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Abstract 
 
 
This thesis has two main objectives. The first one is the study of the tracked vehicle’s 
upper portion of chain under static conditions, by using Adams Tracked Vehicle (ATV), a 
toolkit of the Adams Car multibody software. The results of the ATV simulation will 
serve as the benchmark, against which results obtained by modeling the chain using 
different analytical tools will be compared. This analytical approach has the great 
advantage of providing satisfactory results, while needing few inputs and being very 
cost effective and easy to implement.  
The second goal is that of studying the dynamic behavior of the tracked vehicle. More 
specifically, the vertical dynamics of the default vehicle model will be studied by 
analyzing the frequency content of the road profile and the vehicle’s vertical 
acceleration. Certain parameters of the vehicle model will then be modified and the 
simulation will be repeated, in order to understand the influence and importance of the 
said modification. In this way, a comprehensive study of the vertical dynamics can be 
realized and the contribution of the most important parameters be evaluated. 
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1 Introduction 
 

1.1 Introduction and literature review. 
 
Tracked vehicles have long been used in off-road applications, where the conventional 
vehicles equipped with pneumatic tires are not able to easily, if at all, perform the tasks 
that they otherwise excel at in paved surfaces. The need for tracked vehicles is relevant 
in many sectors, such as the construction, agriculture, forestry and mining industries. 
Also their use for recreational activities has increased, such as in snow mobiles and all-
terrain side-by-sides, where users can enjoy the benefits of tracks to tackle the most 
difficult conditions. 
An important sector where such vehicles are highly appreciated is the military, which 
has always been the one to push the technology forward. The stringent requirements of 
the combat vehicles’ mission profiles require exceptional performance, in terms of 
weight carrying capacity, maneuverability, high speed runs and handling extreme 
terrain. 
As used as these vehicles are, there is a general lack of models (at least compared to 
other conventional vehicles) to describe and simulate the behavior under different 
conditions. Many aspects of their dynamics are not properly studied or modeled, and 
the characterization is based on experimental tests and empirical models, which are 
obtained from the experience of engineers. As useful as the experimental tests are, they 
can be very expensive and time-consuming, especially in the design phase and they do 
not allow for minor modifications performed in real time. 
This thesis aims at providing a dynamic model to study the vertical dynamics of the 
tracked vehicle and the frequency analysis of the track itself. It is the continuation of a 
long line of research of this university, whose aim is to achieve a complete and thorough 
understanding of these vehicles, by implementing different methodologies, and 
eventually providing the user a means by which to easily simulate the system of choice. 
The study of the terrain-track interaction, and consequently the tracked vehicles as a 
whole, is known as terramechanics and its foundations were laid by M. G. Bekker, who 
starting from the 1950s published a number of papers and books on the topic. His 
successor can be considered J. Y. Wong, who has also published many papers and is the 
author of the most prominent book on the topic. 
The most complete book by (Wong, 2010)[1] is “Terramechanics and off-road vehicle 
engineering”, where the author provides a thorough review of the methods of 
characterizing the vehicle and terrain, both experimentally and analytically. However, in 
this thesis, the vehicle-terrain interaction will not play an important part, as the vehicle 
will be studied on hard roads (dry asphalt), since the goal is the modeling and 
characterization of vehicle systems, rather than performance evaluation. 
There are many dynamic models of tracked vehicles in the literature, typically of a tank, 
and what follows is a summary of some models which are quite interesting for the 
purposes of this thesis. It is important to underline that even though tracked vehicles 



come in many types, the tank is the most interesting, as it can be quite heavy, while at 
the same time showing quite impressive dynamics, compared to the others. Close 
attention will be paid to the assumptions of these models, because they are the 
foundations of the simplified model that will be used to study the parameters of 
interest. 
A very complete model was reported by (Galvagno, et al., 2012)[2], reported in Figure 
1.1, which will be used as reference in this thesis, not only due to the association with 
that paper, but also because the nomenclature is the same that is customarily used in 
this university. 

 
The authors introduce the following assumptions to their model (only the most 
important for the purposes of this work are reported below): 

 Forces applied to the ground are concentrated under the road wheels. 

 Smoother Coulomb friction model. 

 Continuous track-terrain contact is discretized in a finite number of contact 

patches, equal to the number of road wheels. Contact patch forces are modeled 

as smoothed friction functions, depending on the longitudinal slip and sideslip 

angle of the tracks. 

 Firm ground (sink effect is neglected). 

 Cohesion of the track-terrain interface is neglected. 

 Independent wheel suspension with the same vertical stiffness for each road 

wheel. 

 Equal ground loading in static configuration. 

 

Figure 1.1. Free body diagram of the tracked vehicle in top view, as proposed by (Galvagno, et al., 2012) [2]. 



Another interesting model is proposed in a technical report by (Lessem & Murphy, 
1972)[3], who conducted a study on behalf of the US army. Even though the report is 
very old, the model they propose and the assumptions they make are useful, because 
they offer a realistic, yet simplified approach to modelling the vehicles under study. The 
report models the tank using coupled, second-order differential equations that describe 
the motion of each degree of freedom. The authors apply the Newtonian approach to 
obtain the equations of motion of the equivalent vehicle model, that consists of masses, 
springs and dampers. The assumptions they propose are the following: 

 Mass elements are assumed to be rigid bodies. 

 Spring elements are assumed to be of negligible mass and represent the elastic 

properties of the structure. 

 Damping elements are assumed to have neither mass, nor elasticity, and 

represent the dissipative forces or energy losses of the system. 

 The model has one degree of freedom for the pitch, one for the bounce, and one 

for each of the road wheels. 

 The road wheels are represented by radially projecting linear springs. This takes 

into account the stiffness and deformation of the road wheel. 

 The track compliance is represented by connecting the axles with springs. The 

authors call these systems “feelers” and in their model they are necessary, since 

the track is not included. This ensures that no important information is lost by 

neglecting the track. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
A. S. Lessem and N. R. Murphy, Jr in their work obtain some very important conclusions, 
which will be useful to this thesis when studying the dynamic behavior of the tracked 
vehicle: 
 

 There are no ranges of vehicle characteristics, velocities or obstacle sizes 
sufficiently broad to permit the neglect of track contributions to hull dynamics. 

Figure 1.2. Tank model proposed by (Lessem & Murphy, 1972) [3]. 



 Within the range of speeds studied, contributions of the track were usually most 
pronounced at low speeds and of lesser importance at the higher speeds. 

 The nature of the suspension system significantly affects the track contribution 
to dynamics. 

 The mathematical model for tracked vehicle dynamics, as developed by the 
authors, shows promise as a practical means for simulating the hull dynamics of 
tracked vehicles. 

The following figure shows a clear picture of the distinction between the tests 
performed with and without the tracks. What is reported here is only one of the results 
the authors obtain, but it serves to show the distinction between the two scenarios. The 
graph is quite old, so additional information has been added to clarify its contents. 

 
Another technical report that is quite useful to this work is “Methods for tracked vehicle 
modeling and simulation”, by (Madsen, et al., 2010)[4]. This report compares different 
software and methodologies that are used for tracked vehicle simulations, highlighting 
their advantages and disadvantages. In particular, it analyses the Adams ATV toolkit, 
which is a multi-body simulation tool that will be used in this thesis. More importantly, it 
summarizes some features of ATV that make it one of the best for studying tracked 
vehicles: 

 It features a built-in routine that automatically wraps the track chain around the 

rolling elements. 

 Force-based connection elements between track shoes that allow for 

compliance in the track chain. 

 A method for switching between half-vehicle and full-vehicle models, assuming 

the model is symmetric along its centerline. 

 The track chain can be made up of many rigid track shoes that allow for 

compliance in the track chain. 

 A method for easy-switching between half-vehicle and full-vehicle models, 

assuming the model is symmetric along its centerline. 

Figure 1.3. Experimental findings by (Lessem & Murphy, 1972) [3]. 



 The track chain can be made up of many rigid track shoes with compliant 

connection elements, or as one degree of freedom flexible band. 

 Allows for the definition of custom road profiles. 

 Both soft and rigid soil models are supported. 

 Automatically initiates the rigid body frictional contacts between the track chain 

and rolling elements (and if using a rigid soil model, contacts are also created 

between the track shoes and terrain). 

 
 
The report extends the observation to the modeling of the military tracked vehicles 
(such as tanks) and it recommends ATV for these simulations, due to three main 
reasons: 

 The track shoes are connected with compliant force elements. High speed 

operation causes large forces in the track chain tension, which in turn would 

cause non-negligible deflections in the bushing and pin elements that connect 

the track shoes. 

 There is an option to use rigid or soft soil terrain models, which is desirable when 

considering non-paved surfaces. 

 The template based design allows for easy substitution of entire subsystems, 

rather than individual bodies. If dealing with multiple instances of complex 

subsystems, this feature will greatly reduce the redundancy of recreating the 

subsystem. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1.2 ATV default tank model. 
 
The simulations required for this thesis will be performed using the ATV toolkit of the 
Adams Car multi-body software. This software has many advantages, as anticipated in 
the previous section. What follows is a description of the ATV default tank model, which 
will be used through most the simulations. Certain situations will require modifications 
of the default model, but these will be detailed in their dedicated sections. Figure 1.4 
shows the default tank model and its subsystems. 

The subsystems of the default tank model are: 
1. Hull. 
2. Sprocket wheel. 
3. Road wheel. 
4. Idler wheel. 
5. Support roll. 
6. Tensioner. 
7. Road wheel connecting arm 
8. Suspension system. 
9. Track. 
10. Ground. 

 
Modifications will include the addition of a second support roll, tuning of the suspension 
parameters and the addition of a velocity controller subsystem, which imposes a PID 
controller that ensures the correct velocity during the maneuvers. 
 
 
 
 
 
 

Figure 1.4. ATV default tank model. 



2 Track chain modeling 
 
 
The modes of vibration of the upper part of the track chain show a very interesting 
behavior, because visually they resemble those of simple continuous elements, whose 
dynamics is well studied and understood. This serves as the motivation for the following 
analysis, which strives to model this section of the chain using analytical methods and 
validating these methods by comparing their results with results obtained from ATV 
simulations. If this can be achieved, it would be possible to provide standard models for 
simple analyses, where the user can plug in geometrical characteristics of the tank and 
obtain the natural frequencies of the track chain of interest. 
Depending on the behavior under study, the entire upper chain can be modeled as a 
single element, or two individual elements, where the first one ranges from the sprocket 
wheel to the support wheel (segment 1), and the second from the support wheel to the 
tensioner wheel (segment 2), as shown in Figure 2.1. 

 
Figure 2.1 also shows how the global reference frame (X, Y, Z) and local reference frame 
(x, y, z) are defined. For users of ATV, this is an important distinction, because the same 
letters in the two references might define completely different orientations. The global 
reference is positioned in such a way that its origin lies in the intersection of the middle 
plane of the vehicle and the line that connects the centers of the two sprocket wheels. 
Furthermore, the global reference frame remains fixed. On the other hand, the local 
reference is centered in the part’s center of mass and is fixed with respect to the part, 
so it might translate and rotate in relation to the global reference during the simulation. 
 
 
 
 
 
 

Figure 2.1. Default ATV tank model reference frame. 



2.1 Geometrical data of the model. 
 
In order to perform the analyses, some parameters of the tank model need to be 
identified. In this case, they are obtained from the ATV default tank model, which 
features five road wheels and only one support wheel. These can vary depending on the 
type of tank, but such variations can be easily accounted for in the analytical models.  
ATV provides the location of each component with respect to its global coordinate 
system. In addition to that, the properties of each segment and the connection between 
them are also reported. These will all be useful in the following analyses. 
 

 
Starting from this table of data, the characteristics of segments 1 and 2 are evaluated. In 
particular, the mass of the segment and its linear mass density are calculated as follows: 
 
 

𝑚𝑠𝑒𝑔𝑚𝑒𝑛𝑡,𝑖 = 𝑛𝑖 ⋅ 𝑚𝑝𝑎𝑑   

 

 𝑚𝑠𝑒𝑔𝑚𝑒𝑛𝑡,𝑖 [𝑘𝑔]: mass of the ith segment, as defined in Figure 1. 

 𝑛𝑖  [−]: number of track pads that belong to the ith segment. 

 𝑚𝑝𝑎𝑑 [𝑘𝑔]: mass of each single pad. 

 

𝜇 =
𝑚𝑡𝑜𝑡

𝑙𝑡𝑜𝑡
=
𝑚𝑠𝑒𝑔𝑚𝑒𝑛𝑡,1 +𝑚𝑠𝑒𝑔𝑚𝑒𝑛𝑡,2

𝑙𝑠𝑒𝑔𝑚𝑒𝑛𝑡,1 + 𝑙𝑠𝑒𝑔𝑚𝑒𝑛𝑡,2
     

 

 𝜇 [
𝑘𝑔

𝑚
]: linear density of the chain, the same for each segment. 

 𝑚𝑡𝑜𝑡 [𝑘𝑔]: total mass of the upper track chain. 

 𝑙𝑡𝑜𝑡 [𝑚]: total length of the upper track chain. 

 
 
 
 
 
 

Table 2.1. Geometrical data of the default tank model's components. 



 
Another important step lies in understanding how ATV models the connection between 
consecutive track pads, known as “tsl” (track segment link). Being a multibody software, 
the approach that ATV follows is that of considering the bodies as rigid and of a certain 
mass, and assigning the elastic and dissipative properties to the connection between 
these rigid bodies. The property file of each pad provides the pad’s dimensions, mass 
and inertia properties, stiffness and damping of the connection in the three directions of 
the local reference frame. These properties are important, because they characterize 
the behavior of the chain and will be fundamental in describing the latter in the 
following sections. 
Relevant properties of the chain are reported below: 

 Mass: 

o 𝑚 = 15 𝑘𝑔 

 Inertia tensor: 

o 𝐼𝑥𝑥 = 2.5𝐸 + 05 𝑘𝑔 ⋅ 𝑚𝑚2 

o 𝐼𝑦𝑦 = 2.7𝐸 + 05 𝑘𝑔 ⋅ 𝑚𝑚2 

o 𝐼𝑧𝑧 = 2.5𝐸 + 05 𝑘𝑔 ⋅ 𝑚𝑚2 

 Translational stiffness of the connection: 

o 𝑘𝑥 = 5.2E + 05 N/mm 

o 𝑘𝑦 = 5.2E + 05 N/mm 

o 𝑘𝑧 = 5.2E + 05 N/mm 

 Translational damping of the connection: 

o 𝑐𝑥 = 50
𝑁⋅𝑠

𝑚𝑚
 

o 𝑐𝑦 = 50
𝑁⋅𝑠

𝑚𝑚
 

o 𝑐𝑧 = 50
𝑁⋅𝑠

𝑚𝑚
 

 Rotational stiffness of the connection: 

o 𝑘𝑟,𝑥 = 3.0E + 06
N⋅mm

°
  

o 𝑘𝑟,𝑦 = 3.0E + 06
N⋅mm

°
 

o 𝑘𝑟,𝑧 = 30
N⋅mm

°
 

 Rotational damping of the connection: 

o 𝑐𝑟,𝑥 = 200
𝑁⋅𝑚𝑚⋅𝑠

°
 

o 𝑐𝑟,𝑦 = 200
𝑁⋅𝑚𝑚⋅𝑠

°
 

o 𝑐𝑟,𝑧 = 200
𝑁⋅𝑚𝑚⋅𝑠

°
 

Table 2.2. Properties of segments 1 and 2. 



 

An interesting remark is that judging from the stiffness of the connection, and seeing 
how in two directions it is very large, while on the third it is 4 orders of magnitude 
lower, the connection can be considered as a revolute joint. This will play an important 
role in the modeling assumptions and when assigning the BC.  

Having defined these characteristics for each segment, the next step is the analysis and 
characterization of the behavior of the chain. 

 

2.2 ATV simulation results. 
 

The tank model is a highly non-linear system. To perform the modal analysis, ATV 
linearizes the system at the time instant that the user requires and performs a complex 
modal analysis related to that instantaneous state of the system. In this way, even 
during a simulation, modal analyses performed at different time instants will likely give 
different results, if the system is not in static or steady-state conditions (more details on 
how the simulation is setup are given in Appendix A).  

For the purposes of this thesis, the duration of the simulations is 20 seconds, so as to 
allow enough time for the vehicle to settle and achieve steady state. The modal analysis 
of the linearized system is performed at the end of the 20 seconds. To reduce the time 
of simulations, the half-tank model is considered. This model studies only the left half of 
the tank, taking into account the tank’s symmetry along its middle longitudinal plane. 
The results do not differ from the full tank model, but the simulation is significantly 
decreased. The parameter that is tuned throughout the simulations is the tension 
imposed by the idle wheel. The values of tension used are the following: 

 15000 𝑁 

 30000 𝑁 

 45000 𝑁 

 60000 𝑁 

 
 
 
The results of these modal analyses are shown in the ATV post-processing window, 
under the menu “Load mode shape animation”, found in the “View” tab. The results are 
shown graphically by animating the modes as in Figure 2.2. For each mode, the graphical 
user interface (GUI) show the mode number (according to the ordering that ATV assigns 
to the modes), the natural frequency and the damping ratio. A “Table of Eigenvalues” 
contains all the modes of the system (around 500 for this half-tank model), where the 
modes are ordered according to their eigenvalue’s imaginary part. This table shows the 
natural frequency, damping ratio and eigenvalue for each of the modes. In ATV tutorials, 
it is suggested to refer to modes that have a non-zero imaginary part of the eigenvalue. 



The following figure shows the table of eigenvalues as given in the ATV post-processing 
window. 

Looking at the results obtained from the ATV simulation, it is obvious that the upper 
part of the chain (both segments 1 and 2) displays three types of modes. These can be 
grouped in the following categories: 
 

 Bending modes in the longitudinal plane ((X-Z) plane), which will be denoted as 

vertical bending. 

 Bending modes in the lateral plane ((X-Y) plane), which will be denoted as lateral 

bending. 

 Torsional modes around the X-axis, which will be denoted as torsion. 

 
 

Figure 2.3. ATV interface for mode shape animation. 

Figure 2.2. Table of eigenvalues. 



The figures that follow illustrate these modes. For simplicity, the mode shapes shown 
here will be the results of a single simulation. Changing the simulation parameters, the 
results change, but visually the modes remain identical. Furthermore, the first three 
modes for each of the aforementioned behaviors will be depicted, but for the analysis 
as many as twenty will be considered, in order to get a thorough comparison between 
the simulation and the analytical formulation. 

