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Abstract

In this thesis the problem of optimization of a permanent magnetic structure
for low-field imaging applications is addressed, with particular attention to the ho-
mogeneity of the 𝐵𝑧 field within a spherical region of interest defined as FOV (Field
of View).
The whole work is based on the use of a numerical code in MATLAB environment,
based on a Coulomb model for magnetic field calculation. In the initial phase,
the code was subjected to an accurate validation by comparison with established
software for magnetostatic analysis commonly used in academic and industrial en-
vironments. The good agreement between the results confirmed the reliability of
the numerical approach adopted.
Subsequently, several magnetic configurations from the literature have been an-
alyzed to assess their performance in terms of intensity and homogeneity of the
magnetic field generated in the FOV. Each configuration was simulated and com-
pared systematically, with the aim of identifying the most promising geometry to
be optimized.
Among the options studied, one promising initial configuration was selected, which
was then subjected to an extensive process of global optimization using a genetic
algorithm (ga) to explore the space of possible geometries in depth. During the
course of the work, the configuration has been progressively modified and enhanced,
through the introduction of new structural elements and geometric variants to fur-
ther improve its homogeneity and efficiency.
With the proposed magnetic arrays, it was possible to obtain fields characterized by
homogeneity of less than 25,000 ppm within a spherical FOV of 20 cm in diameter,
with magnetic field intensity varying between 0.16 T and 0.19 T, depending on the
specific changes made to the configuration.
Although the results obtained represent a good goal in terms of homogeneity and in-
tensity of the field,the current structure is not yet suitable for imaging applications
since it lacks of gradient fields, essential for spatial encoding in MRI. Nevertheless,
the configurations developed in this thesis provides provide a solid foundation for
future developments towards more advanced 3D imaging solutions and integration
with portable diagnostic systems.
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Introduction

Magnetic resonance imaging (MRI) is one of the most advanced and versatile imag-
ing techniques in medicine, as it provides detailed information about soft tissue
without the use of ionising radiation. Historically, the development of MRI has
been driven by the search for increasingly sharp and precise images, promoting the
use of stronger magnetic fields. This has led to the spread of high and ultra-high field
systems capable of exceeding 3 Tesla and providing high diagnostic performance,
especially in neurology and oncology.

However, this technological direction also has significant structural and opera-
tional limitations. High-field MR systems are based on superconducting coils, that
require cryogenic cooling and have high acquisition and maintenance costs. In ad-
dition, these devices require controlled, shielded and fixed environments, making
them inaccessible in decentralised environments or where logistical resources are
limited.
At the same time, an alternative line of research is emerging oriented towards the
use of weaker magnetic fields and permanent magnets with the aim of developing
portable, affordable and sustainable magnetic resonance systems. These systems,
known as low-field MRI, are gaining interest due to their potential applicability in
point-of-care (PoC) environments such as emergency rooms, ambulances, territorial
clinics or areas with low technology availability. Their use could revolutionise the
very concept of imaging, bringing MRI directly to the patient’s bedside.
However, the reduction of the magnetic field also brings with it new technical chal-
lenges, in particular the difficulty of generating sufficiently homogeneous and stable
fields in clinically interesting volumes such as a head or an extremity. The devel-
opment of magnetic sources based on permanent magnet arrays capable of offering
a good compromise between compactness, intensity and field homogeneity, is an
extremely current and open research topic.

This is the context of the work carried out in this thesis, which aims to contribute
to the definition of new geometries and optimization strategies for low-field systems,
The aim is to provide a solid basis for future developments in the field of compact
and portable magnetic resonance imaging.
The thesis is organized as follows:

• Chapter 1 provides the fundamental physical principles of magnetic reso-
nance and discusses the rationale behind the growing interest in low-field
magnetic resonance;

• Chapter 2 describes the MATLAB-based code developed for magnetic field
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Chapter 0

computation and presents its validation through comparison with well-established
simulation codes;

• Chapter 3 presents the analysis and simulation of various magnetic configu-
rations reported in the literature, evaluating their performance with the goal
of identifying the most promising initial geometry for further optimization;

• Chapter 4 focuses on the selection of the initial magnetic configuration and
its first-stage optimization through the addition of supplementary magnetic
components, aimed at identifying the most effective direction for further struc-
tural development;

• Chapter 5 carries out a more refined optimization of the magnetic structure
by exploring different configuration options and comparing them to identify
the most effective one;

• Chapter 6 compares the optimized structure with a reference design from
the literature and proposes future developments aimed at addressing the in-
tegration of gradient systems required for imaging applications.
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1 Basics of Magnetic Resonance

1.1 Physical Principles of MRI

Magnetic Resonance Imaging (MRI) belongs to a broader class of techniques that

exploit the fundamental physical phenomenon known as Nuclear Magnetic Reso-

nance (NMR). NMR refers to the ability of certain atomic nuclei to interact with

external magnetic fields in such a way that they can absorb and later re-emit electro-

magnetic energy under specific conditions. The discovery of NMR in the mid-20th

century marked a major milestone in physics and chemistry. Initially developed

as a tool for analyzing molecular structures, providing insight into atomic-scale in-

teractions and chemical composition, NMR later evolved into the foundation for

non-invasive imaging techniques, including MRI.

Nuclear Magnetic Resonance lies on a fundamental quantum mechanical property of

certain atomic nuclei: the nuclear spin [1]. Since the mass of the proton is not zero,

the rotation of the proton leads to angular momentum. Since the electric charge

of the proton is distributed in a small spherical volume, this rotation constitutes

a circulating charge around its axis. This motion generates a microscopic current,

which in turn generates a magnetic field called the Magnetic moment 𝜇.

The link between the angular momentum 𝐽 and the magnetic moment 𝜇 of a nucleus

is given by

𝝁 = 𝛾 × J

where 𝛾 is a constant characteristic of a given nucleus called gyromagnetic ratio.

For nuclei containing an odd number of protons or neutrons, it is not possible

to achieve complete cancellation of individual spins, resulting in a non-zero net

angular momentum. Among the various NMR-active nuclei, hydrogen-1 (1H) plays

a particularly significant role in magnetic resonance imaging. Hydrogen atoms

consist of a single proton and, consequently, a non-zero magnetic moment. This

simple nuclear structure makes hydrogen very sensitive to magnetic fields and ideal

for NMR-based techniques. An additional advantage is the abundance of hydrogen

10
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nuclei in the human body, primarily due to the high water content and the presence

of organic molecules rich in hydrogen atoms. When placed in a static external

magnetic field 𝐵0 the magnetic moments of the hydrogen nuclei tend to align either

parallel (low-energy state) or antiparallel (high-energy state) to the field direction.

Although the difference in population between these two states is very small, it is

sufficient to produce a macroscopic net magnetization aligned with 𝐵0. However,

due to their intrinsic magnetic properties, the magnetic moments do not remain

perfectly aligned with the external field. Instead, they tend to rotate around the

direction of the magnetic field, following a motion known as precession (Fig.1.1).

Figure 1.1: Precession motion around 𝐵0 axis, adapted from [1]

The speed at which this precession occurs is not arbitrary, but is determined

by a simple and fundamental relationship: the Larmor frequency, which expresses

how fast the magnetic moments rotate around the field axis. This frequency 𝜔0 is

directly proportional to the strength of the external magnetic field and is given by:

𝜔0 = 𝛾 × 𝐵0

At equilibrium, the net magnetization vector resulting from the collective behavior

of the hydrogen nuclei is aligned along the direction of the static magnetic field

𝐵0. However, in order to detect a signal, this equilibrium must be disturbed by a

dynamic change in the orientation of the magnetization. This is achieved by using

an RF coil (radio frequency) that generates an oscillating magnetic field 𝐵1 per-

pendicular to the static magnetic field 𝐵0. The RF field is generated by passing

an alternating current through the coil at a frequency that corresponds exactly to

the Larmor frequency of the nuclei. When the RF pulse is applied, the magnetic

moments of the nuclei absorb energy and are deflected from their alignment with

𝐵0. After the RF pulse is turned off, the hydrogen nuclei maintain the excess en-

ergy absorbed during the excitation phase while the external field 𝐵0 once again
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dominates the behavior of the nuclear spins. As 𝐵1 is shut down the transverse

magnetization does not stay still but keeps rotating around the direction of 𝐵0

at the Larmor frequency. During this rotation, the nuclei gradually release the

absorbed energy, returning to their equilibrium condition where the net magnetiza-

tion is realigned along 𝐵0. This relaxation process is associated with the emission

of a weak electromagnetic signal, Free Induction Decay (FID). This FID signal,

detected by a receiver coil, represents the total behavior of the nuclei in the sample.

However, on his own, the signal does not have any clear spatial information. Spatial

details are extracted by applying controlled magnetic field variations called gradi-

ents. These changes alter the resonance conditions of the nuclei according to their

position within the sample. This means that each point of the sample is subjected

to a slightly different magnetic field and, for this reason, precesses at a different

frequency. By exploiting this position-frequency correspondence it is possible to

associate each detected signal with its point of origin enabling, through proper

acquisition and reconstruction techniques, the composition of magnetic resonance

images.

1.2 High-Field MRI vs Low-Field MRI

Since the growing interest in enhancing the accessibility and flexibility of MRI

systems, it is fundamental to consider the difference and the trade-offs between

high-field and low-field technologies. Although both approaches rely on the same

fundamental physical principles, they differ significantly in terms of technical im-

plementation, performance, cost, and clinical applicability.

The following section highlights the key advantages and limitations of each system

across several critical aspects of MRI operation:

• Signal-to-Noise Ratio (SNR): is a crucial factor in determing MRI image

quality, a higher SNR enhances image resolution, improves tissue contrast,

and increases diagnostic accuracy. In MRI, the strength of the detected signal

is directly linked to the sample’s net magnetization, the more 𝐵0 increases,

the more nuclear spins align with it, meaning that the SNR improves with

increasing magnetic field strength. For this reason, high-field MRI systems

inherently provide significantly higher SNR compared to low-field systems;

• Spatial Encoding: as anticipated in Sec 1.1, it refers to the process of de-

termining the spatial origin of the MR signal in the sample. In conventional

high-field MRI systems, spatial encoding is performed using gradient coils that
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produce magnetic fields varying linearly along the orthogonal axes, ensuring

a precise localization of the MR signal within the imaging volume and the

reconstruction of high-resolution images.

Instead many low-field MRI systems adopt alternative encoding strategies like

the use of Spatial Encoding Magnetic Fields (SEMs). SEMs are specially de-

signed magnetic field shapes, often non-linear, that inherently contain spatial

information. Unlike gradient coils, SEMs are not separate active components,

they are indeed integrated into the main magnetic structure and typically

generated by permanent magnets or specially designed static field configura-

tions. Although SEMs reduce hardware complexity by removing the need for

powered gradient systems, they often require more advanced reconstruction

methods and may be less adaptable in defining the imaging volume.

Although SEMs represent a promising approach for portable, low-field MRI

systems, high-field systems with conventional gradient coils still offer superior

performances since their capability of generating highly linear and controlled

magentic gradients;

• Portability and accessibility: Due to their lower magnetic field strength,

these systems do not require the extensive infrastructure required by high-field

MRI machines. As a result, low-field MRI systems are lighter, more compact,

and require significantly less power to operate. These characteristics make

them particularly suitable for bedside diagnostics, rural or under-resourced

healthcare environments, emergency rooms, and even in-field use in military

or disaster scenarios;

• Cost and infrastructures: High-field MRI machines involve significant

costs, not only for the scanner itself but also for, installation, operation and

long-term maintenance. For example a new 1.5𝑇 or 3𝑇 MRI system can cost

anywhere from approximately $1 million to over $3 million, depending on the

specific model and features, with a general estimate of about $1 million per

Tesla of magnetic field strength. These systems typically require complex

infrastructure, including radiofrequency shielding, controlled ventilation, and

cryogenic cooling systems for the superconducting magnets. Moreover, their

operation and maintenance demand highly trained personnel, restricting their

use to specialized facilities. These requirements also lead to higher energy con-

sumption and impose strict constraints on site selection and environmental

conditions (like reinforced flooring, temperature and humidity control, and

protection from electromagnetic interference).
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On the other end low-field MRI units offer a more cost-effective and logis-

tically flexible alternative. Their simpler design, often based on permanent

magnets or resistive electromagnets, eliminates the need for cryogenic cooling

and allows installation in standard clinical settings with minimal modifica-

tions. With costs generally in the range of tens of thousands of dollars, these

systems offer a more affordable solution for healthcare environments with lim-

ited budgets or decentralized infrastructures.

Regardless of system architecture or clinical context, the ability to generate a strong

and highly homogeneous magnetic field remains essential for producing high-quality

MR images. This becomes even more critical in low-field systems, where signal

levels are intrinsically lower and every improvement in field performance can signif-

icantly enhance diagnostic value. Moreover, in low-field configurations, the relative

strength of spatial encoding fields or other interfering sources can approach that

of the main 𝐵0 field. This increases the risk of signal distortion and reduces the

accuracy of spatial encoding. For this reason, improving both the absolute strength

and the homogeneity of 𝐵0 is not just desirable, but essential to maintain image

quality and ensure reliable system performance.

However, achieving both high field strength and high homogeneity typically necessi-

tates the use of large and heavy magnets. In order to combine these two competing

requirements, one possible strategy is to miniaturize the hardware and restrict the

region of interest to a smaller imaging volumes. This trade-off between imaging

volume and field quality is a key aspect of system design and forms the basis of

the present work, which focuses on optimizing magnetic configurations for low-field

MRI systems operating under strict spatial constraints.
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2 Magnetic Field Computation

2.1 Coulombian Approach

The computation of the magnetic field generated by permanent magnets is a fun-

damental step in the design and optimization of magnetic systems.

In most studies found in the literature, this field is calculated using the current

model, where the magnetization of the material is replaced by an equivalent dis-

tribution of electric currents. These equivalent ’bound’ currents, circulating on the

magnet’s surface or within its volume, serve as the sources of the resulting magnetic

field. Despite its physical clarity, this method requires evaluating surface or volume

integrals over the full current distribution, which can be challenging in the presence

of complex geometries. Consequently, the current model becomes computationally

intensive, particularly in three-dimensional cases.

In this work, a different method is adopted: the Coulombian approach or charge

model [2].

This method replaces the magnetization with a distribution of fictitious magnetic

charges on the surfaces of the volume.

The magnet is considered ideal, with a magnetization vector 𝐽 that remains con-

stant in both magnitude and direction throughout the entire volume. Another

crucial assumption is that the relative permeability of the magnet is equal to 1, i.e.

𝜇𝑚 = 𝜇0 (or 𝜇𝑟 = 1 valid for NdFeB and SmCo magnets). This condition is essential

for several reasons reasons. First, when the magnet’s permeability equals that of

free space, there are no discontinuities in the magnetic field inside the material and

the entire magnetic field can be attributed to surface effects (see Figure 2.1).
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Figure 2.1: Example of polyhedron-shaped magnet. (A) Constant and uniform
magnetization J [𝑇 ]. (B) Equivalent Coulombian representation [2]

Second, this assumption guarantees linearity between the magnetic field 𝐻 and

the magnetic flux density 𝐵, through the relation 𝐵 = 𝜇0𝐻.. Finally, this assump-

tion preserves the formal analogy with electrostatics, in which the magnetic scalar

potential behaves similarly to the electrostatic potential generated by charge dis-

tributions.

The magnetic field 𝐻 is derived from the scalar magnetic potential

®𝐻 = −®∇𝜙𝑚 =
𝜎

4𝜋𝜀0

∬
𝑆

®𝑟
𝑟3

𝑑𝑟 (2.1)

where the geometrical parameter 𝑟 is the distance between the point where the field

is to be calculated and the magnetic charges.

The analytical calculation of the magnetostatic scalar potential (or the magnetic

field) generated by a uniformly charged surface of arbitrary polygonal shape is a

complex task. In general, the integral in 2.1 does not admit a closed-form solution.

Nonetheless, an exact analytical result can be obtained in a specific case: when the

surface is a right triangle. This is the reason why this calculation method is based

on the decomposition of any polygon in a series of right triangles.

In the context of this thesis, this approach offers an effective compromise between

analytical precision and computational efficiency, and is extensively employed to

evaluate the magnetic fields produced by complex magnet configurations.

2.2 Code Implementation

The magnetic field simulations presented in this work are based on a computa-

tional tool called PmLab, originally developed by the thesis supervisor and provided

as a foundation for this project. This code implements the Coulombian approach

described in Sec.2.1 and it has been employed throughout the thesis to study the

magnetic field produced by various magnet configurations.

Fundamentally, the code computes the magnetic field of a uniformly magnetized
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polyhedral magnet by decomposing its surfaces into a mesh of right triangular ele-

ments and, from this general formulation different common geometries (like cubes,

bricks, cylinders etc...) are extracted, providing flexibility and adaptability to both

simple and complex magnet arrangements.

Given the size of the full implementation, only the most relevant parts are shown

here, with the goal of illustrating the core principles behind the simulation process.

The code below shows the main routine for computing the magnetic field produced

by a uniformly magnetized polyhedral magnet.

2.2.1 PmPolyhedron Initialization

1 % construct empty pmPolyhedron object

p = pmPolyhedron;

% assemble different objects

for i = 1: nargin

p.faces = [p.faces; varargin{i}.faces+size(p.

vertices ,1)];

6 p.vertices = [p.vertices; varargin{i}. vertices ];

p.charge = [p.charge; varargin{i}. charge ];

end

% assign the generic polyhedron class

p.shape = ’polyhedron ’;

11 % assign the object of the first PM

p.object = varargin {1}. object;

end

The first section of the code handles the initialization of a new pmPolyhedron object.

The use of varargin allows the function to accept multiple input components,

making it possible to assemble complex geometries from simpler predefined shapes.

Each component adds its own vertices, faces, and magnetic charges to the resulting

polyhedral structure.

2.2.2 Magnetic Charge Computation

2 % magnetic charge

function p = pmCharge(p)

% check arguments

arguments

p {mustBeA(p,’pmPolyhedron ’)}

7 end

V = bsxfun(@minus ,p.vertices ,p.origin)*p.rotation;
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% outward unit vectors

uA = versor(triArea(V,p.faces));

% charge density

12 p.charge = dotProduct(p.BrFun ,uA);

% relative tolerance to avoid useless contributions

RELTOL = 1e-6;

% charge threshold

CHARGETOL = RELTOL*max(abs(p.charge));

17 % remove "small" contribuitons

p.charge(abs(p.charge) < CHARGETOL) = 0;

end

The pmCharge function computes the surface magnetic charge for each triangular

face of the polyhedron, taking into account the local magnetization direction and

the geometric characteristics of the element.

