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Abstract

The Monaco Energy Boat Challenge (MEBC) is an international competition promoting inno-
vation in sustainable marine propulsion. In the endurance race, one of its main events, teams
aim to complete as many laps as possible under a strict energy budget.

This work presents a control strategy based on the Equivalent Consumption Minimization
Strategy (ECMS) for a hybrid catamaran powered by a lithium-ion battery and a PEM fuel
cell.

A quasi-static powertrain model is used to simulate the system’s behavior and calibrate
optimal equivalence factor (A) values via a bisection algorithm, accounting for varying speed
profiles and hydrodynamic drag conditions. This calibration process results in a lookup table-
based controller, enabling real-time implementation of ECMS. The strategy is developed in
MATLAB and validated through dynamic simulations in Simulink, which replicate the full
hybrid architecture, including both electrical and mechanical subsystems.
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Chapter 1

Introduction

1.1 Team

PoliTo H2Fly is a team founded in September 2023 with the goal of studying powertrain solutions
for the marine sector. The research activity is carried out through the design and construction
of a racing boat to compete in the Monaco Energy Boat Challenge. This thesis focuses on a
study dedicated to the team’s second prototype, NEUS, launched in its first version in July

2025.

e

Figure 1.1. Team photograph from the 2025 season.

1.2 Competition

The Monaco Energy Boat Challenge, organized by the Yacht Club de Monaco, is an international
competition that promotes innovation in sustainable marine propulsion. In Fig.1.2 a photo of
the team participating in the 2025 edition. The event encourages the use of alternative energy
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Introduction

sources such as electricity, hydrogen, and solar power. Participants compete in three distinct
classes, Open Sea, Solar, and Energy, each governed by specific rules.

Figure 1.2. Monaco Energy Boat Challenge edition 2025.

This work focuses on an Energy Class prototype, which allows hybrid systems powered
by carbon-free energy sources like hydrogen fuel cells and batteries. To ensure fairness, a total
energy cap of 10 kWh is imposed, adjusted by an energy factor that accounts for source efficiency
(0.4 for hydrogen, 1 for batteries). The challenge provides a standardized catamaran hull to all
teams, focusing the study on structural design and powertrain.

The technical rules, taken from the official Monaco Energy Class Technical Rules 2025
V5 [1], that need to be reported in the study for completeness are listed below:

« ENERGY REQ 7 v1.1: At any moment, the maximum energy stored by a boat shall
remain under 10kWh according to the following calculation. The total energy stored is
define by: Eior = > FE; X f;

With:

— FE; the energy stored by the source
— fi  the energy factor defined by the following table

Energy source (E;) | Energy factor (f;)
Hydrogen 0.4
Battery 1.0
Flywheel 0.5
Heat 0.3
Compressed air 0.2

« ENERGY REQ 48 v3.0: The overall weight excluding the hulls shall not exceed 250kg.
Note: The boat will be weighted with the hulls and the pilot. The hulls are supposed to be
65 kg.

Races in the Energy Class include:
o Slalom: Speed race on a defined course to test maneuverability.

6



1.3 — Motivation and workflow

e Sprint: One kilometer straight-line trial to be completed in the shortest possible time.
e Championship: A series of head-to-head regattas.

e Endurance: A four-hour circular circuit race where the goal is to complete the maximum
number of laps. In Fig.1.3 the endurance track.

TURN MARK
43°44,0456'N
007°27,3010°E

LINE OPENS AT 10.00AM
NO FLEET START

NO WAKE AROUND SLALOM AREA

1LAP = 3NM
SLALOM

Figure 1.3. Endurance race track.

The endurance race is particularly significant as it awards double points compared to the
one-lap race, making it the primary focus in both boat design and simulation.

1.3 Motivation and workflow

The team ’s prototype features a hybrid powertrain architecture that combines a 7TkWh battery
pack with a 13L 200bar hydrogen tank supplying a 2kW fuel cell. The integration of hydrogen
into the system is driven by the team’s commitment to deepening its study and optimizing its
integration and efficiency, ideally overcome the nominal efficiency of 40%. In fact, within the
competition framework, the energy stored as hydrogen is weighted at 0.4kWh per each onboard
kWh. Therefore, any efficiency improvement beyond this factor provides a significant boost to
the boat ’s effective energy capacity. In this context, the role of the Energy Management System
(EMS) is critical. It must not only enable the systems overall functionality but also optimize its
performance, while being capable of managing all possible operating conditions, ranging from
high-range to high-power demands. Among the various races, the endurance race presents the
greatest opportunity for optimization, and thus the analysis in this work is centered on it. In
contrast, the other events, slalom, sprint, and championship, can typically be covered using
the battery alone, while situations requiring higher motor power can be addressed by operating
both the battery and the fuel cell simultaneously at full power.

Within this context, the optimization of the hybrid system developed by the team plays a
crucial role. A key objective is to implement a strategy that efficiently distributes the power
demand between the battery and the fuel cell. Given the significant differences in their power
delivery capabilities, achieving effective synergy between the two sources is essential to meet the
propulsion requirements. This thesis constitutes a first study on the topic, with particular focus

7



Introduction

on enhancing the system efficiency over long distances, a condition typical of the endurance race,
one of the main challenges the prototype must tackle during the competition.

To address this, the project follows a two-phase workflow: first, a quasi-static modeling
phase is used to define optimal equivalent factor (eqFactor) values for controller design; second,
the resulting controller is validated through dynamic simulations using a comprehensive Sim-
scape model of the full powertrain. The objective is to achieve a balanced and efficient power
distribution strategy between the battery and fuel cell, with the ultimate aim of enhancing
energy utilization over long-range missions.

1.4 Boat

This work was carried out using the 2025 project for the Energy Class, a hybrid fuel cell and
battery-powered catamaran, with the regulatory limits set as parameters.

V. ets%e MONACO Aé——‘
— . et g Y R T . Y T

Figure 1.4. Boat during the race in the 12th Monaco Energy Boat Challenge.

All the specifications of the prototype, as used for the analyses:

The battery pack is composed of 16S 1P. In Table 1.1, the parameters of a single cell are
reported.

Nominal Voltage (V) 3.2
Nominal Capacity (Ah) 134
Max Discharge Current (A) 268
Internal Resistance (£2) 0.00025
Total Capacity (Wh) 431.48
Max Power (W) 857.6
Max Charge Voltage (V) 3.65

Table 1.1. Battery cell parameters - SVOLT LI-134F 3.2V 134Ah.



1.4 — Boat

Figure 1.5. Assembling of the battery pack on the dedicated plate.

The fuel cell used is an PEM Horizon H2000, open-cathode typology. The model of the
fuel cell used for the simulation is simplified as explained in [2]. The open-circuit voltage and
internal resistance values are the results of this simplification and are used to characterize the
cell.

Number of Cells 48
Maximum Power (W) 2000
Maximum Current (A) 70

Open-Circuit Voltage (Vo) | 41.56
Internal Resistance (2) 0.1473

Table 1.2. Fuel cell parameters - H2000.

The propulsion system, Fig.1.6, consists of a 48V, 10.5 kW BLDC electric motor operated
with a stock motor controller, whose parameters are reported in Table 1.3.

Figure 1.6. Propulsion system, 48V 10.5 kW



Introduction

Max power (Praz) 10500 | [m]
Max current (Ipmqz) 220 [A]
Max torque (Trnaz) 36.96 | [Nm]
Base speed (npgse) 2120.7 | [rpm)]
Max speed (Npase) 2400 | [rpm)]
Motor efficiency (7)) 0.93
Driver efficiency (ngrive) | 0.95

Table 1.3. Electric motor parameters.

The competition allows for the replacement of the propeller between races. For this reason,
the hydrodynamics division developed two different propellers. In the analysis presented here,

the propeller selected is the one optimized for the endurance race. Its parameters are listed in
Table 1.4.

Diameter (D) 0.34 [m]
Trust coefficient (K7) 0.25
Torque coefficient (K¢) 0.05

Table 1.4. Endurance propeller parameters.