The following mode shapes depict the vertical bending ((X-Z) plane). This behavior is 
characterized by the two segments 1 and 2 bending independently of each other and 
separated by the support roll. This leads to the conclusion that the support roll 
constitutes a rigid constraint in the vertical direction. Each of the segments, while bent, 
takes a form similar to a sinusoidal. The number of the modes is based on the 
relationship between the wavelength and the segment length. More specifically, it is 
such that: 

𝜆𝑟,𝑖 =
2𝐿𝑖
𝑟

 

 𝐿𝑖: length of segment “i”. 

 𝑟: mode number. 

 𝜆𝑟,𝑖: wavelength of mode “r” of segment “i”. 

 
 
 

 
 

Figure 2.4. Segment 1 vertical bending first mode shape (2.53 Hz). 

Figure 2.5. Segment 2 vertical bending first mode shape (3.37 Hz). 



 
 
 
 
 

 
 

 
 
 

 
 

Figure 2.6. Segment 1 vertical bending second mode shape (4.27 Hz). 

Figure 2.7. Segment 2 vertical bending second mode shape (6.32 Hz). 

Figure 2.8. Segment 1 vertical bending third mode shape (6.58 Hz). 



 

 
The lateral bending modes have been named in a manner similar to vertical bending 
modes. The difference in this case, based on what can be seen from the simulation 
results, the support roll does not define two independent segments, but the wave 
propagates through the entire length of the upper chain. The support roll instead, acts 
as a soft constraint of a certain stiffness, but not rigid as in the previous case.  
Notice also how for the chain lateral bending ((X-Y plane)), the modes shown start from 
the second. This is because the simulation does not show a mode shape that would 
correspond to the first. 
 

 
 

 
 

Figure 2.9. Segment 2 vertical bending third mode shape (9.76 Hz). 

Figure 2.10. Chain lateral bending second mode shape (6.31 Hz). 

Figure 2.11. Chain lateral bending third mode shape (12.22 Hz). 



 

 
 
Torsion modes can be identified as they resemble the rotation of the chain around its 
own longitudinal axis and that spans the entire length of the upper chain. Different 
modes are numbered considering the number of track pads that do not rotate, 
therefore separating the chain in segments that rotate in opposite directions. More 
specifically, the first mode shape is characterized by two pads that do not rotate, 
namely the first and last pads. The second mode is characterized by three pads that do 
not rotate; the first pad, the last pad and a stationary pad around the middle of the 
chain. And so on. 

 
 

Figure 2.12. Chain lateral bending fourth mode shape (19.6 Hz). 

Figure 2.13. Chain torsion first mode shape (17.13 Hz). 

Figure 2.14. Chain torsion second mode shapes (27.22 Hz). 



 
 

The results of the simulations performed with different tensioner force values and for 
the three behaviors of the chain are reported in the tables that follow. For the 
longitudinal bending modes, the support roll defines a rigid constraint, which coupled 
with the low torsional stiffness of the chain in the Y-direction, allows treating segments 
1 and 2 as separate. 
 

 
 
 

 
 
 
 
 
 

Figure 2.15. Chain torsion third mode shape (41.33 Hz). 

Table 2.3. Simulation results for chain vertical bending. 

Table 2.4. Simulation results for chain lateral bending. 



 

 
 
The following graphs will show how the frequency of the same harmonic changes for 
the different tensioner force values, for each of the track chain behaviors. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Table 2.5. Simulation results for chain torsion. 

Figure 2.16. Simulation results for segment 1 vertical bending. 



 

 
 
 

 
 
 
 
 

Figure 2.17. Simulation results for chain torsion vertical bending. 

Figure 2.18. Simulation results for chain torsion. 



 

 
Some remarks can be made regarding the results of the simulation: 

 The support roll constitutes a rigid constraint in the longitudinal (X-Z) plane, 

separating the chain in two segments that can be studied individually, but in the 

lateral (X-Y) plane it has a small stiffness, so the chain can be studied as a whole. 

 The vertical bending behavior is heavily dependent on the tensioner force, while 

the torsion and lateral bending show only a small increase in frequency for the 

same harmonic, as the tensioner force increases. 

These remarks will influence the way that the analytical models to describe the chain 
are set up. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.19. Simulation results for chain lateral bending. 



2.3 Modeling the track chain vertical bending behavior. 
 
This first analysis aims at modeling the vertical bending ((X-Z) plane) of the chain. The 
methods proposed here consider the chain as: 

1. Two continuous strings in tension, separated by the support roll, and where the 

tension on the chain is calculated analytically. 

2. Two continuous strings in tension, separated by the support roll, and where the 

tension on the chain is obtained from the ATV post-processing window. 

3. Discretized system where each track pad is a rigid body connected to the others 

by means of elastic elements (consistent with the multi-body approach). 

 
 

2.3.1 Continuous string in tension with analytically evaluated tension. 
 
The string-like behavior of the chain in the vertical direction is due to the very small 
(almost negligible) torsional stiffness of the connection between track pads in the Y-
direction. The assumptions that are made when studying the chain as a string are the 
following: 

 The chain is considered as a continuous system (rather than a discrete system 

made of track segments linked together by revolute joints). 

 Tension is uniform on each of the strings. 

 Constant linear density of the chain. 

 Each of the strings can be considered as fixed on both ends. 

Considering these hypotheses, the wave equation of the chain (string) will be solved, 
imposing the correct boundary conditions, in order to obtain the expressions of the 
natural frequencies. The natural frequencies will be computed and they will be 
compared to the frequencies that ATV shows for mode shapes that should correspond 
to the theoretical ones. 
 
The tension of the upper part of the chain is not the one that the idle wheel provides. 
The force that the tensioner imposes in the chain is shared between the upper and 
lower parts of the chain. Isolating that part of the chain assembly, we can perform a 
force balance in order to obtain the expression of the tension for the part of chain we  
are interested in. Obviously, some assumptions are required to simplify the model: 

 Null friction in the idler hub. 

 Uniform tension in the string. 

 Weightless string. 

 
 
 



 
 
Performing the horizontal equilibrium, the tension T on the upper chain is given by the 
following expression: 

𝑇 =
𝑇𝑡

1 + cos 𝛼
 

The value of the angle α is calculated by using some geometrical relations between the 
tensioner and the first road wheel. Knowing it, we can evaluate the tension on the 
upper chain. 
The table below shows the tension in the string, as a function of the idle wheel tension. 
Note how the tension is the same in both string 1 and 2, for the same value of idle 
wheel tension. In the following section, this will be shown to be wrong. 

 
 
 
 
 
 

Figure 2.20. Force equilibrium around the idle wheel. 

Table 2.6. Tension on strings 1 and 2, as a function of the idle 
wheel tension. 



The wave equation for a continuous string in tension is as follows: 
 

𝜕2𝑦

𝜕𝑡2
=
𝑇

𝜇
 
𝜕2𝑦

𝜕𝑥2
 

 
Imposing the boundary conditions for a fixed-fixed string, allows obtaining the 
expression of the natural frequency: 

𝑓𝑖 =
𝑖

2𝐿
√
𝑇

𝜇
 

 𝑓 [𝐻𝑧]: frequency of the i-th order harmonic. 

 𝐿 [𝑚]: length of the string of interest. 

 𝑇 [𝑁]: tension on the string. 

 𝜇 [𝑘𝑔/𝑚]: linear density of the string. 

Calculating the results with the formula above, we obtain the following frequencies: 

 
 

2.3.2 Continuous string in tension with ATV provided tension. 
 
ATV allows creating “track segment requests”, which basically provide information in 
the post-processing window, such as force, displacement and so on, for each track pad 
after the simulation is completed. The tension on segments 1 and 2 can be obtained by 
looking at the longitudinal force exchanged between consecutive pads contained in the 
segment (segments 1 or 2). It is interesting to notice that the longitudinal force between 
consecutive segments is the same, on each of the strings. This means that on each 
string, the tension is constant, which is in line with the theory of continuous systems. 
Table 2.8 summarizes the results for this analysis. 
 
 
 
 
 
 

Table 2.7. The first five analytical frequencies for strings 1 and 2. 



 
As can be seen, the tension that ATV provides is quite different from the one that was 
analytically evaluated in the previous section. For this reason, the frequencies evaluated 
with the calculated tension are expected to be quite different from the ones that the 
simulation gives. 
 
 

2.3.3 Longitudinal bending discrete model. 
 
 
Adams Car, and consequently ATV, use a multi-body approach. This means that the 
system is considered as composed of rigid elements, that are connected by elastic links, 
and that have their own inertia, stiffness and damping properties. For this reason, it is 
interesting to study the upper chain as a multi-DOF system, where the bodies are 
connected to each other by linear and torsional springs (damping is neglected), in line 
with the way ATV models the connection. A scheme of how this approach works is 
shown in Figure 2.21. 
The properties of the elements in the scheme above are all provided by ATV and are 
listed below: 

 Mass of the pad: 𝑚 = 15 kg. 

 Mass moment of inertia of the pad: 𝐼 = 2.5 ∗ 105 𝑘𝑔𝑚𝑚2 

 Translational stiffness of the connection: 𝑘𝑡𝑟𝑎𝑛𝑠 = 5.2 ∗ 105
𝑁

𝑚𝑚
  

 Rotational stiffness of the connection: 𝑘𝑡𝑜𝑟 = 30
𝑁𝑚𝑚

°
 

 Length of the pad: 𝑙 = 152.4 𝑚𝑚 

 Tension on the chain: depends on the value imposed for the simulation. 

 
 
 
 
 

Table 2.8. The first five natural frequencies for strings 1 and 2, with ATV tension values. 



 
The two segments will be considered separated by the support roll, which would allow 
to study them independently. Segment 1 consists of 18 track pads, while segment 2 
consists of 13 track pads. Each pad is considered to have two DOFs, namely vertical 
translation in the Z-direction and clockwise rotation around its center of mass. For this 
reason, segment 1 has 36 DOFs and segment 2 has 26 DOFs. By imposing pinned-pinned 
boundary conditions, the translation of the first and last pad of each segment is not 
allowed, so the total number of DOFs decreases by two for each segment, bringing the 
total to 34 for segment 1 and 24 for segment 2. The boundary conditions constrain the 
system as shown in Figure 2.22. The free body diagram of the generic pad “i”, the first 
and last pads for each of the segments are shown in Figure 2.23. 

 
 

Figure 2.21. Schematic representation of the discrete MDOF chain model. 

Figure 2.22. Boundary conditions on the chain extremes. 



 

 
 
Two equations of motion are written for each pad. One equation is about the vertical 
translation and the other about the rotation around the pad’s center of mass. 
 

The generalized displacement coordinate is: {𝑞} =

{
 
 

 
 {
𝑦𝑖−1
𝜃𝑖−1

}

{
𝑦𝑖
𝜃𝑖
}

{
𝑦𝑖+1
𝜃𝑖+1

}}
 
 

 
 

 

EOM 1: 

↑) 𝑀�̈�1 + 𝑘𝑧1 − 𝑘
𝑙

2
𝜃1 − 𝑘𝑧2 − 𝑘

𝑙

2
𝜙2 = 0 

↻)𝐼�̈�1 − 𝑘
𝑙

2
𝑧1 + (𝑘𝑡 +

𝑘𝑙2

4
+ 𝑇𝑙)𝜙1 + 𝑘

𝑙

2
𝑧2 − (𝑘𝑡 +

𝑘𝑙2

4
)𝜙2 = 0 

EOM 31: 

↑) 𝑀�̈�31 + 𝑘𝑧31 + 𝑘
𝑙

2
𝜙31 − 𝑘𝑧30 + 𝑘

𝑙

2
𝜙30 = 0 

Figure 2.23. FBD of the first, last and generic pad. 



↻)𝐼�̈�31 − 𝑘
𝑙

2
𝑧30 − (𝑘𝑡 +

𝑘𝑙2

4
)𝜙30 + 𝑘

𝑙

2
𝑧31 + (𝑘𝑡 +

𝑘𝑙2

4
+ 𝑇𝑙)𝜙31 = 0 

EOM i: 

↑) 𝑀�̈�𝑖 − 𝑘𝑧𝑖−1 + 2𝑘𝑧𝑖 − 𝑘𝑧𝑖+1 + 𝑘
𝑙

2
𝜙𝑖−1 − 𝑘

𝑙

2
𝜙𝑖+1 = 0 

↻)𝐼�̈�𝑖 − 𝑘
𝑙

2
𝑧𝑖−1 − (𝑘𝑡 +

𝑘𝑙2

4
)𝜙𝑖−1 + (2𝑘𝑡 +

𝑘𝑙2

2
+ 𝑇𝑙)𝜙𝑖 + 𝑘

𝑙

2
𝑧𝑖+1 − (𝑘𝑡 +

𝑘𝑙2

4
)𝜙𝑖+1

= 0 
 
 
The terms on these equations are arranged on the mass and stiffness matrices as 
follows: 

[𝑀] =

[
 
 
 
 
 [
𝑀𝑖−1 0
0 𝐼𝑖−1

] 0 0

0 [
𝑀𝑖 0
0 𝐼𝑖

] 0

0 0 [
𝑀𝑖+1 0
0 𝐼𝑖+1

]
]
 
 
 
 
 

 

The stiffness matrix is more complicated and for ease of presentation it will be built in 
blocks. 

[𝐾𝑖] = [
2𝑘 0

0 2𝑘𝑡 +
𝑘𝑙2

2
+ 𝑇𝑙

] 

[𝐾𝑖−1] = [
−𝑘

𝑘𝑙

2

−
𝑘𝑙

2
−𝑘𝑡 +

𝑘𝑙2

4

] 

[𝐾𝑖+1] = [
−𝑘 −

𝑘𝑙

2
𝑘𝑙

2
−𝑘𝑡 +

𝑘𝑙2

4

] 

[𝐾1] = [
𝑘 0

0 𝑘𝑡 +
𝑘𝑙2

4
+ 𝑇𝑙

] 

[𝐾𝑛] = [
𝑘 0

0 𝑘𝑡 +
𝑘𝑙2

4
+ 𝑇𝑙

] 

[𝐾] =

[
 
 
 
 
[𝐾1] [𝐾𝑖+1] 0 0 0
0 ⋱ 0 0 0
0 [𝐾𝑖−1] [𝐾𝑖] [𝐾𝑖+1] 0
0 0 0 ⋱ 0
0 0 0 [𝐾𝑖−1] [𝐾𝑛]]

 
 
 
 

 

 
 



The mass and stiffness matrices are implemented in MATLAB and the eigenvalue 
problem is solved, giving the eigenvalues and natural frequencies. The following tables 
will summarize the results obtained with the continuous string model with calculated 
tension, continuous string with ATV provided tension, discrete model and simulation for 
each of the chain segments. The following denomination will be used for each scenario, 
to keep the notation more compact: 

 Continuous 1: continuous string model with calculated tension results. 

 Continuous 2: continuous string model with ATV provided tension results. 

 Discrete: discrete model results. 

 Simulation: simulation results. 

 
 

 
 
 
 
 
 
 
 
 
 
 

Table 2.9. Results summary for segment 1. 



 

 
 
The following figures plot the results of the last two tables, so it is clearer which of the 
methods proposed so far gives the closest approximation. 

 
 
 
 

Table 2.10. Results summary for segment 2. 

Figure 2.24. Comparison between the modeling methods and simulation results for segment 1. 



 

 
 
 
The tables, and the plots even clearer, show that the method which provides the best 
approximation is the discrete model. This is to be expected, since the discrete model 
follows very closely the multi-body approach (with minor differences). However, also 
the other models should not be discarded, because especially at the lower harmonics, 
they offer a decent approximation that might be acceptable when only a preliminary 
design is required. 
An alternative method of implementing the discrete model is by considering the chain 
as a whole, and introducing a very large stiffness where the support roll is located. This 
method was not shown here, because considering two segments yields more 
approximate results. However, this method is interesting because plotting the 
eigenvectors obtained from it, can be noticed that they resemble the mode shape that 
corresponds to that eigenvector. This is illustrated in Figure 2.26. 
 
 
 
 
 
 
 
 

Figure 2.25. . Comparison between the modeling methods and simulation results for segment 2. 



 
 
 
 

2.4 Modeling the track chain torsional behavior. 
 
The procedure for studying the torsional behavior will be detailed below. In particular, it 
is important to highlight the assumptions made: 

 The chain can be considered as a shaft in torsion, which is clamped on both sides 

(boundary conditions).  

 An analogy will be made between a lumped system, such as the chain under 

study, and a continuous system, by expressing the wave speed as a function of 

parameters that are present in the lumped model. 

 Small vibration angles that allow to simplify the procedure from a computational 

point of view and linearize the system. 

 Differently to what was done for the string model, where the upper part of the 

track chain was studied as two independent segments, for the torsion model the 

entire upper chain will be studied as a single element. This is enabled because 

the support roll does not act as a constraint for torsion. 

The equation that describes the wave equation of a shaft that undergoes torsional 
loading is the following: 

Figure 2.26. Similarity between a mode shape and its corresponding eigenvector. 



𝛿2𝜃

𝛿𝑡2
=
𝐺𝐽

𝐼𝑙

𝛿2𝜃

𝛿𝑥2
 

Starting from this expression, it is possible to identify the term that represents the wave 
propagation speed. Knowing the speed that the wave travels with and the length of the 
shaft through which this wave travels, we can calculate the ratio of this length with the 
speed, in order to get the expression of the natural frequency. Obviously, this is only 
partly correct and it serves only as a way of reasoning, because to get a precise value of 
the natural frequency, the boundary conditions of the shaft have to be imposed, 
allowing for the shape function to be properly defined. 

𝑐 =
𝐺𝐽

𝐼𝑙
 [

𝑁
𝑚2 ∗ 𝑚

4

𝑁𝑘𝑔2

𝑚

=
𝑚

𝑠
] 

Coherently with the assumptions made for the model, a modification has to be made in 
the expression of the speed, so as to establish a link between the discrete (lumped) 
system that we are studying and the continuous system we would like to model. This is 
performed by considering the track chain as a wave motion demonstrator (WMD), 
following an approach introduced in the Mechanical System Dynamics [5] course held at 
Politecnico di Torino for the Mechanical Engineering MSc. 
The following transformation is performed to get a different expression for the wave 
speed: 

𝑐2 =
𝐺𝐽𝑝

𝐼𝑙
= [

𝑃𝑎 ∗ 𝑚4

𝑘𝑓 ∗
𝑚2

𝑚

] = [𝑚2

𝑁𝑚
𝑟𝑎𝑑

𝑘𝑔 ∗ 𝑚2
] = 𝐿2

𝑘𝑇
𝐼

 

⇒ 𝑐 = 𝐿√
𝑘𝑇
𝑛𝐼

 

 𝐺 [𝑀𝑃𝑎]: shear modulus of the material. 

 𝐽𝑝 [𝑚
4]: polar moment if inertia of the cross-section. 

 𝐼𝑙  [𝑘𝑔 ∗ 𝑚]: mass moment of inertia per unit length. 

 𝐿 [𝑚]: length of the chain portion under study. 

