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Abstract 

This thesis examines the performance of the Along-Stream approach in the prediction of flood statistics 

in ungauged basins and compares it with a regional approach officially in use in the Po river district in 

Italy. This method, introduced by Ganora (2013) and based on information transfer from close (short 

distance) donor sites, is here used for a larger dataset of 175 basins with three additional distance 

definitions. Distance definitions based on basin area, Euclidean distance between the basins, basin 

mean elevation and the combination of basin area and mean elevation are investigated. The study 

attempts to assess how different distance-threshold levels change the uncertainty of the estimates 

propagated and derived compared to the regional model. It is shown through the analysis that smaller 

distance limits, for example those based on the basin area ratio, result in much lower errors of 

propagated estimates when compared to the regional model, which, in turn, indicates that the 

predictions may be more accurate if confined to smaller distance limits. Increasing the distance 

threshold continues to increase the uncertainty of propagated estimates, thus indicating a trade-off 

between expanding the applicability domains while retaining prediction accuracy. The analysis locates 

𝐷𝑙𝑖𝑚= 1.6 (corresponding the basin area ratio of 4.95) for the area-based definition, 𝐷𝑙𝑖𝑚= 1.3 

(corresponding to the distance of 3.67 km) for Euclidean distance, and 𝐷𝑙𝑖𝑚= 1.72 (corresponding to 

the basin area and elevation of 5.58) on the combined definition of the elevation-area ratio as the 

optimal thresholds. It is concluded from the analysis that the mean elevation may be unrepresentative 

of the basins and is not included in the optimum distance determination. At these limits, a wider 

percentage of basins (up to 30%, 25%, and 10% for area ratio, area-elevation multiplication and 

Euclidean distance, respectively) have lower RMSE for propagated estimates than the "regional" 

model. Thus, these thresholds provide a good balance between the applicability of the models and 

prediction uncertainty, hence making the Along-Stream approach a proper method for discharge 

prediction in ungauged basins along with regional models. 
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1- Introduction 

Hydrology is the science that studies the water cycle, the movement of water, in all its forms, 

through the atmosphere, land, and oceans. This dynamic cycle strongly governs all life on Earth. 

It defines the ecosystems and their biodiversity, and gives sustainability far beyond merely living, 

making the necessity of its total understanding of the hydrological mechanisms in academics as 

well as relevant to the global issues facing humankind. Surveillance of the charging phenomena 

of the water cycle would be necessary for ameliorating the climate change which has already 

disrupted the earlier pattern and has led to an increase in precipitation, evaporation, and runoff. An 

understanding of these mechanisms gives an idea to foresee extreme weather events like floods 

and droughts, which are becoming more and more common and severe. Hydrological studies also 

hold tremendous importance for the efficient management and sustainable use of water resources. 

With an increasing population and demand for clean drinking water, efficient distribution of this 

finite resource becomes paramount.  

The water cycle is very difficult to understand indeed, and for many, the primary reason would be 

the vast number of physical phenomena that are involved in it, as well as the scales at which they 

happen. In fact, these scales are large both from a spatial and a temporal point of view. Knowledge 

and understanding about most of the elements of the water cycle are far from being complete or 

even well coupled. The majority of hydrological problems are referred to different areas of 

expertise. Uhlenbrook. (2006) comments on catchment hydrology as an all-comprehensive one, 

dealing with every terrestrial water cycle and its interactions over all the basins. In fact, basins can 

be termed as the elemental landscape units that incorporate hydrological cycles into geochemistry, 

ecology, morphology, and other processes (Sivapalan et al., 2003). All these processes, however, 

are strictly related to the fluxes through the boundaries of the basin, especially to and from the 
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atmosphere and groundwater. However, one of the most significant elements, with respect to the 

water flux through the basin outlet is streamflow or runoff due to the importance that this variable 

has for many applications in practice. On common usage, streamflow, nearly always, is an easily 

interpretable index that captures in some way all the processes of the catchment. 

One of the approaches to understanding the complex systems associated with a basin is through 

macro-characteristics, such as the magnitude, frequency, or duration of a certain kind of event. 

These macro-characteristics can be treated statistically, trying to describe the hydrological 

phenomena without the physical processes which is called statistical hydrology.  

Quantitative and reliable characterization of surface water flows is becoming increasingly 

important both because they are being overexploited and because of the impacts of changing land 

use and urbanization, for proper management of this resource. Different users with conflicting 

requirements- the farmer, the industrialist, and the energy plant- make it less easy to find solutions 

when it comes to water exploitation. There is then the increasing concern for environmental issues 

brought about by water quantity and quality which demands practical management tools. Apart 

from the problem of conserving water, it is equally important to protect communities and 

properties against extreme events of water, especially floods and droughts. These are very pressing 

demands for quantitative, wide-ranging datasets over numerous variables in hydrology. 

The straightforward way of analyzing the catchment behavior is through streamflow time series 

and, thereby, other variables: for example, precipitation, soil characteristics, vegetation, etc. For 

this, however, the discharge time series needs to be known at that site of interest. When it is not 

set up to directly monitor river flow or when collected data are not adequate to analyze, then the 

basin is called ungauged, and indirect approaches must be applied to study its hydrological 

characteristics. Indirect procedures are based on the concept of information transfer from gauged 
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to ungauged basins. This refers to the hypothesis of compensating the deficiency of time series 

data from gauged sites through data of other sites. This is represented in the field of catchment 

hydrology, and the very clear proof of this is the Prediction in Ungauged Basins (PUB) initiative 

(Sivapalan et al., 2003). 

In Regional approach the identification of the recurrence frequency of floods in ungauged 

catchments is done primarily using suitable statistical models that have been developed for flood 

statistics and different basin characteristics based on a given set of gauged stations. Such models 

transfer the information induced from the gauged sites and employ it to the target basin requiring 

only morphoclimatic catchment characteristics. Such procedure named a regional model as it 

identifies a subset, here called the region, of homogeneous basins to later use as a pooling set for 

the estimation at the ungauged site. Such basins in a region must therefore donate statistical 

proprieties to ungauged ones in the same region. 

All flood frequency methods may have sampling variability when applied to a data collection of 

an isolated site for estimating return periods greater than the period of record at a site. (Hosking & 

Wallis., 1993, Cunnane., 1988). Hence, it is likely that regional flood frequency analysis (RFFA) 

would be more appropriate because an estimate at a single-gauged site can be improved by pooling 

data from other sites established as having similar frequency distributions. Some regional methods, 

furthermore, provide a measure for estimating flood frequencies even at ungauged sites within a 

region to which observations exist. However, the transfer of information from quantities at other 

sites can best be done within a "homogeneous" region, warranting the development of further 

techniques for the accurate identification of such regions (Saf, B., 2009). 

Hydrological regionalization techniques have come up with different methods. Durrans & Tomic. 

(1996) considered these methods to be of two different kinds. The first method is the prediction in 
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ungauged basins (PUB) (Sivapalan et al., 2003). In this method, certain flood peak discharge or 

low flow is revealed in comparison with the physiographic and climatic characteristics of the 

gauged basins. Further, it can be applied to ungauged basins to predict the hydrological 

characteristics by using the already measured physiographic and climatic characteristics. This 

multi-regression method toward this aim has been applied for many years (Mazvimavi et al., 2004). 

With the advancement of geo-information technologies such as geographic information systems 

(GIS) and remote sensing, an increasing amount of physiographic information is being made 

available (Lakshmi., 2004). The other form of regionalization is regional frequency analysis, 

where the assessment is at gauged sites, but related information from other gauged sites with 

records of longer duration within a homogenous region is introduced into the estimation (Chen, Y. 

D. et al., 2006). 

The IFM called the index-flood method, evolved by the US Geological Survey (Dalrymple., 1960), 

is commonly employed for deriving regional flood frequency models at ungauged sites or gauged 

sites for which sufficient hydro-meteorological information is not available to reliably estimate 

extreme events. Examples of studies that document the application benefit of the index-flood 

method are those of Cunnane. (1988), Potter & Lettenmaier. (1990), and Pitlick. (1994). The 

country Canada has twelve studies, embracing various regions of the country, which have applied 

the index-flood method (Watt et al., 1989). The index-flood method has been applied to Portugal 

using the observatories of annual maximum flood series in 120 stream gauging stations (Portela & 

Dias., 2005). Six homogeneous regions were delimited and models were created to each region in 

order to have the flood quantiles estimation (Saf, B., 2009). 

The advances in regional frequency analysis are about the incorporation of L-moments in index-

flooding, according to Hosking & Wallis. (1997). This methodology is applied successfully in 
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modeling floods in many case studies in the US (Vogel et al., 1993, Vogel & Wilson., 1996), in 

New Zealand (Pearson., 1991, 1995, Madsen et al., 1997), in southern Africa (Mkhandi & Kachroo 

1997, Mkhandi., 1995, Kjeldsen et al., 2000, 2001), in India (Parida et al., 1998, Kumar et al., 

2003), in Australia (Pearson et al., 1991), Malaysia (Lim & Lye., 2003), and Turkey (Saf et al., 

2007, Saf, B., 2009). L-moments offer considerably more advantages over ordinary product 

moment methods in the treatment of environmental data sets, for these reasons: 

• L-moment ratio estimation of location, scale, and shape are nearly unbiased, irrespective 

of the probability distribution from which observations are derived (Hosking., 1990). 

• Estimators of L-moment ratios, for example, L-coefficient of variation, L-skewness, and 

L-kurtosis, can be less biased than product moment ratio estimators in a highly skewed 

scenario. 

• L-moment ratio estimators of L-coefficient of variation and L-skewness have no 

dependency on sample-size-bound constraints, unlike the ordinary product moment ratio 

estimators of coefficient of variation and skewness. 

• Being linear combinations of the observations, L-moments show less sensitivity towards 

extreme observations in a sample than product moments, as the latter involve squaring or 

cubing the observations. 

• In comparison with ordinary product moment diagrams, which are nearly useless for the 

task, L-moment ratio diagrams are very efficient in identifying distributional properties of 

highly skewed data. 

In the regional data, the at-site data do not enter into the estimation of local parameters of a 

statistical distribution model; instead, the information in the sample record is summarized by a set 

of robust sample statistics (the L-moments), which are then regionalized. This is a kind of 
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generalization of the widely accepted index-flooding approach. To pass information from gauged 

locations to ungauged ones, one must summarize the time series data. The L-moments and 

dimensionless ratios can be used as regional variables; specifically, the first L-moment (mean) and 

coefficient of L-variation (LCV) and L-skewness (L- coefficient of asymmetry, LCA) of the record 

are picked. After L-moments have been regionalized, one can reconstruct the entire flood 

frequency curve. Index-flood framework can be interpreted as the choice among mean, LCV, and 

LCA as hydrological signatures in a regional framework (Dalrymple., 1960) in which the mean 

would serve as a scale factor while the L-moments ratios would be descriptors of the dimensionless 

growth curve. The proposed method also makes it possible to eliminate the uncertainty about the 

choice of the distribution function especially, where short samples are involved making it possible 

for short samples, which would otherwise be thrown away, to contribute toward better consistency 

of the database. Separate regional models were adopted for each of the L-moments in the transfer 

of information to ungauged basins, being based on a very rigorously structured multiple regression 

approach, by selecting from numerous geomorphological and climatic descriptors of the 

catchment. Every regression model is calibrated by non-standard least-squares techniques on the 

whole dataset without any grouping procedure creating sub-regions. 

In Along stream approach the main goal of regional models is to transfer information from gauged 

sites toward the specific ungauged basin. A variety of models, theoretical and experimental, have 

emerged for this purpose in literature; however, they share a common philosophy of adopting a 

descriptor space approach to address the lack of hydrologic information. This descriptor space is 

a set of catchment characteristics usually comprising topographic, morphological, or climatic 

indices computed without applying any hydrologic data for every basin. Then, one constructs the 
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appropriate relationships to relate those catchment characteristics with the expected hydrological 

variable. 

The majority of standard statistical methods used for the estimation of flood frequency curves in 

ungauged basins are limited. Such limitations are mainly in two ways: first, by subdividing the 

area of interest into homogeneous regions, and second, by predefining an a priori probability 

distribution for the sample data. This goes beyond the peculiarity of the estimations that would 

accompany the region itself with abrupt changes because distributions prove not to maintain their 

properties within and between the regions. This is a limitation for making these estimations (Laio. 

Et al., 2011).  

Regional models do not retain information regarding the natural hierarchy between the gauged 

stations that derive from where they are located along the river network. This information is 

particularly important as runoff is to be estimated at a site situated immediately upstream or 

downstream from a gauged station. An alternative to this method might be estimating this variable 

directly, against the corresponding statistics measured at the gauged station. The closest to the 

gauged station is the estimate point; thus, this method should give a greater expected quality.  

The founding principle of the model developed in this thesis is that of transferring hydrological 

information to an ungauged site located upstream or downstream of the gauging station. The 

information that we are interested in, i.e., that which we transfer along the stream network, is the 

one used to reconstruct the flood frequency curve, such as the L-moments. This transfer strategy 

integrates hydrologic data, and at the same time, defines the structure of the drainage network such 

that points are directly connected to one another. In other words, it might as well be said that the 

two basins are nested. Along-Stream (AS) approach involves at least one variable calculated in a 
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gauged (or donor) basin and is propagated, bringing the information toward the ungauged (target) 

site where the variable of interest. 

In conclusion, this method, defined earlier as the Along-Stream estimation method, to signify that 

it is applied to points along a stream network. It requires a formula to compute the variable at the 

ungauged site. This formula could rely on a series of basin characterizations or, alternatively, a 

regional estimate (local estimation combined with a regional model). Then there is defined a 

criterion for assessing the reliability of the stream model and its domain of application, and, finally, 

the accuracy of the approach is assessed through the evaluation of the standard deviation of the 

estimates. In this way, it is possible to compare the variance of the stream estimates against the 

variance of other models, if such are available, and thus choose the most accurate method (or to 

combine different estimates). 

Although there are some notable examples, the problem of hydrological variable prediction or 

interpolation over a river network is usually not discussed in the literature. From Gottschalk (1993a 

and b), the problem represents the correlation and covariance of runoff and its interpolation along 

the river, using the theory of stochastic processes with the structuring hierarchy of nested 

catchments. It has been extended by Gottschalk et al. (2006), and the same concepts have been 

used by Skoien et al. (2006) in developing a kriging procedure that takes care of river structure, 

termed topological kriging or top-kriging. While the final aim is the same, the process developed 

here is built following a completely different angle. 

The study carried out by Kjeldsen and Jones. (2007) in interpolation of runoff statistics. Here, the 

local correction of regional estimation is taken into consideration. The approach is very similar to 

the one developed in this thesis because of the information transfer scheme; however, a different 

implementation procedure is shown. The summary of the references reviewed are listed in table 1.  
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Table. 1. Summary of the literature reviewed in the text 

Author(s) Year Subject Findings 
Dalrymple 1960 Index-flood method Enabled derivation of regional flood frequency 

models at ungauged sites; served as a foundational 
method for regional flood analysis globally. 

