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Abstract 

 
To address the growing challenges of efficient energy management, capacity planning and conflicting 
stakeholder objectives in hydrogen-based Integrated Energy Systems (IES), this thesis proposes a bi-level 
optimization framework applied to a multi-energy system integrating electricity, heat, and hydrogen. The 
model introduces an integrated energy bundle pricing strategy that reflects the interconversion of different 
energy sources. 

The upper-level (leader) represents the system supplier, whose objective is to maximize overall profit by 
defining energy prices and offering bundle-based energy services to users. The lower level (follower) 
represents the consumers, who aim to minimize their energy costs by adapting their demand strategy based 
on offered prices and bundles. 

We formulate the problem as a bi-level program and evaluate its validity and efficiency through 
computational experiments based on a real case study. The proposed model optimizes the planning and 
scheduling of each energy device within the integrated energy system over a defined planning timing. The 
optimization results show that the proposed model and method not only protects the interests of the operator 
and users but also demonstrates that incorporating a hydrogen fuel cell (HFC) and hydrogen storage tank 
significantly enhances the system’s ability to meet user demand, ensures a positive profit for the leader, and 

contributes to substantial carbon emission reduction. This analysis highlights the value of hydrogen-focused 
solutions that support the transition toward a cleaner and more sustainable energy future.  
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Introduction 

Integrated Energy Systems (IES) are becoming increasingly important in addressing the global energy 
challenge. As the world shifts away from fossil fuels, there is a growing need to adopt more sustainable and 
efficient energy solutions. Among these, hydrogen stands out as a clean and flexible energy carrier with 
strong potential in both industrial and domestic applications. IES plays a crucial role in combining various 
energy sources—such as electricity, heat, and hydrogen—while enabling the coordinated use of generation, 
conversion, and storage technologies[3]. 

The integration of these components requires advanced optimisation techniques to manage energy flows 
effectively, reduce costs, and ensure reliable supply. This is particularly relevant in systems where different 
stakeholders have conflicting objectives. In such cases, bi-level optimisation models are used to represent 
the interaction between decision-makers: the upper level (leader), usually the system operator or energy 
provider, aims to maximise profit, while the lower level (follower), representing consumers, aims to 
minimize energy costs[4].This leader–follower dynamic captures the real-world negotiation between 
supply and demand. One of the challenges in planning and managing IES is the complexity of decision-
making over time. Long-term capacity planning must consider daily and seasonal variations in energy 
demand, resource availability, and market prices[4]. To address this, we apply a mathematical modelling 
approach that transforms real-time data into actionable insights. The model allows us to simulate different 
scenarios, test pricing strategies, and evaluate energy bundle offerings—combinations of electricity, heat, 
and hydrogen services—to improve cost efficiency and sustainability. The model is implemented in 
AIMMS and structured as a Mixed Integer Programming (MIP) problem to capture both continuous and 
binary decisions. By reformulating the bi-level problem into a single-level one using helper variable and 
logical constraints, we enable the model to be solved efficiently while retaining its strategic structure[1]. 

This thesis is structured in six chapters. It starts with the theories and ends with the conclusion; each chapter 
will be discussed in the following. The first chapter provides detailed information about the Integrated 
Energy Systems (IES), their optimization principles, and their framework and how each source integrated 
in system and their processing. The chapter ends with an explanation of the Bi-Level Optimization 
Framework for Integrated Energy Systems. The second chapter presents the proposed mathematical model 
used in this study. It begins by stating the modeling objectives, followed by data acquisition and the detailed 
formulation of the IES structure and constraints. The chapter includes the bi-level optimization model, 
defining both the leader’s and follower’s objectives. Various cost components are also introduced. 
Additionally, the chapter addresses energy demand balancing, satisfaction load modeling, and the bundle 
strategy, providing a comprehensive foundation for the optimization framework. The third chapter provides 
information about Optimization modeling in AIMMS, and the framework describes the implementation of 
the model in AIMMS, detailing sets, parameters, variables, and the overall optimization framework. The 
fourth chapter presents a literature review, identifying key research gaps and supporting the development 
of the proposed model. The fifth Chapter presents the results and analysis, comparing bundle strategies, 
evaluating convergence (UB/LB), and highlighting the role of hydrogen technologies in achieving profit, 
demand satisfaction, and emissions reduction. The last Chapter concludes with key findings, model 
implications, limitations, and future research directions. 
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1. Principle of Optimisation in Energy Integrated system  

As energy stands at the forefront of global challenges, drawing significant attention. It is crucial to address 
this issue this time through the lens of Integrated Energy Systems (IES), with a special emphasis on green 
hydrogen. This research primarily focuses on capacity planning and aims to implement pricing policies 
within IES to enhance efficiency and cost savings. As hydrogen emerges as a flexible and eco-friendly 
energy carrier, attention has shifted toward managing IES based on hydrogen sources [7]. We apply a 
mathematical optimization approach to balance demand response and price strategies. Specifically, we 
develop and critically evaluate a bi-level optimization model that seeks to minimize consumer costs while 
maximizing supplier profits through optimal infrastructure capacity planning. Additionally, this study 
provides a structured analysis of each energy source within the IES framework. Furthermore, we assess the 
economic feasibility of bundled energy services, examining how strategic combinations of electricity, heat, 
and hydrogen can enhance cost efficiency, resource utilization, and market competitiveness. By integrating 
pricing strategies, infrastructure investment planning, and consumer behavior modeling, this research aims 
to provide a comprehensive solution for the evolving energy market, ensuring both sustainability and 
economic viability for future Integrated Energy Systems[2]. 

1.1  Introduction to Energy Integrated system  

Integration Energy System (IES), in which it is described as "the coordinated planning and operation of the 
energy system 'as a whole' is concerned with interlinking different energy systems—like electricity, heating, 
and cooling—to work together in a synchronized way. It is concerned with interlinking energy sources (like 
PV panels, wind farms, or CHP) and energy demands (like houses, cars) through intelligent and efficient 
infrastructure[5].This is able to supply energy in an efficient, reliable, and environmentally friendly 
manner[3]. Renewable energy technologies have also been extensively documented for their green and low-
carbon nature. However, it is also difficult for the traditional energy system to sustain large-scale 
consumption. Therefore, there is an urgent need to study how to maximise integrated energy structure and 
meet the demand[6]. During this period, innovation in renewable energy technologies is a global concern 
and led to the occurrence and emergence of different generations of novel technologies and methodologies 
to be a solution for this important problem. Different mechanisms of energy generation have different 
energy needs, particularly for energy system integration. IES is succeeded by the strategy that associates 
different modes of production with different energy requirements.  

1.1.1  Framework 

This interconnected system is aimed at improving energy management and to ensure that the energy is 
supplied with an ideal usability and to help to reduce resource redundancy. As can be seen from Figure 1, 
an Integrated Energy System (IES) consists of four types of energy needs: electricity, heat (cooling and 
heating), and hydrogen (fuel cell electric vehicles). The system is divided into several main components: 
energy generation, energy storage and conversion, and energy demand loads. Power generation comprises 
wind farms and solar panels generating electricity directly. A natural gas-fuelled cogenerator (CHP) is used 
to generate electricity indirectly. Unused energy is accumulated in energy storage. Batteries accumulate 
excess electrical energy, and excess heat is stored by thermal storage. Electricity is converted to heat by an 
electric boiler and a gas boiler through the combustion of natural gas. The gas boiler may also be operated 
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using a mixture of hydrogen and natural gas as well, whose hydrogen ratio is constrained by operational 
conditions. A hydrogen electrolyser supplies hydrogen by means of electricity. In refrigeration, absorption 
chillers are put into the system, and the final energy provider is HFC, which makes use of hydrogen and 
produces heating and electricity. Demand for electricity, heat, and hydrogen is the final use of electricity, 
heat, and hydrogen by utilities[4]. 

 

 

 

 

             

 

 

 

Figure 1: Integrated Energy System Framework 



8 
 

1.2  Bi-Level Optimisation Framework for Integrated Energy Systems 

IES sources are structured in a bi-level mathematical system which means for each source we define the 
constraints of processing and producing energy. The main purpose of optimising the Integrated Energy 
System (IES) is the goals of both decision-makers involved in the system. The upper level—typically 
representing the energy provider or system operator—aims to maximise overall profit by adjusting prices 
and managing resource allocation. On the other hand, the lower level—representing the users or 
consumers—focuses on minimising energy costs by selecting the most cost-effective bundles and adjusting 
their consumption strategies accordingly[2]. To effectively manage long-term capacity planning and daily 
operational decisions, IES stakeholders adopt extended planning, in terms of days and hours to better reflect 
the variation of sources, demand load, and energy price. In particular, the planning is expressed by sets of 
(= {1,⋯,𝑑,⋯,𝐷}) and ( = {1,⋯,𝑑,⋯,𝐷})and ( = {1,⋯,𝑡,⋯,𝑇})representing the  planning days and time 
periods over each day along the long-term planning schedule[6]. In what follows, we model the operation 
of different energy production, and storage devices, followed by the description of the objective function. 
The upper level (leader) is the one who takes primary decisions; the lower level (follower) will respond to 
the problem by considering its own object (surely based on the decisions of the leader). This approach 
allows us to have the model where decisions are not taken from the air and practical outcome, but even by 
having in several iterations, we will have the great flexibility to check the leader and follower trade-off for 
enhancing the value of the solution. They are influenced by all the constraints as well. Its structure is quite 
fitting for instances that require coordinated balances between two decision-making entities for optimal 
outcomes. The combination of IES and a mathematical approach enables us to transform time-domain data 
into actionable insights, apply for more precise predictions of key cost indicators and ultimately enhance 
the efficiency and reliability of the energy system[2]. 