 𝑘𝑇 [𝑁𝑚/𝑟𝑎𝑑]: torsional stiffness. 

 𝐼 [𝑘𝑔 ∗ 𝑚2]: mass moment of inertia. 

 𝑛: number of track segments. 

The wave equation for the shaft in torsion can then be updated with the suggested 
modification: 

𝛿2𝜃

𝛿𝑡2
= 𝑐2

𝛿2𝜃

𝛿𝑥2
=
𝐺𝐽𝑝

𝐼𝑙

𝛿2𝜃

𝛿𝑥2
= 𝐿2

𝑘𝑇
𝐼

𝛿2𝜃

𝛿𝑥2
 

 
Imposing the boundary conditions (clamped-clamped), allows obtaining the expression 
of natural frequency. 
 

𝑓𝑖 =
𝑖

2𝐿
√
𝐺𝐽𝑝

𝐼𝑙
=
𝑖

2
√
𝑘𝑡
𝑛𝐼

 



 
The formula for the natural frequency gives the following results for the first five 
torsional harmonics. 

 
The following table shows, side by side, how the analytical results compare with the 
results of the simulation. Also for this case the string tension is 15000 N, but this is 
irrelevant, as tension does not have any contribution in the torsional behavior. This is 
also clear due to the fact that tension doesn’t appear in the wave equation. 
 

 
Figure 2.27 shows the deviation of the simulation results from the analytical ones. 
Except the first natural frequency, all the other ones are quite similar, and the higher 
the harmonic order, the more approximate they are. 

Table 2.11. The first five harmonics for the torsion model. 

Table 2.12. Comparison between the analytical and simulation results 
for torsion. 

Figure 2.27. Comparison between the analytical and simulation 
results for chain torsion. 



The results obtained above, serve to show that the torsional behavior of the upper part 
of the track chain can be quite closely approximated with that of a shaft in torsion that 
is clamped on both sides. 
However, it must be noted that this behavior is modeled considering the entire length of 
the upper part of the chain, namely from the sprocket to the tensioner wheel. The 
simulations show that the support wheel does not play a role in the torsional behavior 
and its presence can be neglected. This contrasts the previous case of vertical bending, 
where the chain had to be divided in two segments that oscillate independently of each 
other. 
 
 
 
 
 
 

2.5 Modeling the track chain lateral bending behavior. 
 
 

2.5.1 Euler-Bernoulli beam model. 
 
The assumptions made when it comes to modeling the lateral behavior of the chain 
(bending in the (X-Y) plane) are the following: 

 The chain is considered as a Euler-Bernoulli beam. 

 Euler-Bernoulli beams display only bending, and not shear forces. This is a strong 

assumption, as in a realistic scenario, shear actions don’t have a negligible 

contribution. 

 The entire length of the chain will be modeled by a single beam, rather than two 

different beams. This consideration is also quite important, as length appears in 

the frequency expression, in such a way that increasing it leads to a frequency 

decrease. 

The wave equation for the Euler-Bernoulli beam is given below: 
 

𝛿2𝑦

𝛿𝑡2
= −

𝐸𝐽

𝜇

𝛿4𝑦

𝛿𝑥4
 

 
Imposing the boundary conditions for the pinned-pinned beam, a characteristic 
equation appears (due to the presence of the 4th order partial differential equation). The 
equation in this case is not complicated, so it can be solved analytically (usually, 
characteristic equations require a numerical solution). The steps to obtain this equation 
will not be depicted here, but the results can be summarized as: 
 
 



2𝛽2 sin(𝛽𝐿) sinh(𝛽𝐿) = 0 
 

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛: sinh(𝛽𝐿) = 0 ⇒ 𝛽𝐿 = 𝜋𝑖  
 

𝛽 =
𝜋

𝐿
𝑖 ⇒  𝜔𝑖

2 = 𝛽4
𝐸𝐽

𝜇
 

 
The temporal frequency can be obtained from the spatial frequency in the following 
way: 

𝜔𝑖 =
𝜋2𝑖2

𝐿2
√
𝐸𝐽

𝜇
 ⇒  𝑓𝑖 =

𝜋𝑖2

2𝐿2
√
𝐸𝐽

𝜇
 

 
Seeing that the terms required (in the wave speed) are not readily available by ATV, 
some correlation should be made between them and the torsional stiffness, which is the 
quantity that defines the connection between the track elements. In order to do this, 
we need to perform a linearization of the torsional stiffness, with the aim of obtaining 
the flexural stiffness. 
Figure 2.28 shows the equilibrium performed around point O, which is the ideal inner 
hinge that connects two consecutive track segments. 
 

 
 
The following steps demonstrate how the transverse stiffness k was obtained. 

𝑀𝑧 = 𝑘𝑇(𝜃2 − 𝜃1) 

𝐹1 = 𝑘 ⋅ Δ𝑦1 = 𝑘 ⋅
𝑙

2
⋅ sin 𝜃1 

Figure 2.28. Equilibrium around point O in the (X-Y) plane. 



𝐹2 = 𝑘 ⋅ Δ𝑦2 = 𝑘 ⋅
𝑙

2
⋅ sin 𝜃2 

𝑂 ↻:    𝑀𝑧 + 𝐹2 ⋅
𝑙

2
⋅ cos 𝜃2 − 𝐹1 ⋅

𝑙

2
⋅ cos 𝜃1 − 𝑇 ⋅

𝑙

2
⋅ sin 𝜃1 − 𝑇 ⋅

𝑙

2
⋅ sin 𝜃2 = 0 

𝑀𝑧 = 𝐹1 ⋅
𝑙

2
⋅ cos 𝜃1 − 𝐹2 ⋅

𝑙

2
⋅ cos 𝜃2 + 𝑇 ⋅

𝑙

2
⋅ (sin 𝜃1 + sin 𝜃2) 

𝑀𝑧 =
𝑙

2
⋅ [𝑘 ⋅

𝑙

2
⋅ (sin 𝜃1 cos 𝜃1 − sin 𝜃1 cos 𝜃1) + 𝑇 ⋅ (sin 𝜃1 + sin 𝜃2)] 

𝑘𝑇(𝜃2 − 𝜃1) =
𝑙

2
⋅ [𝑘 ⋅

𝑙

2
⋅ (sin 𝜃1 cos 𝜃1 − sin 𝜃1 cos 𝜃1) + 𝑇 ⋅ (sin 𝜃1 + sin 𝜃2)] 

 
The angles are obtained from the ATV post-processing window: 

 𝜃1 = 0,0039° 

 𝜃2 = 0,0034° 

Given that the angles are very small the following assumption can be made: 

 sin 𝜃1 ≅ 𝜃1 

 sin 𝜃2 ≅ 𝜃2 

 cos 𝜃1 ≅ 1 

 cos 𝜃2 ≅ 11 

The expression becomes linearized: 

𝑘𝑇(𝜃2 − 𝜃1) =
𝑙

2
⋅ [𝑘 ⋅

𝑙

2
⋅ (𝜃2 − 𝜃1) + 𝑇 ⋅ (𝜃2 + 𝜃1)] 

 

𝑘 =
4 ⋅ 𝑘𝑇(𝜃2 − 𝜃1)

𝑙2
−
2 ⋅ 𝑇 ⋅ (𝜃1 + 𝜃2)

𝑙 ⋅ (𝜃1 − 𝜃2)
    [

𝑁

𝑚
] 

 
The terms that appear in this equation are the following: 

 𝑘 [
𝑁

𝑚
]: linear stiffness in the connection between two track pads. 

 𝑘𝑇  [
𝑁𝑚

𝑟𝑎𝑑
]: torsional stiffness in the connection between two track pads. 

 𝑙 [𝑚]: length of the track pad. 

 𝑇 [𝑁]: tension on the chain. 

Knowing this stiffness, we can link it with the terms that appear in the wave equation: 
 

𝑘 =
3𝐸𝐽

𝐿3
  ⇒   𝐸𝐽 =

𝑘𝐿3

3
 

 
The natural frequency expression becomes: 

𝑓𝑖 =
𝜋𝑖2

2𝐿2
√
𝑘𝐿3

3𝜇
 

 



Table 2.13 shows the results obtained with the formula above, while Table 2.14 
compares these results with the ones from the simulation. 

 
 

 

Looking at the graph of Figure 2.29, it becomes obvious that the Euler-Bernoulli beam 
approximation is not accurate at all. Moreover, the simulation results tend to follow an 
almost linear trend, whereas the Euler-Bernoulli model, being dependent on the square 
of the harmonic, follows a parabolic trend. In this way, the difference at higher 
harmonics will be very large. This issue requires a different method to model the chain 
lateral bending.  
 
 
 

Table 2.13. The first five analytical natural frequencies for the chain lateral bending. 

Table 2.14. Comparison between the analytical and simulation 
results for chain lateral bending. 

Figure 2.29. Graphical comparison between the analytical and 
simulation results for chain lateral bending. 



2.5.2 Discrete modeling of the chain lateral bending. 
 
To solve the issues that arise when using a Euler-Bernoulli beam model, a discrete 
model can be implemented, in a manner similar to the one used for the longitudinal 
bending. The scheme of this model is shown in Figure 2.30, where “i” denotes the 
generic track pad, that is connected to its left and right with pads “i-1” and “i+1”. The 
connection is modeled as consisting of linear and torsional springs, because this is the 
way in which ATV gives its properties (for each connection ATV gives a translational and 
rotational stiffness). In this analysis, the inner damping of the connection is neglected.  
 

 
 
In this case, the support roll cannot be considered as rigid. In fact, the contact stiffness  
of the support roll in this direction is much lower than that of the connection. For this 
reason, the support roll will be modeled as a lumped spring that is connected to the 
ground. (In reality, the support roll is connected to the hull, which for this static 
simulation can be considered as the ground). The support roll acts on track pad number 
14, and the scheme of the track portion where the support is present is shown in Figure 
2.31. 
 
 
 
 
 
 
 
 
 
 

Figure 2.30. Schematic representation of MDOF model for lateral bending. 



The following images show the free body diagrams required to obtain the mass and 
stiffness matrices of the multi DOF system. 
 
 

Figure 2.31. Schematic representation of the equivalent lumped spring. 

Figure 2.32. Free body diagrams of the track pads. 



The images above show respectively: 

 Top left: FBD of the first pad “1”. 

 Top right: FBD of the last pad “31”. 

 Bottom left: FBD of the generic pad “i”. 

 Bottom right: FBD of the pad connected to the support roll “14”. 

 
The generalized displacement coordinate is the following: 

{𝑞} =

{
 
 

 
 {
𝑦𝑖−1
𝜃𝑖−1

}

{
𝑦𝑖
𝜃𝑖
}

{
𝑦𝑖+1
𝜃𝑖+1

}}
 
 

 
 

 

The equations of motion for each body are shown below: 
EOM 1: 

↑) 𝑀�̈�1 + 𝑘𝑦1 − 𝑘
𝑙

2
𝜃1 − 𝑘𝑦2 − 𝑘

𝑙

2
𝜃2 = 0 

↻)𝐼�̈�1 − 𝑘
𝑙

2
𝑦1 + (𝑘𝑡 +

𝑘𝑙2

4
+ 𝑇𝑙)𝜃1 + 𝑘

𝑙

2
𝑦2 − (𝑘𝑡 +

𝑘𝑙2

4
)𝜃2 = 0 

EOM 31: 

↑) 𝑀�̈�31 + 𝑘𝑦31 + 𝑘
𝑙

2
𝜃31 − 𝑘𝑦30 + 𝑘

𝑙

2
𝜃30 = 0 

↻)𝐼�̈�31 − 𝑘
𝑙

2
𝑦30 − (𝑘𝑡 +

𝑘𝑙2

4
)𝜃30 + 𝑘

𝑙

2
𝑦31 + (𝑘𝑡 +

𝑘𝑙2

4
+ 𝑇𝑙)𝜃31 = 0 

EOM i: 

↑) 𝑀�̈�𝑖 − 𝑘𝑦𝑖−1 + 2𝑘𝑦𝑖 − 𝑘𝑦𝑖+1 + 𝑘
𝑙

2
𝜃𝑖−1 − 𝑘

𝑙

2
𝜃𝑖+1 = 0 

↻)𝐼�̈�𝑖 − 𝑘
𝑙

2
𝑦𝑖−1 − (𝑘𝑡 +

𝑘𝑙2

4
)𝜃𝑖−1 + (2𝑘𝑡 +

𝑘𝑙2

2
+ 𝑇𝑙)𝜃𝑖 + 𝑘

𝑙

2
𝑦𝑖+1 − (𝑘𝑡 +

𝑘𝑙2

4
)𝜃𝑖+1

= 0 
 
EOM 14: 

↑) 𝑀�̈�14 − 𝑘𝑦13 + (2𝑘 + 𝑘𝑠)𝑦14 − 𝑘𝑦15 + 𝑘
𝑙

2
𝜃13 − 𝑘

𝑙

2
𝜃15 = 0 

↻)𝐼�̈�14 − 𝑘
𝑙

2
𝑦13 − (𝑘𝑡 +

𝑘𝑙2

4
)𝜃13 + (2𝑘𝑡 +

𝑘𝑙2

2
+ 𝑇𝑙)𝜃14 + 𝑘

𝑙

2
𝑦15 − (𝑘𝑡 +

𝑘𝑙2

4
)𝜃15

= 0 
 
The terms on the equations above are arranged in the mass and stiffness matrices as 
follows: 



[𝑀] =

[
 
 
 
 
 [
𝑀𝑖−1 0
0 𝐼𝑖−1

] 0 0

0 [
𝑀𝑖 0
0 𝐼𝑖

] 0

0 0 [
𝑀𝑖+1 0
0 𝐼𝑖+1

]
]
 
 
 
 
 

 

[𝐾𝑖] = [
2𝑘 0

0 2𝑘𝑡 +
𝑘𝑙2

2
+ 𝑇𝑙

] 

[𝐾𝑖−1] = [
−𝑘

𝑘𝑙

2

−
𝑘𝑙

2
−𝑘𝑡 +

𝑘𝑙2

4

] 

[𝐾𝑖+1] = [
−𝑘 −

𝑘𝑙

2
𝑘𝑙

2
−𝑘𝑡 +

𝑘𝑙2

4

] 

[𝐾1] = [
𝑘 0

0 𝑘𝑡 +
𝑘𝑙2

4
+ 𝑇𝑙

] 

[𝐾31] = [
𝑘 0

0 𝑘𝑡 +
𝑘𝑙2

4
+ 𝑇𝑙

] 

[𝐾] =

[
 
 
 
 
[𝐾1] [𝐾𝑖+1] 0 0 0
0 ⋱ 0 0 0
0 [𝐾𝑖−1] [𝐾𝑖] [𝐾𝑖+1] 0
0 0 0 ⋱ 0
0 0 0 [𝐾𝑖−1] [𝐾31]]

 
 
 
 

 

 
 
The mass and stiffness matrices are implemented in MATLAB and the eigenvalue 
problem is solved. In this way, the eigenvalues and the natural frequencies are obtained. 
The results obtained are summarized in the following table, where alongside them are 
also the results of the Euler-Bernoulli model and of the simulation. The first 20 
harmonics are considered to have a thorough comparison between the models. 
 
 
 
 
 
 
 
 
 
 



 
 
 
The following plots show graphically the results summarized in the table above. The 
second one shows only the comparison between the simulation and the discrete model, 
so that the differences between them can be highlighted better. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2.15. Summary of the results obtained for the two models and simulation. 



 
 

 
 

Figure 2.33. Graphical comparison between the models and simulation. 

Figure 2.34. Graphical representation between the discrete model and simulation. 



 
Figure 2.35 shows the similarity between the lateral bending second mode shape and 
the second eigenvector of the discrete model. It is interesting to see how the 
eigenvector correctly describes the behavior shown in the simulation and how the 
support roll, which was modeled as a lumped spring, modifies the system’s behavior to 
correctly predict the result. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.35. Comparison between simulation mode shape and discrete model eigenvector. 



2.6 Summarizing the modeling results. 
 
The results obtained so far will be summarized in tables and the best analytical model 
for each chain behavior will be highlighted based on the error between the analytical 
and simulation results. The error will be defined as: 

 Δ𝑓: absolute error, calculated as the difference between the simulation and 

analytical results. 

 Δ𝑓/𝑓: relative error, calculated as the ratio of the difference between the 

simulation and analytical results and analytical result. 

Table 2.16 and Table 2.17 show the error in approximation for each of the three 
methods used to model the longitudinal bending modes ((X-Z) plane). 
 

 
 
 
 
 
 
 
 
 

Table 2.16. Segment 1 results for vertical bending ((X-Z) plane). 



 
 
 

 
 
 
 
 
 
 
 

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
b

so
lu

te
 e

rr
o

r 
 [

H
z]

Harmonic order

Segment 1 vertical bending absolute error

Continuous 1 Continuous 2 Discrete

Figure 2.36. Segment 1 vertical bending absolute error. 
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Figure 2.37. Segment 1 vertical bending relative error 



 
 
 

 
 
 
 
 
 
 
 

Table 2.17. Segment 2 results for vertical bending ((X-Z) plane). 
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Figure 2.38. Segment 2 vertical bending absolute error. 



 
 
 
Table 2.18 summarizes the results obtained for the chain torsion. In the case of torsion, 
only one model was proposed. 
 

 
 
 
 
 
 
 

Table 2.18. Chain torsional oscillations results. 

0%

10%

20%

30%

40%

50%

1 2 3 4 5 6 7 8 9 10

R
el

at
iv

e 
er

ro
r 

[%
]

Harmonic order

Segment 2 relative error

Continuous 1 Continuous 2 Discrete

Figure 2.39. Segment 2 vertical bending relative error. 
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Figure 2.40. Chain torsion absolute error. 
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Figure 2.41. Chain torsion relative error. 



Table 2.19 summarizes the results for each of the two methods used to model the chain 
lateral bending. 
 

 

Table 2.19. Chain lateral bending results. 
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Figure 2.42. Chain lateral bending absolute error. 



 
 

 
 
 
 
 
Some remarks can be made about the results shown in the tables above: 

 The analytical results obtained for the equivalent string (strings 1 and 2) are 

quite close to the ones of the simulation. The error between the first modes is 

quite large, but it gets smaller at the consecutive modes. It is interesting to note 

that the error between the simulation and analytical results is considerably less 

for string 1, compared to string 2. This could imply that the string hypotheses are 

more approximate for segment 1. This is actually reasonable, because due to 

string 1 being longer, the mass is better distributed along its length. 

 Even though the continuous string model manages to approximate well the 

chain modes, the discrete model is far superior and it introduces a very small 

error compared to the continuous model. 

 In the case of torsional behavior, except for the first mode, which shows 

considerable differences between the analytical solution and the simulation, all 

the others are very closely approximated, and it can be noticed that the 

difference becomes very small for higher harmonic orders. 

