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Abstract   
Urbanization and environmental challenges have increased the need for innovative solutions to adapt urban 
mobility to new and ever-changing needs while promoting sustainability. This thesis explores the 
integration of solar-powered charging stations into electric scooter rental networks as a dual strategy for 
reducing greenhouse gas emissions and improving the economic feasibility of micro-mobility services. 
Through a simulation-based approach using AnyLogic, this study evaluates various configurations of 
charging infrastructure, user incentive strategies, and optimization techniques to identify the most effective 
solutions without the need for real-world pilot testing. 
 
The analysis encompasses five experimental scenarios: baseline comparisons, optimal placement strategies 
using metaheuristics, scaling infrastructure to population density, determining the ideal number of charging 
docks, and evaluating the impact of user discounts. Results demonstrate that strategic placement of solar-
powered charging stations can significantly enhance system efficiency, reducing conventional energy 
consumption by up to 90% and increasing renewable energy usage on average to 356 kWh every 6 months. 
Furthermore, offering discounts of 40% to customers returning scooters to solar-powered charging stations 
emerged as a viable strategy to encourage user adoption by 77% with only a 7,9% profitability decrease, 
when paired with the sale of excess solar energy to the grid. 
 
This research contributes to academic literature by bridging gaps between simulation-based evaluation 
methodologies and renewable energy-powered micro-mobility solutions, revealing insights into user 
behavior and sustainable infrastructure development. Practically, it provides a roadmap for e-scooter 
operators to implement cost-effective and environmentally friendly systems. However, limitations such as 
computational constraints and a limited scope highlight areas for future research. This work puts into 
evidence the transformative potential of integrating renewable energy into urban mobility.  
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1. Introduction  
Urbanization is rapidly transforming the global landscape, creating significant challenges for cities in 
maintaining livability and sustainability. Currently, 56% of the global population resides in urban areas, a 
figure projected to rise to nearly 70% by 2050 (Boin et al., 2023). This trend is straining urban transport 
systems, resulting in traffic congestion, long commutes, noise pollution, and environmental degradation. 
Even cities with stable populations face growing pressures as transport volumes increase and outpace the 
capacity of existing infrastructure. 
 
Cities are not only hubs of social interaction and innovation but also critical drivers of the global economy, 
generating over 80% of global GDP (Boin et al., 2023). Urban road networks, as key facilitators of 
economic growth and access to services, are under significant strain from high population densities and 
growing urban areas. These pressures contribute to cities consuming two-thirds of global energy and 
producing over 70% of greenhouse gas emissions (Boin et al., 2023). Such figures highlight the critical role 
sustainable transformations in transportation systems can play in mitigating emissions, pollution, and 
congestion. 
 
Urban mobility systems are becoming increasingly complex to manage, driven by evolving trends, such as 
traffic volume growth and the necessary transition to low-carbon mobility.  
 
OECD projections indicate that urban passenger transport demand will more than double by 2050 compared 
to 2015. Recent shifts in consumer behavior have increased challenges through the rapid growth of e-
commerce and the resulting surge in last-mile delivery vehicles. As transport infrastructure becomes 
increasingly constrained, stakeholders must address road safety and accident prevention while adapting 
infrastructure to accommodate emerging modes of transport like electric vehicles, e-scooters, and e-bikes 
(“OECD Environmental Outlook to 2050”, 2011). 
 
The key actor in this exponential growth in passenger transport, according to a study realized by 
McKinsey’s Boin et al. (2023, are passenger cars. They account for over half of transport-related emissions 
worldwide. In response, governments and institutions worldwide are committing to ambitious 
decarbonization goals. For example, the European Union aims to achieve climate neutrality by 2050 under 
the European Green Deal, while the United States has set a similar target of net-zero emissions by 2050 
(Boin et al., 2023). Given that transportation emissions contribute approximately one-fifth of total 
greenhouse gas emissions and are on an exponential trajectory, technological innovation aimed at 
mitigating their global impact is essential for achieving climate objectives (Gates, 2021). 
 
To adapt to these trends, cities are required to evolve and prioritize sustainability, livability and quality of 
life. Research emphasizes that successful cities are those that invest in transport network expansions, road 
infrastructure improvements, and pedestrian-friendly spaces (Doll et al., 2014). Measures such as dedicated 
public transport lanes, optimized bus routes, road modernization, and digital upgrades can significantly 
enhance the commuter experience while addressing the complex demands of urban mobility. 
As vehicle flows, pedestrian volumes, and cyclist activity increase, synchronized decision-making and 
coordination across transport ecosystems will become essential for sustainable urban development (Doll et 
al., 2014). 
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In this context of rapid urbanization and increasing pressure on transportation systems, efficient mobility 
solutions like electric vehicles (EVs), including electric scooters, are emerging as a transformative option. 
EVs have the potential to significantly reduce greenhouse gas emissions, air pollution, and noise levels, 
making cities cleaner and quieter. Their lack of engine noise minimizes urban sound pollution, while their 
sleek design reduces visual clutter. When powered by renewable energy, EVs further enhance 
sustainability, supporting the transition to greener urban mobility. 
Particularly, shared e-scooters address critical urban mobility challenges by offering a convenient, cost-
effective alternative for short trips, particularly those between 0.5 and 4 kilometers. They help reduce traffic 
congestion, lower greenhouse gas emissions, and complement public transportation networks by serving as 
a first- and last-mile solution (Rose et al., 2020). These attributes make e-scooters a practical and scalable 
intervention for modern urban transport systems.  
 
The convenience and scalability of this unmet need in urbanized society has not gone unnoticed, e-scooter 
rentals are one of the fastest growing worldwide consumer phenomena in the last years, currently in 
operation in more than 350 cities worldwide (Rose et al., 2020). The extraordinary growth of electric 
scooters is due to many factors, including advancements in hardware and operational strategies. Second-
generation scooters, designed for increased durability, now have a lifespan of 12 to 24 months, enhanced 
power, and advanced smart features like sensors, further increasing their appeal and environmental 
sustainability (Rose et al., 2020). Additionally, innovations such as swappable batteries are revolutionizing 
operational efficiency, enabling users to charge batteries in exchange for credits  (Pinheiro, 2023). Data 
analytics play a pivotal role in optimizing fleet utilization, with operators leveraging insights on high-
demand areas to strategically manage drop-off locations and maximize uptime. (Rose et al., 2020) 
 
Moving away from technological aspects, pricing strategies have also evolved, with companies raising per-
minute rates in both the US and Europe, alongside standard unlock fees. These adjustments have not 
affected users, who prioritize availability over marginal cost increases (Rose et al., 2020). Despite pressures 
from regulatory fees and fines, leading companies in mature markets are achieving positive margins through 
improved product durability, operational advancements, and strategic pricing (Rose et al., 2020). However, 
to achieve sustainable profitability and justify current valuations, companies must scale their models across 
a wider range of cities and micro mobility modes, ensuring operations are large enough to offset overhead 
costs. (Rose et al., 2020) 
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 Figure 1: Presence of E-scooters in major cities (Rose et al., 2020)  

 
The growth trajectory of the e-scooter market in the US and Europe can be envisioned in the short and long 
term. In the short term, the market is characterized by continued expansion in existing urban centers and 
new city markets. However, widespread regulatory restrictions will likely limit fleet sizes, capping the total 
number of e-scooters at approximately 1 million by the end of this phase, generating revenues of $3 to $4 
billion annually at a global scale (Rose et al., 2020). 
The long-term phase will be marked by the full integration of e-scooters into broader mobility systems. E-
scooters will expand beyond urban cores into suburbs and smaller towns, leading to a fleet size of 4 to 5 
million scooters and annual revenues of $12 to $15 billion (Rose et al., 2020). Europe is expected to 
dominate the market, with megacities contributing a significant share of the overall revenue. This phase 
represents the widespread adoption and sustainability of e-scooters as a transformative urban mobility 
solution. (Rose et al., 2020) 

While electric vehicles, in particular e-scooters, appear to be a sustainable and scalable solution for urban 
mobility, it is crucial to consider the source of the electricity that powers them. In many countries, the 
majority of grid electricity still comes from non-renewable sources (Wang et al., 2021; IEA, 2019). With a 
projected global fleet of 4 to 5 million e-scooters, the energy consumption during peak weekday usage, 
equivalent to 30,653% of full battery capacity, could result in substantial greenhouse gas emissions. 
Considering an average emission factor of 475 gCO₂/kWh in energy production, this market would 

contribute approximately 1.5 metric tons of CO₂e annually on a global scale (Wang et al., 2021; IEA, 2019). 
A crucial question arises for the electric scooter rental industry: how can these services become more 
environmentally friendly while simultaneously reducing overhead costs and boosting profitability? This 
thesis sheds light on how leveraging green energy solutions could revolutionize the industry. It seeks to 
demonstrate the potential of renewable energy to not only minimize the environmental footprint of shared 
e-scooters but also to create a more cost-effective and sustainable operational model. 

Specifically, this thesis will look at the possibility of integrating solar-powered charging stations into cities 
that already have electric scooter rental services present. This idea stems from Pinheiro (2023), who 
showcases a pilot project in Regensburg, Germany, where Zeus Scooters introduced solar-powered wireless 
charging stations, called "Zolar" stations, at strategic multimodal transfer points. These stations not only 
optimize operations by reducing the need for manual battery-swapping but also align with the company’s 
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commitment to sustainability. Such infrastructure enhances scooter availability, environmental 
responsibility and reduces operational costs, offering a glimpse into how renewable energy solutions can 
reshape micro mobility.  
 
To evaluate the economic and sustainability feasibility of this solution, this study employs a simulation-
based approach developed in AnyLogic. This platform provides several key advantages for modeling 
complex, dynamic systems, involving interactions between people, IoT-enabled electric scooters, charging 
stations, GPS systems, and solar-powered chargers. AnyLogic not only facilitates the modeling of such 
dynamic systems through its Java-based interface but also supports the seamless integration of external data 
sources. Moreover, it enables the construction of a dynamic and visually intuitive interface, allowing for 
real-time monitoring and analysis of simulation outcomes. 
The ability to develop and test a plethora of scenarios for implementing solar-powered charging stations 
within a virtual environment offers significant benefits. It allows for the exploration of multiple 
configurations and strategies without the high costs and logistical challenges of real-life pilot testing. The 
solution developed in this thesis aims to provide value for e-scooter rental companies looking to adopt more 
sustainable practices, demonstrating the potential of solar energy to drive environmentally and 
economically viable results. In conclusion, the research question to be answered is: Are of solar-powered 
charging stations an economically feasible way for Electric Scooter Rental Services to increase profitability 
while becoming more sustainable? 

2. Literature review  
Urban mobility has undergone a significant transformation in recent years, with electric scooters emerging 
as a key micro-mobility solution. This section explores the state of the literature regarding the key aspects 
of electric scooters within urban transportation systems, examining their impact on travel behavior, safety, 
and environmental sustainability. By analyzing the overlap with bike-sharing and EV systems and 
identifying gaps in current research, this review sets the foundation for understanding how renewable 
energy-powered infrastructure, such as solar charging stations, can be integrated to enhance their utility and 
sustainability. 

2.1 Renewable Energy Integration in Urban Infrastructure 

The integration of renewable energy into urban infrastructure represents a rapidly expanding field of 
research, reflecting both significant opportunities and critical challenges for sustainable cities. Perea-
Moreno et al. (2018) emphasize that this area has gained considerable attention over recent decades, fueled 
by growing urban populations and the pressing need to address climate change. Among the technologies 
facilitating the transformation of cities into energy-efficient hubs, solar energy stands out for its scalability, 
adaptability, and suitability for dense urban environments (IRENA, 2016; IRENA, 2020). 
 
According to Ulpiani et al. (2023), solar panels are increasingly utilized as decentralized energy sources 
that align with the vision of climate-neutral cities. Their integration into existing urban structures, such as 
rooftops, parking lots, and street lighting, demonstrates their potential to enhance urban energy systems. 
Notably, several pilot projects are exploring the use of solar energy to power electric vehicle (EV) charging 
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infrastructure, underlining its critical role in advancing sustainable urban mobility (Ulpiani et al, 2023). 
However, despite these promising developments, significant challenges remain in scaling renewable energy 
systems to meet the demands of emerging urban transport networks. 
 
Ulpiani et al. (2023) further highlights the importance of leveraging digital tools and fostering 
collaborations among stakeholders to address regulatory and operational barriers. Optimizing renewable 
energy technologies for urban mobility requires balancing energy efficiency, accessibility, and cost-
effectiveness. Researchers also point to the necessity of innovative system designs, such as microgrids and 
advanced energy storage solutions, to ensure an uninterrupted energy supply and resilience to fluctuations 
in urban energy demand. 
 
Legislative changes have also contributed to making renewable energy projects more viable. For example, 
as of July 1, 2022, new regulations in EU, allow micro-producers to generate more electricity than they 
consume annually without incurring overproduction charges from grid operators (Hemetsberger et al., 
2023). This policy incentivizes the installation of larger solar-powered systems and addresses one of solar 
energy’s major drawbacks, intermittency. It addresses it by enabling excess energy to be fed back into the 

grid during periods of low consumption. 
Such regulatory advancements open new areas for research, including in the context of solar-powered EV 
charging stations. By feeding surplus energy back into the grid when not actively charging scooters, these 
stations could create a secondary revenue stream for electric scooter rental companies. This approach not 
only increases the economic viability of renewable energy projects but also promotes the natural 
“greenification” of the electric grid. 
 

2.2 Urban Mobility and Electric Scooters 

Shared bikes were arguably the most prevalent micro mobility service in urban areas before the arrival of 
electric scooters (Want et al., 2021b). Since shared bikes and electric scooters cater to the same 
demographic, cities with established bike sharing systems are likely to provide a favorable environment for 
electric scooters. This has naturally led to research in the two systems to have common ground (Curl and 
Fitt, 2020; McKenzie, 2019; Zhu et al., 2020). McKenzie (2019) explored the spatial and temporal usage 
patterns of e-scooters and compared them to bike-sharing systems within a major urban center, identifying 
when and where e-scooters are utilized. Furthermore, Lazarus et al. (2020) revealed that e-scooters are used 
more frequently in lower-density communities compared to other shared modes. 

E-scooters have emerged as a promising solution to alleviate traffic congestion and reduce greenhouse gas 
emissions. Research in this area primarily addresses travel behavior (Bai and Jiao, 2020; Caspi et al., 2020; 
Jiao and Bai, 2020; Severengiz et al., 2020), safety (Che et al., 2020; Dhillon et al., 2020; Sikka et al., 2019; 
Yang et al., 2020), and environmental impacts (Hollingsworth et al., 2019).  
 
Travel behavior 
Some studies have investigated e-scooter riding patterns and the factors influencing usage. Bai and Jiao 
(2020) utilized a negative binomial regression model and GIS hotspot spatial analysis to examine e-scooter 
usage characteristics in U.S. cities, identifying correlations with ridership and urban features. Moreover, 
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Caspi et al. (2020) used spatial regression models to explore travel behavior, analyzing land-use 
characteristics, built environment, and demographics. However, a research gap has been identified for travel 
behaviour in the context of the willingness of users to deviate from intended destinations to accommodate 
for fixed infrastructure. This should be further explored in order to obtain a comprehensive understanding 
of how users would interact with eventual solar powered charging stations whose position is fixed. 
 
Safety 
Safety concerns for both riders and pedestrians have been widely documented, as the rapid expansion of e-
scooter services has led to an increase in crashes and fatalities. Misuse, such as parking on sidewalks or 
unsafe riding practices, threatens pedestrian safety. Fang et al. (2018) and Gossling (2020) examined the 
primary causes of e-scooter-related injuries, identifying falls and collisions as leading factors. Nevertheless, 
safety regarding e-scooter rental services remains a hot topic given the lack of proper safety equipment like 
helmets and protection; regulatory entities are constantly looking for ways to ensure their safe use 
(European commission, 2020). For example, these regulations have already put in place a speed limit of 20 
km/h in Europe. 
 
Environmental impacts 
There is still little research conducted on the environmental effects of e-scooters. Severengiz et al. (2020) 
conducted a life cycle assessment in Berlin, comparing the ecological impacts of e-scooters with private 
cars, public transport, biking, and walking. Hollingsworth et al. (2019) used Monte Carlo simulations to 
estimate the life cycle global warming potential of shared e-scooters. Additionally, Want et al. (2021b) 
discussed the significant impact of energy efficiency in e-scooters, warning that around 30% of energy 
consumption is consumed during the overall idle periods of e-scooters. 
 
Given the reduced number of research papers regarding the impact of electric scooter rental services, there 
is a necessity to expand the evaluation of the energy consumption and associated greenhouse gases 
emissions of this solution. Then to develop a way to mitigate the environmental impact, in doing this, 
implementing solar powered charging stations may contribute to the production of clean energy for scooter 
consumption.  

2.3 Optimization Techniques for Infrastructure Placement 

When analyzing methodologies for the placement of solar-powered charging stations, the scarcity of studies 
focused on electric scooters necessitates drawing parallels from research on EV charging stations. Several 
methodologies have been proposed, leveraging mathematical optimization, heuristic algorithms, and 
geographic analysis to optimize charging station placement. 
 
Calvo-Jurado et al. (2024) explore the use of Voronoi diagrams to strategically identify potential sites for 
electric vehicle (EV) charging stations, aiming to enhance intercity travel infrastructure. This study 
addresses challenges such as the scarcity of fast-charging stations and competition among providers, while 
considering user behavior and land-use regulations. Their approach relies on geometric analysis to optimize 
locations that are distant from competitors yet accessible from main roads. A case study in Catalonia, Spain, 
validates their methodology, incorporating factors like traffic density, average EV ranges, and regional 
planning guidelines. 
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Dorigo and Stützle (2003) present Ant Colony Optimization (ACO) as a compelling metaheuristic for 
infrastructure placement problems. Applying this concept to solar-powered charging stations, ACO's 
artificial pheromones and probabilistic decision-making offer a decentralized and adaptive approach to site 
selection. This is particularly valuable in dynamic environments where traffic patterns, energy demands, 
and solar energy availability fluctuate over time. Advanced variants such as the Ant Colony System (ACS) 
and MAX–MIN Ant System (MMAS) improve upon traditional ACO implementations by balancing 
exploration and exploitation more effectively, reducing the risk of getting stuck in local optima. 
 
Franco et al. (2024) develop a mixed-integer linear programming (MILP) approach to optimize the 
deployment of electric vehicle charging stations. Their methodology considers grid constraints, spatial 
distribution of demand, and economic feasibility to ensure an efficient network. Their study incorporates 
real-world energy consumption data and shows optimization techniques can enhance the scalability and 
reliability of charging networks. 
 
Another study by Xylia and Silveira (2018) examines the spatial distribution of EV chargers using a 
combination of geographic information systems (GIS) and MILP. Their framework uses energy grid 
capacity, land-use constraints, and projected EV adoption rates to propose optimal locations for new 
charging stations. The research highlights the importance of a data-driven approach in balancing 
accessibility, cost, and sustainability in infrastructure planning. 
 
Sadeghian et al. (2022) present an optimization model that integrates renewable energy resources into EV 
charging networks. By leveraging a stochastic programming approach, their study accounts for 
uncertainties in solar energy generation, demand fluctuations, and grid constraints. Their findings show the 
importance in building resilient and efficiency of solar-powered charging stations.  
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Source Goal/Objective Methodology 
EV Type 
(Scooter, 
Bike, etc.) 