At first, all vertex coordinates are converted from the global frame to the magnet’s

local coordinate system, according to the definition of BrFun. This is achieved by

applying a translation and rotation based on the magnet’s local origin and rotation

matrix. Then the TriArea function is used to calculate the area vectors of triangle

starting from its vertices, these vectors are then normalized using versor to return

the outward-pointing unit normals.

The surface charge is then calculated through the dot product between the mag-

netization vector and the corresponding unit normal. A relative tolerance is then

introduced in order to eliminate insignificant contributions to the field.

2.2.3 Magnetic Charge Calculation

1 % evaluate magnetic field

function H = pmField(p,Q,options)

% empty space magnetic permeability

Mu0 = 4e-7*pi;

% preallocation

6 H = zeros(size(Q));

% field calculation

for i = 1:size(p.faces ,1)

% delete small contributions

if p.charge(i) ~= 0

11 [~,I1Grad] = intGreen2d(p.vertices(p.faces(i,:) ,:),Q)

H = H-p.charge(i)/(4*pi*Mu0)*I1Grad;

end

end

if options.inside
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16 % points inside the permanent magnet

idIn = inSolid(p,Q);

% correction for points inside the PM

H = H+bsxfun(@times ,idIn ,(p.BrFun*p.rotation.’)/Mu0);

end

21 end

The pmField function calculates the magnetic field in a specified set of obser-

vation points in space Q. The function begins by initializing the output matrix H,

which holds the magnetic field vectors at each point in Q, and proceeds, through

a for cycle, to all triangular surface elements. For each triangle with a nonzero

surface charge, the intGreen2d1 function is called, which provides the exact an-

alytical expression for the gradient of the scalar magnetic potential generated by

that triangle at all specified observation points. The resulting gradient vector is

then scaled and subtracted from the total field, in accordance with the definition

𝐻 = −∇𝜎𝑚. When the optional inside flag is active, the function identifies observa-

tion points located inside the magnet and adds a constant correction term (equal

to the magnetization vector divided by 𝜇0) to the computed field. This reflects the

uniform internal field expected in a magnetized body with relative 𝜇𝑟 = 1.

2.2.4 Basic Elements for Practical Implementation

Although the general polyhedral implementation offers great versatility, practically

only a limited set of specific shapes has been extensively used in the simulations.

To simplify the construction of the configurations that will be shown in the following

chapters, two fundamental geometric shapes have been derived from the general

formulation: the rectangular prism (pmBrick) and the circular sector (pmTile), as

presented in Chapter 2 of [7].

Other basic geometries, including cylinders, spheres, and toroids, have been

implemented within the same framework. However, with the exception of the cylin-

drical element, the remaining shapes have not been used in the present work.

Alongside the geometric components, a set of specific functions has been introduced

to enable common operations like:

• Scale: scales the magnet by a factor 𝑘;

• Translate: Moves the magnet in space by applying a translation defined by

a vector 𝑉 ;

1See M. Fabbri, ”Magnetic Flux Density and Vector Potential of Uniform Polyhedral Sources”,
IEEE Transactions on Magnetics, vol. 44, no. 1, Jan 2008, pp. 32–36
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• Revolve: performs a spatial rotation of the magnet using a given rotation

matrix 𝑅;

• pmAssemble: combines two or more magnets into a single object of pmPolyhedron

type for joint processing and field evaluation;

• plot: generates a 3D plot of the magnet geometry, including the polarization

vector for visual reference.

2.3 Code Validation

In order to ensure the accuracy of the results obtained with the PmLab code pro-

vided for this work, its performances have been validated by comparing them with

other well-established computational tools for magnetic field analysis: MagPyLib

and MagTetris. These tools were selected because of their proven accuracy and

widespread use in both academic and industrial contexts.

Magpylib is an open-source Python library for modeling and simulating static mag-

netic fields generated by sources such as permanent magnets, current loops, and

magnetic dipoles. Its computational approach is based on the concept of equivalent

surface-bound currents. Essentially, the magnetization is modeled through surface

tangential currents whose entity is proportional to the magnetization vector and the

normal to the surface itself. The MagPy library supports basic geometric shapes

such as cuboids, cylinders, and spheres, and is particularly suitable for the design

and optimization of magnetic systems in both scientific and engineering contexts.

MagTetris, instead, is a MATLAB-based analytical tool specifically designed to

compute the magnetic field produced by configurations of rectangular permanent

magnets. As PmLab its computational core is based on the Coulombian model.

Unlike Magpylib, which supports full 3D field evaluation, MagTetris is specifically

designed to analyze the field on two-dimensional observation planes, surely offering

less computational costs but at the cost of reduced versatility.

Validation is carried out on three benchmark cases, offering a comprehensive as-

sessment of the accuracy and efficiency of PmLab.

2.3.1 Case 1: Magnetic Brick

The first benchmark case consists of a single magnetic brick with uniform magne-

tization. (see Figure 2.2)
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Figure 2.2: Magnetic Brick geometry and orientation

Parameter Value

Dimensions 𝐷𝑥 = 0.6 m, 𝐷𝑦 = 0.3 m, 𝐷𝑧 = 0.15 m
Position P0 = [0, 0.5, 0] m
Magnetization 𝐵𝑟 = 1.4 T, directed along the 𝑦-axis
Observation points (x -axis) From [−1, 0, 0] to [1, 0, 0]
Observation points (y-axis) From [−1, 0, 0] to [1, 0, 0]
Observation points (z -axis) From [−1, 0, 0] to [1, 0, 0]
Evaluated points per axis 10,000

PmLab - MagPyLib Comparison

The comparison was carried out along the three principal axes (x, y, z), evaluating

the magnitude of the magnetic flux density |𝐵 |.
In Figures 2.3–2.5, the magnetic field profiles computed by PmLab and MagPyLib

are presented. The curves show a perfect matching in both magnitude and spatial

behavior, validating the consistency and the accuracy of the PmLab formulation

for this configuration.
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Figure 2.3: Magnetic flux density magnitude |B| along the y-axis

Figure 2.4: Magnetic flux density magnitude |B| along the x-axis

Figure 2.5: Magnetic flux density magnitude |B| along the z-axis
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PmLab - MagTetris Comparison

Since MagTetris field analysis is restricted to two-dimensional geometries, the com-

parison was limited to field evaluations along the midplanes of the magnet, specifi-

cally along the 𝑥− and 𝑦− axes at 𝑧 = 0.

Also in this case, as shown in Figures 2.6 and 2.7, the curves produced by PmLab

and MagTetris are in excellent agreement, confirming the correctness of the field

computation in a planar setting.

Figure 2.6: Magnetic flux density magnitude |B| along the x-axis

Figure 2.7: Magnetic flux density magnitude |B| along the y-axis

Before moving on to the next benchmark case, it is important to examine a

numerical detail related to how the magnetic field is computed inside the magne-

tized volume. Figure 2.8 shows the magnetic field computed along the 𝑦-axis using

PmLab, with and without the correction that excludes observation points located
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inside the magnet volume. In the black curve, no internal-point correction is ap-

plied. The result is that |𝐵 | appears to be underestimated in the region where the

observation point falls inside the magnet. This derives directly from the definition

of the Coulombian model, which sees the magnetization as a superficial charge dis-

tribution and becomes undefined within the source region. To overcome this issue

a conditional check is included (see Section 2.2.3) and the resulting curve (in green)

represents the expected field trend for a uniformly magnetized brick.

Figure 2.8: Effect of internal-point correction in PmLab

Code Calculation Time [s]
PmLab 1.101
MagPy 5.971
MagTetris 0.5831

Table 2.1: Case 1 - Computation time required by each code

Table 2.1 reports the computation time required by each code to evaluate the

magnetic field produced by a single brick magnet. As expected, MagTetris exhibits

the shortest execution time, owing to its simplified 2D formulation.

In contrast, PmLab achieves an effective compromise between computational speed

and geometric versatility. Compared to MagPyLib, it ensures markedly shorter

execution times, without sacrificing 3D capabilities.

1Note: MagTetris does not allow field evaluation along the 𝑧-axis and was therefore tested

under a reduced configuration.
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2.3.2 Case 2: Halbach Configuration with Bricks

The second benchmark case is about a circular Halbach array composed of mag-

netized bricks. A Halbach array, as it will be better explained in Section 3.2, is

a particular arrangement of permanent magnets where the magnetization of the

elements varies progressively along the structure in order to intensify the field on

one side of the structure while reducing it on the other. This is done by assigning

to each magnet a magnetization vector that rotates with a fixed angular step, as

shown in Figure 2.9.

Parameter Value

Number of rings 1
Magnets per ring 24
Magnet dimensions 𝐷𝑥 = 0.02 m, 𝐷𝑦 = 0.02 m, 𝐷𝑧 = 0.1 m
Ring radius 𝑅 = 0.16 m
Magnetization Halbach pattern
Observation points for 𝐵𝑥 100 points from [−0.1, 0, 0] to [0.1, 0, 0]
Evaluation grid (colormap) 𝑅base = 0.1 m

100 points along 𝑥 from −𝑅base to 𝑅base

100 points along 𝑦 from −𝑅base to 𝑅base

Total number of points: 100,000

Figure 2.9: Case 3 - Halbach disposition and magnetization with bricks, in red the
observation points for 𝐵𝑥

PmLab - MagPyLib Comparison

In this case the comparison was perfromed along two distinct evaluation domains:

1. a one-dimensional line across the center of the array;

2. a two-dimensional plane parallel to the array cross-section.
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The analysis is restricted to the 𝐵𝑥 component of the magnetic flux since it repre-

sents the dominant contribution in this specific Halbach array. Figure 2.16 shows

the one-dimenional 𝐵𝑥 comparison. The profiles align very closely throughout the

entire domain

Figure 2.10: Case 2 - PmLab-MagPy comparison of the 𝐵𝑥 component along the
observation points

Figures 2.11 and 2.12 show the 2D comparison of the 𝐵𝑥 component of the field.

Despite the different graphical style, both figure exhibits the same features: at the

center of the array the fields reach a minimum while moving outward the fields show

elliptical patterns that increase smoothly reaching local maxima near the edges of

the magnet ring.

Figure 2.11: Case 2 - Two-dimensional PmLab 𝐵𝑥 colormap
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Figure 2.12: Case 2 - Two-dimensional MagPy 𝐵𝑥 colormap

PmLab - MagTetris Comparison

Figure 2.13 shows the one-dimensional comparison of the 𝐵𝑥 component between

PmLab and MagTetris, evaluated along the same line as in the previous test. The

two curves are virtually indistinguishable.

Figure 2.13: Case 2 - PmLab-MagTetris comparison of the 𝐵𝑥 component along the
observation points

In Figure 2.14, instead, the two-dimensional 𝐵𝑥 map is displayed. As it can

be seen, the field distribution matches exactly the one made through the PmLab

code, both in terms of spatial symmetry and magnitude. Any visual discrepancies

between the field maps—such as differences in color scales, vector overlays, or grid

resolution are merely the result of distinct plotting styles and default configurations

of the codes.
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Figure 2.14: Two-dimensional MagTetris 𝐵𝑥 colormap, case 2

Code Calculation Time [s]
PmLab 4.91
MagPy 17.39
MagTetris 3.164

Table 2.2: Case 2 - Computation time required by each code

The Halbach ring configuration, composed of multiple brick magnets, naturally

leads to higher computational load due to the accumulation of contributions from

several elements. Although MagTetris is still the fastest tool, its use is limited by

the absence of full 3D analysis. PmLab maintains robust performance even in this

more demanding configuration, offering a notable advantage in computation time

compared to MagPy, whose execution remains substantially slower. This difference

in performance becomes more and more relevant as the number of magnetic elements

increases. In summary, the results demonstrate that PmLab handles increasing

system complexity with excellent scalability.

2.3.3 Case 3: Halbach Configuration with Tiles

The third example considers an Halbach array composed of segmented magnetic

tiles, in order to follow the curvature of the ring geometry. The main parameters

of the configuration are summarized in the table below:
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Parameter Value

Number of rings 1
Magnets per ring 22
Magnet dimensions 𝑅𝑖𝑛𝑡 = 0.15 m, 𝑅𝑒𝑥𝑡 = 0.17 m, 𝐷𝑧 = 0.1 m
Ring radius 𝑅 = 0.16 m
Magnetization Halbach pattern
Observation points for 𝐵𝑥 100 points from [−0.1, 0, 0] to [0.1, 0, 0]
Evaluation grid (colormap) 𝑅base = 0.1 m

100 points along 𝑥 from −𝑅base to 𝑅base

100 points along 𝑦 from −𝑅base to 𝑅base

Total number of points: 100,000

Figure 2.15: Case 3 - Halbach disposition and magnetization with tiles, in red the
observation points for 𝐵𝑥

PmLab - MagPyLib Comparison

Before presenting the validation results for this configuration it is important to un-

derline that the comparison for this case was made only with MagPyLib code. This

is due to the fact that MagTetris code only supports parallelepipedal geometries and

therefore cannot be used to model curved structures like the tiled Halbach array.

As in the previous case, the results from both codes are in excellent agreement,

with nearly overlapping curves across the entire domain.

From Figures 2.17 and 2.18, again, it is possible to notice the coherent spatial dis-

tribution of the field, with a clear peak near the inner radius of the array and a

symmetric decay toward the center. Unlike the previous Halbach configuration with

brick-shaped magnets, the field strength is clearly higher. This is due to the greater

magnetic filling factor: the curved tiles occupy a larger fraction of the ring’s cir-

cumference, reducing the amount of non-magnetic gaps and improving the overall
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flux concentration.

Figure 2.16: Case 3 - PmLab-MagPy comparison of the 𝐵𝑥 component along the
observation points

Figure 2.17: Case 3 - Two-dimensional PmLab 𝐵𝑥 colormap
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Figure 2.18: Case 3 - Two-dimensional MagPy 𝐵𝑥 colormap

Conclusion

Through the three benchmark cases discussed in this chapter, the PmLab code has

proven to be both reliable and accurate, indeed the comparisons with the well-

established MagPyLib and MagTetris have shown excellent agreement in all sce-

narios. These results not only provide evidence of the effectiveness of the code but

also of the Coulombian formulation itself. Although conceptually different from

traditional current-based models, the Coulombian approach proves to be accurate,

flexible and fast, even for intricate configurations.

This validation establishes a solid foundation for the numerical simulations pre-

sented in the following chapters. With this awareness, the analysis moves forward

searching for the best magnetic configuration, aiming to find the most effective

solution for the target application.
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3 Permanent Magnet Arrays

This new chapter is dedicated to the exploration and evaluation of different per-

manent magnet configurations whose purpose is to generate a static magnetic field

suitable for low-field magnetic resonance requirements. The goal is to identify a

specific layout that provides a good compromise between field strength and homo-

geneity and that can be used as a baseline for the following optimization stage.

To this end a targeted literature review was carried out in order to find which mag-

net arrangements are commonly used in this specific field and, even if the range of

available solutions is quite limited, most of the configurations can be classified in

two main categories: Halbach-type and Aubert-type designs, both adopted for

their ability to generate magnetic fields in compact and open geometries.

The following sections present a selection of representative configurations, inspired

by existing studies and grouped according to the two main categories. To ensure

coherence in the analysis, all the configurations have been simulated using the sim-

ulation tool adopted in this work. This approach eliminates potential differences

between different modeling strategies that may have been used, allowing for a direct

and fair comparison of results.

3.1 Permanent Magnets

Before presenting the various configurations selected for the analysis, it is impor-

tant to define the material and the magnetization assumptions made in this work.

Although in the literature a variety of magnets, with different properties, are em-

ployed, the comparisons in this chapter have been performed under uniform condi-

tions.

In particular, all the configuration are simulated under the assumption of uniform

remanent magnetization 𝐵𝑟 for all magnets.

But what type of permanent magnet should be used?

Among the various permanent magnet materials available, only Neodymium-Iron-

Boron (NdFeB) and Samarium-Cobalt (SmCo) are considered suitable for the pur-
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poses of this study. This is because the configurations analyzed do not rely ferro-

magnetic yokes to channel the magnetic field. Instead, they rely only on permanent

magnets in order to generate a sufficiently strong magnetic field in air, where, of

course, the field of view (FOV) is located.

NdFeB magnets are commonly preferred due to their high remanence and energy

density, though they are more sensitive to temperature variations. SmCo mag-

nets, while slightly less powerful, provide greater thermal stability and resistance

to demagnetization.

Magnet 𝑩𝒓 (T) 𝑯𝒄 (kA/m) 𝑻𝒄 (°C)

SmCo (sintered)2 0.8–1.1 600–2000 720
NdFeB (sintered) 1.0–1.4 750–2000 70–200

Table 3.1: Magnetic properties of NdFeB and SmCo

For all the simulations a fixed 𝐵𝑟 = 1.4. 𝑇 has been assumed. This value cor-

responds to a high-performance permanent magnet and is intended to represent

a best-case scenario from a purely magnetic perspective. No considerations such

as manufacturing cost, material availability, and thermal stability have been taken

into account.

The selected value of 𝐵𝑟 is representative of commercial NdFeB magnets in the

N48 to N52 grade range, which are among the most powerful rare-earth permanent

magnets available. Table 3.2 summarizes the typical remanent flux densities for

common NdFeB grades.

NdFeB Grade 𝑩𝒓 (T)

N35 1.17–1.21
N42 1.29–1.32
N48 1.38–1.40
N52 1.42–1.44

Table 3.2: Typical remanent flux density values for commercial NdFeB magnet grades.

2The term sintered refers to a manufacturing process in which magnetic powders are compacted

and heated below their melting point to produce dense, high-performance permanent magnets.

Sintered magnets generally offer superior magnetic properties compared to bonded types.
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3.2 Halbach Arrays

A Halbach array, as briefly mentioned in Section 2.3.2, is a particular configura-

tion of permanents magnets placed in such a way to concentrate the field on one

side of the assembly while minimizing it on the other side. This asymmetric field

distribution is achieved through a specific orientation of the magnetization vectors

within the array. Halbach configurations can be implemented in different geome-

tries: one-dimensional (linear array), two-dimensional (cylindrical structure), or

three-dimensional (spherical arrangement). For magnetic resonance imaging, the

cylindrical (2D) geometry is the one of practical interest due to its ability to gen-

erate a strong and relatively homogeneous magnetic field within a central bore.