 

2. Proposed Mathematical Model  

2.1 Objective 

 In this section, we provide an outline of the approach suggested in this thesis. As mentioned above, we 
leverage a bi-level mathematical optimization approach for deeping diving into details of optimizing the 
Integrated Energy Systems (IES). The model codified to ensure a reasonable result with employing real-
world data such that there is a better evaluation of energy resource interactions within IES. The method is 
developed to use diverse energy sources, as explained in previous sections, such that the demand is met 
while holding specified system constraints and variables in different scenarios. System elements are 
modeled with a lot of care to its role in the larger energy infrastructure. This section describes the entire 
optimization process, such as the bundle strategy employed in this thesis. Our method is designed to take 
strategic steps in electricity, heat, and hydrogen energy to improve cost effectiveness as well as utilization 
of resources[8]. The optimization model introduced in the previous section has been solved using AIMMS, 
a mathematical programming software. In the final part of this section, a detailed explanation is provided 
on how AIMMS plays a critical role in structuring the decision-making problem by incorporating all 
parameters and efficiently searching for optimal solutions. In the following subsections, we provide a 
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detailed explanation of each energy source within the system, discussing their role, drawbacks, and coupling 
within the IES framework. 

2.2   Data Acquisition 

In this section, we explain how data required in our optimisation model were collected and classified, and 
we mention logic needed behind forming the foundation of the optimisation model data set. Any sustainable 
energy system is only as good as the strong and sensible data it is based on. Since the aim of the current 
research is to provide a realist and feasible solution, data used must reflect the consumption patterns in real 
systems. The dataset includes household-level consumption data for electricity, heat, and hydrogen[12]. To 
ensure standardization and comparability, all energy demand values were converted to kilowatt-hours 
(kWh). This was particularly important for heat consumption, which is often expressed in cubic meters 
(m³). A suitable conversion factor was applied to align it with electricity and hydrogen metrics. The data 
was pre-processed, where average hourly consumption values were computed across different months. 
Users were then classified into three typical household types—couples, small families, and larger 
families—based on statistical distributions. These profiles allowed us to model demand dynamically and 
include daily and seasonal variability. Additionally, a formula was implemented to simulate different 
consumption ranges (e.g., baseline, reduced usage, or increased usage), particularly to reflect behavioral 
responses to pricing strategies, environmental awareness, or external shocks like supply crises. This was 
especially relevant when analysing the European user base, where significant changes in electricity and gas 
prices have been recorded over the years. To this analysis, below, we incorporated multiple visualizations—

such as time-series graphs of average electricity and gas prices across different sectors and continents which 
only we take into account residential in our model, and a pie chart showing the global distribution of 
electricity generation sources. These graphs helped validate trends in energy prices and consumption and 
highlighted the shift towards cleaner and more decentralized energy systems. The resulting dataset was 
therefore not only cleaned and unified but also enhanced to simulate realistic usage scenarios. This created 
a strong foundation for testing different optimisation strategies and evaluating the potential impact of 
pricing models, energy bundles, and consumption patterns within an Integrated Energy System (IES). 

 

 

 

 

 

 

                 

                             

Figure 2 :Percentage of change in electricity price by continent 
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Figure 3: Average Electricity prices in Europe 

Figure 4: Average Gas prices in Europe 
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2.3  IES Mathematical Modeling (structure and constraints) 

As we depicted an integrated energy system (IES), as we explained above. By defining our energy 
resources, we establish the objective function, decision variables, and constraints for each resource and how 
they integrate in this network from a mathematical point of view. To illustrate the idea behind energy system 
integration: 

 

2.3.1 Photovoltaic System  

Solar panels are systems that convert the sunlight into electric power. The dedicated area to the solar panels, 
Φ𝑃𝑉

  (m2), is bounded by the parameter 𝐴𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒, which is the maximum available area. The electric 
power output of the PV system on day d at time instant,𝑃𝑚𝑡

𝐸𝑙𝑒𝑐𝑡,𝑃𝑉 (kW), is[4][2] : 

 

 

 

Where: 

● 𝐼𝑚𝑡
  is the solar radiation intensity. 

● Φ𝑃𝑉 is the panel area. 

● 𝑃𝑀𝑎𝑥
𝐸𝑙𝑒𝑐𝑡,𝑃𝑉 is the system’s maximum output. 

● η𝑃𝑉 is efficiency of PV panel 
 

Figure 5 : World electricity generation from various sources, 2022 
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Additionally, all available solar radiation is about 1𝑘𝑊 ∕𝑚2, and since one of the significant constraints of 
this technology is the low energy density, which can only reach near 20%, we decide to set the efficiency 
of the photovoltaic module equal to 15% that is in line with an average monocrystalline module. 

 

2.3.2 Combined Heat and Power Plant  

The combined heat and power (CHP) convert the fuel into electric power. Thanks to the H2-NG technology, 
the fuel consumption in the CHP can be a mix of hydrogen and natural gas. This significantly reduces the 
methane consumption and the carbon footprint. The amount of hydrogen in the blended gas should be within 
a specific range and, in most cases, below 20% of the total volume[4].  

The following equation describes the relation between fuel consumption and electric power output in the 
CHP: 

 
 

Where: 

● 𝑃𝑚𝑡
𝐻2,𝐶𝐻𝑃, 𝑃𝑚𝑡

𝐺,𝐶𝐻𝑃 are hydrogen and natural gas consumption. 

● 𝑃𝑚𝑡
𝐸𝑙𝑒𝑐𝑡,𝐶𝐻𝑃 is the electrical power output. 

● 𝑈𝑚𝑡
 𝐶𝐻𝑃 is the binary operation state (1 = On, 0 = Off) 

● 𝜅𝐻2
 is the hydrogen blending limit. 

 

In the following, we mention the other important equations that need to be taken into consideration for 
having a more realistic optimisation solution: the output power of the CHP system should be the maximum 
capacity. 
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In the last equation we have the thermal output of the CHP, where 𝜂𝐶𝐻𝑃 and 𝜂𝐿𝑂𝑆𝑆, respectively, represent 
the power generation efficiency and heat dissipation loss coefficient. 
 

2.3.3 Hydrogen Electrolyzer 

The electrolyzer converts excess electricity into hydrogen using the following model: 

 

 

Where: 

● 𝑀𝑚𝑡
𝐻2,𝐸𝐿 is the hydrogen output. 

● 𝑃𝑚𝑡
𝐸𝑙𝑒𝑐𝑡,𝐸𝐿 is the power input. 

● 𝐿𝐻𝑉 
𝐻2 is the lower heating value of hydrogen. 

● Lower heating value (LHV) is set to 36.4 kW/kg. 

● 𝜂 
𝐸𝑙𝑒𝑐,𝐸𝐿is the power generation efficiency of the electrolyser. 

The first equation shows the relationship between hydrogen production and consumption, where 𝑃𝑚𝑡
𝐻2,𝐸𝐿 

represents the available hydrogen fuel in the system. Clearly, the second equation shows the maximum 
output of the electrolyser. 

 

 
 

 

2.3.4 Gas Boiler (GB) and Electric Boiler (EB) 

Gas and electric boilers generate heat using either gas or electricity. 
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where variables: 

●  𝑃𝑚𝑡
𝐺,𝐺𝐵 and 𝑃𝑚𝑡

𝐻2,𝐺𝐵are the natural gas and hydrogen consumption in GB (in kW) 

●  𝑃𝑚𝑡
𝐻𝑒𝑎𝑡,𝐺𝐵 (in kW) is the amount of thermal power that can be generated by GB on day 

d at time instant t, 

●  𝑃𝑐𝑎𝑝
𝐻𝑒𝑎𝑡,𝐺𝐵 is the installation capacity of the GB. 

●  𝜂𝐺𝐵 describes GB efficiency. 

 

Similar to the CHP Plant, the volume of hydrogen blended with natural gas should be below a maximum 
value 𝜅𝐻2. 
  

 

2.3.5  Electric Boiler  

The Electric Boiler (EB) is another thermal device that takes electric power as input and produces 
heating power. 

 

 

Where: 

 

● 𝑃𝑚𝑡
𝐻𝑒𝑎𝑡,𝐸𝐵 and 𝑃𝑚𝑡

𝐸𝑙𝑒𝑐𝑡,𝐸𝐵 are the thermal output and electrical power input of the EB.  

●  𝜂𝐺𝐵 denotes the EB efficiency 

●  𝑃𝑚𝑡
𝑒𝑙𝑒𝑐𝑡,𝐸𝐵 in represents the max power capacity of 𝑃𝑐𝑎𝑝

𝑒𝑙𝑒𝑐𝑡,𝐸𝐵. 
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2.3.6  Hydrogen Fuel Cell 

In this system, part of the hydrogen produced by EL is injected into the hydrogen fuel cell (HFC) to produce 
electric and thermal power. 