 The Euler-Bernoulli beam model shows significant differences with the lateral 

bending behavior depicted by the simulation.  This can be interpreted as being 

due to reasons that are related to the boundary conditions, as well as the 
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Figure 2.43. Chain lateral bending relative error. 



assumptions made. The difference becomes very significant at higher harmonics, 

and for this reason the beam model is not a reliable way of modeling the chain. 

 Similar to the discrete model used in longitudinal bending, the discrete model 

used for the lateral bending gives very good results, that differ very slightly from 

those of the simulation.  

 As a general remark, the discrete model gives the best overall approximation, 

but the continuous system model is more easy to implement. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3 Sensitivity analysis 
 
This chapter consists of a sensitivity analysis, performed by changing parameters of the 
default model. The results obtained with the changes will be compared to the ones of 
the original. 
 

3.1 Rotational stiffness modification. 
 
The rotational stiffness in the Y-direction is the term that ATV uses to refer to the 
torsional stiffness of the connection between two consecutive track segments. ATV, 
being a multi-body software, considers the parts as rigid, while the connection between 
them is such that it takes into account not only the properties of the link itself, but also 
the elastic properties that the parts it connects would otherwise have. 
ATV models the connection as having very large stiffness in two of the directions and 
very low stiffness in the other, realizing an element that is a revolute joint (hinge). An 
ideal hinge has infinite stiffness in two directions, and a zero stiffness in the third. The 
default values are reported below, as referred to the local reference frame, depicted in 
Figure 3.1: 

 Rotational stiffness in the x-direction: 3000000
𝑁𝑚𝑚

°
 

 Rotational stiffness in the y-direction: 3000000
𝑁𝑚𝑚

°
 

 Rotational stiffness in the z-direction: 30
𝑁𝑚𝑚

°
 

 
As can be seen, contrary to the global reference frame, the part reference frame has the 
y-axis pointing upwards in the vertical direction and the z-axis in the lateral direction. 
This will be specified in every section where the reference frame definition is required, 
as this difference between the part and global references might lead to confusion.  

Figure 3.1. Local reference frame for the track segment. 



The parameters of the simulation with the modified stiffness (increased by two orders 
of magnitude) are summarized below (parameters referred to the part reference 
frame): 

 Rotational stiffness in the x-direction: 3000000
𝑁𝑚𝑚

°
  

 Rotational stiffness in the y-direction: 3000000
𝑁𝑚𝑚

°
 

 Rotational stiffness in the z-direction: 3000
𝑁𝑚𝑚

°
 

 Tensioner force: 15000 𝑁 

 
The results of the simulation with the modified stiffness are reported in Table 3.1, which 
gives a comparison for all the behaviors that were studied in the previous sections 

As can be seen from the table, the differences between the two sets of results are very 
minor, and they can be attributed to the fact that each simulation yields different 
results, even if run with the exact same settings. The minor differences can be 
appreciated in the graphs of Figure 3.2. 

Table 3.1. The left side shows the results of the original simulation, while the right side shows 
the results with the modified stiffness (3000 Nmm/°). 



 
However, the fact is that the increase of stiffness is quite insignificant compared to the 
stiffness in the other two directions, allowing the connection to retain its properties as a 
hinge.  
An additional increase with three orders of magnitude, yields considerable differences 
compared to the default model. The results of the simulation with a rotational stiffness 
of 30000 Nmm/° are summarized in Table 19, while Figure 24 highlights the deviation of 
the results of the modified model compared to the original. 
 

 
 
 
 

Figure 3.2. Deviation between the original and modified results for an increase of two orders of magnitude. 

Figure 3.3. Deviation between the original and modified results for an increase of three orders of magnitude. 



 
Regarding the results of Table 3.2, the following remarks can be made: 

 The frequencies of segment 1 and 2 are increased considerably, especially for 

the higher harmonics. This is to be expected, since an increased stiffness would 

move the behavior closer to that of a beam, rather than a string. 

 The increased stiffness implies an increase of the flexural rigidity of the chain, 

once again deviating from the string-like behavior. This is obvious due to the fact 

that the chain does not fully wrap around the wheels, as it did in the previous 

simulations. This is highlighted in Figure 3.4. 

 This lack of compliance from the chain changes the boundary conditions, as 

rotation around the point of constraint is not allowed anymore. 

 The behaviors of the two segments, which with the original stiffness could be 

considered independent, are now coupled, and in a few modes, excitation of one 

segment is accompanied by a subsequent excitation on the other segment. 

 As a general remark, the stiffness of 30000 Nmm/°, yields a situation that can be 

considered as intermediate between a string and a beam. 

Table 3.2. The left side shows the results of the original simulation, while the left side shows 
the results with the modified stiffness (30000 Nmm/°). 



 It is also interesting to notice that the lateral bending and the torsion behavior 

are not influenced at all by the stiffness increase. This is because torsion and 

lateral bending occur in other planes (lateral bending in the (x-y) plane and 

torsion is around the x-axis), so the stiffness modification in the y-direction 

(referred to the global reference frame), has no effect on them. 

 
If the same simulation is performed with an even higher rotational stiffness in the z-
direction (referred to the part reference frame), namely 300000 Nmm/°, the track 
cannot even wrap around the wheels, as shown in Figure 3.5. By bringing the z-direction 
stiffness to an order of magnitude lower than the other two, the hinge-like properties of 
the connection are lost, and all the considerations and assumptions we made in the 
previous sections, when modeling of the track as a continuous system, will no longer 
hold. 
 

 
 
 
 
 
 
 

Figure 3.4. Chain does not fully wrap around the wheels. 

Figure 3.5. Track deformation for the z-direction stiffness of 300000 Nmm/°. 



3.2 Rotational damping modification. 
 
The rotational damping refers to the damping assigned to the connection between two 
consecutive track segments. It is a property of the connection, that just like the 
rotational stiffness, takes into account also the properties of the segments it connects, 
which are considered as rigid, following the multi-body approach. It can be modified, by 
changing its order of magnitude, in order to highlight the effect this parameter has on 
the frequency.  
The default values of the rotational damping are (referred to the part reference frame):  

 Rotational damping in the x-direction: 200
𝑁𝑚𝑚𝑠

°
 

 Rotational damping in the y-direction: 200
𝑁𝑚𝑚𝑠

°
 

 Rotational damping in the z-direction: 0,1745 
𝑁𝑚𝑚𝑠

°
 

The sensible parameter to vary is the damping in the z-direction, as it is the direction 
that enables what was previously called the “hinge-like” behavior. The first modification 
increases the damping by two orders of magnitude: 

 Rotational damping in the z-direction: 17,45 
𝑁𝑚𝑚𝑠

°
 

The comparison between the results obtained with the default model and the modified 
model are shown in Table 3.3, while the following figures represent graphically the 
results of Table 3.3. 
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Figure 3.6. Segment 1 vertical bending sensitivity to rotational bending. 
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Figure 3.7. Segment 2 vertical bending sensitivity to rotational bending. 
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Figure 3.8. Lateral bending sensitivity to rotational bending. 
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Figure 3.9. Torsion sensitivity to rotational damping. 

Table 3.3. The left side shows the results of the default model, while the right side shows the 
results obtained with the modified damping (17.45 Nmms/°). 



The first remark is that the damping modification in the z-direction (part reference 
frame) impacts only the string-like behavior in the (X-Y) plane (global reference frame). 
Since the properties referred to the z-direction do not influence the lateral bending and 
torsion, the frequencies of these modes are not sensitive to changes in this damping. 
Additionally, a decrease of frequency for the modified model, especially visible for 
higher harmonics, can be noticed between equivalent modes. This is exactly what one 
would expect by increasing the damping. 
The next modification increases the damping by three orders of magnitude, bringing it 
to a value that is close to the damping in the other two directions. 

 Rotational damping in the z-direction: 174,5 
𝑁𝑚𝑚𝑠

°
 

 
 
 
 
 
 

Table 3.4. The left side shows the results of the default model, while the right side shows the 
results obtained with the modified damping (174.45 Nmms/°). 
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Figure 3.10. Segment 1 vertical bending sensitivity to rotational damping. 
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Figure 3.11. Segment 2 vertical bending sensitivity to rotational damping. 
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Figure 3.12. Lateral bending sensitivity to rotational damping. 
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Figure 3.13. Torsion sensitivity to rotational damping. 



Once again, there are virtually no differences for the lateral bending and torsion, as the 
modification does not play any role in their corresponding directions.  
 
Notice however, that the frequencies are even lower than the first modification, even 
though only slightly. In this case, a big difference can be noticed in the damping ratio, 
which increases considerably. This was not true for the first modification, where in some 
instances they were even lower than the ones of the default model.  
 
 

3.3 Unload angle modification. 
 
The unload angle is the angle between two consecutive tracks, when zero torque is 
applied in their connection. The default ATV tank model has an unload angle of 12°. The 
modification brings this values to 0°, to see if the elimination of this angel has any 
influence in the behavior of the chain. The results, summarized in Table 3.5, show that 
there is virtually no distinction between the original and modified case.  

 

Table 3.5. The left table shows the results of the original simulation (12°), whereas the right 
table shows the results with the modification (0°). 
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Figure 3.14. Segment 1 vertical bending sensitivity to unload angle. 
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Figure 3.15. Segment 2 vertical bending sensitivity to unload angle. 



 

 
 

 
As can be seen from the table and graphs, decreasing the unload angle to 0°, has a very 
minor effect on the frequency, across the entire harmonics and the three different 
behaviors. 
 
A similar modification can be made, but this time increasing the unload angle from 12°, 
which is the default value, to 24°. 
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Figure 3.16. Lateral bending sensitivity to unload angle. 
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Figure 3.17. Torsion sensitivity to unload angle. 



 

Table 3.6. The left table shows the results of the original simulation (12°), whereas the right 
table shows the results with the modification (24°). 
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Figure 3.18. Segment 1 vertical bending sensitivity to unload angle. 
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Figure 3.19. Segment 2 vertical bending sensitivity to unload angle. 

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5

Fr
eq

u
en

cy
 [

H
z]

Harmonic order

Lateral bending sensitivity to unload angle

Default (12°) Modified (24°)

Figure 3.20. Lateral bending sensitivity to unload angle. 



 

 
 
Once again, the modification of the unload angle does not appear to have a significant 
effect on the values of frequencies. The differences in frequency throughout the 
harmonics are not big enough to attribute them to the unload angle modification. 
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Figure 3.21. Torsion sensitivity to unload angle. 



4 Modified tank model 
 
 
In this section, a substantial modification is performed on the default tank model. This 
modification includes the addition of a second support roll, so as to have two supports 
on the upper part of the track chain, between the sprocket and the idle wheel, as 
depicted in Figure 4.1. Such modification is performed with the goal of verifying the 
analytical procedure developed for the default model and extending it to a more 
complex, but realistic situation. 

 
The following is a summary of the procedure adopted and results acquired for the 
default tank model, still valid also for the modified model: 

 The upper part of the track chain can be considered as either a single segment 

(spanning from the sprocket to the idle wheel), or two independent segments 

(one spanning from the sprocket to the support roll and the other from the 

support roll to the idle wheel), depending on the behavior under study. 

 Three types of behaviors were studied: 

o Bending in the longitudinal plane ((X-Z) plane). This behavior was 

modeled considering the chain as made of two segments, where each of 

them was modeled as either a string in tension or a multi DOF discrete 

system. 

o Bending in the lateral plane ((X-Y) plane). For this behavior, the chain was 

considered as a single segment, and it was modeled as a Euler-Bernoulli 

beam. 

o Torsion around the X-axis. The element used to describe this behavior 

was a shaft under torsional loading. 

Figure 4.1. Modified tank model. 



 By imposing the right boundary conditions, the natural frequencies were 

analytically obtained. These were then compared to the ones that were obtained 

from the ATV simulations with the goal of validating the analytical modeling. 

 
The changes introduced by the addition of the new support roll are the following: 

 A third segment has to be considered when modeling the upper part of the track 

chain.  

 This third segment will definitely have an impact on the bending in the (X-Z) 

plane. 

 The influence the new support roll will have on the other two behaviors has to 

be investigated, because its effect might be different than for the default model. 

 

4.1 Geometrical data of the modified model. 
 
Similar to what was done for the default model, some data related to the position of the 
components of interest are required, so as to obtain some parameters that will be later 
used in the calculation of natural frequencies. Table 4.1 contains the position of the 
different wheels and some properties for each of them. These will be useful in the 
subsequent calculations. 

 
 
In particular, the upper track chain, for the purposes of this analysis, will be considered 
as composed of three segments, as shown above in Figure 4.1. Table 4.2 summarizes 
some parameters for each of these segments. 
 
 
 
 
 
 
 
 
 

Table 4.1. Geometrical data of the modified tank model. 



 
The linear density of the track can be calculated as for the default model: 
 

𝜇 =
𝑚𝑠𝑒𝑔𝑚𝑒𝑛𝑡,1 +𝑚𝑠𝑒𝑔𝑚𝑒𝑛𝑡,2 +𝑚𝑠𝑒𝑔𝑚𝑒𝑛𝑡,3

𝑙𝑠𝑒𝑔𝑚𝑒𝑛𝑡,1 + 𝑙𝑠𝑒𝑔𝑚𝑒𝑛𝑡,2 + 𝑙𝑠𝑒𝑔𝑚𝑒𝑛𝑡,3
=
𝑛1 ⋅ 𝑚𝑝𝑎𝑑 + 𝑛2 ⋅ 𝑚𝑝𝑎𝑑 + 𝑛3 ⋅ 𝑚𝑝𝑎𝑑

𝑙𝑠𝑒𝑔𝑚𝑒𝑛𝑡,1 + 𝑙𝑠𝑒𝑔𝑚𝑒𝑛𝑡,2 + 𝑙𝑠𝑒𝑔𝑚𝑒𝑛𝑡,3
 

 

 𝑛𝑖: number of track pads on the ith segment. 

 𝑙𝑠𝑒𝑔𝑚𝑒𝑛𝑡,𝑖: length of the ith segment. 

 
 
 

4.2 ATV simulation results. 
 
The ATV allows visualizing the results of the static simulation through a window 
dedicated to the animation of the mode shapes. Mode shapes relevant for the upper 
part of the track chain can be categorized as follows: 

 Vertical bending oscillations in the (X-Z) plane. 

 Torsional oscillation around the X-axis. 

 Lateral bending oscillations in the (X-Y) plane. 

The mode shapes for the modified tank model are shown in the following figures. Note 
how the main difference compared to the default model is in the (X-Z) plane due to the 
addition of a third segment. The other two cases (lateral bending and torsion), at least 
visually, seem to be quite similar to the ones of the default model. 
The naming of the modes will be done following the same approach as for the default 
tank model.  
 
 
 
 
 
 

Table 4.2. Data for each of the three segment of the upper chain. 



 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2. Segment 1 vertical bending first mode shape (3.76 Hz). 

Figure 4.3. Segment 1 vertical bending second mode shape (7.07 Hz). 

Figure 4.4. Segment 1 vertical bending third mode shape (10.82 Hz). 



 

 
 

 

 

Figure 4.5. Segment 2 vertical bending first mode shape (5.69 Hz). 

Figure 4.6. Segment 2 vertical bending second mode shape (11.84 Hz). 

Figure 4.7. Segment 2 vertical bending third mode shape (18.42 Hz). 



 

 

 

 

Figure 4.8. Segment 3 vertical bending first mode shape (3.19 Hz). 

Figure 4.9. Segment 3 vertical bending second mode shape (6.13 Hz). 

Figure 4.10. Segment 3 vertical bending third mode shape (9.39 Hz). 



 

 
 

 

 
 

Figure 4.11. Chain torsion first mode shape (18.13 Hz). 

Figure 4.12. Chain torsion second mode shape (27.93 Hz). 

Figure 4.13. Chain torsion third mode shape (40.61 Hz). 



 

 

The following tables show the results obtained for the three segments in vertical 
bending, the torsional oscillations of the chain and the lateral bending oscillations of the 
chain. 
 

 
 
 
 

Figure 4.14. Chain lateral bending third mode shape (12.6 Hz). 

Figure 4.15. Chain lateral bending fourth mode shape (16.5 Hz). 

Table 4.3. Simulation results for 
segment 1 vertical bending. 



 

 
 

 
 

 
 
 
 
 
 
 
 

Table 4.4. Simulation results for 
segment 2 vertical bending. 

Table 4.5. Simulation results for 
segment 3 vertical bending. 

Table 4.6. Chain lateral bending 
simulation results. 



 

 
 

4.3 Modeling the track chain vertical bending behavior. 
 
This first analysis aims at modeling the vertical bending of the chain. The methods 
proposed here consider the chain as: 

1. Two continuous strings in tension, separated by the support roll, and where the 

tension on the chain is calculated analytically. 

2. Two continuous strings in tension, separated by the support roll, and where the 

tension on the chain is obtained from the ATV post-processing window. 

3. Discretized system where each track pad is a rigid body connected to the others 

by means of elastic element (consistent with the multi-body approach). 

 
 
 

4.3.1 Continuous string with analytically evaluated tension. 
 
The analytical approach is based on the frequency calculation starting from the chain 
tension. The tension on the upper chain is not the one imposed by the idle wheel. 
Instead, this force is shared between the upper and the lower chain, so performing a 
force balance around the idle wheel, the analytical expression of the tension of the 
upper chain can be obtained. However, it is important to note that this tension does not 
take into account the gravity, friction in the idle wheel hub and other actions, so the 
value obtained from it can be quite different from reality. 
 
 
 
 
 
 
 

Table 4.7. Chain torsion simulation 
results. 



 
 
Performing the horizontal equilibrium, the tension T on the upper chain is given by the 
following expression: 

𝑇 =
𝑇𝑡

1 + cos 𝛼
 

 
The value of the angle α is calculated by using some geometrical relations between the 
tensioner and the first road wheel. Knowing it, we can evaluate the real (but theoretical) 
tension on the chain. 

The simulations for the modified model will be performed at a tensioner value of 15000 
N. Simulations at other tensioner values will not be reported here, as all the necessary 
remarks can be obtained from this simulation. 

The wave equation for a continuous string in tension is as follows: 

𝜕2𝑦

𝜕𝑡2
=
𝑇

𝜇
 
𝜕2𝑦

𝜕𝑥2
 

Imposing the boundary conditions for a fixed-fixed string, allows obtaining the 
expression for the natural frequency: 

𝑓𝑖 =
𝑖

2𝐿
√
𝑇

𝜇
 

 𝑓 [𝐻𝑧]: frequency of the ith order harmonic. 

 𝐿 [𝑚]: length of the string of interest. 

 𝑇 [𝑁]: tension on the string. 