Solar-
Powered 
Charging 

Other Relevant 
Dimensions 

Calvo-
Jurado et al. 
(2024) 

Optimize EV station 
placement for 
intercity travel 

Voronoi 
Diagrams 

Cars No 
Competition, 
Land-use 
regulations 

Dorigo & 
Stützle 
(2003) 

Optimize 
infrastructure 
placement efficiently 

Ant Colony 
Optimization 

General Yes 
Decentralized 
decision-making, 
adaptability 

Franco et al. 
(2024) 

Optimize three-phase 
EV charging 
deployment 

MILP Cars Yes Grid constraints, 
scalability 

Xylia & 
Silveira 
(2018) 

Optimize spatial 
distribution of 
charging stations 

GIS + MILP Cars No 
Land-use 
constraints, 
adoption trends 

Sadeghian et 
al. (2022) 

Integrate renewables 
into EV charging 
networks 

Stochastic 
Programming 

Cars Yes Energy storage, 
demand response 

This Work 
Optimize solar-
powered charging for 
e-scooters 

Hybrid approach 
(e.g., ACO + 
MILP) 

Scooters Yes 

Demand 
forecasting, 
multimodal 
transport 

 
Table 1: Summary of Optimization Techniques for Infrastructure Placement 

 
This review highlights the gap in the literature concerning the placement of solar-powered charging stations 
for electric scooters. Existing studies focus primarily on EVs, neglecting the unique challenges of 
micromobility infrastructure. By integrating methodologies such as ACO and MILP with demand 
forecasting and multimodal transport considerations, this work seeks to develop a comprehensive 
optimization framework tailored to e-scooter charging networks. 

2.4 Case Studies and Best Practices in Urban Charging Networks 

Studying successful implementations of renewable energy in urban infrastructure offers valuable insights. 
This section explores notable case studies to identify key success factors, focusing on how these examples 
can inspire the integration of solar-powered charging stations for e-scooter rental services. By examining 
different contexts, we can understand the challenges faced, strategies adopted, and outcomes achieved in 
implementing renewable energy systems.  
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2.4.1 Dubai 
The Dubai Electricity and Water Authority (DEWA) launched the EV Green Charger initiative in 2015 to 
support sustainable transportation through an extensive network of electric vehicle (EV) charging stations. 
By January 2022, this initiative had expanded to include over 325 stations with more than 560 charge points, 
catering to 5,107 EVs. Since its inception, DEWA's charging network has provided over 8,800 megawatt-
hours (MWh) of electricity, enabling EVs to travel approximately 58 million kilometers while reducing 
refueling costs by 73%. 
To enhance user experience, DEWA offers features such as automatic account creation for EV owners 
registered with Dubai's Roads and Transport Authority (RTA), enabling quick charging access within an 
hour. Additional services include account setup via DEWA’s website, smart app, or interactive voice 

response system. Registered users benefit from a personalized EV Green Charger Dashboard to manage 
their accounts, while guest users can access charging facilities through a streamlined system. This initiative 
supports Dubai's Green Mobility Initiative 2030 and demonstrates a successful model for integrating 
renewable energy with urban transport infrastructure (Salian, N., 2022). 
 

2.4.2 United States 
In the United States, drop-down streetlight and utility pole charging technology has been deployed in cities 
like Los Angeles and Melrose, Massachusetts. This innovation, incentivized by programs such as the 
Bureau of Street Lighting and National Grid pilots, offers a cost-effective and practical solution for urban 
EV infrastructure. According to the Center for Law, Energy & the Environment (CLEE), this approach 
leverages existing infrastructure, reducing installation costs by avoiding expensive trenching and sidewalk 
modifications. Chargers are mounted on elevated streetlights or utility poles, addressing vandalism 
concerns while enhancing pedestrian safety. Retractable charging cables that descend only when activated 
via a payment system further optimize usability and minimize visual impact. 
This technology is particularly suited for dense urban areas with limited ground space. Its rapid deployment 
potential and integration with public utilities make it an innovative model for expanding urban charging 
networks (Center for Law, Energy & the Environment, 2024). 

2.4.3 Italy 
The Photovoltaic Village in Alessandria, Italy, is an example of the integration of solar energy at an urban 
scale. This project rejuvenated a residential community by incorporating photovoltaic (PV) systems into 
multi-story buildings and public spaces. The PV installations provide 163 kW of power, meeting 100% of 
electricity consumption for common areas and up to 70% for apartments. Annual energy production ranges 
between 674–830 kWh/kWp, showcasing the potential for renewable energy to meet urban residential 
needs. 
The project was a collaborative effort involving public and private stakeholders, with public funds covering 
approximately 70% of the photovoltaic installation costs. Additional features include green areas, water 
ponds, and bioclimatic zones designed to foster community interaction and environmental sustainability. 
This initiative underscores the importance of stakeholder collaboration, funding mechanisms, and 
integrated urban design in successfully implementing renewable energy solutions (Formolli et al., 2022). 
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2.5 Research Gap 

This literature review has explored the current state of research on urban mobility, renewable energy 
integration, simulation frameworks, and optimization techniques. Studies on e-scooters highlight their 
potential to reduce traffic and emissions but reveal gaps in understanding user behavior around fixed 
infrastructure. Research on renewable energy emphasizes the scalability of solar energy but notes 
challenges in efficiency and cost-effectiveness, while simulation and optimization methods provide robust 
tools for evaluating systems such as these. 
 
Case studies from Dubai, the United States, and Italy illustrate best practices in integrating renewable 
energy into urban infrastructure, ranging from user-friendly EV networks to innovative solar-powered 
solutions. Despite these advancements, significant gaps remain in assessing the feasibility and strategic 
placement of solar-powered charging stations for e-scooter rentals which could differ from electric vehicles. 
The work in this thesis is novel since it will take various research areas that have not yet been put together, 
combining an evaluation of e-scooter user behavior, the integration of renewable energy infrastructure into 
urban landscapes for electric scooters, to develop a tool that can evaluate in virtually any scenario a clear 
implementation strategy for deploying solar-powered charging stations for e-scooters. By addressing these 
areas, the thesis aims to contribute directly to sustainability goals, tackle global warming concerns, enhance 
economic viability, and improve user convenience. 

3. Methodology   
The methodology of modeling and simulation (M&S) has evolved into a cornerstone of research across 
various disciplines, offering structured approaches to analyze and optimize complex systems. As discussed 
by Yin and McKay (2018), M&S encompasses a comprehensive cycle, including model design, 
development, and iterative processes of verification and validation, to ensure its applicability and reliability 
in solving real-world problems. These stages facilitate the accurate representation of both real-life dynamic 
systems, making M&S a versatile research tool. 
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 Figure 2: Modeling and simulation procedure (Yin & McKay, 2018)  

The foundational stages of modeling involve defining the system under study, as Shannon (1983) outlined, 
by creating a conceptual model to abstractly represent the key interactions and behaviors within the system. 
This is followed by data collection and preparation, which are critical for grounding the simulation in 
empirical evidence or synthetic datasets when real data is unavailable. The selection of a suitable simulation 
methodology is integral to capturing the system's nuances. Discrete-event simulation (DES), as introduced 
by Klingstam and Gullander (1999), is commonly employed for systems with well-defined processes and 
queues, while agent-based simulation (ABS), discussed by Macal and North (2007), excels in modeling 
decentralized systems where emergent behaviors arise from individual agent interactions. 

Subsequent phases involve constructing the simulation model within a selected software tool, such as 
AnyLogic or Arena, which ensures flexibility and scalability depending on the research's complexity. As 
highlighted by Sargent (2013), verification and validation are iterative and intertwined phases essential for 
model credibility. Verification ensures that the model operates as intended, adhering to its conceptual 
framework, while validation aligns simulation outcomes with real-world behaviors and results. Techniques 
such as sensitivity analysis, and stress condition testing are frequently employed to enhance model 
robustness. 

Finally, the experimentation phase allows researchers to test various scenarios, optimize parameters, and 
derive actionable insights. Yin and McKay (2018) emphasize the importance of documenting the process 
to ensure transparency and replicability. Such rigor in the M&S methodology fosters confidence in its 
findings and facilitates its application in disciplines ranging from industrial engineering to organizational 
systems. 

In the following chapters, this thesis will utilize the M&S methodology alongside a model developed in 
Anylogic to evaluate the sustainability and economic viability of implementing solar-powered charging 
stations in a virtual city. The model has been programmed in order to simulate 4 main agents (Pedestrians, 
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Scooters, Chargers and Charging stations) and how they interact with each other. To model pedestrian 
behavior a survey has been constructed and will be at the core of agent decision making. The simulation 
will be run to extract certain indicators like energy consumption, charging station utilization and economic 
benefits, among others. Nevertheless, before developing the model we first had to lay down the conceptual 
model. 

4. Conceptual Model   

4.1 Objective of the Conceptual Model   
The objective of the conceptual model is to define the various elements involved in the process of electric 
scooter usage within the urban environment under study. This model establishes the necessary foundation 
to simulate its operations and, through different variations, aims to fulfill the ultimate purpose of making 
recommendations regarding the implementation and optimization of solar-powered charging stations for 
electric scooters. 

 4.2 System Variables   

4.2.1 Decision Variables   
Decision variables are the elements in a model that can be controlled or adjusted to influence outcomes and 
achieve desired objectives. These variables directly impact the performance of the system being modeled, 
and adjusting them allows for exploration of different scenarios to identify local or global optimal solutions. 
In essence, decision variables are the levers that guide a model's behavior and help to evaluate the effects 
of different strategies on achieving set goals. Here are the decision variables that will be utilized in this 
model: 
 
Main Agent: 

● Number of scooters (present in the map during the whole simulation run). The optimal relationship 
between the number of scooters and the number of people in the simulation will be determined 
through the stress test. 

● Number of solar powered charging stations (present in the map during the whole simulation run). 
For the base case scenario, there will be no charging stations, following this analysis the number 
of charging stations required will be determined. 

● Number of docks at solar powered charging stations (present in the map during the whole 
simulation run).  

● Maximum X coordinate, set to a maximum of 2000 m in the X coordinate.  
● Maximum Y coordinate, set to a maximum of 2000 m in the Y coordinate. 
● Solar powered charging station placement method: random versus metaheuristic. 

Pedestrian Agent: 
● Discount offered to pedestrians for deviating from their route and leaving the electric scooter in a 

solar powered charging station. For the base case scenario, there will be no discount, following this 
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analysis the required discount will be determined. This discount will be measured as a percentage 
of the trip cost. 

 

4.2.2 Reference Variables  
Reference variables are values in a model that define specific characteristics of the system but are not 
controlled or adjusted during the simulation (Yin and McKay, 2018) They provide essential context and 
constraints, and allow for the evaluation of the outcome of the model. Reference variables are continuous 
during the simulation run and the experimenter can evaluate them constantly, however for the extraction of 
meaningful results the measurement of the reference variables is only done at the end. In conclusion, they 
are the values measured, here are the reference variables analyzed in this model: 
 
Energy 

● Conventional energy consumption of the entire system (kWh) 
● Solar power energy production of the entire system (kWh) 
● Solar power energy consumption of the entire system (kWh) 

Pedestrian behaviour 
● Number of agents traveling to final destination 
● Number of agents traveling to charging station 
● Total revenue generated (€) 

Economic viability 
● Energy cost (€) 
● Investment cost (€) 
● Simulation hotspots 

4.2.3 State Variables  
State variables represent the dynamic conditions within a model that evolve over time based on interactions 
and events (Yin and McKay, 2018). State variables are essential for capturing the model's progression and 
allowing for responsive decision-making based on the system’s real-time conditions. Here are the state 
variables that will be monitored in this model (modeled as intergers): 
 

● Number of scooters being utilized 
● Number of scooters available 
● Number of scooters low on battery (below 30%) 
● Number of scooters outside the system being charged 
● Number of charging docks available 
● Number of charging docks utilized 
● Solar power being generated (kWh) 

4.2.4 Auxiliary Variables   
Auxiliary variables are intermediate variables used to support calculations within a model (Yin and McKay, 
2018). They often derive values from other variables and help streamline complex formulas or enhance 
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readability without directly affecting the system's state. Here are the auxiliary variables that will be utilized 
in the model: 
 

● Price to unlock an electric scooter (€) 
● Price per minute to ride an electric scooter (€) 
● Duration of each ride (min) 
● Frequently traveled locations (It is assumed that in natural pedestrian behavior some destinations 

will be more visited than others. This leads to the creation of an auxiliary variable that stores which 
locations these are and where they are located on the map) 

4.3 Entities and Attributes   
● Main 
○ Number of pedestrians present in the virtual city. The number of pedestrians in the simulation will 

be established at 200 and then will be stress tested for robustness with other values. 
○ Average cost for electricity is imported from the QERY database and will be utilized to calculate 

the average cost for conventional electricity. (Consumer Electricity Prices for Households in 
Europe, 2024) 

● Pedestrians 
○ The speed at which the pedestrians will walk is to be established at 1.42 m/s. (Google Maps 

Community, 2021) 
○ The maximum time agents will be willing to walk to a scooter is to be established from the data 

gathered from the survey. 
○ t - is the factor that establishes the utility a pedestrian receives from every minute that they don’t 

have to walk to their final destination, this value was deduced from the survey. 
● Scooters 
○ The average rate at which the scooter consumes energy under normal conditions is 0.0000225 

kWh/m. (Barslund, 2024) 
○ Speed of the scooter is limited by EU commission therefore each ride will have their own unique 

speed that cannot surpass this value. (Overview of Policy Relating to E-scooters in European 
Countries, 2020) 

○ Battery size for this type of scooter is 0.45 kWh. (Barslund, 2024) 
○ An ID is defined for every scooter to identify it. 
● Solar powered charging stations 
○ Hourly solar radiation information will be fed into the system to simulate real world weather. 

(European Commission, n.d.) 
○ Each simulation run will commence at a different part of the year, so to randomize weather patterns 

and avoid biases. 
○ Panel wattage is the energy output these solar panels will generate given the solar radiation 100 

W/m2. (Amazon.com: Patio, Lawn & Garden, n.d.) 
○ The efficiency factor is defined as the maximum amount of solar energy that the solar panel can 

convert into electrical energy. It is defined at 30%. (Amazon.com: Patio, Lawn & Garden, n.d.) 
○ An ID is defined for every charging station and dock to identify it. 
● Charger 
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○ The speed at which the charger can travel is defined as the average traveling speed of a van inside 
an urban area. See section 3.11 on assumptions. 

○ The charger will utilize a 42V and 2 Amps standard charger. 
○ The maximum number of scooters that may be picked up at once by a charger is established at 8. 

See section 3.11 on assumptions. 

4.4 Resources   
The resources will provide a service to the entities. They have specific capacities and characteristics that 
limit the other entities in performing their activities. For example, pedestrians can’t ride scooters if none 

are available. The resources to be used in the model are listed below: 
● Scooters 
● Docks at the solar powered charging stations 
● Chargers 
● Solar irradiance  

4.5 IDEF0 Diagram   
The following IDEF0 diagram presents different levels of detail to facilitate understanding of the various 
"Processes" under study in this simulation. At the highest level, “Global Process" offers a general overview 
of the transportation process within the urban electric scooter system. Entities representing pedestrians 
appear on the left, each evaluating the need for transportation. On the right, pedestrians are returned to 
either general city locations (final destinations) or specific charging stations, based on agent’s utility, and 

destination proximity. Some agents may exit the system without completing their journey if a scooter is 
unavailable within their tolerance for proximity. 
 

 
Figure 3: IDEF0 Node: A0, No. 1 

The block in Figure 3 can be divided into two main macro activities: "Charging" and "Riding." As can be 
seen in figure 4. 
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In the Charging phase, the scooters serve as resources undergoing transformation. This process is governed 
by specific constraints, such as available sunlight or battery level, and relies on either a solar-powered 
charging dock or an external charger as resources. Once this activity completes and the scooter has gained 
sufficient charge, it is ready for the Riding phase.  
During Riding, a pedestrian agent takes the scooter and uses its battery to travel toward their final 
destination, depleting its charge as they go. 
 

 
Figure 4: IDEF0 Node: A0, No. 2 

 
Each macro activity can be further detailed, as shown in figure 5, by dividing the charging activity into two 
primary branches: charging via a solar-powered charging dock and charging via an external charger. 
The solar-powered charging dock is the simpler of the two methods, as it requires only the presence of a 
charging dock as a resource, with sunlight being the primary condition for charging. In contrast, charging 
via an external charger involves a sequence of more complex steps. This begins with the charger picking 
up a low-battery scooter, filtered by proximity, battery level, and available space in the van. Once the 
scooter is collected, the charger uses conventional energy to recharge it, a process determined by the 
scooter’s initial battery level and the charging rate. Finally, the charged scooters are dropped off in high-
demand locations to optimize availability. 



20 
 

 
Figure 5: IDEF0 Node: A01, No. 3 

 
In examining the activities within the riding macro activity, three primary sub-activities emerge. First, a 
pedestrian selects and picks up a scooter based on filtered conditions, such as distance to the scooter and 
its battery level. This initial action results in one of two outcomes: either the pedestrian picks up the scooter 
and begins their ride, or they decide against taking it and exits the system. Once the agent begins the ride, 
the utility of two options is calculated: riding directly to their destination or stopping at the nearest charging 
station and continuing on foot. This utility calculation determines the ride path taken. Upon arrival, the 
agent completes the ride by dropping off the scooter at the determined location, making it available for the 
next user in the system. 
 

 
Figure 6: IDEF0 Node: A02, No. 4 
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4.6 Flow Charts  
In this section, two flowcharts have been developed to illustrate the core logic driving the model. Figure 7 
details the charging process, highlighting the main decision points that determine the agents' actions, 
including scooter availability, battery level, and van capacity. These factors act as key decision gates, 
guiding the flow of activity for agents in this part of the model, as seen in the earlier IDEF0 diagrams. 
 
Figure 8 outlines the riding logic, which is more complex. Initially, pedestrians identify the nearest scooter 
and check if it is in the correct direction (between their current location and their final destination), the 
exact logic for pickup scooter refer to section 6.1.1. If the scooter does not meet this criterion, they continue 
evaluating the next closest scooter until they find one that does. It also verifies other criteria as if the scooter 
is available, if it has the minimum battery level to arrive at the final destination. Once a suitable scooter is 
identified, they assess if it is within their maximum acceptable walking distance. If no scooter is within this 
limit, they exit the system, choosing an alternative mode of transport, as there are no viable options to 
proceed. 
If a scooter within the acceptable distance is found, the pedestrian walks to it. Upon arrival, if the scooter 
is unavailable, they assess nearby alternatives. If no other scooter is accessible, they exit the system. 
Otherwise, once the scooter is secured, they decide whether to ride directly to their final destination or to a 
solar-powered charging station, depending on which option offers higher utility. 
If they choose the final destination, the process is straightforward. However, if they opt for a charging 
station, one last decision is required: upon arrival, if no charging dock is available, they continue to their 
final destination on the scooter. If a dock is available, they drop off the scooter and proceed on foot for the 
remainder of their journey. For the selection of the charging station agents will travel with the pre-
determined logic that they will always choose the charging station closest to their final destination. 
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Figure 7: Flow chart of charger activity 
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Diagram 8: Flow chart of riding activity 
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4.7 Activities   
Activities are defined as actions that agents within the model should be able to undertake. The activities 
defined for each agent are: 
Pedestrians 

● Decide whether to take an electric scooter as a means of transportation or not. 
● Choose the most convenient electric scooter on the app. 
● Walk to the chosen electric scooter. 
● Pick up the electric scooter. 
● Evaluate whether to ride to the final destination or to a solar powered charging station and walk the 

rest of the way. 
● Ride on the electric scooter. 
● Drop-off the electric scooter. 