 𝑃𝑚𝑡
𝐸𝑙𝑒𝑐𝑡,𝐻𝐹𝐶 = 𝜂 

𝐸𝑙𝑒𝑐𝑡,𝐻𝐹𝐶*𝑃𝑚𝑡
𝐻2,𝐻𝐹𝐶 

 𝑃𝑚𝑡
𝐻𝑒𝑎𝑡,𝐻𝐹𝐶 =  𝜂 

𝐻𝑒𝑎𝑡,𝐻𝐹𝐶 *𝑃𝑚𝑡
𝐻2,𝐻𝐹𝐶 

 𝑃𝑚𝑡
𝐻2,𝐻𝐹𝐶< = 𝑃𝑐𝑎𝑝

𝐺,𝐻𝐹𝐶 

 

Where: 

●  
 𝑃𝑚𝑡

𝐻2,𝐻𝐹𝐶 and 𝑃𝑚𝑡
𝐸𝑙𝑒𝑐𝑡,𝐻𝐹𝐶 (𝑃𝑚𝑡

𝐻𝑒𝑎𝑡,𝐻𝐹𝐶) are the hydrogen input and power (thermal) 
output of HFC. 

●   𝜂 
𝐸𝑙𝑒𝑐𝑡,𝐻𝐹𝐶 and 𝜂 

𝐻𝑒𝑎𝑡,𝐻𝐹𝐶 represent the electricity and thermal generation efficiency of 
the HFC 

● 𝑃𝑐𝑎𝑝
𝐺,𝐻𝐹𝐶 displays the HFC installed capacity. 

 

 

2.3.7 Hydrogen Storage Tank 

The hydrogen produced by EL can be stored by the HST to be used by other technologies that need 
hydrogen as input (GB, CHP, and HFC) or to satisfy the hydrogen load of the Fuel Cell Electric Vehicles: 
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where: 

●  
 𝑆𝑜𝑐𝑐𝑎𝑝

𝐻2,𝐻𝑆𝑇 is the installed capacity of the HST.  

●  𝑆𝑜𝑐𝑚𝑡
𝐻2,𝐻𝑆𝑇 is the state of charge.  

●  𝑃𝑚𝑡
𝐻2,𝐶ℎ,𝐻𝑆𝑇 and 𝑃𝑚𝑡

𝐻2,𝐷𝑖𝑠,𝐻𝑆𝑇 show the hydrogen charging and discharging in the 
HFC.  

● The input parameter 𝑆𝑜𝑐𝐼𝑛𝑖𝑡𝑖𝑎𝑙
𝐻2,𝐻𝑆𝑇is the initial state of charge in HST. 

 

2.3.8 Battery Storage System (BSS) 

In the conversion part of the system, there is a battery where electricity can be stored when total power 
generation exceeds total load. This amount can be used during peak demand when power generation is 
insufficient. This is crucial due to the intermittency of renewable sources. 

To model the operation of the Battery Storage System (BSS), we introduce non-negative variables 
𝑆𝑜𝑐𝑐𝑎𝑝

𝐵𝑆𝑆, indicating the state of charge, power charging, power discharging, and installation capacity of 
the BSS on day d at time instant t: 

 

 

 

 

 

 

 

where constraints the connection between the state of charge at two consecutive time instants, considering 
charging and discharging power. Parameters 𝛿  𝐵𝑆𝑆 and 𝜂 

𝐵𝑆𝑆,𝐶ℎ (𝜂 
𝐵𝑆𝑆,𝐷𝑖𝑠) represent the battery self-

discharge rate and charging/discharging efficiency, respectively. ensures that the state of charge does not 
exceed 𝑆𝑜𝑐𝑐𝑎𝑝

𝐵𝑆𝑆. The important point about this technology is that BSS does not allow simultaneous 
charging and discharging, which we manage by using a binary variable  𝜒𝑚𝑡

𝐵𝑆𝑆. 
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2.4  Bi level Mathematical Modelling 

2.4.1 Objective Function of Leader and Costs of the Model 

As we mentioned before, objective functions are defined for both the leader and the follower, along with 
the necessary constraints required to achieve an optimal solution. The leader’s aim is to maximize profit 
(1), as represented where total revenue is discounted based on four main costs: 

● Investment Expenses  

● Energy Exchange Costs  

● Environmental Costs  

● Operating and Maintenance Costs  

 

2.4.2 Objective Function of Leader  

max∶ 𝑍𝐿  = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 − (𝐶𝐼𝑁𝑉+𝐶𝐸𝑃𝑆+𝐶𝐶𝑂2 +𝐶𝑂𝑀) 

Revenue = ∑  𝑈
𝑢=1 ∑  𝑀

𝑀=1 ∑  𝑇
𝑡=1  ∑  𝐾

𝑘=1  (𝑟𝑚𝑡
𝐸𝑙𝑒𝑐𝑡,𝐵 * 𝐿𝑢 𝑚𝑡

𝐸𝑙𝑒𝑐𝑡  * 𝑌𝑢 𝑏 + 𝑟𝑚𝑡
𝐻𝑒𝑎𝑡,𝐵 * 𝐿𝑢 𝑚𝑡

𝐻𝑒𝑎𝑡 * 𝑌𝑢 𝑏 +  𝑟𝑚𝑡
𝐻2,𝐵*    

𝐿𝑢 𝑚𝑡
𝐻2 * 𝑌𝑢 𝑏) 

 

Where: 

● 𝐿𝑢 𝑚𝑡
𝐸𝑙𝑒𝑐𝑡: Electricity demand load of user u 

● 𝐿𝑢 𝑚𝑡
𝐻𝑒𝑎𝑡: Thermal demand load of user u 

● 𝐿𝑢 𝑚𝑡
𝐻2 : Hydrogen demand load of user u 

● 𝑟𝑚𝑡
𝐸𝑙𝑒𝑐𝑡,𝐵: Electricity price set for bundle b on day m at time t 

● 𝑟𝑚𝑡
𝐻𝑒𝑎𝑡,𝐵: Heat price set for bundle b on day m at time t 

● 𝑟𝑚𝑡
𝐻2,𝐵: Hydrogen price set for bundle b on day m at time t 

● 𝑌𝑢 𝑏: Binary parameter ,1=User u, buy this energy e in this bundle b with this price, 0 = 
Buy no energy 
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2.4.3 Investment Costs  

Investment costs are the capital expenditure (CAPEX) required for acquiring and installing energy systems. 
The investment cost per unit of installed capacity is represented in different months M, and different times 
T by reflecting its operational. Here, K is the total number of energy devices in the Integrated Energy 
System (IES). 

𝐶𝐼𝑁𝑉 = ∑  𝑀
𝑀=1 ∑  𝑇

𝑡=1  ∑  𝐾
𝑘=1  𝛤𝑘

𝑐𝑎𝑝 * (i(𝑖 + 1)𝑦𝑘  ) / ((𝑖 + 1)𝑦𝑘   - 1) 

factors include: 

●  γₖ → is the device lifecycle,  

● 𝑖→ The interest rate, which influences the financial viability of investments. 

● 𝛤𝑘
𝑐𝑎𝑝 → represents the installed capacity of each device k. 

Investment costs are amortised over the lifetime of the device, ensuring that the model accounts for the 
annual depreciation as a function of its useful lifespan. 

 

2.4.4 Energy Exchange Costs  

Energy exchange costs cover the expenses associated with purchasing electricity and gas from external 
suppliers when the system cannot meet energy demand internally. This includes: 

𝐶𝐸𝑃𝑆 = ∑  𝑀
𝑀=1 ∑  𝑇

𝑡=1  ∑  𝐾
𝑘=1  𝑁𝑑 * [ (𝜆 

𝑚𝑡
𝐸𝑙𝑒𝑐𝑡,𝐵𝑢𝑦

 
 * 𝑃𝑚𝑡

𝐸𝑙𝑒𝑐𝑡,𝐵𝑢𝑦 + 𝛽𝐺𝐴𝑆 * (𝑃𝑚𝑡
𝐺,𝐶𝐻𝑃t + 𝑃𝑚𝑡

𝐺,𝐺𝐵) ] 

● 𝛽𝐺𝐴𝑆 → The price of purchasing gas from external markets. 

● 𝜆 
𝑚𝑡

𝐸𝑙𝑒𝑐𝑡,𝐵𝑢𝑦
 
 → The price of purchasing electricity from the grid. 

●  𝑃𝑚𝑡
𝐸𝑙𝑒𝑐𝑡,𝐵𝑢𝑦  → The amount of electricity purchased 

In our model, external energy procurement is necessary to balance supply and demand. The variables 
𝑃𝑚𝑡

𝐺,𝐶𝐻𝑃 and 𝑃𝑚𝑡
𝐺,𝐺𝐵 represent the amount of natural gas purchased from the gas network to supply: 

● CHP plants (Combined Heat and Power systems) 

● GB systems (Gas Boilers) 

These purchases are made based on economic factors and availability constraints, ensuring that energy 
demand is met at the lowest possible cost. 
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2.4.5  Environmental Costs  

Environmental costs reflect the financial penalties and regulatory charges associated with carbon emissions. 
This component is essential in evaluating the sustainability of different energy sources. The parameters 
include: 

    𝐶𝐶𝑂2 = ∑  𝑀
𝑀=1 𝑁𝑑  ∑  𝑇

𝑡=1  ∑  𝐾
𝑘=1  * [ 𝜙𝑒 (𝑃𝑚𝑡

𝐸𝑙𝑒𝑐𝑡,𝐵𝑢𝑦+ 𝑃𝑐𝑎𝑝
,𝐶𝐻𝑃) + 𝜙𝑔 (𝑃𝑚𝑡

𝐺,𝐶𝐻𝑃t + 𝑃𝑚𝑡
𝐺,𝐺𝐵) ] 

Where: 

● r → The market carbon tax price, which imposes a financial penalty for emitting CO2. 

● 𝜙𝑒 → The emission price of electricity generation, accounting for carbon intensity per 

unit of energy produced. 

● 𝜙𝑔 → The emission price of gas consumption, reflecting the CO2 impact of natural gas 

use. 