 𝜇 [𝑘𝑔/𝑚]: linear density of the string. 

 

Figure 4.16. Force balance around the idle wheel. 



Table 4.8 shows the results obtained by using the expression above for the natural 
frequency, where the tension is calculated starting from the idle wheel tension. The first 
five harmonics are reported for the three strings, as their frequency is in the relevant 
frequency range for tracked vehicles. 

 
 

4.3.2 Continuous string with ATV provided tension. 
 

Creating track segment requests, allows obtaining the value of the horizontal force 
(force in the X-direction) that is exchanged between consecutive track segment links. 
This force can be considered as the tension on the equivalent string. An interesting 
observation is that each of the three segments (or strings) shows a different value of 
such force. Furthermore, this force is the same for all the track segment links that 
belong to the same string, meaning that the tension in each string is constant, but not 
equal among the strings. 

Given that the boundary conditions are the same as the previous case, since the 
situation is exactly the same and only the value of the tension changes, we can use the 
same frequency expression. Table 4.9 shows the results obtained with the ATV tension 
for the first five simulations. 

The graphs above point to a clear result. The analytical results are closer to the 
simulation results for greater lengths of string. This is clear due to the approximation 
being best for string 3, which is the longest, and worst for string 2, which is the shortest.  

Furthermore, it can be said that the shorter the segment is, the more inaccurate would 
be to consider it as a string. Hence, string 2 demonstrates a behavior that indeed 
resembles the string, but for higher harmonics shows characteristics of a Timoshenko 
beam as well. This is due to the fact that, especially from the third harmonic, the trend is 
not exactly linear, but is something between a linear and parabolic trend.  

Table 4.8. The first five harmonics for the three strings in tension (analytically evaluated tension). 

Table 4.9. The first five harmonics for the three segments, calculated with ATV tension values. 



This last remark shows a limitation of the string modeling procedure suggested in this 
thesis. Namely, the string approximation yields better results when the length is greater, 
due to the chain portion resembling a string more than a beam.  

That said, the two sets of results are close enough so as for the analytical approach to 
be used as a means of calculating the frequencies for the preliminary design. This is 
especially true for the lower harmonics, which are the ones that are predominant in 
tracked vehicles. 
 
 
 

4.4 Modeling the track chain torsional behavior. 
 

The assumptions made to model the track chain torsional behavior are the same ones 
made when the default model was studied.  

The equation that describes the wave equation of a shaft that undergoes torsional 
loading is the following: 

𝛿2𝜃

𝛿𝑡2
=
𝐺𝐽

𝐼𝑙

𝛿2𝜃

𝛿𝑥2
 

Starting from this expression, it is possible to identify the term that represents the wave 
propagation speed. Knowing the speed that the wave travels with and the length of the 
shaft through which this wave travels, we can calculate the ratio of this length with the 
speed, in order to get the expression of the natural frequency. Obviously, this is only 
partly correct and it serves only as a logical guide, because to get a precise value of the 
natural frequency, the boundary conditions of the shaft have to be imposed, allowing 
for the shape function to be defined. 

𝑐 =
𝐺𝐽

𝐼𝑙
 [

𝑁
𝑚2 ∗ 𝑚

4

𝑁𝑘𝑔2

𝑚

=
𝑚

𝑠
] 

The same modification as in the default model analysis is performed, with the goal of 
establishing a link between the chain, which is a lumped system and the shaft, which is a 
continuous system. 

The following transformation is performed to get a different expression for the wave 
speed: 

𝑐2 =
𝐺𝐽𝑝

𝐼𝑙
= [

𝑃𝑎 ∗ 𝑚4

𝑘𝑓 ∗
𝑚2

𝑚

] = [𝑚2

𝑁𝑚
𝑟𝑎𝑑

𝑘𝑔 ∗ 𝑚2
] = 𝐿2

𝑘𝑇
𝐼

 



⇒ 𝑐 = 𝐿√
𝑘𝑇
𝑛𝐼

 

  𝐺 [𝑀𝑃𝑎]: shear modulus of the material. 

 𝐽𝑝 [𝑚
4]: polar moment if inertia of the cross-section. 

 𝐼𝑙  [𝑘𝑔 ∗ 𝑚]: mass moment of inertia per unit length. 

 𝐿 [𝑚]: length of the chain portion under study. 

 𝑘𝑇 [𝑁𝑚/𝑟𝑎𝑑]: torsional stiffness. 

 𝐼 [𝑘𝑔 ∗ 𝑚2]: mass moment of inertia. 

 𝑛: number of track segments. 

The wave equation for a shaft in torsion can then be updated with the suggested 
modification. 

𝛿2𝜃

𝛿𝑡2
= 𝑐2

𝛿2𝜃

𝛿𝑥2
=
𝐺𝐽𝑝

𝐼𝑙

𝛿2𝜃

𝛿𝑥2
= 𝐿2

𝑘𝑇
𝐼

𝛿2𝜃

𝛿𝑥2
 

Imposing the boundary conditions (clamped-clamped), allows obtaining the expression 
of natural frequency. 

 

 

 

 

The formula for the natural frequency gives the following results for the first five 
torsional harmonics, as depicted in Table 4.10. 

 

Figure 4.17 shows a comparison between the results obtained analytically and those of 
the simulation. 

 

 

 

 

 

 

𝑓𝑖 =
𝑖

2𝐿
√
𝐺𝐽𝑝

𝐼𝑙
=
𝑖

2
√
𝑘𝑡
𝑛𝐼

 

Table 4.10. The first five harmonics for the shaft in torsion model. 



 

As can be seen from the graph, the approximation for the torsion is so good, that for the 
higher harmonics the difference becomes nearly negligible. The results were the same 
also for the default model. This consistency in results for the torsional oscillations is due 
to the fact that the support wheel does not influence the torsional behavior, so adding 
one or more support wheels will not change the results. 

 
 
 

4.5 Modeling the track chain lateral bending behavior. 
 

The chain lateral bending is better approximated with a discrete multi DOF model, that 
considers each track pad as rigid and connected to the others by one linear and one 
torsional spring. The analysis on the default tank model already showed that this model 
is superior, so the Euler-Bernoulli beam model will not be included in what follows. 

The procedure adopted for this model is identical to the one shown for the default tank 
model, with the only difference being the addition of a second lumped spring on track 
pad number 20, where the second support roll is located. For the schematic 
representation and FBD related to this case, refer to Figure 2.30 and Figure 2.32. In this 
case the equations of motion become: 

 

 

 

Figure 4.17. Graphical comparison of the analytical and simulation 
results for the torsional behavior. 



EOM 1: 

↑) 𝑀�̈�1 + 𝑘𝑦1 − 𝑘
𝑙

2
𝜃1 − 𝑘𝑦2 − 𝑘

𝑙

2
𝜃2 = 0 

↻)𝐼�̈�1 − 𝑘
𝑙

2
𝑦1 + (𝑘𝑡 +

𝑘𝑙2

4
+ 𝑇𝑙)𝜃1 + 𝑘

𝑙

2
𝑦2 − (𝑘𝑡 +

𝑘𝑙2

4
)𝜃2 = 0 

EOM 31: 

↑) 𝑀�̈�31 + 𝑘𝑦31 + 𝑘
𝑙

2
𝜃31 − 𝑘𝑦30 + 𝑘

𝑙

2
𝜃30 = 0 

↻)𝐼�̈�31 − 𝑘
𝑙

2
𝑦30 − (𝑘𝑡 +

𝑘𝑙2

4
)𝜃30 + 𝑘

𝑙

2
𝑦31 + (𝑘𝑡 +

𝑘𝑙2

4
+ 𝑇𝑙)𝜃31 = 0 

EOM i: 

↑) 𝑀�̈�𝑖 − 𝑘𝑦𝑖−1 + 2𝑘𝑦𝑖 − 𝑘𝑦𝑖+1 + 𝑘
𝑙

2
𝜃𝑖−1 − 𝑘

𝑙

2
𝜃𝑖+1 = 0 

↻)𝐼�̈�𝑖 − 𝑘
𝑙

2
𝑦𝑖−1 − (𝑘𝑡 +

𝑘𝑙2

4
)𝜃𝑖−1 + (2𝑘𝑡 +

𝑘𝑙2

2
+ 𝑇𝑙)𝜃𝑖 + 𝑘

𝑙

2
𝑦𝑖+1 − (𝑘𝑡 +

𝑘𝑙2

4
)𝜃𝑖+1

= 0 

 

 

EOM 14: 

↑) 𝑀�̈�14 − 𝑘𝑦13 + (2𝑘 + 𝑘𝑠)𝑦14 − 𝑘𝑦15 + 𝑘
𝑙

2
𝜃13 − 𝑘

𝑙

2
𝜃15 = 0 

↻)𝐼�̈�14 − 𝑘
𝑙

2
𝑦13 − (𝑘𝑡 +

𝑘𝑙2

4
)𝜃13 + (2𝑘𝑡 +

𝑘𝑙2

2
+ 𝑇𝑙)𝜃14 + 𝑘

𝑙

2
𝑦15 − (𝑘𝑡 +

𝑘𝑙2

4
)𝜃15

= 0 

 

EOM 20: 

↑) 𝑀�̈�20 − 𝑘𝑦19 + (2𝑘 + 𝑘𝑠)𝑦20 − 𝑘𝑦21 + 𝑘
𝑙

2
𝜃19 − 𝑘

𝑙

2
𝜃21 = 0 

↻)𝐼�̈�20 − 𝑘
𝑙

2
𝑦19 − (𝑘𝑡 +

𝑘𝑙2

4
)𝜃19 + (2𝑘𝑡 +

𝑘𝑙2

2
+ 𝑇𝑙)𝜃20 + 𝑘

𝑙

2
𝑦21 − (𝑘𝑡 +

𝑘𝑙2

4
)𝜃21

= 0 

The terms on these equations are collected in the mass and stiffness matrices as 
follows: 



[𝑀] =

[
 
 
 
 
 [
𝑀𝑖−1 0
0 𝐼𝑖−1

] 0 0

0 [
𝑀𝑖 0
0 𝐼𝑖

] 0

0 0 [
𝑀𝑖+1 0
0 𝐼𝑖+1

]
]
 
 
 
 
 

 

[𝐾𝑖] = [
2𝑘 0

0 2𝑘𝑡 +
𝑘𝑙2

2
+ 𝑇𝑙

] 

[𝐾𝑖−1] = [
−𝑘

𝑘𝑙

2

−
𝑘𝑙

2
−𝑘𝑡 +

𝑘𝑙2

4

] 

[𝐾𝑖+1] = [
−𝑘 −

𝑘𝑙

2
𝑘𝑙

2
−𝑘𝑡 +

𝑘𝑙2

4

] 

[𝐾1] = [
𝑘 0

0 𝑘𝑡 +
𝑘𝑙2

4
+ 𝑇𝑙

] 

[𝐾31] = [
𝑘 0

0 𝑘𝑡 +
𝑘𝑙2

4
+ 𝑇𝑙

] 

[𝐾] =

[
 
 
 
 
[𝐾1] [𝐾𝑖+1] 0 0 0
0 ⋱ 0 0 0
0 [𝐾𝑖−1] [𝐾𝑖] [𝐾𝑖+1] 0
0 0 0 ⋱ 0
0 0 0 [𝐾𝑖−1] [𝐾31]]

 
 
 
 

 

 

These matrices are then implemented in MATLAB and the eigenvalue problem is solved, 
providing the eigenvalues and natural frequencies. Table 4.11 summarizes the results 
obtained from the discrete model, the continuous Euler-Bernoulli model which was not 
depicted here and the simulation. 

 

 

 

 

 



Figure 4.18 shows a graphical comparison between the modeling approaches, where the 
quality of approximation offered by the discrete model can be appreciated. 

 

Table 4.11. Results summary for the modified tank model lateral bending. 
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Figure 4.18. Graphical representation of the comparison between the analytical model results and 
simulation for chain lateral bending. 



Another way to better appreciate the differences between the different analytical 
models proposed for the chain lateral bending is by comparing the error (both absolute 
and relative) that each model yields. 
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Figure 4.19. Lateral bending absolute error for the modified tank model. 
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Figure 4.20. Lateral bending relative error for the modified tank model. 



4.6 Summarizing the results for the modified tank model. 
 

As was demonstrated on the analyses performed in these last sections, the results are 
consistent with those obtained for the default model. They can be summarized as: 

 The vertical bending can be modeled considering the three segments as strings 

in tension. The important remark regarding this is that the real behavior lies 

between a string and a beam, in such a way that longer sections are better 

approximated as strings, whereas as the segment gets shorter, the behavior 

shifts more towards the beam. In this analysis, the behavior even for the 

shortest segment remains closer to the string, but as an empirical rule, the 

length of the segment should be at least five times that of the single track 

segment in order for the string hypothesis to hold. 

 The torsional behavior is characterized by an independence on the presence of 

the support roll. This was observed on the analysis of the default model, and was 

confirmed by the modified model, because the results for the default and 

modified model are nearly identical. Once again, the torsional behavior was 

confirmed as the most suitable one to be approximated by a continuous 

element. 

 The lateral bending ((X-Y) plane), as for the default model, can be successfully 

modeled considering a discretized multi DOF system, in a manner similar to the 

multi-body approach. The main difficulty when using this approach is in defining 

the mass and stiffness matrices, so some proficiency from the user in terms of 

dynamics of systems is required. Otherwise, this method is pretty 

straightforward to be implemented. 

The discussion above serves to validate the modeling approach proposed in this thesis. 
The method proposed here can be implemented even in more complex tank models, 
making sure that the assumptions fit the situation and keeping in mind that the results 
of these models show a certain deviation from the real ones. 

 
 
 
 
 
 
 
 
 
 
 
 



5 Vertical dynamics of the tracked vehicle 
 

 
Vehicle vertical dynamics has the objective of tuning the vehicle’s parameters, so as to 
improve the comfort or road holding of the vehicle. As a general rule, improving comfort 
requires limiting the vertical acceleration fluctuations of the sprung mass, while 
improving road holding requires limiting the vertical force fluctuations that rise as a 
consequence of the uneven road profile. These two aspects often contradict each other, 
so when tuning the parameters of the vehicle, one of the two should be sacrificed in 
favor of the other. 
For conventional wheeled vehicles, vertical dynamics is studied by considering a half car 
model (which is known as a 4 DOF model), where the sprung and unsprung masses are 
modeled according to their inertial, elastic and damping properties. Such model is 
represented in the figure below (taken from the lecture on Vertical Dynamics of the 
Motor Vehicle Mechanics[6] course, held at Politecnico di Torino for the Mechanical 
Engineering MSc). 
 

 
 
 
 

Figure 5.1. Schematic representation of the 4 DOF car model. 



The system parameters that appear on half car model are the following: 

 𝑧𝐺: vertical translation of the center of gravity. 

 𝜃: rotation of the sprung mass around the center of gravity. 

 𝑦1, 𝑦2: vertical translation of the un-sprung masses. 

 𝑧1, 𝑧2: vertical translation at the front and rear axles respectively. 

 ℎ1, ℎ2: input excitation from the road profile. 

 𝑚𝑠: sprung mass of the vehicle. 

 𝐼𝑦: sprung mass inertia. 

 𝑚1, 𝑚2: front and rear un-sprung masses respectively. 

 𝑘1, 𝑘2: front and rear suspension stiffness. 

 𝑐1, 𝑐2: front and rear damping. 

 𝑝1, 𝑝2: front and rear tires stiffness, expressed as equivalent springs having 

stiffness of one order of magnitude higher than the suspension springs.  

 

The following figure represents a schematic of the default tank model with five road 
wheels, an idle wheel, a support roll and a sprocket. The red and blue arrows represent 
the restoring effects of the torsional springs and dampers. Note that the vertical 
translation of the road wheels is linked with the angle on the torsional springs and 
dampers through the connecting arm, so they do not represent two different 
coordinates, as one can be expressed through the other by some kinematic relationship. 

 
 
 
 
 

Figure 5.2. Default tank model schematic representation. 



The parameters that appear in the half tank model are the following: 

 𝑧𝐺: vertical translation of the center of gravity. 

 𝜃: rotation of the sprung mass around the center of gravity. 

 𝑧𝑖: road wheel’s vertical translation. 

 𝑚𝑠: sprung mass of the tank. 

 𝐼𝑦: sprung mass inertia. 

 𝑚𝑟𝑤: mass of the road wheel. 

 𝑘𝑡,𝑖: torsional spring restoring effect. 

 𝑐𝑡,𝑖 : torsional damper restoring effect. 

However, studying the vertical dynamics of the tracked vehicle using this model would 
not give accurate results, because the chain of the real tracked vehicle plays a major 
role. This is due to two reasons. The first one is that the chain has a certain stiffness, 
which is not represented and accounted for in the equivalent model. The second is 
related to the additional excitation that the chain imposes on the system due to the 
contact of the sprocket and chain, which is not regular and depends on the angular 
velocity of the sprocket, as well as the chain harmonics that were modeled in the 
previous sections. Furthermore, studying the model with this analytical approach poses 
many complexities from a computational point of view. 

For this reason, the dynamics of the tracked vehicle will be studied using ATV to set the 
simulation and MATLAB to post-process the results. The steps that will be followed to 
do this include the setup of a dynamic simulation where the tank model will move along 
a certain road profile with a constant velocity. A general roadmap of the procedure is as 
follows: 

 Setting the ATV simulation, where the default tank model will travel along a 
certain road profile, with a constant velocity. 

 Analyzing this road profile in MATLAB, by generating its PSD. 

 Analyzing the vertical acceleration of the tank’s center of mass, by generating its 
PSD. 

 Knowing the PSD of the road profile and of the vertical acceleration, the FRF of 
the tank’s vertical acceleration can be computed. 

 Parameters of the tank (tensioner force, rotational spring stiffness, rotational 
damping coefficient) can be modified and the response of the system under 
different conditions can be compared. 

 
 
 
 
 
 



5.1 Generating the road profile. 
 

The first step of the analysis consists of the choice of the road profile where the vehicle 
model will be studied. ATV provides a number of road profiles. The default tank model 
will be tested on the road profile called “ride_quality_3inch_measured”. The total 
length of the road is around 317.5 meters and the elevation changes from 0 to -2.34 
meters. The maneuver will last for 40 seconds at a constant velocity of 2.5 m/s, so the 
vehicle is supposed to cover more or less 1/3 of the road profile. The slope of the road 
can be defined as: 

𝑖 = tan𝛼 =
Δ𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛

𝑙𝑒𝑛𝑔𝑡ℎ
∗ 100% =

−2.34 − 0

317.5
∗ 100% ≈ −0.74% 

 

 𝑖: slope of the road profile. 

 𝛼: inclination of the road profile. 

 Δ𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛: change in elevation of the road profile. 

 𝑙𝑒𝑛𝑔𝑡ℎ: total length of the road profile. 