Hosking & 
Wallis 

1993 Regional flood frequency 
analysis (RFFA) using L-
moments 

Emphasized pooling data from similar regions to 
improve flood estimates at ungauged sites. 

Gottschalk 1993a, 
b 

Topological kriging (top-
kriging) for river networks 

Developed kriging methods for predicting runoff and 
addressing river structure correlations. 

Durrans & 
Tomic 

1996 Regionalization methods 
including multi-regression and 
GIS-based approaches 

Explored physiographic and climatic characteristics 
for predicting hydrological characteristics; 
emphasized advancements in geo-information 
technologies for data analysis. 

Hosking & 
Wallis 

1997 Incorporation of L-moments in 
regional frequency analysis 

Successfully applied in multiple regions, including 
the US, Africa, India, and Turkey. 

Madsen et al. 1997 L-moments applied in various 
countries including New 
Zealand and the US 

Demonstrated global applicability of L-moments for 
improving the accuracy of flood frequency models. 

Sivapalan et 
al. 

2003 Prediction in Ungauged Basins 
(PUB) initiative; regional 
models 

Highlighted the importance of transferring 
information from gauged to ungauged basins using 
morphoclimatic characteristics; enabled quantitative 
hydrological predictions. 

Mazvimavi 
et al. 

2004 Multi-regression model Applied physiographic and climatic characteristics to 
predict hydrological features in ungauged basins 
effectively. 

Portela & 
Dias 

2005 Application of index-flood 
method in Portugal 

Created six homogeneous regions for flood quantiles 
estimation, demonstrating the method's applicability 
in diverse geographical settings. 

Uhlenbrook 2006 Catchment hydrology as an 
all-comprehensive approach 

Highlighted the significance of basins as elemental 
landscape units that integrate multiple processes. 

Skoien et al. 2006 Topological kriging for river 
structures 

Developed a kriging procedure to incorporate river 
structure into hydrological estimations; addressed the 
spatial hierarchy of gauged stations. 

Saf et al. 2007 L-moments and regional 
analysis 

Successfully applied L-moments in modeling floods 
in Turkey; emphasized robust data summarization 
techniques for ungauged sites. 

Kjeldsen & 
Jones 

2007 Interpolation of runoff 
statistics 

Local correction of regional estimates, emphasizing 
the transfer of information along river networks. 

Some most recent research done in this topic are also summarized in table 2. 

Table. 2. Summary of the recent research and literature reviewed in the text 

Author(s) Year Subject Findings 
Ali Ahmed et 

al. 
2023 Identification of 

homogeneous regions, AI-
based models, climate 

change impacts 

Various statistical tests proposed, including L-moments, 
Nonstationary RFFA methods needed to account for 

changing flood patterns 

Hassan 
Esmaeili-

Gisavandani et 
al. 

2023 Random Forest, ANFIS, 
M5 decision tree, and 

multivariate regression. 

RF performed best (R² = 0.96, NRMSE = 0.223); all 
models outperformed regression in RFFA. 
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Sabrina Ali and 
Ataur Rahman 

2022 Regionalized Flood 
Frequency Analysis 

(RFFA) method utilizes 
Regional Kriging for 

ungauged Catchments. 

(a) the developed kriging-based RFFA model is a viable 
alternative for flood quantile estimation in ungauged 

catchments, (b) the 10-year ARI model Q10 performs best 
among the six quantiles, which is followed by the models 

Q5 and Q20, and (c) the kriging-based RFFA model is 
found to outperform the ‘RFFE model 2016’. 

In this study the Along-stream approach introduced in 2013 by Ganora et al. will be used on the 

river networks and basins of the river Po for flood estimation in order to have an additional model 

next to the regional one to choose between the two models. This process will be explained in the 

methodology part later. The objective is to estimate or interpolate the hydrological variable along 

the river network and correcting the estimate of the regional model locally, on the river structure 

calculated on the gauged site (donor) towards the ungauged basin (target) which are directly 

connected like the basins are nested. Different definitions of distance will be used to choose the 

most optimum definition and evaluate the corresponding errors. All the possible pairs of connected 

basins will be considered for information transfer. 
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2- Data and Methods 

2-1- Study area 

The river as the longest in Italy is Po, with its main course about 652 km long (Figure 1). Moreover, 

it includes not only the largest watershed in Italy, covering about 71,000 km2 at the delta, but also 

the time series discharge at the closure river cross-section, which has been traditionally placed at 

Pontelagoscuro (44°53´19.34´´N and 11°36´29.60´´E). Included in this is the minimum, mean, and 

maximum daily river flow recorded in Italy: 275 m3/s, 1,470 m3/s, and 10,300 m3/s, respectively. 

The Po is comprised of main tributaries, with an average of 141 such tributaries in this area. The 

network of the main tributaries has an estimated length of around 6750 km, while that of artificial 

and natural channels accounts for 31,000 km. An annual average of 78 km3 constitutes 

precipitation, from which 60% is intercepted and converted to outflow volume at the closure 

section. There are about 450 lakes in the Po basin. The water level of the bigger south-alpine, 

glacial-origin lakes is regulated through specific management schemes. But it is worth mentioning 

the establishment of 9 hydro-ecoregions in the Po River (Po River Basin Authority., 2006) defined 

as geographic areas in which freshwater ecosystems show small ranges in variation in terms of 

chemical, physical, and biological parameters. The spatially distributed rainfall over the catchment 

is illustrated in Figure 2 (Montanari., 2012). 
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Fig. 1. Po River basin map (from Wikipedia) 

 

Fig. 2. Rainfall (Mean annual) in the Po River (from Montanari., 2012). 

This synthetic description paints the complete picture of the Po River basin's complexity. Different 

hydrological behaviors and ecosystems coexist and coevolve within the basin. Interestingly 

enough, the Po River Basin Authority. (2006) has identified 12 different fluvial regimes in the Po 

catchment.  

https://en.wikipedia.org/wiki/Po_(river)#/media/File:Po_bacino_idrografico.png
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2-1-1- Po River Hydrological Behavior 

The hydrological behaviors of the Po River have been explored more rigorously, particularly with 

regard to the flood regime (Piccoli., 1976, Marchi., 1994, Zanchettini et al., 2008, Visentini., 

1953). However, many pertinent questions remain open in the context of Po hydrology, 

particularly in relation to the huge impact that intense human activity has had on its catchment 

over the course of the 20th century and climate change itself. This is because long periods of such 

abundance or scarcity of river flows give rise to scientific questions that remain largely 

undiscovered. 

Hydrological fluxes for the annual average of the Po River basin are indicated in Figure 3 (Po 

River Basin Authority., 2006). To be specific, the much-discussed average volume of annual 

precipitation, as per the above, complements outlet river discharge, anguished by the annual 

infiltration into the underground aquifer (~9 km3) and evapotranspiration from vegetation (~20-25 

km3). This is the same as saying that the withdrawal from the aquifer is about 6.5 km3, that is, 

groundwater resources are nearing their critical point of overexploitation (deep percolation is 

nearly about 1 km3, and there is some groundwater flow to the sea). Annual water withdrawals for 

irrigation that are contributing to evapotranspiration add up to approximately 17 km3, with respect 

to industrial and domestic water withdrawal. 

 

Fig. 3. Hydrological fluxes (Mean annual) for the Po River basin (from Montanari., 2012) 
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2-1-2- Po River discharge variability 

Intra-annual variations 
Hydrologists commonly study the variability of river discharge with the consideration of the intra-

annual period. It is also named the seasonal regime (the progress of annual average river flow). 

Daily river flow time series measured at Piacenza, Pontelagoscuro, and Moncalieri along the Po 

River, the Dora Baltea River at Tavagnasco, the Tanaro River at Farigliano, and the Stura di Lanzo 

River at Lanzo. The observation period of the series, their mean and standard deviation values 

together with catchment area and synthetic information on the dominant fluvial regime are 

displayed in Table 3. 

Table. 3. Observation period, mean value µ and standard deviation σ of the observed time series, along with the catchment area A 
at the considered location according to the Po River Basin Authority. (2006) 

 
Location Period µ (m3/s) σ (m3/s) A (km2) 
Po at Pontelagoscuro 1920–2009 1470 1007 71 000 
Po at Piacenza 1924–2009 959 773 42 030 
Po at Moncalieri 1942–1984 80 89 4885 
Tanaro at Farigliano 1944–1973 39 49 1522 
Stura di Lanzo at Lanzo 1946–1981 19 27 582 
Dora Baltea at 
Tavagnasco 

1951–1989 91 78 3314 

 

Figure 4 shows the discharges for the different locations. 
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Fig. 4. River discharges for the different locations (from Montanari., 2012) 

Inter-annual variations 

Annual maximum and minimum value progress are shown in Figure 5, respectively, for the daily 

river flows at Pontelagoscuro of the Po River and the linear regression line relating that maximum 

or minimum value throughout the entire time period. 

 

Fig. 5. Annual maxima (left) and minima (right) of the Po River at Pontelagoscuro daily discharge series (1920–2009) and linear 

regression line (from Montanari., 2012) 
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It must be noted, however, that the above trends are scarcely relevant from the statistical 

standpoint. In fact, assuming that the data are independent and that the null hypothesis of no-trend 

is true, one finds the p-values of 11% and 26% for the slope of the linear regressions applied to 

annual maxima and minima, respectively. 

2-2- Methods and Hypotheses 

Given below is the Along-Stream (AS) procedure, which is devised and presented for the statistics 

in the form of the index flood, which summarize the vital statistics as far as the estimation of flood 

quantiles is concerned. The AS model will then become additional to the regional procedure to 

predict the same variables. Then it would also include results from two different approaches that 

could be combined in order to provide more reliable final estimates in ungauged sites. In general, 

when two or more models are available for the same goal, following scenarios can be considered:   

- Different models (AS and regional prediction for this work) could be evaluated to see which one 

would give a better modeling of the variable of interest in this case study. AS and regional 

prediction are supposed to have different reliability related to the target site location and 

specifically due to its distance from the donor site. Accordingly, AS is viewed as another method 

that may be more relevant for ungauged basins. 

- Another model is defined as the use of output from a model to initialize the other model. The 

regional estimate could be, in this work, further considered as an additional parameter for the 

along-stream estimation function hence contributing to the final AS prediction. Hence the same 

could also be interpreted as follows: AS may help globally, but in localized areas, it may be better 

than the regional model estimate corrected based on the specific information available in a close 

donor site. 
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- Various estimates can be combined using appropriate relations with an aim to further minimize 

variance in the resulting estimator. 

Along-stream approach will be used to estimate some hydrological variable P by propagating the 

information from a donor site d to that of the destination site t. This approach has a few 

assumptions. In particular: 

Proximity: the target site is always located on the same stream path of the donor station, upstream 

or downstream, i,e. the two basins d and t are nested; 

Transferability: the variable Sd, computed at the donor site, must be used in the information 

transfer, i.e. 

Pt = f (Sd; θ) 

where θ is an additional (optional) set of parameters and f is a function to be defined; 

Congruence: when the distance between the donor and the ungauged catchment becomes zero, AS 

estimate (variance) at the ungauged site must coincide with at-site estimate (variance) at the gauged 

basin, i.e. 

Pt → Sd for t → d 

Schematic representation of the proximity and transferability hypotheses is shown in the sketch in 

Figure 6, a. where the arrows show possible directions for the information transfer. In the 

approximate sense, the function that transfers the information is not known but could be 

approximated by any function that satisfies to the hypotheses raised. This function must be a good 

approximation to the real unknown transfer function at least within a validity domain that includes 

a set of points close to the donor station; then different functions have, in general, different validity 
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domains (see Figure 6, b). The validity domain hypothesis is very important in assessing the 

reliability of the AS method and will deal with it quite intuitively. In particular, a threshold on the 

distance between donor and target basins will be defined to separate the domain of validity of the 

selected transfer function from the remaining part of the drainage network. 

The distance is intended with a general meaning, and it does not necessarily mean a geographic 

distance or the length of the drainage path. Moreover, given a specific information transfer 

function, and its corresponding validity domain, the variance of the AS prediction is expected to 

increase moving away from the donor site, but still within the validity domain. Beyond this, there 

are no reliable AS predictions, and there is no need to compute their variance. A sketch 

representing this aspect is shown in Figure 6, c. 

 

Fig. 6. Sketch of the along-stream propagation of information (from Ganora et al., 2013) 

The application of an along-stream modeling approach in this work also involves a regional model; 

to be specific, the regional model is meant to capture the 'global' variability of hydrological 

variables and does not include the 'local' structure of the river. The AS estimates are then calculated 

based on the regional ones. However, the reliability of the AS predictions diminishes with 

increasing distances between the donor and the target basins. Thus, the procedure remains to be 
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defined, which allows for deciding if the AS estimates can be considered reliable or whether to 

prefer the regional one. 

The first step in carrying out the estimation procedure of the along-stream is to come up with a 

function that would give the variable P at a target site t according to all the assumptions 

initialization made. 

Let f be the function used for the along-stream information transfer, that reads 

𝑓𝑡,𝑑 =
𝑅𝑡
𝑅𝑑

. 𝑆𝑑 (1) 

where the symbol R refers to the regional estimates and S is the at-site variable. The equation was 

suggested in the Flood Estimation Handbook (Institute of Hydrology 1999) and re-analyzed by 

Kjeldsen and Jones (2007) is used (Ganora, 2013). 

The propagated estimate can be simply written as: 

𝑃𝑡 = [𝑓𝑡,𝑑]⁡𝑓𝑜𝑟⁡𝐷 ≤ 𝐷𝑙𝑖𝑚 (2) 

Where D is the defined generalized distance relating t with d, and 𝐷𝑙𝑖𝑚 is the defined threshold 

distance beyond which the function becomes ineffective. The symbol 𝐷 ≤ 𝐷𝑙𝑖𝑚⁡emphasizes that 

over the boundary of its validity, the transfer formula can be applicable. It should be borne in mind 

that all P, R, and S symbolically represent a generic hydrological variable-indices flood, LCV, and 

LCA in the particular context. This can be interpreted in a simple way with the help of the equation: 

the correction factor will be just the relative error that the regional model produces in d that is (𝑆𝑑
𝑅𝑑

). 