Chargers 
● Decide whether to take an electric scooter based on the charge left and the distance to reach it. 
● Travel to the electric scooter. 
● Evaluates if there are more scooters to pick up nearby. 
● If the van is not full and repeats the previous 2 actions. 
● If the van is full or there are no more scooters, then he proceeds with the charging of the scooters. 
● Drop-off electric scooters 

4.8 Parameters   
Parameters are simulation inputs that dictate the behavior of the simulation run, the parameters used for this 
simulation are: 

● Warm-up: the number of days the model is run before the start of data collection. A 7-day warm-
up period was chosen, as reference values enter a stationary regiment by that time. This was 
observed empirically during the construction of the model. 

● Window: the time window over which a run will be conducted for data collection. A half-a-year 
window is chosen, as reference values are not expected to change significantly due to computational 
limitations and the repetition of arrival rates within this time frame. 

4.9 Exogenous and Endogenous Events   
Events are triggers within the Anylogic model, like signal sending/ receiving. The purpose of events is to 
allow other processes in the simulation to record data or trigger other actions. 
Exogenous Events 

● End of ‘Warm up’ period: At the end of the warmup period the statistics of resources are reset and 
the collection of data for reference variable commences.  

● End of ‘Window’ period: Determines the amount of time the simulation will be run to collect data 
points. 

● Change of the hour of the day. 
Endogenous Events 

● Arrival of a pedestrian agent. 
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● Arrival of a charger agent. 
● Pedestrians pick up a scooter on the street or at the charging station. 
● Pedestrian calculates his utility in traveling to the final destination or to a solar powered charging 

station and makes a decision and chooses which path to undertake. 
● A pedestrian arrives at the charging station. 
● Pedestrian arrives at final destination. 
● Pedestrian docks scooter at solar powered charging station. 
● Dispatch of charger agent. 
● The charger agent picks up the scooter. 
● Agents leave the system  

4.10 Process  
 The process begins with individuals experiencing a need to travel from one location to another within the 
urban setting. For this study, these individuals (referred to as pedestrian agents) will evaluate electric 
scooters as a potential mode of transportation. This initial consideration involves two factors: the pedestrian 
agent’s starting location and the proximity and direction of the closest available scooter. Pedestrian agents 

are assumed to have a constraint of convenience; they are unwilling to move away from their final 
destination to access a scooter. Therefore, only scooters situated along their intended route are considered. 
If a scooter meets this criterion and is within a reasonable distance, the agent initiates the process of 
acquiring it. 
 
Once a scooter is selected, the pedestrian agent proceeds to the scooter's location. Upon arrival, two 
scenarios are possible: either the scooter is still available and can be picked up, or it has been taken by 
another agent in the meantime. In the latter case, the agent reassesses the situation and searches for the next 
nearest scooter. Depending on the distance to this next option, the agent may decide to pursue it or abandon 
the scooter option entirely in favor of other transportation methods. A key assumption in this model is that 
each pedestrian agent performs a maximum of two attempts to locate a scooter; if unsuccessful after the 
second attempt, the agent exits the system. 
 
When an agent successfully acquires a scooter, they then evaluate their possible travel destinations based 
on the concept of utility (further elaborated in Section 6.1.2). The agent has two primary choices: proceed 
directly to their final destination using the scooter or detour to a nearby solar-powered charging station and 
continue to their destination on foot from there. This thesis will explore whether implementing an incentive, 
such as a discount, could motivate agents to select the charging station detour as a way to optimize the 
distribution of scooters across the network. 
 
If the agent opts to ride directly to their final destination, they complete the trip and leave the scooter at this 
endpoint. The scooter then becomes available for the next pedestrian in need of transportation. 
 
Alternatively, if the agent selects the charging station as an intermediary destination, they ride the scooter 
to that location. Upon arrival, they may either find an available charging dock or find all docks occupied. 
If a dock is available, the agent parks the scooter, initiating a charging session, and then proceeds on foot 
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to their final destination. However, if no docks are available, the agent continues directly to their destination, 
parking the scooter upon arrival. 
 
When scooters are left at solar-powered charging stations, they are recharged using solar energy generated 
by the station. Real-world solar data is incorporated into the system, ensuring that the charging behavior of 
scooters at these stations mirrors realistic environmental conditions and energy availability. This approach 
provides a basis for analyzing the potential impact of solar-powered infrastructure on the operational 
viability of an electric scooter network within a city. 
 
If scooters are dropped off in street locations rather than at a charging station, they become available for 
monitoring by external chargers. Should a scooter’s battery fall below a 30% threshold, chargers may be 

deployed to retrieve and charge it using conventional energy sources. 
 
The process for chargers mirrors that of pedestrian agents. Chargers monitor available low-battery scooters 
in their app and prioritize the closest scooter to their current location. Once a scooter is identified, the 
charger travels to the location, collects it, and places it in their van. Each van can hold up to eight scooters 
simultaneously. After collecting a scooter, the charger evaluates whether the van has reached capacity or if 
there are no additional low-battery scooters nearby. If either condition is met, the van returns to charge the 
collected scooters. Once all scooters have been recharged, they are dropped off at designated hot spots 
across the map, making them available again for use by pedestrian agents. 

4.11 Assumptions  
Multiple assumptions were made in the development of the simulation model. These are categorized into 
market, operational, city layout, charging and battery management, environmental, logistics and operational 
(chargers) assumptions as follows.  
 
Market Assumptions 

● No Competition: The model assumes that the simulated city has no other scooter rental companies, 
representing a monopoly in scooter rental services. 

● Fixed Pricing: Prices are assumed to be fixed and independent from demand. For simplicity, the 
model uses average scooter rental prices in the EMEA region. 

● Simplified Charger Motivation: Although in reality chargers prioritize scooters based on multiple 
factors such as battery level, proximity, and spot prices paid by the company, the model simplifies 
this by excluding the monetary aspect of charging. Chargers are motivated solely by proximity and 
a cut-off criterion of <30% battery level, assuming a fixed charging cost, while the company incurs 
only electricity expenses. 

 
Operational Assumptions 

● Scooter-to-Population Ratio: The city model maintains a fixed scooter-to-population ratio to ensure 
a specified operational level. This scooter-to-population ratio will be determined empirically 
through the stress test. 

● Electric Scooter Model: The base model taken to simulate the scooters in the model will be the 
Lime Gen4, with its energy consumption and battery capacity (Barslund, 2024). 
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● Average Energy Consumption: To streamline the model, scooter energy consumption is 
standardized to an average rate, disregarding variations due to factors such as gradient, rider weight, 
and road grip. 

● Constant Walking Speed: Pedestrian agents are modeled with a constant walking speed, without 
accounting for real-life variability. 

● Agent Scooter Search Behavior: Agents are assumed to use an app to locate and select a scooter 
before traveling to its location. Upon arrival, there is a possibility that the scooter is no longer 
available. In such cases, agents will search for another scooter with a certain probability. However, 
for the sake of simplicity, agents are limited to a maximum of two search attempts and will not 
search for a third time. This assumption streamlines the modeling of agent decision-making and 
reflects a balance between realism and computational efficiency. 

● Infrastructure: Scooters are believed to be already present in the city in which the evaluation of the 
implementation of charging stations is taking place. Therefore the cost of purchasing e-scooters is 
not considered. 

 
City Layout Assumptions 

● City Structure: The simulated city is represented as a square and rectangular grid bounded by 
maximum X and Y coordinates. Each block within this grid is a regular square with 100-meter-
long sides. 

● Conglomerates Distribution: The city contains three types of location conglomerates (work, 
school, and other activities), so when referring to work/school/activity location it refers to a 
conglomerate. 
 

Charging and Battery Management Assumptions 
● Charging Status Update: To optimize resource usage, the charging status of scooters is updated on 

an hourly basis in the model. If a scooter is retrieved from a charging station before the next 
scheduled update, the battery status updates immediately upon retrieval. 

● Battery size is assumed to be the same for all scooters and the same size of currently used 
commercial scooters. 

● Idle energy consumption will be considered zero due to computational limits in the Anylogic 
model. 

● Chargers will continue to search for scooters until either their van is full or there are no more 
scooters below the 30% threshold. 

 
Environmental Assumptions 

● Solar Radiation Levels: Solar radiation levels across the simulated city are assumed to be equivalent 
to the average radiation experienced at Politecnico di Torino over a sample year. For simplification, 
the entire city is modeled as if it receives uniform radiation, measured at a single point. Another 
consideration is that no shadowing effect has been considered as it may occur in a built 
environment. 

● Uniform Solar Panel Specifications: All solar panels in the model are assumed to be identical, based 
on the specifications of a commercially available solar panel. 

 
Logistic and Operational Assumptions for Chargers 
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● Average Travel Speed of Charger Vehicles: To account for factors such as start and stop times, 
scooter pick-up logistics, and urban traffic, charger vehicles operate at a uniform speed ranging 
from 20 to 40 km/h. 

● Van Capacity for Scooter Transport: Each van used in charging operations is limited to a maximum 
capacity of eight scooters, reflecting physical transportation constraints in urban settings. 

5. Data Model and Quantification  
 The Data Model and Quantification section provides a comprehensive overview of the foundational 
elements that define the structure and behavior of the AnyLogic simulation. It delves into how raw data is 
transformed into actionable inputs, ensuring that the model accurately represents the complexity of the real-
world system being analyzed. A particular focus is placed on the use of stochastic variables, capturing the 
inherent uncertainties and randomness in agent behavior and environmental conditions. By leveraging both 
survey data and probabilistic modeling techniques, this section outlines the methods used to quantify 
variables and establish the relationships between them, laying the groundwork for robust simulation 
outcomes. 

5.1 Survey Development 
A survey was chosen as the primary data collection method due to its ability to capture diverse individual 
preferences, behaviors, and decision-making patterns in a systematic manner. Surveys offer a direct and 
efficient way to gather large volumes of data from a representative population, making them ideal for 
modeling agent-based behaviors (Breidert et al., 2006). By incorporating real-world insights into the 
simulation, the survey provides a robust foundation for validating the model’s assumptions and outputs. 

This ensures that the simulation not only reflects theoretical constructs but is also grounded in actual user 
preferences and urban mobility trends, enhancing its credibility and applicability. 
 
The survey (Appendix A.1) was designed to gather accurate data to model agent behavior and preferences 
in the simulation. Careful consideration was given to both the phrasing and sequence of questions to 
minimize bias and induce thoughtful, representative responses. This framing helped set the context without 
leading respondents toward specific answers. Participants were assured that their responses would be 
anonymized, to avoid biases. 
 
The questions were constructed to extract measurable and actionable data while maintaining clarity and 
accessibility for respondents. Multiple-choice formats, Likert scales, and open-ended options were used to 
provide both structured and qualitative insights.  
 
By aligning the survey with the key variables and hypotheses in the model, the responses obtained enabled 
accurate quantification of pedestrian agents’ behavior, preferences for scooter use, and reactions to potential 

incentives. This structured approach ensured that the data collected could be seamlessly integrated into the 
model, providing a reliable basis for stochastic variables and agent decision-making logic. 
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To ensure a broad and representative dataset, the survey was distributed to a diverse group of individuals 
spanning various age groups and geographic locations. The survey was posted on LinkedIn, WhatsApp 
Groups and Instagram. Nevertheless, the distribution followed a non-probabilistic, convenience sampling 
approach, meaning participants were selected based on accessibility and willingness to respond rather than 
random selection. This allows for quick data collection but may introduce biases due to the self-selection 
of respondents. 

5.2 Survey results 
The survey results section presents the findings from the survey conducted to gather data on urban mobility 
patterns and preferences, with a focus on electric scooter usage. The survey was active for three weeks from 
October 29, 2024, to November 19, 2024, during which 61 responses were collected. The following section 
will go into detail on all the data collected and their main implications.  

Commuting behavior and frequency 
In the first series of questions, participants were asked about their regular primary commuting patterns to 
gain an understanding of their daily travel behaviors. The survey gathered information on where individuals 
commute regularly, the frequency of their commutes, and the mode of transportation they typically rely on. 
These questions were designed to provide a baseline understanding of urban mobility habits.  
 

 
Figures 9: Pie Chart of regular commuting destinations 

 
From the data collected it can be observed that commuting target preferred locations and the majority of 
commuters are not randomly choosing their final destination. We can observe the main destination 
frequented is work, followed by school and then other activities and no regular commutes. By looking at 
the histogram it would be fair to assume that the data follows a triangular distribution. Destination of agents 
will therefore be modeled as a triangular (1,2,4). Where in the case that the agent has no regular commute, 
they will be generated a random location on the map as a final destination. 
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Following this analysis the next step is to extract the frequency with which agents commute to their 
destination. In the following exhibits we can observe the results obtained. 

 
Figures 10 and 11: Pie Charts of frequency of travel  

 
Figures 12 and 13: Histograms of daily demand for transportation 

 
Using the data collected a couple of conclusions may be drawn. The first is that around half of the 
participants travel regularly only 4 - 5 days a week, then the other half is distributed among 36% of less 
frequent commuters and 16% of very regular commuters. Since the percentage of users that do not hold a 
regular commute on weekends is the same we can assume that the users traveling 4 - 5 and 6 - 7 times a 
week are all commuting to work, as participants that do not travel as regularly travel have a higher 
probability of doing other activities. 
The second is that the need for transportation may follow two gamma distributions, this is because both 
demands have very distinct peaks at 8 am and 6 pm respectively. This would coincide with the results 
obtained from the first question as these are the most common hours to commute to work.  
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Figure 14: Histogram of frequency of travel and fit distribution 

 
However, there is an inherent bias in this question, most people whose primary commuting activity is work 
might have other commuting activities they realize during the day and on weekends. It was therefore 
decided to re-evaluate this set of questions inquiring about secondary commuting activities. In the following 
diagrams secondary commuting habits may be observed. 
 

 
Figures 15: Pie Chart of secondary commuting destinations 

 
The data collected reveals distinct preferences for certain locations, particularly along primary commuting 
routes. However, secondary routes are often less predictable, with random locations playing a more 
significant role. To validate the initial assumption that these locations can be modeled using a triangular 
distribution, further analysis is necessary. This evaluation will determine whether the observed patterns 
align with the assumed distribution model. 
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Figures 16 and 17: Pie Charts of frequency of travel to secondary locations 

  
Figures 18 and 19: Histograms of daily demand for transportation 

 
Building on the previous analysis, secondary commuting routes demonstrate varying frequencies across 
different days of the week and times of the day. To address this variability, the decision was made to 
aggregate the demand (primary plus secondary commuting) and analyze the results collectively. 

 
Figures 20 and 21: Analysis of aggregated demand 
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As shown in Figure 20, the preferred destination for the aggregate demand can still be effectively modeled 
using a triangular distribution with the form X ~ Triangular (1, 2, 4). However, upon closer observation, 
the hourly demand for scooters has shifted, exhibiting multiple peaks throughout the day. Consequently, 
the gamma distribution is no longer suitable for modeling this secondary demand. Instead, after considering 
various distributions it is hypothesized that the aggregate demand could be represented by a Weibull 
distribution, as illustrated in Figure 21. To validate this hypothesis, a goodness-of-fit test was conducted. 
 
Goodness-of-fit tests are used to globally analyze how accurately the proposed distribution models describe 
the variable under study. These tests are classified as "non-parametric tests" because they do not estimate 
any parameters but rather assess the overall distribution. (Addelman et al., 1979) 
There are various methods to analyze goodness-of-fit; in this work, the Chi-Square test will be developed. 
This test will allow us to determine if there is statistical evidence that the distribution does not correspond 
to the variable under study. It is important to note that this test only serves to find statistical evidence to 
reject a distribution; failure to reject the test does not prove that the chosen distribution is correct. 
In the first place, the goodness-of-fit test will be conducted under the null hypothesis that the demand for 
transportation follows a Weibull distribution. 
 

𝐻0 =  𝑇ℎ𝑒 𝑑𝑒𝑚𝑎𝑛𝑑 𝑓𝑜𝑟 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑎 𝑊𝑒𝑖𝑏𝑢𝑙𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 
 
As an initial step, it is necessary to calculate statistics for this test. First, a table is created to record the 
absolute sample frequencies (fa) for each class (C), ensuring that classes with an absolute frequency. Next, 
two additional columns are added to the same table under the assumption that the null hypothesis (𝐻0) is 
true, meaning that the variable follows a Weibull distribution. The parameters of the Weibull distribution 
are estimated with the Minitab Software, with their values summarized below. It is referred to as test 1 - 
beginning trip and 2 - return trip. 

 
𝑘1̂ = 2.312 , 𝑘2̂ = 4.493 
𝜆1̂ = 11.85, 𝜆2̂ = 18.48 

 
Now we calculate the probabilities (pi) that a variable x with this Weibull distribution falls between the 
values of each class, i.e., the probability of each interval according to the distribution. The other column 
we add represents the expected frequencies of observations if the distribution were normal (fe), calculated 
as: 

𝐸(𝑓𝑒𝑖) = 𝑁 ∗ 𝑝𝑖 

where N is the number of observations, which in our case is N=97. 

Similarly, the following Chi-Square statistics are used to compare the expected frequencies with the 
observed absolute frequencies: 

∑

𝑛𝑘

𝑖 =1

(𝑓𝑎𝑖 − 𝑓𝑒𝑖)2

𝑓𝑒𝑖
=  𝑊 ∼ 𝑋𝑛𝑘−𝑝

2  
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Where 𝑛𝑘is the number of classes and 𝑝 is the number of estimated parameters, in this case 𝑝 = 2. When 
performing the test, we will consider a significance level of 𝛼 = 0.05. 
The critical value (𝑊𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) is then defined as: 

 𝛼 = 𝑃(𝑊 ≥ 𝑊𝑐𝑟𝑖𝑡𝑖𝑐𝑜) 
After computing all calculations (Appendix section 4.2) ; 

𝑊𝑜𝑏𝑠1 =
(𝑓𝑎𝑖 − 𝑓𝑒𝑖)2

𝑓𝑒𝑖
 = 22.622  

𝑊𝑜𝑏𝑠2 =
(𝑓𝑎𝑖 − 𝑓𝑒𝑖)2

𝑓𝑒𝑖
 = 30.038 

Calculating the p-value; 
𝛼∗ = 𝑃(𝑊 ≥ 𝑊𝑜𝑏𝑠) 

 
𝛼∗ = 𝑃(𝑊 ≥ 22.62 ) = 0.00015 

𝛼∗ = 𝑃(𝑊 ≥ 30.038 ) ≃ 0 
 

Given that the p-value (0.00015) is smaller than the 5% significance level, we can conclude that there is 
statistical evidence to reject the null hypothesis, meaning that the variable in question does not follow a 
Weibull distribution. 
In conclusion, the goodness-of-fit test using the Chi-Square distribution statistic indicates that the 
distribution should be rejected, meaning that neither the Weibull nor the Gamma distribution are suitable 
models for this variable. 
Nevertheless, having found that neither distribution can perfectly model the empirical distribution a 
custom distribution will be modeled using the Weibull distribution but modifying the probability densities 
to accommodate for unusual peaks. This will be further developed in the operational model section 5.1.1. 

