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1. Introduction 
1.1 Overview on the current cancer therapies 

Cancer is among the leading causes of death worldwide. The International Agency for Research on 
Cancer estimates that in twenty years the rates of incidence and mortality of cancer are projected to 
increase by 63% and 74%, respectively [1]. The statics are shown in Figure 1.  

The therapeutic approach for cancer is determined by the tumor's classification and its stage of 
progression. Currently the main treatment modalities can be categorized as follows [2], [3], [4]:  

• Surgical intervention. Generally it involves open surgery or laparoscopic techniques. However, 
there are also alternative surgical methods, namely: cryosurgery, laser treatment, hyperthermia 
and photodynamic therapy. A primary limitation of surgical approaches is the potential inability 
to eradicate microscopic residual disease at the tumor margins and to remove metastasis 
spread in distant sites. 

• Radiation therapy. It exploits high-energy radiation, primarily X-rays, to damage cancer cells’ 
DNA, with the aim of triggering apoptosis, necrosis and senescence of tumor cells. However, 
radiotherapy may cause a collateral damage to adjacent healthy tissues. Moreover, it can’t 
eradicate all neoplastic cells and it is not suitable for killing cancer cells located in hypoxic 
regions.  

• Chemotherapy. This treatment involves the systemic administration of one or more anti-cancer 
drugs, often in combination. The therapy is characterized by the capability to exert a cytotoxic 
effect. Generally, if it is used as a monotherapy, the efficacy is limited, thus it necessitates the 
combination with other treatment modalities to improve the treatment’s outcome. Furthermore, 
chemotherapy is not able to deliver systematic therapy, interacting negatively with certain 
medications, and systemic toxicity remains a significant concern.  

• Immunotherapy. It is a type of cancer treatment that supports the patient’s immune system to 
combat cancer. Different strategies can be applied, including immune checkpoint inhibitors, T-
cell transfer therapy, immune system modulators, therapeutic cancer vaccines or monoclonal 
antibodies. The efficacy of immunotherapy is often restricted to a subset of patients due to inter-
patient variability in treatment response. Moreover, treatment resistance and a limited 
repertoire of well-characterized tumor-specific antigens remain significant challenges.  

Although current therapeutic strategies are well-established and widely adopted, they remain largely 
ineffective and insufficient in combating cancer, primarily due to the inherent complexity of the disease. 
Moreover, it is well recognized that most of the therapies currently in use are associated with a high 

Figure 1. Visual representation of the estimated number of new cancer cases (blue) and deaths (red) from 2022 to 2045. [1] 
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incidence of adverse side effects, which further compromise the already fragile condition of patients. In 
light of these limitations, attention is increasingly shifting toward alternative approaches. Beyond the 
established therapeutic modalities, novel and promising strategies are emerging, notably the 
investigation of new pharmacological agents targeting cancer metabolism. Indeed, tumors are not only 
genetic diseases, but also metabolic disorders, a concept underscored by the well-documented 
Warburg effect [5]. Furthermore, metabolic reprogramming is recognized as one of the main hallmarks 
of cancer as malignant cells exhibit a profoundly altered metabolism, compared to normal cells [6]. In 
this context there is a growing interest in the Lactate Dehydrogenase (LDH) enzyme, which has emerged 
as a potential target in cancer metabolism. 

 

1.2 Lactate Dehydrogenase 

LDH is an enzyme belonging to the oxidoreductases family, responsible for catalyzing the reversible 
interconversion of pyruvate and lactate [7]. Enzymes within this group are involved in redox reactions, 
wherein the oxidized substrate acts as the hydrogen or electron donor, whereas the reduced substrate 
serves as hydrogen or electron acceptor [8]. Specifically, in the reaction catalyzed by LDH, the reduction 
of pyruvate into lactate occurs simultaneously with the oxidation of NADH to NAD+, as shown in Figure 
2.  

This conversion follows the last step of glycolysis in hypoxic conditions and it is crucial in regenerating 
NAD+, thereby sustaining glycolytic flux in the absence of oxygen [7]. Indeed two molecules of pyruvate 
are the end product of glycolysis, a fundamental metabolic process that generates energy in the form of 
ATP and NADH, as shown in Figure 3. Glycolysis occurs in both aerobic and anaerobic states. In the 
presence of oxygen pyruvate is oxidized to acetyl-CoA and enters the citric acid cycle, followed by 
oxidative phosphorylation, leading to the net production of 32 ATP molecules. Whereas in the absence 
of oxygen pyruvate is reduced to lactate with the simultaneous oxidation of NADH, exploiting the action 
of the LDH enzyme. Anaerobic respiration results in the production of 2 ATP molecules [9].  

Figure 2. Schematic representation of the chemical reaction catalyzed by LDH. [58] 
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According to the direction of the reaction, pyruvate and lactate are respectively the substrate and the 
product of the reaction or the opposite. NADH and NAD+ are known as cofactors serving as redox 
carriers for biosynthetic and catabolic reactions [10]. LDH is the catalyst of the reaction. It has a 
tetrameric structure composed of two major subunits LDH-A and LDH-B, that can assemble in various 
configuration to form five different isoenzymes, each one with unique catalytic and physical properties. 
LDH-A is predominantly expressed in anaerobic tissues, like liver and skeletal muscle, while LDH-B is 
more abundant in aerobic ones, like the cardiac muscle [7]. Structurally, LDH is constituted of 40% 
alpha helices and 23% beta sheets, as shown in Figure 4. The active site is located within the substrate-
binding pocket and includes key catalytic residues such as His-193, that works as proton acceptor, 
along with Arg-106, Asp-168 and Thr-246 [11]. A visual representation of the active site is shown in Figure 
5. 

Figure 3. Schematic representation of glycolysis and of pyruvate's destiny. [59] 

Figure 4. LDH structure. Alpha helices highlighted in light blue and beta sheets highlighted in orange.  
Obtained from protein visualization in ChimeraX. 
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1.3 LDH-A’s role in cancer and Warburg effect 

LDH-A has an incredibly high expression in a variety of malignancies and it is associated with tumor 
progression and poor clinical outcomes. Solid tumors are characterized by three tissue regions: the 
normoxic, the hypoxic and the necrotic, as shown in Figure 6. Among these, the presence of hypoxic 
regions, characterized by a reduced oxygen availability, are a hallmark of many solid tumors and 
primarily result the aberrant and inefficient vasculature that develops to supply oxygen in response to 
the massive proliferation of cancer cells [12].  

 

Unlike healthy tissues, which predominantly rely on mitochondrial oxidative phosphorylation for ATP 
production under normoxic conditions, tumors tend to adopt an altered metabolic phenotype. Even in 
the presence of oxygen, cancer cells often rely on an increased rate of glycolysis, followed by lactic acid 
fermentation, to support their energy demands. This phenomenon is called Warburg effect, also known 
as aerobic glycolysis. This metabolic reprogramming is facilitated by the overexpression of LDH, 
particularly of its isoform LDH-A, which preferentially catalyzes the conversion of pyruvate to lactate. 
Consequently, ATP synthesis shifts from oxidative phosphorylation towards aerobic glycolysis [7]. 

Figure 6. Normoxic, hypoxic and necrotic regions of solid tumors [12]. 

Figure 5. Different views of the 3D surface of LDH. The binding pocket is evidenced in green. 
Obtained from surface visualization in ChimeraX. 
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Despite the lower ATP yield of aerobic glycolysis (2 ATP molecules versus 32 from oxidative 
phosphorylation), the enhanced speed of this process is sufficient to support the growth and 
proliferation of tumoral mass [5]. Beyond its role in promoting aerobic glycolysis, LDH-A contributes to 
various critical aspects of cancer pathophysiology, namely [13]: 

• Proliferation and survival. LDH-A supports tumor cell proliferation and survival by ensuring 
sufficient energy supply. Furthermore, it favors cancer stem cells phenotype, protects cancer 
cells from reactive oxygen species damage and prevents necrosis in hypoxic environment. 

• Invasion and metastasis. Elevated lactic acid levels and LDH-A’s regulatory effects on 
metastasis-associated proteins enhance tumor invasion and metastatic potential. 

• Angiogenesis. It is regulated by LDH-A through the production of lactic acid which promotes the 
upregulation of vascular endothelial growth factor. 

• Immune escape of cancer cells. This mechanism is supported by the overexpression of LDH-A, 
which facilitates immune evasion by inhibiting immune-mediated cytotoxicity and promoting an 
immunosuppressive tumor microenvironment. 

The aforementioned critical aspects of cancer pathophysiology are summarized in Figure 7. 

 

1.4 Alternative cancer therapies: LDH-A inhibitors 

LDH-A is involved in cancer metabolism and plays a pivotal role in cancer cells proliferation and 
survival, whereas its silencing is minimally harmful to normal cells [13]. Consequently, a possible 
strategy to treat solid tumors, which are characterized by the overexpression of LDH-A, could be 
targeting this enzyme with selective inhibitors. Inhibitors can be classified into two categories: 
irreversible and reversible. Irreversible inhibitors covalently bind to specific residues within enzyme’s 
active site, leading to a permanent loss of the enzymatic activity. Meanwhile, reversible inhibitors form 
non-covalent interaction with the enzyme, resulting only in a transient loss of the enzymatic activity [14]. 
Reversible inhibitors can be further classified, according to the nature of their interaction with the 
enzyme. To illustrate this classification, it is important to consider the enzyme’s catalytic mechanism, 
which involves two main steps. In the first step, the substrate binds to the active site of the enzyme. 

Figure 7. Overview of LDH-A's roles in hallmarks of cancer [13]. 
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Subsequently, as second step, the bound substrate undergoes chemical transformation. Based on the 
interaction with these steps, reversible inhibitors can be categorized as competitive, non-competitive, 
or mixed-type. Competitive inhibitors interfere with the first catalytic step by competing with the 
substrate for binding to the active site of the enzyme. By contrast, non-competitive inhibitors bind to a 
different site of the enzyme, and they affect the second catalytic step. Finally, mixed-type inhibitors 
interfere with both steps of catalysis. A special case of mixed type-inhibition is the uncompetitive 
inhibition, in which the inhibitor binds only to the enzyme-substrate complex, as the inhibitor’s binding 
site is formed only after substrate binding. Although most inhibitors exhibit mixed-type behaviour, they 
are generally described as competitive or non-competitive when one effect is significantly predominant 
than the other [15]. Based on the mechanism of action, LDH-A inhibitors can be classified as: pyruvate-
competitive, NADH-competitive, pyruvate and NADH-competitive, and free enzyme-binding [13]. Key 
examples of LDH-A inhibitors with diverse mechanisms of action are: 

• Galloflavin. It is a free enzyme-binding inhibitor, discovered in 2012 by Manerba et al [16]. It is a 
synthetic compound, specifically a gallic acid derivative [17], that inhibits both human LDH 
isoforms, showing minimal effects on normal cellular metabolism. Galloflavin preferentially 
binds to the free enzyme, without competing with either the substrate or the cofactor [13]. 
Galloflavin’s structure is shown in Figure 8. 
 

 
• Oxamate. It is the salt of the half-amide of oxalic acid. It is an isosteric pyruvate form and thus 

acts as a pyruvate-competitive inhibitor [18]. Although its effectiveness has been validated 
through in vitro tests, its limited cell membrane permeability results in a required effective dose 
that is too elevated for practical in vivo administration [13]. Oxamate’s structure is shown in 
Figure 9. 
 

Figure 8. 2D [60] and 3D structure of Galloflavin. 3D structure 
obtained from compound visualization in ChimeraX. 

Figure 9. 2D [61]and 3D structure of Oxamate. 3D structure 
obtained from compound visualization in ChimeraX. 
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• Gossypol. It is a natural phenol derived from cottonseed oil. Its inhibitory effects on tumor 
growth have been demonstrated in mammary, colon, breast, melanoma and colorectal cells 
[19]. It is a NADH-competitive inhibitor [20]. Gossypol’s structure is shown in Figure 10. 

 

• FX-11. It is a NADH-competitive inhibitor, analogue of gossypol. It has demonstrated preclinical 
efficacy in lymphoma, pancreatic, and prostate cancer [21]. Although it shows a certain 
therapeutic potential, the highly reactive catechol moiety of FX-11 limits its suitability as a 
candidate drug for further development [13]. FX-11’s structure is shown in Figure 11. 

 

 
• NHI-2. It is an inhibitor that competes with both the substrate and the cofactor. Cellular assays 

with NHI compounds have demonstrated their ability in impeding cancer cell proliferation [13]. 
Furthermore, studies have shown its effectiveness in altering cell cycle progression and 
inducing apoptosis in various glioblastoma (GBM) cell lines [22]. NHI-2’s structure is shown in 
Figure 12. 

 

 

Figure 10. 2D [55] and 3D structure of Gossypol. 3D structure 
obtained from compound visualization in ChimeraX. 

Figure 11. 2D [62] and 3D structure of FX-11. 3D structure 
obtained from compound visualization in ChimeraX. 

Figure 12. 2D [63] and 3D structure of NHI-2. 3D structure 
obtained from compound visualization in ChimeraX. 
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1.5 Enzyme kinetics 

To investigate the inhibitory properties of compounds and their effects on enzyme behaviour, enzyme 
kinetics represents a powerful, quantitative and valuable approach. This method enables the 
measurements of the rate or velocity of enzyme-catalyzed reactions, allowing for the analysis of the 
factors that influence enzymatic activity and catalytic efficiency. Enzyme kinetics is typically studied 
through enzymatic assays, which quantify enzyme activity within a given sample. Several 
methodological approaches are available for conducting enzymatic assays, among which 
spectrophotometric monitoring of absorbance variation during the enzymatic reaction is widely 
employed. In fact, enzymatic activity is commonly estimated from spectrophotometric measurements, 
by calculating the slope of the linear portion of the reaction curve, which reflects the rate of change in 
the concentration of substrate or product monitored. As conventionally defined, “reaction rates in 
enzyme kinetics refer always to initial reaction rates where the maximum catalytic potential of the 
enzyme is expressed” [15]. These initial rates are essential to accurate determine the enzyme activity.  
The kinetic curve is obtained exploiting the spectrophotometer’s ability to detect changes in the light 
absorbance or scattering within the reaction solution. The majority of the tests are performed using a 
UV/visible spectroscopy, which typically operates within the wavelength range of 100-1100 nm. The 
wavelength selected for the analysis should allow a clear distinction between reactants and products, 
while minimizing interferences from other chemicals [23]. In this Master thesis, the enzymatic activity 
of LDH is assessed by leveraging a widely used spectrophotometric approach based on the specific 
absorbance properties of NADH. Notably, NADH absorbs ultraviolet light only in its reduced form, 
making it a reliable indicator of enzymatic oxidation-reduction processes.   

The foundational hypothesis of enzyme catalysis was proposed by Michaelis and Menten, who 
described the process as a two-steps mechanism, represented as follows [24]: 

 

 

where E is the enzyme, S is the substrate, ES is the enzyme-substrate complex, and P is the product. 
Firstly, the substrate bonds in the active site of the enzyme. Subsequently the amino acid residues 
within the active site chemically convert the substrate into the product, which is then released, 
regenerating the free enzyme. The first step is typically much quicker than the second one, consequently 
the formation of the ES complex is commonly assumed to be at equilibrium.   

Based on this assumption, the Michaelis-Menten equation is derived to describe the initial reaction 
velocity (V₀) as a function of substrate concentration: 

𝑉0 =
𝑉𝑚𝑎𝑥 ∗ [𝑆]

𝐾𝑚 + [𝑆]
 

Where: 

• Vmax: maximum reaction velocity the enzyme can reach when the substrate is saturated (µmol 
min-1) 

• [S]: substrate concentration (mM) 
• Km: Michaelis-Menten constant, which is the substrate concentration required to achieve half 

Vmax (mM) 

Equation 1. 
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The graphical representation of the typical Michaelis-Menten’s behaviour is provided in Figure 13. 

Beyond the classical Michaelis-Menten model, enzyme kinetics can also be described using the Hill 
equation: 

𝑉0 =
𝑉𝑚𝑎𝑥 ∗ [𝑆]𝑛

𝐾𝑚
𝑛 + [𝑆]𝑛

 

Where: 

• Vmax: maximum reaction velocity the enzyme can reach when the substrate is saturated (µmol 
min-1) 

• [S]: substrate concentration (mM) 
• Km: Michaelis-Menten constant, which is the substrate concentration required to achieve half 

Vmax (mM) 
• n: the Hill coefficient, which represents the cooperativity level of the protein (-) 

The equation was first introduced to describe the relationship of equilibrium between oxygen tension 
and the percent saturation of haemoglobin, but it is also applicable to enzyme kinetics that exhibit a 
sigmoidal curve in response to variations in the input concentrations. Mathematically, the Michaelis-
Menten equation is a special case of the Hill equation, where n=1 [25]. The graphical representation of 
the typical Hill’s behaviour is provided in Figure 14. 
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Figure 13. Graphical representation of the Michaelis-Menten plot and the associated parameters. 