The road files that are provided by ATV give a deterministic description of the road 
profile, namely they provide the elevation as a function of the mesh (z (x, y)). In this 
case, the road is symmetric with respect to the x-axis, so that the right and left tracks of 
the vehicle follow the same profile. The road file is implemented in MATLAB to generate 
and plot the mesh of the road. The following figure shows the road mesh as plotted in 
MATLAB. 

 
 

Figure 5.3. “ride_quality_3inch_measured” road profile. 



The Power Spectral Density (PSD) of the road describes the frequency content of the 
road signal. To compute the PSD of the road profile, the Discrete Fourier Transform 
(DFT) of the elevation has to be computed. In MATLAB, this is done through the FFT 
(Fast Fourier Transform) function and the result is the amplitude spectrum of the road 
profile. The square of this amplitude is then divided by the length of the road to obtain 
its PSD. These steps are represented through the expressions below. 

𝑧 = 𝑧(𝑥, 𝑦) 

𝑍(𝑛) = 𝐹𝐹𝑇(𝑧(𝑥, 𝑦)) 

𝑃𝑆𝐷(𝑛) =
|𝑍(𝑛)|2

𝑑𝑛
    [𝑚3] 

 𝑧 = 𝑧(𝑥, 𝑦) [𝑚]: road profile. 

 𝐹𝐹𝑇: Fast Fourier Transform. 

 𝑍(𝑛) [𝑚]: amplitude spectrum of the road profile. 

 𝑛 [
𝑐𝑦𝑐𝑙𝑒𝑠

𝑚
]: spatial frequency of the road profile. 

 𝑑𝑛 [
𝑐𝑦𝑐𝑙𝑒𝑠

𝑚
]: spatial frequency resolution. 

 𝑃𝑆𝐷(𝑛) [𝑚3]: spatial PSD of the road profile. 

The PSD of the road profile in space domain is represented as in the following graph in 
logarithmic scale.  

 

Having the spatial PSD of the road profile, it would be interesting to compare it with the 
reference road profiles defined in international standards by ISO 8608 [7]. 

 
 
 
 

Figure 5.4. PSD of the road profile in space domain. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

By considering the following reference points in the plots, we can identify which 
standard line corresponds to our road profile: 

 100
𝑐𝑦𝑐𝑙𝑒𝑠

𝑚
    →     10−4 𝑚3 

 101
𝑐𝑦𝑐𝑙𝑒𝑠

𝑚
    →     10−6 𝑚3 

 10−2
𝑐𝑦𝑐𝑙𝑒𝑠

𝑚
    →     100 𝑚3 

Highlighting these points, it can be seen that the road profile that will be used 
corresponds to the standard road profile E, which is a very rough road (standards refer 
to it as “poor”) that would suit well the mission profile of such vehicle. 

Once the PSD of the road profile in space domain has been computed, the PSD in time 
domain can be computed by dividing the spatial PSD and the vehicle speed. The result 
will be in [m2/Hz]. 

 

𝑃𝑆𝐷(𝑓) =
𝑃𝑆𝐷(𝑛)

𝑉
    [
𝑚2

𝐻𝑧
] 

 

 

Throughout the simulations the vehicle speed will be kept constant and equal to 2,5 
m/s, as it suits better the road profile (the roughness of the road is such that higher 
speeds would induce loss of contact between the vehicle and ground). The temporal 
PSD of the road profile is shown in the figure below. 

 
 
 

Figure 5.5. Left: spatial PSD of the road profile. Right: standard ISO road profiles [7]. 



 
There is also an alternative method of obtaining the PSD, through a dedicated MATLAB 
function called “pwelch”, that uses the Welch’s method. The time domain PSD obtained 
with this method is shown in Figure 5.7. 

Another method of understanding the frequency content of the road profile is the 
spectrogram, which in addition to the information already present in the PSD, provides 
also the frequency content evolution in space (normally the frequency evolution in time 
is given, but in this case the spatial frequency evolution in space is shown instead). The 
spectrogram of the road profile is shown in Figure 5.8. 

Figure 5.6. PSD of the road profile in time domain. 

Figure 5.7. Temporal PSD of the road profile obtained with 
Welch's method. 



The spectrogram shows that the frequency has a peak at around 0,2 cycles/m. However, 
there is also a very strong frequency content at the lowest frequency range, that is 
shown in brown color at the bottom of the right image of Figure 5.8. A guess is that this 
low frequency is due to the linear downward trend of the road signal. In order to 
correctly estimate the frequency content of the road, this linear trend of the road 
should be removed. In MATLAB, this can be done through the “detrend” function. The 
original signal and the one where the trend is removed are shown in Figure 5.9. 
 

 
 

Removing the linear trend from the signal, removes the low frequency and this can be 
clearly noted in the following figure, that show a magnification on the spectrogram. 

Figure 5.8. Left: spectrogram of the road profile in space domain. Right: Magnification of the low frequency range. 

Figure 5.9. The blue line shows the original road signal. The red line 
shows the road signal with the trend removed. 



 
Additionally, with the linear trend removed, there is an almost perfect match between 
the spatial PSD and the spectrogram, that is highlighted in Figure 5.11. 

 
 
A possible explanation for this low frequency content might be that the road profile 
under study is in fact a portion of a greater sinusoidal profile, that has a high amplitude 
and a very long wavelength compared to the length of the road profile. For this reason, 
the road appears to be linear. 
 
Having obtained the PSD of the road profile, the next step is obtaining the PSD of the 
vehicle. This will be done in the following section, where the vehicle parameters will be 
tuned to study how their change influences the response of the vehicle. 

Figure 5.10. Spectrogram of the "detrended" signal. 

Figure 5.11. Matching between the road PSD and spectrogram. 



5.2 Setting the simulation. 
 
Simulations will be performed using the ATV default tank model, in which the 
“tank_controller_powertrain” subsystem has been added. This subsystem includes a PID 
controller, which ensures that the desired speed is maintained throughout the 
maneuver.  
It was decided that the simulations will be performed at a forward velocity of 2.5 m/s, 
which allows the track chain to maintain contact with the ground at all times. If contact 
is lost between the tracks and the ground, the simulation fails (this was the case with 
higher tank velocities). The following figure shows the parameters that the velocity 
controller requires. 

 

The parameters that should be imposed are: 

 Constant velocity: 2500 𝑚𝑚/𝑠 

 Initial velocity: 0.0
𝑚𝑚

𝑠
 

 Step start time: 0.0 𝑠 

 Step end time: 5.0 𝑠 

 
 
 

Figure 5.12. Velocity controller dialog window. 



The other parameters are the default ones. Notice that also the initial velocity is set to 
zero and the vehicle is accelerated to the constant velocity in 5 seconds. 

The “ride_quality_3inch_measured” road profile has to be loaded in the model. It must 
be taken care to locate the road correctly with respect to the vehicle. The initial section 
of the road is flat, so the vehicle should be placed in this section. The location of the 
road is done as shown in Figure 5.13. Furthermore, this way of locating the vehicle in 
the road enables the constant speed to be obtained before the rough section starts, so 
there in no acceleration in the section that we are interested in. As for the soil, dry 
asphalt is chosen. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In addition to the dynamic simulation, modal analyses will be performed. One will take 
place at the beginning of the maneuver (at 0 seconds), while the other at the end of the 
maneuver (at 40 seconds). The additional steps required for the modal analyses will be 
performed in a manner similar to the one used for the track chain modeling, setting 
15000 N as tensioner force. We believe the chain excitation has a contribution in the 
system’s vertical dynamics, and to check this assumption the modal analysis is required. 

Having established the road profile that will be used and the velocity with which the test 
will be carried out, the parameters that will be tuned should be decided. The following is 
a list of the parameters that will be varied in the next sections: 

 Tensioner force. 

 Rotational spring stiffness. 

 Rotational damper damping coefficient. 

 
 

Figure 5.13. Road profile generation. 



5.3 Simulation results. 

 

The results of the simulation will be post-processed in MATLAB, by converting the “.res” 
files, as saved by ATV, to “.mat” files, using a script that performs the file conversion. 
This script is able to convert all the results of the simulation. However, it performs an 
error when converting the vertical acceleration of the center of gravity. This can be 
noticed when this acceleration, plotted in MATLAB, is compared to the same 
acceleration visualized in the ATV post-processing window and the two are completely 
different. For this reason, the acceleration in MATLAB will be obtained by dividing the z-
direction component of the velocity of the center of gravity by the time step. The plot of 
acceleration in time is shown in Figure 5.14. 

 

The frequency content of the acceleration can be visualized by performing a DFT, to 
obtain the PSD of the acceleration signal. This can be done in MATLAB by either using 
the “fft” function, or “pwelch”, as was shown for the road profile PSD generation. In this 
case, “pwelch” was used. The parameters used as input for “pwelch” are shown in the 
figure below. 

 
 
 
 
 
 
 

Figure 5.14. Sprung mass vertical acceleration in time. 



 

The PSD of the vertical acceleration of the center of gravity is shown in Figure 5.16. 

Since the results of different simulations will be compared based on the acceleration, 
the acceleration root mean square has to be found. This will enable comparing the 
different acceleration values, as just looking at the plot of acceleration on time does not 
give a correct comparison. 
 

𝑎𝑧,𝑟𝑚𝑠 = √∫ 𝑃𝑆𝐷𝑎𝑐𝑐(𝑓)𝑑𝑓
𝑓2

𝑓1

 

 
 
 

Figure 5.15. The script used to obtain the acceleration PSD. 

Figure 5.16. Center of gravity's vertical acceleration PSD. 



5.3.1 Tensioner force variation. 
 
Tension on the chain is a very important parameter, that has a strong influence on the 
dynamic behavior of the vehicle. One can imagine that increasing the tension, leads to 
an increase of the overall stiffness of the system. On the other hand, the lower this 
tension is, the stiffness of the vehicle will be more characterized by the stiffness of the 
suspension system of the vehicle. That said, it becomes clear that when studying the 
vertical dynamics, the parameters that can be tuned are the tension on the chain and 
the suspension system parameters. 

The first parameter that will be tuned is the tensioner force. This can be done from the 
simulation dialog box, right before the start of the simulation. ATV allows using different 
methods to impose the tensioner force, but the one used in this work is only the 
“tensioner force” (look at Appendix A for more details on the simulation setup). A total 
of five different simulations were performed, with the following tensioner force values: 

 15000 𝑁 
 30000 𝑁 
 45000 𝑁 
 60000 𝑁 
 90000 𝑁 

The results of these simulations are analyzed following the same steps as in the previous 
section. Figure 5.17 shows the comparison between the center of gravity’s vertical 
acceleration root mean square. 

As can be seen from Figure 5.17, it is not possible to establish a direct relationship 
between the tensioner force and the vertical acceleration of the center of mass. A 
tensioner force of 15000 N yields higher acceleration than tensions of 30000 N and 
45000 N. It is only at 60000 N that the higher tensioner force is translated in higher 

Figure 5.17. RMS acceleration for the different tensioner force values. 



vertical acceleration. Furthermore, when doing these kinds of analyses, one has to keep 
in mind that the also the position where the vertical acceleration is measured plays a 
key role. For instance, if the vertical acceleration was to be measured at the driver’s 
seat, there is no saying that the ordering of the root mean square accelerations would 
remain the same. 
Another way of the comparing the different models is through their PSDs. This 
comparison can be seen in Figure 5.18. 

 
 
Looking at the PSD, we can obtain additional information. First, there is a peak 
concentrated at a low frequency range (at around 0,4-0,5 Hz), which is classified as 
“ride”, meaning low frequency oscillations, that are responsible for causing motion 
sickness. Then, the next peaks start at around 15 Hz, which is classified as “shake”. Up 
until around 30 Hz, the PSD is higher for higher values of tensioner force. From this 
point of view, the lower tensioner force provides better comfort in the frequency range 
of interest. 
 
 
 
 
 
 
 
 
 
 

Figure 5.18. PSDs for the different tensioner force values. 



5.3.2 Rotational springs stiffness variation. 
 

The road wheels are connected to the hull by means of connecting arms. The 
suspension system is composed of torsional spring and dampers (in ATV these are called 
rotational, instead of torsional) that are mounted on the connection point of the 
connecting arm and hull, as shown in Figure 5.2. 

The parameter that will be tuned in this section is the stiffness of the rotational springs. 
The stiffness values at which the simulation were performed are given below: 

 𝑘𝑠𝑝𝑟𝑖𝑛𝑔,1 = 4,3 ∗ 10
5 𝑁𝑚𝑚

°
   (𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑠𝑝𝑟𝑖𝑛𝑔 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠) 

 𝑘𝑠𝑝𝑟𝑖𝑛𝑔,2 = 4,0 ∗ 10
5 𝑁𝑚𝑚

°
 

 𝑘𝑠𝑝𝑟𝑖𝑛𝑔,3 = 4,6 ∗ 10
5 𝑁𝑚𝑚

°
 

 𝑘𝑠𝑝𝑟𝑖𝑛𝑔,4 = 4,9 ∗ 10
5 𝑁𝑚𝑚

°
 

 𝑘𝑠𝑝𝑟𝑖𝑛𝑔,5 = 5,4 ∗ 10
5 𝑁𝑚𝑚

°
 

The root mean square vertical acceleration of the center of gravity and the PSDs for the 
different stiffness are shown in the following figures. 

 
 
 
 
 
 
 
 
 

Figure 5.19. RMS acceleration for the different stiffness values. 



 

The lowest stiffness shows the smallest RMS acceleration, whereas the highest shows 
the greatest RMS acceleration. However, the ordering of the acceleration does not 
strictly follow that of the stiffness, because as can be seen in Figure 5.19, the model 
with rotational stiffness of 4,3E+05 Nmm/° has higher RMS acceleration than the one 
with rotational stiffness of 4,6E+05 Nmm/°. Nevertheless, their difference is quite small, 
compared to the difference that the other models show between each other. 

As for the PSDs shown in Figure 5.20, the peak at 0,4-0,5 Hz remains as in the previous 
case, while at around 20 Hz there is a very pronounced peak. Up until 10 Hz, the 
increase of stiffness gives a higher PSD. For higher frequencies, the differences between 
the different models cannot be appreciated well, because the ordering changes 
continuously. 

 

5.3.3 Rotational damping coefficient variation. 
 

Similar to the previous two sections, the rotational damping coefficient will be varied 
and the effect of this variation studied through the RMS acceleration and PSD. The 
values of the damping coefficient will be modified as below: 

 𝑐𝑑𝑎𝑚𝑝𝑒𝑟,1 = 90000
𝑁𝑚𝑚𝑠

°
    (𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑣𝑎𝑙𝑢𝑒) 

 𝑐𝑑𝑎𝑚𝑝𝑒𝑟,2 = 80000
𝑁𝑚𝑚𝑠

°
 

 𝑐𝑑𝑎𝑚𝑝𝑒𝑟,3 = 85000
𝑁𝑚𝑚𝑠

°
 

 𝑐𝑑𝑎𝑚𝑝𝑒𝑟,4 = 95000
𝑁𝑚𝑚𝑠

°
 

 𝑐𝑑𝑎𝑚𝑝𝑒𝑟,5 = 100000
𝑁𝑚𝑚𝑠

°
 

 

Figure 5.20. PSD for the different stiffness values. 



The following figures will report the PSD of the vertical acceleration and the vertical root 
mean square acceleration for the different damping coefficient values. 

 

As a general rule, damping modification reduces vertical acceleration if the modified 
damping is closer to the optimal one. This means that both too low or too high damping 
coefficients lead to a worsening of ride comfort. In this case, the increase of the default 
damping is associated with an increase of the RMS acceleration, whereas the decrease 
of damping leads to RMS acceleration decrease. Also looking at the PSD, the same 
ordering of the acceleration is kept, namely the higher the damping, the higher the 

Figure 5.21. . RMS acceleration for the different damping values. 

Figure 5.22. PSDs for the different damping values. 



associated energy of the signal. A possible interpretation for this behavior is that the 
default model is already overdamped, and the damping coefficient should be decreased 
if the goal is to be closer to the optimal damping. In such a way, it could be argued that 
if the goal is finding the optimal damping, one could keep on decreasing the actual 
damping, until the RMS acceleration shows an increase. 
 
 
 

5.3.4 Frequency response of the system. 
 

The final step in this vertical dynamics section is the investigation of the model’s 
response to the road excitation. This is done through the FRF (Frequency Response 
Function), that basically is the ratio between the output, which is the vertical 
acceleration of the center of gravity, and the input, which is the excitation that comes 
from the irregularity of the road profile. We already have obtained the PSD of the road 
profile and of the vertical acceleration of the center of gravity in sections 5.2 and 5.4. 
They are related through the following expression: 

𝑃𝑆𝐷(�̈�𝐺) = 𝐹𝑅𝐹�̈�𝐺
2 ∗ 𝑃𝑆𝐷(ℎ) 

 

 �̈�𝐺: vertical acceleration of the center of mass signal. 

 ℎ: road excitation signal 

 𝑃𝑆𝐷(�̈�𝐺): PSD of the vertical acceleration of the center of gravity. 

 𝑃𝑆𝐷(ℎ): PSD of the road excitation signal. 

 𝐹𝑅𝐹�̈�𝐺: Frequency Response Function of the vertical acceleration of the center of 

gravity. 
 

The PSD of the road and the PSD of the acceleration are contained in different MATLAB 
scripts. Furthermore, the frequency ranges for which this two different PSD are defined 
are different. More specifically, the road PSD (in time domain) is defined in the 
frequency range from 0 to 125 Hz, while the acceleration PSD is defined in the 
frequency range from 0 to 50 Hz. These issues require loading the variables of interest 
from the two original scripts for road profile generation and acceleration analysis, in a 
new script. Additionally, the road PSD has to be evaluated at the frequency sample of 
the vertical acceleration, in order to end up with a road PSD that is evaluated at exactly 
the same frequencies as the acceleration PSD and that covers the same frequency 
range. This is done through the “interp1” function.  

Having done these preliminary steps, calculating the FRF is just a matter of performing 
the square root of the output to input ratio: 

𝐹𝑅𝐹�̈�𝐺 = √
𝑃𝑆𝐷(�̈�𝐺)

𝑃𝑆𝐷(ℎ)
 



The result is plotted in a double-logarithmic scale, as shown in Figure 5.23. 

 

What is striking is the presence of many peaks in the FRF. This suggest that there are 
many additional excitations on the vehicle. In section 5.3, it is mentioned that during the 
maneuver, also a modal analysis is performed, with the goal of obtaining the pitch, 
bounce and chain vibration frequencies. These frequencies are summarized in Table 5.1. 
ATV provides the natural frequencies and the damping ratio, so the damped natural 
frequencies can be easily calculated with the following formula: 

𝑓𝑑 = 𝑓𝑛 ⋅ √1 − 𝜁2 

The frequencies considered in Table 5.1 are those corresponding the pitch, bounce and 
the longitudinal bending of the chain segments 1 and 2, as per their definition 
established in the Chapter 2, where the track chain was modeled. 

