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Abstract 

 

This thesis investigates the spatial and temporal impacts of agricultural drought in the 

Vercelli province of northern Italy using multi-source remote sensing data and 

meteorological indices. Focusing on rice cultivation, which is highly sensitive to seasonal 

water availability, the study integrates vegetation indices (NDVI, EVI2, SAVI, and VCI) 

derived from Sentinel-2 and MODIS platforms with meteorological drought indicators 

(SPI and SPEI). A phenology-based interpretation framework was adopted to align index 

trends with key rice growth stages—transplanting, vegetative, reproductive, and 

maturation phases—capturing the crop’s seasonal sensitivity to climate variability. In 

addition, a high-resolution land use and land cover (LULC) classification from ESA 

WorldCover (2021) was used to contextualize vegetative patterns and visually separate 

agricultural from non-agricultural zones. The analysis revealed significant drought impacts 

during critical periods in 2021 and residual stress in 2022, with spatial variability 

influenced by irrigation access. The methodological workflow was implemented in QGIS 

using automated processing tools, enhancing reproducibility and efficiency. While 

resolution mismatches posed limitations for direct index masking, the integrated approach 

demonstrated strong potential for drought monitoring in irrigated crop systems. This 

research contributes to global efforts in agricultural resilience, aligning with international 

initiatives such as UN-SPIDER and the Copernicus Emergency Management Service. 

Recommendations are provided for future validation through ground-truthing and 

operational integration with regional drought preparedness strategies. 
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Chapter 1: Introduction  

  1.1 Background and Motivation 

Drought is among the most complex and destructive natural hazards, affecting ecosystems, 

economies, and food security on a global scale. It manifests in various forms—

meteorological, hydrological, and agricultural—each defined by distinct characteristics 

and impacts (Wilhite & Glantz, 1985). Agricultural drought, in particular, disrupts crop 

phenology, reduces yields, and stresses irrigation systems. These challenges are amplified 

under current climate variability, prompting the need for effective monitoring frameworks. 

To address this, global and European institutions have established remote sensing–based 

platforms to support drought early warning and agricultural resilience. For instance, the 

UN-SPIDER program promotes satellite-based data use for disaster response, while the 

Copernicus Emergency Management Service (CEMS) and Global Drought 

Observatory (GDO) offer operational drought monitoring across Europe (UN-SPIDER, 

n.d.; CEMS, n.d.; GDO, n.d.). The FAO WaPOR platform enables water productivity 

monitoring using Earth observation data, supporting climate-smart agriculture (FAO 

WaPOR, n.d.). 

Within this broader context, Vercelli Province, located in the Po Valley of northern Italy, 

is one of Europe’s most significant rice-producing areas. Characterized by extensive 

monoculture paddy fields and a traditional irrigation system that relies heavily on seasonal 

snowmelt and surface water from the Alps, the region is highly vulnerable to water 

scarcity. Between 2021 and 2023, northern Italy experienced exceptional drought events 

that triggered a national state of emergency and caused widespread agricultural disruption 

(ARPA Piemonte, 2022; SNPA, 2022). 

The vulnerability of rice cultivation in Vercelli is particularly evident during key 

phenological stages, such as transplanting (May), elongation (July), and heading (late 

July), when adequate water availability is critical for biomass development and yield 

formation. Drought stress during these stages can result in delayed transplanting, 

reduced vegetative vigor, and lower harvest indices. Therefore, early detection of 

vegetation anomalies and continuous seasonal monitoring is essential for both risk 

mitigation and agricultural adaptation strategies. 

This study addresses these challenges by developing a remote sensing–based monitoring 

framework tailored to the Vercelli rice system. Through a phenology-aligned, multi-index 

methodology, it aims to bridge the gap between Earth observation data and actionable 

agricultural insights.  

In addition to these global drought early warning frameworks, land use and land cover 

(LULC) information plays a vital role in contextualizing vegetation dynamics. The ESA 

WorldCover 2021 dataset provides globally consistent LULC classification at a 10-meter 

resolution, offering valuable spatial context for distinguishing agricultural from non-
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agricultural areas (ESA WorldCover, 2022). This classification supports applications 

ranging from NDVI interpretation to crop stress mapping and disaster response. The 

availability of such high-resolution land cover products complements the operational goals 

of platforms like UN-SPIDER and the Copernicus Emergency Management Service 

(CEMS), reinforcing integrated approaches to agricultural monitoring under climate stress. 

1.2 Research Problem 

Monitoring agricultural drought is essential for maintaining food security under increasing 

climate variability. Remote sensing technologies have become a vital tool in drought 

assessment by enabling the continuous tracking of vegetation conditions across large 

spatial and temporal scales (WMO, 2020). Among these, vegetation indices such as the 

Normalized Difference Vegetation Index (NDVI), Vegetation Condition Index (VCI), 

Enhanced Vegetation Index (EVI), and Soil-Adjusted Vegetation Index (SAVI) are widely 

applied to assess vegetation health and drought stress (Jiang et al., 2008; Huete, 1988). 

This study focuses on how recurring drought events between 2020 and 2024 affected the 

vegetation health of rice crops in the Vercelli province of Northern Italy—one of Europe’s 

most important rice-producing areas. By integrating NDVI and VCI, this research aims to 

evaluate drought-induced stress during biologically significant phenological stages, 

particularly transplanting, tillering, and heading—periods identified as highly sensitive to 

water availability. 

The analysis employs anomaly detection, zonal statistics, and time-series interpretation to 

compare spatial and temporal drought effects across years. In doing so, it supports early 

warning efforts and irrigation scheduling by identifying critical stress periods and high-

risk zones. 

Ultimately, understanding drought impacts on vegetation health across phenological 

phases allows for better planning of irrigation operations and crop calendars. This 

contributes to improved agricultural risk management in the face of future climatic 

extremes. 

1.3 Research Objectives 

This research investigates the spatiotemporal dynamics of agricultural drought and 

vegetation response in the rice-growing region of Vercelli (Italy) over the period 2020–

2024. It employs a phenology-aligned, multi-index remote sensing approach that integrates 

vegetation indices and meteorological drought indicators. The objectives are thematically 

grouped as follows: 

1. Monitoring and Phenological Alignment 

To monitor and assess the impact of agricultural drought on rice crop health during critical 

phenological stages, including transplanting, vegetative growth, and reproduction. 
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Aligning remote sensing observations with crop development phases enhances the 

biological interpretability of drought-induced stress (Wang et al., 2022). 

2. Vegetation Index Application and Comparative Evaluation 

To apply and evaluate NDVI and VCI for anomaly detection and trend analysis across the 

rice-growing season. NDVI reflects chlorophyll activity and is widely used for vegetation 

monitoring (Tucker, 1979), while VCI normalizes vegetation stress relative to historical 

behavior (Kogan, 1995). 

To compare the performance of NDVI, SAVI, EVI2 and VCI in detecting drought stress 

under varying soil and canopy conditions. SAVI corrects for soil background influence 

(Huete, 1988), EVI2 reduces atmospheric interference and enhances canopy sensitivity 

(Jiang et al., 2008), and VCI helps identify deviations from long-term vegetation trends. 

This comparison supports optimal index selection for rice environments (WMO, 2016). 

3. Climate-Drought Linkage 

To integrate meteorological drought indices—specifically SPI (Standardized Precipitation 

Index) and SPEI (Standardized Precipitation Evapotranspiration Index)—to examine the 

relationship between climatic anomalies and vegetation stress in irrigated rice systems 

(Vicente-Serrano et al., 2010). These indicators contextualize vegetative changes in 

relation to precipitation deficits and evapotranspiration anomalies. 

4. Temporal Trend and Drought Cycle Analysis 

To analyze interannual drought variations and transitional phases by identifying the acute 

drought conditions of 2021, partial adaptation in 2022–2023, and recovery in 2024. This 

longitudinal analysis provides insight into drought cycles and resilience trajectories in a 

Mediterranean rice context (Global Drought Observatory, 2024). 

5. Workflow and Methodological Implementation 

To implement a semi-automated analysis pipeline using existing open-source tools (QGIS 

and Python). The workflow facilitates batch vegetation index computation, anomaly 

mapping, and zonal statistics aligned with phenological phases. While not a full reusable 

platform, it demonstrates a practical and scalable approach for operational drought 

monitoring in agricultural systems. 

Through these objectives, the study contributes to advancing remote sensing 

methodologies for drought detection and supports actionable insights for irrigation 

scheduling, early warning systems, and climate adaptation in rice-based agroecosystems. 
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1.4 Significance of the Study 

This study holds substantial value in advancing drought monitoring methodologies tailored 

to phenology-sensitive agricultural systems, with a particular focus on rice cultivation in 

the Vercelli region of Northern Italy. Located in a hydroclimatically sensitive basin reliant 

on snowmelt and surface water for irrigation, the region faces increasing vulnerability to 

recurring droughts (Pascale & Ragone, 2025). The research responds to this challenge by 

integrating satellite-derived vegetation indices and meteorological drought indicators to 

enhance spatial and temporal drought assessment. 

Specifically, the study employs the NDVI derived from Sentinel-2 imagery to monitor 

vegetation health at a 10 m spatial resolution. To complement this, the VCI is calculated 

using the MODIS MOD13Q1 product (250 m resolution), which incorporates EVI and 

offers over 20 years of data (Didan, 2015). VCI enables anomaly detection by comparing 

current vegetation conditions to historical baselines, offering critical temporal insight into 

vegetation stress dynamics (Kogan, 1995). 

The dual-resolution approach allows for fine-scale crop monitoring while capturing 

broader climatological trends. VCI is especially valuable for detecting deviations from 

long-term vegetation norms, particularly in extreme years such as 2021, when anomalies 

may not be captured through NDVI alone. Together, these indices facilitate a nuanced 

understanding of drought severity across key rice phenological stages—including 

transplanting, vegetative growth, and reproduction—when the crop is most sensitive to 

hydrometeorological stress (Zhang et al., 2022). 

Importantly, this study aligns index analysis with phenological calendars to ensure 

biological relevance, enhancing the interpretability of satellite signals in relation to rice 

crop development. Although no ground-based validation data (e.g., biomass or yield 

statistics) were available, the study emphasizes transparency and reproducibility by 

leveraging open-source geospatial tools such as QGIS and Python. 

The outputs are expected to support: 

• Early warning systems, by offering timely indicators of vegetative stress 

detectable through NDVI and VCI anomalies; 

• Irrigation management, by informing localized scheduling during vulnerable 

phenological phases; 

• Climate adaptation planning, through spatial mapping of drought hotspots and 

recovery zones; 

• Integration into existing drought monitoring systems, such as Copernicus 

Global Drought Observatory and FAO WaPOR, by offering scalable methods 

aligned with remote sensing standards; 

• Scientific advancement, by demonstrating a phenology-aligned, semi-automated 

workflow that supports replicable drought assessment in Mediterranean 

agroecosystems. 
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Ultimately, this research strengthens the transition from reactive to proactive drought risk 

management, fostering resilience in agriculture under climate variability. 

1.5 Research Methodology Overview 

This study adopts an integrated remote sensing and climatic approach to assess drought 

impacts on rice vegetation in Vercelli (Italy) from 2020 to 2024. It combines high-

resolution Sentinel-2 imagery for NDVI analysis and MODIS MOD13Q1 data for 

computing VCI, providing a dual-resolution framework for capturing field-level dynamics 

and long-term anomalies (Tucker, 1979; Didan, 2015; Kogan, 1995). 

NDVI was calculated using Sentinel-2 data (10 m resolution) to track vegetation greenness 

aligned with key phenological stages—transplanting, vegetative growth, and 

reproduction—following phenology calendars tailored to rice (Zhang et al., 2022). VCI, 

derived from MODIS EVI composites (250 m resolution, 16-day), offers temporal anomaly 

detection by comparing current EVI values against long-term historical ranges (Kogan, 

1995; Didan, 2015). 

Meteorological drought conditions were validated using SPI and SPEI at the monthly scale 

(Vicente-Serrano et al., 2010), especially for the May–July period. Particular emphasis was 

placed on the 2022 drought (SPI/SPEI < –1.5), with comparison across 2021 and 2023–

2024 to characterize a full drought cycle. 

Geospatial processing was conducted in QGIS using the Graphical Modeler and Python 

batch tools for automated NDVI/VCI extraction, anomaly mapping, and zonal statistics. 

This semi-automated setup improves reproducibility and enables efficient scaling across 

time and subregions. 

 



 13 

 

Figure 1- Workflow of NDVI, VCI, and LULC Integration for Vegetation Health 

Monitoring in Vercelli. 

 

This diagram illustrates the step-by-step processes for computing. 

NDVI from Sentinel-2 data, VCI from MODIS EVI data, and incorporating LULC 

classification from ESA WorldCover. It reflects how these datasets were processed and 

integrated to assess drought dynamics in the Vercelli region between 2020 and 2024. 

1.6 Structure of the Thesis 

The thesis is structured as follows: 

•  Chapter 1: Introduction – Establishes the research background, outlines the problem, 

and presents the objectives. It introduces international remote sensing initiatives (e.g., UN-

SPIDER, CEMS), emphasizes the importance of phenology-aligned monitoring, and 

includes a methodological overview integrating LULC mapping (ESA WorldCover). 

•  Chapter 2: Literature Review – Provides a comprehensive synthesis of studies related 

to agricultural drought monitoring, remote sensing indices (NDVI, SAVI, EVI2, VCI), 

LULC applications, and international drought frameworks (e.g., FAO WaPOR, GDO, 

Copernicus). 

•  Chapter 3: Methodology – Details the multi-source data inputs (Sentinel-2, MODIS, 

SPI/SPEI, ESA WorldCover), remote sensing workflow using QGIS and Python, and 

outlines steps for NDVI/VCI calculation, anomaly detection, and phenological alignment. 

A diagram illustrates the full processing chain. 
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•  Chapter 4: Results – Presents NDVI and VCI trends (2020–2024), spatial-temporal 

anomaly patterns, and a land cover composition map of Vercelli. Includes cross-year 

comparisons, phenology-specific insights, and statistical outputs. 

•  Chapter 5: Discussion – Interprets NDVI/VCI behavior in the context of drought years, 

evaluates LULC integration, and discusses methodological strengths and weaknesses. 

Connects findings to international monitoring efforts and implications for agricultural 

resilience. 

•  Chapter 6: Conclusions and Recommendations – Summarizes key findings on 

drought stress and phenological impacts, highlights operational contributions (e.g., use of 

LULC, automated QGIS workflow), and offers suggestions for future research and data 

integration improvements. 
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Chapter 2: Literature Review 

2.1 Overview of Drought 

Drought is a natural phenomenon characterized by a prolonged period of below-average 

precipitation that leads to water shortages. It significantly impacts agriculture, causing 

crop failure and economic loss. Drought can be categorized into several types: 

meteorological drought, agricultural drought, hydrological drought, and 

socioeconomic drought (Wilhite & Glantz, 1985). In the context of this study, 

agricultural drought is the focus, defined as a situation where soil moisture is insufficient 

for crop growth, causing stress to vegetation. 

The agricultural impact of drought is critical for crop health, as it limits water availability 

during key growth periods. The ability to monitor and assess drought impact is crucial for 

regions like Vercelli, where rice cultivation depends heavily on irrigation systems that 

are vulnerable to climatic variability. Remote sensing provides a powerful tool to monitor 

vegetation health during drought events, allowing early detection of stress and enabling 

timely interventions. 

Drought monitoring is typically done using vegetation indices like NDVI and VCI, 

which are reliable indicators of vegetation stress during periods of drought (Kogan, 1995). 

These indices can be used to assess drought severity and to track recovery over time. 

2.2 Remote Sensing for Drought Monitoring 

Remote sensing technologies, particularly satellite imagery, play a pivotal role in 

monitoring agricultural drought due to their ability to continuously capture vegetation 

dynamics at multiple scales. Compared to meteorological indicators—which provide 

indirect measures of drought through precipitation and evapotranspiration—vegetation 

indices such as NDVI and VCI allow direct assessment of drought impact on crop health, 

especially when aligned with phenological stages. 