An ideal cylindrical Halbach array can be described mathematically by a continu-

ous rotation of the magnetization vector around the azimuthal3 coordinate of the

cylinder. This rotation is characterized by the relation:

𝜙 = (𝑘 + 1)𝜃 (3.1)

where:

• 𝜃 is the azimuthal position of the magnet element (i.e., its angular position

around the ring);

• 𝜙 is the angle of the magnetization vector within that element;

• 𝑘 is the multipolarity index that defines the type of Halbach field being gen-

erated.

This expression indicates that the direction of magnetization rotates more rapidly

than the physical placement of the magnets. The value of 𝑘 directly controls how the

magnetization rotates along the ring, and thus how the field is shaped, as presented

in Figure 3.1:

• for 𝑘 = +1, the magnetization rotates at twice the rate of the angular position,

generating a dipolar field concentrated inside the cylinder;

• for 𝑘 = 2, the configuration corresponds to a quadrupolar field, with a more

spatially varying distribution within the structure.

3The azimuthal coordinate 𝜃 in cylindrical coordinates defines the angular position around
the central axis of the ring, measured from a fixed reference direction in the plane perpendicular
to the axis.
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As 𝑘 increases, the resulting field patterns become progressively more complex,

while negative values of 𝑘 lead to field configurations that are concentrated outside

the cylindrical assembly rather than in it.

Figure 3.1: Conceptual construction of cylindrical ideal Halbach multipoles (adapted
from [3])

Among all possible Halbach configurations, only the case with 𝑘 = 1 is relevant

for MRI. This specific arrangement produces a dipolar field confined inside the

cylinder, with the magnetic field oriented perpendicularly to the cylinder’s axis

(Figure 3.2). Such geometry is well-suited for generating the static magnetic field

required in MRI systems, especially in open-access and low-field designs.

Figure 3.2: Magnet polarization for a dipolar Halbach cylinder, adapted from [4]

The Halbach configuration described so far represents an idealized case, valid

under the assumption of a continuously varying magnetization along the magnetic
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material and infinitely long cylindrical geometry. However, such ideal conditions

are not practically achievable, the fabrication of magnets with constantly rotating

magnetization is technologically unfeasible, at least at the scale required for MRI

systems4.

The closest realizable alternative consists in discretizing the magnetization profile

of the cylinder by dividing it into individual segments - typically cuboid, cylindri-

cal, or trapezoidal bars - each uniformly magnetized in a fixed direction. While

this segmented approach is significantly more economical and manufacturable, it

inherently compromises both the strength and uniformity of the magnetic field.

Moreover, when the array is constructed using bars additional field distortions arise

near the axial ends of the structure. These so-called fringe effects can significantly

degrade the field quality in the central region.

Having discussed the theoretical principles and practical limitations of Halbach ar-

rays, we now turn our attention to the specific configurations considered in this

work. These geometries, inspired by existing designs in the literature, represent

actual implementations of segmented Halbach structures.

3.2.1 Configuration 1

The first configuration analyzed in this study is derived from the portable Halbach-

based MRI system described in [8]. This design, referred to as Mandhala (Magnet

Arrangements for Novel Discrete Halbach Layout), represents a compact and practi-

cal implementation of a discretized cylindrical Halbach array specifically optimized

for low-field imaging.

The magnet structure consists of a 36 𝑐𝑚 diameter cylinder composed of twenty

square-section rungs, each containing stacked NdFeB bar magnets arranged to ap-

proximate a dipolar Halbach configuration. The magnets dimensions are 1𝑥1𝑥14′′

(1′′ = 2.54 𝑐𝑚 so the dimensions are 2.54× 2.54× 35.5 𝑐𝑚), magnetized along the 1′′

thickness. To reduce axial field decay due to the limited length of the array, two

additional Halbach end-rings were added, each composed of twenty cubic NdFeB

magnets with 1” sides (Figure 3.3).

4Small bonded continuous magnetization Halbach rings can be produced using injection mold-
ing, this is done for small size brushlss motors [4]
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Figure 3.3: Configuration 1 - Schematics of the array

As in [8], the field was evaluated within a spherical field of view (FOV) of 0.1𝑚

radius, centered at the geometric center of the array. This choice ensures consistency

with the original analysis and allows for a direct comparison of field behavior.

The analysis focuses exclusively on the 𝐵𝑥 component of the magnetic field, as

the angular coordinate 𝜃 = 0 is aligned with the 𝑥-axis (as in Fig.3.2). In this

orientation, 𝐵𝑥 is the dominant component; 𝐵𝑦 cancels out by symmetry, and the

𝐵𝑧 component is practically negligible.

(a) (b)

Figure 3.4: Configuration 1 – Evaluation of the 𝐵𝑥 component in the FOV (a) and on
the xy-plane (b)
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Center [0, 0, 0] 𝑚
Obs. points 30976

𝐵𝑥,max 0.0840 T
𝐵𝑥,min 0.0817 T
𝐵𝑥,mean 0.0827 T

Homogeneity 27507 ppm

Center [0, 0, 0] 𝑚
Obs. points 7668

𝐵𝑥,max 0.0840 T
𝐵𝑥,min 0.0817 T
𝐵𝑥,mean 0.0830 T

Homogeneity 15568 ppm

Table 3.3: Configuration 1 - Results of PmLab computation on the spherical FOV (left)
and on the xy-plane (right)

The results of the magnetic field simulations are summarized in Tables 3.3. For

both domains, the maximum, minimum, and average values of the 𝐵𝑥 component

are reported, along with the number of observation points.

In both cases, the field homogeneity is quantified using the standard metric ex-

pressed in parts per million (ppm), calculated according to the following formula:

Homogeneityppm =
𝐵𝑥,max − 𝐵𝑥,min

𝐵𝑥,mean
× 106 (3.2)

This metric provides a relative measure of the field variation within the region of

interest. As expected, the homogeneity value is lower when computed over the cen-

tral plane, where the field is more stable, than over the entire spherical FOV, which

includes fringe regions near the ends of the magnet array.

While this method is widely adopted for quantifying field homogeneity due to its

simplicity, it provides only a coarse estimate as it considers only the maximum de-

viation from the mean field, offering no view of the spatial distribution of the field

within the FOV. As a result, two different field distributions may produce the same

homogeneity value under this definition.

For a more complete characterization, a more advanced method based on spherical

harmonics can be applied [9]. This technique is based on the fact that, in source-

free regions, the magnetic field can be expressed as a sum of spherical harmonic

components. Each component represents a distinct spatial pattern, and the relative

amplitudes of these terms provide quantitative insight into how the field deviates

from an ideal, perfectly uniform distribution.

Harmonic analysis enables both the quantification and characterization of field in-

homogeneities, making it especially useful in MRI, where certain types of distortion

can be directly associated with specific spherical harmonic terms.

Each spherical harmonic component is identified by two indices: degree 𝑛 and order

𝑚. The degree 𝑛 determines the overall spatial complexity of the field component:

as 𝑛 increases, the magnetic field exhibits more spatially intricate patterns, with a
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larger number of regions where the field direction or magnitude changes. The order

𝑚, which ranges from -𝑛 to +𝑛, controls the azimuthal variation of the harmonic

component, i.e., how the field changes when rotating around the different axis.

The table 3.4 reports the relative contribution of each harmonic degree for con-

figuration 1 mentioned above.

Degree 𝑛 Relative Contribution Dominant Orders 𝑚

0 9.997 × 10−1 (uniform field)
1 5.039 × 10−11 negligible
2 3.296 × 10−7 𝑚 = −2 (XY), 𝑚 = 1 (ZX)
3 3.371 × 10−10 negligible

Table 3.4: Configuration 1 - Relative contribution of the spherical harmonic degrees

As expected, the degree 𝑛 = 0 component, corresponding to a perfectly uniform

field, dominates the spectrum. Its normalized weight is close to 1, indicating that

most of the energy is concentrated in the uniform mode. All higher-order terms

contribute by several orders of magnitude less. The components 𝑛 = 1 and 𝑛 = 3

are essentially negligible, while a small but noticeable contribution is observed for

𝑛 = 2, which corresponds to quadrupolar field distortions. Among the five possible

harmonic components of degree 𝑛 = 2, the analysis reveals that the most influential

terms are those of order 𝑚 = −2 and 𝑚 = 1. These correspond respectively to field

distortions in the 𝑥𝑦- and 𝑧𝑥-planes, as illustrated in Figures 3.5 and 3.6.

Figure 3.5: 𝑛 = 2, 𝑚 = −2 Figure 3.6: 𝑛 = 2, 𝑚 = 1

3.2.2 Configuration 2

The second configuration analyzed in this work is based on the sparse Halbach

magnet array described in [4] and [10]. The array consists of a cylindrical frame

with 2 layers of 24 rectangular rods (internal and external diameters are respectively

41 𝑐𝑚 and 50 𝑐𝑚), each one composed of 18 NdFeB cubes of 1′′ side (Figure 3.7
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). A key feature of this design is its asymmetry along the axial direction: to

accommodate anatomical constraints, such as shoulder width, the array adopts

an asymmetric design: only 7 rows are positioned below the isocenter, while 11 are

placed above it. For this reason, in order to compensate for the magnetic field drop-

off near the lower end of the imaging volume, an additional ring of cubic magnets

(36 𝑐𝑚 in diameter) is placed at the bottom of the array, while no corresponding

top-end ring is present since the longer structure provides a smoother field decay

Figure 3.7: Configuration 2 - Schematics of the array

As in the previous case, the magnetic field is evaluated within a spherical FOV of

radius 0.1𝑚. However, due to the asymmetry of the structure, the FOV is slightly

offset in the axial direction and centered in [0, 0, 0.05] 𝑚 in the current reference

frame (Figure 3.8).

In both [4] and [10] the structure was discretized into a large number of 1′′ cubes in

order to allow the genetic optimization process. Indeed this segmentation enabled

each cube to be independently defined as non-magnetic or composed of either N42

or N52 grade material. In the reproduction carried out in this work, however,

all magnetized elements were assigned the same 𝐵𝑟 , thereby removing any material

variability. Even though the cube-based design was kept for consistency, the system

behaves like a set of identical magnetized bars.
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Figure 3.8: Configuration 2 - Array side view (FOV in red)

The results of the simulation performed with PmLab, always relatively to the

𝐵𝑥 component of the magnetic field, are reported in Figure 3.14

(a) (b)

Figure 3.9: Configuration 2 – Evaluation of the 𝐵𝑥 component in the FOV (a) and on
the xy-plane (b)

Center [0, 0, 0.05] 𝑚
Obs. points 30976

𝐵𝑥,max 0.1168 T
𝐵𝑥,min 0.1027 T
𝐵𝑥,mean 0.1123 T

Homogeneity 125582 ppm

Center [0, 0, 0.05] 𝑚
Obs. points 7668

𝐵𝑥,max 0.0162 T
𝐵𝑥,min 0.1123 T
𝐵𝑥,mean 0.1137 T

Homogeneity 34242 ppm

Table 3.5: Configuration 2 - Results of PmLab computation on the spherical FOV (left)
and on the xy-plane (right)

Compared to sec.3.2.1, relevant differences are noticeable in both strenght and

homogeneity. In this case the field intensity is significantly higher (0.1123 T against

0.0827 T in mean values). This is mostly due to the greater amount of magnetic
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used in the second structure, which presents a more densely packed arrangement

of bars. Despite the higher peak field in Configuration 2, it exhibits a significantly

lower homogeneity, particularly in the spherical volume. This illustrates a key,

and sometimes counterintuitive, concept: adding more magnetic material does not

automatically result in better field uniformity. Therefore designing an effective per-

manent magnet system isn’t just a matter of adding more material, it also requires

careful considerations of geometry, magnetization direction and symmetry, espe-

cially in open structures where magnetic flux cannot be easily guided or confined.

Degree 𝑛 Relative Contribution Dominant Orders 𝑚

0 9.989 × 10−1 (uniform field)
1 6.370 × 10−8 negligible
2 7.616 × 10−4 𝑚 = −2 (XY), 𝑚 = 1 (ZX)
3 3.239 × 10−4 negligible

Table 3.6: Configuration 2 - Relative contribution of the spherical harmonic degrees

The harmonic decomposition of the magnetic field (Table 3.6) shows that the

order 𝑛 = 0 is dominant, reflecting the presence of a strong and nearly uniform

field across the FOV. Similarly to the first configuration, the relative magnitude of

the second order is the strongest one and, among the degree-two components, the

most prominent distortions are those associated with the orders 𝑚 = −2 and 𝑚 = 1,

already presented in Figures 3.5 and 3.6. However a non-negligible contribution also

comes from the third-order harmonics, among which the most relevant presence is

the one associated with the order 𝑚 = 0, as in Figure 3.10.

Figure 3.10: 𝑛 = 3, 𝑚 = 0

This behavior directly reflects the asymmetry of the physical structure, in par-

ticular the presence of the compensating lower ring and the absence of a mirrored

upper ring. As a result, the magnetic field tends to be stronger in the lower por-

tion of the FOV, as also confirmed by the field distribution calculated within the

spherical region.
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3.2.3 Configuration 3

The third configuration explored in this study is inspired by the elliptical Halbach

structure proposed in [11]. Unlike traditional cylindrical Halbach arrays, this design

uses an elliptical bore, which could offer several practical benefits. These include

enhanced patient accessibility, easier integration of RF coils, and improved anatom-

ical conformity, particularly for applications focused on the head or limbs.

Since the original study does not provide detailed geometric parameters, the imple-

mentation adopted here preserves the same magnet arrangement as in the previous

cylindrical configurations, modifying only the inner profile to follow an elliptical

shape. The purpose of this analysis is to evaluate whether introducing an ellip-

tical deformation leads to improvements in field homogeneity. A decrease in field

strength is already expected since the magnets (especially those near the major

semiaxis) are displaced further from the FOV. However, one could hypothesize that

such a deformation may attenuate the field in directions where it is stronger (at

the boundary of the FOV along the 𝑥-axis for example) contributing to a more

homogeneous distribution.

The main geometric parameters of the elliptical Halbach structure and its repre-

sentation, derived from Condiguration 1 and adapted to an elliptical profile, are

reported in Table 3.7 and Figure 3.11.

Parameter Value

Number of vertical bars 20
Bars dimensions 0.025 × 0.025 × 0.355𝑚
Bars semi-axes (X, Y) 0.22𝑚, 0.18𝑚
Number of shielding rings 2
Cubes per ring 20
Cubes dimensions 0.025 × 0.025 × 0.025𝑚
Shielding ring semi-axes (X, Y) 0.18𝑚, 0.14𝑚
FOV center [0, 0, 0] 𝑚
FOV radius 0.1𝑚

Table 3.7: Main geometric parameters, Configuration 3𝑏
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Figure 3.11: Schematics of the array, Configuration 3𝑎

In Figure 3.12 it is presented the second elliptical configuration, this time derived

from Configuration 2. The components of the structure and their disposition remain

the same, the only difference is in the geometry (Table 3.8).

Parameter Value

Number of Layers 2
Number of vertical rungs 24
Cubes per rungs 18
Cubes dimensions 0.025 × 0.025 × 0.025𝑚
Rungs semi-axes (X, Y) 0.32𝑚, 0.25𝑚 (ext. layer)

0.27𝑚, 0.20𝑚 (int. layer)
Number of shielding rings 1
Cubes per ring 24
Cubes dimensions 0.025 × 0.025 × 0.025𝑚
Shielding ring semi-axes (X, Y) 0.22𝑚, 0.15𝑚
FOV center [0, 0, 0.05] 𝑚
FOV radius 0.1𝑚

Table 3.8: Main geometric parameters, Configuration 3𝑏
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Figure 3.12: Schematics of the array, Configuration 3𝑏

The magnetic field distributions produced by both elliptical configurations (Cases

3𝑎 and 3𝑏) were evaluated using the same methodology adopted for the previous

structures. The simulation outcomes for both cases are presented in the following

figures and tables.

(a) (b)

Figure 3.13: Configuration 3𝑎 – Evaluation of the 𝐵𝑥 component in the FOV (a) and on
the xy-plane (b)

Center [0, 0, 0] 𝑚
Obs. points 30976

𝐵𝑥,max 0.0704 T
𝐵𝑥,min 0.0655 T
𝐵𝑥,mean 0.0687 T

Homogeneity 71327 ppm

Center [0, 0, 0] 𝑚
Obs. points 7668

𝐵𝑥,max 0.0704 T
𝐵𝑥,min 0.0687 T
𝐵𝑥,mean 0.0693 T

Homogeneity 24396 ppm

Table 3.9: Configuration 3𝑎 - Results of PmLab computation on the spherical FOV
(left) and on the xy-plane (right)

45



Chapter 3 3.2. Halbach Arrays

(a) (b)

Figure 3.14: Configuration 3𝑏 – Evaluation of the 𝐵𝑥 component in the FOV (a) and on
the xy-plane (b)

Center [0, 0, 0.05] 𝑚
Obs. points 30976

𝐵𝑥,max 0.0925 T
𝐵𝑥,min 0.0805 T
𝐵𝑥,mean 0.0827 T

Homogeneity 134957 ppm

Center [0, 0, 0.05] 𝑚
Obs. points 7668

𝐵𝑥,max 0.0921 T
𝐵𝑥,min 0.0887 T
𝐵𝑥,mean 0.0900 T

Homogeneity 38088 ppm

Table 3.10: Configuration 3𝑏 - Results of PmLab computation on the spherical FOV
(left) and on the xy-plane (right)

The results obtained for the elliptical configurations show that deforming the

bore profile does not lead to improvements in field uniformity. In fact, both el-

liptical variants exhibit lower field intensity and worse or comparable homogeneity

relative to their cylindrical counterparts. Although the elliptical deformation was

introduced to reduce field excess along the 𝑥-direction by increasing the distance

between the magnets and the boundaries of the FOV, the results show that this

adjustment alone does not effectively eliminate the inherent inhomogeneities. By

altering the arrangement of the magnets, it is not possible to selectively modify the

magnetic field in only one portion of the FOV without inevitably affecting the rest

of the region. Any attempt to reduce field intensity at specific locations, such as

the outer edges of the FOV, inevitably leads to a reduction of the field in its central

area and the homogeneity results either preserved or degraded. This highlights a

fundamental limitation: trying to correct the field in a specific area by changing the

geometry of the magnet arrangement tends to affect the entire field distribution.