Customer’s willingness to pay 
After analyzing the agents' travel behavior, the next critical piece of information to extract was participants' 
willingness-to-pay (WTP) for transportation. However, WTP is not a straightforward metric that can simply 
be asked in a survey, as it is deeply influenced by each individual's unique circumstances. Understanding 
this metric requires nuanced analysis, as it represents a fundamental aspect of consumer decision-making. 
In fact, entire industries dedicate significant resources to understanding customer WTP, recognizing it as a 
key factor in maximizing value from economic transactions. 
 
Breidert et al. (2006) highlights the importance of accurately understanding customer WTP as a cornerstone 
for effective pricing strategies, product development, and market forecasting. It emphasizes that WTP is 
not a static metric but a nuanced reflection of customer preferences, influenced by factors such as product 
features, pricing, and market conditions. Various methods are discussed for estimating WTP, including the 
analysis of market data, experimental approaches, and survey-based techniques.   
 
Surveys are highlighted as a widely used and cost-effective method, especially in cases where actual market 
data is unavailable. However, the authors caution that surveys must be carefully designed to avoid common 
pitfalls such as bias or inaccuracies stemming from hypothetical responses.  
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To address potential biases, the survey in this thesis was designed to estimate participants' current WTP by 
focusing on their existing transportation choices. This was achieved through two key questions: the duration 
of their current journey and the associated cost. Using these two data points we get the participants 
willingness to pay per minute of commuting transportation. While it is acknowledged that participants may 
not always spend their maximum WTP, this approach provides a practical and reliable approximation. To 
closely simulate real-world decision-making scenarios, this level of accuracy is considered sufficient and 
enables meaningful insights into commuter behavior. 
 

  
 Figures 22 and 23: Bar charts of commuting duration and cost for primary travel 

 
Since participants were also asked about their secondary commuting routes, the decision was made to 
capture their WTP in this context as well. This approach allows for an analysis of how participants' values 
differ between primary and secondary commuting scenarios, providing a more comprehensive 
understanding of their decision-making processes. 
 

  
 Figures 24 and 25: Bar charts of commuting duration and cost for secondary travel 

 
As previously explained, aggregating these results allows for the calculation of participants' willingness-
to-pay by dividing the amount they spend on their commute by the duration of their trip. The results are 
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presented in Figure 26. Based on these findings, it was hypothesized that two probabilistic distributions 
might fit the dataset: a lognormal distribution and a gamma distribution. After conducting the goodness-of-
fit test for both, the Gamma distribution yielded a p-value of 0.13039, indicating insufficient evidence to 
reject the null hypothesis that WTP follows this distribution. In contrast, the lognormal distribution 
produced a p-value of 0.00234, leading to the rejection of the null hypothesis due to the sharpness of the 
lognormal curve. 
 

 
 Figure 26: Histogram of participant’s WTP and Gamma fit distribution 

 

Finding a scooter 
In a subsequent series of questions, participants were asked about their behavior and decision-making when 
using electric scooters as a mode of transportation. Specifically, the survey explored how long individuals 
would be willing to search for a scooter, what actions they would take if a scooter was unavailable at their 
declared location, and the maximum distance they would be willing to travel to find an alternative scooter. 
These questions were designed to provide insights into user tolerance for inconvenience, adaptability in the 
face of unavailability, and the spatial limits of scooter accessibility. This information serves as a foundation 
for modeling agent behavior in scenarios involving scooter availability. The results can be seen in  figures 
27, 28 and 29. 
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 Figures 27 and 28: Bar chart of maximum walking time and pie chart of scooter unavailability 

 

 
 Figures 29: Bar chart of maximum walking time to find a second scooter 

The parameters will therefore be established as: 
● Maximum amount of time willing to walk to pick up a scooter ∼ triangular (1.5, 3.5, 10) 
● Percentage of users that will abandon the system upon not finding the first scooter: 19% 
● Maximum amount of time willing to walk to pick up a second scooter ∼triangular (1.5, 3.5, 7.5) 

5.3 Random Variables   
1. Pedestrian Random Location Selection: When pedestrians are not traveling to a frequently visited 

location, such as work or school, their destination is determined randomly using a uniform 
distribution. This means that their destination coordinates are generated independently along the X 
and Y axes, with each axis having values uniformly distributed between 0 and the maximum 
allowed coordinate (X and Y). 

2. Scooter Dispersion Before Warm-Up: Before the simulation begins, scooters are distributed across 
the map to ensure maximum dispersion and even availability. The code will divide the map into a 
grid, with each cell representing a potential placement slot for a scooter. The grid size is determined 
based on the map's dimensions (X and Y) and a fixed block size. Scooters are then assigned to grid 
positions at regular intervals, calculated to evenly spread them across the available slots. Each 
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scooter's specific position within a cell is determined by its row and column in the grid, ensuring a 
structured and uniform initial layout.  

3. Charging Station Placement in Hot Zones: Charging stations are strategically placed in "hot zones" 
identified during the simulation's warm-up phase. The warm-up phase collects data on the most 
frequented travel locations. Using this data, charging stations are placed within these zones based 
on a uniform distribution.  

6. Operational Model  
The AnyLogic model is designed to simulate a dynamic "virtual city" environment where various agents 
interact, representing a simplified yet realistic urban ecosystem. The Main agent serves as the core 
framework, encompassing the spatial and logical infrastructure required for the interactions among the 
primary agents: Pedestrian, Scooter, ChargingStation, Charger and supporting processes. This agent acts as 
the foundation for establishing the simulation's physical boundaries, agent behaviors, and the rules 
governing their interactions. 
 
To define the city's structure, two parameters, maxX and maxY, are introduced, representing the maximum 
horizontal and vertical extents of the urban area. These parameters establish the perimeters of the city, 
ensuring a controlled and measurable simulation space. Within this perimeter, the city is divided into a grid 
of equally sized 100m x 100m square blocks, aligning with the hypotheses and assumptions defined in the 
conceptual model. This grid-based approach provides a logical and manageable representation of streets 
and blocks, facilitating agent movement and interaction while maintaining computational efficiency. 
 
Once the city’s spatial boundaries and street layout are established, the focus shifts to implementing the 

interaction logic within the Main agent. The Discrete Event Simulation (DES) library in AnyLogic is 
utilized to model the sequential and event-driven processes that drive the agents' behaviors. These include 
the pedestrian agents' movement patterns, the scooters’ availability and utilization dynamics, and the 

operation of charging stations.  

6.1 Development of Different Blocks  
To enhance the clarity of the AnyLogic model's development, the process was divided into several distinct 
blocks, each of which will be explored independently. The following sections will delve into each block in 
detail. 
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 Figures 30: Complete main agent logic flows 

6.1.1 Block 1: Pedestrian arrival and scooter matching 

6.1.1.1 Pedestrian Agent 
First, the process of pedestrian arrivals was modeled. During the model's startup, the pedestrian population 
is generated based on a parameter called nrPedestrians, which defines the size of the population. This 
parameter allows for flexibility in setting the number of pedestrian agents at the beginning of the simulation, 
enabling the model to scale based on varying urban scenarios. At time = 0, all non-operational parameters 
of the pedestrian agents are initialized to zero, ensuring that the agents are in a neutral state at the start of 
the simulation. In this initial state, the agents are placed in their “base” state within the statechart, which 

governs their behavior and transitions throughout the simulation. 
 
In the context of agent-based modeling (ABM), statecharts play a crucial role in defining the decision-
making process and behavioral transitions of agents. ABM simulates the actions and interactions of 
autonomous agents within a defined environment, with each agent responding to both internal states and 
external conditions. The statechart functions as the "brain" of the pedestrian agents, determining how they 
react to various events and changes in their environment. It consists of different states and the transitions 
between them, which are triggered by specific conditions. These state transitions allow pedestrian agents 
to adapt their behavior dynamically, such as transitioning from a base state to a searching state upon 
deciding to acquire a scooter. The statechart function is utilized by all agents to different extents depending 
on the requirements.  
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 Figure 31: Complete pedestrian agent parameters, functions, events and statechart 

 
Once the model has created the virtual city and generated the pedestrian agents, the agents begin entering 
the system throughout the day, following a custom distribution developed specifically for this study. As 
detailed in the Data and Quantification section of this thesis, the custom distribution was constructed after 
determining that distributions, such as the Weibull and Gamma, were unsuitable for modeling the empiric 
results obtained in the survey. This conclusion was reached based on the results of the Chi-Square goodness-
of-fit test, where a p-value of 0.00015 provided statistical evidence to reject the null hypothesis, indicating 
that these distributions could not adequately represent the observed data. 
 
To address this limitation, a custom distribution was created using the tools provided by AnyLogic. This 
approach leverages the Weibull distribution as a base but adjusts its probability densities to account for 
observed irregular peaks in the data. By incorporating these modifications, the custom distribution better 
reflects the behavior observed in the survey data. This methodology ensures the arrival patterns of 
pedestrian agents into the system, with separate distributions tailored for the outward and return trips.  
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 Figure 32: Preview of custom distribution to model agent’s arrival outward and return respectively 

 
Furthermore, the schedule tool in AnyLogic is utilized to proportionally adjust the total number of arrivals 
based on the day of the week. This adjustment accounts for variations in travel behavior observed in the 
survey results, where differences were noted in the proportion of individuals traveling on weekdays versus 
weekends. The schedule tool enables the integration of these proportions into the model, ensuring that the 
distribution of pedestrian arrivals aligns with the survey information.  
 
Once the schedule triggers the arrival of an agent, an event is executed that iterates through all the 
pedestrians in the population. From this population, a random pedestrian currently in the “base” state is 

selected, indicating they are not yet active within the system. This pedestrian is sent a message labeled 
"Inject", which transitions them out of the base state and into the macro state inNeedsForTransport. 
 
This transition initiates a series of subsequent activities. Upon leaving the base state, the pedestrian agent 
is assigned both an initial location and a final destination, defining their specific journey within the virtual 
city. As discussed in Section 5.2, the initial and final locations for pedestrian agents are determined using 
a triangular function with the shape triangular (1,2,4). This function generates four distinct cases for 
assigning locations: 1) other activity, 2) work, 3) school/university, and 4) random location. To implement 
this, during the startup of the model within the Main agent, a certain number of conglomerates, representing 
frequently traveled locations, are generated at specific coordinates. These locations are stored in vectors (or 
collections, as referred to in AnyLogic). The generation of these locations is random, ensuring that each 
simulation run has a unique configuration of coordinates, which are preserved throughout the run. For 
example, if a pedestrian's case falls under the "work" category, they will be randomly assigned to one of 
the work locations created during the simulation startup. This process ensures that each pedestrian has a 
starting point and a destination that aligns with realistic urban patterns. Refer to appendix A.4.2 to view 
how these locations are generated. 
After exiting the base state, the Main agent takes over, inserting the pedestrian into the “pedestrian” enter 

block, which serves as the entry point for the agent’s journey within the system. At this time, it’s important 
to highlight that the explanation of the model will occur in parallel, what happens within the DES in the 
main agent and what happens within the pedestrian agent in the statechart, please refer to figures 30 and 31 
respectively. 
 
Once the pedestrian agent enters the “inNeedsForTransport" macrostate, it transitions into the 
browseScooter state. Upon entering this state, the walkTime function is executed, and its result is stored in 
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the variable timeToScooter. This function models the process of an agent, in real life, opening their mobile 
app and searching for the nearest available scooter on the map. 
 
In the AnyLogic model, we replicate the decision-making process that occurs in the agent's mind. The 
pedestrian begins by scanning through the entire scooter population, evaluating which scooters are 
available. Once an available scooter is identified, the agent checks to determine whether the scooter is in 
the right direction. Additionally, the agent verifies whether the scooter has enough battery to reach the final 
destination. When all these conditions are met (availability, direction, and battery), the agent selects the 
scooter that is closest and meets all criteria. For the purposes of the statechart, the agent identifies the 
closest scooter and calculates the walking time required to reach it.  
 
Each pedestrian agent is assigned a specific tolerance for walking to reach the closest scooter. This tolerance 
represents the maximum time a pedestrian is willing to walk and is modeled using a triangular distribution 
with the parameters triangular (90, 210, 600), where the values are expressed in seconds. 
When an agent identifies a scooter that meets all criteria during the “browseScooter” state, the walking time 

to that scooter, stored in “timeToScooter”, is compared against the pedestrian’s tolerance limit. If the 

calculated walking time falls within the tolerance threshold, the agent transitions from the “browseScooter” 

state to the “scooterChosen” state. If not, the agent will exit the system. 
 
At this stage, the pedestrian agent transitions from the “enter” block to the “decision” block labeled 
“pedOrScooter” within the Main agent. Here, a critical condition is evaluated to determine the agent’s next 

action. The condition is defined as: agent.statechart.isStateActive(agent.scooterChosen).This condition 
checks whether the pedestrian has successfully transitioned from the “browseScooter" state to the 

“scooterChosen" state in their statechart. If the condition is true, it indicates that the pedestrian has found a 
scooter within their tolerance limit and is prepared to continue their journey using the selected scooter. The 
agent proceeds along the process flow to begin the scooter journey. However, if the condition is false, it 
implies that the agent either did not find a suitable scooter or chose not to pursue one due to the constraints 
of direction, battery sufficiency, or walking tolerance. In such cases, the pedestrian exits the system, 
symbolizing their decision to either walk to their final destination or opt for an alternative mode of 
transportation outside the scooter-sharing network. In the case the agent exits the system at this stage he 
will be sent a “No nearby scooter” message forcing him to exit the “inNeedForTransport” state and 

returning to the base state, this will reset the agent’s coordinates. 
 
Once a pedestrian agent identifies a suitable scooter that meets all requirements, the agent begins walking 
toward the scooter, utilizing the time previously calculated and stored in the variable timeToScooter. This 
walking time reflects the pedestrian’s physical movement in the block “walkToScooter”. While in the 

“scooterChosen" state, the agent executes the function chooseScooter. This function uses the same logic as 
walkTime but with a key difference: instead of outputting the time required to reach the scooter, it outputs 
the object reference of the chosen scooter agent. This object reference is stored in a variable within the 
pedestrian agent, enabling ongoing communication and interaction between the paired pedestrian and 
scooter agents throughout the simulation. 
 
When the walking phase ends, two outcomes are possible, the scooter is available upon arrival, or the 
scooter has been taken before arrival. 
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If the scooter is no longer at the expected location (e.g., taken by another pedestrian), the agent experiences 
a failure in pairing. This situation is managed in the Match block, where the pedestrian will not find its 
counterpart in the other queue and eventually time out. The pedestrian is sent a message "scooter was not 
there" and transitions back to the browseScooter state. When returning to “browseScooter", the pedestrian 

agent has a 19% chance of immediately abandoning the search. This is implemented by setting their 
“maxTimeToScooter" variable to zero, causing the agent to exit the system at the subsequent logic gate. If 

the pedestrian does not leave, their patience is reduced, modeled with a new triangular distribution∼ 
triangular (90, 210, 450), reflecting a diminished willingness to continue searching. The process of 
browsing and selecting a new scooter then repeats under these adjusted parameters. 
 
However, when the pedestrian agent successfully walks to the chosen scooter when exiting the 
walkToScooter block, they immediately send a message "in use" to the scooter agent they have selected.  

6.1.1.2 Scooter Agent 
During the model's startup, the scooter population is generated based on a parameter called nrScooters, 
which defines the size of the population. This parameter allows for flexibility in setting the number of 
scooter agents at the beginning of the simulation, enabling the model to scale based on varying urban 
scenarios. At time = 0, all non-operational parameters of the scooter agents are initialized to zero, ensuring 
that the agents are in a neutral state at the start of the simulation. In this initial state, the agents are placed 
in their “available” macro state within the statechart. Lastly, all scooters when available are found in the 
wait block “wait” to facilitate the search throughout the model. 
 

 
 Figure 33: Complete scooter agent parameters, variables and statechart 

 
When the scooter agent receives the message "in use", it triggers an immediate transition in its statechart. 
Regardless of the specific state the scooter is currently in, it is forced to exit the macrostate “available” and 

transition into the “inUse” state. This transition signifies that the scooter has been claimed by a pedestrian 
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and is no longer available to other agents. Upon entering the “inUse” state, the scooter agent is released 

from the “wait” block, where it was previously held as an available resource. Once released, the scooter is 

sent to the match block to await being paired with the pedestrian who has claimed it, marking the next stage 
in the interaction between the two agents.  
The pairing process in the “Match” block is designed to match the scooter object stored in the pedestrian's 

variable “closestScooter” with its corresponding scooter agent. This ensures that the pedestrian is paired 

with the specific scooter they selected during the browseScooter state. Both agents exit the match block 
simultaneously and the pedestrian agent object will incorporate the scooter agent object in the pick up block. 
This implies that the pedestrian agent will for some time “contain” the scooter while traveling. 
 
Lastly, a key process occurs when pedestrian agents enter the “scooterChosen" state in their statechart. At 

this point, they execute two utility functions: rideUtilityFD and rideUtilityCS, with their respective outputs 
stored in the variables “utilityFD” and “utilityCS”. These variables represent the utility that pedestrians 

derive from taking the scooter directly to their final destination or to a solar-powered charging station, 
respectively. The detailed mechanics and implications of these utility functions will be further developed 
and analyzed in section 5.1.2. 

6.1.2 Utility function  

The Hotelling model of spatial competition (1929) is a framework in economics that explains how 
businesses strategically position themselves in a market to attract consumers. In its simplest form, the model 
considers two firms competing along a linear market where consumers are uniformly distributed. 
Consumers incur transportation costs, which increases with the distance between their location and the 
firm's location. The framework derives a utility function 𝑣 − 𝑃 − 𝑡 ∗ (𝑥1 − 𝑥), where 𝑣 is the inherent value 
of the product, P is the price, 𝑡 is the cost of transportation and (𝑥1 − 𝑥) is the distance from the consumer 
to the firm. This formulation captures the trade-off between price, product value, and accessibility, offering 
insights into real-world consumer choices. 

Drawing inspiration from the Hotelling model, the utility function incorporates similar principles to 
represent the decision-making process of pedestrians in my AnyLogic model. Here, utility is framed as a 
trade-off between the benefits of using a scooter (value), the costs of renting (P), and the "travel cost" 
associated with reaching a scooter and completing the journey. This approach simplifies the complexity of 
human behavior while maintaining realism, reflecting how users weigh convenience, cost, and time when 
making transportation choices. By adapting Hotelling's formula to this context, the model captures user 
decision-making in a way that is grounded in economic theory. 

The utility functions implemented in the model serve as the decision-making mechanism for pedestrian 
agents, allowing them to evaluate and choose between two potential options: 

1. Riding the scooter directly to their final destination (FD). 
2. Riding the scooter to a charging station (CS) and then walking to the final destination. 