Figure 1.7. 3D printed propeller with optimized design for the endurance race.
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Chapter 2

Energy Management Strategies

In HEVs the traction power demand can be provided in several different ways. Especially
in a fuel cell hybrid system two porpoise must be taking in account. On one side the higher
performance in terms of efficiency have to be reached, defining the optimal split between battery
power and fuel cell power, and consequently the hydrogen consumption. Moreover in this type
of system the battery has higher power capability and lower response time, so is in charge to
them cover the peak and the situation where the fuel cell is not fast enough to provide the
required power [2]. Specifically in this powertrain the fuel cell is only able to provide 2 kW of
power in nominal condition, while the eMotor can reach up to 10.5 kW of absorbed power. The
battery is than able to provide at least the remaining necessity, with 268 A continuous current.

2.1 The Energy Management System

The EMS architecture presented in this study is schematically illustrated in Fig.2.1. The drag
condition recognizer identifies the most suitable drag curve based on the motor power demand
and the actual boat speed. Once the drag condition is selected and the speed is known, the
EMS determines the optimal power split between the battery and the fuel cell. Specifically,
it provides the appropriate fuel cell current setpoint, which is regulated through a dedicated
DCDC converter.

Motor Power
_ ]

Drag condition
Drag recognitor

Speed
Fuel cell current
Controller >

Figure 2.1. EMS high level block diagram.

2.2 Energy Management Strategies review

Different energy management strategies can be categorized, as proposed in [2], primarily based
on the knowledge of future driving conditions and the type of control theory applied. Regard-
ing the first classification, non-causal strategies can only be employed when the mission profile
is well known, such as in public transport applications or, as in this case, within a defined
race envelope. Causal strategies must be used in all other cases where the driving cycle is
unpredictable, which represents the majority of real-world scenarios. The second classification

11



Energy Management Strategies

distinguishes between heuristic energy management strategies, which are based on intuitive
rules and empirical correlations, and optimal energy management strategies, which involve for-
mulating a control problem and mathematically defining a performance index to be minimized.
Concerning the study presented, the next sections will further explore the classification based
on control theory, established that the particular case under consideration assumes a known
mission profile defined by the race strategy.

1: Thermostat
_ Deterministic 2: POW?T' follower
Rule-based 3: Modified P.F.
4: State machine

~ Rule-based <

-

1: Conventional
] . “ Fuzzylogic < 2:Adaptive
Online PMS < | 3: Predictive
1: ECMS
2: MPC

\-Optimization-based< 3: Robust control

4: Intelligent control

Figure 2.2. Energy management strategies review [3].

2.2.1 Heuristic energy management strategies

In a heuristic or rule-based strategy, the Energy Management System (EMS) operates based on
intuitive rules derived from various vehicle behaviors. Each manufacturer can tune the EMS
according to specific requirements, which makes it difficult to define a general optimization law.
As a result, the EMS is individually calibrated for each product, taking into account constraints
related to efficiency, performance, and component health, particularly for the battery pack. A
common approach involves mapping the strategy on a State of Charge (SOC) vs. driver torque
request diagram to determine the appropriate power split. An example of such a rule-based
mapped strategy is shown in Fig. 2.3, extrapolated from [2]. For further examples and a more
in-depth discussion on heuristic methods, refer to [2].

2.2.2 Optimal energy management strategies

Optimal strategies are based on control theory, requiring the definition of a performance index,
typically denoted as J, which is then minimized. The optimization problem can take various
forms depending on the selection of the performance index .J, the state variables x(t), and the
imposed constraints. A common choice for the performance index is the total fuel consumed
over the mission duration, represented as in Eq.2.1.

J= /Otf iing (w(t), u(t)) dt (2.1)

where 7y is the fuel consumption rate, and w(t),u(t) are the state and control variables,
respectively.

Several optimal control strategies exist, each with distinct trade-offs between computational
complexity and performance [7] [8]:
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2.3 — Equivalent Consumption Minimization Strategy

T,

0<u<1

Figure 2.3. Example of heuristic energy-management strategy for a parallel HEV. SOC
(u) vs Required torque (T3) [2].

o Dynamic Programming (DP): Provides high-accuracy solutions and is often used as a
benchmark, but is computationally expensive and unsuitable for real-time control.

o Pontryagin’s Minimum Principle (PMP): Offers results close to the global optimum with
lower computational cost, although its performance is sensitive to the initialization of
costate variables.

o Extremum Seeking (ES): Capable of real-vehicle application and near-optimal fuel con-
sumption results, though less effective at accounting for fuel cell degradation.

o Equivalent Consumption Minimization Strategy (ECMS): Achieves good real-time perfor-
mance and balanced trade-offs between fuel economy and fuel cell lifetime, but relies on
functional analysis, which can be difficult to interpret.

o Neural Networks (NN): Provide high real-time quality and near-optimal results once
trained, but require large datasets and significant training effort.

2.3 Equivalent Consumption Minimization Strategy

Non-causal control methods, also referred to as offline or global optimization techniques, are
based on the assumption that the entire driving profile or mission cycle is known in advance.
These methods are widely used for benchmarking purposes and for deriving optimal energy
management strategies in hybrid and fuel cell vehicles. Their primary objective is to compute
the optimal power split among the available energy sources (e.g., battery and fuel cell) that
minimizes a given cost function, typically fuel or hydrogen consumption, over the entire driving
cycle.

These approaches can be classified into two main categories: static optimization and dynamic
optimization

e Static optimization techniques assume that the system is in a steady-state and optimize
over average or root mean square values of the power demand. While computationally
efficient, these methods can only be applied under restrictive conditions, such as periodic
or quasi-steady operation, and often fail to capture the transient behavior of real-world
driving cycles.

13



Energy Management Strategies

o Dynamic optimization techniques, including Dynamic Programming (DP) and Pontrya-
gin’s Minimum Principle (PMP), take into account the system dynamics and constraints
over time. These methods are more suitable for complex energy systems with dynamic
behaviors, such as fuel cell hybrid electric vehicles.

Among these, Dynamic Programming is a widely used method due to its ability to guarantee
a globally optimal solution by recursively solving the optimal control problem over a discretized
time-state space. The main limitation of DP lies in its high computational burden, which
grows exponentially with the number of states and control variables, a phenomenon known
as the ’curse of dimensionality’. Nonetheless, it serves as a gold standard for evaluating the
performance of real-time strategies and verifying theoretical results.

Pontryagin’s Minimum Principle (PMP) offers an alternative formulation for dynamic op-
timization by providing necessary conditions for optimality. Unlike DP, PMP does not require
discretizations of the state and time spaces, which makes it more efficient in terms of memory
usage. However, solving the resulting two-point boundary value problem is often challenging,
especially in systems with non-linear dynamics or non-convex cost functions.

2.3.1 Pontryagin’s Minimum Principle

The Pontryagin’s Minimum Principle (PMP) provides a theoretical foundation for deriving
optimal control laws by minimizing a cost function (e.g., fuel consumption or hydrogen usage)
over a driving cycle, while accounting for dynamic constraints such as battery state of charge
(SOC). Under certain assumptions, especially in quasi-static conditions, the optimal control
can be determined by minimizing an equivalent instantaneous cost, which leads to the practical
implementation known as the Equivalent Consumption Minimization Strategy (ECMS).

In most practical cases, the relationship between the initial value of the costate variable A
and the final value of the state trajectory (e.g., battery SOC, £(ty)) is monotonic. This means
that only one unique value of X satisfies a terminal constraint, such as ending the driving cycle
at a target SOC &. Due to this monotonic relationship, numerical methods such as the bisection
algorithm can be used to iteratively adjust A until the terminal condition is met.

ECMS approximates PMP in real time by assuming a constant or slowly-varying A, trans-
forming the optimal control problem into an instantaneous minimization of equivalent fuel
consumption. This balance between optimality and computational efficiency makes ECMS a
widely adopted strategy in real-time energy management for hybrid and fuel-cell vehicles [2].

The total cost to be minimized must be defined as follow and is called performance index:

Ly
J= /t w(a(t), u(t), t)dt (2.2)
0

In the previous equation the derivative of the state x is function of the state, other than

input and time.