Equation 2. 
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In order to determine the kinetic parameters of the aforementioned equations, various linearization 
methods have been developed. Among these the Lineweaver-Burk plot is frequently used.  

The Lineweaver-Burk plot, shown in Figure 15, is a double reciprocal plot of 1/V₀ versus 1/[S], with the 
slope corresponding to Km/Vmax, while the intercept on the Y-axis is the reciprocal of Vmax. This is the only 
linearization approach in which independent and dependent variables are separated. However, a 
notable limitation is its tendency to amplify experimental errors, especially at low substrate 
concentration. For this reason, alternative linearization techniques that offer a more uniform error 
distribution, such as the Hanes-Woolf plot, are frequently employed. This type of linearization is shown 
in Figure 16. 
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Figure 14. Graphical representation of the Hill plot and the associated parameters. 

Figure 15. Graphical representation of the Lineweaver-Burk plot and the associated parameters. 
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This method plots [S]/V₀ against [S], yielding a slope equal to the reciprocal of Vmax, while the intercept 
of the Y-axis is Km/Vmax. While it offers a more uniform error distribution, its main limitation lies in the 
placement of the independent variable on both axes, potentially complicating data interpretation [15]. 

Kinetic curves change due to inhibition and this change depends on the inhibition type. Reversible 
inhibition can be identified by analyzing how increasing inhibitor concentrations affect the relationship 
between reaction rate and substrate concentration. The linearization methods previously discussed are 
particularly valuable in elucidating the mechanism of inhibition.  

A common and insightful approach involves Lineweaver-Burk linearization, plotted on the same graph 
for different inhibitor concentrations, as shown in Figure 17.   

 

Figure 17.Linweaver–Burk plots for competitive, noncompetitive, and uncompetitive [26]. 

In each plot, the thick blue line represents the enzyme kinetic in the absence of inhibitor, while the thin 
blue lines depict the effect of increasing inhibitor concentrations, indicated by the direction of the green 
arrow.   

In competitive inhibition, the inhibitor reversibly binds to the active site of the enzyme, directly 
competing with the substrate. As a result, the maximum velocity remains unaltered, since sufficiently 
high substrate concentrations can completely displace the inhibitor. This is reflected in the Lineveawer-
Burk plot by an unchanged y-intercept (1/ Vmax). However, the apparent Michaelis constant increases, 
indicative of a reduced substrate affinity, which manifests as an increase in the slope and a leftward 
shift of the in the x-intercept’s value. 

In non-competitive inhibition, the inhibitor binds to an allosteric site on the enzyme, separate from the 
substrate-binding site. This implies that increasing the substrate concentration will not relieve the 
inhibition. In fact, an increase in the inhibitor concentrations result in a reduction of Vmax, as evidenced 
by the increase of the y-intercept. Notably, Km remains unchanged, implying that substrate binding 
affinity is not affected. Consequently, the x-intercept remains constant across inhibitor concentrations.   

Figure 16. Graphical representation of the Hanes plot and the associated parameters. 
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In the case of uncompetitive inhibition, the inhibitor binds exclusively to the enzyme-substrate complex, 
stabilizing it and enhancing the binding of substrate. Consequently, Km is reduced. Meanwhile, the 
inhibitor-bound complex forms mostly under concentrations of high substrate.  The enzyme-substrate-
inhibitor complex is then unable to release product while the inhibitor remains bound, leading to a 
reduction in Vmax. In the Lineweaver–Burk plot, this results in a family of parallel lines, each with 
increased y-intercepts and x-intercepts, reflecting decreased maximum velocity and enhanced 
substrate binding, respectively [26].  

In mixed-type inhibition, the inhibitor exhibits the ability of binding both to the free enzyme and to the 
enzyme-substrate complex. As a general feature, Vmax consistently decreases in this inhibition type. 
However, the effect on Km is variable, as it can either increase or decrease [27]. An increase in Km, 
indicating a diminished affinity of the enzyme for its substrate, suggests that the inhibitor preferentially 
binds to the free enzyme. Conversely, a decrease in Km, implying enhanced substrate apparent affinity, 
signifies a preferential binding of the inhibitor to the enzyme-substrate complex.   

A comprehensive summary of the effect of various inhibitor types on the kinetic parameters is provided 
in Table 1. 

Table 1. Summary of the effect of different mechanism of inhibition on the kinetic parameters of the enzyme. 

 Mechanism of inhibition 
Competitive Non-competitive Uncompetitive Mixed-type 

Vmax Constant Decrease Decrease Decrease 
Km Increase Constant Decrease Increase/Decrease 

 

 

1.6 Research and development of new drugs 

The pharmaceutical research and development (R&D) pipeline is a systematic and highly regulated 
process aimed at identifying potentially therapeutic drugs, demonstrating their safety and efficacy, and 
ultimately ensuring their accessibility to patients.  

This process comprises several key stages, each contributing crucially to the identification and 
validation of drug candidates. The key steps are listed as follow [28]: 

• Drug target identification. This step marks the initial phase of the pipelines and involves the 
selection of a biological molecule, most often a protein or gene, which is associated with the 
pathogenesis of a particular disease. The ideal drug target should be disease-specific, 
biologically relevant, and accessible to potential therapeutic agents. 

• Drug screening and design. It follows the identification of the target. This phase involves the high 
throughput screening of large compound libraries to identify molecules that can bind effectively 
to the chosen target and modulate its activity. Identified molecules can be further modified and 
designed to improve their specificity, binding affinity and pharmacokinetic properties. 

• Preclinical Testing. It represents the stage in which screened and selected drug candidate 
undergoes extensive laboratory investigations, including in vitro assays and in vivo studies, 
including animal models. These experiments aim to characterize the pharmacological profile of 
the compound, assess its toxicity and side effects, and gather preliminary data on its efficacy.  
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Only candidates demonstrating an acceptable safety margin and therapeutic promise move 
forward to the following step.  

• Clinical Trials. It identifies the transition from laboratory research to human studies. This multi-
phase process begins with Phase I trials, which assess the safety and tolerability of the drug in 
a small group of healthy volunteers or patients. Phase II trials focus on evaluating the efficacy 
and optimal dosing regimen in a larger patient population, while Phase III trials involve large-
scale testing across diverse populations to confirm effectiveness, monitor adverse effects, and 
compare the new therapy to standard treatments. 

• Regulatory Approval: Throughout the entire drug discovery process, the potential drug must 
adhere to stringent standards established by regulatory agencies. Notable examples include the 
Food and Drug Administration (FDA) in the United States and the European Medicines Agency 
(EMA) in the European Union. They require comprehensive documentation of all preclinical and 
clinical findings before a drug can be approved for commercial use. These agencies ensure that 
new therapies meet rigorous standards for quality, safety, and efficacy, and they continue to 
monitor approved drugs through post-marketing surveillance. 

The process of identification, development and approval of novel chemical entities is fraught with 
significant scientific, logistical and economic challenges. The process is not only inherently complex, 
involving iterative cycles of testing and optimization, but also time-intensive and costly. A statistical 
report by the Tufts Centre for the Study of Drug Development (CSDD), indicates that the overall cost for 
a single new drug discovery, from initiation to approval, can reach $2.6 billion, with the entire drug 
development pipeline often requiring up to 14 years of research and tests [29].  

These challenges underscore the growing necessity to develop innovative techniques that can 
streamline drug discovery and reduce development costs. Indeed, as highlighted in Figure 18, the initial 
phase is characterized by the highest costs and longest duration. In this context, molecular modelling, 
which enables the in-silico prediction of molecular interaction, and biosensors, which allow real-time, 
sensitive detection of biological and chemical interactions, have emerged as particularly promising 
tools for accelerating the identification of viable therapeutic candidates. 

 

 

Figure 18. The drug-development life cycle, duration of each one of the stages, 
capitalized costs, and the probability of failure [64]. 
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1.6.1 Molecular Modelling 

The advent of high-performance computing has significantly facilitated in silico virtual experimentation, 
serving as a crucial bridge between laboratory-based research and theoretical models.   

Among the most powerful computational techniques is molecular modelling which enables the 
generation, the visualization and the manipulation of the 3D structures of chemical and biological 
molecules. This approach provides valuable insight into chemical and physical properties of the 
molecules, enables structural comparison between different compounds, and the visualization of 
molecular interactions between different molecules/macromolecules, with the resulting formed 
complexes. Furthermore, it can be employed to predict the conformations of novel or related molecules 
[30]. As a computational technique, molecular modelling is both a cost-effective and efficient 
approach. Two of the principal techniques within this field are: molecular docking and molecular 
dynamics (MD) simulation, each offering unique advantages depending on the specific research 
objectives. 

Molecular docking is a structure-based technique designed to predict the preferred orientation of a 
small molecule (ligand) when bound to a macromolecule. This method simulates the interaction 
between ligand and receptor within the target’s binding site. It requires a high-resolution 3D 
representation of the target protein, which can be obtained exploiting techniques like Nuclear Magnetic 
Resonance Spectroscopy and X-ray crystallography [31]. The docking process considers various non-
covalent interactions, including electrostatic interactions, Van der Waals, Coulombic and hydrogen 
bonds. The interactions between the analysed structures are summed and the result is approximated 
by a docking score which gives an indication of their bonding potential. The prediction is achieved by 
the algorithm following two main steps. In the first one conformational space is explored and the 
algorithm identifies potential binding poses. In the second step, the binding free energy is estimated to 
evaluate the affinity and the stability of each ligand conformation. The resulting docking score reflects 
the predicted binding potential, with lower energy values typically indicating more favourable 
interactions [32].  

MD simulation is a computational technique employed to investigate the time-dependent behaviour of 
molecular systems. This technique models the motion of atoms and molecules by solving Newton’s 
equations of motion, using force fields that describe bond stretching, angle bending, torsional rotations 
and non-bonded interactions. The process involves several key steps: system preparation, energy 
minimization, equilibration of the system, and finally the running of the simulation for a specific period 
of time, during atomic coordinates are iteratively updated over time based on calculated forces [33]. 

Molecular docking and molecular dynamics (MD) simulations each address distinct purposes within 
computational studies. The choice between these methods largely depends on the research objectives, 
available computational resources, and the nature of the system under investigation. During the initial 
phases of drug discovery, molecular docking is typically the preferred choice due to its speed and 
suitability for high-throughput virtual screening. Indeed, docking enables rapid identification of 
compounds with high binding potential with the target molecule which is especially valuable for 
designing enzyme inhibitors or receptor agonists, offering a practical way to quickly identify promising 
drug candidates. Conversely, molecular dynamics (MD) simulation is more appropriate when the aim is 
to investigate binding stability between ligands and proteins, mimic intricate interactions within 
complex biological systems, or explore the impacts of solvents and the surrounding environment. MD 
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thus offers a more realistic and detailed representation of molecular behaviour over time, making it 
indispensable for fine-tuning drug candidates and validating docking results [33]. 

 

1.6.2 Biosensor for anticancer drug screening 

 A biosensor is an analytical device designed to convert a biological or chemical reaction response into 
a quantifiable and detectable signal [34]. The generated signal is typically proportional to the 
concentration of the target analyte within the analyzed sample. Generally, a biosensor consists of an 
analyte, a bioreceptor, a transducer, an electronic system and a display unit, as illustrated in Figure 19. 
The analyte refers to the substance of interest, typically a specific biomolecule or chemical, while the 
bioreceptor is the component responsible for recognizing and binding the analyte. Common types of 
bioreceptors include enzymes, nucleic acids (DNAs or RNAs), cells, aptamers and engineered 
nanoparticles. 

The interaction between the analyte and the bioreceptor initiates the biorecognition process, during 
which a primary signal is produced. The generated signal is then converted by the transducer into a 
measurable form, through a process referred to as signal transduction or signalisation. The nature of 
the output signal can be electrical, thermal or also optical, depending on the biosensor design, and it is 
generally proportional to the extent of analyte-bioreceptor interactions. The transduced signal is 
subsequently processed by the biosensor’s electronic system, which typically performs signal 
processing like amplification, filtering and conversion of signals from the analogue form into the digital 
one. Finally, the processed data results are presented via a display interface. They can be shown in a 
variety of ways including numeric, graphic or tabular, according to the requirements of the end user [35].  

A comprehensive scheme of the biosensor’s components is shown in Figure 19.  

 

Given the relevance of LDH on cancer cells metabolism, the development of a biosensor for screening 
new possible LDH inhibitors could be a valuable tool to discover the potential of new anticancer drugs, 
minimizing the cost and the time of the experiments [36]. Nowadays the methods used to perform drug 
screening primarily rely on structure-based ligand design and biochemical or cellular assays that asses 

              Figure 19. Schematic representation of a biosensor. [35] 
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LDH-inhibition, protein-ligand interaction, or biological activity in cell-based systems [37]. However, the 
majority of these methods are time-consuming, resource-intensive and in some cases, such as cell-
based biological assays, challenging to interpret [38]. These limitations underscore the potential value 
of a biosensor-based approach as an efficient, rapid, and cost-effective alternative for evaluating LDH-
inhibitory activity in candidate compounds. 
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2. Materials and methods 
The present work aims to a comprehensive evaluation of LDH's behaviour under various experimental 
conditions and in the presence of different substances. The ultimate objective is to gather fundamental 
knowledge, necessary for the future development of a bioreactor that will incorporate LDH for a fast, 
reproducible and cost-effective screening of potential anticancer drugs.  In order to reach this goal, LDH 
would be likely used in its immobilized form. Although the immobilization process itself is not addressed 
within the scope of this study, understanding the enzyme’s native characteristics is an essential 
preliminary step.   

To this end, the present work focuses on the free enzyme, investigating its catalytic activity, stability, and 
interaction with various compounds that may be present in the reaction medium. These factors are 
crucial in defining the enzyme’s performance and limitations in a real application context. Knowledge 
of how LDH responds to changes in pH, temperature, and chemical environment is indispensable for 
designing an immobilization strategy that preserves or enhances its functional properties.   

While immobilized enzymes are commonly used in biosensor applications due to their reusability and 
resistance to loss in solution, such advantages can only be fully exploited if the free enzyme’s behaviour 
is well understood.   

 

2.1 UV-Vis Spectroscopy 

To reach the aforementioned goal, ultraviolet-visible (UV-Vis) spectrophotometry was selected as the 
primary analytical technique. UV-Vis spectroscopy is widely employed across scientific disciplines due 
to its ability to measure the amount of discrete UV or visible light wavelengths absorbed or transmitted 
by a sample, typically in comparison to a reference or blank. The degree of light absorption is influenced 
by the sample’s chemical composition, making this technique particularly valuable for identifying and 
quantifying molecular constituents. The absorption of ultraviolet and visible light is linked to specific 
functional groups within the molecules, defined as chromophores. Moreover, absorbance is an additive 
property; therefore, when multiple compounds present in a sample absorb at the same wavelength, the 
resulting absorbance will reflect the cumulative contributions of each individual species, potentially 
leading to spectral overlap and interference. 

More in detail, when a beam of light passes through a sample, certain wavelengths are absorbed if their 
energy matches the energy required to promote electrons within the molecules from a lower to a higher 
electronic energy state. These electronic transitions involve σ → σ *, n → σ *, π → π* or n → π* excitations. 
Where σ, σ *, n, π, π* are the type of molecular orbitals involved in the electronic transitions [39]. 

A UV-Vis spectrophotometer comprises several essential components [40]: 

• Light Source. A stable source capable of providing a broad spectrum of wavelengths is essential. 
Common sources include tungsten, halogen, or deuterium. 