46



Chapter 3 3.3. Aubert Rings

3.3 Aubert Rings

An effective and technically valid alternative for generating the 𝐵0 field in portable

MRI systems is provided by a specific class of magnetic structures known as Aubert

ring pairs or I/O ring pairs.

Unlike the more common Halbach-based configurations, which produce a transverse

magnetic field with respect to the system axis, Aubert rings are designed to gener-

ate a longitudinal field, aligned with the axis of the scanner (typically the 𝑧-axis).

Thanks to this feature, the Aubert configuration is highly advantageous for sys-

tem integration, as it allows the direct reuse of conventional RF coil design from

conventional superconducting MRI. The radiofrequency coils, as briefly anticipated

in Section 1.1, are essential components in MRI systems. They are both used to

transmit the excitation pulses that flip the nuclear spins and to receive the signal

emitted by the precessing magnetization and, for better performances these coils

have to be aligned with 𝐵0, as their sensitivity is maximized when the oscillating

magnetic field they produce is perpendicular to 𝐵0
5.

An Aubert ring pair consists of two coaxial radial magnet rings, one magnetized

inward and the other outward. The opposing radial magnetizations generate mag-

netic field lines that converge and reinforce each other along the longitudinal axis,

resulting in a predominantly axial magnetic field within the central region of the

structure. This effect is achieved without the need for ferromagnetic yokes, as

illustrated in Figure 3.15.

Figure 3.15: Sectional view of an Aubert ring pair, adopted from [5]

Unlike Halbach configurations, specifically designed to confine the field on one

side while suppressing it on the opposite, the I/O ring pair geometry lacks of a

field-shielding mechanism. For this reason, although the field is directed towards

5This condition holds in conventional imaging systems that do not use Spatial Encoding Mag-
netic fields (SEM). When SEMs are employed, the encoding is embedded directly in the spatial
structure of the static field, and the orientation constraints on the RF coils can be relaxed, as
their operation no longer strictly depends on the alignment with a uniform 𝐵0 field.
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the bore center, it is not strongly confined and non-negligible fring field may be

present beyond the system’s boundaries.

Similarly to Halbach arrays, the ideal Aubert ring, with a smoothly varying radial

magnetization pointing inward or outward around the annular piece, is very difficult

to implement in practice. To overcome this limitation the structure is usually

discretized into magnetic segments (like the usual bricks and tiles), each with a

uniform magnetization that approximates the radial pattern.

The following sections present two discretized implementations of the Aubert ring

concept. These configurations provide realistic and practically achievable models

for assessing the magnetic performance of Aubert-based assemblies in low-field MRI

applications.

3.3.1 Configuration 4

The fourth configuration is derived from the optimized design proposed in [12]. In

the original study, the structure was subject to a multi-stage optimization process,

including additional magnetic components specifically introduced to generate gra-

dient fields. In the present analysis, however, only the base structure, consisting of

radially magnetized brick magnets arranged in an IO ring pair, is considered, in or-

der to isolate and evaluate the fundamental properties of the Aubert configuration.

Each ring of the presented configuration is composed of 22 identical NdFeB bricks,

arranged uniformly along a circular path. The blocks are, of course, magnetized

radially, with opposing directions in the two rings.

Each magnet block has dimensions of 120×30×20𝑚𝑚, and, as in the previous con-

figurations, is assumed to have a remanent magnetization 𝐵𝑟 = 1.4𝑇 . The magnets

are placed with a uniform angular spacing of 360°/22 ≈ 16.36° around each ring,

forming a nearly continuous magnetic surface. Each of the two magnetic assemblies

composing the Aubert ring pair consists of five stacked rings of brick-shaped mag-

nets, aligned along the axial direction. As it can be seen in the sectional view in

Figure 3.16, within each assembly, the rings present a slightly offset in the radial

direction relative to one another. Starting from the outermost ring, the radii of the

stacked layers follow the sequence: [0.188, 0.180, 0.172, 0.172, 0.180] 𝑚, forming a

symmetric radial profile designed to enhance field homogeneity6. As a result of this

arrangement, the effective bore diameter, defined as the minimum clear aperture

through the magnet structure, is approximately 340𝑚𝑚, while the distance between

the two stacks has been set to 280𝑚𝑚.

6The radial misalignment between stacked rings was not arbitrary, but resulted from a genetic
optimization process described in the original study.
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Figure 3.16: Configuration 4 – Schematics and sectional view of the array

Unlike the previous Halbach configurations that employed spherical regions of

interest, the current and the following I/O ring based design adopt a cylindrical

FOV, as defined in the reference studies In both cases, the FOV is modeled as a

cylinder with a diameter of 20 𝑐𝑚 and a height of 5 𝑐𝑚, centered at the origin of the

coordinate system.

The dominant contribution to the field, the one that will be explored, is the 𝐵𝑧

component, as shown in 3.17.

(a) (b)

Figure 3.17: Configuration 4 – Evaluation of the 𝐵𝑧 component in the FOV (a) and on
the xy-plane (b)
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Center [0, 0, 0] 𝑚
Obs. points 19940

𝐵𝑧,max 0.1106 T
𝐵𝑧,min 0.1039 T
𝐵𝑧,mean 0.1080 T

Homogeneity 61874 ppm

Center [0, 0, 0] 𝑚
Obs. points 7668

𝐵𝑧,max 0.1093 T
𝐵𝑧,min 0.1051 T
𝐵𝑧,mean 0.1079 T

Homogeneity 39090 ppm

Table 3.11: Configuration 4 - Results of PmLab computation on the cylindrical FOV
(left) and on the xy-plane (right)

Configuration 4 produces magnetic field strengths comparable to those obtained

with Configuration 2 (Halbach array with vertical bars). This result is particularly

promising given the low magnetic filling factor of the current setup. This indicates

that this field strength is achieved without fully exploiting the available volume. As

a result, the configuration demonstrates strong potential for generating even higher

magnetic fields if the magnet density is increased.

The dominant 𝐵𝑧 component exhibits a concentric and radially symmetric distribu-

tion that gradually tends to decrease from the periphery to the center of the FOV.

Another noticeable consideration is that the maximum magnetic field is not located

on the 𝑥𝑦-plane at 𝑧 = 0, but in adjacent axial planes, closer to the magnet rings.

Both these aspects are a direct consequence of the disposition of the magnets and

the distance between them and the central 𝑥𝑦-plane.

Degree 𝑛 Relative Contribution Dominant Orders 𝑚

0 9.904 × 10−1 (uniform field)
1 1.107 × 10−9 negligible
2 9.531 × 10−3 𝑚 = −2 (XY), 𝑚 = 1 (ZX)
3 2.275 × 10−8 negligible

Table 3.12: Configuration 4 - Relative contribution of the spherical harmonic degrees

The results of the spherical harmonic decomposition (Table 3.12) show an har-

monic spectrum close to the one obtained for Halbach structures. Second-order

harmonics are, indeed, the main responsible for the inhomogeneities in the FOV.

3.3.2 Configuration 5

The last configuration under investigation is derived from [5], where it is realized

using magnetized tiles, arranged in such a way to reproduce the radial magnetization

pattern.

Unlike the original study, which involves extensive optimization procedures, the

50



Chapter 3 3.3. Aubert Rings

version here analyzed adopts a simplified initial geometry, intended to provide a

clear reference for comparative analysis.

The structure analyzed in Configuration 5 is composed of two symmetric assemblies,

each consisting of nine concentric magnetic rings. All rings share a common outer

diameter of 0.25𝑚 and a uniform axial thickness of 1 𝑐𝑚. Within each assembly,

the inner diameter of the rings increases progressively from 0.15𝑚 to 0.23𝑚, with

a step of 1 𝑐𝑚 between successive layers. This results in a set of nested annular

tiles with decreasing radial width toward the center. The axial distance between

the inner rings of the two assemblies is 0.20𝑚, defining the clear gap across which

the magnetic field is concentrated, as illustrated in Figure 3.18.

Figure 3.18: Configuration 5 – Schematics and sectional view of the array

(a) (b)

Figure 3.19: Configuration 5 – Evaluation of the 𝐵𝑧 component in the FOV (a) and on
the xy-plane (b)
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Center [0, 0, 0] 𝑚
Obs. points 19940

𝐵𝑧,max 0.1256 T
𝐵𝑧,min 0.1177 T
𝐵𝑧,mean 0.1225 T

Homogeneity 64531 ppm

Center [0, 0, 0] 𝑚
Obs. points 7668

𝐵𝑧,max 0.1241 T
𝐵𝑧,min 0.1191 T
𝐵𝑧,mean 0.1225 T

Homogeneity 40858 ppm

Table 3.13: Results of PmLab computation on the cylindrical FOV (left) and on the
xy-plane (right), Configuration 5

Although a direct comparison is not entirely feasible, due to the conceptual sim-

ilarity but geometric and volumetric differences in the magnetic structure between

the two designs, the results for Configuration 5 show a clear increase in magnetic

field strength compared to Configuration 4. Indeed, the use of a denser and more

compact magnet arrangement results in an approximate increase of 0.1𝑇 in the

average field intensity. This enhancement is achieved without a substantial deteri-

oration in field homogeneity. However, it is important to note that the analysis for

these configurations was conducted over a smaller cylindrical FOV, which does not

extend significantly along the 𝑧-axis the direction in which the magnetic field typi-

cally decreases more sharply. As a result, the reported homogeneity values may be

underestimated, as they do not fully capture the fringe effects and axial variations

that would emerge in a larger or more elongated field of view.

Degree 𝑛 Relative Contribution Dominant Orders 𝑚

0 9.985 × 10−1 (uniform field)
1 1.213 × 10−9 negligible
2 1.045 × 10−2 𝑚 = −2 (XY), 𝑚 = 1 (ZX)
3 2.503 × 10−8 negligible

Table 3.14: Relative contribution of the main spherical harmonic degrees, Configuration
5

The analysis of spherical harmonics in Table 3.14 does not show significant

differences compared to the previous ones. Only a larger contribution of the second

degree component can be noted, among which the components of order 𝑚 = −2 and

𝑚 = 1 always have a predominant role.

52



4 Selection and Optimization

This chapter marks the beginning of the design refinement phase, whose purpose is

trying to identify and improve the most suitable magnet configuration for low-field

application.

Following the comparative analysis in Chapter 3, in the first part of this chapter,

the choice of initial configuration will be made among the candidates previously

analyzed. The choice is based on a combination of factors, including magnetic field

intensity, spatial homogeneity, structural compactness, and practical feasibility.

Once the reference configuration has been selected, the chapter proceeds with its

progressive optimization. The goal is to improve magnetic performances, in terms of

strength of the field and homogeneity, by adjusting specific geometric and material

parameters or adding new components. o guide this process, a genetic algorithm

is employed, a type of evolutionary optimization particularly well suited to com-

plex, non-linear problems. Its ability to efficiently explore a wide solution space

makes it particularly effective in identifying configurations with superior magnetic

performance.

4.1 Choice of the Reference Geometry

The configuration selected as the starting point for the optimization process is the

tile-based Aubert ring structure described in Sec.3.3.2. Among the various geome-

tries, this design provides a promising foundation thanks to its balanced combina-

tion of magnetic performance, manufacturability, and architectural flexibility. The

choice is supported by several key considerations:

• Higher field strength in the region of interest, a key factor for improving

the signal-to-noise ratio. A stronger field leads to a greater net magnetization

of the spin system, which is essential for image contrast and sensitivity in

low-field MRI;

• Manufacturing simplicity: although the structure consists of multiple
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Chapter 4 4.1. Choice of the Reference Geometry

curved tiles arranged in concentric rings, each tile is identical in shape, size,

and magnetization direction. This uniformity significantly simplifies the man-

ufacturing process as the tiles can be mass-produced using a single mold and

magnetized in bulk with the same direction;

• Structural openness: the configuration leaves a significant amount of free

space between the two magnet layers, offering the opportunity to integrate

supplementary components, either magnetic or non-magnetic, for improving

field homogeneity;

• Axial orientation of the magnetic field, which facilitates seamless inte-

gration with standard RF coils, eliminating the need for custom redesign.

Despite its advantages, the selected configuration exhibits key limitations that must

be resolved to satisfy the performance demands. In the previous analysis, the

evaluation of field homogeneity was performed over a cylindrical field of view with

a height of only 5 𝑐𝑚 and, even in this conservative situation, the configuration

showed significant inhomogeneities, especially along the 𝑧-axis (as visible in Tables

3.14).

For the purposes of this study, however, the region of interest will be extended to

a spherical FOV with a radius of 10 𝑐𝑚, which better reflects the dimensions of a

realistic imaging volume.

(a) (b)

Figure 4.1: Reference structure with the new spherical FOV (a) and computation of the
𝐵𝑧 component on the new spherical FOV (b)7

7ATT: To emphasize the decrease in the field when moving on the z-axis, the color map has

been adjusted to have the same chromatic scale as in figure 3.19
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Center [0, 0, 0] 𝑚
Obs. points 30976

𝐵𝑧,max 0.1264 T
𝐵𝑧,min 0.0909 T
𝐵𝑧,mean 0.1191 T

Homogeneity 298467 ppm

Table 4.1: Results of PmLab computation of the reference structure on a spherical FOV

The increased volume makes even more difficult to maintain field uniformity

within the FOV, especially near the two magnetic assemblies, where the axial field

rapidly drops, as visible in Figure 4.1. This trend is confirmed by the results

obtained in the simulation, shown in the Table 4.1, where we can observe that

both the values of 𝐵𝑧,max and 𝐵𝑧,min are different from the ones in Table 3.13. In

particular, 𝐵𝑧,max is slightly higher in the latter case, implying that the maximum

field value is reached at a higher altitude, closer to the magnetic structures, whereas

the 𝐵𝑧,min value is significantly lower (more than 0.2𝑇) to indicate how strong

this drop is as we move towards the two magnetic layers along the 𝑧-axis. This

increase in the difference between the two values leads to a substantial increase in

the inhomogeneity within the FOV, which reaches a value almost 5 times higher than

that seen in Configuration 5. Despite its limitations this configuration is adopted as

the baseline for further analysis and optimization, thanks to its simplicity, magnetic

efficiency, and promising potential for refinement.

4.2 Preliminary Adjustment: Axial Expansion

Before proceeding with the optimization steps, a preliminary adjustment to the

baseline configuration is required. Specifically, the two magnetic layers are axially

displaced to increase the gap between them. The motivation for this adjustment

is illustrated in Figure 4.2, based on the FEMM simulation of Configuration 5. In

the figure, the magnetic field intensity and flux lines are visualized across a vertical

cross-section of the system. The central semicircular region represents the target

FOV, while the two main magnet assemblies, located above and below, generate

the static magnetic field.
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Figure 4.2: Magnetic field distribution in reference setup (FEMM)

Due to the original axial positioning of the magnetic layers, it can be observed

that their influence does not sufficiently extend into the upper and lower extremities

of the FOV. These peripheral regions, which lie closer to the 𝑧-axis boundaries of the

FOV, are characterized by visibly weaker field magnitudes. This uneven coverage

leads to significant spatial variation in field strength and thus deteriorates the global

field homogeneity.

To address this issue, a preliminary structural adjustment is introduced: the axial

gap between the two magnet layers is increased from 20 𝑐𝑚 to 25 𝑐𝑚. The purpose

of this adjustment is to extend the region of effective magnetic coverage, allowing

the high-field areas (in purple) to better encompass the FOV and produce a more

uniform starting field distribution, thus offering a stronger foundation for further

optimization.

Figure 4.3: Magnetic field distribution after the adjustement (FEMM)8

8ATT: the same color scale of Figure 4.2 has been used.
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The effect of increased gap is illustrated in Figure 4.3. Compared to the previ-

ous case, two key observations can be made. First, the overall field intensity within

the FOV decreases slightly due to the increased distance between the magnetic

sources and the central region. Second, this reduction is accompanied by a notice-

able improvement in field uniformity, as visible from the more homogeneous color

distribution. his qualitative observation is also supported by quantitative results

obtained through PmLab simulations, as summarized in Table 4.2.

Center [0, 0, 0] 𝑚
Obs. points 45686

𝐵𝑧,max 0.1044 T
𝐵𝑧,min 0.0948 T
𝐵𝑧,mean 0.1005 T

Homogeneity 96189 ppm

Table 4.2: Results of PmLab computation after the axial adjustement

Starting from this stage of the analysis, all results will be systematically eval-

uated using both the FEMM finite element solver and the PmLab tool. To justify

and support the combined use of both tools, a preliminary comparison is presented

in this section. The aim is to evaluate the degree of agreement between the two

simulation methods and to identify any systematic discrepancies that may influence

subsequent analyses. Both solvers are applied to the same baseline configuration

(the last one seen in the present section) and the magnetic field is computed on

identical observation domains.

Metric PmLab FEMM Difference

𝐵𝑧,max [T] 0.1044 0.1064 +1.91%
𝐵𝑧,min [T] 0.0948 0.0922 -2.90%
𝐵𝑧,mean [T] 0.1005 0.1015 +0.59%

Homogeneity [ppm] 96189 140437 +44%

Points in FOV 45586 4736 —

Table 4.3: Comparison between PmLab and FEMM results for the reference
configuration (25 𝑐𝑚 gap)

The maximum value is slightly higher in FEMM compared to PmLab. This can

be attributed to the fact that FEMM treats the problem as axisymmetric, assum-

ing that each ring is perfectly continuous along its circumference. On the other

end, PmLab models the rings as discretized arrays of consecutive tiles, each with

individual orientation and position. This segmentation breaks the continuity of the
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magnetic surface, resulting in a slight reduction of the peak field value.

In contrast the minimum value is lower in FEMM. This is likely due to the higher

resolution of the FEMM simulation in detecting localized field drops within the

observation domain (FEMM computes the field over a dense 2D semicircular cross-

section, whereas PmLab samples the entire 3D spherical FOV, resulting in a lower

point density). The increased field excursion observed in FEMM naturally results

in a higher homogeneity value.

It is important to clarify that the discrepancy in homogeneity values observed be-

tween FEMM and PmLab is inherent and will persist throughout all subsequent

analyses. This is primarily due to the different strategies the solvers use to sample

the magnetic field within the region of interest:

• PmLab evaluates the magnetic field over a 3D spherical volume by generating

a regular grid of observation points using MATLAB’s meshgrid function. This

ensures that the sampling points are evenly spaced throughout the domain;

• In FEMM, on the other hand, the field is computed using an adaptive trian-

gular mesh, which subdivides the simulation domain into numerous intercon-

nected triangles, adjusting the density of this mesh based according the local

field behavior.