&(t) = f(z(t), u(t),t) (2.3)

To define and solve the optimization problem firstly is required to evaluate the Hamilto-

nian equation of the dynamic system (Eq.2.4) the state equation (Eq.2.5), costate equation
(Eq.2.6)and control equation (Eq: 2.7).

H(z,p) =v(z(t),u(t),t) +p- f(x(t),u(t),?) (2.4)
() = ‘% (2.5)
At) = —Z—Z (2.6)
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2.3 — Equivalent Consumption Minimization Strategy

Following the costate equation as defined in 2.6 the costate value can be a constant only if the
Hamiltonian function is not a function of the state. If not the costate A will be a trajectory. [4].
The minimization must be carried out in such a way that

dH

=0 (2.7)

Considering as a necessary condition for u to minimize the performance index:

. dH
At) = —— 2.8
= -2 25)
and
H(z*,u*,p*) = minyey H(z,u,p) (2.9)

2.3.2 Control law definition

In this section, the optimal control problem is formulated with the objective of minimizing total
hydrogen consumption. The performance index to be minimized corresponds to the total fuel
consumption over the entire driving cycle:

ty
J = Py(t)dt (2.10)
to
The control problem is defined below
input P,
state | o (SOC)
cost MH,

Table 2.1. Control problem definition

State dynamic:

1 %att,oc - \/‘/b%ztt,oc - 4Rbattpbatt

y = — 2.11
7= 736000, 2Ryt 21
Cost function: Mo N
cost = 1, (Py, Py) = %fc Cife (2.12)
o VfC,OC - \/VfQC,oc - 4RfCPfC (213)

e = 2Ry,

Where iy, is obtained by a simplified model of the fuel cell, linearizing the polarization curve
of the fuel cell.
At this point the Hamiltonian function of the system can be defined as explained before.

H =1y, + A6 (2.14)
Costate equation:

2y 7l = 215)

If we make the assumption of V,. and R of the battery constant we can consider the costate
as a constant due the fact that H is not dependent of the state.
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Energy Management Strategies

The following derivation aims to minimize the previously defined cost function, enabling its
use, once the costate value is known, to determine the optimal power split between the fuel cell
and the battery.

The two derivatives are respectively:

omm, _ My, Ny, 1 (2.16)
aPfc 2F \/Vf2c,oc — 4Ry Py
06 1 1
a; = soooE (2.17)
fe 3600C% \/VE)Qatt,oc — 4Ry (Py — Pfc)
Than the problem law is defined as below
Mp, Ny, 1 1 1
0 = M, Ts. (2.18)
2F \/szc,oc — 4Ry Py, 3600C%, \/Vb?m’oc —4Ry(Py — Py.)
Solved in Pfc, as is used to evaluate the power split:
—3240000 CZM?N2V;2 + 12960000 PyR,CZM?N? + F2Vf2052 (2.19
fe = 4 (3240000 RyCZM2N?2 + Ry F2s?) 19)
than
—324000011V;2 4 12960000 Py Ryl + F2V2 52 590
fe = 4(3240000Ryul + Ry F2s%) (2.20)
with
pl = CEM?N? (2.21)
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Chapter 3

Design and implementation of the
controller

3.1 Hydrodynamic drag analysis

Evaluating drag in the marine sector is a complex task due to the large number of variables
involved. Given this complexity, and considering the relative low importance of drag in this
study’s focus on energy management strategies, an unconventional approach has been adopted.

Figure 3.1. Hull provided by the competition for the energy class.

The competition directly provides drag curves for the racing hulls (Fig.3.1); however, these
are based on perfectly calm water conditions, which are not entirely representative of real-world
operation. Nonetheless, this first curve can be considered the best-case scenario. The worst-case
drag curve was instead derived from empirical data collected during the 2024 competition, an
event characterized by particularly rough sea conditions, nearly leading to race suspension. In
between these two defined drag curves, two additional drag curves were extracted, resulting in
a total of four drag scenarios considered for the controller design.

The four drag curves are shown in Fig.3.2.
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2000 T
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1600 (— |

1400 (— —
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Drag Force [N]

800 (— =

Figure 3.2. Four drag curves used for the controller design.

3.2 ECMS implementation in design phase

The algorithm discretizes the battery power into 100 equally spaced values. For each of these
discrete battery power levels, the hybrid powertrain model simulates the corresponding system
response, including fuel cell power output, hydrogen consumption, and feasibility checks based
on system constraints. The equivalent fuel consumption is then computed according to Eq.3.1.

equivalentConsumption = iy, + A - (SOC; — SOCi41) (3.1)

where A is the equivalence factor and ¢ is the time instant.
The minimum feasible value of the equivalent consumption is selected, and the corresponding
battery power value is identified as the optimal battery power.

3.3 Quasi-static model

To design the controller using an offline optimization approach, a quasi-static model of the
entire powertrain was developed. This model includes two states: the State of Charge (SOC)
of the battery and the State of Tank (SOT) representing the hydrogen storage level. However,
the SOT is used solely to monitor the remaining hydrogen in the tank and does not play a role
in the control strategy.

3.3.1 Battery

The battery model implemented in this study is based on a simplified approach that refers to
the battery equivalent circuits. The current is calculated according to Eq.3.2 [7].

%att,oc - \/Vglttm - 4Rbpbatt
2Ry

I batt =

(3.2)

where Vi 00 is the battery open circuit voltage, R; the internal resistance and Pyqy the
power demanded.

At each time step the SOC state is updated using the previous current value flowing through
the battery, according to 3.3.

18



3.3 — Quasi-static model

. Tpatt
SOCues = & e (3.3)

3.3.2 Fuel cell

As explained in [2] the polarization curve can be linearized, fitting the equation presented in
Eq.3.4.

Vfc(t) = Vfc,oc - Rfcifc(t) (3.4)

where V}.,. represents the open-circuit voltage, i.e., the point at which the linearized
voltage-current curve intersects the y-axis, so where iy, = 0, and Ry. denotes the internal
resistance, a value which is assumed constant for a given cell type under fixed operating condi-
tions. In Fig.3.4 the linearized curve of the fuel cells is presented.

Eq. 3.4 represents the equivalent circuit model shown in Fig. 3.3 which characterizes the

fuel cell system.
|7 -Ir?_f-.: T -
N

I""'r-r:-mr:l = | e
feoe { = ) Ve

‘ -jr_|"-.:

* -
-+

Figure 3.3. Fuel cell equivalent circuit used to model the system behaviour in the
quasi static simulation.

The resulting current is calculated as shown in Eq.3.5, while at each time step the SOT is
update following 3.6.

o Mp,-Ni-Die _ My, - Nig Vieoe ™ VR 0o = 4RscPye 55)
. oF Y 2R ‘

(SOTi_1Cy — 1ivmy)

T, =
SO G,

where Cy is the capacity of full tank.

3.3.3 Drivetrain

The drivetrain model implemented in this study estimate the power demand required by the
electric motor to propel the boat under various operational conditions. From the selected drag
curve the drag force acting on the hull is evaluated. The total thrust required by the propeller
is computed by summing the inertial force due to acceleration and the hydrodynamic drag
resistance. Based on this required thrust, a dedicated function estimates the corresponding
revolutions per minute (RPM) of the propeller using a simplified version of the fundamental
propeller thrust equation (Eq. 3.7), which accounts for both geometric and hydrodynamic
characteristics of the propeller.

T = Kr(pD*n?),[n] = Hz (3.7)
19
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a4 Polarization curve linearization
T T T T T T

N = = Pecurve
42 Linearized P curve

Voltage [V]
w w
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Current [A]

Figure 3.4. Fuel cell polarization curves: the one dotted taken by the fuel cell datasheet and the
other made by linearization and used for the design phase.

As with the rotational speed, the required motor torque is estimated using a simplified form
of the fundamental propeller torque equation (Eq. 3.8).

Q = Kg(pD°n?),[n] = Hz (3.8)

The electric power required by the motor is finally calculated as shown in Eq.3.9.