• Wavelength Selector. This component is used to isolate the specific wavelength required for 
analysis. This can be achieved using monochromators, absorption filters, interference filters, 
cutoff filters, or bandpass filters. Monochromators and filters are often combined together to 
narrow the selected wavelengths, improve the resolution and enhance the signal-to-noise ratio. 
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• Sample compartment. The selected light passes through the sample. A reference or blank 
sample, typically the solvent alone, is also measured to ensure accurate baseline correction 
and obtain the true absorbance values of the analytes. In fact, the solvent in which the absorbing 
species or the analyte is dissolved also as an effect on the spectrum of the species itself, shifting 
the absorbing peaks to shorter wavelength (blue shift) or higher ones (red shift) depending on its 
polarity. 
One key aspect for the sample preparation regards the sample holder material. In liquid-phase 
spectroscopy, cuvettes are typically used to contain the sample solution during measurements. 
It is essential to consider the optical properties of the cuvette material, as they can significantly 
affect the accuracy and reliability of the absorbance data. Cuvettes are typically made of plastic 
materials or quartz. Plastic cuvettes are unsuitable for ultraviolet absorption measurements 
because plastic tends to absorb UV light, interfering with the detection of analytes in this region. 
Quartz, instead, is transparent across a broad range of UV and visible wavelengths.   
Moreover, the surrounding environment can also influence UV measurements. For instance, air 
can act as a natural filter: molecular oxygen absorbs light below approximately 200 nm, which 
limits the measurable spectral range under normal atmospheric conditions. To access 
wavelengths shorter than 200 nm, specialized instrumentation is needed, typically involving an 
optical system enclosed and purged with inert gases such as pure Argon. 

• Detector. After interacting with the sample, the light reaches a detector, which converts the 
optical signal into a readable electronic signal. Detectors commonly rely on photoelectric 
coatings or semiconductors to capture the signal. 

• Computer Interface. The electronic signal generated by the detector is recognized, processed, 
and visualized via dedicated software, allowing real-time monitoring and data acquisition. 

A schematic representation of a UV-Vis spectrophotometer’s internal parts is provided in Figure 20. 

This technique offers several significant advantages, that make it especially suitable for biochemical 
studies, such as the objective of the present Master’s Thesis. These advantages include being non-
destructive, rapid, user-friendly, requiring minimal sample processing and being relatively low-cost, 
compared to other analytical methods. 

. 

Figure 20. Schematic diagram of UV-Vis spectroscopy system [40]. 
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2.1.1 Absorption Spectra 

Identifying the specific wavelength at which a substance exhibits maximum absorbance is essential for 
accurately setting the spectrophotometer. In fact, in UV-Vis spectroscopy, the analytical wavelength is 
typically set at the point of maximum absorbance for the target substance, as this enables maximum 
sensitivity and selectivity in monitoring the analyte [40]. Consequently, the initial phase of this Master's 
thesis involved acquiring the UV-Vis absorption spectra of all compounds participating in the LDH-
catalyzed enzymatic reaction: pyruvate, NADH, NAD+, and lactate. The primary objective of this 
preliminary analysis was to identify an optimal wavelength for subsequent spectrophotometric 
measurements. 

The absorption spectra were recorded using a “Jasco V-730” spectrophotometer set in   "Spectra 
Measurements" mode. The wavelength was change in the range within 220 nm and 750 nm. 
Measurements were conducted using quartz cuvettes, selected for their superior transparency across 
the UV and visible regions, which ensures accurate detection throughout the scanned range.   

Prior to sample analysis, a baseline measurement was performed. For the acquisition of the baseline 3 
mL of 0.1 M pH 7.4 potassium phosphate buffer [41] were placed in the quartz cuvette, as it represents 
the dilution solvent in which the subsequent kinetic tests were performed Once acquired, the baseline 
data was subtracted from all subsequent measurements to effectively eliminate the background noise 
or any signal due only to the buffering solution. After the acquisition of the baseline, all the substances 
were individually tested. A proper amount of solution of each of the substance was added to the quartz 
cuvette, in order to reach the desired concentration. In each case, the total volume contained in the 
cuvette was equal to 3 mL. To ensure reliable measurements, each solution was thoroughly mixed 
before analysis until no visible inhomogeneities were observed, thereby promoting consistent 
absorbance readings across the cuvette.  

Table 2 summarizes the concentrations of the tested compounds. 

Table 2. Summary of the of the compound concentration used for every test during the spectra measurements. 

Compound Pyruvate NADH Lactate NAD+ 
Concentration (mM) 1.63 0.23 0.23 0.23 

 

The pyruvate concentration was selected based on prior studies [42], which indicated that lower 
concentrations did not support sufficient enzymatic conversion. This choice also offered the advantage 
of simplifying weighing procedures. This choice also offered the advantage of easier handling and 
weighing. The NADH concentration was likewise determined from previous studies [42], as higher 
concentrations led to saturation during spectrophotometric detection. The same concentration of 
NADH was used for NAD+, assuming full conversion of NADH in NAD+ under reaction condition. Finally, 
The lactate concentration of 0.23 mM was selected according to stoichiometric consideration related 
to the enzymatic reaction mechanism. In the LDH-catalyzed reaction, NADH and pyruvate are 
consumed in equimolar amounts to produce NAD+ and lactate, according to the hereafter reported 
reaction: 

𝑃𝑦𝑟𝑢𝑣𝑎𝑡𝑒 + 𝑁𝐴𝐷𝐻 ↔ 𝐿𝑎𝑐𝑡𝑎𝑡𝑒 + 𝑁𝐴𝐷+ 

This 1:1 stoichiometric relationship implies that for each mole of NADH consumed, one mole of lactate 
is produced. In the tested conditions, NADH was present at a lower concentration than pyruvate (0.23 
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mM vs. 1.63 mM), and therefore clearly acts as the limiting reagent. Since pyruvate is in excess, all of 
the NADH can, in principle, be converted. As a result, the maximum concentration of lactate that can 
be formed is directly determined by the initial concentration of NADH. Thus, complete conversion of 
NADH would yield an equivalent concentration of lactate. Based on spectral data and for reasons better 
detailed in the Results section, 340 nm was selected as the optimal wavelength for analysis. This 
specific wavelength will be used in all subsequent kinetic assays to evaluate biocatalytic activity. 

Whenever a new substance is introduced in the reaction medium, it is essential to evaluate its potential 
effect on measurements. For this reason, in this context, absorption spectra were also acquired for 
Dimethyl sulfoxide (DMSO), since it was used as solvent for the inhibitors tested on LDH in the kinetic 
assays. Finally, the absorption spectra were acquired also for all the tested inhibitors, namely: 
Galloflavin, Oxamate, Gossypol, FX-11, and NHI-2. These aforementioned steps were crucial to identify 
any potential spectral overlap at the previously selected wavelength between different compounds. 
This potential overlap could interfere with affecting the accuracy of absorbance-based quantification 
measurements and the interpretation of reaction outcomes. 

The acquisition procedure is the same detailed for just reagents and products of the enzymatic reaction. 

Table 3 summarizes the concentrations of the DMSO and of the inhibitors tested. 

Table 3. Summary of the quantity of buffer and tested inhibitor used for every test during the spectra measurements. 

Compound DMSO Galloflavin NHI-2 Oxamate FX-11 Gossypol 
Concentration (µM) 46780 20 40 40 20 40 

 

The DMSO concentration refers to the concentration of the pure solvent within the cuvette. Conversely, 
the inhibitor concentrations correspond to the maximum concentrations evaluated in the subsequent 
kinetic assays, ensuring that spectral measurements reflect the most critical conditions for evaluating 
interference at the chosen wavelength. 

To complete this series of measurements, NADH absorption spectra were recorded at varying 
concentrations, ranging from 0.005 mM to 0.1 mM. A complete list of the tested concentration is 
provided in Table 4.  

This specific concentration range was crucial as these low values will constitute the initial data points 
for the enzyme kinetic assay. At these low concentrations, even a minimal absorbance contribution 
from an inhibitor absorbing at 340 nm could significantly perturb the accuracy of the measurements. 
Therefore, confirming the absence of such overlap was essential to ensure the accuracy and reliability 
of the subsequent kinetic measurements. 

Table 4. Summary of the quantity of buffer and tested cofactor used for every test during the spectra measurements. 

NADH concentration (mM) 0.005 0.01 0.015 0.025 0.05 0.1 
 

 

2.1.2 Enzyme activity 

The enzyme activity was evaluated through the “Time course” mode of the spectrophotometer “Jasco 
V-730”, set at a wavelength of 340 nm. This method exploits the property of NADH to absorb UV light at 
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the specified wavelength only in the reduced form and not in the oxidized one. Consequently, it was 
possible to quantify the activity of LDH, which uses NADH as cofactor, by tracking the decrease in 
absorbance over time. This absorbance variation directly indicated the consumption of the cofactor as 
the enzyme reaction proceeds.  

A computer interface allowed for real-time data visualization, displaying the variation of absorbance 
over approximately 120 s, due to NADH consumption, at defined concentration of substrate and 
cofactor.  

As anticipated, the complete kinetic curve was obtained by varying either the substrate or cofactor 
concentration while keeping the other fixed (pyruvate at 1.63 mM and NADH at 0.23 mM). In order to 
have reliable, precise results, and assess errors associated with experimental results, all the 
experiments were conducted in triplicate. The final value for each condition corresponds to the average 
of the three replicates and associated error bars represents the standard deviation. The resulting data 
were plotted as kinetic curves, showing the initial reaction velocity, corresponding to the product 
formation rate, as a function of the varied cofactor or substrate concentration.  

To determine the reaction velocity, the initial linear portion of the NADH absorbance decay curve was 
considered, applying the following equation [43] to calculate the activity of the free enzyme: 

𝐴𝐹𝐸 =
∆𝐴

𝜀 ∗ 𝐿
∗

𝑉𝐶

𝑉𝑒
∗

1

𝐶𝑝
 

Where:  

• ∆𝐴: absorbance slope (-) 
• 𝜀: NADH molar extinction coefficient (6.22 mM–1 cm–1) 
• 𝐿: optical path (1 cm) 
• 𝑉𝐶: volume solution in the cuvette (3.01 mL) 
• 𝑉𝑒: enzymatic solution volume (0.1 mL) 
• 𝐶𝑝: concentration of the enzymatic solution (0.01 mg mL–1) 

 

Enzymatic activity, typically expressed in International Units (IU), refers to the amount of enzyme 
required to catalyze the conversion of 1 micromole of substrate per minute under defined conditions of 
temperature, pH, and substrate concentration. This value is often normalized per gram or milligram of 
biocatalyst to express specific activity. 

However, in this thesis, enzymatic activity was not expressed in IU per mg of protein but rather reported 
directly as the rate of product formation in micromoles per minute (µmol/min), based on the initial linear 
portion of the NADH absorbance curve. 

Kinetic experiments were conducted to characterize the enzyme's intrinsic biocatalytic activity and to 
investigate the effects of DMSO and various inhibitors. For each tested condition, kinetic curves were 
generated by varying either the substrate or the cofactor concentrations. Experimental data were 
interpolated using Michaelis-Menten equation in the case in which pyruvate concentration was varied. 
While varying cofactor concentration instead, the most representative equation was the Hill’s one. Data 
interpolation and fitting were performed using Origin software, which also enabled the extraction of 
kinetic parameters. For the curves obtained by varying the substrate concentration, thus fitting the 
Michaelis–Menten model, kinetic parameters were validated through both Lineweaver–Burk (Equation 

Equation 3. 
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4) and Hanes–Woolf (Equation 5) linearization, in order to confirm the consistency and reliability of the 
calculated Km and Vmax. 

Kinetic parameters were calculated to evaluate enzyme intrinsic characteristics and the inhibitor's 
effect on enzyme kinetics and to compare the compounds' different impacts. The linearizing equations 
are presented below: 

1

𝑉0
=

𝐾𝑚

𝑉𝑚𝑎𝑥 ∗ [𝑆]
+

1

𝑉𝑚𝑎𝑥
 

 

[𝑆]

𝑉0
=

[𝑆]

𝑉𝑚𝑎𝑥
+

𝐾𝑚

𝑉𝑚𝑎𝑥
 

Where: 

• Vmax: maximum reaction rate the enzyme can reach at substrate saturation conditions (µmol 
min-1) 

• 𝑉0: enzymatic reaction rate (µmol min-1) 
• [S]: substrate concentration (mM) 
• Km: Michaelis-Menten constant, which is the substrate concentration required to achieve half 

Vmax (mM) 

 

2.1.2.1 Intrinsic activity of the enzyme 

The intrinsic biocatalytic activity of the enzyme was initially evaluated to establish baseline kinetic 
curves, which served as reference data for assessing the influence of varying experimental conditions 
and the presence of potential inhibitors.  

To assay the biocatalytic activity, 0.1 M pH 7.4   potassium phosphate buffer was prepared [41]. This 
buffer was utilized to solubilize the reaction cofactor (NADH) and the substrate (pyruvate). Both the 
cofactor and substrate solutions were thoroughly mixed using a vortex mixer to ensure homogeneity.  

For the enzyme solution preparation, a 21 µL aliquot of the enzyme was thawed at room temperature for 
30 minutes. Subsequently, a proper amount of 0.1 M pH 7.4 buffer was added to achieve a final enzyme 
concentration of 0.01 mg/mL. Once the three solutions were prepared, the kinetic assays were carried 
out. 

As previously described, the spectrophotometer was set in “Time course” mode and the variation of the 
absorbance at 340 nm over time was recorded. The cuvette for the analysis contained cofactor, 
substrate, and enzyme. Specifically, for the test, the blank and the sample PMMA cuvette contained the 
following components: 

• 2.71 mL of 0.1M pH 7.4 potassium phosphate buffer 
• 100 µL of NADH solution 
• 100 µL of pyruvate solution 

For the kinetic curve obtained by varying pyruvate concentration, the initial NADH stock solution was 
prepared at 7 mM, resulting in a final concentration of 0.23 mM in the cuvette, and the substrate 

Equation 4. 

Equation 5. 
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concentration ranged from 0.005 mM to 1 mM. Conversely, for the curve generated by varying NADH 
concentration, the pyruvate stock solution was prepared at 49 mM, yielding a final concentration of 1.63 
mM in the cuvette, with a cofactor concentration ranging from 0.005 mM to 0.3 mM. NADH 
concentration did not exceed 0.3 mM to avoid signal saturation of the spectrophotometer. Each data 
point was obtained in triplicate. 

The reaction was initiated by the addition of the enzyme solution to the sample cuvette. Magnetic stir 
bars were included in both the blank and sample cuvettes to maintain uniform mixing throughout the 
analysis.  

All assays were performed at a temperature of 37°C and at a 7.4 pH, to mimic physiological conditions 
commonly employed in most cellular assays. 

In multi-substrate enzyme reactions, such as the one under examination, conventional kinetic 
measurements often yield apparent kinetic parameters, that depend on specific experimental 
conditions, including pH, temperature, and fixed concentrations of other reactants. To determine the 
true kinetic parameters of LDH, that are independent from these constraints, a more comprehensive 
kinetic analysis, involving the use of secondary plots, was conducted.  

Before utilizing secondary plots, a thorough understanding of the reaction mechanism was crucial. The 
LDH catalyzed reaction proceeded via a sequential mechanism, meaning all substrates bound to the 
enzyme before the catalytic reaction took place. Furthermore, it exhibited an ordered sequential 
mechanism, where substrate binding occurred in a predetermined sequence. Specifically, for LDH-
catalyzed reactions, NADH bound first [44], followed by pyruvate. 

 

A general scheme for a sequential ordered mechanism is illustrated in Figure 21, where A and B 
represented the substrates, and Y and Z are the products. In the context of LDH, A corresponded to 
NADH (due to its initial binding), and B represented pyruvate.  

𝑣 =  𝑉𝐴𝑃 ∗
𝑎

𝐾𝐴𝑃 + 𝑎
=  𝑉𝐴𝑃

′ ∗
𝑏

𝐾𝐴𝑃
′ + 𝑏

  

 

1

𝑣
=

𝐾𝐴𝑃

𝑉𝐴𝑃
∗

1

𝑎
+

1

𝑉𝐴𝑃
=

𝐾𝐴𝑃
′

𝑉𝐴𝑃
′ ∗

1

𝑏
+

1

𝑉𝐴𝑃
′  

Where: 

• 𝑎, 𝑏: first and second substrate concentration (mM) 
• 𝑉𝐴𝑃: maximum reaction rate as function of 𝑏 (µmol min-1) 
• 𝑉𝐴𝑃

′ : maximum reaction rate as function of 𝑎 (µmol min-1) 

Figure 21. Schematic representation of sequential ordered mechanism. 

Equation 6. 

Equation 7. 
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• 𝐾𝐴𝑃: Michaelis-Menten constant as function of 𝑏 (mM) 
• 𝐾𝐴𝑃

′ : Michaelis-Menten constant as function of 𝑎 (mM) 

The Equations 6 and Equation 7 represent the kinetic equation of the sequential mechanism and the 
subsequent linearization. This linearization was instrumental in enabling the generation of the 
secondary plots. 