           

An important aspect of our model is the hydrogen fuel cell (HFC), which produces carbon-free electricity. 
Since HFCs do not emit CO2, no environmental compensation is applied to their electricity generation. 
notably The variables 𝑃𝑚𝑡

𝐸𝑙𝑒𝑐𝑡,𝐵𝑢𝑦, 𝑃𝑚𝑡
𝐺,𝐶𝐻𝑃 and 𝑃𝑚𝑡

𝐺,𝐺𝐵 represent the amount of electricity and natural 
gas purchased from the gas network to supply. 

 

2.4.6 Operating and Maintenance (O&M) Costs  

Operating and maintenance costs (OPEX) account for the recurring expenses required to keep the system 
functional. These include: 

𝐶𝑂𝑀 = ∑ ∗𝑀
𝑀=1 ∑ ∗𝑇

𝑡=1  ∑ ∗𝐾
𝑘=1  𝜖𝑘 * 𝛤𝑘

𝑐𝑎𝑝  

• Routine maintenance of energy infrastructure 
• Operational expenses related to energy conversion and storage 
• Wear and tear replacement costs for key components 

 

The unit maintenance cost per device is represented by: 

● 𝜖𝑘 → The O&M cost per unit of installed capacity for each device K in the system. 

● 𝛤𝑘
𝑐𝑎𝑝 → represents the installed capacity of each device k. 
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Regular maintenance is crucial to ensure system reliability, efficiency, and longevity. High-maintenance 
energy assets, such as gas boilers and CHP plants, require greater O&M expenses compared to renewable 
energy sources, which generally have lower maintenance costs. 

 

2.5 Objective Function of followers  

The follower aims to minimize costs by determining whether it is more beneficial to purchase from us or 
competitors. 

Min ∶ 𝑍𝐹 =∑ ∗𝑈
𝑢=1 ∑ ∗𝐵

𝐵=1 ∑ ∗𝑇
𝑡=1  ∑ ∗𝑀

𝑚=1 (𝑟𝑚𝑡
𝐸𝑙𝑒𝑐𝑡,𝐵 * 𝐿𝑢 𝑚𝑡

𝐸𝑙𝑒𝑐𝑡 * 𝑌𝑢 𝑏 + 𝑟𝑚𝑡
𝐻𝑒𝑎𝑡,𝐵 * 𝐿𝑢 𝑚𝑡

𝐻𝑒𝑎𝑡 * 𝑌𝑢 𝑏 +  
𝑟𝑚𝑡

𝐻2,𝐵* 𝐿𝑢 𝑚𝑡
𝐻2 * 𝑌𝑢 𝑏) + ∑ ∗𝑈

𝑢=1 ∑ ∗𝑇
𝑡=1  ∑ ∗𝑀

𝑚=1 (𝑐𝑜𝑠𝑡𝐸𝑥𝑡   
𝑃𝐿𝑢 𝑚𝑡

𝐸𝑙𝑒𝑐𝑡𝐸𝑥𝑡𝑢
𝑝 

+ 𝑐𝑜𝑠𝑡𝐸𝑥𝑡   
𝑐𝐿𝑢 𝑚𝑡

𝐻𝑒𝑎𝑡𝐸𝑥𝑡𝑢
𝑐+  𝑐𝑜𝑠𝑡𝐸𝑥𝑡   

𝐻2𝐿𝑢 𝑚𝑡
𝐻2𝐸𝑥𝑡𝑢

𝐻2 

 

● u: Index for user 

● Energy load = {P, C, H₂}, indexed by e 

● E_b ⊂ Energy load: Set of energy loads included in bundle b (by definition) 

● 𝑌𝑢 𝑏: Binary variable that takes 1 if user u chooses bundle b, otherwise 0 

● 𝐸𝑥𝑡𝑢
𝑝 : Binary variable that takes 1 if user u buys energy type P from a competitor 

 

2.6 Energy Demand Balancing 

As mentioned earlier, the IES is responsible for satisfying four types of demand; the Set of Constraints 
shows the system ensures balances energy demand across electricity, heat, and hydrogen, where to consider 
the energy type produced by different systems and on the other side of equation energy consumption in 
different energy sources and demand: 



21 
 

 

 

 

 

 

 

 

2.7 Load Satisfaction 

By these three important equations, the model guarantees that the energy demand of all users is completely 
fulfilled. These equations ensure that the overall supply of electricity, heat, and hydrogen equals the demand 
of all the users. Through the implementation of these constraints, the model ensures also maximizing the 
use of resources. 

 

           Satisfy electricity demand of user u 

    ∑ ∗𝑩
𝒃=𝟏  𝒂𝒃

𝑬𝒍𝒆𝒄𝒕 𝒀𝒖 𝒃 + 𝜒𝑬𝒍𝒆𝒄𝒕
𝒖 = 1, u=1,....U , b = 1,...,B 

          Satisfy Heat demand of user u 

               ∑ ∗𝑩
𝒃=𝟏  𝒂𝒃

𝑯𝒆𝒂𝒕 𝒀𝒖 𝒃 + 𝜒𝑯𝒆𝒂𝒕
𝒖 = 1, u=1,....U , b = 1,...,B 

           Satisfy hydrogen demand of user u 

∑ ∗𝑩
𝒃=𝟏  𝒂𝒃

𝑯𝟐 𝒀𝒖 𝒃 + 𝜒𝑯𝟐
𝒖 = 1, u=1,....U , b = 1,...,B 

 

Where:  

 

● 𝑎𝑏
𝐸𝑙𝑒𝑐𝑡 : The parameter takes the value 1 if the bundle b includes the energy type electric. 

● 𝑎𝑏
𝐻𝑒𝑎𝑡 : The parameter takes the value 1 if the bundle b includes the energy type heat. 

●  𝑎𝑏
𝐻2: The parameter takes the value 1 if the bundle b includes the energy type hydrogen. 
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● 𝜒𝐸𝑙𝑒𝑐𝑡
𝑢binary variable takes 1if user 𝑢 buys electricity  from the competitor 

● 𝜒𝐻𝑒𝑎𝑡
𝑢binary variable takes 1if user 𝑢 buys heat  from the competitor 

● 𝜒𝐻2
𝑢 binary variable takes 1if user 𝑢 buys hydrogen  from the competitor 

● 𝑌𝑢 𝑏: Binary variable that takes 1 if user u chooses bundle b, otherwise 0 

 

2.8  Bundles 

In this part, we are going over one of the main strategies that we added to the system, with the aim of 
offering customers flexibility, savings, and efficient energy usage at a lower price based on the bundle they 
select. Our system offers five packages: electricity only, gas only, hydrogen only, electricity + gas, and gas 
+ hydrogen, so customers have a range of alternatives optimally suited to their needs. Bundling not only 
achieves maximum efficiency for the system and minimizes wastage but also promotes utilization of cleaner 
forms of energy. Further, when bundled packages bring multiple sources of energy together into one 
package, customers get favorable prices, so bundled packages cost less than if one were to purchase each 
energy form separately. It is a demand peak management and grid stabilizing method. 

 

2.8.1 Logical restrictions to define types of demands in every bundle 

This section details the logical constraints that determine the structure of different types of energy requests 
(e.g., electricity, heat, hydrogen) within a bundle. These constraints define the bundles with the appropriate 
structure of energy services that are adequate for the demand of the consumers and the system's ability. The 
model gives cost-effective, feasible, and demand-based energy supply to the consumers through the 
imposition of these constraints. 

 

(1- 𝑎𝑏
𝐸𝑙𝑒𝑐𝑡)∑ ∗𝑀

𝑀=1 ∑ ∗𝑇
𝑡=1  𝑃𝑢 𝑚𝑡

𝐸𝑙𝑒𝑐𝑡 ≤ 𝑀(1 − 𝑌𝑢 𝑏), u=1,....U , b = 1,...,B 

(1- 𝑎𝑏
𝐻𝑒𝑎𝑡)∑ ∗𝑀

𝑀=1 ∑ ∗𝑇
𝑡=1  𝑃𝑢 𝑚𝑡

𝐻𝑒𝑎𝑡 ≤ 𝑀(1 − 𝑌𝑢 𝑏), u=1,....U , b = 1,...,B 

(1- 𝑎𝑏
𝐻2)∑ ∗𝑀

𝑀=1 ∑ ∗𝑇
𝑡=1  𝑃𝑢 𝑚𝑡

𝐻2 ≤ 𝑀(1 − 𝑌𝑢 𝑏), u=1,....U , b = 1,...,B 

 

Where:  

● 𝑎𝑏
𝐸𝑙𝑒𝑐𝑡- 𝑎𝑏

𝐻𝑒𝑎𝑡-  𝑎𝑏
𝐻2: The parameter takes the value 1 if the bundle b includes the 

energy type hydrogen. 
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In addition, there are complementary equations in bundle strategy as below: 

• 𝑎𝑏
𝐸𝑙𝑒𝑐𝑡𝑃𝑢 𝑚𝑡

𝐸𝑙𝑒𝑐𝑡 ≥  𝐿𝑢 𝑚𝑡
𝐸𝑙𝑒𝑐𝑡  𝑌𝑢 𝑏, u=1,....U , b = 1,...,B 

• 𝑎𝑏
𝐻𝑒𝑎𝑡𝑃𝑢 𝑚𝑡

𝐻𝑒𝑎𝑡 ≥  𝐿𝑢 𝑚𝑡
𝐻𝑒𝑎𝑡 * 𝑌𝑢 𝑏 , u=1,....U , b = 1,...,B 

• 𝑎𝑏
𝐻2𝑃𝑢 𝑚𝑡

𝐻2 ≥  𝐿𝑢 𝑚𝑡
𝐻2 * 𝑌𝑢 𝑏, u=1,....U , b = 1,...,B 

 

2.8.2 Set Logical Prices Among Bundles 

This keeps the prices of the bundles appropriate to their size and energy types. Larger bundles with more 
energy services should cost more than smaller ones. These pricing rules keep the bundles reasonable, 
competitive, and desirable to the users. 