_Q-w
Tlem

P (3.9)

In Fig. 3.5 the performance map of the motor is shown for completeness. This provides a
realistic estimation of the power that must be delivered by the electric motor to achieve the
desired motion, under the given environmental and dynamic constraints.

Motor curve - constant torque region
12000

10000

8000 (-

Power (W]

4000

2000 (-

0 500 1000 1500

Figure 3.5. Motor performance map in constant torque region.
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3.4 — Bisection algorithm

3.4 Bisection algorithm

The bisection method is a root-finding numerical algorithm that iteratively reduces the interval
within which a function changes sign, thereby isolating the root. The method relies on the
Intermediate Value Theorem, which states that if a continuous function f(x) takes on opposite
signs at two points a and b, then there exists at least one root ¢ € (a,b) such that f(c) = 0.
A schematic example is presented in Fig.3.6. This approach is known for its robustness and
simplicity, offering guaranteed convergence under the condition that the initial interval brackets
a root.

F(x)

Figure 3.6. Graphical example of bisection algorithm procedure.

In the context of this study, the bisection algorithm is employed to optimize the energy man-
agement factor (A) which governs the balance between battery and fuel cell power contributions.
The goal is to minimize the deviation of the final state of charge (SOC) from a given reference at
the end of a mission profile. Two extreme values for the equivalence factor are initially defined,
representing scenarios of excessive battery discharge and under utilization, respectively. The
SOC deviation corresponding to each extreme is simulated using the quasi-static model of the
hybrid powertrain.

3.5 Controller design

The controller is designed through the optimization of the equivalent factor for each combination
of drag and boat speed. For every pair of drag and speed values, a simulation is run over the
defined mission, and a bisection method is used to iteratively determine the optimal eqFactor.

3.5.1 Mission definition

With respect to the endurance race, the mission on which the analysis is based, the objective
is to optimize speed for minimal energy consumption and to maximize the number of laps
completed. To achieve this, the range of constant speeds that the boat can ideally sustain is
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Design and implementation of the controller

discretized into 61 values, ranging from 4 knots to 19 knots. For each of these speed values,
a corresponding mission profile is defined, resulting in 61 distinct speed profiles that can be
simulated and evaluated. Based on these constant speed levels, perturbations are introduced
to better represent real-world conditions and to enhance the robustness of the controller. An
illustrative segment of a mission profile used for the controller design is shown in Fig.3.7.

Mission profile
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Figure 3.7. Mission profile based on constant speed of 7.2 knots. Time = 600s.

For each combination of drag condition and selected speed, an optimization is performed to
determine the optimal equivalence factor (eqFactor) for the given scenario. The result is a 4 x
61 table containing the optimized eqFactor values for each pair of drag condition and speed.

The optimization is carried out using a bisection algorithm. The search interval for the
equivalence factor is defined by the extremes 0.01 and 10, while the target final state of charge
(SOQ) is set to 0.2.

3.5.2 Results

Simulating all previously described cases, namely the four different drag conditions and 61
possible mission profiles, reveals that in many scenarios, it is not possible to identify an optimal
equivalence factor. This typically occurs when the power demand is either too low, making it
more efficient to keep the fuel cell turned off, or too high, requiring the fuel cell to operate at
its nominal power. For clarity, Tab. 3.1 presents only the conditions in which the optimization
successfully converged to an optimal value. The complete set of results, including the estimated
number of laps at the end of the endurance race, is provided in Appendix 7.
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3.5 — Controller design

Speed Calm water | Low drag | Middle drag | High drag
8.35 knots 0.0100 0.0100 0.0100 0.0100
8.6 knots 0.0100 0.0100 0.0100 0.3222
8.85 knots 0.0100 0.0100 0.0100 0.3222
9.1 knots 0.0100 0.0100 0.0100 0.4002
9.35 knots 0.0100 0.0100 0.0100 0.4197
9.6 knots 0.0100 0.0100 0.0100 0.4393
9.85 knots 0.0100 0.0100 0.0100 0.4783
10.1 knots 0.0100 0.0100 0.4002 0.4978
10.35 knots 0.0100 0.0100 0.4197 0.5563
10.6 knots 0.0100 0.0100 0.4393 0.5050
10.85 knots 0.0100 0.0100 0.4393 10.0000
11.1 knots 0.0100 0.0100 0.5173 10.0000
11.35 knots 0.0100 0.0100 0.5173 10.0000
11.6 knots 0.0100 0.0100 0.5563 10.0000
11.85 knots 0.0100 0.0100 0.5954 10.0000
12.1 knots 0.0100 0.0100 0.5954 10.0000
12.35 knots 0.0100 0.3222 10.0000 10.0000
12.6 knots 0.0100 0.3222 10.0000 10.0000
12.85 knots 0.0100 0.3222 10.0000 10.0000
13.1 knots 0.0100 0.4197 10.0000 10.0000
13.35 knots 0.0100 0.4197 10.0000 10.0000
13.6 knots 0.0100 0.4393 10.0000 10.0000
13.85 knots 0.0100 0.4393 10.0000 10.0000
14.1 knots 0.0100 0.4783 10.0000 10.0000
14.35 knots 0.0100 0.4783 10.0000 10.0000
14.6 knots 0.0100 0.4783 10.0000 10.0000
14.85 knots 0.0100 0.5173 10.0000 10.0000
15.1 knots 0.0100 0.5954 10.0000 10.0000
15.35 knots 0.0100 0.5050 10.0000 0.0100
17.1 knots 0.3222 10.0000 0.0100 0.0100
17.35 knots 0.3222 10.0000 0.0100 0.0100
17.6 knots 0.3222 10.0000 0.0100 0.0100
17.85 knots 0.4002 10.0000 0.0100 0.0100
18.1 knots 0.4002 10.0000 0.0100 0.0100
18.35 knots 0.4197 10.0000 0.0100 0.0100
18.6 knots 0.4197 10.0000 0.0100 0.0100
18.85 knots 0.4393 10.0000 0.0100 0.0100
19.1 knots 0.4393 10.0000 0.0100 0.0100
19.35 knots 0.4588 10.0000 0.0100 0.0100
19.6 knots 0.4783 10.0000 0.0100 0.0100
Table 3.1. Equivalent factor results
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Chapter 4

Simulation framework for the hybrid
powertrain system

To accurately evaluate the behavior of the hybrid powertrain and assess the performance of
the proposed control strategies, a dynamic simulation model was developed using MATLAB
Simulink and Simscape [6]. The primary objective of this model is to provide a realistic repre-
sentation of the system dynamics and to validate the control logic originally designed using a
quasi-static approach. By comparing the outcomes of the quasi-static and dynamic simulations
under the same race conditions, the effectiveness and robustness of the energy management
strategy can be assessed. The expectation is that the dynamic model will yield results con-
sistent with those obtained from the quasi-static model, thereby confirming the controller’s
validity in a more realistic simulation environment.

Considering the final application of the control system on the prototype, it is necessary to
implement a fast routine capable of recognizing the drag condition closest to the design target,
thereby allowing the system to automatically select the optimal configuration. This pattern
recognizer has been implemented and is described in the following section. However, during
computer simulation, it was bypassed by directly specifying constant sea conditions. In Fig.4.1
the role of the drag recognizer and the complete architecture of the implemented controller are
illustrated in detail.

Optimal eqFactor Fuel cell power
eqFactor LookUp table f—————> Pfc = argmin(H) ‘ Fuel cell characteristc curve ‘

Figure 4.1. Energy management system overview.

4.1 Pattern recognition

In order for the system to autonomously adjust to the optimal design condition at any given
moment, a software routine must run every x seconds to determine which of the four proposed
drag conditions best represents the actual operating state.

Consequently, the recognitor to be implemented on board was designed in Simulink. The
inputs to the system, whose Simulink block diagram is shown in Fig. 4.2, are the electrical
power demanded by the electric motor, available via the CAN bus of the motor drivers, and the
actual speed of the boat, acquired through onboard sensors.
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Simulation framework for the hybrid powertrain system

The purpose of this block is to identify which drag curve best approximates the current
environmental conditions.