Secondary plots are graphical tools used to correct for the influence of varying substrate or cofactor 
concentrations on the apparent kinetic parameters. This method involves performing enzymatic assays 
at different fixed concentrations of one reactant (termed the "b parameter") while varying the other. The 
apparent kinetic parameters derived from each condition are then plotted as a function of the b 
parameter (or its reciprocal), allowing for the extrapolation of the true kinetic constants based on the 
intercepts of the resulting linear regressions. 

The secondary plots shown in Figure 22 are characteristic of a sequential ordered reaction mechanism. 
If the mechanism had instead followed a random binding order, different patterns in the secondary plots 
would have been observed, requiring alternative analytical models. 

To generate these secondary plots, LDH activity measurements were replicated by systematically 
varying the fixed concentration of either the cofactor or the substrate (referred to as the b parameter in 
Figure 22). Therefore, the kinetic assays were conducted with three additional fixed concentrations of 
both cofactor and substrate. The specific concentrations tested are summarized in Table 5. 

Table 5. Summary of the fixed concentrations applied to find the real kinetic parameters. 

“b” parameter 
Fixed NADH concentration [mM] Fixed pyruvate concentration [mM] 

0.05 0.5 
1 1 

0.23 1.63 
0.3 3 

 

All assays were conducted under the same pH and temperature conditions used for the determination 
of the apparent kinetic parameters, ensuring consistency and comparability of results. For each 
experimental condition, individual data points were measured in triplicate to ensure reproducibility and 
statistical reliability. Moreover, when NADH concentration was fixed, the substrate concentration was 
varied in the range of 0.005 mM to 1 mM. Conversely, when pyruvate concentration was fixed, the NADH 
concentration was varied between 0.005 mM and 0.3 mM.  

Figure 22. Secondary plots for the determination of kinetic parameters in sequential ordered mechanisms [15]. 
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To ascertain the true Vmax value, the reciprocal of parameter b was plotted on the x-axis while the 
apparent Vmax values, obtained from each primary kinetic analysis, were plotted on the y-axis. The linear 
regression of these data yielded a straight line, whose y-intercept allowed the calculation of the real 
Vmax.  

In an analogous manner, to determine the true Km value, parameter b was plotted on the x-axis against 
the apparent Km values on the y-axis. The resulting linear plot provided a y-intercept, whose reciprocal 
value allowed the determination of true Km. 

 

2.1.2.2 Effect of DMSO on the activity of the enzyme 

Following the initial characterization, the impact of DMSO on the enzyme's intrinsic activity was 
evaluated. This step was crucial as the inhibitors under investigation required DMSO for solubilization.  

The rationale for using DMSO as a solvent lies in its ability to dissolve both hydrophobic and hydrophilic 
compounds, a property that makes it particularly useful in drug discovery studies. It is common practice 
to use DMSO at low concentrations, however, at high concentration it is known to potentially affect 
protein conformation and consequently impair the catalytic activity [45].  

Therefore, it was essential to first verify that DMSO itself did not exert any significant effect on the 
enzyme activity. 

The range of DMSO concentrations tested varied between 0.035% v/v and 5% v/v inside the PMMA test 
cuvette. To reach the desired concentrations inside the cuvette, pure DMSO was previously diluted 
using the same 0.1 M pH 7.4 potassium phosphate buffer previously prepared. 

The blank and the sample cuvette contained the following components: 

• 2.7 mL of 0.1M pH 7.4 potassium phosphate buffer 
• 100 µL of NADH solution 
• 100 µL of pyruvate solution 
• 10 µL of DMSO solution 

The tested concentration of substrate and cofactor were the same as those without DMSO and all the 
data points were obtained in triplicate. 

Analogous to the experiments conducted without DMSO, measurements were initiated upon the 
addition of the enzyme to the sample cuvette. 

The assays were conducted at 37°C and at 7.4 pH, and magnetic stirring was provided to the samples 
throughout the monitoring of absorbance variation. 

 

2.1.2.3 Effect of different inhibitors on the activity of the enzyme 

The impact of five different LDH inhibitors on the enzyme kinetics was then investigated. Understanding 
the type, whether competitive, non-competitive or mixed, and strength of inhibition is crucial. This 
knowledge is directly relevant given that the biosensor's primary purpose is to aid in the screening of 
potential inhibitors.  
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The inhibitors evaluated were: Galloflavin, NHI-2, Oxamate, FX-11, Gossypol. Each of the tested 
compound was first solubilized in DMSO and the inhibitor solutions were subsequently added to the 
reaction mixture under the same experimental conditions described previously. 

The composition of the blank and sample cuvettes was as follows:  

• 2.7 mL of 0.1M pH 7.4 potassium phosphate buffer 
• 100 µL of NADH solution 
• 100 µL of pyruvate solution 
• 10 µL of inhibitor solution in DMSO 

The range of inhibitors concentrations tested varied between 1 µM and 40 µM for Oxamate, Gossypol 
and NHI-2; for FX-11 and Galloflavin the range was between 1µM and 20 µM. 

The experimental protocol employed in this set of experiments was consistent with the procedures 
previously described. 

These measurements were crucial not only for generating kinetic curves and observing how kinetic 
parameters changed in the presence of various inhibitors, but also for calculating the inhibition 
constant (Ki). Ki is a thermodynamic parameter, describing the binding affinity between an inhibitor and 
the enzyme and serves as a quantitative indicator of an inhibitor's potency. In fact, it represents the 
concentration represents the concentration at which the inhibitor ligand occupies 50% of the receptor 
sites. A lower Ki value signifies a greater binding affinity and, consequently, a lower amount of inhibitor 
needed to effectively inhibit the enzyme [46]. Thus, Ki is a valuable parameter for comparing the 
inhibitory potential of different compounds.  

In the present work, Ki was calculated using two complementary methods: an analytical approach and 
one non-linear regression method.  

In the analytical approach Ki was calculated exploiting the Equations shown in Figure 23. This method 
was applied after the elucidation of the inhibition mechanism, determined through changes in the 
kinetic parameters (Vmax and Km) and corroborated by molecular docking. 

Figure 23. Values of apparent kinetic parameters for different kinetic models [15]. 
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In Figure 23, K2 and K1 correspond to Ki, VAP and KAP represent the Vmax and Km associated with each 
inhibitor concentration tested, while V and K represent the Vmax and Km without the inhibitor. 
Consequently, five Ki values were obtained for each inhibitor, reflecting the number of inhibitor 
concentrations examined. This approach therefore yielded a range of Ki values rather than a single value. 

In contrast, the non-linear regression approach involved fitting the experimental data with a model 
consistent with the previously identified inhibition mechanism. The data were organized as an XY data 
table, where the substrate/cofactor concentration represented the X column while the enzyme activity, 
at a specific inhibitor concentration, including a control, namely 0 µM inhibitor, corresponded to the Y 
columns. Each column was labelled with the corresponding inhibitor concentration. This fitting was 
performed using GraphPad Prism, a scientific 2D graphing and statistical analysis software. The 
aforementioned structure of the dataset was detailed in GraphPad Prism manual [47]. As distinct from 
the previous approach, this method yielded a single Ki value per inhibitor, summarizing its overall 
inhibitory effect under the tested conditions. 

 

2.1.3 Incubation 

To further investigate the enzyme's overall behaviour, incubation experiments were performed to 
evaluate the time-dependent effects of temperature and DMSO exposure on enzyme kinetics. These 
studies aimed to simulate long-term reaction environments and assess enzymatic stability or possible 
inactivation. Enzyme inactivation is the process in which the native structure of the enzyme becomes 
completely unfolded, leading to a loss of activity and consequently to an inactive form of the enzyme. 

The enzyme thermal inactivation is the consequence of the weakening of the intermolecular 
interactions that are essential for the integrity of their tertiary structure, thereby causing a reduction in 
their catalytic activity. Enzyme inactivation by exposure to the reaction temperature is often 
unavoidable, since enzyme activity increases with temperature, but enzyme stability decreases. 
Consequently, the operation temperature should be chosen balancing the two factors [15]. Concerning 
the impact of DMSO on the enzyme, exposure to high DMSO concentrations induces alterations in the 
enzyme's conformation, thereby diminishing its catalytic activities. [45]. Given that the tested inhibitors 
were solubilized in DMSO, it was crucial to investigate the overtime effects of the solvent on the enzyme 
activity.  

For both incubation assays, the enzyme was stored for up to three days and measurements were taken 
at specific time points with progressively increasing intervals. During temperature incubation test, the 
enzyme was kept at 37° and the composition of the blank and sample cuvettes was as follows:   

• 2.71 mL of 0.1M pH 7.4 potassium phosphate buffer 
• 100 µL of 0.23 mM NADH solution 
• 100 µL of 1.63 mM pyruvate solution 

At defined time step, an aliquot of 100 µL of the enzyme solution were collected from the 37°C water 
bath and inserted in the cuvette to measure the enzyme’s activity. 

The DMSO incubation test was performed in the same conditions and the DMSO concentration was 
46.78 mM. This concentration was chosen under the assumption that, as in the kinetic experiments, the 
10 µL of added solution contain only pure DMSO. By using this volume, it is assumed that in future 
experiments involving enzyme-inhibitor interactions, the maximum DMSO concentration the enzyme 
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may be exposed to corresponds to the scenario in which no inhibitor is actually dissolved in the DMSO. 
This approach establishes a conservative upper limit for DMSO exposure. The blank and the sample 
cuvette contained the following components: 

• 2.7 mL of 0.1M pH 7.4 potassium phosphate buffer 
• 100 µL of 0.23 mM NADH solution 
• 100 µL of 1.63 mM pyruvate solution 
• 10 µL of inhibitor solution in DMSO 

The measurement procedure followed the methodology described previously. 

The residual enzymatic activity at each time point was calculated from the collected data using the 
following equation: 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝐴𝐿𝐷𝐻𝑖𝑛𝑐𝑢𝑏𝑎𝑡𝑒𝑑

𝐴𝐿𝐷𝐻,𝑖𝑛𝑖𝑡𝑖𝑎𝑙
∗ 100 

Where: 

• 𝐴𝐿𝐷𝐻𝑖𝑛𝑐𝑢𝑏𝑎𝑡𝑒𝑑: absorbance slope registered at every time step (-) 

• 𝐴𝐿𝐷𝐻,𝑖𝑛𝑖𝑡𝑖𝑎𝑙: absorbance slope before incubation (-) 

The absorbance values of Equation 8 refer to the initial slope of the absorbance variation curve 
registered by the spectrophotometer.  

Subsequently two models of enzyme inactivation were applied to fit the data collected: 

𝐴 =  𝐴0 ∗ 𝑒−𝑘𝐷∗𝑡 

𝐴 = 𝐴0[(1 − 𝛼) ∗ 𝑒−𝑘𝐷∗𝑡 + 𝛼] 

Where: 

• 𝐴0: initial activity (-) 
• 𝑘𝐷: deactivation constant (h–1) 
• 𝑡: time (h) 
• 𝛼: residual activity at infinite time (-) 

In the first model, the inactivation is described by a hypothetical irreversible chemical reaction in which 
the first order inactivation rate constant is kD  [15]. This model allows to correlate (Equation 9) the 
experimental data with time using one parameter, namely deactivation constant, or kD, and the obtained 
inactivation curve is an exponential decreasing curve that asymptotically tends to zero. Whereas the 
second model introduces another parameter: the residual activity at infinite time (α), accounting for a 
non-zero residual activity at infinite time. The Equation 10 describes a rapid initial loss of activity 
followed by a plateau or a much slower decline towards this residual value. 

Understanding enzyme inactivation under process-relevant conditions is essential for evaluating long-
term enzyme performance. Even for highly stable enzymes could undergo inactivation during extended 
reaction operation, due to unavoidable thermal or solvent-induced denaturation, leading to a significant 
reduction of the initial activity.  

 

Equation 8. 

Equation 9. 

Equation 10. 
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2.2 Molecular docking 

Molecular docking enabled the identification of specific residues involved in ligand binding and 
corroborated the expected mechanism of inhibition, considering the characteristics of the molecules 
and the type of interactions formed with the enzyme. 

A comprehensive analysis of the interactions between LDH and its ligand, namely pyruvate, NADH, 
DMSO and the five different inhibitors also tested during the enzymatic assays, was performed using 
UCSF ChimeraX [48]. ChimeraX is a highly extensible software for interactive visualization and analysis 
of molecular structures and related data, including density maps, docking results and conformational 
ensembles. This software enables the generation of high-quality images and animations. It has a core 
that provides visualization and basic services. In addition, it is possible to implement extensions with 
higher-level functionality like ViewDock and Volume Viewer [49]. 

In order to perform the docking analysis an extension called Autodock Vina [50] was added to ChimeraX. 
It is one of the fastest and most widely used open-source docking engines, recognized for its speed and 
accuracy of results. The computational docking program is based on a simple scoring function and on 
rapid gradient-optimization conformational search. “Docking consists in generating multiple poses of 
the molecule at the surface of the target and determining the most favourable pose in terms of ligand-
target interaction energy, conformational energy and possibly also desolvation energy. Ideally, but not 
necessarily, the docking software can estimate the small molecule binding free energy for the target to 
facilitate the identification of potential ligands. This predictive modelling approach speeds up the drug 
discovery process and reduces experimental costs” [51]. 

The methodology for determining the optimal docking configuration can be summarized as follows: 

1) Protein ID and structure retrieval from the protein database, like the Protein Data Bank, as a PDB 
file.  

2) Visualization of the protein structure in UCSF Chimera.  
3) Preparation of the target protein and the ligand for docking. The preparatory stage includes: 

• Removal of water molecules to avoid interference with the docking.  
• Addition of missing polar hydrogen atoms, necessary to identify atom types for scoring 

purposes.  
• Assignment of partial charges to the atoms.  

These preparatory steps were performed automatically within UCSF ChimeraX. 

4) Docking of the target protein and the ligand using Autodock Vina. This step is characterized by 
the definition of a grid box around the target protein. In this way the possible coupling will be 
searched only in the predefined area.  

5) Interpretation and analysis of the docking outcome.  

The output consists of a list of root-mean-square deviation (RMSD) values, calculated relative to the 
most favourable binding pose and considering only movable heavy atoms. The RMSD is a way to 
measure the degree of similarity of two protein three-dimensional structures The RMSD is a widely 
accepted metric in structural biology, used to quantify the degree of similarity of two protein three-
dimensional structures, by comparing atomic coordinates [52]. A lower value of RMSD indicates a better 
fit or agreement between the two structures considered. Two variants of RMSD metrics were reported: 
RMSD lower bound (rmsd/lb) and RMSD upper bound (rmsd/ub), which differ in how the atoms are 
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matched in the distance calculation. The RMSD values generated a list of ten distinct ligand poses, 
ordered by increasing RMSD. From this set, only the top pose, characterized by the lowest RMSD value, 
was retained for further analysis. Subsequently, the "Hbonds" functionality within ChimeraX was used 
to identify intermolecular hydrogen bonds between LDH and the ligand. This identification of hydrogen 
bonds proved crucial for pinpointing the specific residues involved in the binding interaction. 
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3. Results 
3.1 Spectrophotometric analysis results 

The initial findings from the spectrophotometric are illustrated in Figure 24. 

Figure 24A displays the absorbance spectra of the main compounds involved in the LDH-catalyzed 
reaction. These measurements were crucial for determining the optimal wavelength for subsequent 
kinetic assays. It was immediately evident that NADH exhibits a distinct absorbance peak at 340 nm. 
Conversely, NAD+, and lactate did not show absorbance at this wavelength. Pyruvate exhibited minimal 
absorbance, but, given the absorbance intensity, it is reasonable to assume that it can be neglected. 
Since no interference between main reactants or product was evident at 340 nm, this wavelength was 
therefore selected for all future measurements to ensure maximum sensitivity and the strongest 
measurable response. As clarified in “Materials and Methods” section, the molar ratio between NADH 
consumption and lactate production is equal to 1, so NADH can effectively be the analyte, whose 
concentration allows to monitor the proceeding of the enzymatic reaction. 