The choice is based on the calculated utility for each option, with agents selecting the path that maximizes 
their overall utility. 
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Utility of Going Directly to the Final Destination 
The utility of traveling directly to the final destination is computed as: 

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 =  𝐵𝑒𝑛𝑒𝑓𝑖𝑡 𝑜𝑓 𝑟𝑖𝑑𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑐𝑜𝑜𝑡𝑒𝑟 −  𝐶𝑜𝑠𝑡 𝑜𝑓 𝑟𝑒𝑛𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑐𝑜𝑜𝑡𝑒𝑟 

Benefit of riding the scooter is calculated as: 
𝐵𝑒𝑛𝑒𝑓𝑖𝑡 𝑜𝑓 𝑟𝑖𝑑𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑐𝑜𝑜𝑡𝑒𝑟 =  𝑡 ∗ (𝑡𝑖𝑚𝑒 𝑖𝑡 𝑤𝑜𝑢𝑙𝑑 𝑡𝑎𝑘𝑒 𝑡𝑜 𝑤𝑎𝑙𝑘 −  𝑡𝑖𝑚𝑒 𝑖𝑡 𝑤𝑜𝑢𝑙𝑑 𝑡𝑎𝑘𝑒 𝑡𝑜 𝑟𝑖𝑑𝑒) 
Here: 

● 𝑡𝑖𝑚𝑒 𝑖𝑡 𝑤𝑜𝑢𝑙𝑑 𝑡𝑎𝑘𝑒 𝑡𝑜 𝑤𝑎𝑙𝑘 =
𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡𝑟𝑎𝑣𝑒𝑙(𝑜𝑟𝑖𝑔𝑖𝑛→𝐹𝐷)

𝑤𝑎𝑙𝑘𝑖𝑛𝑔 𝑠𝑝𝑒𝑒𝑑
 

● 𝑡𝑖𝑚𝑒 𝑖𝑡 𝑤𝑜𝑢𝑙𝑑 𝑡𝑎𝑘𝑒 𝑡𝑜 𝑟𝑖𝑑𝑒 =  
𝑇𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡𝑟𝑎𝑣𝑒𝑙(𝑠𝑐𝑜𝑜𝑡𝑒𝑟→𝐹𝐷)

𝑠𝑐𝑜𝑜𝑡𝑒𝑟 𝑠𝑝𝑒𝑒𝑑
+ 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑤𝑎𝑙𝑘 𝑡𝑜 𝑠𝑐𝑜𝑜𝑡𝑒𝑟 

𝑡: the utility a pedestrian receives from every minute that they don’t have to walk to their final destination 

The cost of renting the scooter includes: 

● 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑟𝑒𝑛𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑐𝑜𝑜𝑡𝑒𝑟 =  𝑐𝑜𝑠𝑡 𝑡𝑜 𝑢𝑛𝑙𝑜𝑐𝑘 +  𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑚𝑖𝑛𝑢𝑡𝑒 

The corresponding code logic in AnyLogic is expressed as: 

 

double utility = 0; 

double distanceFD = Math.abs(initialX - finalX) + Math.abs(initialY - 

finalY); 

double distanceSFD = Math.abs(closestScooter.initialX - finalX) + 

Math.abs(closestScooter.initialY - finalY); 

utility = t * ((distanceFD / speed ) - ((distanceSFD / closestScooter.speed 

)+ timeToScooter )) 

         - $PerUnlock  

         - $PerMin * (distanceSFD / closestScooter.speed); 

return utility; 

 

 

 

Utility of Going to a Charging Station and Walking 
For this option, the utility considers the additional discount offered for returning the scooter to a solar-
powered charging station. The calculation is: 

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 =  𝐵𝑒𝑛𝑒𝑓𝑖𝑡 𝑜𝑓 𝑟𝑖𝑑𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑐𝑜𝑜𝑡𝑒𝑟 −  𝐶𝑜𝑠𝑡 𝑜𝑓 𝑟𝑒𝑛𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑐𝑜𝑜𝑡𝑒𝑟 

Benefit of riding the scooter is modified as: 
𝐵𝑒𝑛𝑒𝑓𝑖𝑡 =  𝑡 ∗ (𝑡𝑖𝑚𝑒 𝑖𝑡 𝑤𝑜𝑢𝑙𝑑 𝑡𝑎𝑘𝑒 𝑡𝑜 𝑤𝑎𝑙𝑘 −  𝑡𝑖𝑚𝑒 𝑖𝑡 𝑤𝑜𝑢𝑙𝑑 𝑡𝑎𝑘𝑒 𝑡𝑜 𝑟𝑖𝑑𝑒 +  𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡) 

○  𝑡𝑖𝑚𝑒 𝑖𝑡 𝑤𝑜𝑢𝑙𝑑 𝑡𝑎𝑘𝑒 𝑡𝑜 𝑤𝑎𝑙𝑘 =
𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡𝑟𝑎𝑣𝑒𝑙(𝑜𝑟𝑖𝑔𝑖𝑛→𝐹𝐷)

𝑤𝑎𝑙𝑘𝑖𝑛𝑔 𝑠𝑝𝑒𝑒𝑑
 

○ 𝑡𝑖𝑚𝑒 𝑖𝑡 𝑤𝑜𝑢𝑙𝑑 𝑡𝑎𝑘𝑒 𝑡𝑜 𝑟𝑖𝑑𝑒 =  
𝑇𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡𝑟𝑎𝑣𝑒𝑙(𝑠→𝐹𝐷)

𝑠𝑐𝑜𝑜𝑡𝑒𝑟 𝑠𝑝𝑒𝑒𝑑
+ 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑤𝑎𝑙𝑘 𝑡𝑜 𝑠𝑐𝑜𝑜𝑡𝑒𝑟 



46 
 

    +𝑡𝑖𝑚𝑒 𝑡𝑜 𝑤𝑎𝑙𝑘 𝑡𝑜 𝑓𝑖𝑛𝑎𝑙 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 

The cost of renting the scooter includes: 

● 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑟𝑒𝑛𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑐𝑜𝑜𝑡𝑒𝑟 =  𝑐𝑜𝑠𝑡 𝑡𝑜 𝑢𝑛𝑙𝑜𝑐𝑘 +  𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑚𝑖𝑛𝑢𝑡𝑒 

The "time to walk to a scooter/ final destination" is determined by the function walkTime which takes the 
distance to the closest scooter and divides it by the pedestrian speed. 

The corresponding code logic in AnyLogic is expressed as: 

 

double utility = 0; 

chargingStation cs = null; 

 cs = chooseCS(); 

  

double distanceFD = Math.abs(initialX - finalX) + Math.abs(initialY - 

finalY); 

double distanceSCS = Math.abs(closestScooter.initialX - cs.X) + 

Math.abs(closestScooter.initialY - cs.Y); 

utility = t * ((distanceFD / speed) - (timeToScooter + 

(distanceSCS/closestScooter.speed)+ timeToFD)) 

         - $PerUnlock  

         - $PerMin * (distanceSCS / closestScooter.speed) 

  + discount; 

return utility; 

 
 

6.1.3 Block 2: Pedestrian’s travel 
Moving on from block 1, the simulation of agents' travel begins at the point where pedestrians make a 
decision regarding their route based on calculated utilities. As depicted in Figure 31, the statechart splits 
into two primary branches, governed by a logic gate. This gate evaluates the utility functions discussed in 
Section 5.1.2, acting as the condition for the agents' trajectory. 
 
If the utility of traveling directly to the final destination surpasses the utility of traveling to a charging 
station followed by walking the remaining distance, the agent will proceed along the upper branch. 
Otherwise, if the utility of heading to the charging station is greater, the agent will exit downward to follow 
the corresponding path.  
 
6.1.3.1 Traveling to final destination 
 
When the utility for traveling directly to the final destination is greater than the alternative, the pedestrian 
agent proceeds through the logic gate and receives a message labeled "FD". This message signifies the 
decision to travel directly to the final destination and triggers a transition in the pedestrian's statechart from 
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the scooterChosen state to the travelingFD state. Upon entering this state, the rideTimeFD function is 
executed. This function calculates the time required for the pedestrian to reach their final destination using 
the scooter by dividing the distance between the scooter's initial location and the final destination by the 
scooter's average speed. The resulting value is stored in the rideTime variable. 

 
// Riding function in the FD case 

double rideTime = Double.MAX_VALUE; 

 rideTime = (Math.abs(closestScooter.initialX - finalX) + 

Math.abs(closestScooter.initialY - finalY))/closestScooter.speed; 

return rideTime; 
 

The pedestrian agent then enters the “rideFD” delay block, which utilizes the calculated “rideTime” as a 

dynamic delay, ensuring that travel times differ across agents based on their specific journey parameters. 
Upon exiting the rideFD block, symbolizing the completion of the journey, two simultaneous events occur, 
first the scooter agent is dropped off by entering the “drop-off” block, after which it is looped back to the 
“enter” block for scooters. In this operation the scooter is sent an “available” message which triggers a 
change in its statechart from the “inUse” state back to the “available” macrostate. Here, it is stored once 

again in the “wait” block, making it available for future users.  
Then pedestrian agents exit the system, receive an "end" message, and transition out of the 
“inNeedForTransport” macro state back to their “base” state. In this state, the pedestrian agent's initial and 

final coordinates are reset to prepare for a potential subsequent simulation run or behavior.  
 
To calculate the amount of energy consumed by the scooters, the simulation takes the distance traveled by 
each scooter and multiplies it by the standard energy consumption rate. This straightforward calculation 
provides an accurate estimate of energy usage based on the individual travel patterns of each scooter. 
 
6.1.3.2 Traveling to solar powered charging station 
 
When the utility of traveling to a charging station (CS) and subsequently walking to the final destination is 
higher, the pedestrian agent exits the logic gate and receives a "CS" message. This message triggers a 
transition in the pedestrian's statechart from the scooterChosen state to the travelingCS state. Upon entering 
this state, several events are initiated. 
 
First, since the pedestrian does not initially know which charging station is closest to their final destination, 
the function chooseCS is executed. This function iterates through the entire charging station population, 
calculating the Euclidean distance between each station and the pedestrian's final destination. After 
evaluating all possible charging stations, the function identifies the closest station, saves it as an object in 
the variable “closestCS”, and returns it for subsequent use. 

 
chargingStation closestCS = null; 

double minDistance = Double.MAX_VALUE; 

double closestCSID = 0; 

// Loop through the entire population of charging stations 

for (chargingStation cs : main.chargingStations) { 



48 
 

   // Calculate Euclidean distance between the person's final destination and 

the CS 

   double distance = Math.sqrt(Math.pow(cs.X - finalX, 2) + Math.pow(cs.Y - 

finalY, 2)); 

   // Check if this is the closest CS so far 

    if (distance < minDistance) { 

        minDistance = distance; 

        closestCS = cs; 

        closestCSID = cs.chargingStationNumber; 

   } 

} 

return closestCS; 
 

Once the closest charging station is determined, the rideTimeCS function is executed to calculate the time 
required for the pedestrian to ride the scooter to the selected charging station. This function operates 
similarly to the rideTimeFD, with the calculated time stored in the “rideTime" variable. Additionally, the 

pedestrian agent also calculates the time it will take to walk from the charging station to their final 
destination. This secondary calculation is handled by the walkingToFD function, with the result saved in a 
variable called “timeToFD”. 
 
Once all calculations are complete, the simulation progresses along the DES system. After exiting the logic 
gate and deciding to travel to the charging station, the pedestrian agent encounters the “rideCS” delay block. 

This block functions similarly to the “rideFD” block: it uses the previously calculated “rideTime” variable 

for each agent to create a dynamic delay. This delay represents the time taken for the pedestrian to travel 
on the scooter to the chosen charging station, effectively simulating the scooter ride. 
 
When exiting the rideCS block, an "on at exit" action is triggered. The Main agent verifies whether the 
selected charging station, stored in the pedestrian agent’s “closestCS” variable, is available for use. This 

verification ensures that the pedestrian can proceed with the next steps of their journey. It can be observed 
on the following block how the main agent calls the charging station agent through the pedestrian agent.  
 
Before continuing with the logic for pedestrians to drop off their scooters at a charging station, it is essential 
to introduce the charging station agent. For the AnyLogic model to be accurate, the charging station is 
represented by individual charging docks, as each dock can accommodate only one scooter at a time. This 
approach ensures that the model reflects the one-to-one relationship between scooters and docks. 
The creation of charging dock agents follows a structured process. In the base case scenario, the solar-
powered charging stations are distributed randomly across the map, with their positions constrained to 
intersections of roads for simplicity. Two parameters govern the number of charging docks: 

● nrChargingStations: Specifies the number of charging stations to be created. 
● maxNumCS: Defines the maximum number of charging docks per station. 

To generate the charging docks, a nested loop structure is employed (appendix section A.4.4): 
1. Outer loop: Iterates for the number of charging stations (nrChargingStations). For each iteration, 

an X, Y coordinate is randomly generated for the charging station. To avoid duplicate locations, 
this coordinate is stored in a collection called “occupiedPositions”, which ensures that no two 

charging stations share the same coordinates. 
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2. Inner loop: For each charging station coordinate, the loop assigns the number of docks located at 
each charging station (locationmaxNumCS) the same X,Y coordinate , effectively creating multiple 
charging docks that belong to the same station but are modeled as individual agents. 
locationmaxNumCS is a parameter and will be utilized to test various scenarios. 

Once created, each charging dock agent is initialized in its “available” state, meaning it is not currently 

holding a scooter.  More detail on the creation and behavior of chargingStation agents in Section 6.1.4. 
 

if (agent.closestCS.statechart.isStateActive(agent.closestCS.charging)){ 

 send("CS Occupied",agent);} 

else if (agent.closestCS.statechart.isStateActive(agent.closestCS.available)){ 

 send("walking",agent);} 

 
As shown in the code above, upon exiting the “rideCS” block, the Main agent verifies whether the charging 

dock selected by the pedestrian is in the “available” state in its statechart.  
 
If the dock is available, the pedestrian is sent a message, "walking", which triggers a transition in the 
pedestrian's statechart from “travelingCS" to “walkingFD”. This transition marks the start of the 

pedestrian's journey on foot from the charging station to their final destination. 
Upon entering the “walkingFD” state, the pedestrian sends a message, "CS taken," to the charging dock 

they have selected. This action triggers a transition in the charging dock’s statechart from “available” to 

“charging”, marking the dock as occupied and initiating the charging process for the scooter. 
The pedestrian then proceeds through a logic gate that verifies they are in the “walkingFD” state and 

subsequently enters the “walk” delay block. Similar to previous delay blocks, this one is dynamic, using 

the “timeToFD” variable, which represents the time calculated for the pedestrian's walk from the charging 
station to their final destination. 
Once the pedestrian completes this final delay, they have effectively arrived at their destination. The 
pedestrian exits the system, resetting their coordinates and variables, thereby preparing them for potential 
re-entry into the simulation at a later time.  
 
If the initially selected charging dock is not available, the pedestrian will receive a message, "CS occupied," 
prompting a transition in the pedestrian's statechart from “travelingCS” to “occupiedCS”. Upon entering 

this state, the occupiedCS function is triggered. This function evaluates whether any other charging docks 
within the same charging station are available. 
The function accomplishes this by looping through the charging dock population and checking two 
conditions for each dock: 

1. The distance between the dock and the originally selected charging station is zero (ensuring it 
belongs to the same station). 

2. The dock is in the available state. 
If an alternative charging dock meeting these criteria is found, the pedestrian assigns this dock as their new 
charging dock. The pedestrian then continues the process as if the initially chosen dock had been available. 
They transition to the “walkingFD” state, pass through the logic gate, drop off their scooter, and proceed to 
their destination on foot via the “walk” delay block. 
However, if the occupiedCS function determines that no other docks are available at the same charging 
station, the pedestrian receives a message, "no other CS." This prompts the pedestrian to transition to the 
“travelingFD” state, effectively abandoning the search for a charging station. The pedestrian proceeds 
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through the top branch of the logic gate and enters the “rideFD” block, where they travel directly to their 

final destination by scooter. The subsequent process follows the same steps as outlined earlier for 
pedestrians who initially chose to travel to their final destination instead of a charging station. 

6.1.4 Block 3: Solar Powered Charging 

In this section, the charging station agent is examined in greater detail, including its creation process and 
interactions within the model. While the agent's basic mechanics were introduced earlier, this section 
focuses on the placement strategies for charging stations and their charging role within the simulation. 

6.1.4.1 Placement of Charging Stations  
There are two primary methods for distributing charging stations across the map: 

1. Base Case - Random Placement: 
As discussed previously, charging stations can be randomly positioned on the map, constrained to 
intersections of roads for simplicity. This approach ensures an even spatial distribution, making it 
useful for baseline scenarios or simulations where pedestrian movement patterns are 
unpredictable. 

2. Optimized Case - Metaheuristic Placement: 
The second method relies on analyzing pedestrian movement patterns during the warm-up phase 
of the simulation. All origins and destinations of pedestrian trips are gathered and rounded to the 
nearest 100 to aggregate coordinates into road crossings. The resulting data forms a vector 
containing all the visited crossings during the warm-up phase. The frequency of visits to each 
crossing is counted, and the crossings are ranked from most to least visited. The top n crossings, 
corresponding to the number of charging stations, are selected, and charging stations are placed at 
these locations. This algorithm is inspired by the ant colony metaheuristic. 

This approach creates a heat map of high-traffic areas as shown in Figure 34, ensuring charging stations are 
strategically located where pedestrian demand is greatest.  

 
 Figures 34: Heat-map example 
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Similar to the scooter agent, all charging station agents are generated at the start of the simulation. These 
agents are initially stored in the “wait1” block, where they remain until a scooter claims the charging dock.  
When a pedestrian drops off a scooter at a charging station, the charging station receives a message "CS 
taken", prompting it to change its state from “available” to “charging” in its statechart. This transition 
reflects firstly the occupation of the charging dock, ensuring that other agents recognize the dock as 
unavailable for further use and secondly the release of the chargingStation agent from the “wait1” block to 
be picked up. Simultaneously, the Main agent sends a message "available" to the scooter agent, signaling 
it to exit the “inUse” state as seen in Figure 5.1.3.1. As discussed before, this allows the scooter to update 
its location to the coordinates of the charging dock and adjust its battery level. 
Additionally, when a scooter is parked at a charging dock, its “parkedIn” variable is updated to reference 

the specific charging station it occupies. As the scooter enters the “available” macro state, it transitions 

from the “notCharging” state to the “chargingCS” state. This marks the beginning of the battery charging 

process. While all the steps described above are happening the agent has transitioned from the “pickUp1” 

block to the “wait2” block where it will remain for the duration of the charge. 
 

 
 Figure 35: Complete charging Station agent with parameters, statechart and weather 

 
The next phase of the charging process occurs within the charging station agent, where solar energy 
generation is calculated. As shown in Figure 5.1.4.2, the charging station agent is linked to an external 
database, represented by an Excel file containing hourly solar radiation data for an entire year. At the 
beginning of the simulation, this data is loaded into a collection named “avgPSPValue”, which stores the 

average solar radiation values for each hour. 
An hourly event triggers a function within the charging station agent to update its parameter 
“solarRadiation”, with the corresponding value from the collection for the current hour bracket. This 

updated solar radiation value is then used to calculate the energy output of the charging station. The function 
multiplies the “solarRadiation” by the efficiency factor of the solar panels and by the panel’s wattage to 

determine the amount of energy produced, expressed in kilowatt-hours (kWh). This output is stored in the 
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parameter SRtoKWh (Solar radiation to KWh), which reflects the charging station's energy production for 
that hour. 
 