Although the competition is held over a single day, there is a significant possibility that
conditions may change during the 4-hour endurance race. The system is therefore designed to
answer these variations, as well as other scenarios throughout the season when the boat may be
in use, such as during test, exhibitions, or other competitions where the environmental condition
can be different.

;

&

Figure 4.2. Pattern recognition block.

4.2 Powertrain model overview

The whole powertrain model is shown in Fig.4.3. It is divided into two main sections: the
electrical and mechanical part.

On the electrical side, the energy sources, namely the battery and fuel cell, converge at
a common DC bus that powers the electric motor. This electrical network is responsible for
managing energy flow and supplying the required power to the propulsion system.

On the mechanical side, the system includes the driveline, which transmits torque from
the motor shaft to the propeller. This latter models the dynamic interaction between the
propulsion system and hydrodynamic resistance, accounting for drag forces acting on the vessel
during operation.

Figure 4.3. Hybrid powertrain model.

The battery is directly connected to the DC bus, while the fuel cell is interfaced through
a unidirectional DCDC converter. For the purposes of this study, the converter is modeled
using an average model controlled by a duty cycle (DC). The DCDC converter serves a dual
purpose: first, to ensure that the input current drawn from the fuel cell closely matches the
value determined by the control algorithm, the Equivalent Consumption Minimization Strategy
(ECMS); second, to enable the connection of the fuel cell, which has a nominal output voltage
of 28.8V, to the 48V DC bus.

It is important to note that the DC bus in this prototype is semi-regulated. This design
choice was made to reduce the overall weight and cost of the onboard system. As a result,
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4.2 — Powertrain model overview

the bus voltage is not actively controlled but instead varies depending on the battery’s state of
charge (SOC).

Considering the mechanical part of the model, the motor shaft block is connected both to
the propeller block and to the hydrodynamic drag block representing the boat’s resistance. The
drag force is determined based on one of the four predefined drag curves, selected via a manual
switch for simulation purpose.

Simultaneously, the thrust generated by the propeller is used to estimate the boat’s speed. In
this simulation setup, no sea currents are considered, neither in favor nor against the direction of
motion. However, to incorporate such effects, it is sufficient to use the R2 port of the Simscape
propeller block, as illustrated in Fig.4.4.

force resistance

all

Figure 4.4. Propeller and resistance force block.

4.2.1 Fuel cell and battery hybridization review

Generally speaking, the fuel cell battery hybridization architecture can be chosen among differ-
ent connection methods [9]. For this type of configuration, four main approaches are commonly
adopted, distinguished by the number and function of DCDC converters used.

The first configuration is the direct connection of dual-energy sources, where both the fuel
cell system and the battery are connected directly to the DC bus without any DCDC converter.
This setup is simple and cost-effective but suffers from significant drawbacks: the bus voltage
is highly sensitive to load changes, leading to potential voltage fluctuations and reduced system
controllability.

In the second approach, direct connection of the FCS, the fuel cell is directly connected to
the DC bus, while the battery is linked through a bidirectional DCDC converter. This enables
better control of battery power flow and allows for batteries with lower voltage ratings. However,
since the FC sets the bus voltage, any variation in fuel cell power leads to substantial voltage
fluctuations, potentially undermining system stability and performance.

The third option is the direct connection of the battery, shown in Fig.4.5, where the battery
is connected directly to the DC bus and the FC via a unidirectional DCDC converter. This
setup lowers stress on the fuel cell by smoothing power demands, improving fuel cell efficiency
and life. Nonetheless, the systems voltage entirely depends on the battery’s state-of-charge.

Finally, the most flexible but complex configuration is the indirect connection of dual-energy
sources, where both the FC and the battery are interfaced with the DC bus via dedicated
converters. This arrangement improves control over energy flows and stabilizes the bus voltage,
regardless of fluctuations in either source. However, it comes at the cost of greater spatial
requirements, higher component costs, reduced efficiency, and the need for larger filter capacitors
due to increased ripple currents.
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Simulation framework for the hybrid powertrain system

- Driving condition
=== Braking condition

----- Pilot signal

DC-bus Inverter

- b i : Motor

Energy Management

Figure 4.5. Direct parallel connection of the battery [9]. The solution adopted in
the powertrain in analysis.

4.2.2 Battery system block

The battery block is implemented using an equivalent circuit consisting of a variable DC voltage
source and an internal variable resistance. Both values are defined as functions of the state of
charge (SOC) to accurately replicate the real battery behavior. The implemented block is shown
in Fig.4.6. The output of the block are the positive and negative terminals of the battery.

OF———F=}

uuuuuuuuuuuu

Figure 4.6. Battery block.

4.2.3 Motor and drive system block

For the purpose of this study, it is enough to use a dedicated motor and drive block, from
Simscape library, that simulates the behavior of the electric motor and its driver. The block
receives the demanded torque as input and outputs both electrical signals, connected to the DC
bus, and mechanical signal, connected to the propeller, as illustrated in Fig. 4.7.

c o, R
7

Figure 4.7. Motor and Drive block.
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4.2 — Powertrain model overview

4.2.4 Fuel cell system block

A simplified fuel cell system is considered, in which dynamic behavior is neglected. The Nernst
voltage is computed under nominal temperature and pressure conditions. All the parameters are
directly extracted from the characteristic graphs provided in the datasheet of the fuel cell used.
The fundamental equations used to model the system are based on [5], while the implemented
block is shown in Fig. 4.8.

E = Epco.— NAln (ZFC) (4.1)
20
vpc = NunitBl — Riirc — vq (4.2)
1 dvg
7 @ — 4 4.3
2y (T o7 + ’Ud> 1FC ( )

In these equations, E,. represents the open-circuit voltage, vg¢ is the voltage across the fuel
cell terminals, A denotes the Tafel slope, and 7 = R3Cy; is the time constant. The Tafel slope
A is defined by trial end error in order to keep the fuel cell model results the most similar to
the one provided in the datasheet.

Figure 4.8. Fuel cell block.

4.2.5 DCDC converter system block

The high fidelity of the DCDC converter model is not required for the purposes of this study.
Therefore, an average DCDC converter block is adopted. The converter is controlled via a
duty cycle signal, which is modulated to ensure that the input current drawn from the fuel
cell matches the reference current set by the ECMS (Equivalent Consumption Minimization
Strategy). In this model, no closed-loop control is implemented for the DC bus voltage, which
instead results from the balance between the battery voltage and the output voltage of the
DC/DC converter. The implemented DCDC converter and its control scheme are shown in
Fig.4.9. The purpose of the DCDC converter is to maintain power continuity, net of the compo-
nent’s efficiency, between its input and output while allowing modulation of voltage and current
levels.

i

Figure 4.9. DCDC converter block.
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Simulation framework for the hybrid powertrain system

4.2.6 Propeller block

The propeller is modeled using the Simscape Propeller block, where specific parameters such
as diameter, torque coefficient, and thrust coefficient of the endurance propeller are configured.
This block converts rotational mechanical energy at the shaft into linear force, producing the
thrust exploited for propulsion. The fundamental equations governing the propeller behavior

are:
T = krpDpny/n2 +n? (4.4)
Q = kgpD3 ny/n? +nk, (4.5)

4.2.7 Drag evaluation block

In the simulation model, drag is computed using a dedicated block directly integrated into the
physical system, reported in Fig.4.10 and Fig.4.11. Specifically, at the translational input of
the propeller, a drag force is applied in addition to the inertial mass. This force is proportional
to the velocity and follows one of the predefined drag curves, which are selected based on the
simulated sea conditions.

% R2 Boat
D cz—% .
4 force resistance

u

Figure 4.10. Drag evaluation block connection.

dragforca [N]
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Figure 4.11. Drag evaluation block.

4.3 Driver model and torque controller

In the context of a simulation of the race, it is necessary to define a system that replaces the
human driver and take the decision about throttle behaviour. For this purpose, a driver model,
shown in Fig.4.12, has been developed. This block reads both the reference speed and the actual
speed of the boat to generate a throttle command, ranging from 0 to 1. The used model is part

30



4.4 — Controller integration
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Figure 4.12. Driver model block.

of automotive toolbox, where the road grade is set to 0, avoiding the influence of it and the
deceleration output is not considered.

