klog. Errorf ("Error setting cluster list for offloaded pods: %v

", err)
27 return ctrl. Result {}, fmt. Errorf ("%w: %w", errors .

ErrFailedToGetShadowPodList , err)
28 }
29
30 tableName := "firewall -table"
31 chainName := "firewall -chain"
32
33 originCluster := pod. Labels [ consts . RemoteClusterID ]
34
35 if len( firewallCluster . ClusterPodList ) == 0 {
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36 if err := r. createEmptyNFTtable (ctx , originCluster , chainName ,
tableName ); err != nil {

37 klog. Errorf ("Error creating empty NFT table: %v", err)
38 return ctrl. Result {}, err
39 }
40 } else {
41 if err := r. updateClusterFirewallConfiguration (ctx ,

firewallCluster . ClusterPodList , chainName , tableName ); err !=
nil {

42 klog. Errorf ("Error updating cluster firewall configuration :
%v", err)

43 return ctrl. Result {}, err
44 }
45 }
46
47 return ctrl. Result {}, nil
48 }

Listing 4.6: ShadowPod Controller Code
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Namespace Controller (Egress Policy)

This controller reconciles on namespaces. Its primary function is to generate and
apply NetworkPolicy CRs for each offloaded namespace in the provider cluster.
These policies are designed to allow egress traffic only to pods within namespaces
that are owned by the same consumer cluster, ensuring that offloaded pods can
communicate with each other while preventing unauthorized access from other
clusters. With this approach, the provider cluster can effectively isolate traffic
between different consumer clusters, allowing only the necessary communication
between offloaded pods that belong to the same consumer cluster. There is no
need to apply NetworkPolicy CRs for local namespaces of the provider cluster, as
they are not offloaded and do not require the same level of isolation as offloaded
namespaces. The controller will also ensure that the NetworkPolicy CRs are
applied to the correct namespaces and that they are updated whenever new
offloaded pods (and the relative namespace) are added or removed.

Namespace Controller Alternative (Ingress Policy)

The actual implementation is to reconcile on namespace applying a default-deny
egress approach , which blocks all traffic from the consumer cluster to the provider
cluster. This is achieved by applying a NetworkPolicy CR that denies all traffic
from the consumer cluster to the provider cluster, ensuring that no unauthorized
access is allowed until further rules are applied by the Liqo Security Agent. In
this case, all connection outgoing from the offloaded namespaces by the consumer
cluster will be blocked, and the only traffic allowed will be the one that is explicitly
whitelisted by the Liqo Security Agent. An alternative approach could be to apply
an ingress-deny policy, but the problem is that would require ‘N‘ NetworkPolicy
CRs, one for each offloaded namespace in addiction to one for each local namespace
of the provider cluster, which would be too much overhead. Instead, as we said, we
can apply NetworkPolicy only for the offloaded namespaces.
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Namespace Controller Code

Following is reported the code of the reconcile function of the Namespace Controller,
which is responsible for generating and applying NetworkPolicy CRs for each
offloaded namespace in the provider cluster. This code is written in Go and uses
the controller-runtime library to interact with the Kubernetes API server.

1 func (r * NetworkPolicyReconciler ) Reconcile (ctx context .Context ,
req ctrl. Request ) (ctrl.Result , error) {

2 var ns corev1 . Namespace
3 if err := r.Get(ctx , req. NamespacedName , &ns); err != nil {
4 klog. Errorf (" Namespace %q not found", req.Name)
5 return ctrl. Result {}, fmt. Errorf (" failed to get namespace %q:

%w", req.Name , err)
6 }
7
8 klog.Infof(" Reconciling NetworkPolicy for namespace %s", req.

Name)
9

10 originCluster := ns. Labels [ consts . RemoteClusterID ]
11
12 nw , err := liqogetters . GetNetworksByLabel (ctx , r.Client ,
13 labels . SelectorFromSet (map[ string ] string {
14 consts . RemoteClusterID : originCluster ,
15 liqoControllerConsts . LabelCIDRType : "pod",
16 }), "liqo -tenant -"+ originCluster )
17 if err != nil {
18 klog. Errorf (" failed to get Network %s: %v", originCluster , err

)
19 return ctrl. Result {}, fmt. Errorf (" failed to get Network %s: %w

", originCluster , err)
20 }
21
22 if len(nw) == 0 {
23 klog.Infof("%s is not a tenant namespace from %s", req.Name ,

originCluster )
24 return ctrl. Result {}, nil
25 }
26
27 // Applica la network policy di default
28 netPol := & networkingv1 . NetworkPolicy {
29 ObjectMeta : metav1 . ObjectMeta {
30 Name: "allow -from -cluster -" + ns. Labels [ consts .