Figure 24B presents the absorbance spectra of NADH alongside those of DMSO and the inhibitors. 
Having established that NAD+, lactate and pyruvate do not exhibit significant absorbance within the 
analyzed spectral range (Figure 23A), the spectrum in Figure 23B focuses on potential spectral overlap 
between NADH and the possible inhibitors. As observed, neither DMSO nor Oxamate produced a 
significant signal. The lack of absorbance at 340 nm observed for both DMSO and Oxamate can be 
attributed to the absence of extended conjugated systems or aromatic chromophores in their molecular 
structures. DMSO, in fact, absorbs only in the far-UV region due to n→σ transitions involving the sulfur–
oxygen bond, typically below 265 nm [53]. Galloflavin displayed minor absorbance in the UV-Vis visible 
range, consistent with its flavonoid-like structure containing aromatic rings and hydroxyl groups [54]. 
Also FX-11 showed only a small absorbance at 340 nm when compared to NADH's signal. Even if it 
contains aromatic rings, it lacks complex conjugation, so its UV absorbance is limited. By contrast, 
Gossypol, being a polyphenolic aldehyde, exhibited a broad absorption spectrum, due to its extensive 

Figure 24. Absorbance spectra of the different compound tested. 
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conjugated aromatic system and multiple hydroxyl groups, with a peak at 400 nm [55]. Despite the peak 
not being centred at 340 nm, the tail of the absorption band extends into the 340 nm region, resulting in 
a measurable, albeit weaker, signal. NHI-2, however, showed substantial absorbance at 340 nm. 
Although no detailed UV-visible spectrum is available in the literature, the observed spectral data are 
coherent with the presence of extended conjugation or chromophoric groups within NHI-2 molecular 
structure, absorbing in this region. This absorption peak could indicate a potential for interference with 
the NADH signal. To further assess this interference, absorbance spectra of NADH at lower 
concentrations were also measured, with the results detailed in Figure 25. 

 

 

 

 

 

 

 

 

 

 

 

Figure 25 reveals significant interference from NHI-2. Indeed, NHI-2 absorbance signal exceeded those 
of NADH at all tested concentration, except for the 0.1 mM NADH. This finding suggested that during 
enzyme catalytic activity measurements, when NADH concentrations will be varied in the presence of 
NHI-2, absorbance readings at lower NADH levels might be significantly distorted. Conversely, when 
catalytic activity will be measured in the presence of NHI-2 by varying pyruvate concentration at a fixed 
NADH concentration of 0.23 mM, interference from NHI-2 may still occur, but is expected to be less 
pronounced. It is also important to note that NADH exhibited a second absorption peak at 260 nm, 
which, in principle, could have been used to monitor the reaction. However, this peak overlapped with 
that of NAD+ [56], creating potential complications in the interpretation of the data. Specifically, during 
the reaction, the decrease in NADH concentration would lead to a reduction in absorbance at 260 nm, 
while the simultaneous formation of NAD+ would cause an increase in absorbance at the same 
wavelength. These opposite effects would compromise accurate assessment of the reaction progress. 
Furthermore, the 260 nm peak was not observable in Figure 24A due to the high NADH concentration 
used in the experiment and in the subsequent enzymatic assays, which saturated the 
spectrophotometer. 

 

 

 

Figure 25. Absorbance spectra of NHI-2 and of NADH at different concentrations. 



35 
 

3.2 Enzyme activity and molecular docking results 

3.2.1 Apparent parameters of the intrinsic activity of the enzyme 

Figure 26 illustrates the preliminary kinetic curves of LDH activity. The kinetic curves are plotted as initial 
velocities, representing the rate of product formation as a function of substrate or cofactor 
concentration. 

Figure 26A was obtained at a fixed cofactor concentration of 0.23 mM and it was fitted using Michaelis-
Menten model. Conversely, Figure 26B shows the curve generated at a fixed substrate concentration 
equal to 1.63 mM, fitted with the Hill model. The high R² values observed in both cases underscore 
excellent agreement between the model and the experimental data. These curves were crucial, as they 
served as the foundational reference for all subsequent measurements.  

Data analysis and curve fitting were performed using OriginPro software, which also facilitated the 
derivation of the kinetic parameters summarized in Table 6. 

Table 6. Kinetic parameters of the curves function of pyruvate and function of NADH. 

 Pyruvate kinetic parameters NADH kinetic parameters 

V
max 

[µmol min
-1

] 861 ± 5 891 ± 6 

K
m 

[mM] 0.147 ± 0.004 0.034 ± 0.001 

n [-] - 1.21 ± 0.02 
 

Table 6 reveals a Hill coefficient (n) greater than one, indicative of positive cooperativity between 
enzyme and NADH. LDH is a tetrameric enzyme, with each subunit containing an active site for both 
pyruvate and NADH. A positive cooperativity implies that the binding of NADH to one subunit of the 
enzyme enhances the affinity of the remaining subunits for the binding of subsequent ligands [57].  

Figure 26. Visual representation of the kinetic curves of LDH at a fixed cofactor concentration (22A) and at a fixed substrate 
concentration (22B). 
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For the curves obtained by varying substrate concentration, which were fitted to the Michaelis-Menten 
model, kinetic parameters were validated using both Lineweaver-Burk (Equation 4) and Hanes-Woolf 
(Equation 5) linearization methods. This was done to confirm the consistency and reliability of the 
calculated Km and Vmax values. Figure 27 presents the two linearizations, while Table 7 shows the 
subsequent kinetic parameters derived. 

 

Table 7. Kinetic parameters derived with Hanes-Woolf and Lineweaver-Burk linearization methods. 

 Hanes-Woolf Lineweaver-Burk 

V
max 

[µmol min
-1

] 864 678 

K
m 

[mM] 0.160 0.131 

 

As shown in Table 7, the Hanes-Woolf linearization method yielded values in good agreement with those 
derived from the non-linear regression performed with OriginPro. However, the parameters from 
Lineweaver-Burk linearization showed considerable discrepancies.  

 

 

 

 

 

 

Figure 27. Hanes and Lineweaver-Burk linearizations. 
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Figure 28 provides further evidence supporting the previous statements. This figure compares 
experimental data points with interpolated curves derived from the parameters obtained with two 
different linearization methods. While the Hanes-Woolf derived interpolation accurately followed the 
experimental progression, the Lineweaver-Burk method did not. 

As will be discussed later, the Lineweaver-Burk method does not appear to be the optimal linearization 
for deriving these kinetic parameters. In fact, Lineweaver-Burk linearization method is known to be less 
reliable for the determination of kinetic parameters, particularly at low substrate concentrations. In this 
region, experimental errors become more significant due to limitations in measurement precision. 
These errors are disproportionately amplified due to the double reciprocal plot, often leading to 
distorted estimates of Km and Vmax. This limitation is evident in the discrepancies observed when 
comparing the parameters obtained via Lineweaver-Burk with those derived from nonlinear regression 
or alternative linearization methods such as Hanes-Woolf.  

In the case of NADH, kinetic parameters were not validated through any form of linearization, as the Hill 
model is a three-parameter equation. Linearization of this model would require fixing at least one 
parameter, typically the Hill coefficient, which could introduce bias and compromise the accuracy of 
the parameter estimates. Therefore, nonlinear regression was deemed the most appropriate method for 
analyzing these data. 

Molecular docking simulations were performed to better understand the binding interactions of LDH 
with pyruvate and NADH. The docking results are shown in Figure 29 and Figure 30. As ChimeraX 
exclusively identifies hydrogen bonds, the visualized interactions in the docking results are limited to 
this type of bonding and do not include other non-covalent interactions such as van der Waals forces or 
π–π stacking. 

 

 

 

 

Figure 28. Interpolation with Hanes-Woolf and with Lineweaver-Burk derived parameters. 
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Figure 29 and Figure 30 illustrates the binding of LDH with pyruvate and NADH, respectively. Pyruvate 
was observed to interact primarily with Methionine 53 (orange) and Glutamine 59 (water green) residues, 
while NADH with Arginine 124 (light green), Serine 68 (yellow), Serine 152 (yellow), Threonine 203 
(green), Histidine148 (blue) and Asparagine 93 (violet) residues. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29. ChimeraX views of the binding between LDH and pyruvate. 

Figure 30. ChimeraX views of the binding between LDH and NADH. 
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3.2.2 Generic parameters of the intrinsic activity of the enzyme 

Following the experimental described in the “Materials and Methods” Section, kinetic curves at other 
three fixed cofactor concentration were derived. The experimental points, fitted with Michaelis-Menten 
model, are shown in Figure 31. Subsequently, for each curve, apparent kinetic parameters were 
calculated and then used to create the secondary plots, shown in Figure 32.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31. Kinetic curves at three different fixed cofactor concentrations of 0.05 mM (31A), 0.1 mM (31B) and 0.3 mM (31C). 
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Table 8. Kinetic parameters of the curves function of pyruvate at different NADH concentrations. 

 Pyruvate kinetic parameters 

CNADH [mM] V
max 

[µmol min
-1

] K
m 

[mM] 

0.05 575 ± 24 0.112 ± 0.01 
0.1 652 ± 24 0.143 ± 0.01 
0.23 861 ± 5 0.147 ± 0.004 
0.3 714 ± 54 0.15 ± 0.03 

 

Table 8 summarizes the apparent kinetic parameters used to create the secondary plots. The 
parameters refer to the kinetic curves as a function of pyruvate concentration and at a fixed NADH 
concentration.  

The plot of Figure 32 displays the linear fit of four data points, each derived from a single curve at a 
specific cofactor concentration. Linear regression of these data provided the equation for the dashed 
fitting line. The intercept of the resulting equation was subsequently used to determine the true values 
of Vmax in one instance and Km, in the other, for pyruvate. 

 

 

 

Figure 32. Secondary plots of the curves at a fixed cofactor concentration. 
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A similar procedure was followed to determine the actual kinetic parameters for curves with varying 
NADH and constant pyruvate concentrations. Figure 33 shows the resulting kinetic curves, each at a 
different fixed substrate concentration, fitted to a Hill model. 

Table 9. Kinetic parameters of the curves function of NADH, at different pyruvate concentrations. 

 NADH kinetic parameters 

CPyruvate [mM] V
max 

[µmol min
-1

] K
m 

[mM] n [-] 

0.5 869 ± 7 0.027 ± 0.001 1.08 ± 0.03 
1 928 ± 24 0.037 ± 0.003 0.94 ± 0.03  
1.63 891 ± 6 0.034 ± 0.001 1.21± 0.02 
3 800 ± 32 0.04 ± 0.005 0.83 ± 0.05 

 

Figure 33. Kinetic curves at three different fixed substrate concentrations of 0.5 mM (29A), 1 mM (29B) and 3 mM (29C). 
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Table 9 summarizes the apparent kinetic parameters used to create the secondary plots. The 
parameters refer to the kinetic curves as a function of NADH concentration and at a fixed pyruvate 
concentration. 

Subsequently, the apparent kinetic parameters derived from the Figure 33 curves were used to 
construct the secondary plots shown in Figure 34. As previously explicate, each of the four points in 
these secondary plots was obtained from a single kinetic curve generated with a variable cofactor 
concentration and a fixed substrate concentration.  

The true kinetic parameters for NADH were then derived from the y-intercepts of these graphs: Figure 
34A's y-intercept provided the actual Vmax, while Figure 34B's y-intercept yielded the actual Km. 

Table 10. Real LDH kinetic parameters. 

 Pyruvate kinetic parameters NADH kinetic parameters 

V
max 

[µmol min
-1

] 833 847 

K
m 

[mM] 0.117 0.028 

 

Table 10 presents the actual kinetic parameters derived from the secondary plots. A comparison with 
the values in Table 7 (apparent kinetic parameters) revealed that the true parameters were slightly lower 
than the apparent ones. Nevertheless, these values remained consistent and provided general insight 
into LDH kinetics in the presence of pyruvate and NADH.  

To improve the reliability of these true parameters estimation, additional kinetic curves at fixed 
substrate or cofactor concentrations should be created in order to obtain secondary plots with an 
increased number of points to fit, thus increasing the fitting precision and the resulting kinetic 
constants.  

Figure 34. Secondary plots of the curves at a fixed substrate concentration. 
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3.2.3 Effect of DMSO on the activity of the enzyme 

Figure 35. Kinetic curves function of pyruvate at different DMSO concentrations. 
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Figure 35 presents the LDH kinetic curves as a function of substrate concentration across varying DMSO 
concentrations. This step was crucial, as the inhibitors under investigation required dissolution in 
DMSO. Therefore, it was essential to first confirm that DMSO itself did not significantly affect enzyme 
activity. To this end, five DMSO concentrations were tested.  

The concentration expected in the cuvette, when DMSO is added neat, in the same volumetric amount 
as the addition of the inhibitors, was 0.3% v/v, so this concentration was obviously tested and used as 
reference point. Additional concentrations were tested to assess whether excess DMSO would 
influence LDH kinetics. Concentration lower that the maximum expected in the assay were tested as 
well, to gain a complete overview of the solvent’s impact on enzyme performances.  

The experimental points were fitted with Michaelis-Menten model, which proved suitable, as indicated 
by R2 values approaching 1.  

Figure 35F consolidates all experimental data onto a single plot, clearly demonstrating that the kinetic 
behaviour at different DMSO concentrations replicated the trend observed in the absence of DMSO. 
Therefore, DMSO exerted no significant influence on LDH kinetics under the tested conditions. 

Table 11. Summary of the kinetic parameters in presence of DMSO, obtained with OriginPro. 

 PYRUVATE KINETIC PARAMETERS 

C
DMSO 

[% v/v] V
max 

[µmol min
-1

] K
m 

[mM] R
2
 

No DMSO 1201 ± 13 0.264 ± 0.003 0.995 
0.035 1130 ± 8 0.162 ± 0.003 0.993 
0.07 1068 ± 9 0.135 ± 0.001 0.996 
0.3 1232 ± 7 0.265 ± 0.003 0.997 
0.7 1085 ± 12 0.133 ± 0.003 0.998 

1 970 ± 7 0.103 ± 0.004 0.999 
5 1121 ± 5 0.130 ± 0.004 0.999 

 

Figure 36. Hanes and Lineweaver-Burk linearizations. 
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Table 12. Summary of the kinetic parameters in presence of DMSO, obtained with Hanes-Woolf linearization. 

 PYRUVATE KINETIC PARAMETERS 
Hanes-Woolf Lineweaver-Burk 

C
DMSO 

[% v/v] V
max 

[µmol min
-1

] K
m 

[mM] R
2
 V

max 
[µmol min

-1
] K

m 
[mM] R

2
 

No DMSO 1239 0.280 0.992 617 0.097 0.971 
0.035 1144 0.161 0.996 749 0.084 0.990 
0.07 1010 0.126 0.994 1320 0.173 0.997 
0.3 1183 0.250 0.996 4726 3.99 0.991 
0.7 1022 0.113 0.999 874 0.095 0.996 
1 1065 0.110 0.999 1157 0.122 0.999 
5 951 0.121 0.997 1467 0.183 0.991 

 

Table 12 summarizes the kinetic parameters calculated with OriginPro. They revealed largely consistent 
Vmax values and minor variations in Km values. The parameters obtained through Hanes-Woolf 
linearization of Figure 36A, shown in Table 12, also demonstrated similar consistency and agreement 
with the OriginPro results. This observation reinforced the conclusion that DMSO, within the tested 
concentration range, does not interfere with LDH catalytic behaviour. 

However, the Lineweaver-Burk linearization, shown in Figure 36B, yielded highly variable Vmax and Km 
values that were not comparable to those from other methods. This variability suggests the Lineweaver-
Burk method is unsuitable for retrieving accurate kinetic parameters. As previously mentioned in the 
Introduction, its tendency to amplify experimental errors, particularly at low substrate concentrations, 
likely contributes to this issue.  
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Figure 37 presents the LDH kinetic results as a function of cofactor concentration across different 
DMSO concentrations. As in the case for intrinsic kinetic curves, experimental points were fitted using 
Hill’s model, which provided excellent fits as indicated by the high R2 values.  

Figure 37F highlights the overall kinetic behaviour observed at different DMSO concentrations. The only 
curve that appeared to deviate slightly from the general trend was at 0.7% v/v. Given that the expected 
trend was maintained at both lower and higher DMSO concentrations, so the deviation is likely 
attributable to experimental inaccuracies. Overall, these results confirm that presence of DMSO does 
not influence LDH kinetics, even when NADH concentration is the variable component. 

 

 

Figure 37. Kinetic curves function of NADH at different DMSO concentrations. 
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Table 13. Summary of the kinetic parameters in presence of DMSO, obtained with OriginPro. 