As a consequence, the set of observation points differs between the two tools, making

it impractical to impose identical spatial sampling across simulations. In addition,

since FEMM employs a finer and more adaptive mesh, especially in regions with

steeper field gradients, it tends to produce consistently higher (and thus more con-

servative) estimates of field inhomogeneity.

For this reason, in our study, FEMM serves as the bottleneck: although PmLab pro-

vides reliable estimates, its sampling resolution is slightly lower due to the uniform

but coarser 3D grid. Consequently, any configuration that meets the homogene-

ity constraints in FEMM can be considered robust, even if PmLab yields a more

optimistic evaluation.

4.3 Step 1 – Inner Radii Optimization

As a first step in the optimization process of the magnetic structure, the attention

was given to the inner radii of the magnetic layers. This phase represents the initial

attempt to systematically refine the geometry of the system in order to explore its
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potential to meet the design requirements. To this purpose, a Genetic Algorithm

(GA) was utilized, a stochastic, population-based optimization method inspired by

principles of natural selection and evolutionary theory.

A Genetic Algorithm explores the solution space by evolving a set of candidate

configurations, where each individual is defined by a vector of decision variables, in

this case the inner radii of the magnetic layers. The optimization starts from an

initial population generated randomly. Each candidate solution is assessed using

a fitness function that measures how effective a solution is in terms of optimiza-

tion goals. The best-performing candidates are then chosen to serve as parents for

the next generation. Offspring solutions are created by applying crossover, which

blends characteristics from two selected parents, and mutation, which introduces

stochastic alterations to promote diversity. This evolutionary process is iterated

over successive generations, leading to a progressive improvement in solution qual-

ity.

In this specific case, the optimization was formulated as a multi-objective prob-

lem, aiming to balance two competing goals: the maximization of the magnetic

field strength within the FOV and the minimization of field inhomogeneity across

the same region. Unlike single-objective optimization, this approach leads a set of

optimal trade-off solutions, collectively referred to as the Pareto front. A solution

is part of the Pareto front if no other solution can improve one objective without

compromising the other. As such, the front represents the full spectrum of com-

promises between field objectives, providing a comprehensive map of viable design

alternatives. From this set of non-dominated solutions, the final configuration can

be selected based according to the specific demands of the use case.

The optimization was applied to the internal radii of the magnetic rings, each one

constrained between the [0.15𝑚, 0.25𝑚] range. The algorithm was set to run for 50

generations with a population size of 100 individuals, ensuring both a broad explo-

ration of the solution space and a stable convergence toward high-quality solutions.

This choice, validated through multiple tests, proved to be effective in consistently

reaching well-distributed Pareto fronts and robust solutions.

It is important to highlight that, unlike the previous analyses, where the FOV was

divided using a fine mesh for accurate field mapping, in the optimization processes

a coarser sampling was used to reduce the computational time. Although this ap-

proach results in a slight reduction in spatial resolution, it still provides a reliable

estimate of the field to guide the optimization.
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The output of the process is a Pareto front comprising non-dominated solutions,

each representing a different trade-off between the two conflicting objectives: mag-

netic field strength and field homogeneity.

Figure 4.4: Pareto Front - Inner radii optimization

As clearly visible in the Pareto front (Figure 4.4), the two objectives are inher-

ently conflicting, improving one typically results in the deterioration of the other.

This observation highlights the necessity of adopting a multi-objective approach, as

single-objective methods may fail to represent the complicate trade-offs present in

the design space.

Among the available solutions, the one corresponding to the maximum magnetic

field intensity was selected as the reference configuration. This choice reflects the

two-step design strategy adopted in this work: first, prioritize the maximization of

the magnetic field, then refine the geometry in a subsequent optimization phase to

improve homogeneity.

One may wonder why, given the initial emphasis on maximizing the magnetic field

intensity, the trivial solution with all internal radii set to 0.15𝑚 was not chosen as a

starting point. The problem is that this configuration generates significant spatial

variations in the magnetic field that are extremely difficult to mitigate in the next

optimization steps.

The internal radii associated with this solution, ordered from the innermost to the

outermost ring, are:

𝑅in = [0.164, 0.170, 0.159, 0.156, 0.166, 0.163, 0.171, 0.170, 0.162] 𝑚
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(a) (b)

Figure 4.5: Step 1 - 3D view of the optimized magnetic structure (a) and PmLab 𝐵𝑧

field distribution in the FOV (b)

Figures 4.5 and 4.6 show the practical implementation of the optimized structure

and the results of the two computational methods that are summarized in Table

4.4.

Figure 4.6: Step 1 - 𝐵𝑧 field distribution (FEMM)

Metric PmLab FEMM Difference

𝐵𝑧,max [T] 0.1713 0.1739 +1.5%
𝐵𝑧,min [T] 0.1443 0.1367 -5.2%
𝐵𝑧,mean [T] 0.1621 0.1621 =

Homogeneity [ppm] 166777 229731 +37%

Points in FOV 3544 4736 —

Table 4.4: Step 1 - Comparison between PmLab and FEMM results
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Table 4.4 shows that the discrepancy between PmLab and FEMM’s results is

still similar to the previous case in Sec.4.2, with a general alignment on the field

values and a much more significant difference on the homogeneity values, for the

already mentioned reasons.

Compared to Table 4.3 (before the optimization of the internal radii) is it noticeable

how the magnetic performances have significantly improved, with an overall increase

of approximately 60%, but at expenses of homogeneity which sees a considerable

increase (around 65% for both PmLab and FEMM).

4.4 Step 2 - External Ring Magnets

Following the optimization of the internal radii of the magnetic layers, this next

step aims to further enhance the axial magnetic field in the region of interest by

introducing a set of external annular permanent magnets.

These cylinders are positioned concentrically around the main magnet assembly,

without entering the central area between the layers or interfering the FOV. Their

job is to boost the total magnetomotive force, giving extra push to the magnetic

flux and making the field inside the FOV stronger.

From a physical perspective, the influence of the outer cylinders can be interpreted

through an analogy with electrical circuits: the magnetomotive force (MMF) acts

as a voltage source, the magnetic flux corresponds to electric current, and magnetic

reluctance is analogous to electrical resistance. Just like adding batteries in series

raises the voltage in an electric circuit, adding external magnetized cylinders in-

creases the total MMF in the magnetic system. This makes the magnetic flux in

the central area stronger, even without changing the internal layout.

The external cylindrical magnets adopted in this phase of the study were assigned

fixed dimensions: a radial thickness of 4 𝑐𝑚 and an axial height of 5 𝑐𝑚. While the

optimization focused only on the internal radii and axial positions of the cylinders,

their section was kept constant.

This design decision was motivated by both manufacturing considerations and ma-

terial integrity constraints. From a practical point of view, these dimensions enable

the fabrication of the cylinders as monolithic magnetic components, eliminating the

need for segmentation. This is also made possible by the fact that these external

cylinders are designed with axial magnetization (not a radial one, as the magnetic

layers).
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Moreover these dimensions reflect a careful balance between performance and prac-

ticality. They allow each cylinder to produce enough magnetomotive force to boost

the field, while keeping the size small enough to avoid adding too much weight and

compromise the portability of the system.

The algorithm parameters remained unchanged from the previous stage. By al-

lowing both the position and radial extent of each cylinder to vary independently,

and without imposing symmetry constraints (at least for the moment), the search

space was kept sufficiently broad to explore non-trivial configurations capable of

enhancing the field.

To guide the search, the following constraints were applied:

• The internal radii of the cylinders were allowed to vary between 0.26𝑚 and

0.40𝑚;

• The axial positions were constrained between −0.12𝑚 and 0.12𝑚,, to cover

the space between the layers without overlapping them axially.

Figure 4.7: Pareto Front - External rings optimization

The results of the optimization are illustrated in Figure 4.7. The plot shows the

usual trade-off between the two goals: setups with stronger magnetic fields tend

to be less homogeneous, while those with better homogeneity usually have weaker

fields.

The comparison shown in Figure 4.8 clearly highlights the significant increase in

magnetic field strength made possible by the addition of the external elements.

Moreover, the shape and slope of the red front provide additional insight: the curve

appears to tilt rapidly, suggesting that the current configuration is approaching a
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local performance maximum. In other words, further improvements in field inten-

sity, within the limits of the current design and material constraints, would likely

come at the cost of disproportionate losses in homogeneity.

Figure 4.8: Pareto Front - Before and after the insertion of the external rings

Following with the strategy adopted in the previous optimization stage, the

configuration selected corresponds to the solution with the highest magnetic field

strength. The resulting optimization variables for this solution are:

𝑅in = [0.289, 0.271, 0.277] 𝑚

𝑧pos = [−0.045, 0.019, 0.079] 𝑚

(a) (b)

Figure 4.9: Step 2 - 3D view of the optimized magnetic structure (a) and PmLab 𝐵𝑧

field distribution in the FOV (b)
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Figure 4.10: Step 2 - 𝐵𝑧 field distribution (FEMM)

From Figures 4.9 and 4.10, an increase in field strength is evident, especially

in the central FOV areas, near the 𝑧 = 0 plane. However, this field increase does

not follow the same course over the entire FOV, as there are areas that are much

less affected by the influence of the magnets, such as the two spherical caps at the

extremes along the 𝑧-axis. Therefore, even with additional material, it is difficult

to significantly influence these peripheral areas.

An additional observation, the slight asymmetry of the magnetic field with respect

to the 𝑥𝑦-plane is due to the non-symmetrical arrangement of the outer cylinders.

Metric PmLab FEMM Difference

𝐵𝑧,max [T] 0.2163 0.2203 +1.8%
𝐵𝑧,min [T] 0.1659 0.1672 +0.8%
𝐵𝑧,mean [T] 0.2029 0.2101 +3.5%

Homogeneity [ppm] 233061 282941 +21%

Points in FOV 3544 4736 —

Table 4.5: Step 2 - Comparison between PmLab and FEMM results

Table 4.5 shows the results with the two calculation methods.

It is interesting to compare the results obtained before and after inserting the outer

rings, as presented in Table 4.6.
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PmLab results

Before After Diff

𝐵𝑧,max [T] 0.1713 0.2163 +26%
𝐵𝑧,min [T] 0.1443 0.1690 +17%
𝐵𝑧,mean [T] 0.1621 0.2029 +25%

Table 4.6: Comparison between PmLab results, before and after the external rings
insertion

This non-uniform improvement indicates that the external cylinders do not affect

all regions of the FOV uniformly. In particular, the minimum field values are

typically located near the top and bottom edges of the FOV, along the 𝑧-axis.

These are precisely the areas where the contribution of the external magnets is less

effective.

This is the main cause of the substantial increase in inhomogeneities, and it is

important to note that this has little to do with the optimization process employed.

It is an inherent feature of this configuration that we will attempt to mitigate in

other ways, as we will see in the next section.

4.5 Step 3 - Field-attenuating Rings

In this phase, the focus shifts entirely on improving the homogeneity of the mag-

netic field within the FOV, intentionally excluding field intensity from the set of

optimization objectives.

To achieve this, the introduction of a new set of magnetic elements is proposed: two

pairs of annular permanent magnets featuring radial magnetization in the opposite

direction to that of the main magnetic layers.

Theses ”attenuating rings” are placed on both sides of the central 𝑥𝑦-plane, in cor-

respondence with the regions where the magnetic field reaches its maximum (see

Figures 4.9 and 4.10). Their function is not to contribute to the total field, but

to help balancing it. The opposite radial magnetization creates localized magnetic

vortices that, if placed correctly, introduce negative magnetic flux in areas where

the main field it’s too strong.

This technique does not represent the most efficient strategy for improving field

uniformity, as it relies on reducing the field where it is too strong, rather than

boosting it where it is too weak. As a result, it leads to a decrease in the overall

field strength. Still, it remains the only feasible option in this context, as the inser-

tion of magnetic material into the cylindrical bore is not possible, which limits the

capability to influence the field at the caps of the FOV, where the field drops are
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significant.

The population size was increased to 500 individuals to account for the higher

dimensionality of the problem, which now involves 16 optimization variables, in-

cluding: the inner radius, axial position, radial thickness, and axial thickness of

each of the four attenuating rings. For manufacturability, the axial thickness was

constrained to discrete values of either 0.01 m or 0.02 m.

Appropriate constraints have been applied to all design parameters to ensure that

the resulting geometry is physically feasible, making sure to avoid the intersection

between with any of the pre-existing magnetic structures or between themselves

and preventing them to approach too closely the FOV, essential to preserve the

physical space required for patient positioning.

The results of the single-objective optimization process are shown in Table 5.14 and,

together with this, their representation in the PmLab environment (Figure 4.11a).

Ring # 𝑅𝑖𝑛 [𝑚] 𝑡𝑟 [𝑚] 𝑧𝑝𝑜𝑠 [𝑚] 𝑡𝑧 [𝑚]
1 0.159 0.085 -0.084 0.02
2 0.153 0.046 -0.035 0.01
3 0.194 0.021 0.032 0.02
4 0.154 0.071 0.011 0.02

Table 4.7: Optimized parameters for the attenuating rings

(a) (b)

Figure 4.11: Step 3 - 3D view of the optimized magnetic structure (a) and PmLab 𝐵𝑧

field distribution in the FOV (b)9

9Magnetic layers and outer rings are excluded in the the left figure for representational clarity.
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(a) (b)

Figure 4.12: Step 3 - 𝐵𝑧 field distribution (FEMM) with two different color scales

Figure 4.12 shows the distribution of the 𝐵𝑧 component of the magnetic field

obtained from FEMM simulations after the inclusion of the attenuating rings. The

figure 4.12a presents the field using a color scale automatically adjusted to the new

field range, while 4.12b adopts the same maximum value used previously in Figure

4.10. This comparison allows for a clearer visualization of the mitigation effect

introduced by the new ring structures; it is clear, indeed, how the maximum field

intensity has been significantly reduced compared to the earlier configuration. At

the same time, the uniformity of the color distribution in indicates a significantly

improved level of homogeneity, as also confirmed by the numerical results reported

in Table 4.8.

Metric PmLab FEMM Difference

𝐵𝑧,max [T] 0.1695 0.1723 +1.65%
𝐵𝑧,min [T] 0.1531 0.1491 -2.22%
𝐵𝑧,mean [T] 0.1638 0.1639 =%

Homogeneity [ppm] 86360 137933 +59

Points in FOV 3544 4736 —

Table 4.8: Step 3 - Comparison between PmLab and FEMM results

It is interesting to observe that the attenuating effect of the rings is quite pro-

nounced, strong enough to bring the field magnitude back to levels comparable to

those observed in Step 2 (before the insertion of the external boosting rings). This

effect is especially evident when analyzing the average and the maximum value of

𝐵𝑧, which show a reduction of approximately 20% compared to the configuration

in Step 3. On the other hand, the minimum field value decreases only slightly, by

about 8%, suggesting that the attenuation effect primarily targets the regions of
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highest magnetic flux density, which was the desired effect.

Although the qualitative outcome of this optimization step follows the intended

design strategy, the quantitative results remain far from acceptable homogeneity

levels. The main limiting factor continues to be the presence of inhomogeneities

concentrated near the spherical caps of the FOV, located along the 𝑧-axis at the

top and bottom of the imaging volume.

These areas represent a magnetic bottleneck, as they are inherently difficult to influ-

ence using the current magnet architecture, which lacks of components positioned

near the central axis of the main magnet layers.

To overcome this limitation, a structural adaptation of the current configuration

is necessary. Rather than a radical redesign, the next step involves a targeted re-

finement of the existing layout, carefully adjusted to better address the magnetic

requirements of the system.
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5 Redesign and Optimization

Starting again from the structure presented in Configuration 5 (Sec.3.3.2) and,

following the modifications introduced in Chapter 4, the reference design is further

revised by increasing the axial distance between the two magnetic assemblies.

In this updated configuration, the spacing between the inner rings of the two magnet

layers is extended from 20 𝑐𝑚 to 32 𝑐𝑚 (while in Chapter 4 the extension was only

5 𝑐𝑚). As a result, the distance from the center of the FOV to the outer edge of

each magnetic assembly increases from 19 𝑐𝑚 to 25 𝑐𝑚, as shown in Figure 5.1.

(a) (b)

Figure 5.1: Reference structure, Configuration 5 (a) and new extended setup (b)

Before proceeding with improvements to the structure and further analysis of

the magnetic field, it is necessary to verify that this modification does not compro-

mise the anatomical compatibility of the system. In particular, it must be ensured

that the center of the FOV remains properly aligned with the region of interest, in

this case the human brain, across the full range of possible users.

To this end, the analysis refers to typical anatomical proportions observed in adult

individuals. The vertical distance between the center of the brain, typically lo-
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cated near the midpoint of the cranial volume, and the shoulder plane generally

falls within the range of 25 to 30 𝑐𝑚, depending on individual height, neck length,

and posture. In certain cases, particularly in individuals of smaller stature or with

shorter necks, this distance may be slightly less than 25 𝑐𝑚. Nevertheless, given

that the imaging system is designed with a relatively large field of view, this does

not represent a constraint on its usability.

Hence, by setting the distance between the FOV center and the outer edge of each

magnetic assembly to 25 𝑐𝑚, the system remains fully compatible with the anatomi-

cal variability found in the general population. As such, the structural modification

can be considered both safe and universally applicable, without loss of generality

with respect to the original configuration.

The present section now provides both a quantitative and qualitative analysis of

the magnetic field distribution resulting from the updated configuration, focusing,

in particular, on how the increased spacing between the magnetic assemblies affects

the uniformity, intensity and spatial characteristics of the field.

As shown in Figure 5.2, the increased distance between the two magnetic layers

has significantly altered the magnetic field distribution within the FOV. In contrast

to previous configurations, the new setup exhibits a reversed behavior. Here, the

maximum field intensity is concentrated in the spherical caps, while the minimum

field occurs near 𝑥𝑦-plane.

Figure 5.2: Magnetic field distribution in the new setup (FEMM)

However, the increased spacing does not come without trade-offs. As evidenced

by the data in Table 5.3, the new configuration exhibits a general decrease in mag-

netic field strength throughout the FOV. This trend becomes even more apparent

when looking at Table 5.4, which summarizes magnetic field values across the three
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configurations examined.