In practice, it assumes that the regional model has the same error magnitude when assessing these 

two close locations. For D → 0 it is straightforward to verify that 𝑃𝑡 → 𝑆𝑑. 
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For example. if there exist two different functions available for the transfer of information along 

the stream network (similar to the representation in Figure 6, b). The first one is defined as: 

𝑃𝑡
(1)

= 𝑆𝑑 ⁡𝑓𝑜𝑟⁡𝐷 ≤ D𝑙𝑖𝑚
(1)  (3) 

Where D is the generalized distance between t and d and D𝑙𝑖𝑚
(1)  is the threshold distance beyond 

which function 1 is no longer effective. The second function is: 

𝑃𝑡
(2)

= 𝑓𝑡,𝑑 ⁡𝑓𝑜𝑟⁡𝐷 ≤ D𝑙𝑖𝑚
(2)  (4) 

This first function simply indicates that the propagated estimate 𝑃𝑡
(1)
⁡is equal to the at-site variable 

calculated in d. Obviously, equation (3) can be considered valid only in a very limited 

neighborhood of d, i.e. the threshold D𝑙𝑖𝑚
(1)

⁡is supposed to be very low, and thus D𝑙𝑖𝑚
(1)

≤ D𝑙𝑖𝑚
(2)  . 

Depending on the distance D there are three different possibilities: 

• 𝐷 ≤ D𝑙𝑖𝑚
(1)

≤ D𝑙𝑖𝑚
(2) : both the AS models are valid, the most appropriate can be selected on 

the basis of the prediction variance; 

• D𝑙𝑖𝑚
(1)

≤ D ≤ D𝑙𝑖𝑚
(2) : only model 2 can be used to propagate the information along the 

stream network; 

• D > D𝑙𝑖𝑚
(2) : neither model can be used. 

2-3- Organization of Nested Basins and Definitions of Distances 

The complete dataset was comprised of 227 basins with some of them were without a connection 

to the other basins and some of them were not included in the network data to determine the 

connection. Overall, this method is used for a case study on a set of 175 basins in northwestern 

Italy, shown in Figure 7. This dataset constituted by the catchments already used for the regional 

analysis. Here, it is more appropriate to work in terms of pairs of basins, {t, d}, rather than single 
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catchments, at least in this context. Figure 8 shows a schematic representation of the hierarchical 

dependence of nested catchments, representing the connection with a line. Note that there are also 

multi-connected basins and basins with no connections. All the connected (nested) catchments 

have been considered as possible pairs of donor-target sites, characterized by a generalized 

distance among them.  

Considering all possible connections of two stations on the same path of drainage (within nested 

basins), there are 270 connections (e.g.: from Figure 8, basins A021 is nested to basin A018 even 

if there are the intermediate basins A199 or A020). Although all the basins involved are gauged 

basins, all the connections are considered "in both directions"; for instance, if basin A041 is 

"upstream" basin A051, conditions are first drawn up regarding basin A041 being a donor site and 

basin A051 a target (ungauged) site; the same is then repeated concerning basin A051 as donor 

station and basin A041 being the target (ungauged) site. This way, 540 becomes the overall number 

of available connections {t, d}. Complete list of the catchments and their characteristics are 

accessible in appendix I. 



22 
 

 

Fig. 7. Basins in the whole dataset 

 

Fig. 8. Schematic representation of the basins and the connections 
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Among the many definitions that can be used to characterize the difference between two basins, a 

definition of distance based on the basin area A, Euclidean distance between two basins, basin 

mean elevation H and a combined formula of the two A and H is proposed. In this case,  

𝐷 = log⁡(𝐴𝑚𝑎𝑥/𝐴𝑚𝑖𝑛) (5) 

With 𝐴𝑚𝑎𝑥 = max⁡[𝐴𝑡, 𝐴𝑑⁡] and 𝐴𝑚𝑖𝑛 = min⁡[𝐴𝑡, 𝐴𝑑⁡] is the first type of definition. According to 

the proximity assumption (but not generally), two basins with the same area have a null distance 

(they are the same basin), so their estimates must show coincident results (congruence hypothesis).  

The second method is based on the Euclidean distance: 

𝐷 = log⁡(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝𝑎𝑖𝑟) (6) 

Other simple definitions of distance, which employ the basin mean elevation H, and A are as 

follows: 

𝐷 = log⁡(⁡𝐻𝑚𝑎𝑥/𝐻𝑚𝑖𝑛) (7) 

 

𝐷 = log⁡(𝐴𝑚𝑎𝑥/𝐴𝑚𝑖𝑛 ⁡.⁡⁡𝐻𝑚𝑎𝑥/𝐻𝑚𝑖𝑛) (8) 

The latest definition is expected to perform satisfactorily in cases where the mean basin elevation 

and area are independent, such as when the data consist of basins from both mountainous and flat 

states.  

2-4- Model Fitting and Reliability 

2-4-1- Uncertainty of the propagated estimate 

The foundation of the AS approach could be summarized in two phases, (i) choice of an 

appropriate equation for transferring information and (ii) establishment of the threshold distance 

𝐷𝑙𝑖𝑚 which is directly related to the equation adopted above. This particular case study relies on a 
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practical equation (equation (2)), for the adoption and non-quantitative assessment of 𝐷𝑙𝑖𝑚. This 

section, therefore, considers the applicability of the simplified approach for quantifying 𝐷𝑙𝑖𝑚 and 

the overall performance of the AS approach. The AS procedure as applied to index-flood through 

Equation (2) based on the 540 pairs of catchments. 

The formula for calculating the uncertainty of 𝑃𝑡 is now explained. In simplified approach, a model 

of 𝑃𝑡 uncertainty is: 

𝐶𝑉𝑃𝑡 = (1 + 𝛼 ⋅ 𝐷) ⋅ 𝐶𝑉𝑆𝑑  (9) 

where CV stands for coefficient of variation, that is, the ratio of standard deviation to mean of the 

variable. Considering the definition of 𝑃𝑡 provided in equation (2), and the definition of CV as the 

ratio between the standard deviation and mean, we obtain 

𝜎𝑃𝑡 ⋅
𝑅𝑑

𝑅𝑡 ⋅ 𝑆𝑑
= (1 + 𝛼 ⋅ 𝐷) ⋅

𝜎𝑆𝑑
𝑆𝑑

 (10) 

And thus: 

𝜎𝑃𝑡 = (1 + 𝛼 ⋅ 𝐷) ⋅ 𝜎𝑆𝑑 ⋅
𝑅𝑡
𝑅𝑑

 (11) 

This model could be interpreted as the estimate of 𝜎𝑃𝑡 in that the standard deviation of 𝑃𝑡 is simply 

the standard deviation of the at-site estimate in the gauged site, increased proportionally by a factor 

f' accounting for the not perfectness of the AS transfer function and for the uncertainty of all the 

variables involved in equation (2). Moreover, for D → 0, it is straightforward to verify that 𝜎𝑃𝑡→ 

𝜎𝑆𝑑, thus confirming the congruence hypothesis. 

2-4-2- Parameter Estimation 

To obtain the uncertainty of the AS estimate using eq. (11), it would require, first of all, an estimate 

of the parameter 𝛼 already calibrated according to the available dataset rearranged for donor-target 
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correspondence. For pairwise basins, the residual of 𝑃𝑡 with respect to its corresponding at-site 

value 𝑆𝑡 is 

𝛿𝑡 = 𝑃𝑡 − 𝑆𝑡 (12) 

and, since both 𝑃𝑡 and 𝑆𝑡 are independent random variables, the supposed distribution of these 

residuals is 

𝛿𝑡 ∼ 𝒩(0, 𝜎𝑃𝑡
2 + 𝜎𝑆𝑡

2 ) (13) 

Substituting eq. (11) into eq. (13), we find the final expression for the residual variance parametric 

in 𝛼 as 

𝜎𝛿
2 = (1 + 𝛼 ⋅ 𝑑)2 ⋅ 𝜎𝑆𝑑

2 ⋅ (
𝑅𝑡
𝑅𝑑

)
2

+ 𝜎𝑆𝑡
2  

(14) 

The coefficient 𝛼 can be estimated using the maximum likelihood approach. If a set of n 

independent observations 𝛿1, 𝛿2, …, 𝛿𝑛 is taken into consideration, each follows a normal 

distribution:  

𝛿𝑖 ∼ 𝒩(𝜇𝛿 , 𝜎𝛿
2⁡) (15) 

The likelihood function ℒ of the residuals is the joint probability of observing the data given the 

parameters 𝜇𝛿  and 𝜎𝛿 and is supposed to follow a normal distribution of eq. (13) is as in 

ℒ(𝛿) = ∏
1

√2𝜋𝜎𝛿
2
exp⁡ [−

1

2
(
𝛿 − 𝜇𝛿
𝜎𝛿

)
2

] 
(16) 

that can be handled more easily after a logarithmic transformation: 

log⁡ ℒ(𝛿) = −
1

2
∑ [2𝜋𝜎𝛿

2 +
𝛿2

2𝜎𝛿
2] 

(17) 
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The maximum likelihood estimator can also be computed numerically through maximization of 

equation (17) or setting to zero its first derivative. 

This approach was adopted with the appropriate functions in R language. 

2-4-3- Validity of the Approach 

The main objective of the procedure described above was to employ either regional or AS 

approaches in building ungauged site projects to result in final prediction. Thus, in practical terms, 

it calls for defining the operational (O) prediction as the estimate from an AS or a regional 

procedure, depending on which is appropriate under these rules shown in table 4. 

Table. 4. Rules for the choice between regional model and operational approach 

 𝜎𝑃𝑡 ≤ 𝜎𝑅𝑡 𝜎𝑃𝑡 > 𝜎𝑅𝑡 

𝐷 ≤ 𝐷𝑙𝑖𝑚 ASE Regional 

𝐷 > 𝐷𝑙𝑖𝑚 Regional Regional 

 

The correct value of 𝐷𝑙𝑖𝑚 cannot be known a priori, but can be evaluated with an iterative process: 

• A tentative value of 𝐷𝑙𝑖𝑚 ⁡is empirically defined. 

• The AS estimate 𝑃𝑡 and the regional one, 𝑅𝑡, would then be evaluated. 

• Residuals of the AS estimates and parameter 𝛼 are computed under max-likelihood 

applicable only to the pair basins within 𝐷𝑙𝑖𝑚.  

• Based on 𝛼, AS prediction variance would be determined using equation (11) and 

compared with variance for regional prediction at that location.  

• The operational estimate is constructed by choosing the model with lower uncertainty. 

• The operational estimate errors would be compared to those of the regional model 

considered the reference model.  

• The procedure is repeated by changing the tentative 𝐷𝑙𝑖𝑚⁡value. 
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The mean error, named ME, is computed averaging the errors 

𝐸{𝑡,𝑑} =
( prediction )𝑑 − 𝑆𝑡

𝜎𝑆𝑡
 

(19) 

obtained for each pair {t, d}, where “prediction” indicates one of the three possible models. A 

representation of the iterative procedure is illustrated in Figure 9. 

 
Fig. 9. Process of iterative procedure 

Mean error will be indicated for every pair uncertainty analysis and the Root Mean Square Error 

(RMSE) will be used for the performance of the methods. 
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3- Results and discussions 

3-1- Exploratory data analysis 

An early phase in data analysis, which involves searching the dataset structure to identify patterns 

and possible anomalies before initiating complex modeling or statistical analysis, is done for the 

main variables needed for this study. In Figure 10. a, the trend in data points between the basin 

area and index flood in local values show a positive correlation, with an increase in one resulting 

in an increase in the other. Furthermore, values are apparently scattered across more than one order 

of magnitude. For example, there is a difference between 5 and 5000 on the x-axis and 5 and more 

than 2000 on the y-axis. This indicates a power-law-type relationship in which the local index 

flood rises at a decreasing rate in proportion to area increase. For the Figure 10. b, however, 

between the mean elevation against local index flood, there is no evident trend for upward or 

downward between the variables. At almost all elevations, the local index flood values are 

diverged over a fairly wide range, indicating that elevation in itself does not have a major influence 

on flood magnitude. There exists a small possibility of a trend whereby higher elevations 

(elevations above ~1500m) appear to associate with lower floods, although not strong. Perhaps 

there are other geographical or climatic factors interfering. 

 

Fig. 10. Scatter plots of the local index flood versus the basin area and mean elevation 
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A box plot for the regional and local index floods is represented in Figure 11. a. Local and Regional 

display very similar distribution characteristics regarding spread and central tendency. The median 

values (bold horizontal lines in boxes) seem to have very similar measures. The inter-quartile 

ranges (IQRs) (shaded boxes) are also comparable. Both distributions maintain a remarkably broad 

range of about 5 m³/s to over 2000 m³/s. Some data points have been found to be outliers 

(represented with open circles) above the upper end of the whiskers, which indicates a positively 

skewed distribution. The whiskers extend to relatively similar ranges in both groups. But there are 

some outliers which are more distributed in the regional model compared to the local. Figure 11. 

b. shows the scatter plot of the regional model estimate and the local values. Local index flood has 

a clear positive linear correlation with the regional index flood. Therefore, it tends to rise 

proportionally along with an increase in the local index flood. The data points are aligned closely 

around the fitted line indicating that a linear equation is a good model for the relationship of the 

two variables. Most points tend to follow the fitted line, but some are scattered. This means 

regional floods are very good estimators of local flooding. 

  

Fig. 11. (a) Box plots of the index flood for the local and regional estimate, (b) scatter plot of the regional model and 

local values 

a b 
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3-2- Along-Stream approach 

At first, eq. 1 is applied to the data in order to calculate 𝑃𝑡. In Figure 12 the standard and log-log 

plot of the propagated estimate in the target sites and corresponding at-site estimates are illustrated, 

respectively. This is for the whole pairs of the catchments without applying any distance limit. It 

can be identified multiple 𝑃𝑡 values relative to the same 𝑆𝑡 which represents multiple sources for 

local estimation because there is multiple 𝑃𝑡 estimates corresponding to the same 𝑆𝑡 value. By 

increasing the distance between donor and target, higher estimation uncertainty is easily 

recognizable. So, defining a distance threshold has to be defined for the estimation based on the 

uncertainty between the regional estimate and the along-stream approach.  

  

Fig. 12. Plot of the propagated estimate 𝑃𝑡  and the local values 𝑆𝑡 , (a) standard (b) log-log 

The iterative trial-error approach mentioned earlier was applied to the index flood statistic with 

the different equations for distance measurements (eq. 5 to 8).  

3-2-1- Distance based on Basin Area 

In Figure 13 the fitting results, shown only for this distance definition, as an example of the log-

likelihood and the corresponding alpha values and its maximum is reported for the first four 

a b 
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distance limit in the case of the distance D defined as 𝐷 = log⁡(𝐴𝑚𝑎𝑥/𝐴𝑚𝑖𝑛). The main results are 

reported in Table 5. 