RemoteClusterID ],
31 Namespace : req.Name ,
32 },
33 }
34 mutateFn := r. mutateFnNetworkPolicies (
35 &nw[0],
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36 ns. Labels [ consts . RemoteClusterID ],
37 req.Name ,
38 netPol ,
39 )
40
41 res , err := controllerutil . CreateOrUpdate (ctx , r.Client , netPol ,

mutateFn )
42 if err != nil {
43 klog. Errorf (" Failed to create or update NetworkPolicy %s in

namespace %s: %v", netPol .Name , req.Name , err)
44 return ctrl. Result {}, fmt. Errorf ("error during CreateOrUpdate

for NetworkPolicy %s in namespace %s: %w", netPol .Name , req.
Name , err)

45 }
46 if res != controllerutil . OperationResultNone {
47 klog.Infof(" NetworkPolicy %s in namespace %s was %s", netPol .

Name , req.Name , res)
48 }
49
50 return ctrl. Result {}, nil
51 }

Listing 4.7: Namespace Controller Code
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4.2.2 Tests
To ensure the correctness and reliability of the implemented controllers, a compre-
hensive suite of tests has been developed. Various bash scripts have been created
to validate the functionality of each controller, ensuring that they behave as ex-
pected in different scenarios. These tests cover a wide range of cases, facilitating
the identification of potential issues and ensuring that the controllers can handle
various edge cases effectively. The tests are designed to be run in a controlled
environment, allowing for easy verification of the controllers’ behavior and ensuring
that they meet the desired specifications. A tipical example of a test is to create a
new namespace, offload it to the provider cluster, and verify that the corresponding
NetworkPolicy CR is created and applied correctly. Another example is to create
a new pod in an offloaded namespace and verify that its IP address is added to the
appropriate FirewallConfiguration CR.

1 pingPodToPod () {
2 local CLUSTER_SOURCE_ID ="$1"
3 local CLUSTER_SOURCE_NAMESPACE ="$2"
4 local CLUSTER_DEST_ID ="$3"
5 local CLUSTER_DEST_NAMESPACE ="$4"
6 local KUBECONF_SOURCE ="${ CLUSTERS [ $CLUSTER_SOURCE_ID ]}"
7 export KUBECONF =" $KUBECONF_SOURCE "
8
9 local pod_name_source

10 pod_name_source =$( kubectl --kubeconfig =" $KUBECONF_SOURCE " get
pod -n " $CLUSTER_SOURCE_NAMESPACE " -l app= netshoot -o jsonpath
=’{. items [0]. metadata .name}’ 2>/ dev/null)

11 if [[ -z " $pod_name_source " ]]; then
12 echo "[ WARNING ] No netshoot pod found in namespace

$CLUSTER_SOURCE_NAMESPACE ( Cluster $CLUSTER_SOURCE_ID )" >&2
13 return 1
14 fi
15
16 local DEST_MAP_NAME =" POD_IP_MAP_CLUSTER$ { CLUSTER_DEST_ID }"
17 local pod_ip_dest
18 eval " pod_ip_dest =\${ $DEST_MAP_NAME [\" $CLUSTER_DEST_NAMESPACE

\"]}"
19 if [[ -z " $pod_ip_dest " ]]; then
20 echo "[ WARNING ] No netshoot pod found in namespace

$CLUSTER_DEST_NAMESPACE ( Cluster $CLUSTER_DEST_ID ) trovato ."
>&2

21 return 1
22 fi
23 local SOURCE_MAP_NAME =" POD_IP_MAP_CLUSTER$ { CLUSTER_SOURCE_ID }"
24 local source_ip
25 eval " source_ip =\${ $SOURCE_MAP_NAME [\"

$CLUSTER_SOURCE_NAMESPACE \"]}"
26
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27 if [[ $source_ip == $pod_ip_dest ]]; then
28 return 0
29 fi
30
31 ping_output =$( kubectl --kubeconfig =" $KUBECONF_SOURCE " exec -n

" $CLUSTER_SOURCE_NAMESPACE " " $pod_name_source " -- ping -c 1 -W
1 " $pod_ip_dest ")

32
33
34
35 if [[ " $ping_output " =~ "1 received " ]]; then
36 result ="OK"
37 else
38 result ="FAIL"
39 fi
40
41 MATRIX_ROWS +=(" $result | [ Cluster $CLUSTER_SOURCE_ID -

$CLUSTER_SOURCE_NAMESPACE ] -> [ Cluster $CLUSTER_DEST_ID -
$CLUSTER_DEST_NAMESPACE ] || $source_ip -> $pod_ip_dest ")

42
43 }

Listing 4.8: Example of ping test between offloaded pods

where params are defines as follows:

• CLUSTER_SOURCE_ID = $1: The ID of the source cluster, passed as the first
argument to the function.

• CLUSTER_SOURCE_NAMESPACE = $2: The namespace within the source cluster,
passed as the second argument.

• CLUSTER_DEST_ID = $3: The ID of the destination cluster, passed as the
third argument.

• CLUSTER_DEST_NAMESPACE = $4: The namespace within the destination clus-
ter, passed as the fourth argument.