Once the throttle input, expressed as a percentage of the boats actual throttle, is determined,
it needs to be converted into a torque command for the motor. To achieve this, a torque
controller has been implemented. This controller regulates the required torque based on the
difference between the desired and actual angular speeds of the motor shaft. The reference
angular speed is obtained by interpolating a predefined speed curve as a function of the throttle
input. The complete torque control model is illustrated in Fig.4.13.

hrottleCommand -I.m ttleC: d o I AngSpdRef AngSpd [

torqueCommand

‘Command

torque dontroller

Figure 4.13. Torque controller block.

4.4 Controller integration

The controller is implemented using a lookup table, which selects the pre-evaluated equivalence
factor based on the recognized drag condition and the current speed from the simulation, pro-
vided as an input to the block. Once the appropriate equivalence factor is selected, the fuel cell
power output (Py.) is computed using the analytical formulation of the Equivalent Consumption
Minimization Strategy (ECMS), Eq:4.6.

—3240000p1V,2 + 12960000 Py Ryl + F2V2, 2
fe ™ 4(3240000Ryul + Ry F2s2)

(4.6)

with
pl = CEM?N? (4.7)

Then, referring to the fuel cells power versus current characteristic curve, shown in Fig.4.14,
the corresponding current required from the fuel cell is determined and provided as output of
the block. This current is subsequently used as the reference input for the control of the DC-DC
converter.

The complete controller implementation is reported in Fig.4.15 and Fig.4.16.
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Figure 4.14. Power vs current characteristic curve of the fuel cell.
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Figure 4.15. Controller LookUp table. Input: drag condition and speed. Output: eqFactor.
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Figure 4.16. ECMS controller implementation in simulation framework.
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Chapter 5

Simulation results and performance
evaluation

Since the goal of this study is to develop a controller that optimizes performance during the
endurance race, the results for three representative operating conditions are presented below:

o Low power demand, meaning low speed and/or low hull drag: the optimal strategy in
this case is to keep the fuel cell off and supply all the required power from the battery.
This effectively turns the vehicle into a battery electric vehicle (BEV), as hydrogen is
not used. Additionally, by not operating the fuel cell, the system avoids frequent load
variations or an ON/OFF behavior on it, which would be detrimental to efficiency and
durability of the cell.

o High power demand, meaning high speed and/or high drag: this represents a critical
situation for the powertrain. The required power is so high that the strategy is to operate
the fuel cell at its nominal power output continuously, while the battery provides the
remaining power. This condition results in higher hydrogen consumption, but the fuel cell
operates within a high-efficiency region.

e Medium power demand: in this intermediate case, the optimization strategy can split
the power between the two energy sources. The goal here is to minimize hydrogen con-
sumption while maintaining a steady fuel cell output for an extended period, thereby
improving overall efficiency and prolonging fuel cell life.

In the following section, representative results for the three operating conditions are pre-
sented, with a focus on the intermediate-range scenario in which the optimal strategy provides
significant performance improvements. The controller, developed based on a quasi-static opti-
mization approach, is validated through a dynamic simulation that emulates realistic operating
conditions.

5.1 Design validation

The results shown in Fig. 5.1 and Fig.5.2 illustrate a close agreement between the quasi-static
design and the dynamic simulation. The State of Charge (SOC) and State of Tank (SOT) exhibit
a gradual decrease over time, with the dynamic simulation closely following the trends observed
in the design phase. Minor discrepancies, particularly in the later stages of the simulation, can
be attributed to dynamic effects not captured by the static model and to the discretization of
the battery power during the design phase. The power distribution among the motor, battery,
and fuel cell also confirms the strategy: while the design uses a load-following profile for the
fuel cell, the dynamic simulation implements a smoother fuel cell power trajectory, reporting
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Simulation results and performance evaluation

transient demands to the battery. Additionally, the control variable differs between the design
and simulation phases; in the real-world application considering the hybrid architecture, direct
parallel connection of the battery, it is more practical to regulate the fuel cell using a reference
current rather than regulate a power absorbed by the battery as done in design phase. This
effectively reduces high-frequency load fluctuations on the fuel cell, fuel cell current is stabilized,
mitigating potential degradation and performance over time. These results confirm that the
controller successfully manages the power flow under real dynamic conditions, validating the

initial quasi-static optimization. The operating conditions used in the simulations are reported
in Tab.5.3.

State variables

Dynamic simulation
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Time.

esign
Dynamic simulation

0 2000 4000 6000 8000 10000 12000 14000
Time.

Figure 5.1. State variables in design and simulation phase.
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Figure 5.2. Power split in design and simulation phase.
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5.2 — Low power operating condition

5.2 Low power operating condition

The simulation conditions for the low power demand scenario are summarized in Tab.5.1.
Fig.5.4 presents the results obtained from the dynamic model over the endurance race.

Speed 8.1 knots
Drag | 2 (lowDrag)
eqFactor ‘ 0.01

Table 5.1. Low power operating condition.
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Figure 5.3. SOC and SOT discharge - low power operating condition.
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Figure 5.4. Power and current curve - low power operating condition.

35



Simulation results and performance evaluation

5.3 High power operating condition

The configuration parameters corresponding to the high-power demand scenario are presented
in Tab.5.2. Fig.5.6 shows the system configuration and the dynamic model’s performance over
the course of the endurance race.

Speed 17.6 knots
Drag 2 (lowDrag)
eqFactor ‘ 10.00

Table 5.2. High power operating condition.
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Figure 5.5. SOC and SOT discharge - high power operating condition.
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Figure 5.6. Power and current curve - high power operating condition.
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5.4 — Middle power operating condition

5.4 Middle power operating condition

In this section, the behavior of the powertrain under medium power demand is analyzed, focusing
on how energy is efficiently distributed between the available sources. All the consideration are
based on an example simulation, whose condition are reported in Tab.5.3.

5.4.1 Powersplit

For the intermediate power range, the optimization is achieved by distributing the power demand
between the battery pack and the fuel cell. The corresponding results are presented in Fig.5.8
and Fig.5.9.

Speed 12.58 knots
Drag 2 (lowDrag)
eqFactor ‘ 0.342

Table 5.3. Operation point with optimal eqFactor

Speed [mis]
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Figure 5.7. Boat speed during the simulation

The simulation results also confirm that the boat successfully reaches and sustains the
desired speed, as illustrated in Fig.5.7.

For completeness, and with respect to the original optimization goal, the simulation results
in a total of 16 completed laps.

5.4.2 Endurance race simulation results

Based on the work done for the competition, this section evaluates the benefits of using the
optimized control strategy during the endurance race. To do this, three different simulations are
compared: one using the optimized power split (Optimal mode), one with the fuel cell turned
off (battery mode), and one with the fuel cell always operating at maximum power (FullFC
mode). The results are summarized in Tab.5.4, and the behavior of the main state variables is
shown in Fig.5.11, Fig.5.13 and Fig.5.15.

It should be noted that the simulation stops if the battery state of charge (SOC) drops
below 0.2. In this case, the fuel cell alone cannot provide enough power to operate the system
safely or, depending on the sea conditions, following the rules defined by the competition.
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Figure 5.9. State variable.

Mode | Completed laps | Theoretical laps | Final SOC [%] | Final SOT [%]

Optimal 14 14.31 20 42.64
Battery 10 10.39 20 95.02
FullFC unfeasible 16.04 92 -139.33

FullFC * 6 6.7 96 0

Table 5.4. Completed laps during a full endurance race simulation.

* The simulation is stopped when the SOT reaches zero, resulting in a total runtime of only
1 hour and 36 minutes.
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Figure 5.10. Optimal mode: power distribution. The current is maintained close to the reference
value, correctly dividing the power between the two energy sources.
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Figure 5.11. Optimal mode: state variable. The SOC is gradually discharged throughout the
race, enabling the battery to handle peak power demands. Meanwhile, the fuel cell provides a
stable base power level. Further analysis could suggests that hydrogen could be utilized more
extensively, as the SOT does not reach 0% by the end of the race. This is justified by the absence
of a predefined target SOC value at the race conclusion in the controller design.