 NADH KINETIC PARAMETERS 

C
DMSO 

[% v/v] V
max 

[µmol min
-1

] K
m 

[mM] n R
2
 

No DMSO 891 ± 6 0.034 ± 0.001 1.21 ± 0.02 0.999 
0.035 933 ± 7 0.049 ± 0.001 1.72 ± 0.02 0.983 
0.07 838 ± 10 0.031 ± 0.001 1.16 ± 0.02 0.999 
0.3 857 ± 8 0.027 ± 0.001 1.30 ± 0.02 0.998 
0.7 1051 ± 15 0.032 ± 0.001 1.36 ± 0.05 0.997 

1 796 ± 5 0.025 ± 0.001 1.38 ± 0.03 0.998 
5 894 ± 5 0.029 ± 0.001 1.21 ± 0.02 0.999 

 

Table 13 summarizes the kinetic parameters derived from the NADH curves. As also observed in the 
graphical representation, the Vmax value at 0.7% v/v was elevated compared to the other concentrations, 
again likely due to experimental inaccuracies. Conversely, the Km values remained relatively constant, 
while the n values did not exhibit a defined trend, suggesting no systematic effect of DMSO on LDH’s 
cooperative behaviour. 

 

 

 

 

 

 

 

To complement the kinetic analysis, molecular docking simulations were performed. The results of 
DMSO docking are shown in Figure 38. DMSO interacts with Serine 151 residue, forming a hydrogen 
bond. As evident from Figure 39, DMSO (violet) does not interfere with the binding of pyruvate (red) and 
NADH (yellow). These findings collectively confirm that DMSO does not interfere with LDH kinetics, thus 
validating its use as a solvent for the inhibitors. 

 

Figure 38. ChimeraX views of the binding between LDH and DMSO. 
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3.2.4 Effect of different inhibitors on the activity of the enzyme 

Having established that DMSO does not significantly affect LDH kinetics and can therefore be safely 
used as a solvent, kinetic assays were subsequently conducted in the presence of the various inhibitors 
under investigation. The first to be examined was Galloflavin.   

 

3.2.4.1 Galloflavin 

Figure 40 presents the kinetic curves obtained by varying substrate concentration in the presence of 
increasing Galloflavin concentrations, ranging from 1 µM to 20 µM. 

 

Figure 39. ChimeraX visual representation of LDH's surface with DMSO, NADH and pyruvate binding. 
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The experimental data displayed in Figure 40 were fitted using Michaelis-Menten model, showing a 
strong agreement between the experimental data and the theoretical fitting. Figure 40F specifically 
illustrates the effect of increasing inhibitor concentration, where a noticeable decrease in reaction rate 
confirms the inhibitory action. 

 

 

 

 

Figure 40. Kinetic results using Galloflavin inhibitor. 
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Table 14. Summary of the kinetic parameters in presence of Galloflavin inhibitor, obtained with OriginPro. 

 PYRUVATE KINETIC PARAMETERS 

C
galloflavin 

[µM] V
max 

[µmol min
-1

] K
m 

[mM] R
2
 

No Galloflavin 861 ± 5 0.147 ± 0.004 0.998 
1 969 ± 177 0.176 ± 0.045 0.994 
5 707 ± 54 0.231 ± 0.021 0.978 

10 626 ± 97 0.202 ± 0.042 0.981 
15 606 ± 18 0.215 ± 0.010 0.991 
20 484 ± 32 0.172 ± 0.026 0.999 

 

 

Table 15. Summary of the kinetic parameters in presence of Galloflavin inhibitor, obtained with Hanes-Woolf and Lineweaver-
Burk linearizations. 

 PYRUVATE KINETIC PARAMETERS 
Hanes-Woolf Lineweaver-Burk 

C
Galloflavin 

[µM] V
max 

[µmol min
-1

] K
m 

[mM] R
2
 V

max 
[µmol min

-1
] K

m 
[mM] R

2
 

No Galloflavin 864 0.160 0.989 678 0.131 0.973 
1 971 0.176 0.997 719 0.121 0.997 
5 671 0.200 0.997 461 0.127 0.992 

10 581 0.166 0.984 -1090 -0.412 0.937 
15 556 0.202 0.989 599 0.237 0.995 
20 483 0.172 0.998 306 0.094 0.977 

 

Figure 41. Hanes and Lineweaver-Burk linearizations. 
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As shown in Table 14, the kinetic parameters determined by OriginPro indicate a reduction in Vmax, while 
Km values appeared not to have a discernible pattern. Table 15, containing parameters derived from 
Hanes-Woolf linearization of Figure 41A, revealed comparable trends. Furthermore, the parameter 
values between the two tables generally align well. The only slight deviation occurred at the 10 µM 
concentration, a difference likely explained by its correspondingly lower R2 value in the Hanes-Woolf 
data. 

Conversely, the Lineweaver-Burk linearization method proved inadequate for analyzing the 
experimental data. As depicted in Figure 41B, the lines interpolating the data points at varying inhibitor 
concentrations intersected irregularly, without exhibiting a discernible pattern. Furthermore, the kinetic 
parameters derived from the Lineweaver-Burk plot, shown in Table 15, did not concur with those 
obtained using either OriginPro software or the Hanes-Woolf linearization method. Consequently, the 
Lineweaver-Burk linearization approach was not considered for subsequent kinetic analyses. 

Figure 42 shows the results from kinetic assays using Galloflavin as an inhibitor, with varying cofactor 
concentrations. 
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Experimental data were fitted using the Hill equation. This fitting also demonstrated strong agreement 
between the experimental results and the theoretical model. As shown in Figure 42F, increasing the 
inhibitor concentration led to a clear downward shift of the kinetic curves, indicating an inhibitory effect. 

Table 16. Summary of the kinetic parameters in presence of Galloflavin inhibitor. 

 NADH KINETIC PARAMETERS 

C
galloflavin 

[µM] V
max 

[µmol min
-1

] K
m 

[mM] n R
2
 

No Galloflavin 891 ± 6 0.034 ± 0.001 1.21 ± 0.02 0.999 
1 875 ± 4 0.030 ± 0.001 1.17 ± 0.01 0.998 
5 849 ± 8 0.026 ± 0.001 1.20 ± 0.02 0.995 

10 834 ± 9 0.028 ± 0.001 1.15 ± 0.02 0.996 
15 818 ± 8 0.032 ± 0.001 1.20 ± 0.02 0.998 
20 808 ± 8 0.040 ± 0.001 1.03 ± 0.01 0.998 

 
From Table 16, it is evident that Vmax decreased with increasing inhibitor concentration, consistent with 
the visual data in Figure 42F. The Km values exhibited slight fluctuations across increasing Galloflavin 
concentrations, but no clear or consistent trend emerged. These minor variations suggest that 
Galloflavin does not substantially alter LDH's affinity for NADH. Furthermore, the cooperativity level, 
represented by the Hill coefficient (n), remained relatively constant. This suggests that the binding of 
Galloflavin did not significantly alter the binding affinity of other ligands. 

 

 

 

Figure 42. Kinetic results using Galloflavin inhibitor. 
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To further support the kinetic findings, docking simulations were conducted using ChimeraX software. 
As illustrated in Figure 43, Galloflavin appeared to bind to the Isoleucine 8 (blue) and Serine 50 (yellow) 
residues. 

 

 

 

 

 
 

 

Figure 44 provides a surface representation of LDH, pyruvate (red), NADH (yellow), and Galloflavin 
(white), allowing for visualization of both the active site (where pyruvate and NADH bind) and the 
Galloflavin binding site. Notably, Galloflavin bound to an allosteric site, as its position is distinct from 
the substrate and cofactor binding pocket. 

The integration of information from both the kinetic tests and docking simulations provided a 
comprehensive understanding of Galloflavin's inhibition mechanism with respect to both the substrate 
and the cofactor. Regarding the substrate, Galloflavin's binding site was different from that of the 
substrate. Furthermore, the Vmax decreased, while no clear trend was observed for the Km, although a 
slight increase was observed compared to the uninhibited condition. These observations suggested a 
mixed-type inhibition mechanism with a negative net effect [15]. For the cofactor, similar considerations 
applied, apart from the Km values, that remained more or less constant. This indicated a non-
competitive inhibition mechanism in relation to the cofactor [15]. 

 

 

Figure 43. ChimeraX views of the binding between LDH and Galloflavin. 

Figure 44. ChimeraX visual representation of LDH's surface with Galloflavin, NADH and pyruvate binding. 
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Table 17. Summary of the identified mechanism of inhibition and the correspond values of Ki. 

 Pyruvate NADH 
Inhibition mechanism Mixed Non-competitive 
Ki [µM] (Analytical) 5 – 18  55 – 195  
Ki [µM] (GraphPad Prism) 16 140 

 

Following the identification of the inhibition mechanism, Ki was determined using the two distinct 
approaches detailed in the ‘Materials and Methods' section. Specifically, Ki was calculated analytically 
and also through non-linear regression using GraphPad Prism. Notably, the values obtained from both 
methods were in good agreement, with the Ki derived from non-linear regression consistently falling 
within the range established by the analytical method. 

 

3.2.4.2 FX-11 

 

D C 

B A 



55 
 

The second inhibitor tested in this study was FX11.  

Figure 45 illustrates the enzyme kinetics of LDH using pyruvate as the variable substrate across a range 
of FX-11 concentrations from 1 µM to 20 µM. The experimental data were well-fitted using Michaelis-
Menten model, with high values of R2, indicating a good quality of fitting. As Figure 45F reveals, 
increasing concentration of FX11 resulted in a progressive decrease in enzyme activity, thereby 
confirming the inhibitory action of FX-11. 

Table 18. Summary of the kinetic parameters in presence of FX-11 inhibitor, obtained with OriginPro. 

 PYRUVATE KINETIC PARAMETERS 

C
FX-11 

[µM] V
max 

[µmol min
-1

] K
m 

[mM] R
2
 

No FX-11 861 ± 5 0.147 ± 0.004 0.998 
1 821 ± 8 0.129 ± 0.003 0.998 
5 674 ± 12 0.128 ± 0.004 0.997 

10 642 ± 10 0.158 ± 0.004 0.996 
15 611 ± 7 0.152 ± 0.005 0.995 
20 370 ± 23 0.150 ± 0.018 0.987 

Figure 45. Kinetic results using FX-11 inhibitor. 
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Table 19. Summary of the kinetic parameters in presence of FX-11 inhibitor, obtained with Hanes-Woolf linearization. 

 PYRUVATE KINETIC PARAMETERS 
Hanes-Woolf 

C
FX-11 

[µM] V
max 

[µmol min
-1

] K
m 

[mM] R
2
 

No FX-11 864 0.160 0.989 
1 792 0.119 0.997 
5 672 0.132 0.996 

10 640 0.145 0.992 
15 594 0.139 0.992 
20 369 0.132 0.995 

 

Table18 summarizes the kinetic parameters derived with OriginPro, while Table 19 contains the kinetic 
parameters derived from the Hanes-Woolf linearization of Figure 46. Notably, a clear concentration-
dependent decrease in Vmax value was observed, while Km values fluctuated without a consistent trend. 
This inhibitory effect was evident from both the kinetic parameters obtained through non-linear 
regression and those derived via Hanes-Woolf linearization, confirming the consistency of the observed 
trend across different analytical approaches. The obtained results indicated that the effect of FX-11 on 
LDH kinetics, when pyruvate is the variable substrate, primarily affects the reaction rate.  

Figure 46. Hanes-Woolf linearization. 



57 
 

 

Figure 47. Kinetic results using FX-11 inhibitor. 

F E 

D C 

B A 



58 
 

Figure 47 reports the kinetic behaviour of LDH with NADH as the varying substrate. All experimental data 
exhibited good fitting to the Hill model.  

Notably, in Figure 47D, the point at 0.3 mM shows an elevated error; as other data points did not have 
comparable errors, this deviation is likely attributable to experimental inaccuracies.  

Figure 47F illustrates all the obtained kinetic curves, revealing a consistent decrease in enzyme kinetic 
activity, expressed ad Vmax, with rising concentrations of FX-11. 

Table 20. Summary of the kinetic parameters in presence of FX-11 inhibitor. 

 NADH KINETIC PARAMETERS 

C
FX-11 

[µM] V
max 

[µmol min
-1

] K
m 

[mM] n R
2
 

No FX-11 891 ± 6 0.034 ± 0.001 1.21 ± 0.02 0.999 
1 864 ± 7 0.029 ± 0.001 0.98 ± 0.02 0.991 
5 685 ± 6 0.021 ± 0.001 1.26 ± 0.04 0.995 

10 540 ± 7 0.028 ± 0.001 1.17 ± 0.03 0.996 
15 294 ± 6 0.015 ± 0.001 1.29 ± 0.05 0.996 
20 334 ± 6 0.011 ± 0.001 1.28 ± 0.05 0.945 

 

Table 20 details kinetic parameters, revealing that FX-11 influenced both Vmax and Km, as both values 
decreased with increasing inhibitor concentration. Conversely, the cooperativity level did not exhibit a 
discernible trend, indicating that FX-11 does not significantly alter the cooperative nature of NADH 
binding. 

 

 
 

 

 

 

Figure 48 depicts the simulated binding interaction between LDH and FX-11, showing that FX-11 forms 
hydrogen bonds with the Isoleucine 6 (blue) and Serine 50 (yellow) residues. 

Figure 48. ChimeraX views of the binding between LDH and FX-11. 
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Furthermore, Figure 49 reveals that FX-11(green) interacts with LDH at a site distinct from the active site, 
namely an allosteric site. This observation unequivocally rules out a competitive inhibition mechanism 
for both NADH (yellow) and pyruvate (red). In addition to these findings, the kinetic parameters in Table 
18 show a decrease in Vmax, but no defined trend for Km, when the kinetic curve is function of pyruvate, 
indicating a mixed-type inhibition mechanism [15]. Similarly, when NADH serves as the substrate, an 
increase in inhibitor concentration leads to a decrease in both Vmax and Km, also characteristic of a 
mixed-type inhibition [15]. Although a decrease in the apparent Km suggests an enhanced affinity of the 
enzyme for its substrate, this effect is counteracted by a concurrent reduction in the apparent Vmax, 
which indicates a lower catalytic rate. Consequently, the overall net effect appears to be inhibitory, 
particularly at high substrate concentrations where the influence on Vmax becomes the dominant 
factor. 

Table 21. Summary of the identified mechanism of inhibition and the correspond values of Ki. 

 Pyruvate NADH 
Inhibition mechanism Non-competitive Mixed 
Ki [µM] (Analytical) 15 – 37  0 – 44  
Ki [µM] (GraphPad Prism) 18 31 

 

Table 21 presents the kinetic parameters determined using both the analytical method and non-linear 
regression. In this instance, the values obtained from the two approaches also demonstrated 
consistency, as the parameter derived from non-linear regression consistently fell within the range 
established by the analytical method. 

 

 

 

 

 

 

Figure 49. ChimeraX visual representation of LDH's surface with FX-11, NADH and pyruvate binding. 
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3.2.4.3 Gossypol 

The kinetic evaluation proceeded testing Gossypol as inhibitor. 

 

Figure 50. Kinetic results using Gossypol inhibitor. 
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Figure 50 displays the LDH kinetic results with pyruvate as the variable substrate and Gossypol as the 
inhibitor, with concentrations ranging between 1 µM and 40 µM.  

All data set were fitted with Michaelis-Menten model, with overall good fitting observed at low inhibitor 
concentrations. However, the goodness of fit diminished at higher Gossypol concentrations, likely due 
to absorbance interference caused by Gossypol itself, which exhibits a non-null absorption at 340 nm, 
as shown in Figure 24B, which may have influenced the accuracy of the experimental measurements.  

Figure 50F further illustrates a progressive decrease in the enzyme's reaction rate with increasing 
Gossypol concentration. 

Table 22. Summary of the kinetic parameters in presence of Gossypol inhibitor, obtained with OriginPro. 

 PYRUVATE KINETIC PARAMETERS 

C
Gossypol 

[µM] V
max 

[µmol min
-1

] K
m 

[mM] R
2
 

No Gossypol 861 ± 5 0.147 ± 0.004 0.998 
1 731 ± 19 0.142 ± 0.006 0.994 
5 752 ± 11 0.143 ± 0.004 0.991 

10 550 ± 26 0.186 ± 0.01 0.985 
20 254 ± 11 0.192 ± 0.01 0.983 
40 99 ± 11 0.194 ± 0.038 0.927 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 23. Summary of the kinetic parameters in presence of Gossypol inhibitor, obtained with Hanes-Woolf linearization. 