As mentioned, when a scooter is being charged, it enters the “chargingCS” state within its statechart. This 
state includes a looped timeout mechanism, which triggers every hour. At each timeout, the scooter 
temporarily exits the chargingCS state and re-enters it. This looping behavior enables periodic updates to 
the scooter’s battery charge. On the exit action of the “chargingCS” state, the scooter’s battery is updated 

using the energy generated by the charging station, stored in the parameter SRtoKWh (expressed in kWh). 
Given the hourly update this value is directly added to the scooter’s current battery level. 
The logic becomes more complex when accounting for scenarios where scooters are removed from the 
charging station before completing a full hour of charging. To handle this, two additional variables are 
introduced: “chargingStart” records the time when the scooter enters the charging station, and 
“chargingDuration” calculates the total time the scooter remains in the station upon exit. If the difference 

between these two variables indicates that the scooter was charged for less than a full hour, a fractional 
energy calculation is performed. The fraction of time spent charging (relative to an hour) is multiplied by 
SRtoKWh to estimate the additional battery charge for the incomplete hour. Finally, it is ensured that the 
scooter’s battery level does not exceed its maximum capacity.  

 
chargingStart = time(); 

double chargingDuration = time()-chargingStart; 

double chargingTimeFactor = chargingDuration / 60; 

 if(battery < batterySize){ 

  battery += parkedIn.SRtoKWh * chargingTimeFactor; 

  if(battery > batterySize){ 

   battery = batterySize; 

  } 

 } 

 else battery = batterySize; 

chargingStart = 0; 

 

Scooters remain in the charging station even after their batteries have been fully charged. The only way for 
scooters to leave the charging station is when pedestrians pick them up. When a pedestrian chooses to pick 
up a charged scooter, the process follows the same logic previously described for regular scooters. Once a 
scooter is picked up, it is removed from the charging dock, passes through the drop-off block, and sends 
"CS free" message to the charging dock. This message changes its state back to "available" and returns the 
dock to the wait1 block, ready to accept another scooter. This concludes with the solar powered charging 
loop. 

6.1.5 Block 4: Scooter Charging by Chargers 
The behavior of chargers in is guided solely by the need to maintain operational efficiency, without 
monetary considerations. In practical terms, this means that during the simulation, an hourly event is 
triggered in which charger agents assess whether there are scooters with low battery levels. As outlined in 
the assumptions, a scooter is considered to have a low battery if its charge falls below 30%. If this condition 
is met, one charger agent is released to pick up the low-battery scooters. In cases where more than eight 
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scooters (which exceeds the van's capacity) require charging, additional charger agents will be released to 
handle the surplus.  
 

 
 Figure 36: Complete charger agent with parameters, functions and statechart  

 
Upon being released, charger agents will receive an "inject" message, which triggers a transition from their 
“base” state into the “working” macrostate, specifically entering the “scooterChosen” state. During this 

transition, several actions take place. 
First, just like pedestrian agents, chargers are assigned a random starting location. However, their final 
destination is determined by the list of “occupiedPositions”, which contains the coordinates of the charging 

station locations where charged scooters will ultimately be dropped off. It has been decided to drop off the 
scooters near the charging stations as it is believed that these are high traffic areas and have the highest 
probability of being picked up again. 
Once their destinations are determined, the charger agents are injected into the main agent through the 
“charger” enter block, which integrates them into the broader simulation environment.  
 
When the charger agent enters the “scooterChosen” state, the chooseScooter function is triggered. This 
process closely mirrors how pedestrian agents select a scooter. The charger loops through the entire scooter 
population, evaluating each one to determine if it meets two key criteria: the scooter must be in the 
notCharging state, and its battery level must be below the defined threshold. Among the scooters that satisfy 
these conditions, the charger selects the one closest to its current location. 
Once a scooter is chosen, the charger proceeds to travel to its location. To accomplish this, the travelTime 
function is executed, calculating the time required for the charger to reach the scooter. The “timeToScooter” 

variable is updated with this value, and the “toScooter” delay block uses it to dynamically adjust the travel 

time for each charger. Entering this delay block triggers a state transition in the charger from 
“scooterChosen” to “traveling”. 
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Since the chargers' interactions with scooters are simplified in this simulation, a precautionary measure 
ensures that the scooter selected by a charger becomes unavailable to other chargers and pedestrians. Upon 
selection, the charger sends a message, "external Charge", to the chosen scooter, prompting a state change 
from “available” to “external Charge”. 
When the scooter transitions to the “external Charge” state, it is released from the wait block. This happens 

because chargers can only collect scooters that are not currently at charging stations (wait 2). As the scooter 
exits the wait block, it encounters a logic gate that checks whether it is in the “inUse” state. However, since 

the scooter is in the “external Charge” state, it takes the alternate path defined for this condition and heads 

towards the “Match1” block. 
Finally, the “external Charge” state updates the scooter's location to match the charger's final destination. 
This ensures that when charging is completed all parameters are updated. 
 
The next step in the charger's journey involves picking up scooters in the “Match” block. This happens 

through two parallel processes. First, in the main agent, the charger agent matches with the scooter it has 
chosen, which is stored in the “chargedBy” variable. Second, the “traveling” state is a timed state, meaning 

that when the charger arrives at the scooter, the state automatically transitions to “pickUpScooter,” where 

the scooter is added to the “scootersPickedUp” collection. Since chargers can pick up to 8 scooters, this 
collection keeps track of which charger has picked up which scooters. 
 
At this point, the statechart may follow one of two paths. If the number of scooters collected is less than the 
maximum capacity of the charger, the charger loops back to the “chooseScooter” state to select another 

scooter. If there are no additional scooters meeting the criteria, the charger is forced into the “charging” 

state. However, if eligible scooters remain, the loop repeats until the van is full, at which point the charger 
transitions to the “charging” state. Once in the “charging” state, the charger proceeds through the logic gate 

and begins the process of charging the collected scooters. 
 
Once the charger proceeds to the “charge” delay block, the time spent charging the scooters is determined 

by the scooter with the lowest battery level and the time it takes to charge. This is accomplished using an 
iterative loop that evaluates the battery levels of all scooters in the charger's “scootersPickedUp” collection. 

The result of this calculation is stored in a variable, which is then used to dynamically adjust the delay 
duration for the charger.  

 
Code for calculating charging time for chargers 
double maxTimeToCharge = 0.0; 

// Constants for the charger 

double chargerOutputVoltage = 42.0;  // Volts 

double chargerOutputCurrent = 2.0;   // Amps 

double chargerPower = chargerOutputVoltage * chargerOutputCurrent; 

// Iterate through the scooters in the scootersPickedUp collection 

for (scooter s : scootersPickedUp) { 

 

  double batteryDifference = s.batterySize - s.battery; 

       

       // To convert the battery difference to watt-hours 

  double batteryDifferenceWh = batteryDifference * 1000.0; 
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  double timeToCharge = batteryDifferenceWh / chargerPower; 

       

    if (timeToCharge > maxTimeToCharge) { 

           maxTimeToCharge = timeToCharge; 

   } 

} 

return maxTimeToCharge; 

 

Once the charger finishes charging the scooters, he proceeds to the “drop off” block, where he unloads all 

the scooters he had picked up during his route. After completing this task, the charger exits the system and 
transitions back to his “base” state. Upon re-entering this state, the charger’s coordinates are reset, and the 

stored scooters collection is cleared to prepare for the next cycle of operation. 
For the scooters that are dropped off, they are sent an “available” message, which triggers a transition in 

their statechart from the “external Charge” state back to the “available” macro state. During this transition, 

the scooter’s “chargedBy” variable is reset, ensuring no residual assignments remain, and the battery level 
is updated to its maximum capacity, marking the completion of the process. 
 
 
The final operational logic to be addressed is the looping and sequential picking up of multiple scooters by 
the charger agents. While this was briefly mentioned earlier to provide an overview of the model's macro 
functioning, it warrants a more detailed explanation due to its complexity. AnyLogic operates as a 
sequential simulation system, which introduces challenges in modeling parallel processes. 
To revisit the earlier discussion in Section 6.1.3, scooter agents are released from the “wait” block by 

chargers through the sending of a message. This process occurs sequentially, as only one charger can exit 
the model at a time. Consequently, the order in which chargers leave the enter block dictates the sequence 
in which scooters arrive at the “match1” block. However, the “toScooter” delay block is a dynamic block 

where the travel time of each charger varies depending on the distance to their assigned scooter. This 
variability can result in a situation where the charger arriving at the match block does not align with the 
scooter waiting for them. 
To address this, the queue for scooters in the match block (Queue 1) is configured with a priority-based 
system. This means that scooters that satisfy specific conditions are prioritized, allowing them to move 
forward in the queue and ensuring that the intended charger matches with the correct scooter. 

 
(match1.queue1.size() > 0 && match1.queue1.get(0).chargedBy == agent) ? 1 : 0 

 
As illustrated by the priority equation, when the scooter queue (Queue 1) has a size greater than zero, and 
the chargedBy variable of the scooter matches the charger currently waiting in the corresponding charger 
queue, the scooter is assigned priority.  
Differently than what we saw in the pedestrian logic, the pickup block is not immediately after the match 
block, since the charger evaluates if there are other scooters he may pick up. Because of this the scooters 
that were released from the match block will proceed to the “wait3” block and only once the charger is in 
the “charging” state will the scooters be allowed to pass the logic gate and proceed to pick up block all at 
once. This is done with the following function: 

 
for (int i = 0; i < agent.scootersPickedUp.size(); i++) { 
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     // Access each scooter in the scootersPickedUp collection 

     scooter pickedUpScooter = agent.scootersPickedUp.get(i); 

     // Free the scooter from wait3 

     wait3.free(pickedUpScooter);    

 } 

 

As observed, the process involves a “for” loop function within the charger agent that iterates through the 
entire collection of scooters associated with that charger. This loop ensures that all scooters corresponding 
to the charger agent passing through the logic gate are freed and subsequently picked up.  
 
A formula was implemented within the quantity field of the pick-up block. This formula dynamically 
determines the number of scooters in the collection for the specific charger agent, allowing the pick-up 
block to adapt its operation based on the actual count. By doing so, the system ensures that all scooters 
associated with the charger agent are picked up effectively, regardless of their number. This was created 
since the pick-up block in AnyLogic imposes a constraint: it requires a predefined quantity of agents to 
pick up. 
 
Once this process is completed, the charger agent transitions to the drop-off logic, as previously described, 
completing its operational cycle. 

6.2 Reference Variables Definition   
As outlined in section 4.2.2, ten reference variables were identified for analysis to obtain tangible outcomes 
from the simulation runs.  
 
6.2.1 Energy Consumption (Conventional and Solar) and Solar Power Production (KWh) 
The process of calculating energy consumption follows a similar approach for both conventional energy 
and renewable solar energy sources. When a scooter completes its charging cycle, it exits the respective 
charging state: “chargingCS” for solar-powered stations and “externalCharge” for conventional charging. 

At this point, the amount of energy transferred to the scooter is recorded in a respective cumulative variable 
within the main agent and subsequently stored in a connected database to calculate the amount of energy 
consumption.  
 
A parallel mechanism is implemented for the charging station agent. At the start of each hour, the current 
value of the SRtoKWh variable, as previously discussed, is saved into a cumulative variable that tracks the 
total solar energy generated. To provide a real-time visualization of these dynamics, two cumulative line 
graphs are employed. These graphs display the aggregated energy consumption by scooters and the total 
solar energy produced. This visualization is essential for the next stage of the study, which focuses on 
validating the model and conducting stress tests to evaluate system performance under varying conditions. 
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 Figure 37: Energy Usage and Energy Production 

 
Figure 37 displays two stacked line charts. The first chart compares conventional energy consumption to 
renewable energy consumption, while the second chart illustrates renewable energy production and 
consumption over the simulation time (X-axis). 
 
The energy consumption values in KWh enable the calculation of the renewable-to-conventional energy 
consumption ratio. This metric provides insight into the effectiveness of solar-powered charging stations in 
attracting users and reducing reliance on conventional energy sources within a given simulation run. 
Additionally, by aggregating the total energy consumption data, it is possible to calculate the overall energy 
usage by scooters (in KWh) during the simulation. 
To summarize the reference variables to be analyzed in this section are: 

• Conventional energy consumption 
• Solar energy consumption 
• Total energy consumption 
• % of renewable energy consumed 
• Scope 2 GHG emissions 

 
6.2.2 Final destination chosen 
To determine the number of agents selecting each destination, a counter variable was placed at the exit of 
the logic gate labeled “finalDestination.” If agents proceed to the right of the logic gate, they are counted 

as those traveling directly to their final destination. Conversely, if agents exit through the bottom of the 
logic gate, they are recorded as choosing to travel to a nearby solar-powered charging station. To visually 
represent this distribution within the simulation, a dynamic pie chart was implemented, as shown in Figure 
38. 
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 Figure 38: Destination chosen by pedestrian agents 

 
6.2.3 Economic indicators 
Evaluating the economic feasibility of implementing solar-powered charging stations requires a detailed 
analysis of both revenues and costs, these are the reference variables. The initial investment for this project 
comprises three primary components: the solar panel, the scooter charger, and the electrical inverter. After 
researching commercially available options, the costs were determined as follows: solar panels are priced 
at €120 per square meter, scooter chargers at €40 each, and electrical inverters at €350 per unit. 
(Amazon.com: Patio, Lawn & Garden, n.d.), (Amazon.com: 42V 2A Scooter Charger With 6 in 1 Plugs for 
36V Pocket Mod, Sports Mod,Razor,Gotrax,Jetson,Voyage,Ninebot,Lithium Battery Device,Electric 
Scooter Charger : Sports & Outdoors, n.d.) (Amazon.com : SOLPERK Solar Panel 2PCS Solar Panels 100 

Watt 12 Volt, 200W SOAlR Panel High Efficiency Monocrystalline PV Module Power Charger Solar Panel 
for Boat Car RV Motorcycle Marine : Patio, Lawn & Garden, n.d.). Other costs related to the infrastructure, 
were not considered. These cost values are incorporated into the simulation, allowing the model to 
dynamically adjust the initial investment based on the number of charging stations tested. 
Operating costs have been simplified for this simulation. The only recurring cost included is electricity, and 
it is assumed that chargers will operate at the highest electricity prices in Europe to compensate for the lack 
of information on the profit they make, with data sourced from the QERY database. 
Maintenance costs are assumed to be negligible within the model's time frame. Costs related to road 
occupation and fixed costs for connecting to the electric grid are not considered. Additionally, since the 
scooters are already present in the city where the charging stations are to be implemented, their costs are 
not considered.  
Revenue generation is calculated based on several parameters, including the revenue obtained from 
unlocking scooters, the per-minute charge, the total ride time of pedestrians minus any discounts offered 
for charging at solar-powered stations and the revenue of injecting excess revenue into the grid. For this 
last component the average cost of electricity was taken in Europe to estimate the revenue that could be 
generated.  

To provide a clear understanding of the financial performance, the model aggregates these revenue and cost 
variables into a dynamic line chart. This chart offers a visual representation of the breakeven point, serving 
as a critical tool for validating the economic viability of the project. It also facilitates stress testing under 
various conditions. 
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 Figure 39: Total revenues and total costs in Euros  

 
6.2.4 Simulation hotspots 
Although not directly used to measure the effectiveness of the solar-powered charging station 
implementation, a 2D histogram was incorporated into the model to provide a visual representation of the 
underlying dynamics within the AnyLogic simulation. By plotting the X coordinates on the X-axis and the 
Y coordinates on the Y-axis, and mapping the locations where pedestrians originated and where they 
dropped off their scooters, a heatmap was generated. 
As shown in Figure 5.2.3, this heat map illustrates the effectiveness of the algorithm used to place scooters 
within identified "hot zones." This visualization tool allows the evaluation of the effectiveness of assigning 
charging stations randomly or utilizing the developed algorithm. A deeper analysis of this comparison will 
be conducted during the experimentation phase of this thesis. 
 

 
 Figure 40: Heat map of location of origin, destination and charging stations  

6.3 Stress Test   
To evaluate the robustness and scalability of the simulation model, several stress tests were conducted using 
the key decision variables defined in the Main and Pedestrian agents. These tests aimed to assess the 
system's behavior under extreme conditions and to identify any potential limitations or optimization 
opportunities within the model. 
 
Zero Resources Scenario 
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In the first test, all solar-powered charging stations and docks were removed from the system, and no 
discounts were offered to pedestrians. This scenario evaluated whether the model could accurately simulate 
scooter usage in the absence of incentives or infrastructure for charging. The model performed as expected, 
with scooters operating without any charging events, and pedestrians navigating to their destinations 
uninterrupted.  
 

 
 Figure 41: Reference variables under zero resources scenario 

 
High-Density Scenario 
To test the model's capacity to handle high demand, the number of scooters increased from 200 to 500, and 
the maximum X and Y coordinates were extended from 2000 to 4000 meters each. Simultaneously, 
pedestrian entry rates were increased to simulate peak usage during the entire simulation (10 agents per 
second). During the simulation there was a backup of agents in different processes, particularly during 
matching and charging, indicating potential areas for optimization in agent interactions and resource 
allocation. 
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 Figure 42: Reference variables under high density scenario 

 
Limited Resources with High Entry Rates 
In this scenario, the number of scooters was reduced from 500 to 50, and only one solar-powered charging 
station with a single dock was introduced. Pedestrian entry rates were set to 10 agents per second, and no 
discounts were provided. The model experienced backups, especially in processing charging events, as the 
demand for the single charging dock far exceeded its capacity. This scenario highlighted the need to scale 
resources appropriately to maintain system efficiency. 
 
Balanced Scenario with Incentives 
A final test involved implementing discounts for pedestrians who deviated from their route to leave scooters 
at solar-powered charging stations. The number of scooters was set at 200, with 10 charging stations, each 
equipped with 5 docks. Pedestrian entry rates were set to the custom distribution discussed earlier, and a 
10% discount was introduced. The system demonstrated smooth operation with no back up of agents, with 
an increase in charging events and balanced utilization of charging stations. This test confirmed that 
strategic use of incentives can significantly enhance system performance. 

Following the successful completion of the stress tests, the following key insights were obtained: 

● In the stress test, the maximum entry rates were identified. By working backward using the custom 
distribution designed for this simulation, the population size that would generate such demand for 
scooters was calculated. Dividing this population by the number of scooters in the simulation, it 
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was found that the optimal scooter-to-pedestrian ratio ranges from 1:2 to 1:3. This balance ensures 
efficient resource utilization while preventing overcrowding. Nevertheless, since this thesis 
evaluates the economic aspect of the solution, underuse was also to be avoided, since having a 
surplus of scooters would incur a higher overall cost. 

● Due to computational limitations, the model can support a maximum of approximately 50 solar-
powered charging docks. Consequently, the simulation will be constrained to a map size of 3000 
m x 3000 m to maintain performance and scalability. 

● Within this defined scope, all other parameters will be systematically varied during the 
experimentation phase to further refine the model's performance and outcomes. 

7. Verification & Validation: Number of Runs    
In accordance with the literature (Law, 2006), to validate the simulation model and determine the 
appropriate number of runs (N) required for statistical significance, a well-established iterative process was 
employed in this simulation. This process involves defining a baseline case and ensuring that the precision 
of the Half-Width (HW) of the confidence intervals for each selected variable falls below the desired 
threshold (HW0) at a 95% confidence level (α = 0.05). Initially, an arbitrary number of runs (N₀) is 

conducted to collect reference variables and calculate sample statistics. If the resulting Half-Width (HW) 
exceeds the predefined HW0, indicating a greater spread in the data than is tolerable, the number of runs is 
increased, and the process is repeated.  
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 Figure 43: Methodology for validating the number of simulation runs 

 
For this thesis, the key variables energy consumption/production (conventional and renewable), and 
financial performance metrics (total revenue, cost) were analyzed to validate the model. The baseline was 
established with 50 iterations per scenario. Using the same averages and standard deviations obtained from 
these runs, the Half-Widths (HW1) were calculated and compared against the predefined thresholds (HW0) 
to assess the precision of the results. The comparison highlights whether the variability in the simulation 
outputs falls within acceptable limits for statistical significance. The results of this analysis are presented 
in Figure 44.  
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 Figure 44: Results from the verification runs 

 
As observed, the results confirm that 50 iterations per scenario are sufficient to achieve robust statistical 
results, meeting the significance level of α = 0.05. This verification provides the assurance needed to 

proceed confidently with the experimentation process. 