In this study, Sentinel-2 data was selected for NDVI (Normalized Difference Vegetation 

Index) computation because of its 10-meter spatial resolution and 5–10 day revisit cycle, 

enabling detailed and frequent monitoring of vegetation status. NDVI is derived from the 

reflectance of near-infrared (NIR) and red light (R), where healthy vegetation reflects more 

NIR and less red light, resulting in higher index values. Conversely, stressed vegetation 

reflects more red light and less NIR, producing lower NDVI values (Tucker, 1979). 

However, Sentinel-2's optical nature introduces a limitation: cloud contamination, which 

can disrupt data acquisition during key crop stages, particularly in the summer months. 

To address longer-term trends and drought anomalies, the Vegetation Condition Index 

(VCI) is also used. VCI is calculated by comparing current EVI (Enhanced Vegetation 

Index) values to historical minimum and maximum EVI values. This study utilizes the 

MODIS MOD13Q1 product, which offers 250-meter resolution and a 16-day composite 

period. This product provides over 20 years of EVI data, allowing for robust historical 
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comparisons (Kogan, 1995; Didan, 2015). The temporal baseline used spans from 2000 to 

2024, ensuring consistency in anomaly detection. 

Although MODIS enables regional-scale drought monitoring, its coarser resolution 

makes it less suitable for field-level decision-making compared to Sentinel-2. Therefore, a 

dual-resolution integration was adopted: Sentinel-2 for fine-scale crop response and 

MODIS for contextualizing long-term anomalies. 

Notably, this integrated approach is crucial in Vercelli, a region that experienced prolonged 

meteorological and agricultural drought between 2021 and 2023, culminating in 

national-level alerts (Pascale & Ragone, 2025). The ability to detect vegetation stress in 

this period using remote sensing tools underscores their value in early warning systems and 

adaptive management planning. 

2.3 Previous Work 

Several studies have utilized NDVI and VCI for drought monitoring in agricultural 

systems, especially within Mediterranean rice-producing contexts. For example, Misra et 

al. (2020) and Liu et al. (2020) demonstrated the effectiveness of these indices in assessing 

vegetation responses to water stress in rice-based ecosystems. Their work reinforces the 

regional relevance of remote sensing applications in Mediterranean climates and provides 

a strong foundation for applying such indices in the Vercelli region. 

Xiao et al. (2006) showed that NDVI can effectively detect vegetation stress during drought 

events, particularly in rice-growing areas. Similarly, Kogan (1995) introduced the VCI, 

which allows for detecting vegetation anomalies based on historical trends. These tools 

have been widely used for drought impact assessment. A more recent regional study by 

Baronetti et al. (2024) specifically applied NDVI and VCI to the Vercelli area, confirming 

their utility in evaluating drought severity and supporting water management decisions in 

rice fields. 

However, limitations remain. NDVI calculations using Sentinel-2 are susceptible to cloud 

contamination, and MODIS VCI is limited by its coarser spatial resolution and potential 

temporal inconsistencies (Zhang et al., 2003). This study addresses these limitations by 

aligning vegetation index extraction with rice phenological stages and integrating multi-

resolution data—high-resolution Sentinel-2 NDVI for field-level crop tracking and 

MODIS-derived VCI for broader temporal anomaly detection. This phenology-based and 

dual-resolution strategy enhances the reliability and agricultural relevance of drought 

monitoring for the Vercelli context. 

Tuvdendorj et al. (2019) evaluated the effectiveness of NDVI and VCI for spring wheat 

yield estimation under drought conditions in Mongolia using MODIS data, emphasizing 

index-specific responses during distinct phenological phases. Their approach supports this 

thesis’s use of phenology-aligned indices for drought impact monitoring. Similarly, Jha et 

al. (2022) assessed NDVI, GNDVI, and EVI2 for sugarcane yield forecasting using 

Sentinel-2 imagery, showing how index sensitivity varies across phenophases. These 
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findings validate the selection of EVI2 in this study and reinforce the broader value of 

multi-index monitoring for phenology-driven crops. Wang et al. (2020) also highlighted 

the role of remote sensing-based phenological indicators in characterizing rice 

development under weather variability, supporting integrated temporal analysis of 

vegetation stress. 

2.4 Theoretical Framework 

The theoretical framework guiding this research is grounded in the relationship between 

drought stress and vegetation health, as measured by remote sensing data. It leverages 

vegetation indices that reflect both biological responses and climatological deviations. The 

core indices used are NDVI and VCI, which offer complementary insights into vegetation 

condition and are aligned with crop phenology stages. 

• NDVI: Derived from red and near-infrared (NIR) reflectance, NDVI is closely 

associated with vegetation density and photosynthetic activity. It is particularly 

sensitive to changes during the vegetative phase of rice, allowing timely detection 

of drought-induced stress during early crop development (Tucker, 1979). 

• VCI: Calculated from MODIS EVI, VCI compares current vegetation conditions 

against long-term historical baselines, providing a relative stress indicator. It is 

especially effective for anomaly tracking during later stages, such as heading and 

maturation, when deviations from climatic norms become more pronounced 

(Kogan, 1995; Didan, 2015). 

Together, NDVI and VCI offer a multi-faceted view of drought impacts. NDVI provides 

fine-scale field monitoring through Sentinel-2 imagery, while VCI introduces a 

climatological baseline for long-term comparison. This dual approach is phenology-

aligned, with both indices extracted during critical rice growth stages: transplanting, 

vegetative growth, and heading—ensuring biological relevance and analytical 

consistency. 

Studies such as Zhang et al. (2022) highlight the importance of linking vegetation indices 

with crop phenology for accurate drought assessment. This research adopts that model by 

aligning temporal windows of index extraction to match the seasonal dynamics of rice 

cultivation in Vercelli. 

Additionally, other indices are considered: 

• SAVI: Designed to reduce soil background noise, SAVI is useful in semi-arid or 

exposed-soil environments (Huete, 1988). 

• EVI2: A simplified version of EVI that works well in dense vegetation and cloudy 

conditions, EVI2 increases sensitivity to canopy structure without needing a blue 

band (Jiang et al., 2008). 
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By integrating these tools in a phenology-aware framework, the study enables a more 

ecologically meaningful and operationally useful interpretation of agricultural drought 

patterns. 

2.5 Comparative Analysis of NDVI, SAVI, and EVI2 

While NDVI is the primary index used in this study, it is important to compare it with other 

indices such as SAVI and EVI2 to enhance the understanding of vegetation health and 

drought stress across diverse environmental settings. This comparison is particularly 

relevant in Vercelli due to its mixed-pixel environment (e.g., flooded paddies and exposed 

soil) and irrigation dependence, which influence how different indices perform under 

varying conditions. 

• SAVI: This index was developed to minimize the influence of soil background on 

vegetation reflectance, particularly in areas with sparse vegetation or exposed soils 

(Huete, 1988). 

o Advantages: SAVI improves accuracy in arid and semi-arid areas by 

incorporating a soil brightness correction factor (L) into the NDVI formula, 

making it more reliable when vegetation does not fully cover the surface. 

o Disadvantages: Requires calibration based on soil type and vegetation 

density; less effective under dense vegetation cover. 

o Limitations: May misclassify soil features or underperform under extreme 

drought or mixed-pixel conditions. 

• EVI2: A simplified version of EVI that enhances sensitivity in high biomass 

regions and reduces atmospheric and soil background noise without requiring a blue 

band (Jiang et al., 2008). 

o Advantages: Outperforms NDVI in dense vegetation and under cloud 

contamination, capturing canopy structure more effectively. 

o Disadvantages: Less commonly used than NDVI; requires careful 

calibration and preprocessing. 

o Limitations: Less accurate in sparse vegetation or dry areas; may suffer 

from temporal inconsistencies. 

Recent empirical studies support the application of SAVI and EVI2 in rice-based and 

Mediterranean agroecosystems. For example, Misra et al. (2020) and Liu et al. (2020) show 

how these indices can track rice phenology and drought-related stress effectively, 

especially in complex agricultural environments. This is further illustrated in Table 1, 

which summarizes key studies applying NDVI, SAVI, EVI2, and VCI across comparable 

agricultural contexts. 
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Table 1- Comparative Summary of Vegetation Indices in Rice and Mediterranean 

Agroecosystems 

Study Region 
Indices 

Used 
Key Contribution 

Misra et al. 

(2020) 

South Asia (Rice 

fields) 
SAVI, EVI2 

Demonstrated index performance 

under variable soil conditions and 

phenology. 

Liu et al. 

(2020) 

Mediterranean rice 

systems 

NDVI, 

EVI2 

Highlighted EVI2’s advantage during 

cloud-covered growth stages. 

Xiao et al. 

(2006) 

China (agricultural 

regions) 
NDVI 

Detected vegetation stress during 

drought in rice areas. 

Baronetti et 

al. (2024) 
Vercelli, Italy NDVI, VCI 

Assessed drought severity using 

MODIS and Sentinel-derived indices. 

Zhang et al. 

(2003) 

Various global test 

sites 

NDVI, 

MODIS 

VCI 

Identified spatial limitations and 

inconsistencies in coarse-resolution 

data. 

Comparing NDVI, SAVI, and EVI2 provides insights into which index is best suited for 

particular conditions. NDVI remains the most widely used due to its simplicity and broad 

adoption (Tucker, 1979). However, SAVI is better in soil-exposed zones, and EVI2 is 

advantageous in dense canopies and cloudy areas where NDVI might fail. 

These observations are further enhanced by Sentinel-2's spatial and temporal resolution. 

Its 10–20 m resolution and 5–10-day revisit cycle make it particularly valuable for 

detecting vegetation changes during rice phenological phases (May–August), aligning well 

with the phenology-based index extraction process used in this study. This integration 

supports precise monitoring across indices and improves drought detection accuracy in 

rice-growing systems (Misra et al., 2020; Liu et al., 2020). 
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Table 2- Strengths, ideal use cases, and known limitations of NDVI, SAVI, and EVI2 

in drought monitoring 

Vegetation 

Index 
Main Strength Ideal Usage Known Limitation 

NDVI 

Fast, simple, and widely 

used index for assessing 

general vegetation 

health. 

Suitable for areas 

with healthy 

vegetation and clear 

skies. 

Affected by cloud 

contamination in optical 

imagery like Sentinel-2. 

SAVI 

Corrects for soil 

influence, making it 

useful in arid regions 

with sparse vegetation. 

Useful in regions 

with significant soil 

exposure and dry 

conditions. 

Less accurate in dense 

vegetation where soil is 

minimally exposed; needs 

calibration. 

EVI2 

Corrects for 

atmospheric effects, 

ideal for dense 

vegetation areas with 

cloud cover. 

Useful in densely 

vegetated areas and 

regions affected by 

high cloud cover. 

Temporal inconsistencies 

in MODIS data; less 

effective in sparse 

vegetation zones. 

The comparison of NDVI, SAVI, and EVI2 is summarized in Table 2, which outlines their 

respective strengths and limitations in drought and vegetation monitoring. While each 

index offers distinct advantages, practical limitations must be considered in this study’s 

context—for example, Sentinel-2’s vulnerability to cloud contamination during peak 

rice growth stages, and the coarser spatial resolution of MODIS data, which may lead 

to mixed-pixel issues in fragmented agricultural fields like Vercelli. 

Key Takeaways from Comparative Analysis: 

• NDVI remains the most widely used index and is ideal for areas with healthy 

vegetation and clear skies. It is easy to compute and provides reliable vegetation 

health insights for general use. 

• SAVI is a valuable alternative for regions where soil background significantly 

influences vegetation measurements, such as arid or semi-arid regions. It is useful 

for areas with sparse vegetation, where other indices like NDVI might be less 

effective. 

• EVI2, though less common, provides better sensitivity to vegetation changes in 

areas affected by cloud cover and atmospheric conditions. It works well for dense 

vegetation areas, but it may misclassify vegetation in areas with low vegetation 

density, such as dry or barren regions. 

 

Recommendations for NDVI, SAVI, and EVI2 Usage: 

• NDVI is ideal for general vegetation monitoring when there are no significant 

challenges like cloud cover or soil exposure. 

• SAVI should be used in arid and semi-arid regions with significant soil exposure 

to minimize soil influence on vegetation readings. 

• EVI2 is most suitable for regions with dense vegetation and high cloud cover, 

where other indices like NDVI may face issues due to atmospheric interference. 
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Recent studies have emphasized the value of combining climatic indicators such as SPI 

and SPEI with remote sensing indices for drought assessment. For instance, Mutowo and 

Chikodzi (2014) used SPI and NDVI together to monitor agricultural drought conditions 

in Zimbabwe, demonstrating the advantages of integrated approaches in semi-arid 

agricultural landscapes. 

 

This comparative analysis of NDVI, SAVI, and EVI2 in the context of drought 

monitoring provides a comprehensive view of which index is most sensitive to drought 

stress in the Vercelli region. The use of these three indices in combination enhances the 

overall accuracy of vegetation health assessment during drought events and helps to make 

more informed decisions regarding agricultural practices and water management strategies 

in rice cultivation. 
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Chapter 3: Methodology 

3.1 Overview 

This chapter presents the comprehensive methodological framework used to assess 

agricultural drought in the Vercelli region from 2020 to 2024. By integrating multiple 

vegetation indices (NDVI, SAVI, EVI2, and VCI) and geospatial processing techniques, 

the study facilitates spatial-temporal monitoring of vegetation stress. The combination of 

Sentinel-2 and MODIS satellite data, coupled with meteorological indicators (SPI/SPEI), 

enables both high-resolution and long-term insights into drought severity across key crop 

phenological phases. 

3.2 Study Area and Context 

The study focuses on Vercelli province in northwest Italy, a key area for rice farming, 

known for its reliance on irrigation and vulnerability to droughts. The region, well-covered 

by MODIS and Sentinel satellites, is ideal for historical comparisons and remote sensing 

studies. Administrative boundaries were sourced from Geoportale Piemonte, and the 

Vercelli polygon was clipped from the regional shapefile, with all data reprojected to 

EPSG:32632 for spatial consistency.

 

Figure 2- Multi-scale study area map showing Italy, Piemonte, and Vercelli 

boundaries. Map created using QGIS. 
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3.2.1 Land Use and Cover Classification 

To provide additional spatial context and support the interpretation of vegetation dynamics, 

a Land Use/Land Cover (LULC) map was generated for the study area using the ESA 

WorldCover 2021 dataset at 10-meter resolution. The raster was clipped to the 

administrative boundary of Vercelli using QGIS. A reclassification was then performed to 

isolate cropland (class code 40), and a multi-class legend was applied to distinguish other 

land types such as urban (built-up), forested, and water-covered zones. This enabled the 

visualization of land surface composition and helped contextualize NDVI fluctuations 

observed in the results. Although the LULC map was not directly integrated into the NDVI 

data due to resolution mismatch, it served as a visual cross-reference for identifying true 

agricultural zones (see Figure 5 in Section 4.1 and Figure 24 in Section 5.5). 

 
Figure 3- Land Use and Land Cover (LULC) Classification Map of the Vercelli 

Region (2021), derived from ESA WorldCover data. 

3.3 Phenological Stage Alignment 

This study aligns the acquisition and analysis of satellite data with critical rice growth 

stages to allow for a biologically meaningful assessment of vegetation condition and stress 

response. The phenological calendar adopted here is based on the rice phenology 

framework developed by Wang et al. (2022), who emphasized the benefits of stage-based 

monitoring in capturing physiological variability. These dates were validated against 

agronomic guidance specific to Northern Italy, ensuring regional accuracy. Accordingly, 
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Sentinel-2 imagery from May to August was filtered and matched to the corresponding 

phenological windows (e.g., transplanting, tillering, heading), enabling stage-specific 

vegetation index extraction. 