 
 
 
 
 
 
 
 
 

Figure 5.23. FRF of the vertical acceleration of the center of gravity. 



 
These frequencies will be reported on the FRF shown in Figure 5.23 as vertical lines, to 
verify any intersection they might have with the FRF. 

Table 5.1. Dynamic model frequency collection. 

Figure 5.24. FRF intersected with the frequencies. 



The lines in the plot above represent: 

 Solid magenta line: pitch frequency. 

 Solid green line: bounce frequency 

 Dashed black line: segment 1 frequencies. 

 Dashed red line: segment 2 frequencies. 

From the figure, it is clear that many of the vertical frequency lines intersect either 
peaks or valleys in the FRF. This is a very significant result, because it shows that the 
global vehicle modes, such as pitch and bounce, as well as the chain dynamics, play a 
significant role in the dynamics of the vehicle, either by amplifying the response where 
there are peaks or attenuating it where there are valleys.  

The current road setup is quite interesting, because it highlights the behavior of the 
vehicle under realistic excitation. However, the randomness of the road profile means 
that it is difficult to understand the contribution that the different excitations have on 
the vehicle’s response, as was seen in Figure 5.24. For this reason, it seems fit to study 
the vehicle while it travels under a sinusoidal road profile, with well-defined 
characteristics. Such road profile is not readily available in ATV or Adams Car, so it must 
be generated in a MATLAB script and then converted in a file format suitable to be read 
from ATV. Since there are many ways to generate such profile, the script will not be 
shown. The sinusoidal road parameters will be reported instead: 

 𝑇𝑜𝑡𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑜𝑎𝑑: 300 𝑚 

 𝑆𝑖𝑛𝑢𝑠𝑜𝑖𝑑𝑎𝑙 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑙𝑒𝑛𝑔𝑡ℎ: 280 𝑚 (10 𝑚 𝑜𝑓 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑛𝑑 𝑓𝑖𝑛𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑟𝑢𝑛) 

 𝑊𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ: 0.1579 𝑚 (𝑡ℎ𝑒 𝑐ℎ𝑜𝑖𝑐𝑒 𝑜𝑓 𝑡ℎ𝑖𝑠 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑤𝑙𝑙 𝑏𝑒 𝑗𝑢𝑠𝑡𝑖𝑓𝑖𝑒𝑑 𝑙𝑎𝑡𝑒𝑟) 

 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒: 0.04 𝑚 

 𝑅𝑜𝑎𝑑 𝑤𝑖𝑑𝑡ℎ: 5 𝑚 

The goal of this part is to provide a combined excitation that is caused by the 
superposition of the track chain bending, sprocket excitation and road excitation.  

To perform this, a simulation where the vehicle is in steady-state is required. In this 
simulation, a modal analysis is performed and a mode shape with low damping is 
chosen. More specifically, the mode shape chosen was global, consisting in vertical 
bending of both segments 1 and 2, with un-damped natural frequency and damping 
ratio: 

 𝑓𝑛 = 9.74 𝐻𝑧 

 𝜁 = 1.03% 

This frequency serves as the sprocket meshing frequency (meshing contact between the 
sprocket wheel and chain) that will be imposed on the following simulation. This 
simulation will be performed on a perfectly flat road, and the excitation we expect to 
see comes from the sprocket wheel. By imposing this frequency on the sprocket wheel, 
the velocity at which the simulation will be performed is the following: 



𝑓𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑛𝑡𝑒𝑒𝑡ℎ,𝑠𝑝𝑟𝑜𝑐𝑘𝑒𝑡 ⋅
𝑉𝑣𝑒ℎ𝑖𝑐𝑙𝑒

2 ⋅ 𝜋 ⋅ 𝑟𝑠𝑝𝑟𝑜𝑐𝑘𝑒𝑡
= 9.74 𝐻𝑧   

⇒  𝑉𝑣𝑒ℎ𝑖𝑐𝑙𝑒 =
𝑓𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 ⋅ 2 ⋅ 𝜋 ⋅ 𝑟𝑠𝑝𝑟𝑜𝑐𝑘𝑒𝑡

𝑛𝑡𝑒𝑒𝑡ℎ,𝑠𝑝𝑟𝑜𝑐𝑘𝑒𝑡
= 1.478 𝑚/𝑠 

However, tracked vehicle, especially when traveling on asphalt, always show some slip, 
so this will not be the actual velocity and actual sprocket frequency that the tank is 
traveling with. Looking at the simulation results from the ATV post-processing window, 
the actual sprocket frequency is equal to: 

𝑛𝑎𝑐𝑡,𝑠𝑝𝑟𝑜𝑐𝑘𝑒𝑡 = 300.21°/𝑠 ⇒  𝑛𝑎𝑐𝑡,𝑠𝑝𝑟𝑜𝑐𝑘𝑒𝑡 = 50.035 𝑟𝑝𝑚  

⇒ 𝑓𝑎𝑐𝑡,𝑠𝑝𝑟𝑜𝑐𝑘𝑒𝑡 = 𝑛𝑡𝑒𝑒𝑡ℎ ⋅
𝑛𝑎𝑐𝑡,𝑠𝑝𝑟𝑜𝑐𝑘𝑒𝑡

60
= 9.173 𝐻𝑧 

Similarly, the actual vehicle velocity is: 
𝑉𝑎𝑐𝑡,𝑣𝑒ℎ𝑖𝑐𝑙𝑒 = 1.448 𝑚/𝑠 

 
As is to be expected, the PSD of the vertical acceleration of the center of gravity in this 
case has a peak at nearly 9.17 Hz, as shown in the figure below. 
 

 
Knowing these values of velocity and frequency, the wavelength of the road profile can 
be calculated as (this is the value shown in the road parameters): 
 

𝜆 =
𝑉𝑎𝑐𝑡,𝑣𝑒ℎ𝑖𝑐𝑙𝑒
𝑓𝑎𝑐𝑡,𝑠𝑝𝑟𝑜𝑐𝑘𝑒𝑡

= 0.1579 𝑚 

 
 
 
A simulation is performed on this sinusoidal profile, with the following parameters: 

 𝐼𝑑𝑙𝑒 𝑤ℎ𝑒𝑒𝑙 𝑡𝑒𝑛𝑠𝑖𝑜𝑛: 15000 𝑁 

9.179 Hz 

Figure 5.25. Vertical acceleration PSD for the flat road simulation (only sprocket excitation). 



 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦: 1.478 𝑚/𝑠 (this value is the sprocket tangential velocity, the actual 

one will be lower due to slip). 

 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛: 20 𝑠 

As in the previous simulations, the results of will be elaborated in MATLAB, where the 
PSD will be obtained. It is reported in the figure below. 

 
 
The PSD of the road profile will be obtained once again in a manner similar as for the 
first road profile. Its temporal frequency will be obtained with a velocity of 1.448 m/s. 

 
 
 

Figure 5.26. Vertical acceleration PSD (sinusoidal road). 

Figure 5.27. Time domain PSD of the sinusoidal road. 



Performing the ratio between the PSD of the acceleration and the PSD of the road 
profile, we can obtain the response of the vehicle. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.28. Response of the vehicle under combined excitation. 



6 Conclusions 
 
 
The results obtained throughout this thesis work can be grouped in two categories.  

 The first consists on the modeling of the upper portion of track chain through 

analytical methods that require only geometrical characteristics of the chain and 

some contact properties, which might be known a priori. These are the tension 

on the chain, the stiffness (either linear or torsional) between the track 

elements, and track material properties. From the user’s point of view, some 

knowledge and understanding of structural mechanics and dynamics of systems 

is required, in order to setup an analytical procedure following the steps 

described in this thesis, while performing minor adjustments to the methodology 

to account for differences between the tracked vehicle models under 

investigation. 

 The second category contains results related to the vertical dynamics of the 

tracked vehicle, which is studied by monitoring the tracked vehicle’s center of 

gravity vertical acceleration, while it travels through a known road profile at 

constant speed. Knowing these, the response of the vehicle to the road 

excitation can be evaluated. Additional contributions to the vehicle’s response, 

arising from the chain excitation, can also be identified, combining the results of 

this part with the track chain modeling studied in previous sections.  

The procedure followed to obtain the first group of results is the following: 

 Performing static simulations, with different tensioner force values, to obtain the 

frequencies of the chain mode shapes. The mode shapes can be of three kinds: 

o Chain bending in the (X-Z) plane. 

o Chain bending in the (X-Y) plane. 

o Chain torsion around the X-axis. 

 Each of these three behaviors will be modeled considering a different element. 

 The chain bending in the (X-Z) plane will be modeled by an equivalent model 

consisting of strings in tension. More specifically, the upper chain portion (for 

the default tank) will be considered as made by two strings, in such a way that 

one string ranges from the sprocket wheel to the support roll and the other from 

the support roll to the idle wheel. The strings being continuous systems, we can 

calculate their natural frequencies by knowing the tension on the string, its 

length and its linear mass density. The frequencies of the harmonics are 

compared with the ones of the simulation. The chain was also studied 

considering it as a discrete system, made on “n” rigid elements, that are 

connected by linear and torsional springs. The mass and stiffness matrices were 

obtained with the Newtonian approach. They were then implemented in 

MATLAB and the EVP was solved. 



 The chain torsion around the X-axis will be modeled by an equivalent shaft in 

torsion. This equivalent shaft will span the entire length of the upper chain. In 

this case, an equivalence between the continuous system (shaft) and the 

discrete system (chain) is established (the equivalence is set considering a Wave 

Motion Demonstrator). The wave equation of the shaft in torsion is adjusted 

considering this equivalence with the discrete system and the expression of 

natural frequency is found. The frequencies for the first five harmonics are 

compared with the ones that the simulation provides. 

 The chain bending in the (X-Y) plane will be modeled by an equivalent Euler-

Bernoulli beam. Similar to the other cases, the expression of the natural 

frequencies will be computed and the results will be compared with the 

simulation. In this case, the results obtained from the Euler-Bernoulli beam 

model were not satisfactory, so another method was proposed. The alternative 

consists in studying the upper portion of the chain as a discrete system 

consisting of “n” rigid bodies, connected to each other by means of linear and 

torsional springs. Each of these rigid bodies has two DOFs. The system was 

studied using the Newtonian approach. The mass and stiffness matrices were 

obtained with the Newtonian approach and implemented in MATLAB, where the 

EVP was solved. 

 
Summary of the results: 

 The bending in the (X-Z) plane modeled with the equivalent strings gives results 

that are close to the ones of the simulation. There is a minor diverging trend at 

the higher harmonics, but in the lower frequency range, the approximation with 

the string is good enough. The discrete model, on the other hand, gives very 

good results not only for the low harmonics. The relative error between the 

discrete model and the simulation is only a few percent. For these reasons, if 

ease of computation is important, the suggested model is the continuous string, 

while if the quality of results in more important, the discrete model is 

recommended.  

 The torsion around the X-axis modeled as a shaft in torsion yields very good 

results, except for the first harmonic. The consecutive harmonics give an 

increasingly good approximation, meaning that the decision of performing the 

equivalence between the continuous and discrete system gives very good 

results. 

 The bending in the (X-Y) plane was initially modeled with a Euler-Bernoulli beam. 

The approximation at low harmonics can be considered good enough, but as the 

harmonics increase, the trend is very diverging. For this reason, this model is not 

recommended. The other possibility is modeling the upper chain as a discrete 

system. This discrete system considers each pad as a rigid body, and consecutive 



pads are linked by means of linear and torsional springs, given that the 

connection is modeled by ATV as having a linear (translational) and torsional 

(rotational) stiffness. Each pad has two degrees of freedom, namely translation 

(Y-axis) and rotation (around the Z-axis). The presence of the support roll and its 

contact with one of the pads means that it has to be modeled as a lumped linear 

spring, but this does not add any additional complexity to the system 

computation-wise. By using a Newtonian approach, the eigenvalue problem is 

solved (implementing the problem in MATLAB) and the natural frequencies of 

the multi-degree of freedom system are obtained. These frequencies are 

compared with the ones of the simulation, and the result is that the 

approximation is very good, especially at higher harmonics. The conclusion of 

this section is that the discrete system model gives the best results and its 

implementation is straight-forward. 

To conclude the results related to the modeling of the upper portion of the track chain, 
it can be said that the approach suggested on this thesis is both easy to implement and 
provides good results, especially at an initial design stage, where experimental work, or 
access to a proper simulation software, such as the Adams Car ATV toolkit used 
throughout this work, is not possible due to the considerable cost of any of them. 
However, there is always room for improvement, as the models proposed can be further 
refined to obtain an even better approximation of the real behavior of the track chain. 

 

The procedure performed to obtain the vertical dynamics results is summarized below: 

 The road profile is generated in MATLAB starting from the 
“ride_quality_3inch_measured”. Its PSD is generated following the steps 
reported in section 5.1. 

 The simulation is set at a constant forward velocity. The results of the simulation 
are converted from “.res” files to “.mat” files, so the post-processing can be 
made in MATLAB. The vertical acceleration of the center of gravity is plotted in 
time and its frequency content studied by generating its PSD. 

 Some system parameters, such as tensioner force, stiffness and damping of the 
suspension are changed one at a time, to see how this variation influences the 
tank behavior in terms of its center of gravity vertical acceleration. 

 Finally, the response of the default tank model is obtained through the 
acceleration PSD and road PSD. Other contributions to the FRF, in addition to the 
road excitation, are identified and plotted in the FRF. 

 
 
 
 
 



Summary of the vertical dynamics results: 

 The road profile that was used to perform the analysis is at first glance random, 
but studying its frequency content through the spatial PSD, a quite remarkable 
similarity between it and the standard road profile E, as defined in ISO8608 [7], is 
found. Moreover, looking at the spatial spectrogram of this road, highlighted a 
region of very low frequency excitation that was high in amplitude. Removing 
the trend of the road signal, kept the spectrogram unchanged, with the 
exception of this low frequency excitation, that was completely removed. This 
lead to the conclusion that this road profile is not exactly linear in its trend, but is 
part of a greater sinusoidal profile, with much higher amplitude and wavelength 
that the road profile, meaning that the road was linearized due to being a 
portion of this sinusoid. These results are quite interesting, because they provide 
more insight on what looks like a random road profile, but that is actually made 
to resemble a standard ISO road and that is generated as a small portion of a 
much bigger wave. 

 An increase in the tensioner force, should theoretically cause an increase in the 
overall stiffness of the system, which would bring an increase of the RMS 
acceleration. However, the simulations show that the tensioner force is not 
necessarily related to the RMS acceleration. Furthermore, the increase in RMS 
acceleration between two consecutive tensioner force values is not constant. For 
instance, the ordering of the RMS acceleration (increasing) as related to the 
tensioner force, goes as follows: 

o 30000 N 
o 45000 N 
o 15000 N 
o 60000 N 
o 90000 N 

   When it comes to the rotatioal springs stiffness variation, increasing the 
stiffness brings an increase of RMS acceleration, with the exception of second 
and third lowest RMS acceleration, where the higher of the two gives a lower 
acceleration. The ordering of the stiffness vaues, corresponding to an icrease in 
RMS acceleration is as follows: 

o 4.0E+05 Nmm/° 
o 4.6E+05 Nmm/° 
o 4.3E+05 Nmm/° 
o 4.9E+05 Nmm/° 
o 5.4E+05 Nmm/° 

 Varying the rotational damping shows a direct link between the damping 
coefficient and the RMS acceleration, in such a way that increasing it results in a 
RMS acceleration increase. This is due to the fact that the system is overdamped. 
Decreasing damping to the point that it goes below the optimal damping, would 
have the opposite effect, namely show an increase in RMS acceleration. 



 FRF of the vertical acceleration of the center of gravity shows many peaks and 
valleys. For this reason, it becomes obvious that the response of the vehicle is 
due to many contributions and not only the road profile irregularity. By 
performing a modal analysis of the dynamic model, it is possible to obtain the 
frequencies of the pitch, bounce and chain mode shapes in longitudinal bending. 
These frequencies, if inserted in the FRF plot as vertical lines, intersect many of 
the peaks and valleys, highlighting the importance the chain dynamics has in the 
behavior of tracked vehicles, as compared to conventional wheeled vehicles. 

To sum up the vertical dynamics study, some models were developed and the sensitivity 
of the default tank model to common modifications was observed. Being able to identify 
the chain contribution to the response of the vehicle is also quite interesting. That said, 
vertical dynamics can be studied in even more detail. Starting from the work presented 
in this thesis, one can go even deeper, by identifying the optimal damping of the model 
and by combining different setup in terms of tensioner force, stiffness and damping to 
achieve the best overall results. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix A 
 
 

A.1 ATV simulation setup for the static frequency analysis. 

The mode shapes of the chain can be obtained by performing a static simulation and 
using the correct command in the simulation file that allows the linearization and modal 
analysis of the system. The simulation is static, because the goal is understanding the 
modes of the chain, without considering any additional contribution. Furthermore, even 
if the simulation is dynamics, ATV works in such a way that the system is linearized for 
the instant of time that the user is interested in. This means that during a dynamic 
simulation, if more than one linearization and modal analyses are performed, the results 
of these analyses will be different. A guide on how to perform a simulation of this kind is 
given below. 

1) Loading the tank model. 

The tank model is loaded by going to the “File” menu, clicking on “Open” and then on 
“Assembly”. On the dialog box that appears, the user can right-click on the “Assembly 
name” field and search the databases for the tank model. In this case, the “tank” 
assembly from the “shared_atv_database” was used. This is the simplest tank model, 
with all the default parameters and no means of controlling its velocity (not required 
since the simulation is static). 

 

2) Wrap the chain around the wheels. 

Once the model is loaded, the chain has to be wrapped around the wheels. This can be 
easily done by clicking on the “ATV” menu, “Tracked Vehicle – Dynamic Track”, 
“Dynamic Track Wrapping”. At this point, the user has the choice between “Half 

Figure A.0.1. Generating the default tank assembly. 



Vehicle” and “Full Vehicle”, which means that the simulation will be performed either 
considering the left half of the vehicle or the entire vehicle respectively. The simulations 
throughout this thesis were performed with “Half Vehicle”, as it is less time-consuming 
and since there are no steering maneuvers, there would be no difference between the 
half and full vehicle models. 

 

 

3) Loading the road profile. 

The road profile is loaded from “ATV”, “Tracked Vehicle – Dynamic Track”, “Hard Road 
Setup”. The “Number of Road Data Files” is set to 1. In “Road Data File” is chosen “flat” 
and in “Soil Property File” is chosen “dry_asphalt”.  

Figure A.0.2. Performing the dynamic track wrapping. 