8. Experimentation Process   
The following section examines the experimentation process undertaken to derive meaningful conclusions 
for this thesis. The discussion includes an analysis of the alternatives considered, the setup of the 
experimental framework, the determination of parameter ranges, the simulation duration, the warm-up 
period, and the methodology employed to extract results from the AnyLogic model for statistical analysis. 
Additionally, it is important to highlight the nomenclature utilized in this section. A single simulation run 
can consist of multiple iterations conducted with identical parameters. For example, running 50 iterations 
under the same parameter settings constitutes one simulation run. 

8.1 Analyzed Alternatives  
As discussed in the stress test and outlined in the flowchart (Figure 45), the baseline scenario for this study 
represents the case in which no solar-powered charging stations are utilized. This scenario reflects the 
current operational state of electric scooter rental services at the time of writing and serves as a critical 
reference point. All subsequent improvements or changes introduced in the model will be benchmarked 
against this baseline, enabling a clear evaluation of the impact of implementing solar-powered charging 
stations. 
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 Figure 45: Flowchart of alternatives analyzed 
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The next step involves introducing charging stations placed randomly to assess whether users would 
naturally utilize these locations. If random placement proves insufficient to incentivize usage, the study will 
proceed with optimizing placement strategies. Once optimized, the placement method will be tested across 
various scenarios, including varying population densities, determining the optimal number of charging 
stations, and evaluating the necessity of discounts to encourage usage with the objective of optimizing the 
implementation strategy. To maintain the integrity of the analysis, a final comparison between the most 
optimized scenario and the baseline will be conducted and revisited in the results section. 
 
In Figure 45, "better" results refer to implementing a solution whose reference variables either increase 
charging station utilization/ renewable energy consumption, reduce conventional energy consumption, or 
lowers costs. A result can only be considered "better" if at least one reference variable shows statistically 
significant improvement without compromising another. This ensures that one solution can be objectively 
classified as strictly superior to another. 
 

1. Zero resource case vs. Solar-powered charging station without incentive case 
To achieve the baseline case within the AnyLogic model, a boolean variable was used to ensure that all 
agents select the top route in the “finalDestination” logic gate. This configuration forces the utility-based 
decision-making process, compelling all agents to travel directly to their final destination on a scooter. 
This mechanism effectively recreates the base case behavior, allowing accurate reference data collection 
by suppressing other variables. 
The baseline is then compared against a balanced scenario, where solar powered charging stations are 
placed randomly on the map and no incentives are provided to pedestrians for deviating from their original 
route to the solar powered charging stations. This comparison assesses whether the solar-powered charging 
stations would be utilized in the absence of incentives, or if they would be redundant. It is hypothesized 
that the two models should behave similarly given the structure of the utility function. If agents incur a 
“cost” for getting off the scooter before arriving at their final destination and having to walk, then their 

behaviour should be in favor of traveling to the final destination rendering both results statistically 
indifferentiable. 
 

2. Solar-powered charging station allocation: Random vs Metaheuristic 
A very important aspect of the model is to evaluate where to place the solar powered charging stations. 
Two placing methods have been developed, the control case will be to randomly assign the charging stations 
across the map. The second will use a custom metaheuristic based on the Ant Colony Metaheuristic  
The hypothesis is that optimally placed charging stations will encourage increased utilization, thereby 
amplifying all metrics associated with higher charging station usage. 
 

3. Number of solar-powered charging stations versus population density 
Once the allocation of the charging stations is defined, the objective is to identify the optimal number of 
solar-powered charging stations required for specific population densities. The process will include testing 
various ranges of population densities versus varying numbers of charging stations simultaneously in what 
is called a parameter variation. This process allowed for insights into their trends and correlation. It is 
hypothesized that the required number of charging stations will increase as population density decreases. 



67 
 

In less dense populations, agents are more likely to experience big deviations on their routes, requiring a 
higher number of strategically placed charging stations. In this case, a one-way ANOVA test will be 
conducted to determine whether there are statistically significant differences among the means. 
Furthermore, the Tukey method will be employed to perform the comparisons and assess which specific 
groups differ significantly from each other. 
The parameters "maxX" and "maxY" were varied to manipulate the population density within the 
simulation. The parameter range was set from a minimum of 1000m to a maximum of 3000m, with 
increments of 1000m. Given a fixed population, the different city areas gave way to the following densities  
being tested: 33, 50 and 100 people/𝐾𝑚2. Similarly, the number of charging stations was adjusted, ranging 
from a minimum of 6 to a maximum of 15, with increments of 3. This setup resulted in a total of 600 
iterations, enabling a comprehensive analysis of the interaction between population density and the number 
of charging stations. 
 
 

4. Optimal number of docks per solar-powered charging stations 
Following the previous comparisons, the most successful candidate from each iteration will be selected to 
evaluate the optimal number of charging docks required at each charging station. It is hypothesized that as 
the total number of charging stations decreases, the demand for charging docks at each individual station 
will increase. This experiment aims to provide valuable insights into the balance required between the 
number of charging stations and docks for a given population density. Specifically, it will help identify 
thresholds where the number of docks becomes insufficient or excessive, enabling the determination of an 
optimal configuration. As previously discussed both parameters will be varied simultaneously in a 
parameter variation. 
 

5.  Optimal discount to offer in order to maximize the solution 
Lastly, once the configuration of the charging stations is optimized in terms of placement, number of 
stations, and number of docks, the next step involves determining the optimal discount to offer. This 
discount will aim to maximize revenue while minimizing total costs. The strategy is to set the discount at a 
level not exceeding the cost savings achieved from reduced conventional energy consumption. Any 
remaining financial surplus will contribute toward recovering the initial investment required for the project. 
This final analysis is critical in assessing the economic and sustainability viability of the proposed solution. 

To ensure meaningful and valid comparisons between the various alternatives, several preparatory steps 
and assumptions must be addressed: 

1. Iterative Process in Simulation Runs: 
Each scenario undergoes a series of simulation runs, with each run comprising 50 iterations . 
Iterations introduce stochastic variability, allowing the model to account for randomness inherent 
in the system. A single simulation run aggregates the results of these iterations and all this data is 
then exported into an excel file for further analysis.  

2. Graphical Analysis: 
Visual tools such as boxplots or histograms are used to illustrate the distribution of results across 
scenarios. These plots help identify outliers, assess variance, and provide a clear visual 
comparison of performance metrics. 
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3. Since this thesis aims to compare between different scenarios to measure the effectiveness of the 
solutions to implement, statistical methodologies will be utilized. However, for these 
methodologies to be valid, it is necessary to assume the following conditions and test them: 

a. Normal Distribution: It is necessary to verify that the data for each scenario follows a 
normal distribution using graphical methods (e.g., histograms or Q-Q plots) or statistical 
tests like the Kolmogorov-Smirnov test. 

b. Equality of Variances: Tests such as Fisher's F-test will be conducted to determine whether 
the variances between groups differ significantly. It is important to note that the F-test 
requires the data to follow a normal distribution, meaning the data must have successfully 
passed the normality test beforehand. If the variances are found to be unequal, alternative 
methods, such as Welch's t-test, will be used. 

c. Independence of Observations: Ensure that each observation within a group is independent. 
This is critical to prevent biased results that could arise from dependent data points. 
However, given that this is a simulation, and no runs can impact one another this third 
assumption can be taken as valid. 

4. Hypothesis Testing: 
To determine whether the differences between scenarios are statistically significant, hypothesis 
testing is employed. The null hypothesis (𝐻0) assumes no difference in means between scenarios 
(e.g., 𝐻0 = 𝜇𝐴 − 𝜇𝐵 = 0). The alternative hypothesis (𝐻1) states that a difference exists (𝐻1 =

𝜇𝐴 − 𝜇𝐵 ≠ 0). Depending on the data characteristics, a t-test (for two scenarios) or ANOVA (for 
multiple scenarios) is used.  

5. Confidence Intervals: 
Confidence intervals (CIs) are calculated to quantify the range within which the true difference in 
means is likely to lie. This provides additional insight into the magnitude and direction of 
observed differences. For example, if a CI does not contain zero, it indicates a statistically 
significant difference between groups. 

6. Contextualization and Review: 
The results are interpreted with respect to the research objectives, identifying which scenarios 
outperform others and under what conditions. The logical structure and decision-making flow for 
scenario comparisons are detailed in Figure 45. 

 

8.2 Experimentation Procedure   
To conduct the experiments using the constructed Any Logic model this thesis used the parameter variation 
tool provided by the software. This tool enables systematic experimentation by varying model parameters 
across specified ranges. It works by running multiple simulation iterations, each with a fixed and unique 
combination of parameter values and will begin to vary in between simulation runs based on predefined 
intervals or steps. For each iteration, the model records outputs and performance metrics. This tool is 
particularly useful for sensitivity analysis, optimization, and understanding the impact of parameter changes 
on the system's behavior. 
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The parameter variation tool is programmed as follows: a parameter variation experiment is created in 
which all reference variables to be measured are specified, along with corresponding collections to store 
the results of each iteration. During the simulation, the specified parameters systematically vary, and the 
same setup is applied to decision variables, ensuring they are tracked and stored in dedicated collections. 
Once all iterations are completed, the results stored in the collections are printed into an Excel file. In Figure 
46, the interface of the parameter variation, the reference variables, the corresponding collections and the 
decision variables to be varied in the panel are visualized. 
 

 
 Figure 46: Parameter variation interface 

 
Diving deeper into the implementation process, the first step is configuring the decision parameters to be 
varied in the experiment, including defining their range and step size. The second step sets the model 
runtime, which will be discussed in the following section. The third step is executing the simulation, which 
involves setting the number of iterations to 50 and defining the actions to be performed after each simulation 
run and upon completing the experiment. Once an iteration concludes, the code extracts the main reference 
variables from the system and stores them in a designated collection. After the experiment, the model prints 
the results and exports them to an Excel file, with each alternative analyzed saved on a separate sheet. This 
concludes with the experimentation output, now the data is ready to be analyzed. 
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 Figure 47: Parameter variation java actions  

8.3 Experiment Conditions  
Most simulation projects can be divided into two distinct phases: the transition period and the stationary 
period (Banks, 1998). The transition period occurs at the beginning of the simulation run, characterized by 
the system adjusting from an initial state to a steady operational flow. In the context of this project, this 
phase begins with agents entering the system for the first time, and scooters being evenly distributed across 
the map. During this period, the system dynamics have not yet stabilized, and the data generated does not 
reflect the typical behavior aimed at evaluating. (Banks, 1998) 
To address this issue, a warmup period is implemented at the beginning of the simulation. During this 
period, the model allows the agents to interact and adjust within the system without recording any data. 
This ensures that transitory effects, such as agents finding their initial positions and scooters dispersing 
naturally, do not influence the results. The system is essentially given time to settle into a stationary regime, 
where the behavior and metrics observed are stable and representative of normal operation. 
 
Empirical observation revealed that the system typically enters a stationary state within 3-4 days under 
regular conditions. However, in scenarios with lower population densities, the transition period can extend 
to 6-7 days as agents require more time to interact and stabilize within the system. To account for these 
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variations and ensure an unbiased experiment, the warmup period was set to 7 days. This duration 
guarantees that all possible cases, regardless of population density, are adequately covered before data 
collection begins. Furthermore, the choice of a 7-day warmup period aligns with the cyclic nature of agent 
behavior, as the number and distribution of agents throughout the simulation is repeated on a weekly basis.  
 
Due to computational constraints, the simulation model cannot be run for extended periods. Given the 
available computational capacity at the time of writing, the duration of each simulation run was limited to 
six months. To avoid biases on the period of the year analyzed the simulation will begin to run at a random 
date throughout the year. While this timeframe may not fully capture the long-term outcomes of the model 
(considering the projection period for solar-powered charging stations is typically several years) it is 
expected to provide enough insights to analyze agent behavior, as well as to estimate short-term 
environmental and economic benefits, potentially inferring on their long-term development. This includes 
insights into emission reductions and cost savings that the company might achieve. Refer to the appendix 
section A.0 for the information about the computer used to run the simulations in this thesis. 
 
With the experimentation fully built, the scenarios outlined, and the AnyLogic model validated, the next 
step involves executing the simulations and analyzing the results. 

9. Results 
This section presents a statistical analysis of various scenarios to derive concrete insights. Not all reference 
variables will be analyzed in every experiment, as their relevance depends on the specific conditions being 
evaluated. For example, comparing renewable energy usage between a scenario with no charging stations 
and one with charging stations would not yield meaningful insights. Instead, reference variables will be 
selectively applied to ensure a focused and relevant analysis. However, each experiment consistently 
assesses three key macro areas: pedestrian behavior, energy usage, and economic viability. 

9.1 Analysis of Results 

9.1.1 Zero resource case vs. Solar-powered charging station without incentive case 
The simulation was conducted for two scenarios: the zero resource case and the scenario with solar-powered 
charging stations allocated randomly and without incentives. The initial step involved graphically plotting 
the results of both alternatives to qualitatively derive preliminary insights.  
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Figure 48: Histogram of reference variables in experiment - zero resource case corresponds to when the 

variable baseCase is set to 0, while the scenario with solar-powered charging stations is represented 
when baseCase is set to 1. 

 
As in Figure 47, the insertion of solar-powered charging stations has a limited impact on the number of 
pedestrians who choose to deviate from their final destination to visit the charging stations. This aligns with 
our initial hypothesis, as the structure of the utility function imposes a cost on deviating from the intended 
destination. However, some pedestrians do choose to travel to the charging stations. A closer analysis of 
individual iterations reveals that this occurs primarily when the charging stations are conveniently located 
at their final destination, thereby eliminating the need for significant detours. 
These pedestrians, who choose to visit the charging stations, have a notable effect on other reference 
variables. For instance, the total energy consumed and total cost exhibit significant reductions, shifting 
these metrics to the left. Additionally, a slight increase in total revenues is observed. 
 
To analyze if the results of this test are statistically significant the following hypothesis are defined: 

𝐻0 = There is no significant difference between the base case and the random solar charger case for the 
reference variables being tested.  

𝐻1 =  There is a significant difference between the two cases. 
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The next step involves verifying the assumptions of normality and equal variance for all reference variables 
analyzed. The assumption of normality was satisfied for all four variables, as confirmed by the results of 
the Kolmogorov-Smirnov test. 
Following the normality test, the analysis proceeded to evaluate the equality of variances. This assumption 
held true for all variables except for conventional energy usage, which, as shown in the histogram, exhibited 
a smaller variance compared to the base case. In this case, Welch's t-test will be employed to account for 
unequal variances and to determine whether there is a statistically significant difference. For the detailed 
analysis refer to the appendix section 9.1.1. 

Once the assumptions are validated the specific hypothesis are stated: taking the mean of the base case (𝜇𝐵) 
and the mean of the Solar charging stations case (𝜇𝑆); 

𝐻0 ⇒ 𝜇𝐵 = 𝜇𝑆    𝐻1 ⇒ 𝜇𝐵 ≠ 𝜇𝑆  

The data is then entered into the Minitab software and the two sample t-tests are run. 

9.1.1.1 Pedestrian behaviour 

 

 Figure 49: Two sample t-test for Pedestrians traveling to final destination 

For pedestrians traveling to their final destination, the two-sample t-test returned a p-value of 0.052, which 
is slightly above the common significance threshold of 0.05. This indicates that there is just insufficient 
statistical evidence to reject the null hypothesis and concludes that there is a significant difference between 
the mean of the two samples. Additionally, the fact that 0 is included in the 95% confidence interval for the 
difference suggests that the true difference in mean could be zero. This outcome implies that any observed 
difference may be due to the charging stations being placed exactly at their final destination and not 
necessarily due to higher utility. 

9.1.1.2 Conventional and Renewable Energy Consumption 

 

 Figure 50: Welch's t-test for Conventional Energy Usage 
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For conventional energy use, Welch's t-test returned a p-value of 0, indicating strong statistical evidence to 
reject the null hypothesis. This result suggests that there is a significant difference between the means of 
the two samples. Furthermore, since the 95% confidence interval for the difference does not contain 0, it 
confirms that the observed difference is both statistically significant and meaningful. This finding implies 
that the introduction of solar-powered charging stations has a measurable impact on conventional energy 
usage, which correlates with what could be observed in the histograms, since there are some pedestrians 
who use the charging stations, conventional energy use logically decreases. 

Renewable energy usage is not analyzed as for the case in which no solar panels are introduced the amount 
of renewable energy used is always zero. 

9.1.1.3 Economic viability 

 

 

 Figure 51: Two sample t-test for total cost and revenue 

For total revenues and total costs, the two-sample t-tests returned p-values less than 0.05, providing 
statistical evidence to reject the null hypothesis. Additionally, the 95% confidence intervals for the 
differences do not include 0, confirming that the observed differences are both statistically significant and 
meaningful. These results are expected, as a reduction in conventional energy usage directly impacts costs, 
leading to changes in total revenues.  

After analyzing the data obtained in this experiment, we can conclude that while the implementation of 
solar-powered charging stations does influence the overall behavior of the system and the financial metrics, 
there is no statistically significant evidence to suggest that users would consistently utilize these stations 
unless they are located directly at their final destination. Based on these findings, the next step is to compare 
the random allocation of charging stations with an optimized placement strategy using the ant colony 
metaheuristic discussed in Section 8.1.  

9.1.2 Solar-powered charging station allocation: Random vs Metaheuristic 
The simulation was conducted for two scenarios: one with randomly allocated solar-powered charging 
stations and another with charging stations allocated using the metaheuristic. The initial step involved 
graphically plotting the results of both alternatives to qualitatively derive preliminary insights.  
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 Figure 52: Histogram of reference variables in experiment 2 - the scenario with random allocation 
corresponds to when the variable “option” is set to 0, while the scenario with metaheuristic-based 

allocation is represented with a 1. 
 
As observed in Figure 51, there is a notable improvement in the number of pedestrians traveling to their 
final destination under the optimized placement scenario. This suggests that strategically positioned solar-
powered charging stations align better with pedestrian travel patterns, effectively incentivizing their use. 
The histograms reveal there is an increase in renewable energy consumption, possibly demonstrating the 
effectiveness of optimized charging station placement. The shift in energy usage is further reflected in the 
associated revenues, however it does not seem too pronounced, meaning further statistical analysis is 
required. With the increased reliance on solar energy, revenues display an upward trend, as evidenced by 
the positive shift in the revenue histogram.  
 
With the implementation of the placement metaheuristic, the objective is to determine whether the number 
of pedestrians deviating from their final destination increases. Following this analysis, the goal is to evaluate 
whether such deviations translate into measurable economic benefits for the system. 
 
Following the methodology already established to analyze if the results of this test are statistically 
significant the following hypothesis are defined: 

𝐻0 = There is no significant difference between the random allocation case and the optimized allocation 
case for the reference variables being tested.  
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𝐻1 =  There is a significant difference between the two cases. 

The next step involves verifying the assumptions of normality and equal variance for the reference variables 
analyzed. The assumption of normality was satisfied for both variables, as confirmed by the results of the 
Kolmogorov-Smirnov test. 
Following the normality test, the analysis proceeded to evaluate the equality of variances. This assumption 
held true for all variables. For the detailed analysis refer to the appendix section 9.1.2. 