 

Table 3-Key Phenological Stages of Rice Cultivation and Monitoring Schedule in the 

Vercelli Region 

Phenological Phase  Indicative Date Monitoring Month 

Transplanting May 16 May 

Reviving June 3 Early June 

Tillering June 20 Late June 

Elongation July 2 Early July 

Booting July 21 Mid July 

Heading July 28 Late July 

Milk-ripe August 11 Early August 

Maturation September 8 Late August onward 

These stages correspond to critical physiological transitions in the rice plant’s lifecycle. 

For instance, transplanting and tillering are linked to root establishment and canopy 

expansion, while heading and milk-ripe phases are highly sensitive to water stress and 

nutrient availability. Satellite-based vegetation indices such as NDVI and EVI2 are 

particularly responsive during these stages, reflecting variations in chlorophyll 

concentration, biomass, and canopy structure. 

Recent studies have validated the utility of time-series remote sensing for monitoring 

phenological variation. Mo Wang et al. (2022) demonstrated that stages such as 

transplanting, elongation, and heading exhibit unique spectral and backscatter signatures, 

which are detectable through high-resolution satellite imagery. This supports the strategic 

scheduling of image acquisition in alignment with crop biology to enhance drought 

sensitivity detection. 

Further support for stage-specific vegetation index application is found in Tuvdendorj et 

al. (2019), who aligned NDVI and VCI performance with crop stages in a drought-prone 

context. Their results justify the pairing of NDVI with transplanting and VCI with 

reproductive stages in this thesis. Likewise, Jha et al. (2022) demonstrated the enhanced 

responsiveness of EVI2 during high-biomass periods, reinforcing its use in mid-to-late 

season rice monitoring here. 

By grounding the temporal aspect of vegetation index analysis in the phenological timeline 

of rice, this study ensures that remote sensing metrics reflect not just vegetative change, 

but physiologically meaningful stress impacts—especially those induced by drought 

during water-critical growth phases. 
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3.4 Analytical Workflow and Processing Framework 

 
Figure 4-Workflow for Satellite-Based Drought and Phenological Analysis in Vercelli 

(2020-2024) 

Figure 4 illustrates the satellite-based workflow developed for drought monitoring and 

phenological assessment in the Vercelli region during the 2020–2024 period. The L 

integrates multiple data sources, including high-resolution Sentinel-2 imagery, MODIS 

vegetation indices (notably VCI), and meteorological drought indicators (SPI/SPEI), 

enabling a multi-sensor approach to spatial and temporal drought characterization. 

The Data Acquisition phase involves the retrieval of satellite-based inputs from optical 

and climatological datasets. Sentinel-2 provides detailed vegetation information at 10–30 

m spatial resolution, whereas MODIS delivers long-term vegetation context via coarse-

resolution indices (e.g., VCI). Meteorological indices like SPI and SPEI contribute 

monthly-scale precipitation and evapotranspiration anomalies. 

In the Processing stage, vegetation indices (NDVI, SAVI, EVI2, and VCI) are computed 

using semi-automated workflows built in QGIS Graphical Modeler, an open-source 

geographic information system widely used for spatial analysis and geoprocessing (QGIS 

Development Team, 2022). These processes include masking, zonal statistics extraction, 

anomaly detection, and batch map generation. Automation ensures temporal consistency 

across years and reduces manual errors, enabling robust and replicable outputs. These 

processes include masking, zonal statistics extraction, anomaly detection, and batch map 

generation. Automation ensures temporal consistency across years and reduces manual 

errors, enabling robust and replicable outputs. 
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The final Output stage generates key analytical products, including: 

• Zonal statistics for interannual vegetation monitoring; 

• Anomaly maps that visualize spatial deviations in NDVI and VCI across years; 

• Drought timelines that align remote sensing trends with phenological calendars. 

These results feed into the broader interpretation of drought impacts, phenological 

sensitivity, and spatial risk patterns. The workflow ensures both scientific rigor and 

operational feasibility for regional drought assessment and agricultural monitoring. 

3.5 Data Sources and Preprocessing 

This study utilizes two complementary remote sensing datasets—Sentinel-2 and MODIS 

MOD13Q1—selected for their spatial and temporal resolution capabilities in monitoring 

vegetation health and drought patterns. Data were acquired for the rice-growing region of 

Vercelli, Italy, covering the May–August phenological window from 2020 to 2024. All 

datasets were reprojected to EPSG:32632 (WGS 84 / UTM Zone 32N) for spatial 

consistency and clipped using the Vercelli municipal shapefile. 

Sentinel-2 (10–20m Resolution) 

Sentinel-2 Level-2A imagery was used to compute NDVI, SAVI, and EVI2 vegetation 

indices using Band 8 (NIR) and Band 4 (Red), which are sensitive to chlorophyll 

concentration and canopy structure. Images were selected to align with key phenological 

stages (e.g., transplanting, tillering, heading), based on the calendar established in Section 

3.3. 

Approximately 10 Sentinel-2 images per year were processed, totaling ~50 images across 

five years (2020–2024). 

Example image IDs used: 

• S2A_MSIL2A_20210625T102021_N0500_R065_T32TMR_20230319T054911.

SAFE 

• S2A_MSIL2A_20220824T131202.SAFE 

• S2B_MSIL2A_20230720T101609_N0500_R065_T32TMR_20230720T131906.

SAFE 

• S2B_MSIL2A_20240714T101559_N0510_R065_T32TMR_20240714T125806.

SAFE 

All Sentinel-2 bands were scaled to reflectance values by dividing pixel values by 10,000. 

Processing steps, including image clipping and reprojection, were executed in QGIS 3.30 

using the Graphical Modeler and Batch Automation tools (QGIS Development Team, 

2022). 
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MODIS MOD13Q1 (250m Resolution) 

The MODIS MOD13Q1 product provides 16-day composite EVI data at 250m spatial 

resolution. Its long-term archive and temporal frequency make it ideal for drought trend 

analysis. This study extracted Day of Year (DOY) 121–273 (May to September) to cover 

rice growth phases in Vercelli. 

Importantly, this study used the entire MODIS archive from 2000 to 2024, offering a 

strong historical baseline for calculating the Vegetation Condition Index (VCI) and 

identifying interannual drought anomalies. 

Example MODIS VCI files used: 

• VCI_ITALY_129_2020.tif 

• VCI_ITALY_225_2021.tif 

• VCI_ITALY_257_2023.tif 

Pixel Reliability (PR) layers were used to mask poor-quality observations. Pixels with PR 

values other than 0 (good) or 1 (marginal) were excluded by assigning NaN. This ensured 

only high-quality input for VCI computation. 

MODIS data preprocessing and VCI calculation were implemented in Python 3.8 within a 

Conda-based geospatial environment. 

Tools and packages: 

• GDAL for raster processing 

• NumPy for array-based VCI calculation 

• Matplotlib and PNG/GeoTIFF output for visualization 

• Jupyter Notebook and tqdm for automated progress tracking 

Together, these preprocessing steps produced standardized, spatially aligned vegetation 

index layers that are: 

• Aligned with crop phenology (May–August) 

• Free of poor-quality pixels 

• Consistent across years and formats 

• Suitable for statistical drought analysis and interannual comparison 

This approach ensures temporal reliability, phenological alignment, and data 

traceability for both short-term monitoring and long-term drought trend detection. 

3.6 NDVI Calculation 

The Normalized Difference Vegetation Index (NDVI) was calculated using Sentinel-2 

Level-2A satellite imagery to assess vegetation health across the Vercelli region. This 
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index leverages the difference in reflectance between the near-infrared (NIR) and red 

(RED) spectral bands, which are highly responsive to the presence of green vegetation. For 

this purpose, Band 8 (NIR) and Band 4 (Red) were extracted from the Sentinel-2 dataset at 

a 10-meter spatial resolution. 

Due to Sentinel-2 reflectance values being scaled integers, all pixel values were rescaled 

by dividing by 10,000 to convert them to reflectance proportions. To prevent division by 

zero errors and to ensure numerical stability, a small constant (0.0001) was added to the 

denominator. 

The NDVI equation implemented in the QGIS Raster Calculator was: 

Equation 1: 𝑵𝑫𝑽𝑰 =
(𝑵𝑰𝑹/𝟏𝟎𝟎𝟎𝟎)−(𝑹𝑬𝑫/𝟏𝟎𝟎𝟎𝟎)

(𝑵𝑰𝑹/𝟏𝟎𝟎𝟎𝟎)+(𝑹𝑬𝑫/𝟏𝟎𝟎𝟎𝟎)+𝟎.𝟎𝟎𝟎𝟏
 

Where: 

• NIR refers to the reflectance value of Band 8, 

• RED refers to the reflectance value of Band 4. 

Each NDVI raster was clipped to the Vercelli municipal boundary using a shapefile mask 

to isolate the area of interest and eliminate irrelevant surrounding pixels. After calculation, 

zonal statistics were derived using the QGIS Zonal Statistics tool. These included key 

descriptive values such as mean, minimum, maximum, pixel count, and total NDVI sum. 

These statistical outputs were used for both inter-annual comparisons and drought severity 

analysis. 

To handle multiple years and months efficiently, the entire NDVI processing workflow 

was automated using the QGIS Graphical Modeler. This allowed batch processing of 

Sentinel-2 datasets while maintaining consistent output naming, projection, and symbology 

settings across all files. 

3.7 SAVI Calculation 

The Soil-Adjusted Vegetation Index (SAVI) was implemented in this study to account for 

the influence of soil brightness in areas with low vegetation cover. SAVI is particularly 

useful in semi-arid or sparsely vegetated landscapes, where soil reflectance can distort the 

spectral signal of vegetation. 

In the case of Vercelli, although rice paddies dominate the landscape, early-season growth 

stages (e.g., transplanting and tillering) often feature incomplete canopy closure and 

exposed soil, especially in partially flooded or recently planted fields. SAVI helps correct 

for this by reducing soil background noise, making it suitable for monitoring vegetation 

health in Vercelli’s heterogeneous agricultural conditions. 

To reduce this effect, SAVI introduces a soil brightness correction factor (L), typically set 

at 0.5. The SAVI formula used in this analysis is: 
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Equation 2:𝑆𝐴𝑉𝐼 = (
(𝑁𝐼𝑅/10000)−(𝑅𝐸𝐷/10000)

(𝑁𝐼𝑅/10000)+(𝑅𝐸𝐷/10000)+0.5
) × (1 + 0.5) 

In this equation, NIR and RED correspond to Sentinel-2 Bands 8 and 4, respectively. These 

were scaled by dividing by 10,000 to convert the reflectance values from integer to 

floating-point format. The calculation was performed using the Raster Calculator in 

QGIS. 

SAVI outputs were clipped to the Vercelli municipality boundary using a shapefile mask 

to ensure spatial consistency. A consistent green–yellow–red pseudocolor gradient was 

applied to the resulting maps, with values ranging from -1 to +1. These maps were styled 

and visualized to allow interannual comparison of vegetation health for the months of May 

from 2020 to 2024. 

By mitigating the effects of exposed soil, SAVI enhances the reliability of vegetation 

assessments in heterogeneous agricultural landscapes like Vercelli. Its inclusion in this 

multi-index framework supports a more nuanced analysis of drought impacts and crop 

conditions during early growth stages. 

3.8 EVI2 Calculation 

 

The Enhanced Vegetation Index 2 (EVI2) was incorporated into this study as an alternative 

to NDVI to improve vegetation monitoring in regions characterized by dense vegetation 

and frequent atmospheric interference. EVI2 is particularly advantageous because it 

excludes the blue band used in the original EVI formula, making it more practical for 

sensors like Sentinel-2, which may have varying blue band quality. The following adjusted 

formula was used to calculate EVI2 in QGIS: 

 

Equation 3: 𝑬𝑽𝑰𝟐 =
𝟐.𝟓×(𝑵𝑰𝑹/𝟏𝟎𝟎𝟎𝟎−𝑹𝑬𝑫/𝟏𝟎𝟎𝟎𝟎)

(𝑵𝑰𝑹/𝟏𝟎𝟎𝟎𝟎)+𝟐.𝟒×(𝑹𝑬𝑫/𝟏𝟎𝟎𝟎𝟎)+𝟏
 

 

In this equation, NIR and RED represent Band 8 and Band 4 of Sentinel-2 imagery, 

respectively, with each pixel value rescaled by dividing by 10,000 to convert the 

reflectance from integer to floating-point format. The computation was performed using 

the Raster Calculator in QGIS, following the same processing steps applied to NDVI and 

SAVI. 

EVI2 generally performs better in areas of high biomass due to its enhanced sensitivity to 

canopy structure and its reduced susceptibility to saturation in dense vegetation. It also 

shows greater robustness in conditions affected by haze, dust, or thin clouds. After 

calculation, the EVI2 rasters were clipped to the Vercelli boundary and visualized using a 

consistent green-to-red color ramp ranging from -1 to +1, facilitating interannual 

comparison. EVI2 outputs complement NDVI and SAVI by offering additional insight into 

vegetation dynamics, particularly where standard indices may experience performance 

limitations. 

 

3.9 VCI Calculation (MODIS) 
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The Vegetation Condition Index (VCI) was calculated to detect and monitor drought-

induced vegetation stress in the Vercelli region using MODIS satellite data. This index was 

derived from Enhanced Vegetation Index (EVI) values extracted from the MOD13Q1 

product and provides a standardized measure of vegetation health relative to historical 

extremes. 

 

Equation 4:𝑽𝑪𝑰 =
𝑬𝑽𝑰𝒊−𝑬𝑽𝑰𝒎𝒊𝒏

𝑬𝑽𝑰𝒎𝒂𝒙−𝑬𝑽𝑰𝒎𝒊𝒏
× 𝟏𝟎𝟎 

Where: 

• 𝐸𝑉𝐼𝑖 is the EVI value for a specific pixel and date, 

• 𝐸𝑉𝐼𝑚𝑖𝑛and 𝐸𝑉𝐼𝑚𝑎𝑥  are the historical minimum and maximum EVI values for that 

pixel across the 25-year reference period (2000–2024). 

This normalization formula transforms raw EVI data into a scale from 0 to 100, where 

lower values indicate vegetation stress and higher values reflect healthy vegetation relative 

to historical conditions. 

The processing workflow was executed using Python 3.8 in a Jupyter Notebook 

environment. MODIS files were filtered by day of year (DOY) using filename parsing and 

regular expressions. Only images falling between DOY 129 and 241 were included, 

corresponding to the key phenological window of rice cultivation (May to September). 

A cloud masking procedure was applied using the MODIS Pixel Reliability (PR) layer. All 

EVI pixels associated with PR values different from 0 or 1 were masked out using NaN 

values to ensure quality control. The masked EVI data were scaled by a factor of 0.0001 in 

accordance with MODIS documentation before applying the VCI formula. 

The output consisted of: 

• GeoTIFF files retaining spatial referencing for GIS analysis, and 

• PNG visualizations styled with a red-to-green color ramp, where red indicates 

drought stress (VCI ~ 0) and green indicates healthy vegetation (VCI ~ 100). 

To localize analysis, each VCI raster was clipped to the Vercelli administrative boundary 

using QGIS’s Clip Raster by Mask Layer tool. Batch processing was implemented to apply 

this clipping operation to all DOYs in a single workflow. 

This section of the methodology provided the foundation for a pixel-level temporal 

comparison of vegetation condition throughout the 2024 season, offering spatial insights 

into drought severity progression. 

3.10 Tools and Environment 

The methodology employed a combination of open-source geospatial software and 

programming tools to ensure a reproducible and efficient workflow for drought analysis. 
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Each tool played a specific role in preprocessing, computation, visualization, and 

automation of satellite data processing. 

QGIS served as the primary GIS environment for the following tasks: loading and 

visualizing raster and vector datasets, reprojecting layers to a common coordinate system 

(EPSG:32632), applying clipping masks to limit analysis to the Vercelli region, calculating 

raster indices (NDVI, SAVI, EVI2) using the Raster Calculator, and generating styled 

outputs with consistent color ramps. The QGIS Graphical Modeler feature was leveraged 

to automate repetitive tasks such as batch clipping and zonal statistics extraction, 

improving processing efficiency across multiple years and indices. 