39



Simulation results

and performance evaluation

Current [A]
5 8

8

Power

3000 4000 5000

Fuel cell current

6000 7000 8000 9000

Referanca cumrent
Actual current

Figure 5.12.

Battery only mode:

SOC discharge

power distribution.

1000

2000

3000 4000 5000
Time [s]

SOT discharge

6000 7000 8000 9000

SOT [%]

1000

2000

Figure 5.13. Battery only

3000 4000 5000
Time [s]

40

6000 7000 8000 9000

mode: state variable.



5.4 — Middle power operating condition
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Figure 5.14. Fuel cell at maximum power mode: power distribution.
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Figure 5.15. Fuel cell at maximum power mode: state variable. The SOT drops to zero quickly,
resulting in the powertrain operating solely on the battery for the remainder of the race, without
benefiting from any optimization strategy.
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Chapter 6

Conclusion

This thesis aimed to develop and validate an energy management strategy for a hybrid pow-
ertrain system integrating a hydrogen fuel cell and a lithium-ion battery, with particular focus
on the endurance race of the competition. Motivated by the favorable energy weighting of hy-
drogen and the system’s potential to exceed the nominal efficiency threshold of 40%, the work
focused on optimizing the energy distribution between the two power sources to enhance overall
performance and extend operational range.

To address this objective, a two-phase workflow was implemented. First, a quasi-static
optimization was carried out to determine the optimal equivalent factor (eqFactor) values for
different propulsion scenarios. These values were then used to build a control strategy capable
of dynamically adapting to varying power demands. In the second phase, the strategy was
tested and validated through simulations using a detailed Simscape model of the powertrain,
which accurately reproduced the dynamics of the real system.

The results demonstrated the effectiveness of the proposed EMS in achieving a balanced and
efficient distribution of power between the battery and fuel cell, particularly under endurance
conditions. The controller was able to respond appropriately to different speed profiles and
maintain system operability even under different demanding load requirements. These findings
validate the initial hypothesis that a well-designed hybrid control strategy can significantly
increase the usable energy from hydrogen under competition constraints, ultimately enhancing
the prototype’s autonomy and performance.

6.1 Further investigations and improvements

Because this study represents a preliminary analysis aimed at the implementation and optimiza-
tion of a hybrid energy system, several future developments, both direct and related, can be
pursued to enhance the system’s effectiveness and integration. The most relevant opportunities,
particularly in relation to the evolution of the race prototype, include the following.

e Expand the management software by developing dedicated control maps for the other
race formats (e.g., slalom, sprint, championship), where full optimization may not be the
primary objective, but reliable and responsive powertrain control remains essential.

e Testing and simulation of the system using dedicated hardware, allowing validation of the
control strategies under realistic operating conditions;

e Progressive refinement of the design tool by integrating increasingly accurate data col-
lected during dedicated test sessions and real competition scenarios, such as drag condi-
tions, speed targets, and propeller RPMs;

o Design and/or selection of a dedicated DCDC converter, capable of enabling precise control
of the fuel cell load. This would allow for the definition of a target current request, making
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Conclusion

it possible to fully exploit the fuel cell’s and optimization potential within the hybrid
system architecture.

These future steps aim not only to close the gap between simulation and reality, but also to
support a more robust and adaptable energy management strategy.
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Chapter 7

Appendix A: Optimization results

7.1 Optimized equivalent factor results

Speed (knots) | Calm water | Low drag | Middle drag | High drag
4.6 knots 0.01 0.01 0.01 0.01
4.85 knots 0.01 0.01 0.01 0.01
5.1 knots 0.01 0.01 0.01 0.01
5.35 knots 0.01 0.01 0.01 0.01
5.6 knots 0.01 0.01 0.01 0.01
5.85 knots 0.01 0.01 0.01 0.01
6.1 knots 0.01 0.01 0.01 0.01
6.35 knots 0.01 0.01 0.01 0.01
6.6 knots 0.01 0.01 0.01 0.01
6.85 knots 0.01 0.01 0.01 0.01
7.1 knots 0.01 0.01 0.01 0.01
7.35 knots 0.01 0.01 0.01 0.01
7.6 knots 0.01 0.01 0.01 0.01
7.85 knots 0.01 0.01 0.01 0.01
8.1 knots 0.01 0.01 0.01 0.17
8.35 knots 0.01 0.01 0.01 0.32
8.6 knots 0.01 0.01 0.01 0.34
8.85 knots 0.01 0.01 0.01 0.35
9.1 knots 0.01 0.01 0.32 0.36
9.35 knots 0.01 0.01 0.32 0.38
9.6 knots 0.01 0.01 0.34 0.40
9.85 knots 0.01 0.01 0.34 0.44
10.1 knots 0.01 0.01 0.36 0.48
10.35 knots 0.01 0.01 0.38 5.00
10.6 knots 0.01 0.01 0.40 10.00
10.85 knots 0.01 0.01 0.42 10.00
11.1 knots 0.01 0.01 0.44 10.00
11.35 knots 0.01 0.01 0.48 10.00
11.6 knots 0.01 0.32 5.00 10.00
11.85 knots 0.01 0.32 10.00 10.00
12.1 knots 0.01 0.33 10.00 10.00
12.35 knots 0.01 0.34 10.00 10.00

Next page...
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Appendix A: Optimization results

Speed (knots) | Calm water | Low drag | Middle drag | High drag
12.6 knots 0.01 0.34 10.00 10.00
12.85 knots 0.01 0.36 10.00 10.00
13.1 knots 0.01 0.38 10.00 10.00
13.35 knots 0.01 0.38 10.00 10.00
13.6 knots 0.01 0.40 10.00 10.00
13.85 knots 0.01 0.42 10.00 10.00
14.1 knots 0.01 0.44 10.00 10.00
14.35 knots 0.01 0.48 10.00 10.00
14.6 knots 0.01 5.00 10.00 10.00
14.85 knots 0.01 10.00 10.00 10.00
15.1 knots 0.01 10.00 10.00 10.00
15.35 knots 0.01 10.00 10.00 0.01
15.6 knots 0.01 10.00 10.00 0.01
15.85 knots 0.01 10.00 10.00 0.01
16.1 knots 0.17 10.00 10.00 0.01
16.35 knots 0.32 10.00 10.00 0.01
16.6 knots 0.32 10.00 10.00 0.01
16.85 knots 0.33 10.00 10.00 0.01
17.1 knots 0.34 10.00 0.32 0.01
17.35 knots 0.34 10.00 0.01 0.01
17.6 knots 0.35 10.00 0.01 0.01
17.85 knots 0.36 10.00 0.01 0.01
18.1 knots 0.36 10.00 0.01 0.01
18.35 knots 0.38 10.00 0.01 0.01
18.6 knots 0.38 10.00 0.01 0.01
18.85 knots 0.40 10.00 0.01 0.01
19.1 knots 0.42 10.00 0.01 0.01
19.35 knots 0.44 10.00 0.01 0.01
19.6 knots 0.44 10.00 0.01 0.01
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7.2 — Endurance lap results