• 𝑟𝑚𝑡
𝐸𝑙𝑒𝑐𝑡,𝑏1 ≤ α * 𝑟𝑚𝑡

𝐸𝑙𝑒𝑐𝑡,𝑏2 , m = 1, ..., M , t = 1, ..., T, b1, b2 = 1, ..., B | Size(b1) > Size(b2) 
• 𝑟𝑚𝑡

𝐸𝑙𝑒𝑐𝑡,𝑏1 ≥ 0, m = 1, ..., M , t = 1, ..., T, b = 1, ..., B | 𝑎𝐸𝑙𝑒𝑐𝑡
𝑏= 1 

• 𝑟𝑚𝑡
𝐻𝑒𝑎𝑡,𝑏1 ≥ 0, m = 1, ..., M , t = 1, ..., T, b = 1, ..., B | 𝑎𝐻𝑒𝑎𝑡

𝑏= 1 
• 𝑟𝑚𝑡

𝐻2,𝑏1 ≥ 0, m = 1, ..., M , t = 1, ..., T, b = 1, ..., B | 𝑎𝐻2
𝑏= 1 

Where:  

• 𝑟𝑚𝑡
𝐸𝑙𝑒𝑐𝑡,𝑏1 -𝑟𝑚𝑡

𝐻𝑒𝑎𝑡,𝑏1 -  𝑟𝑚𝑡
𝐻2,𝑏1: Energy prices for bundle 𝑏 on day 𝑚 at time 

 

2.9 Transformation of Bi-Level Model into a Single-Level Problem 

Our Bi-level optimisation problem is formulated in a way that represents how two different players make 
decisions like suppliers who set prices and consumers who react. Such models are, however, typically 
complicated and time-consuming to find because they represent two interconnected levels of decision-
making. In order to get around the simplified model, we transformed the bi-level structure to an equivalent 
single-level problem. This was done by adding a special constraint called a cut that helps to transform the 
follower's (user's) decisions into the leader's (provider's) problem directly. This does not allow two 
problems to be solved separately. A second auxiliary variable, auxi (e, u, b, m, t), was added for the sake 
of carrying out this transformation. It combines bundle options, energy sources, and time slots into one 
optimization model. With that, we can now formulate the whole problem in AIMMS. This conversion 
allows the model to compute more complicated scenarios—like pricing, load balancing, and capacity 
planning—at a higher speed while still upholding the rules of how providers and consumers interact. This 
approach referred [1]which is explained in detail: 
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∑ ∗𝑈
𝑢=1 ∑ ∗𝐵

𝐵=1 ∑ ∗𝑇
𝑡=1  ∑ ∗𝑀

𝑚=1 ∑ ∗𝐸
𝑒=1  𝑎𝑢𝑥𝑖𝑒 𝑢 𝑏 𝑚 𝑡 *  𝑑𝑒𝑚𝑒𝑢𝑚𝑡+ ∑ ∗𝑈

𝑢=1 ∑ ∗𝐸
𝑒=1   𝑃𝑒𝑢

𝐸𝑥𝑡 * 
 𝑑𝑒𝑚𝑎𝑛𝑑𝑒𝑢

  * 𝐸𝑥𝑡 − 𝑝𝑎𝑟𝑒 𝑢 𝑖𝑡) < = ∑ ∗𝑈
𝑢=1 ∑ ∗𝐵

𝐵=1 ∑ ∗𝑇
𝑡=1  ∑ ∗𝐸

𝑒=1 ∑ ∗𝑀
𝑚=1  𝑎𝑢𝑥𝑖𝑒 𝑢 𝑏 𝑚 𝑡  * 

 𝑑𝑒𝑚𝑒𝑢𝑚𝑡*  𝑌 − 𝑝𝑎𝑟𝑒 𝑢 𝑖𝑡 )  + ∑ ∗𝑈
𝑢=1 ∑ ∗𝐸

𝑒=1  𝑃𝑒𝑢
𝐸𝑥𝑡*  𝑑𝑒𝑚𝑎𝑛𝑑𝑒𝑢* 𝐸𝑥𝑡 − 𝑝𝑎𝑟𝑒 𝑢 𝑖𝑡) 

 

Where:  

●  𝑎𝑢𝑥𝑖𝑒𝑢𝑏𝑚𝑡 : binary variable takes 1 o 0 

●  𝑑𝑒𝑚𝑒𝑢𝑚𝑡 : The parameter of demand  

●   𝑃𝑒𝑢
𝐸𝑥𝑡: The parameter price of competitor 

● 𝐸𝑥𝑡 − 𝑝𝑎𝑟𝑒 𝑢 𝑖𝑡: binary variable takes 1 o 0 

●  𝑌 − 𝑝𝑎𝑟𝑒 𝑢 𝑖𝑡: binary variable takes 1  

 

3. AIMMS 

AIMMS stands for Advanced Interactive Multidimensional Modelling System. AIMMS is a modeling 
language applied for optimisation and decision-making based on mathematical approach. It’s an 
environment in which the users can model and build mathematical equations. The relationships, variables, 
constraints, and objective functions can be defined by users. AIMMS supports a range of optimization 
algorithms, including linear programming and mixed integer programming. Users can choose the most 
suitable algorithm based on the nature of their optimization problem. We selected AIMMS to develop our 
model due to its strong capabilities perfectly suited to our problem because, with our bi-level model, we 
are required to have a wide level of flexibility and power to maintain all the contributing connection features 
and examine different solvers. AIMMS has numerous optimization techniques; thus, AIMMSs high-
performance solvers such as CPLEX, GUROBI, and BARON to ensure that each challenging mathematical 
model are solved effectively and accurately. The second principal benefit is the various integration that it 
offers. We can import/export data and interact with external systems through libraries and reach excel file 
output easily. In the end, the interaction of all these advantages is great motivation to get use of this 
program for solving[11]. 
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In our case, as mentioned above, in each mathematical model like ours where the objective function, 
decision variables, and constraints are defined and structured. These elements will be presented in, 
following format of AIMMS: Sets (S), Parameters (P), Variables (V), and Constraints (C): [11] 

 

 

 

To achieve the optimal solution in our bi-level model, executing the main objective is a critical step. In 
AIMMS, this involves defining a Main Execution Module, where the primary objective function is solved 
by aligning decision variables and constraints which the main model that we will discuss later.[11] 

 

 

 

3.1 Modeling in AIMMS 

As described in Chapter 3, each equation in the model has been carefully defined in AIMMS using specific 
index domains. This allows the model to take advantage of logical connections between different 
components at every step of the optimisation process. In the following sections, additional parameters and 
values will be introduced to further enhance the model. These additions help improve the accuracy and 
completeness of the system, making the analysis reliable and the results more complete in finding 
reasonable and practical solutions[11]. 

3.1.1 Sets 

A simple set in AIMMS is a finite collection of elements, either strings or integers. Sets use indices to 
reference elements in indexed expressions and statements [11].They may have optional attributes like Index 
Domain, Subset Of, Index, Parameter, Text, and Definition. AIMMS supports multi-dimensional sets, 
which are parameterized over other sets. For example, specifying an index domain (m,t,u,b) links each 
element to specific value combinations. Although sets and parameters may seem similar due to their multi-
dimensional nature, sets contain elements, while parameters store numerical values. Additionally, a set’s 

"parameter" attribute associates a parameter with each element as a specific property. The following 
sections provide AIMMS model sets with necessary explanations. 
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3.1.1.1 Bundle set 

This set by identifier "bundle-set" contains the integer data format by considering the indexes b, b1, and 
"b2," which represent the number of bundles that are changeable from 1 to “Num_bundle" parameter. In 

the model, the system will reach the results based on this element range. 

 

 

 

 

 

 

 

3.1.1.2 User set 

Another important set to represent the number of users that will be considered in the model is the indexu,” 

like other indexes that make connections for the base to be specified in the whole model, the range set by 
the main parameter "Num-user." 

 

 

 

 

 

 

 

3.1.1.3 Set Iteration  

The set of iterations plays a critical role in reaching the optimized solution, as each iteration balances the 
trade-off between the leaser and follower to improve overall output. Starting from the second iteration, this 
set reflects better real-life decision-making to select the best answer. 

 



27 
 

 

 

 

 

 

 

 

3.1.1.4 Energy set 

Simply in this set, we identified the energy types that are involved in our model: Electricity, Heat and 
Hydrogen: 

 

 

 

 

 

 

 

 

3.1.2 Parameter 

 In AIMMS, a parameter represents a known value, either numeric or string-based [11]. AIMMS 
distinguishes between parameters (known values) that can be manually adjusted, but from the other side, 
variables (unknowns in mathematical programs) that, after execution, In our case, we set two key 
parameters, like prices and demand (two important parameters), while variables will be computed based on 
inputs. The following sections provide explanations of AIMMS model parameters. 
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3.1.2.1 Bundle parameters 

Num_bundle is a critical parameter that defines the total number of bundles available in the system. that 
can be adjusted by the user model to set different numbers of bundles to offer. In different scenarios, we 
inserted different numbers of bundles to check how the buyers reacted and how it had an impact on our 
profit. size_bundle This parameter calculates the size of each bundle by summing the values from 
Par_bundle (e, b) across all elements e. It helps determine how many energy types are included in each 
bundle. Par_bundle is another adjustable parameter by us. When can we design the energy type included in 
each bundle by putting "1" if we want the energy type “e” included in that specific bundle. 