Metric PmLab FEMM Difference

𝐵𝑧,max [T] 0.0912 0.0932 +2.1%
𝐵𝑧,min [T] 0.0783 0.0771 -1.5%
𝐵𝑧,mean [T] 0.0856 0.0881 +2.9%

Homogeneity [ppm] 150700 182945 +21%

Points in FOV 12712 4736 —

Table 5.1: Comparison between PmLab and FEMM results in the new setup

Parameter Ref. setup 1st Mod. 2nd Mod.

𝐵𝑧,max [T] 0.1264 0.1044 0.0892
𝐵𝑧,min [T] 0.0909 0.0948 0.0756
𝐵𝑧,mean [T] 0.1191 0.1005 0.0828

Homogeneity [ppm] 298467 96189 163301

Table 5.2: Comparison of magnetic field PmLab results among the three setups

Despite the fact that the magnetic performance of this new configuration ap-

pears to be limited in terms of both field strength and homogeneity, this should not

be regarded as a drawback. In fact, these results are not the primary focus at this

stage. The real benefit of the current setup lies in a crucial improvement not seen

in the previous versions: a substantial increase in magnetic field intensity within

the two end-cap regions along the z -axis, which had been a major weak point of

the system.

The fact that the field now shows a drop in the central xy-plane is not a major

concern. Indeed, it is considerably easier to apply magnetic corrections in this por-

tion of the FOV, as the insertion of additional material is only feasible in the space

between the two magnetic assemblies, outside the central bore in which the FOV is

contained (obviously without interfering with it).

For this reason, the analysis will proceed based on this newly established configu-

ration, following the same methodology adopted in previous sections, firstly trying

to maximize the strength of the field and, secondly, refining its uniformity through

specific adjustments.
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5.1 Step 1 - Inner Radii Optimization

After setting up the new configuration, the present step consists in optimizing the

inner radii of the individual magnet layers. The optimization procedure, including

parameters, variables, and constraints, follows the same methodology described in

the previous chapter, in Section 4.3.

However, in this case, the analysis will be extended to include multiple solutions,

trying to build a more comprehensive picture of how the magnetic performance

evolves as additional design elements are introduced.

Rather than focusing on a single optimized configuration, the analysis explores a

sequence of incremental refinements, each building upon the previous one, thus out-

lining an evolutionary path of the system.

In this context, the optimization process assumes a tree-like structure, where each

branch represents a possible direction of development. By exploring these various

paths, it can be better understood which changes actually improve the field, how

those improvements build on each other and which design strategies offer the best

compromise between field strength and homogeneity.

It is important to underline that this analysis is not intended to be exhaustive.

Conducting a full optimization for each possible outcome of a previous iteration

would result in computational demands that are far from the practical feasibility.

Instead, the chosen strategy focuses on highlighting the most meaningful directions

the design can take, enabling targeted improvements while maintaining a reason-

able computational cost.

Figure 5.3: Pareto Front - Inner radii optimization
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From the set of non-dominated solutions, shown in Fig.5.3, three initial config-

urations have been selected (highlighted in red, orange, and green in the figure) as

starting points for further evolution and refinement. To this end, a lower limit of

approximately 0.14𝑇 has been set on the average magnetic field strength to avoid

excessively weak configurations that would be less suitable for imaging applica-

tions.The three selected configurations from the Pareto front are now presented in

detail.

Solution 1

𝑅in = [0.15, 0.153, 0.15, 0.15, 0.15, 0.172, 0.15, 0.15, 0.15] 𝑚

(a) (b)

Figure 5.4: Step 1 - Solution 1, structure (a) and PmLab 𝐵𝑧 field distribution (b)

Metric PmLab FEMM Difference

𝐵𝑧,max [T] 0.1695 0.1720 +1.4%
𝐵𝑧,min [T] 0.1343 0.1365 +1.6%
𝐵𝑧,mean [T] 0.1528 0.1577 +3.2%

Homogeneity [ppm] 230206 224749 -2.3%

Points in FOV 3544 4736 —

Table 5.3: Solution 1 - Comparison between PmLab and FEMM results

Solution 2

𝑅in = [0.162, 0.165, 0.15, 0.166, 0.156, 0.177, 0.155, 0.158, 0.163] 𝑚
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(a) (b)

Figure 5.5: Step 1 - Solution 2, structure (a) and PmLab 𝐵𝑧 field distribution (b)

Metric PmLab FEMM Difference

𝐵𝑧,max [T] 0.1513 0.1541 +1.8%
𝐵𝑧,min [T] 0.1237 0.1256 +1.5%
𝐵𝑧,mean [T] 0.1384 0.1423 +2.2%

Homogeneity [ppm] 199761 199056 -0.4%

Points in FOV 3544 4736 —

Table 5.4: Solution 2 - Comparison between PmLab and FEMM results

Solution 3

𝑅in = [0.156, 0.159, 0.187, 0.159, 0.167, 0.174, 0.171, 0.169, 0.167] 𝑚

(a) (b)

Figure 5.6: Step 1 - Solution 3, structure (a) and PmLab 𝐵𝑧 field distribution (b)
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Metric PmLab FEMM Difference

𝐵𝑧,max [T] 0.1371 0.1386 +1.1%
𝐵𝑧,min [T] 0.1148 0.1169 +1.8%
𝐵𝑧,mean [T] 0.1268 0.1296 +2.2%

Homogeneity [ppm] 175983 167443 -4.4%

Points in FOV 3544 4736 —

Table 5.5: Solution 3 - Comparison between PmLab and FEMM results

Given the increased axial distance between the two magnetic assemblies and the

resulting change in the magnetic field distribution compared to the original setup,

it is not surprising that the optimized solutions converge toward a relatively simple

configuration in which all inner radii approach their maximum permitted value of

0.15𝑚.

While in the original configuration setting all 𝑅𝑖𝑛 = 0.15𝑚 would have increased

the peak magnetic field at the expense of significantly reduced homogeneity (due

to the limited influence on the end-caps), in this new setup the tendency towards

this ”trivial” solution does not lead to a dramatic loss in homogeneity, making it a

reasonable and effective option.

Structurally, the three selected configurations are very similar to each other, with

the main difference being the progressive enlargement of the magnet layers’ diam-

eter. This geometric variation naturally leads to a reduction in the magnetic field,

due to the lower amount of magnetic material present in the system.

FEMM-based representations of the magnetic field have been omitted in this case,

as their distribution patterns closely resemble those already shown in Figure 5.2,

and do not provide additional insight beyond the data already discussed.

5.2 Step 2 - External Ring Magnets

As already explored in Section 4.4, this next step focuses on the strengthening of

the magnetomotive force of the system by adding external magnet rings. A new

optimization phase is set up to identify the best configuration of these rings, with

some adjustments made to account for the geometric changes introduced in the

current setup.

Specifically, four external rings are now considered instead of three, in order to

make full use of the increased axial spacing between the two main magnet assem-

blies. Indeed, an excessive spacing between the rings could cause a dispersion of

the magnetic field lines, reducing their effectiveness.
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Unlike the approach adopted in the previous chapter, a symmetry constraint is

introduced here, as there is no physical or functional reason to assume that the

external rings should be asymmetrically placed.

The optimization process is carried out independently on each of the three previ-

ously explored configurations. The results of this optimization step are presented

below.

5.2.1 Solution 1

Figure 5.7 shows the Pareto front obtained from the optimization process starting

from Solution 1. From this set of non-dominated solutions, two configurations with

opposite characteristics have been selected for further analysis.

Figure 5.7: Pareto Front - Optimization results based on Solution 1

Solution 1.1

𝑅in = [0.254, 0.265, 0.265, 0.264] 𝑚

𝑧pos = [−0.096, −0.033, 0.033, 0.096] 𝑚
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(a) (b)

Figure 5.8: Step 2 - Solution 1.1, structure (a) and PmLab 𝐵𝑧 field distribution (b)

Metric PmLab FEMM Difference

𝐵𝑧,max [T] 0.2327 0.2359 +1.3%
𝐵𝑧,min [T] 0.2182 0.2152 -1.4%
𝐵𝑧,mean [T] 0.2254 0.2272 +0.7%

Homogeneity [ppm] 64141 91252 +42%

Points in FOV 3544 4736 —

Table 5.6: Solution 1.1 - Comparison between PmLab and FEMM results

Solution 1.2

𝑅in = [0.339, 0.265, 0.265, 0.339] 𝑚

𝑧pos = [−0.096, −0.033, 0.033, 0.096] 𝑚

(a) (b)

Figure 5.9: Step 2 - Solution 1.2, structure (a) and PmLab 𝐵𝑧 field distribution (b)
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Metric PmLab FEMM Difference

𝐵𝑧,max [T] 0.2207 0.2238 +1.4%
𝐵𝑧,min [T] 0.2086 0.2054 -1.6%
𝐵𝑧,mean [T] 0.2144 0.2163 +0.8%

Homogeneity [ppm] 56367 85103 +50%

Points in FOV 3544 4736 —

Table 5.7: Solution 1.2 - Comparison between PmLab and FEMM results

5.2.2 Solution 2

The Pareto front shown in Figure 5.13 corresponds to the optimization process

initiated from Solution 2. As in the previous case, a wide range of trade-off solutions

was generated by varying the configuration of the external magnetic rings.

Two representative points were selected for further analysis.

Figure 5.10: Pareto Front - Optimization results based on Solution 2

Solution 2.1

𝑅in = [0.253, 0.257, 0.257, 0.253] 𝑚

𝑧pos = [−0.105, −0.033, 0.033, 0.105] 𝑚
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(a) (b)

Figure 5.11: Step 2 - Solution 2.1, structure (a) and PmLab 𝐵𝑧 field distribution (b)

Metric PmLab FEMM Difference

𝐵𝑧,max [T] 0.2162 0.2192 +1.3%
𝐵𝑧,min [T] 0.2007 0.1963 -2.2%
𝐵𝑧,mean [T] 0.2111 0.2120 +0.4%

Homogeneity [ppm] 73316 107833 +45%

Points in FOV 3544 4736 —

Table 5.8: Solution 2.1 - Comparison between PmLab and FEMM results

Solution 2.2

𝑅in = [0.332, 0.283, 0.283, 0.332] 𝑚

𝑧pos = [−0.114, −0.038, 0.038, 0.114] 𝑚

(a) (b)

Figure 5.12: Step 2 - Solution 2.2, structure (a) and PmLab 𝐵𝑧 field distribution (b)
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Metric PmLab FEMM Difference

𝐵𝑧,max [T] 0.1994 0.2020 +1.3%
𝐵𝑧,min [T] 0.1876 0.1845 -1.7%
𝐵𝑧,mean [T] 0.1934 0.1945 +0.5%

Homogeneity [ppm] 60971 89974 +47%

Points in FOV 3544 4736 —

Table 5.9: Solution 2.2 - Comparison between PmLab and FEMM results

5.2.3 Solution 3

The third Pareto front originates from the optimization process applied to Solution

3, which was initially characterized by lower magnetic field values. Despite this,

the optimization still yields a meaningful set of configurations with improved per-

formance.

Among the results, two contrasting solutions have been selected: Solution 3.1, fa-

voring stronger field generation, and Solution 3.2, prioritizing field uniformity.

Figure 5.13: Pareto Front - Optimization results based on Solution 3

Solution 3.1

𝑅in = [0.298, 0.254, 0.254, 0.298] 𝑚

𝑧pos = [−0.104, −0.037, 0.037, 0.104] 𝑚
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(a) (b)

Figure 5.14: Step 2 - Solution 3.1, structure (a) and PmLab 𝐵𝑧 field distribution (b)

Metric PmLab FEMM Difference

𝐵𝑧,max [T] 0.1949 0.1968 +0.9%
𝐵𝑧,min [T] 0.1784 0.1756 -1.6%
𝐵𝑧,mean [T] 0.1914 0.1909 -0.3%

Homogeneity [ppm] 86544 109321 +26%

Points in FOV 3544 4736 —

Table 5.10: Solution 3.1 - Comparison between PmLab and FEMM results

Solution 3.2

𝑅in = [0.316, 0.281, 0.281, 0.316] 𝑚

𝑧pos = [−0.105, −0.031, 0.031, 0.105] 𝑚

(a) (b)

Figure 5.15: Step 2 - Solution 3.2, structure (a) and PmLab 𝐵𝑧 field distribution (b)

82



Chapter 5 5.2. Step 2 - External Ring Magnets

Metric PmLab FEMM Difference

𝐵𝑧,max [T] 0.1744 0.1761 +0.9%
𝐵𝑧,min [T] 0.1636 0.1589 -2.7%
𝐵𝑧,mean [T] 0.1692 0.1698 +0.3%

Homogeneity [ppm] 64047 101153 +57%

Points in FOV 3544 4736 —

Table 5.11: Solution 3.2 - Comparison between PmLab and FEMM results

The results reveal a clear and somewhat surprising trend: adding external rings

consistently improves field homogeneity in each case examined. By reinforcing the

magnetic field in regions that have become weakened, particularly near the central

𝑥𝑦-plane, the rings effectively compensate for the low-field zones introduced by

the increased spacing between layers. This effect becomes particularly evident and

meaningful in the case of Solution 1, as shown in Figure 5.16.

Figure 5.16: Comparison of Pareto fronts obtained from the three initial configurations.

In Figure 5.17, the same Pareto fronts previously discussed are shown, now with

their starting configurations, added for comparison (marked as square points). This

visualization clearly highlights the drastic reduction in magnetic field inhomogene-

ity achieved through the addition of external rings.

The improvement is particularly evident when looking at the results derived from

Solution 1 (in red). In this case, the initial configuration presented a homogeneity

of around 2.3 × 105 𝑝𝑝𝑚 while the optimized solutions reach average values around

6 × 104 𝑝𝑝𝑚, corresponding to a reduction of roughly 74%.
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Figure 5.17: Pareto fronts obtained from the three initial configurations and their
starting points .

It is exactly because of their strong positive response to the external magnetic

rings that Solution 1.1 has been chosen for the next optimization step. As in

the previous chapter, this new phase specifically targets the improvement of field

homogeneity.

5.3 Step 3a - Field-attenuating Rings

The analysis proceeds with a single-objective optimization, similar to that carried

out in Section 4.5, aimed at minimizing the magnetic field magnitude variation

within the FOV. This is achieved through the insertion of two pairs of magnetic

rings, magnetized inward and outward, but oriented in the opposite direction to the

main magnet assemblies.

Differently from what was done in Chapter 4, in this case two parallel optimization

processes are conducted. One explores asymmetric pairs of rings, where each ring

can vary freely in shape and position, while the other focuses on symmetric config-

urations, assuming that the rings are mirrored across the central xy-plane.

The rationale behind performing both a symmetric and an asymmetric optimization

is illustrated in Figure 5.18.

84



Chapter 5 5.3. Step 3a - Field-attenuating Rings

Figure 5.18: Cross-sectional view of the magnet structure with the four auxiliary rings

In this representation, it is assumed that the magnetic field is oriented along the

z-axis, from bottom to top. To achieve a field-attenuating effect, rings 2 and 4 are

magnetized inward, while rings 1 and 3 are magnetized outward (in the direction

opposite to the main magnet assemblies).

It can be observed that each pair of rings sharing the same magnetization direction,

rings 1 and 3, and rings 2 and 4, acts on different regions of the FOV. For instance,

ring 3 influences a field portion located closer to the center, which has a wider

cross-sectional area than the portion influenced by ring 1, which lies near the edge

of the FOV. As a consequence, even though the rings are paired by magnetization

direction, they operate under different geometric and field conditions.

This is the primary reason why an asymmetric analysis may be more appropriate

in this context, allowing each ring to adapt more precisely to the specific region

of the FOV it influences. However, given that the main structure is, up to this

point, perfectly symmetric with respect to the central xy-plane, a symmetric ring

configuration may be preferred for practical reasons. Therefore, both approaches

will be carried out and compared, in order to assess their relative effectiveness in

improving field uniformity.

The optimization process follows the same setup as described in Section 4.5, main-

taining the same number of population elements, number of generations, optimiza-

tion variables, and parameter limits. The results of both the symmetric and asym-

metric configurations are presented below.
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5.3.1 Asymmetric Rings Configurations

Ring # 𝑅𝑖𝑛 [𝑚] 𝑡𝑟 [𝑚] 𝑧𝑝𝑜𝑠 [𝑚] 𝑡𝑧 [𝑚]
1 0.163 0.038 -0.126 0.02
2 0.166 0.017 -0.047 0.01
3 0.153 0.041 0.070 0.01
4 0.162 0.077 0.0124 0.02

Table 5.12: Solution 1.1 - Optimized parameters for the attenuating rings

(a) (b)

Figure 5.19: Step 3 - Solution 1.1, structure (a) and PmLab 𝐵𝑧 field distribution (b)

Figure 5.20: Step 3 - Solution 1.1, FEMM 𝐵𝑧 distibution
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Metric PmLab FEMM Difference

𝐵𝑧,max [T] 0.2042 0.2047 +0.2%
𝐵𝑧,min [T] 0.1974 0.1956 -0.9%
𝐵𝑧,mean [T] 0.2016 0.2011 -0.3%

Homogeneity [ppm] 33880 45625 +34%

Points in FOV 3544 4736 —

Table 5.13: Solution 1.1 - Comparison between PmLab and FEMM results

5.3.2 Symmetric Rings Configurations

Ring # 𝑅𝑖𝑛 [𝑚] 𝑡𝑟 [𝑚] 𝑧𝑝𝑜𝑠 [𝑚] 𝑡𝑧 [𝑚]
1 0.151 0.089 -0.139 0.02
2 0.159 0.028 -0.069 0.01
3 0.159 0.028 0.069 0.01
4 0.151 0.089 0.139 0.02

Table 5.14: Solution 1.1 - Optimized parameters for the attenuating rings

(a) (b)

Figure 5.21: Step 3 - Solution 1.1, structure (a) and PmLab 𝐵𝑧 field distribution (b)
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Figure 5.22: Step 3 - Solution 1.1, FEMM 𝐵𝑧 distibution

Metric PmLab FEMM Difference

𝐵𝑧,max [T] 0.1865 0.1873 +0.4%
𝐵𝑧,min [T] 0.1839 0.1828 -0.6%
𝐵𝑧,mean [T] 0.1854 0.1869 -0.8%

Homogeneity [ppm] 14352 24077 +67%

Points in FOV 3544 4736 —

Table 5.15: Solution 1.1 - Comparison between PmLab and FEMM results

As shown in Tables 5.13 and 5.15, the introduction of field-attenuating rings,

whether symmetric or asymmetric, leads to significantly different outcomes, high-

lighting once again the intrinsic trade-off that governs magnetic field optimization.