For handling MODIS-based Vegetation Condition Index (VCI) analysis, Python 3.8 was 

used within a Jupyter Notebook environment. The modular nature of Jupyter allowed for 

step-by-step scripting, testing, and visualization of intermediate results, particularly 

valuable for cloud masking, file parsing, array manipulation, and temporal filtering of large 

datasets. 

Key Python libraries used include: 

• GDAL: For raster input/output operations and projection handling. 

• NumPy: To manage and process multidimensional raster arrays efficiently. 

• Matplotlib: To visualize intermediate and final VCI results as PNG plots. 

• tqdm: To track the progress of batch operations within loops. 

All Python code was executed within a Conda-based virtual environment configured on 

a macOS terminal. This setup ensured a controlled and reproducible computing 

environment, enabling consistent package management and dependency handling. 

Together, these tools formed a robust hybrid environment that combined the spatial 

visualization capabilities of QGIS with the automation and analytical power of Python, 

significantly streamlining the multi-step satellite data processing required in this study. 

3.11 Summary of Indices 

 

Table 4- Summary of Vegetation Indices Used for Drought Monitoring and 

Vegetation Analysis 

Index Sensor Resolution Formula Type Use Case 

NDVI Sentinel-2 10m (NIR - Red) / (NIR + Red) General vegetation health 

SAVI Sentinel-2 10m Soil-adjusted NDVI Soil correction in arid areas 

EVI2 Sentinel-2 10m Enhanced vegetation change Atmospheric correction 

VCI MODIS 250m Normalized EVI anomaly Drought stress comparison 

 

This table provides an overview of the vegetation indices employed in this study, including 

their respective satellite sensors, spatial resolutions, formula types, and primary use cases. 

NDVI, SAVI, and EVI2 were derived from Sentinel-2 imagery to capture fine-scale 
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vegetation dynamics under varying atmospheric and soil conditions, while VCI was 

computed from MODIS data to detect long-term drought stress anomalies. Together, these 

indices enable a multi-faceted assessment of vegetation health and drought impact across 

the rice-growing landscapes of Vercelli. 

3.12 Challenges and Solutions 

 

Table 5-Common Geospatial Processing Challenges and Implemented Solutions 

Challenge Solution 

Coordinate Reference System 

mismatch 
Reprojected all layers EPSG:32632 

Invalid NDVI output values 
Rescaled inputs using /10000; added small constant 

in formula 

Raster appearance problems Adjusted layer symbology and stretch 

Batch repetition Used Graphical Modeler and batch tools 

 

Table 4 summarizes key technical challenges encountered during the preprocessing and 

analysis of remote sensing data in this study. Issues ranged from coordinate system 

mismatches to batch processing inefficiencies. To ensure consistency, accuracy, and 

reproducibility of results, targeted solutions were applied using tools such as the QGIS 

Graphical Modeler and custom raster processing workflows. These methodological 

adaptations were critical in managing large datasets across multiple years and ensuring the 

reliability of derived vegetation indices. 

3.13 Final Outputs 

• The analytical workflow produced a comprehensive set of geospatial outputs that 

are central to the spatial-temporal analysis of vegetation condition in the Vercelli 

region. These outputs were generated consistently across indices and timeframes to 

ensure comparability and statistical robustness. 

• Firstly, time-series maps were created for the NDVI, SAVI, and EVI2 indices 

covering the months of May from 2020 to 2024. These maps were derived from 

Sentinel-2 imagery and visually standardized using consistent color ramps and 

classification thresholds to enhance interpretability. Each map reflects the 

vegetative status of the region at early growth stages of rice, allowing cross-year 

comparisons to identify vegetation trends or anomalies potentially linked to 

climatic variability. 

• In parallel, MODIS-derived VCI maps were generated for eight Days of Year 

(DOYs) throughout the 2024 growing season. The selected DOYs (129, 145, 161, 

177, 193, 209, 225, and 241) correspond to key phenological stages, from 

transplanting through maturation. These VCI maps, rendered as both PNG and 

GeoTIFF files, provide a historical-normalized indicator of drought stress and 

highlight temporal fluctuations in vegetation health. 

• To maintain spatial consistency, all rasters—whether from Sentinel-2 or 

MODIS—were clipped to the Vercelli boundary using a shapefile mask. This 
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ensures that the analysis focuses solely on the relevant agricultural extent and 

removes noise from surrounding non-agricultural areas. 

• Moreover, zonal statistics were extracted for NDVI maps using QGIS. These 

include the mean, minimum, maximum, count, and sum of NDVI values per 

zone, offering a quantitative basis for year-to-year comparison and supporting the 

statistical analysis of vegetation condition at the municipal scale. 

• Collectively, these outputs form the foundation for cross-index (NDVI vs. SAVI 

vs. EVI2 vs. VCI) and cross-year analysis, enabling a detailed interpretation of 

how vegetation patterns evolved under varying drought conditions. The datasets are 

prepared for further integration with meteorological indices and agricultural 

variables in subsequent chapters. 

3.14 Significance of Methods 

The methodological approach developed in this study enables high-resolution, multi-

temporal monitoring of vegetation health and agricultural drought in rice fields. The 

integration of Sentinel-2 and MODIS indices—NDVI, SAVI, EVI2, and VCI—provides a 

robust set of tools to analyze vegetation conditions under varying environmental and 

climatic conditions. 

This framework allows spatial-temporal tracking of vegetation stress using multiple 

vegetation indices that are sensitive to different sources of error, such as soil brightness 

and atmospheric interference. It also supports phenology-informed remote sensing, where 

satellite data are temporally aligned with crop development phases, increasing the 

biological relevance of vegetation signals. 

Moreover, by including both empirical remote sensing data (NDVI, SAVI, EVI2) and 

historical anomaly-based metrics (VCI), the methodology supports anomaly detection, 

trend analysis, and index validation through cross-comparison with meteorological data 

such as SPI/SPEI. This multi-dimensional strategy provides a strong basis for drought early 

warning systems, crop monitoring, and adaptive agricultural planning. 
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Chapter 4: Results 

4.1 Overview 

This chapter provides a comprehensive spatiotemporal assessment of vegetation dynamics 

and drought impacts in the Vercelli region over the 2020–2024 period. The analysis draws 

upon high-resolution satellite-derived vegetation indices — namely the Normalized 

Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), and 

Enhanced Vegetation Index 2 (EVI2) from Sentinel-2 imagery — along with the 

Vegetation Condition Index (VCI) derived from MODIS data. These indices collectively 

offer insight into both spatial patterns and temporal trends in vegetation health across 

different phases of the rice-growing season. 

To contextualize vegetation anomalies and confirm biophysical stress signals, the analysis 

is further supported by climatological drought indicators: the Standardized Precipitation 

Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI). 

These indices characterize meteorological drought based on precipitation and atmospheric 

demand, respectively, providing an independent verification of vegetation responses to 

climatic stress. 

A particular emphasis is placed on the year 2022, which is identified as the most 

meteorologically severe drought year within the study period, based on sustained negative 

SPI and SPEI values below -1.5, coupled with concurrent NDVI depression. The 

integration of remote sensing and hydroclimatic data enhances the understanding of 

drought evolution and its impact on rice phenology and productivity. 

The chapter includes: 

• Multi-year NDVI trend analysis (May–August), 

• Monthly anomaly and zonal NDVI maps, 

• Year-over-year comparisons of vegetation indices, 

• VCI-based drought categorization, 

• Meteorological drought classification based on SPI and SPEI, 

• Comparative evaluation of Sentinel-2 vs Copernicus NDVI datasets. 

This integrated approach supports a robust evaluation of agricultural drought and crop 

stress, enabling informed interpretation of inter-annual variability and resilience in 

Vercelli’s rice systems. 

Figure 5 presents the reclassified LULC map for the Vercelli municipality based on ESA 

WorldCover 2021 data. The majority of the study area is characterized by cropland, 

particularly concentrated in the southern and central zones, while built-up areas are 

clustered around Vercelli’s urban core. The map provides a spatial overview of the land 

surface types that underlie the NDVI patterns discussed in subsequent sections. Even 

though the LULC data was not quantitatively integrated into NDVI processing, it supports 

the visual interpretation of vegetation indices by confirming which areas represent true 

agricultural activity 
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Figure 5- Land Use and Land Cover (LULC) Classification Map of the Vercelli 

Region Based on ESA WorldCover 2021. This map contextualizes the underlying land 

surface types that support NDVI and VCI interpretations. 

4.2 Meteorological Drought Context: SPI & SPEI Analysis (2022 Focus) 

To accurately assess vegetation stress during the rice-growing season, it is essential to first 

evaluate the underlying meteorological drought conditions. This section presents the 

Standardized Precipitation Index (SPI) and the Standardized Precipitation 

Evapotranspiration Index (SPEI) values for 2022 in the Vercelli region, which serve as 

climatic indicators of water availability anomalies during critical crop development 

periods. 

Table 6- SPI & SPEI Values and Drought Classification (Vercelli, 2022) 

Month SPI (3-mo) SPI (6-mo) SPI (12-mo) SPEI (6-mo) Drought Category 

May ~ -1.6 ~ -1.8 < -2.0 ~ -1.7 Extreme drought 

June ~ -1.5 ~ -1.6 < -2.0 ~ -1.6 Severe to extreme 

July ~ -1.2 ~ -1.4 ~ -1.8 ~ -1.4 Severe drought 

August ~ -1.0 ~ -1.1 ~ -1.5 ~ -1.3 Moderate–severe drought 

 

Note: Values below -1.5 indicate severe to extreme drought stress (WMO, 2012). 

 



 36 

According to the WMO classification system (2012), SPI or SPEI values falling below -

1.5 indicate severe to extreme drought stress. In this study, this threshold was used as a 

formal benchmark for identifying drought events. Monthly SPI and SPEI values for 2022 

consistently dropped below this level between May and July, qualifying the season as a 

meteorological drought year. This threshold-based classification guided the interpretation 

of vegetation anomalies and the selection of the 2022 season for focused drought analysis 

in alignment with remote sensing observations. 

Interpretation of Drought Severity 

The SPI and SPEI indices both reveal a prolonged and intense drought event in 2022, 

particularly between May and July. These months coincide with transplanting, vegetative 

growth, and reproductive stages of rice, during which water stress can severely impact crop 

establishment and yield. 

The SPI < -1.6 and SPEI ~ -1.7 in May confirm an extreme meteorological drought at the 

onset of the season, driven by cumulative rainfall deficits and amplified by high 

evapotranspiration, as reflected in the SPEI’s temperature-sensitive formulation 

(Vicente-Serrano et al., 2010). 

The SPI and SPEI values were calculated using precipitation and temperature data from 

the ERA5 reanalysis dataset at a spatial resolution of 0.25°, consistent with current best 

practices for drought index generation. 

Additional regional reports from ARPA Piemonte and SNPA indicated: 

• Up to 50% rainfall reduction compared to the 1991–2020 average, 

• 111 consecutive dry days during winter 2021–2022, 

• A 64% snow cover reduction in March, reducing irrigation canal flow, 

• +1.9°C temperature anomaly, marking 2022 as the hottest year in Piemonte since 

1958. 

Link with NDVI Decline and Vegetation Stress 

These hydrometeorological deficits align closely with observed NDVI reductions in May 

and July 2022, as shown in Sentinel-2 data (Section 4.3). NDVI values remained below 

the five-year average, particularly in early development phases. This confirms the strong 

correlation between climatic drought (SPI/SPEI) and vegetation stress, validating the 

year 2022 as a critical drought-impacted season for rice agriculture in the region. 

4.3 NDVI Results (May–August 2020–2024) 

 

The NDVI maps below depict the monthly vegetation condition during the growing season. 

NDVI values range from -1 to 1, where higher values indicate denser, healthier vegetation. 

These maps highlight interannual changes and provide evidence of drought stress and 

recovery. 
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Figure 6-NDVI Maps of the Vercelli Region for May–August 2020 

The maps illustrate a typical seasonal greening curve, with NDVI gradually increasing 

from 0.19 in May to 0.49 by August. This steady rise indicates optimal vegetative 

conditions throughout the rice growth stages. No evidence of drought stress is detected, 

making 2020 a reference baseline year for healthy crop development under normal 

climatic conditions. 
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Figure 7-NDVI Maps of the Vercelli Region for May–August 2021 

These maps highlight one of the driest years in the study period. NDVI values are visibly 

low in June and July, indicating substantial vegetation stress due to early-season drought 

conditions. However, the notable increase in August suggests a late-season recovery, 

potentially driven by delayed rainfall or supplementary irrigation. The spatial patterns 

confirm 2021 as a year of reduced crop vigor during critical growth stages. 
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Figure 8-NDVI Maps of the Vercelli Region for May–August 2022 

 The maps show vegetation health progression during a drought year. NDVI values show 

stress in May and June, but improvement by July and August suggests partial crop 

resilience. The spatial consistency indicates that localized irrigation helped mitigate early 

drought effects, maintaining moderate-to-healthy conditions through the growing season. 
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Figure 9-NDVI Maps of the Vercelli Region for May–August 2023 

The maps display a steady recovery in vegetation health following the 2022 drought. NDVI 

values in July and August approach those recorded in 2020, indicating partial restoration 

of crop vigor. Earlier months (May–June) still reflect moderate variability and lingering 

water stress, but the overall greening trend suggests that environmental and management 

conditions were favorable for recovery during mid to late season. 

4.4 NDVI Statistical Trends 

To quantify NDVI dynamics across the years, zonal mean NDVI values for each month 

were computed. 

Table 7- Monthly Mean NDVI for Vercelli 

Month 2020 2021 2022 2023 2024 

May 0.19 0.18 0.16 0.18 0.17 

June 0.33 0.22 0.27 0.26 0.31 

July 0.48 0.18 0.44 0.43 0.43 

August 0.49 0.49 0.44 0.47 0.49 
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Monthly NDVI Interpretation: 

 2020: NDVI steadily increased from 0.19 in May to 0.49 in August, reflecting ideal 

phenological development under favorable climatic and hydrological conditions. This 

trend establishes 2020 as the baseline year for comparison. 

2021: Exhibited the lowest NDVI values, especially in June (0.22) and July (0.18), 

indicating a severe early-season drought. A sharp increase in August (0.49) suggests late 

rainfall or emergency irrigation. Notably, peak NDVI shifted from July to August, 

deviating from typical phenological patterns—likely due to delayed vegetative growth or 

external water inputs. This timing contrast with baseline years (2020, 2024), where July 

consistently marked the NDVI peak. 

 2022: NDVI values showed moderate stress in May and June (0.16–0.27), but a 

recovery occurred in July (0.44), pointing to partial crop resilience. This rebound is likely 

due to irrigation mitigation during the official drought year. 

2023: Represented a transition year, with NDVI values improving to 0.43 in July and 

0.47 in August. Though early growth was modest, the trend indicates a gradual post-

drought recovery. 

2024: NDVI values rose across all months relative to 2021–2023, reaching 0.31 in June 

and 0.49 in August, closely matching 2020. This year signals a full recovery, with a return 

to optimal vegetative vigor. The stable July–August NDVI plateau highlights restored 

hydrological balance and crop stability. 
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Figure 10- Monthly NDVI Trends in the Vercelli Region (2020–2024) 

 

This line chart displays the progression of mean NDVI values across the rice growing 

season (May to August) for five consecutive years. 2020 and 2024 show the highest and 

most stable NDVI profiles, indicating favorable and consistent vegetation growth. 2021 

exhibits a notable dip in July (~0.18), corresponding to peak drought stress, while 2022 

and 2023 show intermediate recovery. The patterns highlight seasonal greening cycles and 

the varying impacts of drought and resilience over time. 
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Figure 11- Monthly Mean NDVI by Year (2020–2024) for the Vercelli Region. 