Figure A.0.3. Loading the road profile. 



 

4) Creating track segment requests. 

This step is not strictly necessary, but it is useful if the user wants to extract additional 
information about the displacements and forces that track segments exchange between 
each other and the ground. To create track segment requests, click on the “ATV” menu, 
“Tracked Vehicle – Dynamic Track Requests”, “Track Segment Request”, “Create”. On 
the dialog box that appears, by right-clicking the “Track Segment” field, the user can 
choose for which track segment the request will be created, or alternatively click on 
“Select All”, to create request for every track segment. Additionally, the kind of request 
required can be specified. The results of these request can be seen after the simulation 
in the “Post-processing window”. 

 

 

5) Setting the solver settings. 

The solver settings can be modified from the “Settings” menu, “Solver”. The parameters 
set on the solver have a big influence on the simulation. It is recommended, due to the 
presence of many contacts, to change the “Integrator” from “GSTIFF” to “HHT”. 
Furthermore, the thread count can be changed by changing the “Category” to 
“Executable”, clicking on “More” and typing the number of threads on the “Thread 
Count” field.  

 

 

Figure A.0.4. Creating track segment requests. 



6) Setting the simulation. 

The simulation can be set from the “Simulate” menu, “Tracked Vehicle Analysis”, “Full 
Vehicle Submit”. On the dialog box that appears, the user can choose the analysis name, 
the simulation duration, the initial velocity of the maneuver and more. For what was 
done on the static analyses throughout this thesis, the simulations were set to a 
duration of 20 seconds with step size of 0.01, and the “Mode of Simulation” was set to 
“files_only”. Another important parameter to tune at this point is the tensioner. This 
can be done through the “Setup” button. On the window that appears, the “Setup Type” 
way changed from “Tensioner Design Length”, which controls the tension by adjusting 
the length of the tensioner and usually gives very high tension values, to “Tensioner 
Force”, which allows typing the value of tension that the tensioner should impose. 

 

After clicking “OK”, the analysis is read and the user has to modify the simulation file by 
including the command that will perform the modal analysis. The file can be usually 
found on “Users” and it has the “.acf” extension. It should be opened with a text editor 
and the line “linear/eigensol” should be inserted before the last row. This modification 
can then be changed the “.batch” file can be opened to continue running the simulation. 
The running duration will depend on many factors. 
 
 

Figure A.0.5. Setting the tracked vehicle simulation. 



 
7) Reading the simulation results. 

The results of the simulation can be read by clicking on the “Review” menu, “Analysis 
Management”, “Read”. Right-click on the “Analysis Name”, and search for the “.res” file 
on the folder where the results were saved. By default, the results are saved under 
“Users”. 

 

The modal analysis results can be read by clicking on “Review”, “Postprocessing 
window”. On the window that appears, click on “View”, “Load Mode Shape Animation”. 
The window that shows the mode shapes appears. On the “Table of Eigenvalue” tab, the 
user can see the list of eigenvalues, ordered according to the imaginary part of the 
eigenvalue. It is recommended to start the mode shape analysis starting from the first 
mode that has a non-zero imaginary part of eigenvalue. 
 
 
 
 

Figure A.0.6. Modifying the simulation file to perform the modal analysis. 

Figure A.0.7. Reading the simulation results. 



 

A.2 ATV simulation setup for the vertical dynamics study of the 
tracked vehicle. 

 

The following guide will show how the simulation for the vertical dynamics study was 
setup. Some of the steps are the same as in the previous section, but there are quite a 
few differences.  

1) Loading the tank model (done exactly as in the previous section). 

2) Adding the velocity controller subsystem. 

These simulations, contrary to the previous ones, are dynamic. This means that 
throughout the maneuver, we have to ensure that the tank maintains the correct speed. 
This can be done through the velocity controller subsystem, that is not part of the 
default tank model, but has to be added by the user. After loading the default tank 
model, the velocity controller can be added by clicking on the “File” menu, “Manage”, 
“Assemblies”, “Add Subsystem”. On the dialog box that appears, right-click on 
“Subsystem(s)” and from the “ATV_shared_subsystems” choose 
“tank_controller_powertrain”.  In this way, a PID controller that ensures the correct 
velocity is added to the model. 

 

 

 

 

 

Figure A.0.8. Adding the velocity controller subsystem. 



3) Wrapping the chain around the wheels (as done in the previous section). 

4) Loading the road profile. 

 

 

In this case, the road is loaded in the same way as in the previous section, but in the 
“Road Data File” the “ride_quality_3inch_measured.rdf” is chosen. This generates the 
rough road profile on which the vehicle will be tested. The “Road Reference Loc” is 
chosen as (-10000, 0, -820), to ensure that the maneuver starts on the correct portion of 
the road, which is before the rough profile starts. 

 

5) Tuning the velocity controller. 

The volocity controller parameters are set through “ATV”, “Actuators”, “Modify Velocity 
Control”. The parameters for the simulations performed are set as in the figure that 
follows. 

Figure A.0.9. Loading the rough road profile. 



 

6) Setting the solver settings (as in the previous section). 

7) Setting the simulation. 

The simulation is set as in the previous case, with the difference being in the “Mode of 
Simulation”, that is kept as “background”. This means that the simulation will start with 
pressing “OK” and no modifications have to be performed on the simulation file. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.0.10. Setting the velocity controller parameters. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.0.11. Setting the simulation settings. 



Appendix B 
 

In this appendix, the passages used to obtain the natural frequency expressions for the 
string in tension, shaft in torsion and Euler-Bernoulli beam models will be detailed. The 
procedures shown are introduced in the Mechanical System Dynamics[5] course of this 
university. As a general rule, the procedure starts with the FBD of the continuous 
element. The equilibrium is performed, with the goal of obtaining the wave equation. 
The boundary conditions are imposed to get the corresponding shape function, from 
which the expression of natural frequency can be obtained. 

 

B.1 Procedure to obtain the natural frequency of the equivalent 
continuous string in tension. 
 
The free body diagram of a portion of string in tension is shown in Figure B.1.  

 
 
The string is linearized by considering small angles, which allows expressing the rotation 
as a function of coordinates x and y. The vertical equilibrium of the system is performed. 
 

↑)  [𝑇(𝑥) +
𝛿𝑇

𝛿𝑥
𝑑𝑥] − 𝑇(𝑥) 

𝛿𝑦

𝛿𝑥
+ 𝑓𝑙(𝑥)𝑑𝑥 − 𝜌𝐴(𝑥)𝑑𝑥

𝛿2𝑦

𝛿𝑡2
= 0   

 
Elaborating this expression and assuming that the higher order terms are neglected, the 
wave equation is obtained. 

𝛿2𝑦

𝛿𝑡2
=
𝑇

𝜌𝐴

𝛿2𝑦

𝛿𝑥2
 

Figure B.0.1. FBD of the string. 



 

 𝑦: vertical (transverse) displacement of the string. 

 𝑥: longitudinal displacement of the string. 

 𝜌 [
𝑘𝑔

𝑚3
]: density of the string material. 

 𝐴 [𝑚2]𝑛: cross-sectional area of the string. 

 
The general solution of the wave equation is given as: 
 

𝑦(𝑥, 𝑡) = 𝜂(𝑡)𝜙(𝑥) 
 𝜂(𝑡): time function. 

 𝜙(𝑥): shape function. 

Substituting this solution in the wave equation expression, we obtain: 
 

1

𝜂(𝑡)

𝛿2𝜂(𝑡)

𝛿𝑡2
= 𝑐2

1

𝜙(𝑥)

𝛿2𝜙(𝑥)

𝛿𝑥2
= −𝜔2 

 

 𝜔 [
𝑟𝑎𝑑

𝑠
]: frequency of the string. 

 𝑐 [
𝑚

𝑠
]: wave propagation speed in the string. 

 
The solution of the equation is separated in time dependent and space dependent 
terms. 
 

�̈� + 𝜔2𝜂 = 0 

𝜙" + (
𝜔

𝑐
)
2

𝜙 = 0 

These ordinary differential equations have the following solutions: 
 

𝜂(𝑡) = 𝐴 ∗ 𝑐𝑜𝑠(𝜔𝑡) + 𝐵 ∗ sin(𝜔𝑡) + 𝐼𝐶 

𝜙(𝑥) = 𝐶 ∗ cos (
𝜔

𝑐
𝑥) + 𝐷 ∗ sin (

𝜔

𝑐
𝑥) + 𝐵𝐶 

 A, B, C, D: non-dimensional coefficients. 

 A, B: depend on the initial conditions. 

 C, D: depend on the boundary conditions. 

 
Applying the boundary conditions (BC) for a clamped-clamped string, requires imposing 
a zero transversal displacement at the string’s extremes: 
 

𝑦(0, 𝑡) = 0 
𝑦(𝐿, 𝑡) = 0 



This means that: 
 

𝜙(0) = 0 
𝜙(𝐿) = 0 

At x = 0: 
 

𝜙(0) = 𝐶 ∗ sin(0) + 𝐷 ∗ cos(0) = 𝐷 = 0 
 
 
 
At x = L: 
 

𝜙(𝐿) = 𝐶 ∗ sin (
𝜔

𝑐
𝐿) = 0 

 

⇒  sin (
𝜔

𝑐
𝐿) = 0  ⇒  (

𝜔

𝑐
𝐿) = 𝜋 ∗ 𝑖  , 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2,3, … 

 

⇒  𝜔𝑖 =
𝜋 ∗ 𝑖

𝐿
√
𝑇

𝜌𝐴
 

 

⇒  𝑓𝑖 =
𝑖

2𝐿
√
𝑇

𝜌𝐴
 

 
 
 
 

B.2 Procedure to obtain the natural frequency of the equivalent 
shaft in torsion model. 
 

To obtain the expression of natural frequency of the torsion model, an equivalence 
between the continuous system and the discrete system should be made. This will 
require obtaining the wave equation for the shaft in torsion, and then substituting 
parameters that appear on this wave equation with ones that describe the discrete 
system. For this reason, this approach can be considered as in-between the continuous 
and discrete models. 



The FBD of a portion of the shaft in torsional loading is shown in Figure B.2.  

 
The equilibrium of the system is performed by considering a rotation along the 
centerline of the shaft. 
 

↻)  (𝑀 +
𝛿𝑀

𝛿𝑥
𝑑𝑥) − 𝑀 − 𝐼𝑙𝑑𝑥

𝛿2𝜃

𝛿𝑡2
= 0  

 
Elaborating this expression, the wave equation for the shaft in torsion is obtained. 
 

𝛿2𝜃

𝛿𝑡2
=
𝐺𝐽

𝐼𝑙

𝛿2𝜃

𝛿𝑥2
 

 

 𝜃: rotation coordinate of the shaft. 

 𝑥: longitudinal coordinate of the shaft. 

 𝐺 [
𝑁

𝑚2]: shear modulus of the shaft material. 

 𝐽 [𝑚4]: polar moment of inertia of the shaft. 

 𝐼𝑙  [𝑘𝑔 ∗ 𝑚]: mass moment of inertia of the shaft per unit length. 

 
The general solution of the wave equation is given as: 
 

𝜃(𝑥, 𝑡) = 𝜂(𝑡)𝜙(𝑥) 
 𝜂(𝑡): time function. 

 𝜙(𝑥): shape function. 

Figure B.2. FBD of the shaft in torsion. 



Substituting this solution in the wave equation expression, we obtain: 
 

1

𝜂(𝑡)

𝛿2𝜂(𝑡)

𝛿𝑡2
= 𝑐2

1

𝜙(𝑥)

𝛿2𝜙(𝑥)

𝛿𝑥2
= −𝜔2 

 

 𝜔 [
𝑟𝑎𝑑

𝑠
]: frequency of the string. 

 𝑐 [
𝑚

𝑠
]: wave propagation speed in the string. 

 
The solution of the equation is separated in time dependent and space dependent 
terms. 
 

�̈� + 𝜔2𝜂 = 0 

𝜙" + (
𝜔

𝑐
)
2

𝜙 = 0 

These ODEs have the following solutions: 
 

𝜂(𝑡) = 𝐴 ∗ 𝑐𝑜𝑠(𝜔𝑡) + 𝐵 ∗ sin(𝜔𝑡) + 𝐼𝐶 

𝜙(𝑥) = 𝐶 ∗ cos (
𝜔

𝑐
𝑥) + 𝐷 ∗ sin (

𝜔

𝑐
𝑥) + 𝐵𝐶 

 A, B, C, D: non-dimensional coefficients. 

 A, B: depend on the initial conditions. 

 C, D: depend on the boundary conditions. 

 

Applying the boundary conditions (BC) for a clamped-clamped shaft, requires imposing 
zero rotation at its extremes: 

 

𝜃(0, 𝑡) = 0 

𝜃(𝐿, 𝑡) = 0 

This means that: 

 

𝜙(0) = 0 

𝜙(𝐿) = 0 

 

At ϴ = 0: 

𝜙(0) = 𝐶 ∗ sin(0) + 𝐷 ∗ cos(0) = 𝐷 = 0 

⇒  𝜙(𝑥) = 𝐶 ∗ sin (
𝜔

𝑐
𝑥) 



 

 

At ϴ = L: 

𝜙(𝐿) = 𝐶 ∗ sin (
𝜔

𝑐
𝑥) = 0 

⇒  sin (
𝜔

𝑐
𝐿) = 0  ⇒  (

𝜔

𝑐
𝐿) = 𝜋 ∗ 𝑖  , 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2,3, … 

⇒  𝜔𝑖 =
𝜋 ∗ 𝑖

𝐿
√
𝐺𝐽

𝐼𝑙
 

 

⇒  𝑓𝑖 =
𝑖

2𝐿
√
𝐺𝐽

𝐼𝑙
 

These was the procedure to obtain the natural frequency expression for the shaft in 
torsion. As can be seen, the frequency depends on material and cross-section 
properties, which in the case of the track chain cannot be easily defined, due to the 
irregularity of the chain’s cross-section. At this point, it is useful to define a link between 
the parameters of the continuous system and an equivalent discrete system. The 
procedure to do this is taken from a practical lecture held in the course of Mechanical 
System Dynamics[ref]. To pass from the MDOF system to the continuous system, the 
following step is performed: 

𝑐2 =
𝐺𝐽

𝐼𝑙
 [
𝑃𝑎 ∗ 𝑚4

𝑘𝑔 ∗ 𝑚2

𝑚

] = 𝐿2
𝑘𝑡
𝐼
 [𝑚2

𝑁𝑚
𝑟𝑎𝑑

𝑘𝑔 ∗ 𝑚2
] 

In this way, the expression of the wave speed is expressed through parameters that 
describe a discrete system, and that in our case, can be obtained directly from ATV. For 
this reason, the wave equation of the equivalent clamped shaft in torsion becomes: 

𝑓𝑖 =
𝑖

2𝐿
√
𝑘𝑡
𝑛𝐼

 

 

 

 

 



B.3 Procedure to obtain the natural frequency expression of the 
equivalent Euler-Bernoulli beam model. 

 

The FBD of a portion of a Euler-Bernoulli beam is shown in Figure B.3. 

 

Performing the equilibrium in the vertical direction and around the center of mass of 
the beam portion: 

↓)  (𝑇 +
𝛿𝑇

𝛿𝑥
𝑑𝑥) − 𝑇 − 𝑓𝑙(𝑥, 𝑡)𝑑𝑥 + 𝜌𝐴𝑑𝑥

𝛿2𝑦

𝛿𝑡2
= 0   

↻)  (𝑀 +
𝛿𝑀

𝛿𝑥
𝑑𝑥) − 𝑀 − (𝑇 +

𝛿𝑇

𝛿𝑥
𝑑𝑥) ∗

𝑑𝑥

2
− 𝑇 ∗

𝑑𝑥

2
= 0  

 

Elaborating these expression, it is possible to obtain the wave equation for the Euler-
Bernoulli beam: 

𝛿2𝑦

𝛿𝑡2
= −

𝐸𝐽

𝜌𝐴

𝛿4𝑦

𝛿𝑥4
 

 𝑦: vertical coordinate of the beam displacement. 

 𝑥: longitudinal coordinate of the beam displacement. 

 𝐸 [
𝑁

𝑚2] 𝑛: Young’s modulus of the beam material. 

 𝐽 [𝑚4]: second order area moment of inertia of the beam’s cross-section. 

Figure B.3. FBD of the Euler-Bernoulli beam. 



 𝜌 [
𝑘𝑔

𝑚3]: beam density. 

 𝐴 [𝑚2]: beam cross-section area. 

 

As can be seen, the shape term of the wave equation for the Euler-Bernoulli beam is a 
fourth order PDE, so the shape function will have a slightly different form from the 
previous cases. 

𝜙(𝑥) = 𝐴 ∗ cos(𝛽𝑥) + 𝐵 ∗ sin(𝛽𝑥) + 𝐶 ∗ cosh(𝛽𝑥) + 𝐷 ∗ sinh(𝛽𝑥) 

 A, B, C, D: constants that depend on BC. 

 𝛽4 =
𝜌𝐴

𝐸𝐽
𝜔4 

 

Imposing the BC for a pinned-pinned beam, implies zero displacements and zero 
bending moments at the extremes of the beam. 

Zero displacement: 

𝑦(0, 𝑡) = 0    ⇒     𝜙(0) = 0 
𝑦(𝐿, 𝑡) = 0    ⇒     𝜙(𝐿) = 0 

This means that: 
 

𝑀(0) = 𝐸𝐽 [
𝛿2𝑦

𝛿𝑥2
]
𝑥=0

= 0    ⇒     𝜙"(0) = 0 

𝜙(𝐿) = 𝐸𝐽 [
𝛿2𝑦

𝛿𝑥2
]
𝑥=𝐿

= 0    ⇒     𝜙"(𝐿) = 0 

 

⟹     𝜙(𝑥) = 𝐵 ∗ sin(𝛽𝑥) + 𝐷 ∗ sinh(𝛽𝑥) 

 

The characteristic equation of the beam is: 

2 ∗ 𝛽 ∗ sin(𝛽𝐿) ∗ sinh[𝛽𝐿] = 0 

The solution of this characteristic equation can be analytically computed, since this 
equation is very easy. 

sin(𝛽𝐿) = 0 ⇒ 𝛽𝐿 = 𝜋 ∗ 𝑖 ⇒ 𝜔2 = 𝛽4
𝐸𝐽

𝜌𝐴
 

⇒ 𝜔𝑖 =
𝜋2 ∗ 𝑖

𝐿2
√
𝐸𝐽

𝜌𝐴
 

 



⇒ 𝑓𝑖 =
𝜋 ∗ 𝑖

2𝐿2
√
𝐸𝐽

𝜌𝐴
 

For what concerns the discrete models, the procedure to develop them was already 
detailed in their respective sections. 
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