 

 

 

 

 

 

 

 

 

 

 

 

Y-par  

This parameter is a binary parameter that defines whether each specific user chooses a particular bundle 
in a given iteration; its indexes are:  
 it: iteration  
 u: user 
 b: bundle 
This binary parameter only gets 1 or 0: 
      - 1 indicates that the user selects the bundle b in iteration. 
      -  0 means that bundle b has not been selected by user u in the given iteration. 
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On the second page, we can see the table of data. 

 

 

3.1.2.2 External parameters 

In this section, key external parameters are defined with the aim of considering flexibility into the model 
by incorporating competition. With parameters, external competitors in our pricing strategies, giving users 
the freedom to choose between internal and external options. This approach improves realism and ensures 
a more optimized solution by considering competitors in the market. 

 

Ext_par 

This parameter indicates whether a user chooses an external competitor's energy source in a given iteration. 

● If Ext_par(it, e, u) = 1, the user purchases energy from an external competitor. 

● If Ext_par(it, e, u) = 0, the user chooses to buy from us. 

 

 

 

 

 

 

 

 



30 
 

 

  Price_Ext 

   is an external price that is associated with different indexes like “u” and "e.” 

● e: energy 

● u: user 

This parameter is nonnegative; it means it cannot get a negative value and ensure a valid price value. 

 

 

 

 

 

 

 

 

3.1.2.3 Price parameters 

In this section, we define different price levels in our model. First, we set the maximum acceptable price of 
each type of energy, with the aim of having the upper limit in energy prices; secondly, we represent the 
minimum acceptable price to ensure that prices won't fall below the threshold. The last one will be defined 
by the model run, when the system is run and the optimal solution is reached. 
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Discount 

Represents discount values within the model. Unlike price_Ext, it does not have a predefined index domain, 
range, or unit, suggesting that it can be a general parameter for different scenarios. We basically define this 
parameter based on the prices. 

 

 

 

 

 

 

 

 

 

3.1.2.4 Demand Parameter 

This parameter defines how much energy each user type consumes based on their household composition. 
Its indexes are:  

• e: energy  
• u: user 
• m: month 
• t: hours 
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In addition to defining user demand, it is important to explain how users are allocated in the model. Family 
structure selection within this study comes from real statistics on how individuals live. It's tried to predict 
energy demand in a realistic way by assuming typical family structures. In CSIRO's Energize Insight, two-
person families are the most common, followed by three- and four-person households. Energy usage 
increases as more people are in the household. 
                             
Three household types were employed in this study: 

● User 1: A couple (two members) 
● User 2: A couple with a child (three members) 
● User 3: An extended family (four or five members) 

 

Such users are real energy consumption. For example, families with children will consume more power 
than small families. Through this segmentation, the model can fit actual energy demand more accurately. 
This improves the accuracy of the system and aids in more accurate decision-making regarding planning 
and setting prices for energy [8]. 

 

 

 

                                                            

 

                                                   

 

3.1.3 Variable 

In AIMMS, a variable represents an unknown value within a constraint. Variables receive value when a 
solver finds a solution. Once the model runs, AIMMS provides the optimal variable values as output. 
Variables have additional attributes beyond parameters, guiding the solver or storing solution-related 
information. Key attributes include IndexDomain, Text, Range, Unit, Property, Default, and Definition. 

The following sections provide explanations of AIMMS model variables. 
These three AIMMS variables are the system's energy requirements for electricity, heat, and hydrogen (H2) 
and are indexed by (m, t), where: 

● m: represents month. 

● t: represents time,  

Figure 6: Household Allocation 
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3.1.3.1  Hydrogen Load 

● Index Domain: (m, t) 

● Range: Free  

Description: This variable represents the hydrogen demand in the system over time and across different 
modules. Since it is free, it can take any value, meaning it may also represent excess production or deficits. 

 

3.1.3.2 Heat Load 

● Index Domain: (m, t) 

● Range: Nonnegative (can only be zero or positive) 

Description: This variable quantifies the thermal energy demand in the system, ensuring that heat 
consumption remains physically meaningful (no negative values). It is useful for optimising heating system 
operations. 

 

3.1.3.3 Electric Load 

● Index Domain: (m, t) 

● Range: Nonnegative (can only be zero or positive) 

Description: This variable captures the electricity demand at different times and locations. Since it is 
nonnegative, it ensures that power consumption cannot be negative, aligning with real-world constraints. 

All these three variables, which stand for the electric, heat and h2 load to the system : 
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3.1.4 Constraints 

In this part of the model, all the constraints defined for energy sources in Section 2 are declared and 
implemented with appropriate index sets. Constraints in AIMMS are mathematical expressions composed 
of variables, parameters, and constants. Constraints are used to limit variable values according to some 
conditions that should be met prior to producing an output. These constraints are the foundation of the 
optimisation model and are required in order to generate valid and realistic solutions. Below are further 
explanations on how these constraints are utilized in the AIMMS environment. 

 

3.2 Mathematical program in AIMMS 

3.2.1 HPR Model 

We explain here first what the HPR_Model is, which is the core optimisation program developed in AIMMS 
which is critical to reach an optimisation solution. This model brings together all the necessary 
components—objective functions, constraints, and decision variables—used to represent both the leader 
(upper level) and follower (lower level) and both constraints(con_HPR) and its variables (var_HPR) for the 
systematic comprehension of this mathematical program's operation are explained below in details. To 
make the model solvable, we transformed the bi-level structure into a single-level problem, which is one of 
the key steps in building this system. The transformation ensures that all decisions are handled together 
under a unified optimisation framework. Type of MIP (Mixed Integer Programming) is the way to clarify 
in AIMMS, this setup provides a coherent optimisation structure that enables all the elements to function 
together with the aim of clarifying for system while considering all the constraints that we have which 
reflecting the trade-off between the two stakeholders. 
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3.2.2 HPR Constraint (con_HPR)  
 
We define the constraints (con_HPR) that reflect the structure and viability of the HPR_Model. These 
constraints are gathered in a set called All Constraints, including: 
 

• con_UL: Top-level constraints that define the system operator's strategic decisions, i.e., capacity 
planning and pricing. 

 
• data(cut): Cut constraints that allow the bi-level structure to be reduced to a single-level model. 

This enables the problem to be transformed into a solvable one using regular optimisation solvers. 
 

• con_LL: Lower-level constraints that reflect user-side decisions, such as energy bundle choices and 
price responses to consumption. 

 
We declare this structure—con_UL + data(cut) + con_LL—because we wish AIMMS to take into account 
the logic and goals of both levels when solving the model. By integrating the provider's (upper-level) and 
the consumer's (lower-level) constraints into one formulation, AIMMS can examine all the interactions and 
trade-offs between the two decision-makers at once. Without the integrated constraint structure, the model 
could not produce a consistent solution that balances the objectives of both parties 

 

 

 

 

 

 

 

3.2.3 HPR Variables (var_HPR) 
 
We declare the decision variables (var_HPR), they are classified under a set called AllVariables that 
includes: 
 

● var_UL: Upper-level decision variables system operator's strategic decisions, i.e., capacity 
planning and pricing. 

 
● var_LL: Lower-level decision variables that manage operational details such as energy 

consumption, bundle selection, and user responses. 
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By including both upper- and lower-level variables, the model captures the full decision-making process. 
This allows the optimization to reflect strategic decisions made by the provider, along with detailed user 
responses, resulting in a solution that is balanced, realistic, and system wide. 

 

 

 

 

 

 

 

All the solution codes were written with time limits in mind, to make sure the system works well within a 
realistic time frame and responds quickly during the optimization process. 

 

 

 

 

 

 

 

 

 

 

 

 

 



37 
 

4. Literature Review 

This section discusses the process of gathering information and identifying the research gap for this thesis. 
We identify three of the most pertinent papers and analyze their shortcomings to identify the actual gap. 
Our final model attempts to bridge these gaps, presenting a superior solution and ensuring that we adopt 
the best possible research strategy. In filling these gaps, we contribute to developing an even more 
optimized and sustainable IES framework. 

4.1 Article 1: Stackelberg-Based ICES Optimization 

The analysis starts with the article 'Optimised Operation of Integrated Community Energy System 
Considering Integrated Energy Pricing Strategy: A Two-Layer Stackelberg Game Approach', exploring its 
methodology and leveraging the identified research gap. 

Study No. Article Title Year Authors Aim Methodology Main Findings 

1 Optimised 
operation of 
integrated 
community energy 
system considering 
integrated energy 
pricing strategy: A 
two-layer 
Stackelberg game 
approach 

2024 
 
Dongfeng 
Yang, 
Ziqian He, 
Yong Sun, 
Baoju Li, 
DeXin Li 
Xiaojun 
Liu, 
Chao Jiang 

Optimize the 
operation of an 
integrated 
community 
energy system 
(ICES) by 
proposing an 
energy pricing 
strategy that 
considers energy 
source 
interconversion. 

Two-layer 
Stackelberg game 
model: upper-layer 
operator 
maximizes 
revenue by setting 
energy prices; 
lower-layer users 
minimize energy 
costs by adjusting 
usage strategies. 