 

This bar chart illustrates the average NDVI values for each month (May–August) across 

five years. The chart reveals strong interannual variability in vegetation health, with 2020 

and 2024 consistently showing higher NDVI across all months. Notably, 2021 exhibits a 

pronounced dip in July, indicating peak vegetation stress during that year's drought. The 

results support the temporal dynamics of vegetation recovery following drought conditions 

observed in 2022 and 2023. 
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Figure 12-Annual Mean NDVI Values in the Vercelli Region (2020–2024). 

This chart displays the annual average NDVI values for each year based on data from May 

to August. The year 2020 recorded the highest mean NDVI (1.49), indicating optimal 

vegetation conditions. In contrast, 2021 had the lowest value (1.08), reflecting severe 

drought stress. The steady rise from 2022 to 2024 demonstrates progressive vegetation 

recovery, with 2024 nearly matching pre-drought conditions. 

Key Insights : 

• 2020 and 2024 exhibit the healthiest vegetation conditions across both monthly and 

annual metrics, with consistently high NDVI values (up to ~0.49 in July–August 

and annual means above 1.39). 

• 2021 clearly stands out as the most drought-affected year. The monthly bar chart 

highlights a significant NDVI depression in July (~0.18), and the annual average 

is the lowest (1.08), indicating prolonged vegetation stress. 

• 2022 shows strong seasonal recovery from May to August, despite being a drought 

year, with annual mean NDVI (1.31) suggesting effective irrigation or resilience 

mechanisms. 

• 2023 reflects intermediate recovery, with NDVI values increasing compared to 

2021, though still spatially variable, pointing to partial recovery in vegetation vigor. 
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• The combined interpretation of line and bar charts reinforces the temporal narrative 

of drought impact in 2021, gradual recovery in 2022–2023, and stabilization by 

2024. 

4.4.1 Comparison with Copernicus NDVI Data (Initial Estimations) 

To validate and complement the Sentinel-2 NDVI analysis, early-season NDVI values 

from the Copernicus Land Monitoring Service were initially examined during the 

proposal phase. These Copernicus-based NDVI values provided a coarse-resolution 

overview of seasonal vegetation trends in the Vercelli region for the years 2020 to 2024, 

prior to high-resolution Sentinel-2 processing. 

NDVI values were derived from Sentinel-2 Level-2A imagery (10 m resolution) accessed 

via the Copernicus Browser (dataspace.copernicus.eu), using Bands 8 (NIR) and 4 (Red). 

NDVI was calculated using the standard formula within QGIS. 

 

Figure 13-Monthly NDVI Comparison (2020–2024) Based on Copernicus Satellite 

Data 

Line chart illustrating coarse-resolution NDVI trends for the Vercelli region, derived from 

the Copernicus Land Monitoring Service. These initial estimations were generated prior to 

high-resolution Sentinel-2-based analysis, providing an early-season overview of 

vegetation performance from May to August over the 2020–2024 period. 
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Notable insights from the Copernicus NDVI patterns include: 

• 2021 exhibited the highest NDVI values in July, followed by a decline in August. 

This deviates from Sentinel-2 data, which identified 2021 as a drought-impacted 

year—suggesting Copernicus may have overestimated biomass or experienced 

mixed-pixel noise due to lower spatial resolution. 

• 2020 and 2024 display consistent upward trends from May to August, closely 

matching Sentinel-2 results, confirming the reliability of early-stage greening 

observations in non-stressed years. 

• 2022 and 2023 show transitional behavior, with moderate NDVI values that align 

broadly with Sentinel-2 outcomes, although finer spatial variations are more 

accurately captured by high-resolution imagery. 

 

Figure 14- Monthly NDVI Comparison (2020–2024) for the Vercelli Area – 

Copernicus Bar Chart  

Bar chart representing coarse-resolution NDVI values derived from the Copernicus Land 

Monitoring Service for the Vercelli region from May to August across the years 2020 to 

2024. This figure captures interannual vegetation dynamics at the regional scale and was 

used during the initial assessment phase. The visualized trends provide an early estimate 

of crop vigor and phenological progression, supporting broader seasonal analysis prior to 

Sentinel-2 refinement. 

Notably: 

• 2021 shows peak NDVI in July, aligning with high biomass estimations but 

contrasting Sentinel-2 findings that indicated drought-related suppression. 

• 2020 and 2024 exhibit consistent upward trajectories through the season, indicating 

stable vegetation health. 
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• 2022 and 2023 show more irregular patterns, reinforcing the need for higher-

resolution Sentinel-2 imagery to resolve localized stress and recovery signals. 

 

Table 8-Monthly NDVI Averages (May–August) from Copernicus Data for the 

Vercelli Region (2020–2024) 

Month 2020 2021 2022 2023 2024 

May 0.45 0.52 0.46 0.48 0.50 

June 0.60 0.64 0.59 0.56 0.61 

July 0.68 0.70 0.65 0.62 0.67 

August 0.61 0.66 0.62 0.58 0.64 

 

NDVI-Based Interpretation of Seasonal Dynamics and Drought Impact on Rice 

Growth (Sentinel-2 and Copernicus Data) 

This section presents a comparative analysis of NDVI trends across the rice-growing 

season (May to August) from 2020 to 2024 in the Vercelli region. Sentinel-2 NDVI 

values—derived from high-resolution satellite imagery—are complemented by Copernicus 

NDVI estimates, offering both detailed and broad-scale views of vegetative development 

and drought response. 

NDVI Ranges and Agricultural Significance 

• 0.6 – 0.8: Healthy, dense vegetation — indicative of optimal rice growth and 

favorable agro-climatic conditions. 

• 0.4 – 0.6: Moderate vegetation — may signal early-stage crops, delayed growth, or 

mild water/nutrient stress. 

• < 0.4: Sparse vegetation — possible drought stress, delayed germination, or 

unplanted/non-vegetated zones. 

Phenological Phase Analysis 

May (Vegetative Stage Initiation) 

• NDVI values are typically low (~0.45–0.52) due to field flooding during 

transplanting. 

• 2020 and 2022 show the lowest values, implying slow early growth or delayed 

water availability. 

• 2021 exhibited the highest May NDVI, possibly reflecting early transplanting or 

favorable climatic onset. 

• Copernicus data corroborates these trends, though less spatially resolved. 

June (Active Vegetative Growth) 

• NDVI values rise, indicating robust photosynthetic activity and expanding canopy 

cover. 
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• 2021 and 2024 reached the highest values (≈ 0.64), suggesting optimal hydrological 

support. 

• 2023 displayed a minor NDVI dip, potentially reflecting early-season water stress 

or slow vegetative recovery. 

• Copernicus trends also show consistent greening but may obscure intra-field 

variability. 

July (Reproductive Stage) 

• NDVI typically peaks in this month. 2021 (0.70) and 2020 (0.68) recorded the 

highest values. 

• These reflect vigorous reproductive development under ideal conditions. 

• In contrast, 2023 showed lower NDVI, suggesting mid-season stress—potentially 

drought-related. 

• Copernicus data also confirms 2021 as a peak year but lacks spatial precision in 

identifying localized deficits. 

August (Grain-Filling and Maturation) 

• NDVI naturally declines as rice enters senescence. 

• 2023 had the lowest NDVI (≈ 0.58), aligning with observed field stress and delayed 

development. 

• 2021 and 2024 maintained higher NDVI values, suggesting extended vegetative 

health and potentially improved yields. 

• Copernicus data shows this trend broadly but underrepresents field-scale 

anomalies. 

 

Integrated Drought Impact Summary 

• 2021 was the most favorable year with high NDVI across all months, minimal 

drought indicators, and optimal growing conditions. 

• 2023 shows the most stress-prone profile, with consistently lower NDVI—

highlighting cumulative drought impacts. 

• 2020 and 2022 experienced early-season stress but recovered strongly by July, as 

seen in both datasets. 

• 2024 presents an overall healthy vegetation pattern, with high NDVI from June to 

August, indicating system resilience. 
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Role of Copernicus Data in Initial Assessment 

Copernicus Land Monitoring Service NDVI data provided a valuable coarse-scale 

overview of seasonal greening and phenological transitions during the initial phase of the 

study. While not sufficient for detecting fine-scale drought anomalies: 

• It reliably captured broad greening patterns from May to July across years, 

particularly in 2020 and 2021. 

•  2023 showed consistently lower Copernicus NDVI, supporting its classification as 

a recovery year. 

• However, localized drought effects were underrepresented, reinforcing the need 

for Sentinel-2’s spatial detail. 

• These initial values served as baseline references, helping guide the selection of 

focal periods and metrics for Sentinel-based drought detection and crop monitoring. 

Interpretation: Copernicus vs. Sentinel-2 NDVI 

The comparative analysis between Copernicus-derived NDVI and Sentinel-2 NDVI 

underscores the complementary but distinct roles these datasets play in agricultural 

monitoring within the Vercelli region. 

• Copernicus NDVI, sourced from the Copernicus Land Monitoring Service, offers 

valuable early-stage estimations of vegetation dynamics at a regional scale. Its 

coarse spatial resolution is effective for broad-scale phenological trend analysis, 

particularly during the initial proposal and planning phases of drought 

assessment. The trends from 2020 to 2024, especially the upward NDVI 

progression observed in 2020 and 2024, align well with known seasonal vegetation 

greening patterns. However, limitations emerge in heterogeneous agricultural 

landscapes such as Vercelli, where field-level variations are critical. In such cases, 

mixed-pixel effects and lower spatial granularity may obscure localized stress 

or irrigation-driven differences. 

• Sentinel-2 NDVI, derived from higher-resolution satellite imagery, provides a 

more refined and spatially explicit diagnosis of vegetation vigor. This also 

explains the July 2021 discrepancy: Copernicus NDVI values are aggregated over 

10-day or monthly periods, which can obscure short-term fluctuations. In contrast, 

Sentinel-2 captures discrete imagery on specific days, allowing it to detect sharp 

declines such as the one observed during mid-July 2021. This highlights Sentinel-

2’s temporal advantage for pinpointing rapid stress events. 

• This is particularly crucial during phenologically sensitive periods like May 

(transplanting stage) and July (flowering and reproductive stage). The Sentinel-

2 dataset captured subtle but important variations, including the sharp NDVI 

decline in July 2021, consistent with recorded meteorological drought conditions 

(SPI/SPEI). Similarly, the gradual recovery trends in 2023–2024, observed across 

multiple vegetation indices (NDVI, SAVI, VCI, and EVI2), were better visualized 

using Sentinel-2 than Copernicus data. 
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• The comparison between the two datasets reveals that while Copernicus NDVI 

is sufficient for macroscale evaluations and trend screening, it underrepresents 

field-specific drought impacts, irrigation responses, and early-stage stress 

conditions. These factors are more accurately captured by Sentinel-2 NDVI, which 

supports the local-scale agronomic relevance of the study. 

• Overall, the integration of Copernicus NDVI in the early phase of analysis 

provided a strategic foundation for historical context, while Sentinel-2-based 

outputs offered the granularity required for detailed drought impact 

assessments. This validates the methodological decision to transition from 

Copernicus to Sentinel-2 imagery for the core analysis presented in this thesis. 

The findings reinforce that multi-resolution remote sensing strategies—beginning with 

coarse-scale data for initial screening and transitioning to high-resolution datasets for 

impact evaluation—are essential for robust agricultural drought monitoring in spatially 

fragmented and irrigated systems like Vercelli. 

Table 9-Comparative Summary of Sentinel-2 and Copernicus NDVI Datasets 

Feature Sentinel-2 NDVI Copernicus NDVI 

Spatial 

Resolution 
High (10–20 m) Coarse (250–300 m) 

Temporal 

Resolution 

5–10 days (depending on cloud 

cover and revisit frequency) 
10-day and monthly composites 

Strengths 

- Field-level detail- Detects intra-

field drought variation- High 

sensitivity to phenology 

- Consistent long-term trends- 

Broad-scale greenness overview 

Limitations 
- May be limited by cloud cover 

and atmospheric interference 

- Misses small-scale drought 

impacts- Mixed-pixel effect in 

fragmented landscapes 

Best Use 

- Precision agriculture- Field-

specific drought monitoring- Crop 

phenology tracking 

- Regional monitoring- Early-

season assessments- Baseline 

comparisons 

Drought 

Detection 

Power 

High – captures localized water 

stress and crop recovery dynamics 

Moderate – good for general stress 

trends but underrepresents field 

variability 

Use in This 

Thesis 

Core dataset for high-resolution 

analysis and drought impact 

mapping 

Baseline reference for early 

proposal phase and interannual 

greenness context 

Table 8 provides a comparative overview of the key characteristics, applications, and 

limitations of Sentinel-2 and Copernicus NDVI datasets within the context of drought 

monitoring in Vercelli. 
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4.5 NDVI Anomaly Analysis (2022–2021) 

To assess year-over-year changes, NDVI anomaly maps were computed by subtracting 

May 2021 NDVI from May 2022 NDVI. 

 

Figure 15-NDVI Anomaly Map (May 2022 – 2021) 

This map depicts the spatial NDVI anomaly for May 2022 relative to May 2021, 

highlighting interannual changes in vegetation vigor. The anomalies were calculated by 

subtracting the 2021 NDVI raster from the 2022 NDVI raster on a pixel-by-pixel basis. 

Areas shaded in red to yellow represent negative anomalies, indicating a decline in 

vegetation health or canopy density in 2022. These reductions are primarily attributed to 

increased drought stress and reduced water availability during early-season rice growth. 

Conversely, green areas denote positive anomalies, suggesting local improvements in 

vegetation conditions—potentially due to effective irrigation systems or spatially variable 

precipitation events. 

The central and southern sectors of the Vercelli region exhibit the most prominent 

negative anomalies, aligning with known drought hotspots reported in regional 

climatological bulletins (e.g., ARPA Piemonte, 2022). The positive anomalies in the 

northern parts may reflect localized irrigation buffering or microclimatic advantages. 

Overall, this anomaly analysis underscores the heterogeneous nature of drought impact and 

the importance of adaptive water management during critical agricultural periods. 
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4.6 VCI Results and Drought Categorization (2020–2024) 

The Vegetation Condition Index (VCI) helps assess vegetation health relative to historical 

norms. 

 

Figure 16-VCI Maps of the Vercelli Region (2021) 

This figure illustrates the Vegetation Condition Index (VCI) across the Vercelli region for 

the 2021 growing season (May–August), reflecting vegetation health relative to long-term 

historical conditions. VCI values range from 0 (severe vegetation stress) to 100 (optimal 

vegetation health). The red and orange areas represent zones experiencing severe (VCI 

10–20) to moderate drought (VCI 20–30) conditions, while green areas indicate healthy 

vegetation or no drought stress. 

Throughout the 2021 season, large portions of the region—particularly in central and 

eastern areas—are dominated by red and yellow pixels, especially in June and July, 

signaling widespread vegetation stress. This spatial pattern coincides with meteorological 

reports of extreme drought (SPI ≈ –1.6) during early summer 2021. The maps confirm 

that 2021 was the most drought-impacted year within the study period, with limited 

improvement even by August. The findings underscore both the severity and spatial extent 

of the drought and support the use of VCI as an effective indicator for early-stage crop 

stress detection. 
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Figure 17-VCI Maps of the Vercelli Region (2022) 

This figure shows the monthly evolution of the Vegetation Condition Index (VCI) for the 

Vercelli region during the 2022 growing season. Despite 2022 being officially classified 

as a severe drought year (SPEI ≈ –1.7 in May), the VCI maps display a mixed pattern of 

stress and resilience. 

In May and June, red and orange pixels are widely distributed in the central and 

northern areas, indicating moderate to severe drought conditions (VCI 10–30). This 

aligns with early-season hydrological deficits and supports meteorological drought 

classifications. However, from July onward, an increase in green zones becomes visible, 

particularly in southern and irrigated zones, indicating partial vegetation recovery. 

These improvements suggest the effectiveness of irrigation infrastructure and potential 

shifts in crop phenology, allowing crops to adapt and maintain growth. While drought 

stress persisted in some fields, especially in non-irrigated patches, overall vegetation 

health appears relatively stable by August, reflecting adaptive responses during one of 

the harshest climatic years in the study period. 
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This pattern highlights the importance of mid-season resilience mechanisms, including 

water management and crop recovery, which buffered the impacts of extreme drought 

during early development stages. 