The implementation of asymmetric rings results in a reduction of field inhomogene-

ity within the FOV by approximately 50%, a substantial improvement in uniformity.

However, this enhancement comes at the cost of a ∼ 11% decrease in the average

magnetic field intensity.

In contrast, the use of symmetric rings yields a more pronounced improvement in

homogeneity, with inhomogeneity levels reduced by up to 75%. Unfortunately, this

comes with a more significant penalty in terms of magnetic field strength, resulting

in an average field reduction of around 18%.

These results clearly illustrate the delicate balance between homogeneity and field

intensity, emphasizing that optimizing one often requires a sacrifice in the other.

The choice between symmetric and asymmetric ring configurations should therefore

be guided by the specific application requirements and the acceptable tolerance in

field strength degradation.
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5.4 Step 3b - Ferromagnetic Profile Design

An alternative strategy is now explored, starting from the optimized Solution 1.1

obtained in Section 5.2. While the objective remains the same, improving field

homogeneity within the FOV, this new approach replaces the external rings with

a ferromagnetic structure designed to smooth out field variations through passive

shaping.

The concept is to introduce a ferromagnetic component placed between the two

magnet assemblies, designed to enclose the FOV. The internal boundary of this

structure is defined by a continuous function 𝑥 = 𝑓 (𝑦), which shapes the profile in

such a way as to guide and redistribute the magnetic flux.

The structures have been designed following these key steps:

• The function domain 𝑦 ∈ [0, 0.15] is discretized into multiple points where

the profile function is evaluated using a polynomial expression. The resulting

curve is then mirrored with respect to the central 𝑥𝑦-plane to obtain a fully

symmetric profile;

• A constraint is applied to limit the maximum penetration of the material,

in order to avoid interference with the FOV and preserve the usable imaging

volume;

• A further constraint is applied to the external boundary of the structure: the

profile described by the function is not allowed to fall below a minimum radial

coordinate, set to 𝑥 = 0.5 𝑐𝑚. If the computed profile violates this constraint

at any point (i.e., if 𝑥(𝑦) < 0.5 𝑐𝑚), the function is clipped and forced to

coincide with this lower bound. This condition is introduced to preserve

the structural continuity and the mechanical integrity of the ferromagnetic

component throughout its entire shape.

This type of analysis can only be carried out using the FEMM environment, as

the current version of PmLab does not support the inclusion of ferromagnetic mate-

rials. For this reason, all simulations involving the shaped ferromagnetic structure

will be performed in FEMM.

The starting point for this study consists in setting a fixed initial value of magnetic

relative permeability equal to 𝜇𝑟 = 200. This value is chosen as a realistic and

practical estimate, consistent with the magnetic properties of commonly available

ferromagnetic materials such as certain steels and soft iron alloys. Using this fixed

property, different profile functions will be tested in order to evaluate their potential
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effectiveness.

Due to the significantly higher computational cost associated with FEMM simula-

tions, the number of generations in the optimization process has been reduced to

20. To compensate, the population size has been increased to 200, allowing for a

broader exploration of the solution space. This strategy prioritizes diversity in the

early stages of the search. The most promising solutions identified through this

initial phase will then be further refined using a dedicated post-processing method-

ology.

Case 1a – Polynomial Function

In this first scenario, the internal boundary of the ferromagnetic structure is defined

by a fourth-degree polynomial function of the form:

𝑥(𝑦) = 𝑎4𝑦
4 + 𝑎3𝑦

3 + 𝑎2𝑦
2 + 𝑎1𝑦 + 𝑎0

where the optimization variables are the five polynomial coefficients:

coeff = [𝑎4 , 𝑎3, 𝑎2, 𝑎1, 𝑎0]

After completing the optimization cycle, the obtained results are:

coeff = [416.05 ,−97.419 ,−4.977 , 0.017 , 0.008]

These coefficients define the internal shape of the ferromagnetic structure, as shown

in Figure 5.23. The computational results obtained using the FEMM environment

for this optimized ferromagnetic structure are reported in Table 5.16, where these

values are directly compared with those corresponding to the reference configuration

presented in Section 5.3.2, which features symmetric magnetic rings to shape the

field.
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(a) (b)

Figure 5.23: Case 1 - Optimized ferromagnetic profile: full structure(a), zoomed view(b)

Parameter Value Variation

𝐵𝑧,max [T] 0.2326 T +24.7%
𝐵𝑧,min [T] 0.2130 T +15.8%
𝐵𝑧,mean[T] 0.2236 T +20.6%

Homogeneity [ppm] 87,635 +153%

Table 5.16: Case 1 - Magnetic field values and relative variation with Sec.5.3.2

As clear from both the magnetic field map and the numerical data, the inter-

posed ferromagnetic structure placed between the two magnet layers proves to be

largely ineffective in mitigating field inhomogeneities. No significant improvement

has been made compared to the configuration with symmetric containment rings.

A slightly improved performance can be noticed with respect to the solution em-

ploying only the external rings (see Section 5.2.1, Table 5.7). It can be attributed

to the tendency of the ferromagnetic material to attract some magnetic field lines

toward the central region. However, this influence is minimal and does not result

in a meaningful enhancement of field homogeneity.

Case 2a - Polynomial Function for Both Profiles

In this configuration, both the internal and external boundaries of the ferromagnetic

structure are described by two independent fourth-degree polynomial functions:

𝑥int(𝑦) = 𝑎4𝑦
4 + 𝑎3𝑦

3 + 𝑎2𝑦
2 + 𝑎1𝑦 + 𝑎0

𝑥ext(𝑦) = 𝑏4𝑦
4 + 𝑏3𝑦

3 + 𝑏2𝑦
2 + 𝑏1𝑦 + 𝑏0
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The optimization variables in this case include the full set of polynomial coefficients

for both profiles:

coeff int = [𝑎4, 𝑎3, 𝑎2, 𝑎1, 𝑎0]

coeffext = [𝑏4, 𝑏3, 𝑏2, 𝑏1, 𝑏0]

Once the optimization is completed, the identified solutions are:

coeff int = [115.16 ,−54.4 ,−6.266 ,−0.714 , 0.034]

coeffext = [−493 , 22.49 ,−7.499 ,−0.656 , 0.023]

(a) (b)

Figure 5.24: Case 2 - Optimized ferromagnetic profile: full structure(a), zoomed view(b)

Parameter Value Variation

𝐵𝑧,max [T] 0.1950 T +3.2%
𝐵𝑧,min [T] 0.1606 T -12%
𝐵𝑧,mean [T] 0.1813 T -3%

Homogeneity [ppm] 190070 +450%

Table 5.17: Case 2 - Magnetic field values and relative variation with Sec.5.3.2

In this case, as indicated in Table 5.17, the overall performance is significantly

worse than in the previous configuration. This is primarily due to the high mag-

netic permeability of the ferromagnetic structure, which attracts and diverts the

magnetic field lines produced by the external boosting rings. Instead of reinforcing

the field in the central region, the flux is redirected toward the boundaries. As a

result, the boosting rings are no longer able to effectively enhance and homogenize
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the magnetic field within the FOV. Instead, their beneficial influence is suppressed,

leading to both a reduction in field intensity and a substantial increase in inhomo-

geneity.

This observation suggests that a critical limitation of these solutions lies in the

assumption of a fixed relative magnetic permeability 𝜇𝑟 for the ferromagnetic ma-

terial. By prescribing 𝜇𝑟 = 𝑐𝑜𝑠𝑡, the optimization process is inherently constrained

and driven toward configurations that may be structurally valid but ultimately inef-

fective in achieving the desired magnetic field. To overcome this issue, from now on

the relative permeability 𝜇𝑟 will be treated as an additional optimization variable.

Case 1b - Polynomial Function

The function that describes the internal profile is the same of the previous case but,

as anticipated, the set of optimization variables includes a new value:

coeff = [𝑎4 , 𝑎3, 𝑎2, 𝑎1, 𝑎0, 𝜇𝑟]

The results of the optimization carried are:

coeff = [450.68, −88.19, 9.50, −1.21, 0.209, 11]

As can be observed, the relative magnetic permeability obtained from the op-

timization process is significantly lower than the fixed value used in the previous

cases. This reduction of 𝜇𝑟 has a crucial impact: rather than strongly altering

or concentrating the magnetic field, the ferromagnetic structure instead acts as a

flux guide, as illustrated in Figure 5.25. Although the resulting value of 𝜇𝑟 = 11

may appear low, it still corresponds to commercially available materials. For in-

stance, NiZn ferrites typically have 𝜇𝑟 values between 10 and 15, and low-carbon

manganese steels or non-oriented silicon steels conditions can also exhibit relative

permeabilities in the range of 10–50.
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(a) (b)

Figure 5.25: Case 1b - Optimized ferromagnetic profile: full structure(a), zoomed
view(b)

As one might expect, the optimized profile is shaped to redirect magnetic field

lines toward the central region in such a way that the outer portions of the structure

are thicker and penetrate deeper into the magnet assembly, in order to intercept

and guide the magnetic flux. Toward the center, instead, the profile progressively

narrows, leaving space for the field to redistribute more uniformly.

This trend toward improved field uniformity is even more evident when examining

the numerical results reported in the Table 5.18.

Parameter Value Variation

𝐵𝑧,max [T] 0.1614 T -14.5%
𝐵𝑧,min [T] 0.1581 T -13.4%
𝐵𝑧,mean [T] 0.1597 T -14.5%

Homogeneity [ppm] 20750 -15%

Table 5.18: Case 2 - Magnetic field values and relative variation with Sec.5.3.2

However, this improvement comes at a cost: a noticeable reduction in magnetic

field strength, with the mean 𝐵𝑧 value decreasing by approximately 14.5%. This

loss in performance is a direct consequence of the magnetic flux behavior within the

structure. A considerable portion of the field lines, attracted by the ferromagnetic

material, is diverted away from the original central path.

Ultimately, this highlights the intrinsic nature of the problem as a trade-off: there

is no universally optimal solution, but rather a range of configurations that may or

may not align with the initial design priorities.
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Case 2a - Polynomial Function for Both Profiles

The previous studied case, including both profiles, is here repeated, including 𝜇𝑟 an

additional variable:

coeff = [𝑎4, 𝑎3, 𝑎2, 𝑎1, 𝑎0 , 𝑏4, 𝑏3, 𝑏2, 𝑏1, 𝑏0 , 𝜇𝑟]

The process exhibits the following results:

coeff = [221.02, 68.79, 1.796, −1.211, 0.101, −326.43, 58.6, −1.344, −1.021 , 0.089 , 10.46]

(a) (b)

Figure 5.26: Case 2b - Optimized ferromagnetic profile: full structure(a), zoomed
view(b)

Parameter Value Variation

𝐵𝑧,max [T] 0.1652 T -12.6%
𝐵𝑧,min[T] 0.1608 T -11.8%
𝐵𝑧,mean[T] 0.1636 T -12.4%

Homogeneity [ppm] 26356 +9%

Table 5.19: Case 2b - Magnetic field values and relative variation with Sec.5.3.2

Similar results are obtained when both the internal and external ferromagnetic

profiles are included as variables in the optimization process. The optimized shape

shares notable similarities with the profile obtained in Case 1b, especially in the

outer regions, where the geometry is designed to channel magnetic flux toward the

central area of the FOV.

However, the internal region of the profile differs slightly, as it extends more deeply
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toward the 𝑥𝑦-plane, forming a sharper inward indentation. While this geometry

makes theoretical sense from a field-guiding perspective, it is clearly more chal-

lenging to implement from a practical manufacturing standpoint. In this case, the

outcome does not meet the expected goals: modifying both profiles simultaneously

leads not only to a general reduction in magnetic field strength, but also to a slight

increase in field inhomogeneity. As a result, this configuration is considered subop-

timal and is therefore discarded from further consideration.

Case 3 - Sigmoidal Functions

In addition to polynomial representations, other classes of functions were also ex-

plored to define the ferromagnetic profiles. Among these, the sinusoidal function

was tested for its natural smoothness and symmetry. However, in practical terms,

its effectiveness strongly depends on the application of upper and lower geometric

bounds, which tend to distort the pure sinusoidal shape, reducing its overall effi-

ciency and making the final design less intuitive.

A more promising alternative was found in the use of sigmoidal functions, which

proved to be well suited for this kind of magnetic design. A typical sigmoidal

function used in this context takes the form:

𝑥(𝑦) = 𝐴 ·
(

1

1 + 𝑒−𝐵(𝑦−𝐶)

)
where:

• A defines the amplitude (maximum extension);

• B controls the slope or steepness of the transition;

• C sets the inflection point (center of the transition zone).

This type of function naturally produces a smooth, progressive transition from one

region to another with an S shaped curve first starting with a flat profile, then ris-

ing gradually, and eventually flattening again as it approaches its maximum value A.

In this case the optimization parameters and results are the following:

coeff = [𝐴, 𝐵, 𝐶, 𝜇𝑟]

coeff = [0.1142, 174.29, 0.0834, 13.31]
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(a) (b)

Figure 5.27: Case 3 - Optimized ferromagnetic profile: full structure(a), zoomed view(b)

Parameter Value Variation

𝐵𝑧,max [T] 0.1597 T -15.5%
𝐵𝑧,min [T] 0.1564 T -14.3%
𝐵𝑧,mean [T] 0.1578 T -15.5%

Homogeneity [ppm] 20812 -14%

Table 5.20: Case 3 - Magnetic field values and relative variation with Sec.5.3.2

As shown in the images, the optimized structure exhibits the same main features

observed in the previous examples, particularly in Case 1b. However the profiles

obtained through the sigmoidal function are more concave and gradual, facilitating

the manufacturability of the piece.

In the end the resulting effects on the magnetic field remain very similar to those

already obtained, both in terms of field homogeneity and field strength. This con-

sistency strongly supports the convergence of the optimization process towards a

class of effective and robust solutions, regardless of the specific functional form used

to define the profile.

5.5 From ga to fmincon

As anticipated in Section 5.4, the process used here is structured as a two-step

strategy combining global and local search techniques.

The first stage employs the genetic algorithm (ga), a stochastic global optimization

method that does not require derivative information. This algorithm is particularly

effective for exploring complex, high-dimensional spaces, where traditional gradient-
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based methods might fail due to the presence of multiple local minima. As a result,

the genetic algorithm is an effective tool for identifying promising regions within

the solution space.

However, due to its stochastic nature, the genetic algorithm may produce solutions

that are globally promising but lack of precision at the local level. To solve this lim-

itation, a second step is added using MATLAB’s fmincon function. This optimizer,

deterministic and based on gradients (meaning it works best when the objective

function is smooth and differentiable), it’s especially effective at improving solu-

tions within already promising areas found during the global search.

In this framework, the solutions produced by the genetic algorithm are passed di-

rectly to fmincon, which uses them as initial baseline. Thanks to this setup, fmincon

can begin its local search in a region that is already promising, which helps speed

up convergence and improves the final result. The result is a hybrid optimization

strategy that combines the exploratory capabilities of the genetic algorithm with

the precision of fmincon, bringing the solution as close as possible to the global

minimum.

The table below reports some of the most remarkable the outcomes of the simula-

tions carried out using the fmincon function. The results are sorted in descending

order of field homogeneity, allowing for a clear comparison of the different configu-

rations.
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𝑎4 𝑎3 𝑎2 𝑎1 𝑎0 𝜇𝑟 Hom [ppm]

𝑅𝑢𝑛 1 971.7 11.14 11.48 -0.5227 0.0176 10.1 25604
𝑅𝑢𝑛 2 -35.39 -0.3784 95.68 -8.282 0.0152 16.4 20687
𝑅𝑢𝑛 3 -0.8802 358.152 61.09 -7.891 0.0959 12.6 20610
𝑅𝑢𝑛 4 -49.67 -42.88 42.18 -2.434 0.0133 10.8 19849
𝑅𝑢𝑛 5 802.3 341.2 27.28 -5.662 0.0313 17.7 19804
𝑅𝑢𝑛 6 622.2 28.06 92.148 -8.301 0.0962 13.2 19773
𝑅𝑢𝑛 7 -574.3 59.52 474.2 -42.66 0.0412 17.9 19499
𝑅𝑢𝑛 8 35.42 288.8 0.7790 -1.409 0.0230 11.0 19286
𝑅𝑢𝑛 9 526.1 314.6 44.14 -6.656 0.0103 18.4 19276
𝑅𝑢𝑛 10 1382 426.6 130.8 -15.79 0.0089 18.4 19258
𝑅𝑢𝑛 11 198.66 -969.3 473.7 -33.92 0.0097 18.3 19218
𝑅𝑢𝑛 12 515.7 405.4 52.01 -7.820 0.0059 18.5 19162
𝑅𝑢𝑛 13 1202 -940.9 392.7 -27.58 0.0052 18.6 19105
𝑅𝑢𝑛 14 75.30 300.4 46.03 -5.995 0.0708 13.1 18855
𝑅𝑢𝑛 15 797.7 724.0 456.6 50.28 0.0322 19.3 17514
𝑅𝑢𝑛 16 -1272 -689.3 424.3 -31.47 0.0061 19.9 17287
𝑅𝑢𝑛 17 751.9 380.2 300.4 -23.05 0.0241 15.6 15804
𝑅𝑢𝑛 18 1059 153.4 356.5 -32.48 0.00698 15.3 15708

Table 5.21: fmincon results

An interesting observation emerging from the table is the clustering of multi-

ple runs (notably Run 6 through Run 14) around a local minimum in homogeneity,

with values consistently falling in the range of 19100–19400 ppm. This phenomenon

reflects the nature of the fmincon algorithm, which performs a local gradient-based

search starting from the initial point provided by the genetic algorithm.

Given the limited exploration radius of fmincon, it tends to converge toward the

nearest local minimum, especially when multiple initial conditions lie within the

same basin of attraction. This clustering suggests that a shallow minimum exists

around 19200 ppm, attracting several optimization paths. However, Run 15 through

Run 18 demonstrate a clear descent toward significantly lower homogeneity values,

reaching as low as 15700 ppm. This implies that those particular initial conditions

were closer to a deeper local minimum, which fmincon was able to reach and exploit

effectively.