 

Fig. 13. The maximum likelihood estimator of 𝛼 on the loglikelihood plot for 𝐷 ≤ 𝐷𝑙𝑖𝑚, 𝐷 = log⁡(𝐴𝑚𝑎𝑥/𝐴𝑚𝑖𝑛) 

Table. 5. Results obtained from the first definition of distance, 𝐷 = log⁡(𝐴𝑚𝑎𝑥/𝐴𝑚𝑖𝑛) 

 Results 

𝑫𝒍𝒊𝒎 0.4 1 1.6 2.2 2.8 3.4 4 4.6 5.2 5.8 6.4 

𝜶 5.58 8.4 8.78 12.16 15.24 19.29 26.08 36.91 48.92 61.71 69.53 

%𝑩𝒂𝒔𝒊𝒏𝒔 5.58 16.74 29.24 44.20 59.60 71.43 81.25 89.95 96.43 98.88 100 

%𝑩𝒂𝒔𝒊𝒏𝒔⁡(𝝈𝑷𝒕
≤ 𝝈𝑹𝒕

) 82 36.67 20.99 9.84 4.50 3.43 1.92 1.24 0.70 0.45 0.44 
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In this table percentage of the basins that lie on each distance limit and the percentage of the basins 

that have lower standard deviation for the propagation than the regional approach is illustrated. 

About 6% of the basins are in the 𝐷𝑙𝑖𝑚 = 0.4 corresponding to the area ratio of 4.05 and 16.74% 

for the area ratio equal to 7.39. Lower distances to the donor correspond to the lower uncertainties 

meaning lower standard deviation for the propagation compared to the regional model. In this case 

lower number of basin pairs are placed in the distance. For the whole dataset (𝐷𝑙𝑖𝑚 = 6.4 ) that 

means unbounded validity domain that includes all the basin pairs, only 0.44% of the propagation 

estimate can result in lower standard deviation than the regional which can be easily ignored. 

Scatter plots of the mean error for the whole pairs that lie on the distance limit are shown in Figure 

14. By increasing the distance limit the number of pairs in that limit increases but the uncertainty 

goes up as well. The up-diagonal points in the graph are basins that have proved to be an 

improvement over the regional estimates. On the other hand, the point placed below the line show 

higher error of the propagation in relation to the regional model. 
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Fig. 14. Scatter log-log plots of the regional error and the Along-Stream (AS) approach for different 𝐷𝑙𝑖𝑚 for 𝐷 = log⁡(𝐴𝑚𝑎𝑥/𝐴𝑚𝑖𝑛) 

3-2-2- Distance based on Euclidean distance 

The same procedure of trial-error is carried out for the distance limit defined by the Euclidean 

distance of the basin pairs. The outputs for the different 𝐷𝑙𝑖𝑚 are mentioned in Table 6. 
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Table. 6. Results obtained from the first definition of distance, 𝐷 = log⁡(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝𝑎𝑖𝑟) 

 Results 

𝑫𝒍𝒊𝒎 0.4 0.85 1.30 1.76 2.21 2.67 3.12 3.57 4.03 4.48 4.94 

𝜶 3.77 8.06 13.67 12.76 17.98 14.33 15.28 19.42 28.10 41.55 88.59 

%𝑩𝒂𝒔𝒊𝒏𝒔 0.46 1.17 2.34 4.68 9.13 18.03 30.44 48.47 69.55 91.34 100 

%𝑩𝒂𝒔𝒊𝒏𝒔⁡(𝝈𝑷𝒕
≤ 𝝈𝑹𝒕

) 100 100 25 12.5 5.12 3.24 1.92 0.96 0.67 0.51 0.47 

Same starting distance limit value (0.4), like the first distance definition, is chosen for this type so 

as be comparable. Only 0.46% of the basins lie in this limit but all of them have standard deviation 

lower than the regional model. The same is true for the 1.17% of the basin. But the standard 

deviation percentage drop substantially from the third limit and continues to reach almost 0.47% 

for the whole basins. 

Scatter plots of the mean errors are illustrated in Figure 15. The higher errors for the AS approach 

are shown in this threshold definition with increasing the limit but the point are more or less closer 

to the diagonal line showing relatively lower errors. 
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Fig. 15. Scatter log-log plots of the regional error and the Along-Stream (AS) approach for different 𝐷𝑙𝑖𝑚 for 𝐷 = log⁡(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝𝑎𝑖𝑟) 

3-2-3- Distance based on Basin Mean Elevation 

Starting value for distance limit for this type needs to be chosen in small numbers since from the 

distance limit of 0.35 more than half of the pairs lie in this distance as seen in Table 7. For the 

𝐷𝑙𝑖𝑚 = 0.005 only 0.44 percent of the basin pairs stand in this limit, as also can be illustrated in 

the scatter plot in Figure 19. In addition, just 25 percent of the basins lie with the standard deviation 

of the predicted target values smaller than regional ones suggesting a high error would arise for 
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this distance definition. This definition for the distance results in different behavior for the points 

(pair) distribution that may result from the average elevation considered that cannot properly 

account for the plain and mountain areas. 

Table. 7. Results obtained from the first definition of distance, 𝐷 = log⁡(𝐻𝑚𝑎𝑥/𝐻𝑚𝑖𝑛) 

 Results 

𝑫𝒍𝒊𝒎 0.005 0.35 0.7 1.04 1.39 1.74 2.09 2.43 2.78 3.13 3.48 

𝜶 1817 1355 1234 1206 1187 1161 1147 1137 1134 1131 1129 

%𝑩𝒂𝒔𝒊𝒏𝒔 0.44 54.91 79.01 88.16 90.84 94.64 96.87 98.43 98.88 99.33 100 

%𝑩𝒂𝒔𝒊𝒏𝒔⁡(𝝈𝑷𝒕
≤ 𝝈𝑹𝒕

) 25 0.2 0.14 0.126 0.122 0.118 0.23 0.226 0.225 0.224 0.223 

Scatter plots in Figure 16 also proving this fact with the highest percentage of the pairs stay below 

the diagonal line indication higher errors for the AS method. With increasing the threshold 

distance, the number of pairs increases but result in higher errors for AS approach confirming the 

non-usability of the AS approach for large distances and instead the appropriateness of regional 

method for the ungauged basin.  
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Fig. 16. Scatter log-log plots of the regional error and the Along-Stream (AS) approach for different 𝐷𝑙𝑖𝑚 for 𝐷 = log⁡(𝐻𝑚𝑎𝑥/𝐻𝑚𝑖𝑛) 

3-2-4- Distance based on Basin Area and Mean Elevation 

For the last type which is a mixture of basin area and elevation, distance limits are defined starting 

from the 0.4 which involves 2.90 percent of the basins with almost 89 percent of them having 

propagated standard deviation lower than the regional in Table 8. A decreasing trend is seen for 

the standard deviations, so, for the whole basins only 0.44 percent having smaller propagation 

standard deviation. 
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Table. 8. Results obtained from the first definition of distance, 𝐷 = log⁡(𝐴𝑚𝑎𝑥/𝐴𝑚𝑖𝑛⁡.⁡⁡𝐻𝑚𝑎𝑥/𝐻𝑚𝑖𝑛) 

 Results 

𝑫𝒍𝒊𝒎 0.4 1.06 1.72 2.38 3.04 3.7 4.36 5.02 5.68 6.34 7.0 

𝜶 5.53 6.93 7.09 10.15 13.04 16.82 24.94 31.97 41.36 53.83 59.27 

%𝑩𝒂𝒔𝒊𝒏𝒔 2.90 13.83 25 37.05 50.22 65.17 76.56 85.49 93.97 98 100 

%𝑩𝒂𝒔𝒊𝒏𝒔⁡(𝝈𝑷𝒕
≤ 𝝈𝑹𝒕

) 88.46 38.70 21.42 8.13 4.22 2.91 1.45 0.78 0.47 0.45 0.44 

These trends can also be found in Figure 17, scatter plots of normalized error defined in equation 

19. For the distance limit 0.4 most of the pairs lie above the diagonal line showing higher error for 

the regional. For the higher limits the errors stabilize and by increasing the limit, the normalized 

error increases for the AS approach. There are also some points far from the other scattered points 

around the diagonal line. These can be the pairs with the donor very far from the target indicating 

the higher error for AS method in estimating the discharge value. 
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Fig. 17. Scatter log-log plots of the regional error and the Along-Stream (AS) approach for different 𝐷𝑙𝑖𝑚  for 𝐷 = log⁡(𝐴𝑚𝑎𝑥/𝐴𝑚𝑖𝑛⁡.⁡⁡𝐻𝑚𝑎𝑥/𝐻𝑚𝑖𝑛) 

3-3- Comparison of the Results 

In order to find the optimum value for the distance limit for the operation the multiplication of the 

basins lie within the limit and the basins with the STD of the target lower than the regional is 

carried out. In figure 18 the graphs for the different distance limit definitions are shown. As seen 

in this figure, for the limit defined by the basins’ average elevation, the behavior is completely 
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different. It is related to fact that the distribution of the distance defined by average elevation is 

not homogenous, shown in Figure 19, and most of the basins lie in the almost two limits.  

 

 

Fig. 18. Graph of percentage of basins multiplied by the percentage of basins with propagation standard deviation lower than the regional 

model for different 𝐷𝑙𝑖𝑚 and different distance definitions 

This can also be seen in Table 7 that from the limit of 0.35 a sudden jump happens for it. This can 

be relevant to the elevations of the basins that results in D stays between 0 and 0.5 (Elevation ratio 

between 1 and 1.64) meaning mountainous areas cannot be taken into account related to the plain 

𝐷 = log⁡(𝐴𝑚𝑎𝑥/𝐴𝑚𝑖𝑛) 𝐷 = log⁡(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝𝑎𝑖𝑟) 

𝐷 = log⁡(𝐻𝑚𝑎𝑥/𝐻𝑚𝑖𝑛) 𝐷 = log⁡(𝐴𝑚𝑎𝑥/𝐴𝑚𝑖𝑛⁡.⁡⁡𝐻𝑚𝑎𝑥/𝐻𝑚𝑖𝑛) 
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areas. So, this definition can be considered as unrepresentative of the basins. As a result. the 

optimum distance limit and the error analysis is not carried out for it. 

 

 

Fig. 19. Distribution of the distance definitions 

From the graphs in Figure 18, the optimum values of 𝐷𝑙𝑖𝑚 are 1.6, 0.85, 1.72 for the area, Euclidean 

distance and multiplication of elevation and area, respectively. This implies the area ratio of 4.95, 

distance of 2.34 km and area ratio multiplied by elevation ratio of 5.58. The Root Mean Square 

Error of the different approaches for distance definitions are illustrated in Figure 20. In order to 

𝐷 = log⁡(𝐴𝑚𝑎𝑥/𝐴𝑚𝑖𝑛) 𝐷 = log⁡(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝𝑎𝑖𝑟) 

𝐷 = log⁡(𝐴𝑚𝑎𝑥/𝐴𝑚𝑖𝑛⁡.⁡⁡𝐻𝑚𝑎𝑥/𝐻𝑚𝑖𝑛) 

𝐷 = log⁡(𝐻𝑚𝑎𝑥/𝐻𝑚𝑖𝑛) 
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comparison the RMSE taking into account the regional prediction over the whole data set 

(Regional_mean) was considered. The curves provide a clear increasing behavior as the threshold 

distance increases. The operational method indeed proves itself to work better than simple 

propagation in that the operational always yields lower results than the propagated, meaning the 

selection criterion based on standard deviation of the propagated and regional estimates, works 

well. In other words, this is confirmation that, on average, the operational model is a good 

representative of a method to choose from the two approaches (regional or propagated). These 

results have underscored the improvement in effectiveness that results from using a limited validity 

domain in propagation of information and hence in the whole AS framework. However, it restricts 

the applicability of the whole AS approach to the basins that are close targets. So, the most suitable 

distance threshold is a compromise between two contradicted effects. The first effect penalizes 

smaller negative 𝐷𝑙𝑖𝑚 values, which allow better estimation results, since the applicability of the 

AS method would then be limited to smaller percentages of basins. The second effect enforces that 

the greater the domain of validity, the more pronounced would be the errors and therefore quite 

the opposite in terms of the operational estimator's effect. In conclusion, these graphs show the 

same results for the optimum value for the distance definitions, as shown in figure 18, but even 

better enhancement for the 𝐷𝑙𝑖𝑚 based on Euclidean distance providing 𝐷𝑙𝑖𝑚 = 1.3 is obtained by 

the RMSE. Overall, the definition based on the blending of basin area and elevation result has the 

highest 𝐷𝑙𝑖𝑚, following by the definition solely by the area and then the Euclidean distance. 
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Fig. 20. Root Mean Square Error of the propagated, operational and mean of regional for different distance thresholds 

In Figure 21, the RMSE of all the distance definitions are illustrated by considering the percentage 

of the basins that each definition can provide. As basin percentage increases, the RMSE generally 

rises for all lines. This suggests that as more of the basin data is considered, the error (RMSE) 

increases, which shows that the approaches may struggle with higher basin coverage. For the area 

ratio limit, multiplications of the area ratio and elevation ration and Euclidean distance, about 30, 

25 and 10 percent of the basins are included, respectively. These percentages are different with the 

𝐷 = log⁡(𝐴𝑚𝑎𝑥/𝐴𝑚𝑖𝑛) 

𝐷 = log⁡(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝𝑎𝑖𝑟) 

𝐷 = log⁡(𝐴𝑚𝑎𝑥/𝐴𝑚𝑖𝑛 ⁡.⁡⁡𝐻𝑚𝑎𝑥/𝐻𝑚𝑖𝑛) 
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ones mentioned in the result tables since these are obtained by considering the mean RMSE of the 

regional model in Figure 21. 

 

Fig. 21. Root Mean Square Error of the propagated, operational and mean of regional for different basin percentage 

Scatter plots for the Normalized errors are shown in Figure 22, after choosing the optimum distance 

limits. These graphs show the errors and also the percentage of the basins, visually, which were 

mentioned earlier. All points show pairs with RMSE less than the regional mean. Points under the 

line are those basins that fall inside 𝐷𝑙𝑖𝑚 and where the propagated estimate has smaller errors than 

the regional model. Conversely, the areas above the line are basins that lie within 𝐷𝑙𝑖𝑚, where the 

error in the propagated estimate exceeded that of the regional one. Most of the off-diagonal points 

lie at the bottom part of the plot, indicating that when the propagated estimate is considered 

applicable, it performs better than the corresponding regional estimate, resulting in the lower 

RMSE for the propagation method than the RMSE for the regional approach. 

(1) 𝐷 = log⁡(𝐴𝑚𝑎𝑥/𝐴𝑚𝑖𝑛) 

(2)⁡𝐷 = log⁡(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝𝑎𝑖𝑟) 

(3)⁡𝐷 = log⁡(𝐴𝑚𝑎𝑥/𝐴𝑚𝑖𝑛⁡.⁡⁡𝐻𝑚𝑎𝑥/𝐻𝑚𝑖𝑛) 
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Fig. 22. Absolute Normalized Mean Error of the operational and mean of regional for optimum distance thresholds 

4- Conclusion 

Using an Along-Stream Estimation approach, this study aimed at the improvement of flood 

prediction methods for ungauged basins with a particular focus on identifying optimal distance 

thresholds and finally reducing the uncertainty propagated in their flood estimates. The comparison 

𝐷 = log⁡(𝐴𝑚𝑎𝑥/𝐴𝑚𝑖𝑛 ⁡.⁡⁡𝐻𝑚𝑎𝑥/𝐻𝑚𝑖𝑛) 

             D (lim) = 1.72 

 

𝐷 = log⁡(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝𝑎𝑖𝑟) 

         D (lim) = 1.3 

 

𝐷 = log⁡(𝐴𝑚𝑎𝑥/𝐴𝑚𝑖𝑛) 

             D (lim) = 1.6 
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results of the different distance definitions provided valuable insights into the efficiency of various 

available methods for defining the valid domain for flood estimation. 