 

Summary: 

• 2021: 

The VCI maps for 2021 exhibit a widespread concentration of red and orange 

pixels, particularly during the early months (May–July), corresponding to VCI 

values below 30. These low values are indicative of moderate to severe drought 

conditions, aligning with field-level stress symptoms and reduced vegetation vigor 

observed in NDVI trends. The spatial extent of drought stress was particularly 

pronounced in central and eastern zones, suggesting insufficient water 

availability during critical crop development stages. 

• 2022: 

Despite being officially classified as a severe meteorological drought year (SPEI 

≈ –1.7), VCI values in 2022 showed considerable improvement over 2021, with 

a noticeable increase in green zones (VCI > 40) from July onward. This 

improvement is attributed to the implementation of effective irrigation 

infrastructure and potential phenological adaptation of rice crops. The mixed 

pattern observed in early months (May–June) gradually transitioned to a more 

stable and greener distribution by August, indicating partial drought resilience 

and successful vegetation recovery in key agricultural areas. 
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4.7 VCI Anomaly (May 2022 – 2021) 

This map highlights where vegetation conditions improved or worsened year-over-year. 

 

Figure 18-VCI Anomaly Map (2022 – 2021) 

This anomaly map visualizes year-over-year changes in the Vegetation Condition Index 

(VCI) between May 2021 and May 2022 across the Vercelli region. Green pixels represent 

areas where vegetation conditions improved in 2022 compared to the previous year, while 

red pixels indicate zones of worsening vegetation health. 

Interpretation: 

• Green zones signal regions where vegetation health improved in 2022, despite 

severe meteorological drought conditions (SPEI ≈ –1.7). These improvements are 

likely attributable to enhanced irrigation infrastructure, adaptive agricultural 

practices, and phenological shifts that allowed crops to better withstand early-

season stress. 
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SPEI values from –1.7 to –1.3 indicate heat-amplified drought conditions. These 

patterns align closely with NDVI reductions in the same period, reflecting stress on 

rice crops during transplanting and reproductive stages. 

• Red zones, concentrated primarily in the central and southeastern sectors, denote 

deterioration in vegetation condition relative to 2021. These areas may have 

suffered from insufficient irrigation coverage, soil limitations, or lingering 

hydrological deficits that exacerbated the impacts of drought in 2022. 

Overall, the spatial heterogeneity captured in the anomaly map reflects a complex 

interaction of drought exposure, land management, and water availability, and 

supports the thesis’ broader argument regarding localized resilience versus vulnerability 

within the same agro-ecological zone. 

4.8 EVI2 and SAVI Observations 

To complement NDVI, EVI2 and SAVI were calculated for the month of May from 2020 

to 2024. 

 

Figure 19- EVI2 of the Vercelli Region (May 2020–2024) 

This figure displays the Enhanced Vegetation Index 2 (EVI2) maps for the Vercelli region 

during the month of May across five consecutive years. EVI2 is particularly useful in 
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capturing vegetation dynamics in high biomass regions and under atmospheric disturbance 

conditions, complementing the NDVI results. 

Spatial Comparison Across Indices (May 2021): 

In May 2021, spatial patterns of vegetation stress are consistently highlighted across NDVI, 

SAVI, and EVI2 maps. All three indices reveal notably low values in central and 

southern zones of Vercelli, aligning with known dryland patches and irrigation-deprived 

areas. SAVI and EVI2 provide additional nuance—SAVI detects reduced vegetation health 

in soil-exposed margins, while EVI2 highlights stress across denser canopy zones, 

confirming early physiological drought signals. The spatial overlap across these indices 

strengthens the validity of early-season drought detection and underscores the advantage 

of a multi-index approach. 

Interpretation: 

• 2020 and 2024 show consistently higher EVI2 values, indicating healthy and 

vigorous vegetation cover during the transplanting phase. These years correspond 

to non-drought seasons, supported by optimal soil moisture and climatic stability. 

• 2021 exhibits noticeably paler tones, reflecting weaker vegetation health in early 

May, consistent with NDVI and VCI findings that confirm early-season drought 

stress. 

• 2022 presents moderate EVI2 values across the landscape, showing that while 

drought was present, vegetation remained resilient, likely due to irrigation 

buffering. Slight spatial variation is observable, with lower values in central 

dryland zones. 

• 2023 appears as a transition year, where EVI2 values improve relative to 2021 

and 2022, but still show subtle variation. This suggests progressive recovery, 

though not yet uniform across the region. 

The EVI2 maps reinforce the temporal vegetation trends identified in NDVI analysis and 

highlight early stress signals (2021–2022) as well as the recovery trajectory culminating 

in 2024. EVI2's sensitivity to canopy structure and chlorophyll density makes it particularly 

informative for evaluating vegetation vigor in rice-dominant agricultural systems like 

Vercelli. 
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Figure 20- SAVI of the Vercelli Region (May 2020–2024) 

This figure presents the Soil-Adjusted Vegetation Index (SAVI) maps for May from 2020 

to 2024. SAVI is designed to minimize the influence of soil reflectance in areas where 

vegetation cover is sparse, making it a valuable complement to NDVI and EVI2—

especially during early stages of crop development when soil exposure is high. 

Interpretation: 

• 2020 and 2024 display more pronounced vegetative cover, with higher SAVI 

values across the landscape. This reflects strong early-season crop establishment 

and minimal soil exposure, aligning with observed NDVI and EVI2 patterns for 

those years. 

• 2021 shows significantly paler SAVI values, especially across central and eastern 

zones. This is consistent with a drought-impacted season, where sparse vegetation 

and exposed soil dominated the early growing period. 

• 2022 exhibits patchy spatial patterns, with moderate SAVI values throughout the 

region. The variability suggests that while some areas benefited from early 

irrigation or localized rainfall, others continued to experience dry surface 

conditions. 

• 2023 marks a transitional year. SAVI values increase compared to 2021–2022, but 

still show incomplete vegetation coverage, suggesting that soil influence 

remained notable in parts of the region. 
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SAVI's strength lies in detecting early-stage crop conditions under mixed vegetation and 

soil reflectance. These maps confirm the progressive recovery of vegetative cover post-

2021 and support the interpretation that 2024 represents a return to optimal surface 

greening in the Vercelli rice fields. 

4.9 NDVI of May (All Years Side-by-Side) 

This comparison emphasizes differences during the transplanting phase. 

 

Figure 21-NDVI of the Vercelli Region (May 2020–2024) 

This figure compares NDVI values for the month of May across five consecutive years, a 

period that coincides with the transplanting phase of rice cultivation in the Vercelli 

region. The side-by-side visualization helps isolate early-season vegetation dynamics and 

detect anomalies in crop establishment. 
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Quantified Stress Area (NDVI < 0.3, May 2020–2024): 

To complement the visual NDVI comparison, areas with NDVI < 0.3 were extracted as a 

proxy for early-season vegetation stress during the transplanting phase. This threshold 

captures zones of reduced canopy development or delayed crop establishment. The total 

land area (in km²) falling below this stress threshold was calculated for each year: 

Table 10-Estimated Land Area Under Early-Season Vegetation Stress (NDVI < 0.3) 

in May (2020–2024) 

Year Area under NDVI < 0.3 (km²) 

2020 38.6 

2021 162.2 

2022 118.4 

2023 79.1 

2024 35.4 

These figures confirm that 2021 experienced the most widespread vegetation stress, 

aligning with recorded drought signals in SPI/SPEI and VCI datasets. A progressive 

recovery is observed in subsequent years, culminating in minimal stress by 2024, which 

mirrors optimal crop development and favorable climatic conditions. 

Interpretation: 

• 2020 and 2024 exhibit uniformly high NDVI values, with widespread greening 

across the region. These years represent optimal early-season growth, reflecting 

good rainfall, temperature, and irrigation alignment during transplantation. 

• 2021 displays large areas with lighter tones (lower NDVI), especially in the central 

and eastern zones. This reflects early vegetation stress, consistent with drought 

signals from meteorological indices (e.g., SPI/SPEI) and VCI maps. 

• 2022 shows a more heterogeneous NDVI pattern. While some zones appear greener 

due to targeted irrigation or residual soil moisture, others remain under stress. The 

year represents a transitional phase, where irrigation mitigated part of the drought 

impact. 

• 2023 shows modest recovery, but still includes zones of suppressed NDVI, 

particularly in fragmented patches, likely resulting from delayed growth or soil 

saturation issues post-drought. 
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This comparative map confirms that early May NDVI is a sensitive indicator of drought 

onset and crop establishment delays. It also validates interannual variability in vegetative 

performance, providing spatial insight into areas requiring adaptive management 

interventions. 

Table 11- Summary of Vegetation Index Performance in the Vercelli Region (2020–

2024) 

Index Best Year(s) Worst Year Notes 

NDVI 2020, 2024 2021 Reflects real-time greenness 

VCI 2020, 2024 2021 Shows drought relative to historical norms 

Anomaly — 2021 drop Year-over-year change confirms peak stress 

SAVI 2024 2021 Soil-sensitive indicator, low vegetation 2021 

EVI2 2024 2021 Captures vigorous biomass in resilient zones 

This table synthesizes the comparative performance of five vegetation indices (NDVI, VCI, 

Anomaly, SAVI, and EVI2) over the 2020–2024 period in the Vercelli region. Each index's 

best and worst performing years are listed based on observed spatial patterns, greenness 

intensity, and stress signals. Notably, 2021 consistently emerges as the most drought-

affected year, while 2020 and 2024 are marked by optimal vegetation health. The table 

also includes interpretation notes highlighting the analytical strengths of each index, from 

NDVI’s greenness sensitivity to EVI2’s biomass responsiveness. 
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Chapter 5: Discussion 

5.1 Overview 

This chapter critically evaluates the findings presented in Chapter 4, aligning them with 

existing scientific literature, highlighting methodological insights, and outlining practical 

implications for drought monitoring and agricultural planning in the Vercelli region. The 

discussion draws upon multi-temporal vegetation indices — NDVI, SAVI, EVI2 from 

Sentinel-2, and VCI from MODIS — and meteorological indicators (SPI and SPEI) to 

explore the spatiotemporal patterns of drought stress and vegetation response between 2020 

and 2024. Particular emphasis is placed on the drought-impacted year 2021 and the 

recovery observed in 2022 and beyond. The chapter also reflects on index performance, 

phenological sensitivities, and limitations of the methodology, and suggests future research 

directions. 

5.2 Synthesis of Key Findings 

The multi-year analysis of vegetation dynamics in the Vercelli region from 2020 to 2024 

reveals significant interannual variability in crop health, closely linked to meteorological 

drought patterns and phenological sensitivities. Among the five seasons examined, 2021 

stands out as the most critically drought-impacted year, as evidenced by steep declines 

in both NDVI and VCI values during key rice development stages—particularly from May 

to July, which encompass transplanting through reproduction. 

The severe vegetation stress detected by satellite indices in 2021 is strongly corroborated 

by meteorological indicators. Specifically, SPI and SPEI values during this period 

consistently fell below –1.5, classifying it as an episode of extreme drought. This 

convergence of vegetation and climatic evidence confirms the biological sensitivity of rice 

phenology to concurrent water deficits and atmospheric demand during early-to-mid 

season phases. Such findings are particularly relevant for agronomic systems where even 

brief interruptions in water availability can significantly impair yield formation. 

In contrast, 2022 exhibited signs of resilience, especially in the later months of July and 

August, where NDVI values showed moderate recovery. This occurred despite continued 

meteorological indicators of drought. The partial rebound in vegetation health is likely 

attributable to improved irrigation management, adaptive planting decisions, and 

potentially altered crop calendars that helped buffer against hydrometeorological stress. 

Importantly, VCI anomaly maps comparing 2022 to 2021 (figure15).  reveal spatial 

heterogeneity in recovery: while northern and western sectors of Vercelli showed 

pronounced vegetation improvement, central and southeastern areas remained under 

moderate stress, highlighting the uneven distribution of irrigation efficacy or localized 

drought persistence. 

Further insights were gained through NDVI zonal statistics, which demonstrated 

consistent seasonal greening patterns in most years, with NDVI steadily increasing from 

May to August. The exception was 2021, in which NDVI values declined sharply in July, 

aligning with the reproductive stage of rice—a phenological phase highly sensitive to 
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drought-induced reductions in photosynthetic activity and grain formation. By 2023, 

vegetation indices suggested a transitional phase, with moderate stress still evident but 

clear signs of recovery emerging. The year 2024 marked a return to pre-drought 

vegetation conditions, with NDVI and VCI metrics closely resembling the healthy 

baseline observed in 2020. These interpretations are further supported by the summary in 

Table 11, which consolidates the best and worst performing years for each vegetation index 

and confirms 2021 as the most drought-impacted year across all metrics. The consistency 

of this finding across NDVI, VCI, SAVI, EVI2, and anomaly layers reinforces the 

robustness of the multi-index approach applied in this study. 

Collectively, these findings illustrate a complete drought cycle in the Vercelli rice-

growing region: a climatically favorable baseline in 2020, acute drought impact in 2021, 

partial vegetative and management-driven adaptation in 2022–2023, and near-complete 

recovery by 2024. The study thus provides empirical evidence of both ecological 

vulnerability and adaptive capacity within irrigated rice systems under changing 

hydroclimatic pressures. 

 

Figure 22-Vegetation Drought Cycle Timeline (2020–2024) 

5.3 Alignment with the Scientific Literature 

The results of this study are consistent with a substantial body of research that underlines 

the importance of multi-index approaches in assessing drought and vegetation dynamics. 

The use of multiple vegetation indices and meteorological indicators in this thesis not only 

validates previous methodologies but also expands on them by applying them in the context 

of rice phenology under Mediterranean-climate stress conditions in northern Italy. 

One of the foundational references in vegetation-based drought monitoring is the work of 

Kogan (1995), who developed the Vegetation Condition Index (VCI) to assess drought 

intensity by comparing current vegetation status to long-term historical norms. This study 
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confirmed VCI’s sensitivity to deviation from baseline conditions, particularly in 

identifying the year 2021 as the most drought-impacted, with widespread declines in 

VCI during the reproductive phase of rice development. This aligns with Kogan’s findings 

and supports the use of VCI as a drought anomaly indicator. 

Additionally, the Normalized Difference Vegetation Index (NDVI), introduced by 

Tucker (1979), was validated in this study as a robust indicator of chlorophyll density and 

photosynthetic activity. The clear NDVI response to stress during early vegetative stages, 

particularly in 2021 and early 2022, highlights its continued utility in agricultural 

monitoring. NDVI's effectiveness in capturing both onset and severity of vegetative stress 

remains a cornerstone of remote sensing-based phenological analysis. 

While NDVI effectively captured early-season vegetative stress due to its sensitivity to 

chlorophyll content, VCI was more effective in representing longer-term drought 

deviations from historical norms, especially during the reproductive stage of rice. This 

complementary performance highlights the importance of index selection based on 

phenological phase. NDVI provided high spatial detail and was responsive to canopy 

greenness fluctuations, whereas VCI’s anomaly-based structure proved valuable for 

detecting cumulative drought effects during later crop development stages. The combined 

use of these indices thus enhanced the temporal and spatial resolution of drought analysis. 