 

Figure 51. Hanes-Woolf linearization. 
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     Table 23. Summary of the kinetic parameters in presence of Gossypol inhibitor, obtained with Hanes-Woolf linearization. 

 PYRUVATE KINETIC PARAMETERS 
Hanes-Woolf 

C
Gossypol 

[µM] V
max 

[µmol min
-1

] K
m 

[mM] R
2
 

No Gossypol 864 0.160 0.989 
1 735 0.146 0.995 
5 743 0.130 0.998 

10 530 0.173 0.991 
20 232 0.166 0.993 
40 106 0.190 0.928 

 

Table 22 and 23 summarizes the kinetic parameters for this set of curves, obtained using non-linear 
regression in OriginPro or via Hanes-Woolf linearization of Figure 51, respectively. Both sets of results 
consistently show a decrease in Vmax values. Conversely, Km values remained relatively stable at lower 
concentration and showed a moderate increase only at higher concentration of inhibitor (≥ 10 µM). This 
pattern could suggest that Gossypol did not drastically alter the affinity of LDH for pyruvate at low 
concentration but may begin to interfere with substrate binding or cause conformational changes at 
higher concentrations, resulting in decreased affinity of LDH towards its substrate. However, the 
consistency between the kinetic parameters of the two tables once again demonstrates reliability of the 
calculated Km and Vmax.   
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Figure 52 displays the LDH kinetic curves, with NADH as the variable substrate, fitted to the Hill model. 
All curves displayed a good fit.  
Figure 52F further illustrates a diminished LDH activity at higher inhibitor concentrations compared to 
the uninhibited activity. 

 

 

 

 

Figure 52. Kinetic results using Gossypol inhibitor. 

D C 

F E 



64 
 

Table 24. Summary of the kinetic parameters in presence of Gossypol inhibitor. 

 NADH KINETIC PARAMETERS 

C
Gossypol 

[µM] V
max 

[µmol min
-1

] K
m 

[mM] n R
2
 

No Gossypol 891 ± 6 0.034 ± 0.001 1.21 ± 0.02 0.999 
1 925 ± 10 0.039 ± 0.001 0.99 ± 0.02 0.999 
5 693 ± 18 0.032 ± 0.002 1.21 ± 0.05 0.991 

10 655 ± 59 0.100 ± 0.021 0.86 ± 0.04 0.974 
20 1346 ± 213 1.558 ± 0.460 0.73 ± 0.01 0.993 
40 282 ± 129 1.517 ± 1.745 0.59 ± 0.04 0.994 

 

Table 24 summarizes the kinetic parameters derived from the preceding curves. No precise trend was 
observed for Vmax and n values. Despite this, the observed n values tended to be lower, suggesting that 
the inhibitor reduces the cooperativity between NADH and the enzyme. Conversely, Km values appeared 
to increase, even if the elevated errors at higher concentrations preclude a definitive confirmation of 
this trend. Nonetheless, the increase in Km suggests a weakening of NADH binding, possibly due to 
interference from Gossypol. 

 

 

 

 
 

As depicted in Figure 46, Gossypol formed numerous interactions with LDH, specifically showing two 
hydrogen bonds with Arginine 124 (light green), one with Serine 50 (yellow), one with Threonine 203 
(green), and two with Asparagine 93 (violet) residues. 

 

 

 

 

 

 

Figure 53. ChimeraX views of the binding between LDH and Gossypol. 

Figure 54. ChimeraX visual representation of LDH's surface with Gossypol, NADH and pyruvate binding. 
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Figure 55 demonstrates that Gossypol (pink) did not interfere with pyruvate (red) binding to LDH, but it 
did interfere with NADH (yellow) binding. Indeed, the enlarged view presented in Figure 53 provides a 
clearer visualization of the common residues involved in the binding of both NADH and Gossypol. Both 
molecules were observed to interact with Asparagine 93, Arginine 124, and Threonine 203 residues. 

The absence of competitive inhibition with pyruvate is supported by the kinetic parameters in Table 12, 
where a decrease in Vmax and an increase in Km suggest a mixed-type inhibition mechanism with a 
negative net effect [15].  

Different considerations apply to the interaction between Gossypol and NADH. While simulations 
suggest competitive inhibition, the kinetic parameters indicate a mixed-type inhibition, as Km increases, 
but Vmax does not remain constant [15]. This discrepancy might be attributed to the NADH concentration 
range used, which may have been too narrow or with a maximum value too low to fully capture the 
saturating behaviour of the enzyme. If the tested concentrations were too low to reach enzyme 
saturation, the full competitive behaviour of Gossypol may not have been observed. As a result, the 
inhibition may appear mixed type rather than purely competitive, as in the case here reported. In fact, 
kinetic curve appears not to have reached saturation, suggesting a potential competitive behaviour at 
higher NADH concentrations. To confirm whether Gossypol is truly a competitive inhibitor with NADH, 
it would be necessary to repeat the experiments using higher NADH concentrations, that allows the 
enzyme to approach the saturation. 

Table 25. Summary of the identified mechanism of inhibition and the correspond values of Ki. 

 Pyruvate NADH 
Inhibition mechanism Mixed Mixed/Competitive 
Ki [µM] (Analytical) 4 – 44  0.14 – 10 / 0.45 – 7  
Ki [µM] (GraphPad Prism) 10 4.92 / 1.36 

 

Table 25 summarizes the inhibition constants associated with the identified inhibition mechanisms. For 
each mechanism, the first Ki value represents a range determined analytically, while the second is a 
precise value obtained through non-linear regression. 

Regarding NADH, two values are presented for each calculation method. This is because Ki was 
calculated under two different inhibition models: mixed inhibition, as indicated by the kinetic curve 

Figure 55. Enlarged view of the binding of NADH and Gossypol with LDH; obtained with ChimeraX 
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analysis, and competitive inhibition, as suggested by the docking simulations. Notably, the K i values 
derived from both analytical and non-linear regression methods demonstrate coherence across these 
different methods employed. 

 

3.2.4.4 NHI-2 
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Figure 56 displays the experimental LDH kinetic curves, with pyruvate as the variable substrate, in the 
presence of another tested inhibitor, namely NHI-2, with concentrations ranging between 1 µM and 40 
µM.  

The data were fitted using Michaelis-Menten model. It is immediately evident that the goodness of fit at 
an inhibitor concentration of 40 µM was poorer compared to lower concentrations. This behaviour could 
be attributed to the contribution of NHI-2's absorbance peak at 340 nm, as previously highlighted in 
Figure 24B. Such spectral interference likely compromised the accuracy of the measurements, 
especially at high inhibitor concentration, preventing the data points from perfectly fitting the model.   

As seen in Figure 56F, LDH activity progressively decreased as the NHI-2 concentration increased. 

Table 26. Summary of the kinetic parameters in presence of NHI-2 inhibitor, obtained with OriginPro. 

 PYRUVATE KINETIC PARAMETERS 

C
NHI-2 

[µM] V
max 

[µmol min
-1

] K
m 

[mM] R
2
 

No NHI-2 861 ± 5 0.147 ± 0.004 0.998 
1 960 ± 7 0.117 ± 0.003 0.999 
5 834 ± 9 0.091 ± 0.003 0.995 

10 676 ± 5 0.084 ± 0.001 0.997 
20 545 ± 22 0.103 ± 0.011 0.976 
40 129 ± 4 0.007 ± 0.001 0.840 

Figure 56. Kinetic results using NHI-2 inhibitor. 
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Table 27. Summary of the kinetic parameters in presence of NHI-2 inhibitor, obtained with Hanes-Woolf linearization. 

 PYRUVATE KINETIC PARAMETERS 
Hanes-Woolf 

C
NHI-2 

[µM] V
max 

[µmol min
-1

] K
m 

[mM] R
2
 

No NHI-2 864 0.160 0.989 
1 974 0.122 0.999 
5 804 0.087 0.997 

10 611 0.065 0.998 
20 517 0.101 0.990 
40 192 0.043 0.993 

 

Table 26 and Table 27 report kinetic parameters obtained with OriginPro software, and with Hanes-Woolf 
linearization shown in Figure 57, respectively.  Both approaches indicate a decrease in Vmax values. 
Although Km values do not exhibit a precise trend with increasing NHI-2 concentrations, they were 
generally lower than the value observed in the absence of the inhibitor. This suggests that NHI-2 may 
enhance substrate binding affinity, under certain condition.  

However, due to the variability at higher concentrations and potential measurements interferences 
these results should be interpreted with caution. In fact, focusing on the Km value at 40 µM in Table 22, 
it appeared less reliable, not only due to its lower R2 value but also because it did not align with the value 
estimated using the Hanes method.   

As previously mentioned, obtaining reliable results at such high concentrations of NHI-2 was 
challenging due to its peak absorbance at 340 nm. 

Figure 57. Hanes-Woolf linearization. 
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Figure 58. Kinetic results using NHI-2 inhibitor. 
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Figure 58 displays the LDH kinetic curves in the presence of NHI-2, with NADH as the variable substrate. 
All experimental points were fitted to Hill model. While most fits were satisfactory, it is evident that the 
results at 20 µM of NHI-2 show a suboptimal goodness of fit, in contrast to the better fit at 40 µM. This 
suggested that 20 µM may represent a transitional concentration at which the inhibitory effect of NHI-2 
is only partially exerted, possibly resulting in heterogeneous kinetic behaviour.  

Figure 58F further illustrates the decreasing trend of all curves across increasing inhibitor 
concentrations. 

Table 28. Summary of the kinetic parameters in presence of NHI-2 inhibitor. 

 NADH KINETIC PARAMETERS 

C
NHI-2 

[µM] V
max 

[µmol min
-1

] K
m 

[mM] n R
2
 

No NHI-2 891 ± 6 0.034 ± 0.001 1.21 ± 0.02 0.999 
1 881 ± 10 0.035 ± 0.001 0.96 ± 0.02 0.984 
5 904 ± 17 0.034 ± 0.002 0.93 ± 0.03 0.994 

10 912 ± 6 0.036 ± 0.001 1.01 ± 0.01 0.996 
20 185 ± 22 0.013 ± 0.005 0.77 ± 0.23 0.733 
40 102 ± 47 0.038 ± 0.001 0.48 ± 0.26 0.967 

 

Table 28 provides the kinetic parameters of the LDH kinetic curves as a function of NADH concentration. 
The Vmax values decreased sharply after exceeding a concentration of 10 µM. Km remained generally 
constant, except for the drop observed at 20 µM, which again could be influenced by poor quality fit.  

Finally, the cooperativity level did not exhibit a distinctive trend across the tested NHI-2 concentrations. 
However, a general decrease in cooperativity can be observed when compared the single value to the 
uninhibited condition. In the absence of NHI-2, in fact, the enzyme displays mild positive cooperativity, 
whereas most inhibited conditions show lower n values, falling below 1. This suggests that NHI-2 may 
reduce the positive cooperative interaction between LDH subunits, possibly altering the enzyme’s 
allosteric regulation, even though in a not strict dose-dependent manner. 

 

 

 

 

 

 

 

 

Figure 59. ChimeraX views of the binding between LDH and NHI-2. 
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Figure 59 displays the interactions between LDH and NHI-2. The inhibitor forms hydrogen bonds with 
the Lysine 12 (brown) and the Serine 50 (yellow) residues of the enzyme. 

 

 

 

 

 

Figure 60 demonstrates that NHI-2 (blue) binds to an allosteric site on LDH, distinct from the active site. 
Consequently, the inhibition mechanism cannot be competitive, regardless of whether the substrate or 
cofactor concentration is varied. 
Reviewing the pyruvate parameters in Table 26 and 27, the observed decrease in Vmax coupled with an 
undefined trend for Km but lower values compared to the uninhibited one, indicates a mixed-type 
inhibition mechanism [15]. It is important to emphasize that, despite an apparent decrease in Km, 
suggesting enhanced enzyme-substrate affinity, the overall effect remains inhibitory. This is due to a 
substantial decrease in Vmax, which effectively compensates for the improved binding, resulting in a net 
inhibitory impact on the reaction. This kind of inhibition is confirmed by the binding of NHI-2 to an 
allosteric site.  

For the cofactor, the results in Table 28 point to non-competitive inhibition, as Vmax diminishes while Km 
remains constant, excluding the value at 20 µM [15].  

However, the final interpretations of the NADH kinetic curves are not entirely reliable. As illustrated in 
Figure 25, the high absorbance peak of NHI-2 significantly overlaps with NADH signal at low 
concentrations, making it challenging to accurately discern the NADH signal from the NHI-2 signal and 
limiting the reliability of the spectrophotometric method in accurately evaluating LDH kinetics. 
Therefore, while current data suggest an allosteric mechanism for pyruvate and non-competitive 
inhibition with respect to NADH, spectrophotometric analysis may not be the optimal method for 
elucidating the precise interaction between NHI-2 and LDH. Further structural studies, such as X-ray 
crystallography, might be necessary to conclusively determine the interaction mode. 

Table 29. Summary of the identified mechanism of inhibition and the correspond values of Ki. 

 Pyruvate NADH 
Inhibition mechanism Mixed Non-competitive 
Ki [µM] (Analytical) 0 – 187  0 – 88  
Ki [µM] (GraphPad Prism) 148 15 

 

Figure 60. ChimeraX visual representation of LDH's surface with NHI-2, NADH and pyruvate binding. 
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Table 29 summarizes the inhibition constant values, which were calculated using both non-linear 
regression and an analytical approach following the identification of the inhibition mechanism. A clear 
coherence is observable between the Ki values determined with GraphPad Prism and those derived from 
the analytical range. 

 

3.2.4.5 Oxamate 
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Figure 61 presents the LDH kinetic curves obtained with pyruvate as the variable substrate, in the 
presence of increasing Oxamate concentrations. The experimental data were fitted using the Michaelis-
Menten model, yielding high-quality fits across all the tested concentrations.   

Figure 61F compares the enzyme activity at various inhibitor concentrations, revealing that the curves 
follow a consistent trajectory and appear to approach comparable saturation values, indicating that 
Vmax remains unaffected by the presence of Oxamate.  

Table 30. Summary of the kinetic parameters in presence of Oxamate inhibitor, obtained with OriginPro. 

 PYRUVATE KINETIC PARAMETERS 

C
Oxamate 

[µM] V
max 

[µmol min
-1

] K
m 

[mM] R
2
 

No Oxamate 861 ± 5 0.147 ± 0.004 0.998 
1 877 ± 25 0.153 ± 0.008 0.993 
5 904 ± 17 0.205 ± 0.008 0.986 

10 860 ± 14 0.215 ± 0.009 0.998 
20 863 ± 13 0.259 ± 0.009 0.997 
40 822 ± 15 0.263 ± 0.013 0.999 

 

 

Figure 61. Kinetic results using Oxamate inhibitor. 
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Table 31. Summary of the kinetic parameters in presence of Oxamate inhibitor, obtained with Hanes-Woolf linearization. 

 PYRUVATE KINETIC PARAMETERS 
Hanes-Woolf 

C
Oxamate 

[µM] V
max 

[µmol min
-1

] K
m 

[mM] R
2
 

No Oxamate 864 0.160 0.989 
1 807 0.140 0.995 
5 883 0.207 0.974 

10 881 0.236 0.993 
20 916 0.310 0.948 
40 809 0.253 0.982 

 

The parameters presented in Table 30 and Table 31, obtained respectively through OriginPro non-linear 
regression and via Hanes-Woolf linearization shown in Figure 62, confirm the previous observations: the 
Vmax value remained essentially constant, regardless Oxamate concentration, whereas the Km values 
showed a gradual increase.  

Figure 62. Hanes-Woolf linearization. 
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The values across both tables were consistent, with the exception of the 20 µM data point, which 
appeared slightly higher when analyzed using Hanes-Woolf linearization. This minor inconsistency likely 
the lower goodness of fit at this concentration and the increased sensitivity of linearization methods to 
experimental variability. 

 

 

 

 

C D 

B A 



76 
 

Figure 63 depicts the LDH activity as a function of cofactor concentration. The experimental data were 
fitted to a Hill model, yielding good results as indicated by the high goodness of fit. The comparison of 
activities in Figure 63F suggests that increasing Oxamate concentrations did not significantly alter the 
shape or saturation behaviour of the curves. 

Table 32. Summary of the kinetic parameters in presence of Oxamate inhibitor. 