The comparison of the distance definitions, as detailed in Section 4, showed that the choice of 

distance threshold had a great impact on the performance of the ASE method. The three different 

distance definitions based on basin area, Euclidean distance and combined area-elevation distance 

showed different behavior in terms of percentage of basins incorporated within the distance limits 

and standard deviation of the propagated estimates. 

For the area ratio definition, the optimum distance limit turned out to be 𝐷𝑙𝑖𝑚=1.6, area ratio 4.95. 

This limited distance allowed trade-off between reduced estimation errors and the adoption of a 

reasonable percent of basins in the valid domain to secure about 30% of basins falling within this 

limit. This definition also yielded the least RMSE for the ASE method as it minimized the 

propagation error. 

The Euclidean distance definition registered a different trend where the optimum distance limit 

was 𝐷𝑙𝑖𝑚=1.3 representing a distance of 3.67 km. About 10% of the basins fell under this threshold. 

On the contrary, the combined area and elevation definition produced the validity domain and 

optimum distance limit 𝐷𝑙𝑖𝑚=1.72, which equals area ratio times elevation ratio of 5.58. This 

distance limit conferred around 25% of the basins to fall within the limit. Thus, despite it including 

more basins in the estimation process, the RMSE for this method was slightly more than that for 

the area ratio distance definitions. 
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6- Appendices 

6-1- Appendix I: List of the basins in the whole dataset 

Code Name E_delimita N_delimita Years of 
data Area Mean 

Elevation 
A001 Adda a Tirano 590211 5118616 13 903.55 2158 
A002 Adda a Fuentes 534567 5110177 100 2576.09 1847 
A007 Agogna a Novara 467981 5030915 21 400.69 332 
A008 Arda a Mignano (diga del serbatoio) 563096 4957643 77 88 755 
A009 Artanavaz (Dora Baltea) a St Oyen 360765 5075765 14 70.02 2210 
A010 Aveto (Trebbia) a Cabanne 527598 4927096 35 41.09 983 
A011 Ayasse (Dora Baltea) a Champorcher 392220 5052946 22 41.53 2364 
A012 Banna a Santena 403910 4977515 23 351.6 286 
A013 Belbo a Castelnuovo Belbo 454039 4960718 23 422.82 373 
A014 Bevera a Colombaio 520474.2 5069077.2 17 36.95 390 
A015 Borbera (Scrivia) a Baracche 500788 4951811 22 202.24 864 
A016 Borbore a San Damiano d'Asti 427132 4965795 21 84.59 240 
A017 Bormida a Cassine (Caranzano) 463786 4955433 40 1516.04 490 
A018 Bormida ad Alessandria 472015 4972514 27 2657.6 398 
A019 Bormida di Mallare a Ferrania 446089 4912508 24 51.2 603 
A020 Bormida di Millesimo a Cessole 440472 4944272 20 494.96 644 
A021 Bormida di Millesimo a Murialdo 432976 4907028 19 135.18 878 
A022 Bormida di Spigno a Mombaldone 447206 4935280 22 390.65 485 
A023 Bormida di Spigno a Valla 447475 4932026 52 66.84 464 
A024 Bousset a Tetti Porcera 375046 4896152 6 38.48 1983 
A025 Brembo a Ponte Briolo 547267 5067317 79 749.04 1181 
A026 Breuil a Alpette 336980 5064201 14 27.7 2442 
A027 Bucera a Ponte Rovine 370555 4896060 6 27.59 2117 
A029 Cannobino a Traffiume 475222 5100470 27 106.45 1096 
A030 Cervo (Sesia) a Passobreve 425027 5053441 32 75.62 1484 
A031 Cervo a Vigliano Biellese 430621 5044910 19 129.65 1254 
A032 Cervo a Quinto Vercellese 451013 5025503 19 995.23 508 
A033 Chiavanne a Alpette 336855 5064354 14 22.71 2476 
A034 Chiese Malga Bissina 617738.1 5101290.6 38 47.86 2447 
A035 Chiese a Malga Boazzo Interbacino 618050.7 5094937.6 31 100.41 2262 
A037 Chiese a Gavardo 616818 5053974 75 886.07 1248 
A038 Chisone a Soucheres Basses 339221 4988138 18 94.58 2212 
A039 Chisone a Fenestrelle 346006 4988947 19 153.51 2147 
A040 Chisone a S. Martino 364406 4971647 61 581.67 1724 
A041 Chiusella a Gurzia 402638 5030792 34 143.48 1344 
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A043 Corsaglia (Tanaro) a Presa Centrale Molline 407096 4904936 25 89.03 1520 

A044 Dolo (Secchia) a Fontanaluccia (diga del 
serbatoio) 620789.2 4903965.7 21 40.99 1314 

A047 Dora Baltea a Ponte di Mombardone 344193 5069807 14 369.68 2395 
A048 Dora Baltea ad Aosta 374507 5065996 19 1861.51 2250 
A049 Dora Baltea a Tavagnasco 408421 5044504 97 3309.22 2081 
A051 Dora Baltea a Mazz? 417900 5017085 71 3845.9 1874 
A052 Dora di Bardonecchia a Beaulard 323449 4990582 12 197.86 2202 
A053 Dora di Courmayeur a San desiderio Terme 343253 5070108 7 219.92 2443 
A054 Dora di Rhemes a Palaud 352495 5046587 5 55.26 2714 
A055 Dora di Rhemes a Notre Dame 353389 5048222 14 70.1 2653 
A056 Dora di Rhemes a Saint Georges 356155 5057480 6 119.62 2475 
A057 Dora Riparia a Ulzio (Oulx) 329337 4988965 53 260.6 2161 
A061 Dora Riparia a Torino Ponte Washington 399113 4992257 27 1320.11 1645 
A063 Enza a Sorbolo 614932 4966627 32 661.61 426 
A064 Erro (Bormida) a Sassello 456380 4926885 18 96.81 593 
A065 Evancon a Champoluc 400645 5075837 21 103.7 2625 
A068 Gesso della Barra a San Giacomo 371027 4892416 6 19.34 2099 
A069 Gesso della Valletta (Stura di Demonte) 368094 4901309 11 111.57 2095 
A071 Gesso di Entracque (Stura di Demonte) 371071 4901660 12 159.16 1870 
A072 Gesso di Monte Colombo a San Giacomo 371309 4892550 5 24.51 2171 
A073 Grana a Monterosso 366585 4918708 65 102.7 1554 
A074 Grand'Eyvia a Cretaz 369982 5053186 10 181.85 2569 
A075 Isorno a Pontetto 448127 5111126 16 69.88 1622 
A077 Lys a d'Ejola 407796 5078893 10 29.27 3092 
A078 Lys (Dora Baltea) a Gressoney St. Jean 408689 5071087 18 91.16 2624 
A079 Lys a Guillemore 411124 5058000 29 202.32 2242 
A080 Maira a Saretto 335576 4927181 17 54.19 2419 
A081 Maira a San Damiano Macra 361439 4927199 57 452.16 1888 
A082 Maira a Racconigi 394538 4957991 20 976.52 1316 
A083 Malone a Brandizzo 409949 5004166 18 330.45 431 
A084 Malone a Front 395360 5015295 25 122.58 677 
A085 Marmore a Perreres 392605 5084497 15 56.43 2692 
A086 Mastallone (Sesia) a Ponte Folle 442190 5075482 53 147 1318 
A087 Melezet a Melezet 315867 4991349 15 43.19 2380 
A088 Meris a Sant'Anna Valdieri 365656 4900453 5 23.55 2103 
A092 Nontey a Valnontey 370540 5049494 5 52.48 2783 
A093 Oglio a Tem? 613626 5122789 5 123.63 2204 
A098 Orba a CasalCermelli 470871 4964452 24 766.79 454 
A099 Orco a Pont Canavese 391506 5030005 49 611.98 1919 
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A100 Orco a San Benigno Canavese 406313 5011059 21 835.87 1550 
A101 Panaro a Bomporto 661070 4953498 60 1064.27 619 
A102 Parma a Ponte Bottego 604868.6 4962637.2 45 596.89 661 
A104 Pellice a Luserna San Giovanni 361138 4963467 8 215.62 1618 
A105 Pellice a Villafranca Piemonte 381346 4963166 20 975.4 1141 
A106 Po a Crissolo 354624 4950851 24 36.56 2223 
A107 Po a Carignano 396682 4973652 26 3934.39 1094 
A108 Po a Moncalieri (Meirano) 395654 4983807 78 5114.72 918 
A109 Po a Torino Murazzi 397499 4990961 24 5353.17 905 
A110 Po a S.Mauro Torinese 404376 4998217 26 7682.01 1073 
A111 Po a Casale Monferrato 456575 4998852 31 13694.72 1250 

A122 Rio Bagni (Stura di Demonte) a Bagni di 
Vinadio 347299 4905908 20 61.4 2128 

A124 Rio Freddo a Rio Freddo 354141 4904744 7 36.69 2124 
A125 Ripa a Bousson 327797 4977949 5 145.77 2339 
A128 Rutor (Dora Baltea) a Promise 340966 5063082 61 50.39 2508 
A130 San Bernardino a Trobaso 464983 5088294 50 129.67 1188 
A131 San Giovanni a Possaccio 465266 5089297 14 54.01 979 
A132 Sarca a Ponte Plaza 640275 5117680 27 72.01 2009 
A133 Sarca Saone 636752.6 5100794.5 10 538.12 1856 
A134 Sarca Nago 645059.1 5084439.8 14 1065.81 1477 
A135 Sarca di Nambron a Pian di Nambron 635264 5118637 44 21.15 2338 
A137 Sarca di Val Genova opera presa 633312 5114358 21 141.43 2353 
A138 Savara a Eau Rousse 360294 5047742 18 81.16 2686 
A139 Savara a Fenille 359591 5055032 6 132.11 2601 
A140 Scrivia a Isola del Cantone 496640 4943533 13 217.17 662 
A141 Scrivia a Serravalle 488989 4952417 50 615.98 681 
A142 Secchia a Ponte Cavola 621268 4918665 32 348.7 967 
A143 Secchia a Ponte Bacchello 657230 4956783 53 1389.53 651 
A145 Sermenza a Rimasco 427374 5078429 44 82 1833 
A146 Sesia a Campertogno 424762 5072125 44 171.33 2098 
A147 Sesia a Ponte Aranco 443803 5062352 17 695.98 1497 
A149 Sesia a Palestro 463769 5014565 48 2446.38 630 
A150 Strona di Omegna a Gravellona Toce 456135 5086079 20 227.49 870 
A151 Stura di Demonte a Pianche 349597 4907221 18 179.5 2066 
A152 Stura di Demonte a Gaiola 373755 4909963 45 559.18 1811 
A153 Stura di Demonte a Roccasparvera 375650 4910905 9 580.75 1780 
A154 Stura di Demonte a Fossano 398628 4930850 21 1241.1 1588 
A155 Stura di Lanzo a Lanzo 380982 5013879 74 580.89 1755 
A156 Stura di Lanzo a Torino 398253 4996117 20 884.97 1345 
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A158 Stura di Vi? a Malciaussia 354204 5007535 49 24.28 2583 
A159 Stura di Vi? a Usseglio 360063 5010116 11 79.81 2362 
A160 Tanaro a Ponte di Nava 409392 4885563 56 135.63 1611 
A161 Tanaro a Ormea 413231 4888845 13 193.49 1511 
A162 Tanaro a Garessio 421310 4894772 25 249.53 1420 
A163 Tanaro a Nucetto 425191 4910271 39 374.7 1220 
A164 Tanaro a Piantorre 418169 4918794 24 501.21 1057 
A166 Tanaro a Farigliano 412709 4929894 79 1512.76 939 
A167 Tanaro ad Alba 422966 4950663 26 3391.26 1067 
A171 Tanaro a Montecastello 475104 4977074 87 8023.68 651 
A172 Taro a S.Maria 539339 4920075 18 29.72 1049 
A173 Taro a Piane di Carniglia 548372 4925569 29 91.02 959 
A174 Taro a Pradella 559398 4925585 29 295.61 830 
A175 Taro a Ostia 567898 4930371 28 413.01 815 
A176 Taro a S. Quirico 599021 4974500 24 1414.79 646 
A177 Ticino a Bellinzona 500666 5115656 31 1525.68 1609 
A187 Toce a Cadarese 450177 5125409 15 189.41 2130 
A188 Toce a Domodossola 446394 5106791 18 921.87 1806 
A189 Toce a Candoglia 455210 5091406 78 1520.83 1667 
A190 Trebbia a due Ponti 520769 4931707 21 75.11 959 
A191 Trebbia a Valsigiara 524861 4944296 63 223.6 937 
A192 Trebbia a S. Salvatore 530364 4955188 17 640.44 944 
A194 Varaita a Castello 345132 4941739 56 67.24 2383 
A195 Varaita a Rore 358666 4937361 58 262.49 2137 
A196 Varaita a Rossana 376220 4934616 21 401.55 1784 
A198 Vobbia a Vobbietta 497957 4942898 14 55.56 709 
A199 Bormida di Millesimo a Camerana 432905 4920644 21 263.33 762 
A200 Chisola a La Loggia 395104 4980550 14 500.67 376 
A201 Germanasca a Perrero 355062 4978653 19 189.23 1888 
A202 Orba a Basaluzzo 473870 4957161 20 730.59 469 
A203 Vermenagna a Robilante 381711 4902040 12 134.87 1532 
A206 Agogna a Lomello 484222 4996705 8 691.54 280 
A207 Arno a Cavaria 485026 5059567 16 31.76 342 
A208 Bevera a Molteno 523872 5069985 12 31.03 410 
A209 Brembo a Camerata Cornello 551079.18 5082983.36 17 395.13 1460 
A211 Lambro a Caslino 518046 5075784 17 53.12 766 
A218 Mella a Bovegno 598195 5070534 7 86.21 1313 
A223 Olona a Pte Vedano 489791 5069163 6 87.77 436 
A224 Serio a Grabiasca 573386.13 5095336.98 11 92.03 1897 
A226 Seveso a Cantu Asnago 507809 5062778 14 64.99 337 