The model 
achieves a unique 
Stackelberg 
equilibrium 
solution, balancing 
operator and user 
interests. It 
improves wind 
power absorption, 
reduces load 
fluctuation, and 
enhances energy 
system efficiency. 

Table 1:Stackelberg-Based ICES Optimization Summary 

Research Gap: 

Both researchers formulate a mathematical approach like a two-level Stackelberg game for ICES pricing 
in this essay. The optimality outcomes of this paper indicate that investment in P2G, bus BSS, and V2G 
improves economic efficiency and wind power uptake, yet the model fails to handle user-specific energy 
bundles. The model that is offered in this thesis will establish a bi-level optimization where operators sell 
and offer value-added energy bundles (e.g., electricity + hydrogen), adding user engagement and 
maximizing consumer-supplier interaction. The model neither takes into consideration EV user 
satisfaction, battery wear compensation, nor revenue sharing. My work will include these and lead to a 
minimum level of carbon emissions to better enhance ICES economically and sustainably. 
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4.2 Article 2: ICES Optimization with Seasonal Thermal Storage 

The second article, 'Optimisation of Integrated Energy Systems Considering Seasonal Thermal Energy 
Storage' (2023), is examined to identify key contributions and existing research gaps. 

Study 
No. 

Article Title Year Authors Aim Methodology Main Findings 

2 Optimization of 
integrated 
energy systems 
considering 
seasonal thermal 
energy storage 

2023 Yixing Zhou, 
Chunhua Min, 
Kun Wang, 
Liyao Xie, 
Yuanhong Fan 

Develop an 
optimization 
model for an 
integrated 
energy system 
(IES) with 
seasonal 
thermal energy 
storage to 
improve 
economic 
efficiency and 
reduce carbon 
emissions. 

Mixed-integer 
linear 
programming 
(MILP) model 
optimizing IES 
capacity and 
operation over a 
one-year horizon. 
Includes ground 
source heat pump 
(GSHP), thermal 
storage, solar 
collectors, and 
waste heat 
recovery. 

The IES with 
seasonal thermal 
storage reduces 
annual total cost by 
9.1%, energy 
purchase costs by 
23.4%, and carbon 
emissions by 
12.6%. Seasonal 
thermal energy 
storage enhances 
system flexibility 
and efficiency. 

Table 2:ICES Optimization with Seasonal Thermal Storage Summary 

ResearchGap: 

While this study optimises an integrated energy system (IES) with seasonal thermal energy storage, 
dynamic pricing schemes or energy bundling strategies are not considered. The current method is primarily 
concerned with capacity planning, whereas the model does include ground-source heat pumps and thermal 
storage but does not address operating efficiency with multi-energy interactions. Our research build on this 
by developing a bi-level optimization model that involves bundled energy services with dynamic pricing, 
and additionally, enhancing economic efficiency and renewable energy utilization efficiency. 
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4.3 Article 3: P2G Effectiveness in Integrated Energy Systems 

The third article, 'Effectiveness of Power-to-Gas Technology for an Integrated Energy System', is reviewed 
to assess its findings and identify unresolved research challenges. 

Study No. Article Title Year Authors Aim Methodology Main Findings 

3 Effectiveness of 
Power-to-Gas 
Technology for 
an Integrated 
Energy System 

2024 Sara 
Khodaparasti, 
Anna Pinnarelli, 
Antonio 
Cosma,Maria 
Elena Bruni 

Develop a 
mathematical 
framework for 
modeling an 
integrated 
hybrid energy 
system 
incorporating 
Power-to-Gas 
technology and 
various 
renewable 
energy 
resources. 

Formulated as a 
mixed-integer 
programming 
model, validated 
through 
computational 
experiments on 
a real case 
study. The 
model considers 
multiple energy 
types, 
conversion, and 
storage 
technologies. 

Power-to-Gas 
enhances 
energy system 
efficiency, 
supports 
renewable 
integration, 
and reduces 
total costs. 
Incentivizing 
P2G 
investments 
lowers system 
costs by up to 
6.6%, ensuring 
economic 
feasibility. 

Table 3:P2G Effectiveness in Integrated Energy Systems Summary 

ResearchGap: 

While this study optimizes an integrated energy system with Power-to-Gas (P2G) technology, it prioritizes 
the minimization of investment and operation costs over neglecting demand-side flexibility or user-directed 
energy bundling strategy. The study prioritizes the economic benefits of the development of P2G and 
greater integration of renewables, but the model is not taking into account time-of-use prices for energy or 
dynamic price-based energy schemes. In addition, stakeholder-user interaction and active energy demand 
response are not yet taken into account. My research will introduce a bi-level optimization model that 
considers bundled energy services and adaptive pricing to improve system efficiency, economic viability, 
and user adaptability. 
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4.4 Article 4: Effectiveness of Stackelberg-Based Energy hybrid Integrated Energy Systems 

The fourth article, “Hybrid Energy Sharing Mechanism for Integrated Energy Systems Based on the 
Stackelberg Game", is reviewed to assess its findings and identify unresolved research challenges. 
 

Study No. Article Title Year Authors Aim Methodology Main Findings 

4  Hybrid Energy 
Sharing 
Mechanism for 
Integrated 
Energy Systems 
Based on the 
Stackelberg 
Game 

2021 Peng Q., Wang 
X., Kuang Y., 
Wang Y., Zhao 
H., Wang Z., 
Lyu J. 

Propose a 
hybrid energy 
sharing 
mechanism to 
coordinate 
energy flow in 
integrated 
systems using 
Stackelberg 
game theory. 

Developed a bi-
level 
optimization 
model where the 
energy operator 
acts as leader 
and prosumers 
as followers. 
Solved using a 
distributed 
algorithm; 
validated with a 
case study. 

The model 
supports the 
shift from 
centralized to 
interactive 
energy 
markets. It 
builds a 
distributed 
sharing 
mechanism 
using an 
energy hubA 
privacy-
preserving 
algorithm 
ensures 
convergence,  

Table 4:Effectiveness of Stackelberg-Based Energy hybrid Integrated Energy Systems Summary 

Research Gap: 

While Peng et al. (2021) successfully apply a Stackelberg game to design a distributed energy sharing 
mechanism, their model mainly focuses on system-level coordination between operator and prosumers 
without explicitly modeling multi-energy bundling or hierarchical planning over time. The dynamic role 
of bundle combinations and time-sensitive decision layers—key to real-world IES—remains 
underexplored. Additionally, their transformation from bi-level to single-level lacks integration with 
advanced optimization tools like AIMMS for large-scale simulations. Therefore, there is a need for 
models that combine strategic interactions (e.g., Stackelberg structure), multi-energy bundling, and 
hierarchical time-based planning, while ensuring computational efficiency and scalability in practical 
applications. 
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Result 

In this chapter, we look at the results of the model we built earlier to see how different energy sources work 
together to meet the needs of an Integrated Energy System (IES). Using AIMMS, we optimized the system 
to supply electricity, heat, and hydrogen in a way that meets user demand, keeps the leader’s profit positive, 

and helps lower energy costs for consumers. The results give us helpful insights into how to use energy 
resources more effectively. The model uses real-world energy prices and includes different types of users 
to reflect realistic conditions. Technologies like the hydrogen tank and hydrogen fuel cell (HFC) play a key 
role, especially the HFC, which helps provide both heat and electricity. We also reduced the use of the gas 
boiler (GB), which relies on hydrogen and natural gas, to cut down on emissions. Another part of our 
analysis focuses on the bundle strategy and how it affects the leader and follower objectives during different 
iterations. Throughout the section, we use graphs to show how IES technologies contribute to energy supply 
over time and how different strategies impact system performance. 
 
 
This graph shows how electricity is generated and purchased over time to meet the system’s needs. HFC 

stands out as the main contributor, highlighting its key role in power production. EB and EL use electricity 
regularly to support heat and hydrogen production. When local sources aren't enough, electricity is 
purchased from outside to fill the gap. Other sources like solar panels (PV) and combined heat and power 
(CHP) make smaller. Overall, the system relies heavily on flexible options like HFC and grid electricity to 
meet demand efficiently, control costs, and keep the leader’s remarkable positive profit. 

                            

                              

 

 

 

 

Figure 7: Energy production and procurement schedule: Electricity load 
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Figure 8 shows the heat power generation over time. Most of the heat demand is met by two main sources: 
the Electric Boiler (EB) and the Hydrogen Fuel Cell (HFC). HFC provides the majority of the heat 
throughout the entire period, showing it is the main source for thermal energy in the system. EB also 
contributes, mainly during certain peaks when HFC alone is not enough. Other sources like CHP (Combined 
Heat and Power) and GB (Gas Boiler) appear rarely and with small amounts, which suggests that the system 
prioritizes cleaner or more efficient options like EB and HFC. This setup reflects a strategy focused on 
using low-emission and flexible sources to meet heat demand while optimizing the system’s performance. 

                                                                                              

Figure 9 shows how hydrogen is produced, stored, and used over time in the system. One of the first things 
we notice is that the hydrogen tank plays an active role, it's frequently charged (HST-ch) and consistently 
discharged (HST-dis), which tells us that stored hydrogen is being used regularly to meet energy demand. 
On the production side, most of the hydrogen comes from the electrolyzer (H2-EL), which converts 
electricity into hydrogen. It operates steadily throughout the timeline and explains why it also appears as a 
big electricity consumer in the electricity graph. Hydrogen is then used in different ways: the hydrogen fuel 
cell (HFC) uses it to produce both electricity and heat and plays a key role in system performance, while 
the combined heat and power (CHP) unit uses smaller amounts. The storage level stays stable, within a 
range of about 132–228 kWh, which helps keep the system flexible and responsive. What’s interesting is 
that the gas boiler (H2-GB) is never used, suggesting that hydrogen made from natural gas isn’t part of the 

strategy—likely to keep the system cleaner and more sustainable. All in all, this part of the system clearly 
leans on clean hydrogen, smart storage, and efficient usage to meet energy needs and support the overall 
goal of maintaining profit while lowering emissions. 