 NADH KINETIC PARAMETERS 

C
Oxamate 

[µM] V
max 

[µmol min
-1

] K
m 

[mM] n R
2
 

No Oxamate 891 ± 6 0.034 ± 0.001 1.21 ± 0.02 0.999 
1 875 ± 12 0.032 ± 0.001 1.16 ± 0.03 0.995 
5 919 ± 12 0.038 ± 0.002 1.02 ± 0.03 0.999 

10 880 ± 14 0.031 ± 0.001 1.18 ± 0.05 0.998 
20 839 ± 12 0.030 ± 0.001 1.06 ± 0.02 0.999 
40 878 ± 9 0.032 ± 0.001 1.07 ± 0.02 0.996 

 

Table 32 further summarizes the kinetic parameters derived from the preceding curves, obtained 
through a non-linear regression performed with OriginPro software. A slight decrease in Vmax values was 
observed, with no meaningful change in Km or Hill coefficient. The cooperativity parameter remains quite 
stable across all inhibitor concentrations, suggesting that Oxamate does not impact the enzyme’s 
allosteric regulation with respect to NADH binding. 

 

 

 

Figure 63. Kinetic results using Oxamate inhibitor. 
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Molecular docking results, presented in Figure 64, demonstrated the interactions between Oxamate 
and LDH. It forms two hydrogen bonds with the Methionine 53 (orange) and two with the Glutamine 59 
(water green) residue, within LDH active site. 

 

 

 

 

 

 

 

 

Figure 64. ChimeraX views of the binding between LDH and Oxamate. 

Figure 65. ChimeraX visual representation of LDH's surface with Oxamate, NADH and pyruvate binding. 

Figure 66. Enlarged view of the binding of pyruvate and Oxamate with LDH; obtained with ChimeraX. 
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Figure 65 presents a surface view illustrating the binding interactions of Oxamate (light yellow) with both 
pyruvate (red) and NADH (sandy brown) within the active site of LDH. Notably, the surface of Oxamate 
is observed to overlap partially with that of pyruvate (red), suggesting direct competition for the binding.  

Furthermore, the binding residues for pyruvate (Methionine 53 and Glutamine 59) were identical to 
those involved in this interaction, as confirmed by Figure 66. This structural evidence suggested a 
competitive inhibition mechanism, with respect to pyruvate, which was confirmed by the kinetic 
parameters in Table 24, where Vmax remains constant while Km increases [15]. 

Regarding the interactions with the cofactor, despite its binding to the active site, Oxamate did not 
interfere with NADH binding. Kinetic data corroborated this, showing a slightly decrease of Vmax and 
unchanged Km, which is characteristic of a non-competitive inhibition mechanism towards NADH [15]. 
This suggests that Oxamate’s inhibitory effect is substrate-specific and does not extend to NADH 
binding dynamics. 

Table 33. Summary of the identified mechanism of inhibition and the correspond values of Ki. 

 Pyruvate NADH 
Inhibition mechanism Competitive Non-competitive 
Ki [µM] (Analytical) 13 – 51  0 – 2702  
Ki [µM] (GraphPad Prism) 39 704 

 

Table 33 presents the Ki values determined following the identification of the inhibition type. The range 
calculated by the analytical method and the value obtained from non-linear regression demonstrate 
good agreement. 

Furthermore, it is important to note that the Ki value is considerably elevated when the kinetic curve is 
analyzed as a function of NADH concentration. This observation is attributed to the inhibitor's 
competitive interaction with pyruvate, rather than with NADH. As a result, a lower concentration of 
inhibitor is sufficient to elicit an effect when pyruvate is the varied substrate, whereas a higher 
concentration is required to observe inhibition when varying NADH. This is also due to the fact that, in 
the experiments where NADH concentration was varied, pyruvate was present at 1.63 mM, a 
concentration that is high enough to limit the inhibitory effect of the tested Oxamate concentrations. 

 

3.2.4.6 Summary of the inhibition mechanisms 

Table 34. Summary of the inhibition mechanism and the correspondent Ki. 

PYRUVATE 
Inhibitor Inhibition mechanism Ki [µM] (Analytical) Ki [µM] (GraphPad) 
Galloflavin Mixed 5 – 18  16 
FX-11 Non-competitive 15 – 37  18 
Gossypol Mixed 4 – 44  10 
NHI-2 Mixed 0 – 187  148 
Oxamate Competitive 13 – 51  39 
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Table 35. Summary of the inhibition mechanism and the correspondent Ki. 

NADH 
Inhibitor Inhibition mechanism Ki [µM] (Analytical) Ki [µM] (GraphPad) 
Galloflavin Non-competitive 55 – 195  140 
FX-11 Mixed 28 – 45  31 
Gossypol Mixed/Competitive 0.14 – 10 / 0.45 – 7    4.92/1.36 
NHI-2 Non-competitive 3 – 88  15 
Oxamate Non-competitive 54 – 2702  704 

 

Tables 34 and 35 provide an overview of the inhibition mechanism identified for each tested compound, 
along with their corresponding inhibition constants, evaluated with pyruvate and NADH as variable 
substrate respectively. The data revealed diverse inhibition types: Galloflavin and Gossypol, as well as 
NHI-2, exhibited mixed-type inhibition with respect to pyruvate, while FX-11 behaved non-competitively 
and Oxamate competitively, consistently with its structural mimicry of pyruvate.   

Concerning NADH, Galloflavin and NHI-2 showed non-competitive inhibition, FX-11 mixed-type and 
Gossypol presented a complex behaviour. Notably, the Ki values for Gossypol were evaluated 
considering both a mixed-type inhibition, which is supported by experimental kinetic data, and a 
competitive inhibition model, as suggested by molecular dynamics studies. Oxamate demonstrated a 
predominantly non-competitive mechanism with respect to NADH.   

Figure 68. Bar graph of the percentage of inhibition of the compounds tested, having a concentration of 10 µM. 

Figure 67. Bar graph of the percentage of inhibition of the compounds tested, having a concentration of 20 µM. 
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Figures 67 and 68 illustrate the percentage of inhibition exerted by each tested compound across 
various pyruvate concentrations. Three representative pyruvate concentrations were selected to reflect 
the overall trend of the kinetic curve. The bar plots were generated using two inhibitor concentrations 
that were employed across all tested compounds.  

Notably, in Figure 67, the bar for NHI-2 at 0.05 mM exceeds that of the uninhibited control, potentially 
suggesting an activation mechanism. However, this value is more likely attributable to interference from 
NHI-2 during the measurements, particularly given its strong absorbance at 340 nm. 

Galloflavin, FX-11, and Gossypol demonstrated superior inhibitory potential, as indicated by their 
greater deviation from the uninhibited control. To select the most promising candidate, reliance on 
existing literature data is warranted. As previously reported in the “Introduction” section, while FX-11 
demonstrates some therapeutic potential, its highly reactive catechol moiety limits its suitability for 
further drug development. Furthermore, while Gossypol exhibits efficacy, it is also associated with 
notable cytotoxicity towards normal cells. In contrast, Galloflavin demonstrates negligible effects on 
non-cancerous cellular metabolism, positioning it as the most favourable candidate among those 
evaluated. 

 

3.3 Incubation results 

3.3.1 Thermal inactivation 

The experimental data from the incubation test at 37°C temperature are displayed in Figure 69. These 
measurements were fitted to two distinct models of enzyme thermal inactivation: a non-asymptotic and 
an asymptotic model. 

 

 

Figure 69. Graphical representation of the non-asymptotic and from the asymptotic model of thermal inactivation. 

B A 
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Table 36. Parameters derived from the non-asymptotic and from the asymptotic model of thermal inactivation. 

 Non-Asymptotic model Asymptotic model 
Parameters kD  

[min-1] 
t1/2  

[min] 
kD  
[min-1] 

α  
[-] 

t1/2   

[min] 
Value 0.00034 1733 0.00177 0.325 763 

 

Table 36 reports the parameters obtained from both models, including the rate constant of inactivation 
(kD), the half-life time (t1/2), which represent the time at which enzyme activity is halved, and the 
asymptote parameter (α) for the asymptotic model. Experimentally, as can be seen from Figure 69, 
approximately 49% of the enzyme activity was retained after 1440 minutes. When comparing this value 
to the half-life time estimated, the t1/2 derived from the non-asymptotic model provides a better 
representation of the experimental decay.  

Although the asymptotic model yielded a slightly better overall fit, as shown in Figure 69B, visual 
inspection of the latter time points of the curve suggests a continuous decline in the activity, rather than 
a stabilization at an asymptote. Therefore, the non-asymptotic model is considered more appropriate 
to describe the thermal inactivation process observed under the tested conditions.  

 

3.3.2 DMSO inactivation 

Figure 70 illustrates the experimental data, describing enzyme activity decay, obtained during 
incubation with 0.3% v/v DMSO. Similarly to the thermal inactivation data, the activity measurements 
were fitted using both non-asymptotic and asymptotic inactivation models. 

 

 

Figure 70. Graphical representation of the non-asymptotic and from the asymptotic model of thermal inactivation. 

B A 
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Table 37. Parameters derived from the non-asymptotic and from the asymptotic model of thermal inactivation. 

 Non-Asymptotic model Asymptotic model 
Parameters kD  

[min-1] 
t1/2   

[min] 
kD   
[min-1] 

α  
[-] 

t1/2   

[min] 
Value 0.00026 2754 0.00228 0.446 1021 

 

Table 21 summarizes the parameters derived from the respective models, along with their calculated 
t1/2 values. The experimental data show that enzyme activity decreased from 65% to 46% between 1440 
and 2880 minutes. Given this, the t1/2 from the non-asymptotic model appears to better capture the 
experimental behaviour, consistently with the thermal inactivation behaviour. Additionally, the 
continuous decrease in the enzyme activity in the final portion of the curve contradicts the asymptotic 
assumption of activity stabilization. Hence, the non-asymptotic model is again favoured as the more 
accurate description of LDH inactivation in the presence of DMSO. 

The better description provided by the non-asymptotic model in both thermal and DMSO inactivation 
cases suggests that LDH activity does not reach a plateau during the considered incubation times, but 
rather continues to decline. This indicates a progressive loss of enzyme function without a significant 
residual active fraction stabilizing over time. The observed half-life values also underscore the relative 
stability of LDH under both conditions, with longer half-lives in the presence of DMSO. This last finding 
suggests that the tested concentration of DMSO does not compromise LDH activity over prolonged 
incubation period at 37°C, as partially showed also by kinetic evaluations. However, it cannot be 
concluded that DMSO exerts a stabilizing effect on LDH thermal inactivation without further 
investigations. 
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4. Conclusions and future developments 
The primary objective of this Master's thesis was to conduct a comprehensive kinetic characterization 
of the enzyme LDH, both in its uninhibited state and in the presence of selected and well-known 
inhibitors. This research aimed to establish a solid foundation for the development of an LDH-based 
biosensor for anticancer drug screening. All analyses were performed using UV-vis spectrophotometry. 
The specific inhibitors studied were: Galloflavin, FX-11, Gossypol, NHI-2, and Oxamate. 
Complementary experiments involving temperature and DMSO incubation, alongside molecular 
docking studies, further completed the investigation.  

Initially, the absorbance spectra of all the involved compounds were recorded to identify the optimal 
wavelength for subsequent kinetic assays. A wavelength of 340 nm was selected, as NADH exhibited a 
distinct absorption peak at this point, free from interference by pyruvate, NAD+, or lactate. 

Subsequently, the absorption spectra of DMSO and the inhibitors were also determined. All the spectra 
did not give a remarkable signal at 340 nm, with the exception of NHI-2. Its contribution was elevated, 
prompting further investigation at lower NADH concentrations to assess its potential interference. It was 
observed that at reduced NADH concentrations, the contribution of NHI-2 to the total absorbance even 
surpassed that of NADH itself. This observed interference was carefully accounted for in all subsequent 
kinetic analyses. 

Kinetic assays were performed to evaluate enzyme activity. UV-vis measurements were conducted at 
340 nm, generating absorbance-versus-time curves. The initial linear slope of these curves was used to 
determine the reaction rate. Kinetic curves were then constructed by measuring reaction rates across 
increasing concentrations of either substrate (pyruvate) or cofactor (NADH), while keeping the other 
component at a fixed concentration. This approach allowed for the extrapolation of Vmax and Km 
values, which are critical for characterizing the kinetic behaviour of LDH and assessing the impact of 
inhibitors. 

For pyruvate-dependent assay, an apparent Vmax of 861 µmol min-1 and an apparent Km of 0.147 mM were 
obtained. Furthermore, assays conducted at various fixed NADH concentrations yielded true kinetic 
parameters, with a Vmax of 833 µmol min-1 and Km of 0.117 mM.  The influence of DMSO, used as the 
solvent for inhibitor solubilization, on LDH kinetic behaviour was assessed as well. Results indicated no 
discernible effect of DMSO on LDH kinetics. 

Kinetic assays were also conducted with increasing concentrations of pyruvate in the presence of 
varying inhibitor concentrations. These experiments allowed for the determination of Vmax and Km at 
increasing inhibitor concentrations. Analysis of the changes in these parameters, complemented by 
molecular docking simulations, elucidated the inhibition mechanism for each compound. Following the 
identification of the inhibition type, Ki was calculated to provide a quantitative measure of the inhibitory 
potential of each compound. Galloflavin, Gossypol, and NHI-2 were found to exhibit mixed-type 
mechanism of inhibition, while Oxamate displayed competitive behaviour and FX-11 showed non-
competitive inhibition. It is important to note that the results for NHI-2 should be interpreted with 
caution due to its absorbance interference. 

Complementary assays were performed with increasing NADH concentrations. For uninhibited LDH, an 
apparent Vmax of 891 µmol min-1 and an apparent Km of 0.034 mM. Furthermore, assays at various fixed 
pyruvate concentrations yielded the identification of the true kinetic parameters. Vmax was equal to 847 
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µmol min-1, while Km was equal to 0.028 mM. Consistent with the pyruvate-dependent assays, DMSO 
exhibited no influence on the kinetic parameters when NADH concentration was varied. 

Kinetic tests function of NADH concentration and at different inhibitors concentration were then 
conducted. Coupled with molecular docking simulations, these studies facilitated the elucidation of 
each compound's inhibition mechanism. NHI-2 and Oxamate demonstrated non-competitive 
inhibition. Given the previously observed high absorbance contribution of NHI-2 at low NADH 
concentrations, its results warrant careful consideration. FX-11 displayed mixed-type inhibition. 
Interestingly, for Gossypol, a discrepancy was noted: molecular docking suggested competitive 
inhibition, whereas kinetic analyses indicated mixed-type inhibition. This disparity might be resolved by 
exploring a broader range of NADH concentrations; however, spectrophotometer signal saturation 
precluded testing beyond the maximum NADH concentration. 

Molecular modelling studies also revealed that Serine 50 was a key residue involved in the binding of 
four out of five inhibitors to LDH. This suggests the potential importance of Serine 50 in the LDH 
structure. However, the confirmation of this hypothesis requires further experimental validation. 

To complete the characterization of LDH, temperature and DMSO incubation tests were performed. 
These experiments aimed to determine the residual enzyme activity over time, a critical aspect given 
LDH's potential application in a biosensor requiring long-term stability. They confirmed no harmful 
effect of DMSO at the tested concentration on LDH, but relatively small half-life period of the enzyme 
when used in its free form. 

The future perspective of this research involves using the detailed kinetic profile of the free enzyme as 
a reference. This reference will be crucial for comparison with the behaviour of immobilized LDH, as 
enzyme immobilization is a key component of the proposed anticancer drug screening biosensor. The 
immobilization could represent an efficient and effective strategy to enable enzyme reuse over extended 
periods. By improving enzyme stability, immobilization is expected to increase the enzyme’s half-life, 
thereby enhancing the durability and practicality of the proposed biosensor for long-term anticancer 
drug screening applications. Such comparative data will enable an assessment of the impact of 
immobilization on enzyme kinetics, thereby determining the reliability of the chosen method and 
whether it excessively alters enzyme behaviour. 

The methods employed for LDH characterization are reliable, easy to use, non-destructive, and cost-
effective. Moreover, the comprehensive kinetic characterization, supported by molecular docking 
insights, provides a robust framework to understand the inhibitory effects of these compounds on LDH 
activity and their potential therapeutic applications. Nevertheless, these methods proved insufficient in 
certain instances, such as the previously discussed cases of NHI-2 and Gossypol. Therefore, future 
investigations should be complemented by structural studies of the enzyme-inhibitor complex, such as 
X-ray crystallography. Despite these limitations, it can be concluded that these studies provide a strong 
foundational reference for the subsequent development of the biosensor prototype. 
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