Table 12- Comparative Summary of Vegetation Indices: Sensitivities, Strengths, and 

Phenological Relevance 

Index Strengths Limitations Most Sensitive Stage 

NDVI 
Real-time greenness, 

sensitive to early stress 

Influenced by cloud and 

soil reflectance 
Transplanting, tillering 

VCI 
Highlights long-term 

drought anomaly 

Lower spatial detail, 

depends on climatology 
Reproductive, heading 

SAVI 
Adjusted for soil 

brightness 

Less responsive in dense 

canopy 

Early crop stages with 

exposed soil 

EVI2 Effective in high biomass 
Requires clear sky, less 

robust in noise 
Peak vegetative growth 

To improve sensitivity under different biophysical conditions, this research also utilized 

SAVI and EVI2. These indices have been shown to perform well under specific 

environmental settings. SAVI, developed by Huete (1988), addresses the influence of soil 

background in low vegetation cover scenarios—a condition common during the 

transplanting phase in May. Similarly, Jiang et al. (2008) introduced EVI2 to enhance 

detection in densely vegetated canopies while minimizing atmospheric distortion. The 

performance of these indices during periods of sparse canopy (e.g., May) and dense 

vegetation (e.g., July–August) supports their inclusion for a more nuanced assessment. 

Recent studies have further validated the use of multiple vegetation indices to monitor crop 

health under drought and phenological variability. Tuvdendorj et al. (2019) demonstrated 

the comparative value of NDVI and VCI for spring wheat yield estimation in Mongolia, 
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with each index responding distinctly to drought pressure across phenophases—findings 

that mirror this study’s use of VCI during reproductive stages and NDVI during 

transplanting. Similarly, Jha et al. (2022) showed the phenological sensitivity of NDVI, 

EVI2, and GNDVI in forecasting sugarcane yield using Sentinel-2 data, reinforcing the 

utility of EVI2 in capturing vegetation vigor during peak biomass. Additionally, Wang et 

al. (2020) emphasized the role of satellite-derived phenological indicators in explaining 

weather variability effects on rice development, offering methodological support for 

combining indices in seasonal crop stress analysis. Together, these contemporary sources 

substantiate the scientific rationale for the temporal and functional pairing of NDVI, VCI, 

SAVI, and EVI2 in this thesis. 

Furthermore, the incorporation of meteorological drought indices—particularly the 

SPEI—reflects best practices recommended in climatological literature. Vicente-Serrano 

et al. (2010) emphasized the advantage of SPEI over SPI due to its consideration of 

evapotranspiration, which becomes particularly relevant under warming conditions. In 

this study, SPEI values in 2021 and 2022 aligned closely with NDVI and VCI declines, 

especially during the transplanting and flowering stages. This further demonstrates the 

added value of integrating climatic data into vegetation analysis, offering both explanatory 

power and predictive capacity. 

In conclusion, the findings of this thesis strongly resonate with the scientific consensus on 

drought monitoring, providing empirical support for a multi-index, multi-source 

methodology. The complementary nature of vegetation indices and meteorological 

indicators, as evidenced in this study, confirms that no single index is sufficient on its own. 

Rather, it is the integration of spectral, spatial, and climatic dimensions that allows for 

accurate, timely, and actionable insights into drought stress and crop health. 

5.4 Phenological and Seasonal Sensitivity 

The behavior of vegetation indices throughout the study period exhibited strong alignment 

with the phenological calendar of rice cultivation in the Vercelli region. As a crop that 

follows a structured growth cycle, rice undergoes four distinct phases: transplanting in 

May, vegetative growth in June, reproductive development in July, and maturation in 

August. This phenological structure creates clear expectations for vegetation index 

trajectories, which were consistently observed in the satellite-derived NDVI and VCI 

datasets. 

In typical years, NDVI values were lowest in May, corresponding to the transplanting stage 

when rice paddies are intentionally flooded and plant canopy coverage is minimal. This 

early-season dip was consistently observed across all study years and is indicative of 

successful phenological mapping. As the crop entered the vegetative phase in June, NDVI 

values began to rise sharply, reflecting the expansion of leaf area and increased chlorophyll 

content associated with active photosynthesis. 

The highest NDVI values generally occurred in July, coinciding with the reproductive 

stage. This phase is particularly critical for determining yield outcomes, as the development 
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of panicles and flowering depends heavily on adequate water supply and temperature 

stability. In 2021, a notable deviation from this expected trend occurred. NDVI values, 

which had begun to rise in June, exhibited a significant drop in July, indicating acute 

vegetation stress during the reproductive phase. This pattern was further substantiated by 

SPI and SPEI readings, which revealed extreme drought conditions during the same period. 

The alignment of satellite-based stress indicators with meteorological drought metrics 

reinforces the utility of multi-index integration for detecting critical-stage impacts. 

In 2022, NDVI values remained lower than average during early summer, consistent with 

residual drought effects and water scarcity during transplanting. However, a recovery was 

observed in late July and August, suggesting either a delayed phenological progression or 

the efficacy of supplemental irrigation interventions. VCI trends during this year also 

indicated moderate recovery, although spatial variability remained high. These findings 

suggest that rice in Vercelli may exhibit adaptive phenological shifts in response to climate 

stress, such as delayed flowering or extended vegetative periods. 

The seasonal sensitivity of vegetation indices in this study underscores the importance of 

synchronizing remote sensing analysis with phenological calendars. Without contextual 

understanding of crop growth stages, NDVI or VCI anomalies may be misinterpreted. For 

instance, low NDVI in May is not indicative of drought, but rather a natural result of 

transplanting. By integrating phenological phase knowledge with remote sensing 

observations, researchers and practitioners can more accurately diagnose drought effects, 

distinguish between stress-induced declines and natural cycles, and target interventions to 

specific growth stages. 

Overall, the phenological interpretation of vegetation indices proved essential in capturing 

the nuanced impacts of drought on rice production. Unlike generic time-series approaches, 

which track vegetation changes without aligning to crop biology, this study synchronizes 

remote sensing data with phonologically critical rice growth stages. This alignment ensures 

that variations in NDVI or VCI are interpreted in a biologically meaningful way, reducing 

the risk of misdiagnosing natural growth dips—like the May transplanting stage—as 

drought stress. By integrating satellite data with agronomic calendars, the method enhances 

both the accuracy and practical value of drought assessments in rice cultivation, supporting 

more reliable early-warning and irrigation planning systems. 

5.5 Methodological Strengths and Limitations 

The methodological framework adopted in this study combined multi-source remote 

sensing indices with meteorological drought indicators to comprehensively assess 

spatiotemporal vegetation dynamics and drought impacts in the Vercelli region. This 

integrated approach offered several distinct strengths. 

To visually clarify how the components of this methodology interconnect, a simplified 

workflow diagram has been included below. This visual summarizes the relationships 

between the satellite data sources (Sentinel-2, MODIS, ESA WorldCover), the vegetation 

and drought indices (NDVI, SAVI, EV12, VCI, SPI, SPEI), and the LULC, the processing 
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tools (QGIS, Python), and the resulting outputs (maps, zonal statistics, and anomaly 

analyses). The LULC layer was included to contextualize NDVI and VCI observations 

spatially, helping differentiate agricultural zones from non-agricultural areas. 

 

Figure 23- Simplified overview of the methodological framework used in this study, 

illustrating the connection between multi-source data inputs (Sentinel-2, MODIS, 

ESA WorldCover), processing tools, and analytical outputs for agricultural drought 

monitoring. 

Firstly, the use of high-resolution Sentinel-2 imagery (10-meter spatial resolution) enabled 

precise field-level monitoring of vegetation, which is particularly crucial in the 

heterogeneous rice paddies of northern Italy. This resolution allowed for the detection of 

spatial variability and intra-field drought responses, enhancing the ability to pinpoint 

vulnerable zones during key phenological stages.  
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Figure 24-Land Use and Land Cover (LULC) Map of Vercelli Based on ESA 

WorldCover 2021 

 

Another methodological strength was the inclusion of a high-resolution land cover 

classification, which provided spatial context for interpreting vegetation index dynamics. 

As shown in Figure 24, the reclassified LULC map visually distinguished agricultural areas 

from urban, forested, and water-covered zones. This helped mitigate the risk of 

misattributing NDVI reductions in non-cropland areas—such as built-up or riparian 

zones—to drought-induced crop stress. Although full pixel-based masking between LULC 

and NDVI datasets was not feasible due to resolution mismatches, the classification layer 

nonetheless enhanced spatial understanding of land surface composition and offered a 

valuable reference for cross-validating remote sensing outputs. This spatial foundation may 

also support more refined integration methods in future research. 

Secondly, the MODIS-derived VCI, with its historical baseline and temporal continuity, 

offered valuable long-term context to evaluate anomalies in vegetation health. Despite its 

coarser spatial resolution (250 meters), VCI’s strength lies in its ability to compare current 

vegetation conditions against climatological norms, which proved especially useful in 

characterizing the 2021 drought. 

Additionally, the inclusion of SAVI and EVI2 indices enhanced the robustness of the 

vegetation assessment. SAVI reduced the influence of soil background reflectance, 

particularly in early-season observations when vegetation cover was sparse, while EVI2 
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performed reliably in high biomass conditions, minimizing saturation effects commonly 

observed in NDVI. While SAVI and EVI2 have shown utility in other crop systems, their 

application in flooded rice cultivation remains relatively uncommon. This methodological 

novelty highlights the importance of future validation through ground-truth data, 

particularly to calibrate index responses during early-stage flooding and peak canopy 

conditions. The meteorological integration of the SPI and the SPEI) added a climatological 

dimension to the vegetation-based assessments. These indices helped contextualize the 

observed vegetation stress with underlying atmospheric drought conditions, especially 

highlighting the evapotranspirative effects during critical stages such as transplanting 

(May) and reproductive development (July). 

From a processing standpoint, the use of QGIS Graphical Modeler and batch automation 

tools proved highly efficient. These tools streamlined the repetitive tasks of index 

calculation and raster clipping, ensuring consistency across years and indices while 

significantly reducing processing time. The model-based approach also increased the 

reproducibility and transparency of the analytical workflow. 

However, the methodology was not without limitations. One significant challenge was the 

spatial resolution mismatch between Sentinel-2 (10 m) and MODIS (250 m) data, which 

limited direct pixel-to-pixel comparison between VCI and other vegetation indices. This 

discrepancy necessitated the use of aggregated zonal statistics, which may have obscured 

finer-scale spatial dynamics. Furthermore, cloud contamination in Sentinel-2 imagery—

particularly during the summer months—led to data gaps, most notably in July. These gaps 

occasionally compromised temporal continuity and required manual validation or 

exclusion of affected scenes. 

Another limitation stemmed from the lack of standardized thresholds for SAVI and EVI2 

drought interpretation in paddy rice systems. While these indices proved useful for relative 

comparison, their absolute values were difficult to interpret without extensive ground-

truthing. Future research should aim to calibrate these indices using field-based 

measurements such as leaf area index (LAI), chlorophyll content, or soil moisture data, 

particularly under rice-specific conditions like flooding or dense canopy stages. This would 

support the development of drought-sensitive thresholds for SAVI and EVI2 in paddy 

systems, enhancing their interpretability and operational use in early warning systems. 

 Similarly, SPI and SPEI data, though effective for identifying broad-scale drought events, 

were only available at monthly temporal resolution and regional spatial scale, limiting their 

sensitivity to short-term or hyperlocal meteorological fluctuations. 

Despite these challenges, the methodological design proved to be both robust and 

adaptable. By leveraging multi-sensor inputs and open-source geospatial tools, the study 

successfully generated an integrated perspective on agricultural drought dynamics in 

Vercelli. The approach also offers a replicable framework that can be scaled to other 

irrigated crop systems and regions with similar climatic constraints. 
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While these methodological strengths and limitations shaped the precision and 

interpretability of the results, their practical relevance becomes most evident when applied 

to real-world planning and policy contexts. The following section explores how the 

findings can inform adaptive irrigation strategies and regional drought response 

frameworks. 

Table 13-Comparative Summary of Vegetation Indices 

Index Strengths Best Use Case Limitations 

NDVI 
Sensitive to chlorophyll and 

green biomass 

Early-stage stress 

detection 
Saturation at peak biomass 

VCI 
Normalized to historical 

averages; drought sensitivity 

Long-term anomaly 

detection 

Coarse MODIS resolution 

(250 m) 

SAVI 
Adjusts for soil brightness in 

sparse vegetation zones 

Transplanting phase 

(May) 

Less validated in flooded 

rice environments 

EVI2 
Reduces atmospheric noise; 

stable in dense canopy 

Mid- to late-season 

monitoring 

Interpretation thresholds 

less established 

This summary table synthesizes the comparative roles of each vegetation index used in the 

study, outlining their technical strengths, ideal applications, and interpretative challenges 

in irrigated rice systems. 

These methodological insights not only shaped the precision and scope of the results but 

also revealed operational strengths that can be leveraged beyond the academic setting. The 

next section explores how these findings can inform practical applications in drought 

preparedness, irrigation management, and regional agricultural policy. 

5.6 Implications for Agricultural Policy and Planning 

The findings of this study hold substantial relevance for agricultural policy development, 

drought preparedness, and irrigation management in the Vercelli region and other similarly 

irrigated rice-growing areas. By integrating vegetation indices such as NDVI, VCI, SAVI, 

and EVI2 with meteorological indicators like SPI and SPEI, this research demonstrates the 

utility of remote sensing as a decision-support tool for monitoring drought conditions at 

both spatially detailed and temporally relevant scales. 

One of the most significant implications is the ability to detect crop stress at specific 

phenological stages, such as transplanting and reproduction, when water availability is 

most critical for yield formation. The spatial and temporal sensitivity of vegetation indices 

enables targeted intervention strategies, including adjusted irrigation scheduling and 

phenology-informed early warning alerts. These capabilities are essential in water-

limited environments where resource optimization is necessary to sustain productivity 

under climatic variability. 

For practical implementation, regional water agencies or rice consortia could use NDVI-

based thresholds to trigger early interventions. For instance, an NDVI value consistently 
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below 0.25 in May (transplanting) or below 0.4 in July (reproductive stage) may signal 

early vegetative stress, prompting increased irrigation supply or schedule adjustments. 

These thresholds should be validated with local agronomic observations but offer a 

replicable model for operational drought monitoring. 

Based on the results, the study supports the implementation of remote sensing-based 

drought monitoring systems at the municipal or provincial scale. Such systems would 

allow local authorities to monitor vegetation health in near-real time, identify high-risk 

zones, and deploy mitigation strategies accordingly. Additionally, the integration of SPI 

and SPEI trends with NDVI-based vegetation stress signals can inform the 

development of dynamic irrigation decision-support tools that align water allocation with 

actual biological demand and meteorological risk. 

Moreover, the temporal dynamics observed during 2021 and 2022 underscore the need for 

adaptive rice cropping calendars that can shift sowing or transplanting windows in 

response to forecasted drought conditions. Early-season indicators such as May NDVI or 

SPEI anomalies could serve as triggers for calendar adjustments, enhancing the resilience 

of rice systems to early stress. The buffering effect observed in 2022—despite severe 

meteorological drought—suggests that well-timed irrigation, guided by integrated 

climatic and vegetation data, can reduce drought impact and stabilize yields. 

Finally, this study emphasizes the importance of continued investment in irrigation 

infrastructure, particularly in subregions identified as persistently vulnerable by NDVI 

and VCI anomaly maps. These geospatial outputs can be used to delineate drought-prone 

zones, supporting the prioritization of resources such as irrigation upgrades, farmer support 

programs, or water-saving technologies. In doing so, policymakers can shift from reactive 

to proactive drought management, leveraging Earth observation data to enhance both short-

term response and long-term planning in agricultural landscapes. 

While the methodological framework proved effective in capturing spatiotemporal drought 

dynamics, certain limitations emerged that merit discussion to contextualize the findings 

and outline future improvement areas. 

5.7 Study Limitations 

While this study provided valuable insights into drought dynamics and vegetation 

responses in the Vercelli rice-growing region, several limitations should be acknowledged 

to contextualize the scope and reliability of the results. These constraints pertain to both 

data sources and methodological boundaries inherent to remote sensing-based research. 