To better understand the behavior of the optimized solutions and to visually high-

light the differences among them, a selection of representative configurations is

presented.
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Figure 5.28: Run 1, final result Figure 5.29: Run 2, final result

Figure 5.30: Run 9, final result Figure 5.31: Run 13, final result

Figure 5.32: Run 16, final result Figure 5.33: Run 19, final result

From a geometrical point of view, the progression across the selected configura-

tions reveals a clear transformation of the ferromagnetic profile as the optimization
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goes on.

In the initial solution (Run 1), the structure appears compact with a relatively

smooth and rounded contour. As we move toward Run 9 and Run 13, the struc-

ture gradually becomes more concave, particularly along the central region, where

the profile curves inward more noticeably. At the same time, the overall contour

becomes less smooth and more angular, a direct consequence of the discretization

adopted for the optimization process. In the final configurations (Run 16 and Run

19), this trend is further accentuated. The profile exhibits sharper transitions and

increased irregularity, and most notably, a central protrusion begins to emerge. This

feature becomes progressively more pronounced, and it serves a critical functional

role: to increase the magnetic field intensity in the central area of the FOV, which

is typically the most difficult to saturate magnetically.

It should be noted that all profiles exhibit a certain degree of angularity, due to

the fact that they were constructed by interpolating only 15 discrete points along

the profile curve. This simplification was adopted to reduce computational burden,

given the high cost of repeated simulations in FEMM. As a result, the profiles show

polygonal edges and sharp transitions, which could be smoothed in future iterations

by refining the point density or applying spline-based reconstruction.
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One of the final steps before concluding this work is to conduct a quantitative com-

parison between the results obtained in the previous chapter and those presented

in existing literature.

Throughout the thesis, no strict numerical targets were imposed for either mag-

netic field strength or homogeneity. Rather, the approach has been exploratory, the

guiding principle has simply been: the stronger the field and the lower the inhomo-

geneities, the better the outcome.

However, evaluating the effectiveness of the proposed designs requires a point of

reference. The most meaningful way to assess the significance of the results is by

comparing them with those obtained in previous research aimed at the same goal.

This comparison not only allows for a clearer understanding of the performance

level achieved, but also serves to highlight the strengths and potential limitations

of the methods adopted in this thesis.

It is worth noting that the specific topic addressed in this thesis is relatively under-

explored in the current literature and, within this niche, further distinctions arise

based on the type of magnetic technology employed: some studies focus on resistive

coil systems, others on Halbach arrays. Moreover, many studies target very small

FOVs, often only a few centimeters wide, which makes direct comparison difficult

due to the inherently different design constraints and performance criteria of larger-

scale configurations like those considered in this thesis.

Among the available works, one reference study has been identified that aligns

closely with the methodology and objectives pursued here. The configuration se-

lected as a benchmark for comparison is based on the study by Ren, Mu, and Huang

[5], which had already been used as a reference model during the development of

Configuration 5. Its compatibility in terms of geometry, field characteristics, and

design philosophy makes it a natural and meaningful benchmark for evaluating the

performance of the proposed solutions in this thesis. The initial structure used in

the [5] is identical to that described in Section 3.3.2 and consists of a ring-pair
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permanent magnet array composed of multiple Aubert ring pairs aligned along the

z-axis. Each layer includes an external ring with a radius of 250 mm, and the system

is arranged in 10 stacked layers, each with a thickness of 10 mm. The two magnetic

assemblies are separated by a 200 mm air gap, and all magnets are uniformly mag-

netized with a remanence of 1.4 T (see Figure 3.18).

The main geometric difference between this work and the one presented in the the-

sis lies in the shape and volume of the FOV. While the reference work considers

a cylindrical FOV with a diameter of 200 mm and a height of 50 mm located at

the center of the magnetic bore, the thesis adopts a different FOV shape, which

consequently influences the optimization strategy and performance.

As in the present work, the study by Ren et al. employs a genetic optimization

strategy to identify the optimal magnet configuration while for the evaluation of

the magnetic field within the FOV, a current model is adopted. The algorithm

begins by generating an initial population of N candidate solutions, each defined

by a set of 11 optimization variables: the internal radii of the 10 inner rings and

the inter-layer distance (d) between the two magnet assemblies. These variables

are then progressively evolved through the genetic algorithm in a multi-objective

framework, with the goal of identifying configurations that simultaneously optimize

magnetic field strength and field homogeneity within the defined FOV.

The outcome of the optimization process conducted in the article is presented in

Figure 6.1, which also illustrates the resulting internal ferromagnetic profile derived

from the final configuration.

Figure 6.1: Optimized configuration and internal ferromagnetic profile as presented in [5]

𝑅in = [214, 223, 210, 209, 151, 150, 150, 150, 150, 150] 𝑚𝑚

𝑑 = 200𝑚𝑚
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According to the results reported in the study, the optimized structure achieves a

field homogeneity of 24,786 ppm and an average magnetic field strength of 169.7𝑚𝑇

in the cylindrical FOV.

However, in order make the design physically realizable, the structure has to be

discretized into individual magnet circular segments. Specifically, the configura-

tion shown in Figure 6.1 is segmented into 12 fan-shaped magnets, each uniformly

magnetized. This fragmentation process, necessary for manufacturing feasibility,

introduces discontinuities that degrade performance: as a result, the field homo-

geneity worsens to 32,511 ppm, while the average magnetic field decreases slightly

to 167.6 mT.

When comparing the results obtained in this thesis with those reported by Ren

et al., it becomes evident that, in terms of magnetic field strength, the perfor-

mances are broadly comparable.

In fact, if we consider the results presented in Section 5.3.2, relatively to the config-

uration with symmetric compensating rings (see Table 5.15), the proposed design

in this thesis demonstrates that it is possible to achieve even higher average mag-

netic field values, reaching approximately 185𝑚𝑇 , while maintaining lower field

inhomogeneities (24007 ppm as computed via FEMM and 14352 ppm in PmLab

simulations).

Similarly, in Section 5.4, using an optimized ferromagnetic profile slightly lower av-

erage field values are observed (around 158𝑚𝑇), with inhomogeneities reduced to

approximately 15700 ppm in the most refined version.

At first glance, the results obtained in this thesis may appear to outperform those

presented in the reference study, both in terms of field strength and homogeneity.

However, a strictly quantitative comparison is neither feasible nor entirely appropri-

ate, due to two fundamental considerations. The first is the size and geometry of the

FOV, which significantly influence the optimization strategy and ultimately affect

the resulting magnetic performance. In this thesis, the FOV is defined as a sphere

with a diameter of 200 mm, corresponding to a volume of 𝑉 = 4
3𝜋𝑟

3 = 4186𝑚𝑚3,

whereas the reference work considers a cylindrical FOV with the same diameter

but a height of only 50 mm, resulting in a smaller volume of 𝑉 = 𝜋𝑟2ℎ = 1570𝑚𝑚3.

This means that the cylindrical FOV has slightly more than one third the volume of

the spherical FOV used in the current study. As a result, the optimization strategy

adopted in the reference work is fundamentally different from the one required here.

In fact, ensuring sufficient field coverage over a smaller cylindrical volume does not
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necessarily require any structural modifications to the base magnet configuration.

In contrast, the larger and axially extended FOV considered in the developed config-

urations demanded two major structural adjustments. First, the two assemblies of

magnet layers had to be moved farther apart to achieve adequate coverage through-

out the extended volume. This increased separation inevitably led to a significant

drop in magnetic field intensity, which was subsequently compensated by the in-

troduction of external ”boosting” rings, specifically designed to reinforce the field.

In the end, this arrangement led to an unacceptable level of inhomogeneity within

the FOV. To address this, an additional set of components was introduced just to

enhance field uniformity, without affecting the overall intensity.

Therefore, while the achieved magnetic performance can be considered promising,

particularly in light of the fact that field homogeneity was improved despite the

enlargement of the FOV, this result came at a cost. Specifically, the successive

introduction of additional magnetic and ferromagnetic components led to a pro-

gressive increase in structural complexity, material usage, and overall cost. Most

importantly, it also resulted in a significant increase in weight, which inevitably

compromises one of the original goals of the design: the portability of the device.

As has become clear throughout the course of this thesis, the design of permanent

magnet systems is fundamentally a matter of trade-offs. There is no single ”correct”

configuration; rather, different designs may prove more or less suitable depending

on the specific application requirements. Every modification, whether aimed at

improving field homogeneity, increasing intensity, or preserving portability, comes

with its own set of advantages and limitations. Ultimately, the effectiveness of a

given configuration must be evaluated in light of the intended use case, balancing

competing objectives such as performance, simplicity, cost, and practicality.
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The optimization of the static magnetic field to achieve the highest possible strength

and homogeneity represents only the initial stage in the design process of an MRI

system. While a strong and uniform static field is essential to ensure a good signal-

to-noise ratio, it is not sufficient, on its own, to produce spatially resolved images.

Indeed even though a well-designed static field is important for getting a strong sig-

nal and good image contrast, it does not provide any information about the spatial

origin of the signal.

Spatial encoding in MRI is based on the principle that the resonance frequency of

nuclear spins is determined by the local magnetic field. By introducing controlled

spatial variations in the magnetic field across the sample, it becomes possible to

establish a direct correlation between the characteristics of the observed signal and

the spatial position of the spins. This spatial modulation of the field can be achieved

in two fundamentally different ways.

In conventional high-field MRI systems, spatial encoding is achieved through dedi-

cated gradient coils, which are activated to superimpose linear magnetic field vari-

ations along the 𝑥, 𝑦, and 𝑧 axes.

Alternatively, particularly in low-field MRI systems based on permanent magnets,

spatial encoding can arise intrinsically from the geometry of the magnet structure

itself. These systems utilize what are known as Self-Encoding Magnetic Fields

(SEM), static yet spatially varying magnetic field distributions that inherently en-

code spatial information into the signal, eliminating the need for time, varying

gradient fields.

Depending on how many spatial dimensions are encoded, MRI acquisition strategies

are generally categorized as 1D, 2D, or 3D imaging.

In 1D imaging, the system captures spatial information along just one axis, so the

result is a signal profile instead of a full image. This technique is mainly used to

check how uniform the magnetic field is or to test how the system performs along

a certain direction, rather than for producing diagnostic images.
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2D imaging involves spatial encoding along two orthogonal directions, typically

within a selected slice. This technique is the most commonly employed method in

both clinical and low-field MRI systems. It provides high spatial resolution in a

plane, while maintaining reasonable acquisition times and moderate hardware de-

mands.

3D imaging, on the other hand, encodes spatial information across all three dimen-

sions simultaneously. Although this makes it possible to achieve uniform resolution

in every dimension and to reconstruct full 3D volumes, it generally requires longer

acquisition times and more complex reconstruction algorithms, making it less prac-

tical for fast or portable systems.

In this study a 2D imaging strategy turns out to be the most suitable option as it is

compatible with both gradient-based encoding and SEM approaches. Starting from

that a 3D representation can be achieved by acquiring multiple adjacent slices and

combining them, without increasing hardware complexity. This approach enables

volumetric imaging while avoiding the technical challenges associated with full 3D

spatial encoding.

A series of possible solutions for implementing spatial encoding in the proposed

magnetic configuration are now presented. Some of these approaches are well-

established and technically more accessible, while others are less conventional but

may offer interesting perspectives and opportunities for future research and devel-

opment.

Gradient Coils

Gradient coils are specially designed conductor windings used to generate controlled,

spatially varying magnetic fields that are superimposed on the main static field.

Typically, gradient coils are activated sequentially during the imaging sequence, al-

lowing spatial information to be encoded independently along the 𝑥, 𝑦, and 𝑧 axes.

In 2D imaging, a gradient is first applied along the 𝑧-axis during the RF excitation

to select a specific slice within the volume (slice selection). Then, a phase en-

coding gradient is applied along the 𝑦-axis, introducing position-dependent phase

shifts among the spins. Finally, during signal acquisition, a frequency encoding

gradient is applied along the 𝑥-axis, so that spins located at different 𝑥-positions

precess at different frequencies. This combination enables the reconstruction of a

two-dimensional image of the selected slice.

An interesting example of gradient coil redesign specifically tailored for low-field

MRI systems was presented in [13], where a custom solution adapted to a Halbach

array configuration is developed. This work highlights the need to revisit traditional
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gradient design principles when dealing with compact, non-conventional magnet ge-

ometries.

In the specific magnetic configuration developed here, the static magnetic field

generated by the permanent magnets presents symmetry with respect to the 𝑥𝑦-

plane. As a result, spatial encoding along the 𝑧-axis becomes ambiguous, since spin

systems located at symmetric positions above and below the central plane experi-

ence identical field strengths and thus resonate at the same frequency. Gradient

coils along the 𝑥 and 𝑦 axes, instead, do not suffer from this limitation and can

be designed following conventional procedures typically adopted in low-field MRI

systems.

Two potential strategies, which could serve as starting points for future investi-

gations, may be considered to overcome this issue. The first consists of dividing

the field of view into two hemispheres, acquiring and reconstructing each half sepa-

rately. While this approach could potentially mitigate the ambiguity introduced by

field symmetry, it also presents limitations in terms of imaging flexibility and may

lead to uncertainty around the symmetry plane.

Another interesting solution could be the implementation of two independent 𝑧-

gradient coils, each operating exclusively on one half of the field of view. This

configuration would allow selective control over the upper and lower hemispheres,

effectively breaking the field symmetry and enabling unambiguous spatial encoding.

By activating one coil at a time, it becomes possible to directly associate the ac-

quired signal with a specific region of the semi-FOV, simplifying the reconstruction

process and reducing encoding ambiguity.

Irregular Shaped I/O ring pair

An alternative solution to the use of conventional gradient coils along the 𝑥 and 𝑦

axes is proposed in the study by Ren et al. in [6], which presents a further devel-

opment of the magnetic structure originally designed in [5].

The study presents the design and development of an irregular-shaped inward–outward

ring-pair magnet array, capable of generating a 1D monotonic field pattern for 2D

head imaging in low-field portable systems. In this configuration, the magnetic

layers are discretized into circular segments with variable outer radii, which are

determined through an optimization process. As shown in Figure 7.1, the inner

radii of the tiles are fixed, while the outer radii are allowed to vary within each

ring, but constrained to be equal across different rings. The position of the FOV

is also reconsidered and modified, being shifted a few millimeters in the –𝑥 direc-
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tion. The optimization process is guided by three main objectives: maximizing the

field strength, achieving controlled field inhomogeneity, and producing a monotonic,

near-linear field pattern to enable effective spatial encoding.

Figure 7.1: Irregular-shaped IO ring pair, 3D and front view. Adapted from [6]

The result of the design process is illustrated in Figure 7.2, where the mono-

tonicity of the magnetic field along the 𝑥-direction is clearly visible. In order to

enable 2D imaging, the system would need to be mechanically rotated, acquiring

one projection at each angular position. While this configuration does not address

the issue of 𝑧-axis symmetry, which would still be present, it offers the advantage of

eliminating the need for active gradient coils along the 𝑥 and 𝑦 directions, as these

components are inherently encoded in the magnetic structure itself.

Figure 7.2: Simulated 𝐵0 field in the central 𝑥𝑦-plane. Adapted from [6]

Disturbing Magnets

A further strategy to introduce spatial encoding in the presence of field symmetry

involves the use of disturbing magnets, which are auxiliary magnetic blocks strategi-

cally placed to locally perturb the field distribution. In the configuration developed

in this thesis, the main magnetic field is axially symmetric, and the geometry of

the system is more naturally described in polar coordinates (𝑟, 𝜃, 𝑧) rather than in

Cartesian space: the magnetic field distribution depends indeed primarily on the
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radial distance 𝑟 and the axial position 𝑧, while remaining invariant with respect

to the angular coordinate 𝜃. This symmetry causes ambiguity in spatial encoding,

as multiple points in the field of view experience the same magnetic field strength

and therefore produce identical resonance frequencies, making them impossible to

distinguish in the reconstructed image.

By introducing small permanent magnets the resulting superposition of the primary

and disturbing fields leads to a modified field profile in which the axial symmetry

is intentionally disrupted. To fully exploit this approach for angular encoding, the

additional magnet has to be rotated around its central axis, allowing the disturbing

field to progressively “illuminate” different angular sections of the FOV. By doing

so, multiple projections can be acquired at different orientations, enabling the re-

construction of spatially resolved information across the circular cross-section of the

FOV.

As a conceptual extension of the single disturbing magnet approach, it can be

considered the idea of multiple disturbing magnets positioned at staggered heights

along the 𝑧-axis, each specifically designed to locally perturb the magnetic field

within a distinct axial slice, as shown in Figure 7.3.

Figure 7.3: Possible configuration with staggered disturbing magnets

When combined with rotational motion it enables the acquisition of a complete

2D image for each axial layer. By repeating this process across multiple layers, each

perturbed by a disturbing magnet placed at a different 𝑧-position, a full 3D image

can be reconstructed through the stacking of individually encoded 2D slices.

This technique could serve as a passive alternative to 𝑧-gradient coils, avoiding the

need for active components. In this setup, each magnet is associated with a specific

axial slice: when a signal is detected under its influence, it can be directly linked

to the corresponding 𝑧-position. In other words, the spatial localization along 𝑧 is
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not achieved through a linear gradient, but through the known and localized effect

of each disturbing magnet, which acts as a spatial marker.

It is important to underline that this approach currently remains a conceptual

proposal, and several technical challenges must be overcome before it can be seen

as a viable solution. For instance:

• Field overlap and interference: disturbing magnets placed too close along the

𝑧-axis may generate overlapping perturbations, making it difficult to isolate

individual slices clearly;

• Axial resolution limitations: the spacing between the disturbing magnets di-

rectly defines the achievable resolution along the 𝑧-axis. For example, if the

magnets are placed in planes separated by 5𝑚𝑚, the maximum theoretical

resolution along 𝑧 would also be 5𝑚𝑚. While this level of detail may be ac-

ceptable for certain applications, it could be insufficient in scenarios requiring

finer anatomical resolution or more precise spatial discrimination;

• Impact on overall field homogeneity: introducing localized distortions may

degrade the field uniformity in adjacent regions, potentially affecting image

quality.

These limitations highlight the need for a much more in-depth investigation to assess

the actual effectiveness and practical utility of this approach. Nevertheless, it rep-

resents an intriguing passive alternative for enabling axial and rotational encoding

in low-field, coil-free MRI architectures.
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A Patrizia, Antonino e al piccolo Nunzio, sperando per di poter rappresentare per

quest’ultimo, oggi come nel futuro, una fonte di ispirazione.

Infine a mio padre, mia madre, mia sorella, a loro va il ringraziamento più impor-
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