55 
 

A228 Staffora a Voghera 501379 4981871 13 287.49 606 
A229 Terdoppio a Gambolo 489275 5010486 8 340.2 167 
A230 Dora Riparia a Susa 346587 5000202 15 694.159 2033 
A231 Varaita a Polonghera 388396 4961803 10 560.208 1406 
B001 Bidente di Corniolo a Campigna 723259.5 4864070.4 18 19.69 991 

B002 Bidente di Ridracoli a Ridracoli (diga del 
serbatoio) 727948.9 4861745.6 31 36.41 892 

B003 Brasimone (Setta) a Santa Maria (diga del 
serbatoio) 672076.5 4891092.9 29 25.61 900 

B007 Lamone a Sarna 724964.5 4902564.3 43 255.89 515 
B008 Lamone a Grattacoppa 747176.9 4931719.3 15 528.99 424 
B009 Limentra di Riola (Reno) a Stagno 663593 4886374 28 67.71 879 

B010 Limentra di Sambuca (Reno) a Pavana (diga del 
serbatoio) 660342.5 4887059.7 41 39.53 912 

B011 Limentra di Treppio (Reno) a Suviana (diga del 
serbatoio) 663257.1 4888925.2 22 77.52 852 

B012 Orsigna (Reno) a Setteponti 653531.6 4880590.1 9 15.64 1081 
B013 Quaderna (Reno) a Palesio 699264.5 4920349.2 26 22.96 272 
B014 Reno a Pracchia 652825.9 4880140.7 79 41.02 908 
B015 Reno a Molino di Pallone 656956 4884951.4 26 88.73 936 
B016 Reno a Ponte della Venturina 659351.1 4888190.4 6 100.21 916 
B017 Reno a Calvenzano 672249.4 4908845 14 588.66 722 
B018 Reno a Casalecchio 682940.8 4932566.8 97 1069.54 624 
B021 Rio Faldo (Reno) a Setteponti 653761 4880489 6 3.45 929 
B022 Ronco (Fiumi Uniti) a Meldola Casa Luzia 745048.2 4889350.8 44 441.37 555 
B023 Samoggia (Reno) a Calcara 667857.9 4934037.1 57 173.6 379 
B024 Savena (Reno) a Castel dellAlpi 682163 4893848.2 21 11.79 1001 
B025 Savena (Reno) a S. Ruffillo 689254.1 4926051.7 12 160.36 519 
B026 Savio a Mercato Saraceno 756766.1 4873501.8 11 361.06 637 
B027 Savio a San Vittore 757359.8 4889665.6 44 598.05 519 
B028 Senio (Reno) a Castel Bolognese 723405 4910051 12 262.5 428 
B029 Silla (Reno) a Silla 657759.8 4893963.9 22 84.02 854 
B031 Baganza a Berceto 579024 4928486 16 16.95 1099 
B032 Trebbia a Bobbio 530451 4956017 17 653.64 938 
B034 Santerno a Borgo Tossignano 705897 4905814 27 318.53 600 
B035 Tresinaro a Ca' de' Caroli 633174 4939584 7 150.36 407 
B037 Pisciatello a Calisese 763838 4889950 8 38.91 209 
B038 Scodogna a Casella Nuova 593819 4951458 6 11.35 262 
B039 Arda a Case Bonini 561495 4955891 18 72.19 797 
B040 Senio a Casola Valsenio 710324 4900670 14 135.62 584 
B041 Stirone a Castellina Soragna 587705 4974433 19 110.52 189 
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B045 Tassobbio a Compiano 607577 4931205 18 100.65 546 
B046 Parma a Corniglio 587509 4926783 9 110.21 1078 
B048 Enza a Currada 610157 4933620 6 430.07 632 
B049 Leo a Fanano 643829 4896288 19 64.5 1245 
B050 Nure a Farini 545204 4951328 15 208.96 940 
B051 Nure a Ferriere 539545.31 4943491.92 12 48.68 1128 
B054 Acquicciola a Fiumalbo 631822.5 4893114.2 18 18.4 1459 
B056 Secchia a Gatta 616736 4917833 12 233.61 1040 
B060 Lonza a Vetto 605498 4924793 12 62.63 703 
B061 Secchia a Lugo 631693 4921525 19 694.64 915 
B062 Lamone a Marradi 709378 4883992 13 105.23 728 
B064 Riglio a Montanaro 562988 4977073 13 87.72 316 
B065 Conca a Morciano 792509 4869017 10 139.8 432 
B067 Recchio a Noceto 592560 4962555 11 40.29 264 
B073 Ceno a Ponte Ceno 548002 4932259 10 51.07 1101 
B074 Ceno a Ponte Lamberti 564477 4944700 14 331.38 861 
B076 Nure a Pontenure 560857 4984492 9 373.32 745 
B077 Panaro a Ponte Samone 653305 4913477 21 584.6 936 
B078 Sissola (Taro) a Pontestrambo 544887.73 4922603.88 5 16.72 1024 
B079 Scoltenna a Ponte Val Sasso 645235 4903956 15 272.29 1093 
B082 Crostolo a Puianello 624465 4942580 16 85.83 390 
B084 Marecchia a Rimini SS16 783772 4884995 13 521.51 559 
B085 Rio Cella a Querceto 690277.5 4902966.1 13 10.02 561 
B087 Trebbia a Rivergaro 546040 4972249 19 916.18 838 
B088 Rossenna a Prignano sulla Secchia 632814 4921190 19 185.64 715 
B090 Secchia a Rubiera SS9 642457 4945882 17 1250.2 708 
B091 Chiavenna a Saliceto 568420 4982637 19 90.06 215 
B092 Ghiara a Salsomaggiore 577973 4963067 16 30.07 335 
B093 Aveto a Salsominore 532230 4942430 17 208.73 1043 
B094 Rubicone a Savignano 771960 4888100 9 38.36 177 
B095 Cedra a Selvanizza 598416 4921685 15 79.92 1038 
B098 Sillaro a Sesto Imolese 717740 4926669 8 247.32 242 
B099 Uso a Santarcangelo 775373 4885408 15 106.83 267 
B101 Tiepido a San Donnino 655846 4939318 13 51.36 256 
B103 Panaro a Spilamberto 661370 4933387 11 746.5 814 
B106 Taro a Tornolo 550216 4926859 18 104.53 935 
B107 Reno a Vergato 668681 4906209 14 552.17 592 
B108 Enza a Vetto 605825 4927738 14 298.7 763 

 



57 
 

6-2- Appendix II: R Environment and Scripts for the index flood with D = 
log(A(max)/A(min)) 

General description 

The entire work and its results have been performed using R. R is a language implemented through 

the creation of codes and scripts in the 1990's first by Robert Gentleman and Ross Ihaka at the 

University of Auckland. This language is closely tied to an earlier language called S for Statistical 

Computational created by John Chambers, Rick Becker, and others at Bell Labs in the mid-1970s 

and made available further in the 1980s. Though it began back in 1995 when the introduction of 

the R project was established under entirely free open-source software without requiring any 

specific license to use and publish results achieved using the software. After an introductory phase 

of work under development by the R core group (where core members have access to the source 

code), the first public release was made in February 2000. Most researchers refer to R as a 

statistical system, yet the developers in the official 'Introduction to R' would prefer it to be qualified 

as an environment 'within which many classical and modern statistical techniques have been 

implemented'. Therefore, the use of 'environment' denotes its characterization as a well-planned 

and cohesive system, rather than as an aggregating collection of very specific and inflexible tools. 

In fact, R is well-known not only for the statistical analyses that can be performed but also for the 

graphical tools provided for high-quality plotting. Along with that, Base R offers an effective data 

handling and storage facility, operators for calculation on arrays (in particular, matrices), a 

collection of intermediate tools for data analysis, and graphical facilities for data display and the 

programming language itself for the implementation of conditionals, loops, and cycles.  

One, if not the most, powerful advantage of using R is the extended possibility of expanding the 

available functions and tools inside the software installation of external packages: packages are 

nothing except collections of additional functions and/or functionalities as developed by 
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independent authors who decided spontaneously to contribute to the growth of open-source 

software. Also, the base functions contained in base R are stored inside the so-called standard 

packages, which are automatically loaded when the booting of the software occurs. Another set of 

packages (the recommended packages) are also already present in base R, but they are not 

automatically loaded. Every additional package has, instead, to be downloaded first and installed 

from one of the official sources using the function "install.packages" (the biggest repository is 

CRAN- Comprehensive R archive network) and then loaded for use with the dedicated function 

"library". 

The realization of an R package has to comply with some rather stringent rules to meet the 

necessary requirements for a quick and easy handling by the users. In its most restricted sense, a 

package (which practically is a directory) comprises the actual code for the additional functions 

(inside a directory named R), a description of the package (containing information such as name, 

version, authors, and other metadata) inside a plain text file with no extension and a distilled 

description of the function included (that may be visualized with the "help" command in the 

software). Other additional elements can be present (and must be present to be compliant with the 

requirements to be published in CRAN) like example data or indications of required or suggested 

complementary packages, but they will not be here described in detail. A complete description of 

the creation of an entire package can be found in the "Writing R extensions" official guidelines. 

R Studio 

Very important to realize that R is a language that doesn't carry any graphical interface on its own 

(in the same way as the LINUX operative system works from line command). Since most 

calculations have been conducted on a device running on the Windows operating system, some 

additional software has been used. R Studio is just an integrated development environment for R, 
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which has a full graphical interface for easier and more direct use (not different from other software 

like MATLAB). 

It seamlessly integrates into a console for writing and modifying code, together with a syntax-

highlighting editor and tools for plotting (with direct visualization), debugging, and workspace 

management (Figure 10). 

 

Fig. 23. R-Studio visual interface 

Scripts used for the index flood and for the 𝐷 = log⁡(𝐴𝑚𝑎𝑥/𝐴𝑚𝑖𝑛). 

 
library(xlsx) 

 

Basin_data <- read.xlsx('local_vs_regional_Lmoments226sites20231103.xlsx', 13) 

 

Basin_name <- apply(Basin_data, 1, function(x) x[!is.na(x)])  

 

S_data <- read.xlsx('local_vs_regional_Lmoments226sites20231103.xlsx', 8) 

R_data <- read.xlsx('local_vs_regional_Lmoments226sites20231103.xlsx', 10) 

 

S_data <- apply(S_data, 2, function(col) c(col[col != ""])) 

R_data <- apply(R_data, 2, function(col) c(col[col != ""])) 

 

S_data <- lapply(S_data, function(col) as.numeric(col)) 

R_data <- lapply(R_data, function(col) as.numeric(col)) 
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names(S_data) <- NULL 

names(R_data) <- NULL 

 

Basin_name1 <- unique(unlist(Basin_name)) 

Basin_name2 <- sort(Basin_name1) 

 

n <- length(Basin_name2) 

matrix_P_t <- matrix(NA, nrow = n, ncol = n) 

 

rownames(matrix_P_t) <- Basin_name2  

colnames(matrix_P_t) <- Basin_name2 

 

for (i in seq_along(Basin_name)) { 

  basins <- Basin_name[[i]] 

  qins <- S_data[[i]] 

  rs <- R_data[[i]] 

   

  for (j in seq_along(basins)) { 

    donor <- basins[j] 

    qin_donor <- qins[j] 

    r_donor <- rs[j] 

     

    for (k in seq_along(basins)) { 

      if (j != k) { 

        target <- basins[k] 

        r_target <- rs[k] 

        # Apply the formula 

        matrix_P_t[target, donor] <- (r_target / r_donor) * qin_donor 

      } 

    } 

  } 

} 

 

 

matrix_st <- matrix(NA, nrow = n, ncol = n) 

rownames(matrix_st) <- Basin_name2 

colnames(matrix_st) <- Basin_name2 

 

for (i in seq_along(Basin_name)) { 

  basins <- Basin_name[[i]] 

  qins <- S_data[[i]] 

  rs <- R_data[[i]] 

   

  for (j in seq_along(basins)) { 

    donor <- basins[j] 

    qin_donor <- qins[j] 

    r_donor <- rs[j] 

     

    for (k in seq_along(basins)) { 

      if (j != k) { 

        target <- basins[k] 

        target_index <- match(target, Basin_name2) 

        donor_index <- match(donor, Basin_name2) 

         

        if (!is.na(matrix_P_t[target, donor])) { 

          matrix_st[target_index, donor_index] <- qin_donor 

        } 

      } 

    } 

  } 

} 

 

 

 

# Plotting P(t) vs S(t) with a 45-degree line 

p_values <- as.vector(matrix_P_t) 

s_values <- as.vector(matrix_st) 

 

valid_indices <- !is.na(p_values) & !is.na(s_values) 

p_values <- p_values[valid_indices] 
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s_values <- s_values[valid_indices] 

 

# Create the scatter plot 

plot(s_values, p_values,  

     main = "Scatter Plot of S(t) vs P(t)",  

     xlab = "S(t)", ylab = "P(t)",  

     pch = 16, col = "blue",  

     xlim = range(c(s_values, p_values)),  

     ylim = range(c(s_values, p_values))) 

 

abline(a = 0, b = 1, col = "red", lty = 2) 

grid() 

 

 

# scatter plot 

plot(s_values, p_values,  

     log = "xy",   

     main = "log-log Scatter Plot of S(t) vs P(t)",  

     xlab = "log(S(t))", ylab = "log(P(t))",  

     pch = 16, col = "blue",  

     xlim = range(c(s_values, p_values)),  

     ylim = range(c(s_values, p_values))) 

 

abline(a = 0, b = 1, col = "red", lty = 2) 

grid() 

 

 

####  D  ###### 

 

Area <- read.xlsx('local_vs_regional_Lmoments226sites20231103.xlsx', 12) 

Area <- apply(Area, 2, function(col) c(col[col != ""])) 

Area <- lapply(Area, function(col) as.numeric(col)) 

names(Area) <- NULL 

 

Basin_name1 <- unique(unlist(Basin_name)) 

Basin_name2 <- sort(Basin_name1) 

 

basin_areas <- unlist(lapply(seq_along(Basin_name), function(i) { 

  setNames(Area[[i]], Basin_name[[i]]) 

})) 

area_map <- basin_areas[Basin_name2] 

 

 

##### Area target ##### 

 

Area_data <- read.xlsx('local_vs_regional_Lmoments226sites20231103.xlsx', 12) 

 

matrix_area <- matrix(NA, nrow = n, ncol = n) 

 

rownames(matrix_area) <- Basin_name2 

colnames(matrix_area) <- Basin_name2 

 

for (i in seq_along(Basin_name)) { 

  basins <- Basin_name[[i]]     

  qin_values <- Area_data[[i]]    

   

  for (j in seq_along(basins)) { 

    donor <- basins[j] 

    qin_reg_donor <- qin_values[j] 

     

    for (k in seq_along(basins)) { 

      if (j != k) { 

        target <- basins[k] 

        matrix_area[donor, target] <- qin_reg_donor 

      } 

    } 

  } 

} 

 

matrix_area <- matrix(as.numeric(matrix_area),  

                      nrow = nrow(matrix_area),  
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                      ncol = ncol(matrix_area),  

                      dimnames = list(rownames(matrix_area), colnames(matrix_area))) 