7.2 Endurance lap results
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Speed (knots) | Calm water | Low drag | Middle drag | High drag
4.6 knots 5.82 5.82 5.82 5.82
4.85 knots 6.14 6.14 6.14 6.14
5.1 knots 6.46 6.46 6.46 6.46
5.35 knots 6.78 6.78 6.78 6.78
5.6 knots 7.10 7.10 7.10 7.10
5.85 knots 7.42 7.42 7.42 7.42
6.1 knots 7.74 7.74 7.74 7.74
6.35 knots 8.06 8.06 8.06 8.06
6.6 knots 8.38 8.38 8.38 8.38
6.85 knots 8.70 8.70 8.70 8.70
7.1 knots 9.02 9.02 9.02 9.02
7.35 knots 9.34 9.34 9.34 9.34
7.6 knots 9.66 9.66 9.66 9.66
7.85 knots 9.98 9.98 9.98 9.98
8.1 knots 10.30 10.30 10.30 10.30
8.35 knots 10.62 10.62 10.62 10.62
8.6 knots 10.93 10.93 10.93 10.93
8.85 knots 11.25 11.25 11.25 11.25
9.1 knots 11.57 11.57 11.57 11.57
9.35 knots 11.89 11.89 11.89 11.89
9.6 knots 12.21 12.21 12.21 12.21
9.85 knots 12.53 12.53 12.53 12.53
10.1 knots 12.85 12.85 12.85 12.85
10.35 knots 13.17 13.17 13.17 13.17
10.6 knots 13.49 13.49 13.49 13.49
10.85 knots 13.81 13.81 13.81 13.81
11.1 knots 14.13 14.13 14.13 14.13
11.35 knots 14.45 14.45 14.45 14.45
11.6 knots 14.77 14.77 14.77 14.77
11.85 knots 15.09 15.09 15.09 15.09
12.1 knots 15.41 15.41 15.41 15.41
12.35 knots 15.73 15.73 15.73 15.73
12.6 knots 16.05 16.05 16.05 16.05
12.85 knots 16.36 16.36 16.36 16.36
13.1 knots 16.68 16.68 16.68 16.68
13.35 knots 17.00 17.00 17.00 17.00
13.6 knots 17.32 17.32 17.32 17.32
13.85 knots 17.64 17.64 17.64 17.64
14.1 knots 17.96 17.96 17.96 17.96
14.35 knots 18.28 18.28 18.28 18.28
14.6 knots 18.60 18.60 18.60 18.60
14.85 knots 18.92 18.92 18.92 18.92
15.1 knots 19.24 19.24 19.24 19.24
15.35 knots 19.56 19.56 19.56 19.56
15.6 knots 19.88 19.88 19.88 19.88

Next page...




Appendix A: Optimization results

Speed (knots) | Calm water | Low drag | Middle drag | High drag
15.85 knots 20.20 20.20 20.20 20.20
16.1 knots 20.52 20.52 20.52 20.52
16.35 knots 20.84 20.84 20.84 20.84
16.6 knots 21.16 21.16 21.16 21.16
16.85 knots 21.48 21.48 21.48 21.48
17.1 knots 21.80 21.80 21.80 21.80
17.35 knots 22.11 22.11 22.11 22.11
17.6 knots 22.43 22.43 22.43 22.43
17.85 knots 22.75 22.75 22.75 22.75
18.1 knots 23.07 23.07 23.07 23.07
18.35 knots 23.39 23.39 23.39 23.39
18.6 knots 23.71 23.71 23.71 23.71
18.85 knots 24.03 24.03 24.03 24.03
19.1 knots 24.35 24.35 24.35 24.35
19.35 knots 24.67 24.67 24.67 24.67
19.6 knots 24.99 24.99 24.99 24.99
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Chapter 8

Appendix B: MATLAB script

8.1 Quasi static powertrain model

function [x_next,h2_flow_rate,unfeas,motorPower,fcPower,battCurrent,fcCurrent,...

outboardLimit] = powertrain_model(x,u,w, batt,fc,em, boatData,tank,
dragCurve,propeller)

%% -- Input --

% x: State vector

% u: Control vector

% w: Exogenous input vector

% batt, fc, em, boatData: structures containing data

%% ——Output--

% x_next: next state of the system

% cost: coste of the stage

% unfeas: indicate some kind of constraint violation
% motorPower

% fcPower

%% —-— Model details --

% State variables

hoo ox(1) Battery SOC,

ho x(2) State of Tank
% Control variables
hooou() Battery Power

% Exogenous inputs

% w(l) Boat speed, m/s

%o ow(2) Boat acceleration, m/s”2
dt = 1;
%% ——— Evaluation --- %%

[motorTrq,rpm,outboardlLimit] = ...
drivetrain_model(w(1),w(2) ,boatData,dragCurve,propeller) ;

shaftSpeed = rpm/9.54929658;
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Appendix B: MATLAB script

% Electric power consumption
motorPower = shaftSpeed .*motorTrq ./(em.etaTest/100);

%% Battery
battCurrent = (Voc - sqrt(Voc™2 - 4xRO.*u{1}))./2./RO;
battCurrent = real(battCurrent);

% SOC dynamic
S0C_dev = battCurrent./Q_nom/3600 .x*dt;
SO0C_next = SOC - SOC_dev;

%% Motor
motorPower = repmat(motorPower, 1, numel(battCurrent));

%% DcDc converter
etaDcDC = 0.98;
fcPower = (motorPower - u{1})./etaDcDC;

%% Fuel cell
fcCurrent = (fc.Voc - sqrt(fc.Voc™2 - 4xfc.R.xfcPower))./2./fc.R;

h2 flow_rate = fc.Mxfc.Ncell*fcCurrent/(2xfc.F);

%% State Of Tank (SOT) dynamic
SOT_next = (SOT*tank.fullTankCapacity - h2_flow_rate)/tank.fullTankCapacity;

x_next = [SOC_next’ SOT_next’];

%% Unfeasibility due to components
% Battery
battUnfeas = (battCurrent > iMaxDischarge);

% Motor
motorUnfeas = (motorPower > emPowerMax) ;

% Fuel cell
fcUnfeas = (fcPower > fcPowerMax | fcCurrent > fc.CurrMax | fcCurrent < 0);

unfeas = (battUnfeas | motorUnfeas | fcUnfeas);

8.2 Drivetrain model

function [motorTrq,rpm,outboardLimit] = drivetrain_model(speed,acc,...
boatData,dragCurve,propeller)

%% —-— Input --
%, speed: Boat speed, m/s
% acc: Boat acceleration, m/s”2
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8.3 — ECMS strategy function

% boatData: structures containing data
% dragCurve: structures containing drag curve parameters (calmWater,
% lowDrag, middleDrag, highDrag)

%% ——Output--
% motorPower: Watt
% outboardLimits: boulean

%% Drag curve of the hull
A = dragCurve.A;
B = dragCurve.B;

C = dragCurve.C;
% A = 50;

% B = T78;

h C=0.5;

kts_data = linspace(0,20,21); % speed data - drag curve
force_data = A + B.xkts_data + C.xkts_data.”2;J thrust data - drag curve

kts = speed/0.514444; % speed in knots
%% Longitudinal dynamic
dragResistance = interpl(kts_data,force_data,kts,’spline’);

propellerThrust = m*acc + dragResistance;

/» Foundamental thrust equation
% T = K_T.*(rho.*(RPM./60).72.%(D)."4);

rpm = (60*propellerThrust”(1/2))/(propeller.d 2*propeller.kT~(1/2)*10007(1/2));

% Foundamental torque equation
% torque = K_Q.*(rho.*(RPM./60).72.x(D)."5); %Nm

motorTrq = propeller.kQ .*(1000.*(rpm./60)"2 .*propeller.d~5);

8.3 ECMS strategy function

function [battPowerOpt,eqFuelConsumption] = ecmsStrategy(x,u,w,batt,fc,em,
boatData,tank,dragCurve,propeller)

speed = w(l);

acc = w(2);
eqFactor = u;

[x_next,h2_flowRate,componentsUnfeas,~,fcPower,~,~] = powertrain_model(x,
battPower, [speed acc],batt,fc,em, boatData,tank,dragCurve,propeller);

% SOC boundary
unfeas = (x_next(1) < 0.2 | x_next(1) > 0.96);
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Appendix B: MATLAB script

% FC optimal region
unfeas = (fcPower < 200);

% Hamiltonian formulation

SOC = repmat(x(1),1,discretizationFactor);

S0C_next = x_next(:,1)’;

eqFuelConsumption = h2_flowRate + eqgFactor.*(SOC - SOC_next);

% Unfeasibility
eqFuelConsumption(unfeas) = le-2;
eqFuelConsumption(componentsUnfeas) = 1;

[~,idx] = min(eqFuelConsumption) ;

%% Optimal Value %%
battPowerOpt = battPower{1}(idx);
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