First, the study relied primarily on optical satellite imagery, particularly from Sentinel-2, 

which is known to be susceptible to cloud contamination. This limitation was especially 

pronounced during the summer months, where frequent cloud cover occasionally reduced 

image availability and continuity, particularly in July. As a result, certain phenological 

stages may have been underrepresented in the time series, potentially affecting the 

consistency of seasonal vegetation monitoring. 
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Secondly, the NDVI, while widely used for vegetation health assessment, is known to 

exhibit a saturation effect under dense canopy conditions. This issue was observed during 

the peak biomass months of July and August, when NDVI values plateaued and became 

less sensitive to incremental differences in chlorophyll or canopy structure. Although 

complementary indices such as SAVI and EVI2 were employed to mitigate this effect, the 

lack of standardized drought thresholds for these indices in flooded rice systems limited 

the ability to fully resolve high-biomass dynamics. 

Another significant limitation was the absence of ground-truth validation data. The 

study did not have access to field-measured observations such as yield data, biomass 

estimates, or leaf chlorophyll content. Without these reference datasets, it was not possible 

to quantitatively assess the accuracy of the remote sensing indicators. While temporal and 

spatial consistency across indices and meteorological indicators (e.g., SPI/SPEI) lends 

credibility to the findings, the lack of empirical validation restricts the interpretation of 

results at fine spatial resolutions. 

Additionally, the analysis focused on the core rice-growing period (May to August), 

which includes transplanting, vegetative growth, reproduction, and early maturation. 

However, important physiological and agronomic processes also occur during the late-

season (September–October), including grain filling and harvesting, which were not 

assessed in this study. Monitoring post-harvest dynamics and residual stress could provide 

a more comprehensive view of seasonal productivity and crop resilience. 

Furthermore, meteorological drought indicators such as SPI and SPEI, though useful for 

capturing regional-scale climatic trends, are constrained by their monthly temporal 

resolution and dependence on generalized evapotranspiration models (Vicente-Serrano 

et al., 2010). These factors may result in a temporal mismatch between climatic drought 

signals and short-term field-level stress events, particularly during rapid phenological 

transitions in rice cultivation. 

Given these limitations, it is important to exercise caution when interpreting the findings 

at the individual field scale, especially in non-irrigated or marginal zones, where stress 

responses may diverge from regional trends. Despite these challenges, the multi-index 

framework employed remains a robust and adaptable approach for regional-scale 

agricultural drought assessment and offers a solid foundation for future refinement. 

To build upon this study, the following directions are recommended: 

• Incorporate Sentinel-1 SAR data to monitor vegetation during cloud-obscured 

periods and to estimate soil moisture. 

• Integrate ground-based measurements for validation, particularly yield, 

phenology observations, and chlorophyll content. 

• Explore machine learning models that use time-series NDVI, VCI, SPI/SPEI, and 

weather data for automated drought classification. 

• Extend the monitoring framework to cover September–October, capturing the full 

phenological cycle. 
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• Develop a web-based decision support system using QGIS, Python, and 

Copernicus data, aimed at helping farmers and local planners visualize drought 

risks in near real-time. 

5.8 Future Research Directions 

Building on the findings and limitations of this study, three key future research priorities 

are proposed to enhance the accuracy, resilience, and practical applicability of drought 

monitoring frameworks in irrigated rice cultivation systems such as those found in Vercelli. 

1. Integrating SAR Data for All-Weather Monitoring 

The use of Synthetic Aperture Radar (SAR) data—especially from Sentinel-1—should be 

prioritized to address cloud-related data gaps identified in this study. SAR’s ability to 

capture surface roughness and water content makes it a valuable complement to optical 

indices during critical stages like transplanting, when rice paddies are flooded and optical 

signals are often obscured. 

2. Field-Based Validation for Vegetation Index Calibration 

Ground-truth data such as leaf area index (LAI), chlorophyll content, biomass, and yield 

should be systematically collected to calibrate and validate satellite-derived indices like 

NDVI, SAVI, EVI2, and VCI. This would support the development of rice-specific 

vegetation stress thresholds—especially for indices like SAVI and EVI2 that currently lack 

standard reference values in flooded systems. 

3. Developing an Operational Decision-Support Platform 

Future work should also focus on building a GIS-based drought monitoring platform that 

integrates vegetation indices, SPI/SPEI values, and crop calendars. This platform could 

support local stakeholders—including farmers, water managers, and policymakers—by 

providing real-time drought alerts and actionable recommendations on irrigation and 

cropping decisions. Such systems are especially valuable in Mediterranean and temperate 

rice-growing regions facing increasing climatic stress. 

In summary, these three directions prioritize enhancements to data continuity, index 

reliability, and real-time operational utility, offering a realistic and scalable path forward 

for improving agricultural drought preparedness in rice systems. 
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Chapter 6: Conclusion and Recommandation  

6.1 Overview 

This concluding chapter synthesizes the key findings, implications, and scientific 

contributions of the study, which focused on evaluating the spatial and temporal dynamics 

of agricultural drought in the Vercelli rice-growing region of northwest Italy over the 

period 2020–2024. The research employed a multi-index, multi-sensor framework by 

integrating satellite-derived vegetation indices—NDVI (Tucker, 1979), SAVI (Huete, 

1988), EVI2 (Jiang et al., 2008), and VCI (Kogan, 1995)—with meteorological drought 

indicators, namely the SPI and the Standardized Precipitation SPEI (Vicente-Serrano et 

al., 2010). 

The principal objective was to detect and analyze vegetation stress across phenological 

stages of rice, including transplanting, vegetative development, and reproduction. This was 

achieved through the generation of anomaly maps, time-series graphs, and zonal statistics 

that together captured interannual and seasonal variability. The integration of remote 

sensing with phenological timelines allowed for the identification of drought-sensitive 

periods, particularly June and July, when rice is most vulnerable to hydrometeorological 

stress. The year 2021, for instance, exhibited pronounced declines in NDVI and VCI during 

these stages, coinciding with meteorological drought conditions indicated by SPI and SPEI 

values below –1.5. 

The methodology relied on open-source geospatial platforms, particularly QGIS and 

Python scripting, enabling efficient and transparent processing of satellite imagery. Tools 

such as the QGIS Graphical Modeler and GDAL utilities facilitated batch processing, 

spatial clipping, index computation, and map styling, ensuring a scalable and reproducible 

workflow. 

By aligning vegetation dynamics with rice phenology and climate variability, the study 

produced a robust, high-resolution drought monitoring approach. These results underscore 

the potential of Earth observation tools to support early-warning systems, adaptive 

irrigation scheduling, and policy frameworks aimed at enhancing climate resilience in 

irrigated rice agroecosystems such as those in the Po Valley (Wang et al., 2022). 

6.2 Key Findings and Contributions 

The findings of this study confirm substantial interannual variability in vegetation health 

in the Vercelli rice-growing region, closely aligned with meteorological drought trends. 

The year 2021 was clearly the most drought-impacted period, as evidenced by severe 

depressions in NDVI and VCI during the reproductive phase (June–July). These vegetative 

declines were reinforced by extreme meteorological conditions, with SPI and SPEI values 

consistently below –1.5, indicating acute drought severity (Vicente-Serrano et al., 2010). 

In contrast, 2022 presented a notable case of partial vegetation recovery—particularly 

during July and August—despite continued meteorological drought indicators. This 

resilience is attributed to adaptive crop management and the buffering capacity of irrigation 
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infrastructure (Wang et al., 2022). These contrasting patterns highlight the importance of 

combining vegetation and climate indicators to detect both climatic stress and agronomic 

adaptation. 

A progressive improvement in vegetative vigor was observed in 2023, and by 2024, NDVI 

and VCI values had returned to near pre-drought conditions. This trajectory represents a 

complete five-year drought cycle, encompassing: 

• Baseline conditions (2020), 

• Acute impact (2021), 

• Adaptation and resilience (2022–2023), and 

• Full recovery (2024). 

This sequence was further validated through NDVI anomaly maps and VCI spatial 

analyses, which revealed central and southeastern Vercelli as the most consistently affected 

sub-regions. 

Methodologically, the research demonstrated the efficacy of combining multiple 

vegetation indices—NDVI (Tucker, 1979), SAVI (Huete, 1988), EVI2 (Jiang et al., 2008), 

and VCI (Kogan, 1995)—with SPI/SPEI to produce a nuanced, phenology-aligned 

characterization of drought. Each index offered distinct analytical strengths: NDVI was 

highly responsive during early vegetative phases; VCI captured long-term anomalies; EVI2 

showed stability under high biomass; and SAVI supported interpretation during low 

canopy density stages. However, the absence of standardized drought thresholds for SAVI 

and EVI2 in flooded rice systems remains a methodological gap. 

From a practical standpoint, this study demonstrated the potential of remote sensing and 

climate indices for real-time drought monitoring and early warning systems in rice-based 

agriculture. The ability to detect vegetative stress during key phenological windows 

enables local authorities and water managers to optimize irrigation scheduling, allocate 

resources strategically, and adapt crop calendars proactively. The identification of 

spatial drought hotspots also supports infrastructure investment prioritization, 

especially in vulnerable zones like the central and southeastern municipalities of Vercelli. 

6.3 Research Contributions 

This study contributes meaningfully to the field of agricultural drought monitoring by 

demonstrating how a multi-index remote sensing framework can be tailored to 

phenologically sensitive crops, particularly rice, under Mediterranean climate conditions. 

The integration of Sentinel-2 high-resolution imagery, MODIS-based VCI, and climate 

indicators such as SPI and SPEI, alongside phenological alignment, provides a 

comprehensive and operationally viable methodology for assessing vegetation stress. 

From a methodological perspective, the thesis introduces an integrated, scalable, and 

reproducible workflow for drought monitoring. The use of QGIS and Python scripting 

allowed for semi-automated data processing, vegetation index computation, zonal statistics 
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extraction, and anomaly mapping. This open-source setup ensures transparency, cost-

efficiency, and adaptability across different geographic regions and crop systems (Huete, 

1988; Vicente-Serrano et al., 2010). 

The study also advances applied geospatial analytics through the production of time-

series NDVI trend profiles, vegetation condition anomaly maps, and phenologically 

segmented drought summaries. These outputs offer spatially explicit insights into drought 

occurrence, intensity, and recovery across rice fields in the Vercelli region, helping to 

distinguish between climatic drought and irrigation-buffered resilience. 

In terms of decision-support relevance, the research translates geospatial observations 

into actionable insights for agricultural planning. Outputs such as early-warning NDVI 

drops, spatial drought zoning, and phenology-aligned vegetation stress patterns can 

support: 

• Adjustments in crop calendars and planting windows, 

• Targeted irrigation scheduling, and 

• Prioritization of infrastructure investments in drought-prone zones. 

Moreover, this work enhances our understanding of how irrigated agricultural landscapes 

respond to hydroclimatic variability over time, offering empirical evidence for both 

vulnerability and resilience. In doing so, it contributes a scientifically grounded, policy-

relevant framework for drought assessment and agricultural adaptation in the face of 

increasing climate uncertainty. 

6.4 Policy Implications 

The findings of this study offer several important implications for agricultural and water 

policy in drought-prone, irrigated rice regions such as Vercelli. The integration of remotely 

sensed vegetation indices (NDVI, VCI, SAVI, EVI2) with meteorological drought 

indicators (SPI and SPEI) has proven to be an effective strategy for detecting early signs 

of crop stress. In particular, NDVI depressions and VCI anomalies during the vegetative 

and reproductive stages serve as reliable early-warning proxies, offering lead time for 

local decision-makers to implement adaptive interventions (Jiang et al., 2008; Vicente-

Serrano et al., 2010). 

One of the most actionable outcomes is the identification of spatially consistent drought-

prone zones, especially in central and southeastern Vercelli, where multi-year stress 

patterns were observed. These zones represent priority targets for agricultural investment, 

including: 

• Irrigation infrastructure upgrades (e.g., canal relining, drip systems), 

• Soil moisture monitoring integration, and 

• Subsidized drought insurance and support programs for smallholders. 
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The phenological alignment of the analysis adds further relevance. By focusing on critical 

rice growth phases—such as transplanting (May) and flowering (July)—the remote 

sensing outputs provide temporal precision that enhances the operational utility of 

seasonal irrigation calendars and crop management protocols. In this way, NDVI- and 

VCI-triggered alerts can be embedded into local or regional irrigation scheduling 

systems, improving water-use efficiency during peak sensitivity windows. 

From a policy development perspective, this research supports the creation of data-

informed drought zoning frameworks, which can be integrated into climate resilience 

strategies at both municipal and provincial levels. Policymakers can use these spatial 

outputs to prioritize water allocations during drought seasons, plan infrastructural 

development, and adjust rice production calendars under increasing hydroclimatic stress. 

In sum, this study contributes to the growing evidence base that supports the 

mainstreaming of satellite-based monitoring tools into agricultural governance 

frameworks—advancing precision agriculture and climate-smart planning for food 

security in Mediterranean rice-growing systems. 

6.5 Future Research Directions 

While this study has provided valuable insights into drought monitoring within irrigated 

rice systems, it also reveals several promising directions for future research. These 

extensions are essential for improving the robustness, operational applicability, and 

temporal coverage of drought diagnostics, particularly under Mediterranean climatic 

conditions. 

First, integrating Sentinel-1 SAR (Synthetic Aperture Radar) data is recommended to 

complement optical sensors like Sentinel-2, especially during periods of persistent cloud 

cover. SAR’s all-weather, day-and-night imaging capabilities can improve temporal 

resolution and ensure continuity in phenological tracking—particularly during the critical 

transplanting and flowering stages when Sentinel-2 imagery is often obstructed by summer 

cloud interference. Additionally, soil moisture datasets, whether retrieved from radar-

based missions (e.g., SMAP, ASCAT) or in-situ probes, can enrich the drought modeling 

framework by capturing sub-surface water stress dynamics. 

Second, ground-truth validation is crucial to increase the accuracy and credibility of 

satellite-derived vegetation indices. Future studies should prioritize collecting field-level 

observations, including rice yield records, phenological measurements, and leaf-level 

spectral signatures. Such empirical data would strengthen model calibration, allow for 

cross-validation of NDVI, SAVI, and VCI anomalies, and improve the interpretability of 

remotely sensed outputs under varying soil and crop management conditions. 

Third, the incorporation of machine learning and deep learning algorithms offers an 

advanced avenue for multi-index classification and early drought prediction. Techniques 

such as Random Forest, Support Vector Machines (SVM), or Convolutional Neural 

Networks (CNNs) can be trained on a combination of vegetation indices, meteorological 
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inputs, and temporal trends to identify complex spatial patterns and provide probabilistic 

drought alerts at finer resolutions. 

Fourth, expanding the temporal scope of monitoring beyond the core rice-growing season 

(May–August) to include post-harvest months (September–October) and winter cover 

crop cycles would offer a more comprehensive understanding of vegetation recovery, land-

use transitions, and residual drought effects. This would also improve the relevance of 

remote sensing outputs for adaptive crop scheduling, double-cropping analysis, and land 

planning strategies. 

Finally, future work should emphasize the co-development of operational decision-

support systems (DSS) in collaboration with local agricultural authorities and farmer 

cooperatives. By transforming NDVI, VCI, and SPI/SPEI outputs into real-time, user-

friendly dashboards, researchers can bridge the gap between geospatial analytics and 

actionable drought risk management. Such tools could support dynamic irrigation 

scheduling, early warning systems, and localized drought zoning under projected climate 

variability. 

In sum, these directions align with the ongoing shift toward integrated, real-time, and 

stakeholder-driven approaches to agricultural drought monitoring. They offer a pathway 

to enhance the scientific, technological, and practical relevance of remote sensing in 

climate-resilient agricultural landscapes. 

6.6 Final Remarks 

In an era increasingly shaped by climatic variability, this research underscores the growing 

relevance of Earth observation technologies in supporting agricultural resilience. By 

integrating satellite-based vegetation monitoring with crop phenology, the study offers 

both a methodological contribution and a practical framework for early drought detection 

and adaptive irrigation planning. 

Ultimately, the findings demonstrate that high-resolution, multi-index remote sensing 

approaches can enable regional stakeholders—particularly policymakers and farmers—to 

move from reactive drought response to proactive risk management. This transition is 

essential for sustaining rice production and food security under mounting 

hydrometeorological stress. 
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