 

 

# Initialize the D matrix 

n <- length(Basin_name2) 

matrix_D <- matrix(NA, nrow = n, ncol = n) 

rownames(matrix_D) <- Basin_name2 

colnames(matrix_D) <- Basin_name2 

 

for (i in seq_along(Basin_name)) { 

  basins <- Basin_name[[i]] 

  for (j in seq_along(basins)) { 

    donor <- basins[j] 

    for (k in seq_along(basins)) { 

      if (j != k) { 

        target <- basins[k] 

         

        A_donor <- area_map[donor] 

        A_target <- area_map[target] 

        A_max <- max(A_donor, A_target) 

        A_min <- min(A_donor, A_target) 

         

        matrix_D[target, donor] <- log(A_max / A_min) 

      } 

    } 

  } 

} 

 

max_value <- max(matrix_D, na.rm = TRUE) 

 

min_value <- min(matrix_D, na.rm = TRUE) 

 

cat("Maximum value:", max_value, "\n") 

cat("Minimum value:", min_value, "\n") 

 

# Threshold value 

thresholds <- seq(0.4, 6.4, by = 0.6)  

threshold_vector <- vector("numeric", length(thresholds)) 

maximum_vector <- vector("numeric", length(thresholds)) 

pt_list <- list() 

st_list <- list() 

sigma_st_list <- list() 

rt_list <- list() 

sigma_pt_list <- list() 

sigma_rt_list <- list() 

 

###### Big LOOP starts 

 

for (ii in seq_along(thresholds)) { 

  threshold <- thresholds[ii] 

   

  # Function to filter D_matrix based on a threshold 

  filter_D_matrix <- function(D_matrix, threshold) { 

    # Create a copy of the D_matrix to preserve the structure 

    filtered_matrix <- D_matrix 

     

    filtered_matrix[filtered_matrix >= threshold] <- NA 

     

    return(filtered_matrix) 

  } 

   

  filtered_D_matrix <- filter_D_matrix(matrix_D, threshold) 

   

  count_non_na <- function(matrix) { 

    sum(!is.na(matrix)) 

  } 

   

  non_na_count <- count_non_na(filtered_D_matrix) 

   

  # Print the result 



63 
 

  cat("The number of cells containing a number (excluding NA):", non_na_count, "\n") 

   

  ##### DELTA ######### 

   

  delta <- matrix_P_t - matrix_st 

   

  ##### Filtered DELTA ######### 

   

  filtered_delta <- matrix(NA, nrow = nrow(delta), ncol = ncol(delta), 

                           dimnames = list(rownames(delta), colnames(delta))) 

   

  for (i in 1:nrow(delta)) { 

    for (j in 1:ncol(delta)) { 

       

      if (!is.na(filtered_D_matrix[i, j])) { 

        filtered_delta[i, j] <- delta[i, j] 

      } 

    } 

  } 

   

  filtered_delta <- matrix(as.numeric(filtered_delta),  

                           nrow = nrow(filtered_delta),  

                           ncol = ncol(filtered_delta),  

                           dimnames = list(rownames(filtered_delta), colnames(filtered_delta))) 

   

  ##### Filtered P(t) ######### 

   

  filtered_pt <- matrix(NA, nrow = nrow(matrix_P_t), ncol = ncol(matrix_P_t), 

                        dimnames = list(rownames(matrix_P_t), colnames(matrix_P_t))) 

   

  for (i in 1:nrow(matrix_P_t)) { 

    for (j in 1:ncol(matrix_P_t)) { 

      if (!is.na(filtered_D_matrix[i, j])) { 

        filtered_pt[i, j] <- matrix_P_t[i, j] 

      } 

    } 

  } 

   

  filtered_pt <- matrix(as.numeric(filtered_pt),  

                        nrow = nrow(filtered_pt),  

                        ncol = ncol(filtered_pt),  

                        dimnames = list(rownames(filtered_pt), colnames(filtered_pt))) 

   

  pt_list[[ii]] <- filtered_pt 

   

  ##### Filtered S(t) ######### 

   

  filtered_st <- matrix(NA, nrow = nrow(matrix_st), ncol = ncol(matrix_st), 

                        dimnames = list(rownames(matrix_st), colnames(matrix_st))) 

   

  for (i in 1:nrow(matrix_st)) { 

    for (j in 1:ncol(matrix_st)) { 

      if (!is.na(filtered_D_matrix[i, j])) { 

        filtered_st[i, j] <- matrix_st[i, j] 

      } 

    } 

  } 

   

  filtered_st <- matrix(as.numeric(filtered_st),  

                        nrow = nrow(filtered_st),  

                        ncol = ncol(filtered_st),  

                        dimnames = list(rownames(filtered_st), colnames(filtered_st))) 

   

  st_list[[ii]] <- filtered_st 

   

  ##### Reginal donor ##### 

   

  Qin_reg <- read.xlsx('local_vs_regional_Lmoments226sites20231103.xlsx', 10) 

   

  matrix_reg_d <- matrix(NA, nrow = n, ncol = n) 
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  rownames(matrix_reg_d) <- Basin_name2 

  colnames(matrix_reg_d) <- Basin_name2 

   

  for (i in seq_along(Basin_name)) { 

    basins <- Basin_name[[i]]     

    qin_values <- Qin_reg[[i]]    

     

    for (j in seq_along(basins)) { 

      donor <- basins[j] 

      qin_reg_donor <- qin_values[j] 

       

      for (k in seq_along(basins)) { 

        if (j != k) { 

          target <- basins[k] 

           

          matrix_reg_d[target, donor] <- qin_reg_donor 

        } 

      } 

    } 

  } 

   

  matrix_reg_d <- matrix(as.numeric(matrix_reg_d),  

                         nrow = nrow(matrix_reg_d),  

                         ncol = ncol(matrix_reg_d),  

                         dimnames = list(rownames(matrix_reg_d), colnames(matrix_reg_d))) 

   

  ##### Filtered regional donor ####### 

   

  filtered_reg_d <- matrix(NA, nrow = nrow(matrix_reg_d), ncol = ncol(matrix_reg_d), 

                           dimnames = list(rownames(matrix_reg_d), colnames(matrix_reg_d))) 

   

   

  for (i in 1:nrow(matrix_reg_d)) { 

    for (j in 1:ncol(matrix_reg_d)) { 

      # If the cell in filtered_D_matrix is not NA, copy the value from matrix_qin_reg 

      if (!is.na(filtered_D_matrix[i, j])) { 

        filtered_reg_d[i, j] <- matrix_reg_d[i, j] 

      } 

    } 

  } 

   

  filtered_reg_d <- matrix(as.numeric(filtered_reg_d),  

                           nrow = nrow(filtered_reg_d),  

                           ncol = ncol(filtered_reg_d),  

                           dimnames = list(rownames(filtered_reg_d), colnames(filtered_reg_d))) 

   

   

  ######## regional target ###### 

   

  matrix_reg_t <- matrix(NA, nrow = n, ncol = n, dimnames = list(Basin_name2, Basin_name2)) 

   

  for (i in seq_along(Basin_name)) { 

    basins <- Basin_name[[i]]     

    qin_values <- Qin_reg[[i]]   

     

    for (j in seq_along(basins)) { 

      donor <- basins[j] 

      qin_reg_donor <- qin_values[j] 

       

      for (k in seq_along(basins)) { 

        if (j != k) { 

          target <- basins[k] 

           

          matrix_reg_t[donor, target] <- qin_reg_donor 

        } 

      } 

    } 

  } 

   

  matrix_reg_t <- matrix(as.numeric(matrix_reg_t),  

                         nrow = nrow(matrix_reg_t),  
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                         ncol = ncol(matrix_reg_t),  

                         dimnames = list(rownames(matrix_reg_t), colnames(matrix_reg_t))) 

   

   

  ##### Filtered regional target ####### 

   

  filtered_reg_t <- matrix(NA_real_, nrow = nrow(matrix_reg_t), ncol = ncol(matrix_reg_t), 

                           dimnames = list(rownames(matrix_reg_t), colnames(matrix_reg_t))) 

   

  for (i in 1:nrow(matrix_reg_t)) { 

    for (j in 1:ncol(matrix_reg_t)) { 

      if (!is.na(filtered_D_matrix[i, j])) { 

        filtered_reg_t[i, j] <- matrix_reg_t[i, j] 

      } 

    } 

  } 

   

  rt_list[[ii]] <- filtered_reg_t 

   

  ##### sigma S donor ##### 

   

  sigma_S_d <- read.xlsx('local_vs_regional_Lmoments226sites20231103.xlsx', 15) 

   

  matrix_sigma_S_d <- matrix(NA, nrow = n, ncol = n) 

   

  rownames(matrix_sigma_S_d) <- Basin_name2 

  colnames(matrix_sigma_S_d) <- Basin_name2 

   

  for (i in seq_along(Basin_name)) { 

    basins <- Basin_name[[i]]     

    sigma_qin_values <- sigma_S_d[[i]]   

     

    for (j in seq_along(basins)) { 

      donor <- basins[j] 

      sigma_qin_donor <- sigma_qin_values[j] 

       

      for (k in seq_along(basins)) { 

        if (j != k) { 

          target <- basins[k] 

           

          matrix_sigma_S_d[target, donor] <- sigma_qin_donor 

        } 

      } 

    } 

  } 

   

  matrix_sigma_S_d <- matrix(as.numeric(matrix_sigma_S_d),  

                             nrow = nrow(matrix_sigma_S_d),  

                             ncol = ncol(matrix_sigma_S_d),  

                             dimnames = list(rownames(matrix_sigma_S_d), 

colnames(matrix_sigma_S_d))) 

   

  ##### Filtered sigma S donor ####### 

   

  filtered_sigma_s_d <- matrix(NA, nrow = nrow(matrix_sigma_S_d), ncol = ncol(matrix_sigma_S_d), 

                               dimnames = list(rownames(matrix_sigma_S_d), 

colnames(matrix_sigma_S_d))) 

   

   

  for (i in 1:nrow(matrix_sigma_S_d)) { 

    for (j in 1:ncol(matrix_sigma_S_d)) { 

      if (!is.na(filtered_D_matrix[i, j])) { 

        filtered_sigma_s_d[i, j] <- matrix_sigma_S_d[i, j] 

      } 

    } 

  } 

   

  filtered_sigma_s_d <- matrix(as.numeric(filtered_sigma_s_d),  

                               nrow = nrow(filtered_sigma_s_d),  

                               ncol = ncol(filtered_sigma_s_d),  
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                               dimnames = list(rownames(filtered_sigma_s_d), 

colnames(filtered_sigma_s_d))) 

   

  ##### sigma S target ##### 

   

  sigma_s_t <- read.xlsx('local_vs_regional_Lmoments226sites20231103.xlsx', 15) 

   

  matrix_sigma_s_t <- matrix(NA, nrow = n, ncol = n) 

   

  rownames(matrix_sigma_s_t) <- Basin_name2 

  colnames(matrix_sigma_s_t) <- Basin_name2 

   

  for (i in seq_along(Basin_name)) { 

    basins <- Basin_name[[i]]     

    sigma_qin_values <- sigma_s_t[[i]]    

     

    for (j in seq_along(basins)) { 

      donor <- basins[j] 

      sigma_qin_donor <- sigma_qin_values[j] 

       

      for (k in seq_along(basins)) { 

        if (j != k) { 

          target <- basins[k] 

           

          matrix_sigma_s_t[donor, target] <- sigma_qin_donor 

        } 

      } 

    } 

  } 

   

  matrix_sigma_s_t <- matrix(as.numeric(matrix_sigma_s_t),  

                             nrow = nrow(matrix_sigma_s_t),  

                             ncol = ncol(matrix_sigma_s_t),  

                             dimnames = list(rownames(matrix_sigma_s_t), 

colnames(matrix_sigma_s_t))) 

   

  ##### Filtered sigma S target ####### 

   

  filtered_sigma_s_t <- matrix(NA, nrow = nrow(matrix_sigma_s_t), ncol = ncol(matrix_sigma_s_t), 

                               dimnames = list(rownames(matrix_sigma_s_t), 

colnames(matrix_sigma_s_t))) 

   

  for (i in 1:nrow(matrix_sigma_s_t)) { 

    for (j in 1:ncol(matrix_sigma_s_t)) { 

      if (!is.na(filtered_D_matrix[i, j])) { 

        filtered_sigma_s_t[i, j] <- matrix_sigma_s_t[i, j] 

      } 

    } 

  } 

   

   

  filtered_sigma_s_t <- matrix(as.numeric(filtered_sigma_s_t),  

                               nrow = nrow(filtered_sigma_s_t),  

                               ncol = ncol(filtered_sigma_s_t),  

                               dimnames = list(rownames(filtered_sigma_s_t), 

colnames(filtered_sigma_s_t))) 

   

  sigma_st_list[[ii]] <- filtered_sigma_s_t 

   

   

  ##### Alpha ######## 

   

  valid_indices <- !is.na(filtered_delta) & !is.na(filtered_D_matrix) & !is.na(filtered_reg_t) & 

!is.na(filtered_reg_d)& !is.na(filtered_sigma_s_t)& !is.na(filtered_sigma_s_d)    

   

  # Filter out the NA values using the valid indices 

  deltas <- filtered_delta[valid_indices] 

  D <- filtered_D_matrix[valid_indices] 

  Rt <- filtered_reg_t[valid_indices] 

  Rd <- filtered_reg_d[valid_indices] 

  sigma_St <- filtered_sigma_s_t[valid_indices] 
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  sigma_sd <- filtered_sigma_s_d[valid_indices] 

   

  loglik <- function(alpha, deltas, D, Rt, Rd, sigma_sd, sigma_St) { 

     

    variance <- ((1 + alpha * D)^2 * (sigma_sd)^2 * (Rt / Rd)^2) + sigma_St^2 

     

    log_likelihood <- sum(dnorm(deltas, mean = 0, sd = sqrt(variance), log = TRUE)) 

     

    return(log_likelihood) 

  } 

   

  #optimization to find the best alpha 

  result <- optimize(loglik, interval = c(0, 150), deltas = deltas, D = D,  

                     Rt = Rt, Rd = Rd, sigma_sd = sigma_sd, sigma_St = sigma_St, maximum = TRUE) 

   

  cat("The optimal alpha is:", result$maximum, "\n") 

  cat("The maximum log-likelihood is:", result$objective, "\n") 

   

  threshold_vector[ii] <- threshold 

  maximum_vector[ii] <- result$maximum 

   

  ####### plot alpha ######### 

   

  alphas <- seq(0, 150, by = 0.05)   

  log_lik_values <- sapply(alphas, function(alpha) { 

    loglik(alpha, deltas, D, Rt, Rd, sigma_sd = sigma_sd, sigma_St = sigma_St) 