• KUBECONF_SOURCE = ${CLUSTERS[$CLUSTER_SOURCE_ID]}: The path to the
kubeconfig file associated with the source cluster, retrieved from the CLUSTERS
associative array using the source cluster ID as key.
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The pingPodToPod function attempts to ping a pod in the destination cluster
from each pods that belong to the consumer cluster (local and offloaded), verifying
connectivity between offloaded pods across clusters. The results of the tests are
stored in the MATRIX_ROWS array, which can be printed or processed further to
analyze the test outcomes. It is used in the following loop:

1 pingBetweenClusters () {
2 local SOURCE_CLUSTER_ID ="$1"
3 local DEST_CLUSTER_ID ="$2"
4 local -n source_ips =" POD_IP_MAP_CLUSTER$ { SOURCE_CLUSTER_ID }"
5 local -n dest_ips =" POD_IP_MAP_CLUSTER$ { DEST_CLUSTER_ID }"
6
7 echo " --- Cluster $SOURCE_CLUSTER_ID -> Cluster

$DEST_CLUSTER_ID ---"
8 for source_ns in "${! source_ips [@]}"; do
9 for dest_ns in "${! dest_ips [@]}"; do

10 pingPodToPod " $SOURCE_CLUSTER_ID " " $source_ns " "
$DEST_CLUSTER_ID " " $dest_ns "

11 done
12 done
13 }

Listing 4.9: Example of ping test between all pods in two clusters

where params are defines as follows:

• SOURCE_CLUSTER_ID = $1: The source cluster ID, passed as the first argument
to the function.

• DEST_CLUSTER_ID = $2: The destination cluster ID, passed as the second
argument.

• source_ips: A nameref (using local -n) to the associative array
holding the pod IP addresses for the source cluster, stored in the variable
POD_IP_MAP_CLUSTER{SOURCE_CLUSTER_ID}.

• dest_ips: A nameref (using local -n) to the associative array holding
the pod IP addresses for the destination cluster, stored in the variable
POD_IP_MAP_CLUSTER{DEST_CLUSTER_ID}.
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Conclusions and Future
Work

The growing adoption of federated Kubernetes platforms like Liqo introduces
significant security challenges, particularly in controlling traffic across clusters
and enforcing strict tenant isolation. This thesis addressed these issues by de-
signing and implementing a hybrid security enforcement mechanism within the
Liqo ecosystem. The proposed architecture combines low-level packet filtering via
nftables with high-level traffic control through Kubernetes NetworkPolicies. At
the network perimeter, nftables rules are applied on gateway Pods in the provider
cluster to restrict ingress and egress traffic based on the consumer cluster identity
and namespace ownership. These rules are dynamically managed by a custom
Gateway Controller that ensures only authorized communication is permitted while
optimizing for performance. Within the provider cluster, offloaded workloads are
placed in dedicated namespaces protected by Kubernetes NetworkPolicies. These
policies enforce intra-cluster isolation, allowing communication only between Pods
that belong to the same offloading tenant. The enforcement is automated through
two additional controllers: the ShadowPod Controller, which reconciles rules in
response to offloaded Pod lifecycle events, and the Namespace Controller, which
dynamically manages NetworkPolicies for offloaded namespaces. This hybrid and
automated architecture provides robust protection against unauthorized access
and lateral movement, ensuring that consumer clusters can only interact with
their own offloaded resources. It delivers a scalable, reactive, and fault-tolerant
framework that adapts to topology changes without manual reconfiguration. The
implemented solution demonstrates that integrating nftables with Kubernetes-
native constructs significantly strengthens the security posture of multi-tenant
federated environments.
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5.1 Future Work
The implementation of the security enforcement mechanism in Liqo has success-
fully addressed the challenges of inter-cluster traffic control and tenant isolation.
However, there are several areas that could benefit from further improvement
and enhancement. One direction could be the integration with additional con-
tainer network interfaces (CNIs), beyond Cilium and Calico, to complement the
existing network-level. Another important aspect is performance optimization,
which involves conducting benchmarks and applying improvements to ensure that
nftables rules and NetworkPolicies can scale effectively in large deployments while
maintaining minimal latency and overhead. Expanding the testing and validation
framework, particularly to cover a wider range of scenarios such as consumer
protection, cross-cluster failure recovery, and resilience against invalid configura-
tions. Scalability improvements could be achieved by refactoring the controllers
to observe higher-level and less frequent custom resources, such as ShadowPods,
GatewayServers, GatewayClients, and NamespaceOffloadings, instead of low-level,
high-frequency resources like Pods. This would reduce the load on the controllers
and enhance reconciliation efficiency. Additionally, optimizing the use of the
controller-runtime cache would help limit unnecessary API server calls and improve
overall performance, especially in environments with a high number of namespaces
and pods. Finally, simplifying the deployment process by offering a Helm chart or
static manifests for the Liqo Security Agent, with minimal required RBAC permis-
sions, would make adoption easier and lower the risk surface in security-sensitive
scenarios.
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