Figure 8 : Energy production and procurement schedule: Heat load 
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Figure 10 shows the behavior of the hydrogen storage tank over time, including its state of charge (HST-
S), charging (HST-ch), and discharging (HST-dis). The green bars represent hydrogen being stored (HST-
ch), and the red bars show hydrogen being discharged (HST-dis). The light pink area at the top illustrates 
the storage level at each time step. The graph reveals a consistent pattern of charging and discharging 
throughout the entire period, indicating that the system actively manages hydrogen flows to maintain 
flexibility. The storage level (HST-S) remains relatively stable, fluctuating between 200–600 kWh, which 
suggests that hydrogen storage never reaches critical low levels. The system avoids full depletion by 
continuously recharging the tank. This balance ensures that stored hydrogen is always available when 
needed, supporting the energy supply and confirming the importance of hydrogen storage as a strategic 
buffer in the IES. 

 

 

 

 

 

 

 

 

                                       

 

 

Figure 9: Energy production and procurement schedule: Hydrogen load 

Figure 10 : Hydrogen Tank Storage Behaviour Over Time 
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Figure 11 illustrates the revenue performance across different bundle strategies: 3-bundle, 4-bundle, and 5-
bundle configurations. As explained earlier in the thesis, bundles are designed to give consumers more 
flexibility in choosing energy types. In the 3-bundle setup, each bundle includes only one type of energy 
(electricity, heat, or hydrogen). The 4-bundle strategy keeps the first three single-energy bundles and adds 
a fourth bundle with both electricity and heat. The 5-bundle configuration introduces even more flexibility, 
including one bundle with electricity and heat, and another with heat and hydrogen. The graph shows that 
in the first iteration, all three bundle strategies start at the same revenue level. However, from the second 
iteration, the revenue drops slightly as the system begins to incorporate consumer preferences into the 
optimization. The 5-bundle case shows a recovery in revenue in the third and fourth iterations, suggesting 
that offering more flexible bundles may better match consumer demand. Despite a small decline after 
iteration 4, the 5-bundle setup maintains the highest overall revenue. This confirms that bundle-based 
strategies, especially with more mixed-energy options, can be beneficial for both the system and consumers 
by improving satisfaction and maintaining revenue performance. 

 

 

 

 

 

 

 

 

 

In this part of the results analysis, we dive deeper into the mathematical structure of the optimization 
process, focusing on how the model moves between the follower and leader objective goals to find the best 
solution. It represents the best value the leader could achieve, assuming follower response, while it follows 
to achieve reflects what is currently achievable with the follower’s constraints. The smaller the gap between 

these two values, the more reliable and accurate the final result becomes. And here, the story begins—when 
we start changing the number of bundles. The simple case starts with the 3-bundle setup, where each bundle 
contains only one energy type (electricity, heat, or hydrogen). This result shows that the 3-bundle model 
reaches optimality very quickly—in just three iterations. At first, there's a large gap between their 
objectives, meaning the model is still searching for a good solution. But over time, the gap becomes smaller, 
and by the third step, are nearly equal, proving that the model has reached its best solution. As we move to 
more flexible bundle designs, such as 4 and 5 bundles, the trade-off between realism and complexity 
becomes a key factor in our optimization process. 
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Figure 11: Revenue per Bundle 
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In figure 13 continuing from the 3-bundle case, illustrates the optimization performance of the 4-bundle 
configuration over four iterations, which introduces one mixed-energy bundle (electricity + heat). 
Compared to the 3-bundle case, the model requires one additional iteration to reach optimality due to the 
added flexibility for consumers. The initial gap between objectives of follower and leader confirms the 
model is still exploring feasible solutions by considering both levels objectives. However, the second and 
fourth iterations improve significantly and approaches, indicating strong convergence. The system remains 
efficient while better capturing consumer diversity — an important step toward practical application of the 
model in real energy systems. 

 

 

 

 

 

 

 

 

                                           

 

Figure 14 displays the evolution of the Leader and Follower objective values across five iterations under a 
5-bundle configuration. The bundle design includes three single-energy bundles (electricity, heat, 
hydrogen) and two mixed-energy bundles (electricity + heat, and heat + hydrogen), offering users high 
flexibility. 

Figure 12: 3 bundle allocation per Leader and follower 

          Figure 13: 4 bundle allocation per Leader and follower 
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In the early iterations, the Follower’s objective rises sharply, reaching its peak by iteration 3 and then 
stabilizing. The Leader’s objective also increases, but at a slower rate, and remains consistently lower 
than the Follower’s, reflecting the asymmetric benefits within the system. This confirms that users 
(followers) gain more from the added bundle flexibility, while the system operator (leader) faces 
limitations in optimizing their own outcome. From iteration 4 onward, both objectives plateau, indicating 
convergence. Overall, this result highlights the trade-off between user flexibility and system control: 
while the 5-bundle strategy boosts responsiveness and user satisfaction. 

 

 

 

 

 

 

 

 

 

 

                                                     

This graph shows how the optimization model converges for each bundle strategy by comparing the 
objectives of leader and follower across iterations. The 3-bundle case reaches optimality quickly in just 
three steps, with the perfectly aligned by the third iteration. This reflects a simple problem structure where 
each bundle includes only one energy type, allowing fast and efficient convergence. The 4-bundle 
strategy, which introduces a mixed-energy bundle (electricity + heat), takes one additional iteration to 
converge. The leader gradually catches up with the follower, showing that the model still handles 
increased flexibility well, while capturing more realistic consumer behavior. This wider and slower 
convergence indicates that while the model becomes more realistic by offering consumers more choice, it 
also becomes computationally heavier and harder to solve. From an optimization perspective, a smaller 
gap means better coordination between leader and follower decisions in the bi-level structure. Therefore, 
this graph highlights the trade-off of computational effort: more bundles provide better representation of 
consumer behavior but require more time to reach reliable solutions. The model remains robust, but the 
strategy choice must balance realism and efficiency depending on the system’s goals. 

 

 

 

Figure 14: 5 bundle allocation per Leader and follower 
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In the end, the results matched our main goals and showed that the model works well. Another important 
outcome is that the system didn’t need to buy any gas, which is a big step given Europe’s ongoing 

problems with gas price changes. We were able to cover all production costs while using our devices in 
an efficient and balanced way. This means the system stayed cost-effective and flexible. Additionally, our 
model proves to be reliable and realistic, especially because it treats competitors as active constraints 
within the system. 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Bundle Strategies (3, 4 Bundles) Over Iterations 
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Conclusion 
The main goal of this thesis was to optimize energy capacity planning using a mathematical approach. We 
developed a bi-level optimization model that captures the real-world interaction between two key actors in 
the system. By minimizing user costs, the model achieved a positive profit outcome. A central feature of 
the model was the bundle strategy, which allowed users to choose among different combinations of energy 
services—electricity, heat, and hydrogen. We tested various bundle configurations through multiple 
iterations to understand how flexibility impacts system performance. The results showed that more flexible 
options, such as the 5-bundle strategy, improve the system’s ability to meet user demand. However, this 

added flexibility also increases model complexity and computational time. Throughout this process, 
hydrogen technologies have played a major role. The hydrogen fuel cell (HFC) and hydrogen storage tank 
(HST) played essential in keeping the system stable and efficient. Other important technologies include 
electric boilers (EB) and direct electricity purchase for supplying electricity, HFC and EB for heat supply, 
and electrolyzer (EL) that use electricity to produce hydrogen, which is then stored in the HST for later use. 

Key Contributions 

• Developed a bi-level capacity planning and pricing model that balances leader profit with user cost 
savings. 

• Introduced a bundle-based pricing mechanism to simulate real-world energy service options and 
user choices. 

• Modelling an electric-heat-hydrogen system involving EB, EL, CHP, HFC, GB, and HST under 
realistic pricing and demand conditions. 

• Demonstrated the role of hydrogen technologies in reducing carbon emissions and increasing 
operational flexibility. 

• Implemented the full model in AIMMS, enabling simulation of multiple scenarios and convergence 
analysis (UB/LB) the objective of leaders and follower. 

 

Practical Implications 

This model can support community energy operators in designing pricing strategies and energy plans that 
reflect both economic and sustainability goals. The bundle strategy enables customized service offerings 
for users with different energy needs, while the use of hydrogen-based components improves system 
environmental performance. The framework provides a foundation for smarter, cleaner energy management 
that aligns with future decarbonization targets.  

 

Limitations 

While the model effectively simulates multi-energy interactions, it does not include renewable generation 
sources such as wind turbines or photovoltaic (PV) panels, which are essential for assessing fully 
decarbonized systems. Their absence limits the system’s ability to reflect variable renewable generation 

and zero-emission energy planning. Moreover, demand-side dynamics such as real-time user behavior or 
weather-driven variability were not included. 
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Future Work 

Future studies can explore how this model performs when integrated with renewable generation sources 
like PV and wind, or how it can be extended to include real-time demand forecasting, or more detailed user 
satisfaction models. As the energy sector evolves, too can this framework—adapting to new technologies 
and policy mechanisms that support the transition toward sustainable community energy systems. 
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