  }) 

   

  plot(alphas, log_lik_values, type = "l", col = "blue", lwd = 2, 

       main = "Log-likelihood vs Alpha", 

       xlab = "Alpha", ylab = "Log-likelihood") 

  abline(v = result$maximum, col = "red", lty = 2)  # Add a line for the optimal alpha 

   

  points(result$maximum, max(log_lik_values), col = "red", pch = 19) 

   

  text(result$maximum, max(log_lik_values),  

       labels = paste0("Alpha = ", round(result$maximum, 4)), 

       pos = 4, col = "red") 

   

  legend("topright",  

         legend = paste("D(lim) =", threshold_vector[ii]),   

         bty = "n", cex = 1, text.col = "black",  

         inset = c(0, 0.1))  # Moves the legend downward 

   

   

  ####### sigma_pt ######### 

   

  optimal_alpha <- maximum_vector[ii] 

   

  sigma_pt <- (1 + optimal_alpha * filtered_D_matrix) * filtered_sigma_s_d * (filtered_reg_t / 

filtered_reg_d) 

   

  sigma_pt_list[[ii]] <- sigma_pt 

   

  sigma_pt_array <- simplify2array(sigma_pt_list) 

   

   

  #####  sigma R target ####### 

   

  sigma_R_t <- read.xlsx('local_vs_regional_Lmoments226sites20231103.xlsx', 17) 

   

  matrix_sigma_R_t <- matrix(NA, nrow = n, ncol = n) 

   

  rownames(matrix_sigma_R_t) <- Basin_name2 

  colnames(matrix_sigma_R_t) <- Basin_name2 

   

  for (i in seq_along(Basin_name)) { 

    basins <- Basin_name[[i]]    

    sigma_qin_values <- sigma_R_t[[i]]   

     

    for (j in seq_along(basins)) { 
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      donor <- basins[j] 

      sigma_qin_donor <- sigma_qin_values[j] 

       

      for (k in seq_along(basins)) { 

        if (j != k) { 

          target <- basins[k] 

           

          matrix_sigma_R_t[donor, target] <- sigma_qin_donor 

        } 

      } 

    } 

  } 

   

  matrix_sigma_R_t <- matrix(as.numeric(matrix_sigma_R_t),  

                             nrow = nrow(matrix_sigma_R_t),  

                             ncol = ncol(matrix_sigma_R_t),  

                             dimnames = list(rownames(matrix_sigma_R_t), 

colnames(matrix_sigma_R_t))) 

   

  ##### Filtered sigma R target ####### 

   

  filtered_sigma_R_t <- matrix(NA, nrow = nrow(matrix_sigma_R_t), ncol = ncol(matrix_sigma_R_t), 

                               dimnames = list(rownames(matrix_sigma_R_t), 

colnames(matrix_sigma_R_t))) 

   

  for (i in 1:nrow(matrix_sigma_R_t)) { 

    for (j in 1:ncol(matrix_sigma_R_t)) { 

       

      if (!is.na(filtered_D_matrix[i, j])) { 

        filtered_sigma_R_t[i, j] <- matrix_sigma_R_t[i, j] 

      } 

    } 

  } 

   

   

  filtered_sigma_R_t <- matrix(as.numeric(filtered_sigma_R_t),  

                               nrow = nrow(filtered_sigma_R_t),  

                               ncol = ncol(filtered_sigma_R_t),  

                               dimnames = list(rownames(filtered_sigma_R_t), 

colnames(filtered_sigma_R_t))) 

  sigma_rt_list[[ii]] <- filtered_sigma_R_t 

   

} 

 

###### Big LOOP ends 

 

# Print the results 

cat("Threshold values: ", threshold_vector, "\n") 

cat("Maximum values for each threshold: ", maximum_vector, "\n") 

 

 

############### 

 

# Plot the line 

plot(threshold_vector, maximum_vector, type = "l", col = "blue", lwd = 2, 

     main = "D_lim and Alpha", 

     xlab = "Distance Limit (log (A_max/A_min))", ylab = "Alpha") 

 

points(threshold_vector, maximum_vector, col = "red", pch = 16)  

 

 

###### percentage of basin only by threshold #### 

 

for (j in 1:length(threshold_vector)) { 

  threshold <- thresholds[j] 

   

  # Function to filter D_matrix based on a threshold 

  filter_D_matrix <- function(D_matrix, threshold) { 

    # Create a copy of the D_matrix to preserve the structure 

    filtered_matrix <- D_matrix 
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    filtered_matrix[filtered_matrix >= threshold] <- NA 

     

    return(filtered_matrix) 

  } 

   

  filtered_D_matrix <- filter_D_matrix(matrix_D, threshold) 

   

  valid_cells <- !is.na(matrix_D) 

   

  non_na_filtered_D <- sum(!is.na(filtered_D_matrix[valid_cells])) 

   

  total_valid_cells <- sum(valid_cells) 

   

  percentage_non_na <- (non_na_filtered_D / total_valid_cells) * 100 

   

  # Print the result 

  cat("Percentage of non-NA cells in 'filtered_D_matrix' corresponding to 'matrix_D':", 

percentage_non_na, "%\n") 

} 

 

####### percentage of sigma_pt <= sigma_R_t ####### 

 

for (k in 1:length(threshold_vector)) { 

   

  comparison <- sigma_pt_list[[k]] <= sigma_rt_list[[k]] 

   

  valid_comparison <- !is.na(comparison) 

   

  percentage_correct <- sum(comparison[valid_comparison]) / sum(valid_comparison) * 100 

   

  # Print the result 

  cat("Percentage of cells where sigma_pt <= matrix_sigma_R_t:", percentage_correct, "%\n") 

} 

 

 

######### Error Index for ASE ##### 

 

error_list_ASE <- list() 

mean_error_list_ASE <- list() 

 

for (l in 1:length(thresholds)) { 

  error_ASE <- (pt_list[[l]]-st_list[[l]])/sigma_st_list[[l]] 

  error_list_ASE[[l]] <- error_ASE 

   

  mean_error_ASE <- mean(error_list_ASE[[l]], na.rm = TRUE) 

  mean_error_list_ASE[[l]] <- mean_error_ASE 

} 

 

 

######### Error Index for Regional ##### 

 

error_list_Reg <- list() 

mean_error_list_Reg <- list() 

 

for (l in 1:length(thresholds)) { 

  error_Reg <- (rt_list[[l]]-st_list[[l]])/sigma_st_list[[l]] 

  error_list_Reg[[l]] <- error_Reg 

   

  mean_error_Reg <- mean(error_list_Reg[[l]], na.rm = TRUE) 

  mean_error_list_Reg[[l]] <- mean_error_Reg 

} 

 

####### 

 

print(sapply(mean_error_list_ASE, function(x) x)) 

print(sapply(mean_error_list_Reg, function(x) x)) 

 

 

###### Error plot 

 

for (u in seq_along(error_list_ASE)) { 
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  matrix_ASE <- error_list_ASE[[u]] 

  matrix_Reg <- error_list_Reg[[u]] 

   

  vec_ASE <- as.vector(matrix_ASE) 

  vec_Reg <- as.vector(matrix_Reg) 

   

  valid_indices <- !is.na(vec_ASE) & !is.na(vec_Reg) 

   

  filtered_ASE <- vec_ASE[valid_indices] 

  filtered_Reg <- vec_Reg[valid_indices] 

   

  if (length(filtered_ASE) > 0 && length(filtered_Reg) > 0) { 

     

    if (!interactive()) dev.new() 

     

    # Create scatter plot 

    plot(abs(filtered_ASE), abs(filtered_Reg), 

         log = "xy",  # Log scale on both axes 

         xlab = paste("AS error"),  

         ylab = paste("Reg error"), 

         pch = 16, col = "blue") 

    legend("topleft",  

           legend = paste("D(lim) =", threshold_vector[u]),   

           bty = "n", cex = 1, text.col = "black",  

           inset = c(0, 0))  # Moves the legend downward 

     

    abline(a = 0, b = 1, col = "red", lty = 2)  # Red dashed line 

  } 

} 

 

 

##### Extract values for OASE  

 

extracted_pt_list <- list() 

extracted_st_list <- list() 

extracted_sigma_st_list <- list() 

 

for (k in seq_along(sigma_pt_list)) { 

   

  if (!all(dim(sigma_rt_list[[k]]) == dim(sigma_pt_list[[k]]), 

           dim(sigma_pt_list[[k]]) == dim(pt_list[[k]]), 

           dim(sigma_pt_list[[k]]) == dim(st_list[[k]]), 

           dim(sigma_pt_list[[k]]) == dim(sigma_st_list[[k]]))) { 

    stop("Matrices are not of the same size.") 

  } 

   

  row_names <- rownames(sigma_pt_list[[k]]) 

  col_names <- colnames(sigma_pt_list[[k]]) 

   

  comparison <- sigma_pt_list[[k]] <= sigma_rt_list[[k]] 

   

  valid_indices <- !is.na(comparison) & comparison 

   

  extracted_pt <- matrix(NA, nrow = nrow(pt_list[[k]]), ncol = ncol(pt_list[[k]])) 

  extracted_st <- matrix(NA, nrow = nrow(st_list[[k]]), ncol = ncol(st_list[[k]])) 

  extracted_sigma_st <- matrix(NA, nrow = nrow(sigma_st_list[[k]]), ncol = 

ncol(sigma_st_list[[k]])) 

   

  extracted_pt[valid_indices] <- pt_list[[k]][valid_indices] 

  extracted_st[valid_indices] <- st_list[[k]][valid_indices] 

  extracted_sigma_st[valid_indices] <- sigma_st_list[[k]][valid_indices] 

   

  rownames(extracted_pt) <- row_names 

  colnames(extracted_pt) <- col_names 

  rownames(extracted_st) <- row_names 

  colnames(extracted_st) <- col_names 

  rownames(extracted_sigma_st) <- row_names 

  colnames(extracted_sigma_st) <- col_names 

   

  extracted_pt_list[[k]] <- extracted_pt 
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  extracted_st_list[[k]] <- extracted_st 

  extracted_sigma_st_list[[k]] <- extracted_sigma_st 

} 

 

 

######### For operational, Adding values for which the sigma pt >= sigma rt 

 

for (k in seq_along(extracted_pt_list)) { 

   

  if (!is.null(pt_list[[k]]) && all(dim(pt_list[[k]]) == dim(extracted_pt_list[[k]]))) { 

     

    na_indices <- is.na(extracted_pt_list[[k]]) 

    extracted_pt_list[[k]][na_indices] <- rt_list[[k]][na_indices] 

  }  

   

  if (!is.null(st_list[[k]]) && all(dim(st_list[[k]]) == dim(extracted_st_list[[k]]))) { 

     

    na_indices <- is.na(extracted_st_list[[k]]) 

    extracted_st_list[[k]][na_indices] <- st_list[[k]][na_indices] 

  }  

   

  if (!is.null(sigma_st_list[[k]]) && all(dim(sigma_st_list[[k]]) == 

dim(extracted_sigma_st_list[[k]]))) { 

     

    na_indices <- is.na(extracted_sigma_st_list[[k]]) 

    extracted_sigma_st_list[[k]][na_indices] <- sigma_st_list[[k]][na_indices] 

  }  

} 

 

######### 

 

for (k in seq_along(sigma_pt_list)) { 

  num_non_na <- sum(!is.na(extracted_pt_list[[k]])) 

   

  cat("Number of non-NA cells in the matrix:", num_non_na, "\n") 

} 

 

 

######### Error Index for OASE ##### 

 

error_list_OASE <- list() 

mean_error_list_OASE <- list() 

 

for (l in 1:length(thresholds)) { 

  error_OASE <- (extracted_pt_list[[l]]-extracted_st_list[[l]])/extracted_sigma_st_list[[l]] 

  error_list_OASE[[l]] <- error_OASE 

   

  mean_error_OASE <- mean(error_list_OASE[[l]], na.rm = TRUE) 

  mean_error_list_OASE[[l]] <- mean_error_OASE 

} 

 

print(sapply(mean_error_list_OASE, function(x) x)) 

 

 

####### RMSE 

 

# Function to compute RMSE for two matrices 

compute_rmse <- function(mat1, mat2) { 

  if (!all(dim(mat1) == dim(mat2))) { 

    return(NA)   

  } 

   

  valid_indices <- !is.na(mat1) & !is.na(mat2) 

   

  values_mat1 <- mat1[valid_indices] 

  values_mat2 <- mat2[valid_indices] 

   

  # Compute RMSE 

  sqrt(mean((values_mat1 - values_mat2)^2)) 

} 
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rmse_values_prop <- mapply(compute_rmse, pt_list, st_list) 

 

print(rmse_values_prop) 

 

rmse_values_op <- mapply(compute_rmse, extracted_pt_list, extracted_st_list) 

 

print(rmse_values_op) 

 

rmse_values_reg <- mapply(compute_rmse, rt_list, st_list) 

 

print(rmse_values_reg) 

mean_rmse_reg <- mean(rmse_values_reg) 

 

# Function to compute RMSE for each column of two matrices 

rmse_per_column <- function(mat1, mat2) { 

  sapply(1:ncol(mat1), function(j) { 

    valid_idx <- !is.na(mat1[, j]) & !is.na(mat2[, j]) 

     

    if (sum(valid_idx) == 0) { 

      return(NA) 

    } 

     

    sqrt(mean((mat1[valid_idx, j] - mat2[valid_idx, j])^2)) 

  }) 

} 

 

# Function to compute the average RMSE for each matrix pair 

average_rmse_per_matrix <- function(pt_list, st_list) { 

  mapply(function(mat1, mat2) { 

    rmse_values <- rmse_per_column(mat1, mat2) 

     

    mean(rmse_values, na.rm = TRUE) 

  }, pt_list, st_list) 

} 

 

average_rmse_results <- average_rmse_per_matrix(extracted_pt_list, extracted_st_list) 

 

print(average_rmse_results) 

 

x_values <- thresholds 

 

if (length(rmse_values_prop) != length(x_values) | length(rmse_values_op) != length(x_values)) { 

  stop("The number of RMSE values does not match the x-axis length") 

} 

 

plot(x_values, rmse_values_prop, type = "o", col = "blue", pch = 16, lwd = 2, 

     xlab = "D (lim)", ylab = "RMSE", 

     ylim = range(c(rmse_values_prop, average_rmse_results), na.rm = TRUE))  # Adjust y-axis 

range 

 

lines(x_values, average_rmse_results, type = "o", col = "red", pch = 16, lwd = 2) 

 

legend("topleft", legend = c("Propagated", "Operational", "Regional_mean"), 

       col = c("blue", "red", "green"), pch = 16, lwd = 2, 

       cex = 0.8,  # Reduce font size 

       bty = "n")  # Remove the box around the legend) 

 

abline(h = 210.93, col = "green", lwd = 2, lty = 2)  # Green dashed line 

 

 