Once the assumptions are validated the specific hypothesis are stated: taking the mean of the random 
allocation case (𝜇𝑆) and the mean of the optimized allocation case (𝜇𝑠′); 

𝐻0 ⇒ 𝜇𝑆 = 𝜇𝑠′    𝐻1 ⇒ 𝜇𝑆 ≠ 𝜇𝑠′  

The data is then entered into the Minitab software and the two sample t-tests are run. 

9.1.2.1 Pedestrians behaviour 
 

 
 Figure 53: Two sample t-test for Pedestrians traveling to charging stations 

 
For pedestrians traveling to the charging stations, the two-sample t-test returned a p-value of 0, indicating 
robust statistical evidence to reject the null hypothesis and conclude that there is a significant difference 
between the means of the two samples. Additionally, the fact that 0 is not included in the 95% confidence 
interval for the difference further confirms that the observed increase is statistically significant. This 
outcome strongly suggests that optimizing the placement of charging stations has a measurable and positive 
impact on the efficiency of the solution, as it effectively incentivizes more pedestrians to utilize the charging 
stations. 

9.1.2.2 Conventional and Renewable Energy Consumption 
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Figure 54: Two sample t-test conventional and renewable energy usage 

For conventional energy use, Welch's t-test returned a p-value of 0.51, indicating there is not enough 
statistical evidence to reject the null hypothesis. However, when looking at renewable anergy usage the 
test’s results indicate a p-value of 0. This result suggests that there is a significant difference between the 
means of the two samples. Furthermore, since the 95% confidence interval for the difference does not 
contain 0, it confirms that the observed difference is both statistically significant and meaningful. This 
finding implies that the introduction of solar-powered charging stations has a measurable impact on 
renewable energy usage, which correlates with what could be observed in the histograms. 

9.1.2.3 Economic viability 

 

 Figure 55: Two sample t-test for Pedestrians traveling to charging stations 

For total revenues, the two-sample t-test returned a p-value of 0.213, indicating insufficient statistical 
evidence to reject the null hypothesis. Additionally, the 95% confidence interval for the differences includes 
0, further confirming that the observed differences are not statistically significant. This result suggests that 
the increase in the use of solar-powered charging stations was not sufficient to result in a meaningful impact 
on total revenues, highlighting that additional factors may be required to translate increased usage into 
significant economic benefits. 

Total Costs are not explored for this alternative given that there is no added cost for allocating charging 
stations in optimized location as to randomly. 

In conclusion, experiment 2 demonstrated that optimizing the placement of solar-powered charging stations 
using the metaheuristic approach significantly increases the number of pedestrians utilizing these stations. 
However, the increase in station usage did not translate into a statistically significant impact on total 
revenues, suggesting that while the optimization strategy enhances system usage, further steps are needed 
to monetize this increased usage and unlock its full economic potential. 
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The next step is identifying the conditions required to make the optimized allocation strategy as profitable 
as possible. These investigations will explore factors such as varying population densities, the optimal 
number of charging stations, and the role of incentives like discounts to encourage usage.  

9.1.3 Number of solar-powered charging stations versus population density 
The simulation was conducted by varying two key parameters: the population density and the number of 
solar-powered charging stations. The number of charging docks per charging station was held constant 
throughout the experiment, ensuring consistency in infrastructure capacity. The initial step involved 
graphically plotting the results across the range of parameter values to qualitatively interpret the 
relationships between population density, the availability of charging stations, and the system’s reference 
variables. The next step, unlike the previous two experiments, where a two-sample t-test was sufficient, the 
evaluation of the optimal number of charging stations requires analyzing multiple scenarios.  
 
9.1.3.1 Pedestrians traveling to charging stations 
When the results were plotted as boxplots, it could be observed that an increase in the number of charging 
stations corresponds to an increase in the number of pedestrians choosing to travel to these stations across 
all population densities analyzed. In scenarios with lower population density, the impact of additional 
charging stations was more pronounced, resulting in a greater number of pedestrians selecting these stations 
as their destination. Conversely, in high-density scenarios, the alternatives appeared more closely grouped, 
indicating a diminished effect of additional charging stations on pedestrian behavior in these conditions. 
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 Figures 56: Boxplot of pedestrians who travel to charging stations for varying number of charging 
stations and population densities 

 
An ANOVA one-way test was subsequently conducted to statistically validate the patterns observed in the 
graphical analysis. The results of the Tukey test, providing pairwise comparisons between groups, are 
presented in the figures 56-58. 
 

 

 
Figures 57: Tukey test results for number of pedestrians traveling to charging stations for varying 

quantities of charging stations (Population density of 100 ped/km2) 
 

 

 
 Figures 58: Tukey test results for number of pedestrians traveling to charging stations for varying 

quantities of charging stations (population density of 50 ped/km2) 
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Figures 59: Tukey test results for number of pedestrians traveling to charging stations for varying 

quantities of charging stations (Population density of 33 ped/km2) 
 
The statistical results reveal an unexpected finding: contrary to the initial hypothesis derived from the 
graphical analysis, the low-density scenario is the one in which the mean values between alternatives are 
statistically indistinguishable. As evidenced by the Tukey test results, there is no statistically significant 
difference between 12 and 15 charging stations or between 12 and 9 charging stations in the low-density 
scenario. However, apart from this specific result, the ANOVA test aligns with the patterns observed in the 
graphical analysis. It confirms that increasing the number of charging stations generally leads to more 
pedestrians traveling to these stations, a trend that holds true up to 12 charging stations. Beyond this point, 
the mean difference between 12 and 15 charging stations becomes statistically insignificant across all three 
population densities.  

 
9.1.3.2 Conventional and Renewable Energy Consumption 
Figure 59 reveals that the amount of conventional energy consumed does not significantly decrease with 
the rise in the number of charging stations. However, certain trends emerge. Notably, as the availability of 
solar-powered charging stations increases, the consumption of renewable energy increases consistently 
across all population densities, with this effect being most pronounced in lower-density scenarios. 
In lower-density settings, the overall energy demand is higher, with conventional energy consumption 
occasionally exceeding 180 kWh. This increased demand can be attributed to pedestrians needing to travel 
longer distances to reach their destinations, a characteristic more typical of suburban environments 
compared to densely populated areas.   
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 Figures 60: Boxplot of Energy consumption for varying number of charging stations and population 

densities 
 

The following section presents the results of the Tukey test applied to renewable energy consumption. 
 

 



82 
 

 
Figures 61: Tukey test results for renewable energy consumption for varying quantities of charging 

stations (Population density of 100 ped/km2) 
 

 

 
Figures 62: Tukey test results for renewable energy consumption for varying quantities of charging 

stations (Population density of 50 ped/km2) 
 

 

 
Figures 63: Tukey test results for renewable energy consumption for varying quantities of charging 

stations (Population density of 33 ped/km2) 
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As observed in the figures above, the results align with those of the ANOVA test conducted for the number 
of pedestrians choosing to travel to the solar-powered charging stations. Across all population densities, the 
mean renewable energy consumption increases with the number of charging stations, up to 12 stations. 
Beyond this point, there is no statistical evidence to indicate a significant difference in renewable energy 
consumption between 12 and 15 charging stations. 
 
9.1.3.3 Economic viability 
Lastly, the histograms for total revenue (Figure 63) reveal no clear differences between the varying numbers 
of charging stations across any of the population densities. However, it is noteworthy that revenue is 
consistently higher in low-density areas compared to high-density scenarios. This is likely due to the longer 
average trip distances in low-density areas, which increase the amount paid per trip. As a result, within the 
same time window of the simulation, the average revenue generated in low-density areas is nearly 300% 
higher, highlighting the significant impact of trip length on overall earnings. 
 

 

 
 Figures 64: Boxplot of total revenues for varying number of charging stations and population densities 

 
Due to the relatively low impact of varying the number of charging stations on total revenue, a secondary 
analysis was conducted to determine the most optimal configuration of charging stations per population 
density. For this purpose, the average profit was calculated across all population densities and charging 
station quantities. The results, displayed in Table 2, indicate that the optimal number of charging stations 
is 12 for population densities of 33 and 100 pedestrians/km², while for a density of 50 pedestrians/km², the 
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optimal number is 9 charging stations. This result is consistent with the findings of the ANOVA test run 
for the number of pedestrians traveling to the charging stations in Section 9.1.3.1. 
 
While the use of averages provides a convenient and practical approach to identify trends, it is an inherently 
imperfect measure and does not constitute robust statistical evidence on its own. However, for the purposes 
of this analysis, the average profit offers sufficient approximation to guide decision-making, particularly 
when coupled with the broader insights derived from the simulation. It is important to note that within 
columns the results are not that significant, however, the average profitability is very different between 
population densities. 
 
 

  Population density (ped/km2) 

   33 50 100 

 
 
Number of 
charging 
stations 

6    802,874.67    571,248.98    317,991.07 

9    772,727.05    575,725.37    324,229.11 

12    843,394.64    529,664.28    326,708.54 

15    833,125.20    540,806.32    312,329.98 

 
Table 2: Average profit with different population densities and number of charging stations 

9.1.4 Optimal number of docks per solar-powered charging stations 
The simulation was conducted to determine the optimal number of docks per solar-powered charging 
station. This experiment utilized the previously identified optimal number of charging stations for each 
population density and iterated the number of charging docks per station from 2 to 6, with increments of 2. 
While no additional dock configurations were analyzed due to computational constraints, the chosen range 
is considered reasonable. Higher numbers of docks may be relevant for very busy terminals or intersections 
but fall outside the scope of this thesis. 
 
Using AnyLogic’s parameter variation tool, a one-way ANOVA test was conducted, complemented by the 
Tukey test, to identify statistically significant differences among the means, as in the previous experiment. 
Graphical plotting of the results offered preliminary insights, which were then validated through statistical 
analysis.  
 
9.1.4.1 Pedestrians traveling to charging stations 
The first clear trend observed when plotting the data onto boxplots is that the number of charging docks 
within a station has no effect on the number of pedestrians traveling to the solar-powered charging stations. 
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 Figure 65: Boxplots of pedestrians who travel to the charging stations for varying population densities 

and number of charging stations 
 
This outcome is consistent with the model's utility function as it solely considers the position of the charging 
station relative to the agent’s final destination, assigning a cost to the deviation required. Therefore, the 

pedestrian’s decision to travel to a charging station is unaffected by the availability of docks in the current 
scenario. 
However, upon further reflection, in a real-world scenario, the number of charging docks within a station 
could influence user behavior over time. For instance, a pedestrian may initially choose to travel to a 
charging station based purely on utility. If, upon arrival, they find no available docks, this negative 
experience might affect their future decisions. Even if traveling to the charging station might provide more 
immediate utility, the pedestrian could opt to travel directly to their final destination to avoid a potentially 
frustrating experience. This behavior represents a non-ideal case that is not accounted for in the current 
scope of this thesis. 
 
To address this limitation, this thesis proposes, for further researchers, the introduction of a parameter 
within the pedestrian agent to track the number of times they have traveled to a charging station and found 
no available docks. This parameter could then negatively impact the utility associated with traveling to the 
charging station, better reflecting real-world behavior and improving the model's accuracy. 
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9.1.4.2 Conventional and Renewable Energy Consumption 
The simulation output for conventional and renewable energy consumption exhibited significant variability 
when the number of charging docks was altered. A clear trend emerged: as the number of charging stations 
increased, the consumption of conventional energy consistently decreased, while the consumption of 
renewable energy increased. This observation remained consistent across all population densities tested. 
 

 

 

 
 Figures 66: Histogram of Energy consumption for varying number of charging stations and population 

densities 
 
A one-way ANOVA test was conducted for each variable analyzed in the histograms above to statistically 
validate the patterns observed in the graphical analysis. The results of the Tukey test are presented in Figures 
66 – 71. These statistical tests confirm the initial hypotheses derived from the graphical analysis: all mean 
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values are statistically different across the various categories. Practically, this indicates that increasing the 
number of charging stations significantly improves the reference variables measured. Specifically, while 
adding more charging stations increases the number of pedestrians utilizing them, increasing the number of 
charging docks improves the overall utilization of the infrastructure, maximizing renewable energy 
consumption and minimizing conventional energy consumption. 
 

 

 
 
Figure 67: Tukey test results for renewable energy consumption for varying quantities of charging docks 

(100 Pedestrians / km2) 
 

 

 
Figure 68: Tukey test results for conventional energy consumption for varying quantities of charging 

docks (100 Pedestrians / km2) 
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 Figure 69: Tukey test results for renewable energy consumption for varying quantities of charging docks 
(50 Pedestrians / km2) 

 

 
Figure 70: Tukey test results for conventional energy consumption for varying quantities of charging 

docks (50 Pedestrians / km2) 
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 Figure 71: Tukey test results for renewable energy consumption for varying quantities of charging docks 
(33 Pedestrians / km2) 

 

 
Figure 72: Tukey test results for conventional energy consumption for varying quantities of charging 

docks (33 Pedestrians / km2) 
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9.1.4.3 Economic viability 
 

 
 

Figures 73: Boxplot of total revenues for varying number of charging stations and population densities 
 
Due to the relatively low impact of varying the number of charging docks per charging station on total 
revenue, a secondary analysis was conducted to determine the most optimal configuration of charging docks 
per population density. For this purpose, the average profit was calculated across all population densities 
and charging station quantities. The results, displayed in Table 3, indicate that the optimal number of 
charging docks is 4 for all population densities. 
 

  Population density (ped/km2) 

  100 50 33 
Max 

Number of 
Charging 

docks 

2 314140.4 561939.8 799182.8 
4 332059.2 576051.5 805153.2 

6 324092.2 542242.2 793037.6 
 

Table 3: Average profit with different population densities and number of charging docks 
 
In conclusion, while to maximize renewable energy usage the optimal solution would be to install 6 
charging docks, when analyzing the economic aspect, we see that this would incur higher costs and would 
therefore reduce the profitability of the solution. 



91 
 

9.1.5 Optimal discount to offer in order to maximize the solution 
The simulation was conducted to determine the optimal discount to offer in order to maximize the 
performance of the solution. This experiment varied the discount rate from 0% to 100% in 10% intervals 
to observe how the system’s behavior would change under this stimulus. The number of charging stations 

was held constant at 9 to 12, depending on the population density, and 4 charging docks per charging station 
as discussed in Section 9.1.3 and 9.1.4. 
 
Using AnyLogic’s parameter variation tool, a one-way ANOVA test was conducted, complemented by the 
Tukey test, to identify statistically significant differences among the means, as in the prior experiments.  
 
9.1.5.1 Pedestrian behaviour 
 

  
 

Figure 74: Boxplots of pedestrians who travel to their final destination or charging stations for varying 
discount %. 

 
When varying the discount offered to agents to travel to the solar-powered charging station, a particular 
trend emerges. Observing the number of pedestrians who choose to travel to their final destination, a clear 
decrease is evident as the discount increases. Notably, when the discount reaches 100%, all iterations fall 
within the (0, 1000) bucket, indicating that nearly all agents opt to travel to the nearest charging station 
instead of their final destination. 
On the other hand, when analyzing the number of pedestrians traveling to the nearest charging station, it 
becomes apparent that without any discount, all iterations remain in the first bucket of (0, 1000), consistent 
with previous cases. However, as a discount is introduced, the number steadily increases, reaching its 
highest peak of nearly 9000 pedestrians when a 100% discount is offered. It is important to highlight that 
this number does not reach the nearly 40.000 observed for the final destination. This discrepancy is 
attributed to the limited number of charging docks; while many users may choose to travel to the nearest 
charging station, some are forced to revert to their final destination when no docks are available at the 
station. 
 
Having previously stated the methodology and procedure for conducting a Tukey test, the results of the test 
applied to pedestrian travel are as follows: 
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 Figures 74: Tukey test results for pedestrians traveling to final destination 

 

 
 Figures 76: Tukey test results for pedestrians traveling to solar powered charging stations 

 
The statistical analysis shows that significant changes in the mean value begin to appear after a 40% 
discount on the journey. Each additional discount beyond this threshold has a notable impact, demonstrating 
the effectiveness of larger discounts in influencing pedestrian behavior and optimizing system performance. 
However, the grouping varies significantly across the two reference variables. This occurs because some 
pedestrians may intend to travel to a charging station but cannot do so due to a lack of available charging 
docks upon arrival. For decision-making, the reference variable “pedestrians traveling to CS” provides a 
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more accurate measure, as offering discounts to attract more users would be ineffective if the system lacks 
the resources to accommodate them. 
 
9.1.5.2 Conventional and Renewable Energy Consumption 
Observing the amount of conventional energy consumed, a clear decrease is evident as the discount 
increases. By the time the discount reaches 100%, all iterations fall within the first bucket of (0, 10 kWh), 
indicating minimal reliance on conventional energy. On the other hand, analyzing renewable energy 
consumption reveals an increase as the discount rises. At the maximum discount of 100%, renewable energy 
consumption peaks at over 200 kWh, reflecting a significant shift toward sustainable energy use. These 
findings are consistent with earlier results, reinforcing the observation that incentivizing agents to utilize 
charging stations not only reduces conventional energy usage but also maximizes renewable energy 
consumption, enhancing the system's overall sustainability. 
 

  
 Figures 77: Boxplot of energy consumption for different discounts offered  

 
A one-way ANOVA test was conducted for each variable analyzed in the histograms above to statistically 
validate the patterns observed in the graphical analysis. The results of the Tukey test are presented in 
Figures 77-78. These statistical tests confirm the initial hypotheses derived from the graphical analysis: 
after 40% discount is where there is a statistically significant increase in renewable energy usage and a 
decrease in the need for conventional energy. 
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Figures 78: Tukey test results for conventional energy 

 

 
Figures 79: Tukey test results for renewable energy 

 
 
9.1.5.3 Economic viability 
To evaluate the feasibility of offering a discount to influence user behavior, it is necessary not only to 
determine the discount required to drive this change but also to evaluate whether the proposed discount 
would result in economic benefits for the service provider. Therefore, profitability was calculated by 
considering the revenue generated from rentals, subtracting the costs of conventional energy consumed and 
the discount offered, and adding the income from electricity sold back to the grid when solar-powered 
charging stations are not actively charging scooters. The results of this analysis are presented in the 
following histogram. 
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 Figures 80: Boxplot of Total revenues (including discount) and costs  

 
The histogram reveals significant insights like at 0% discount, the revenue distribution peaks at higher 
values, particularly around 900,000, emphasizing that maintaining full pricing maximizes profitability due 
to the absence of discount costs. As discounts increase to 20-40%, the revenue shifts slightly lower but 
remains concentrated within the 750,000−900,000 range, indicating this as a potential sweet spot for 

balancing user incentives and economic returns. However, at higher discount levels (80-100%), revenue 
declines sharply, with the majority falling within the 450,000−750,000 range. This trend highlights the 

diminishing returns of excessive discounts, whereas the cost of incentivizing users outweighs the revenue 
generated. While moderate discounts encourage user behavior without severely impacting profitability, 
higher discounts lead to significant revenue decline. 
 

Discount Average of Total Revenue Average of Total Cost Average Profits 

0 € 792,130.40 € 11,782.12  €     780,348.28  
20 € 785,227.73 € 11,777.18  €     773,450.55  
40 € 775,743.62 € 11,758.47  €     763,985.15  
60 € 725,466.89 € 11,746.90  €     713,719.98  
80 € 602,692.15 € 11,742.65  €     590,949.50  
100 € 377,078.54 € 11,746.69  €     365,331.85  

 
Table 4: Average profit with different discount rates 

9.2 Interpretation of Results 
Chapter 9.1 provides a comprehensive analysis and interpretation of the experimental results obtained from 
implementing solar-powered charging stations for electric scooters in urban areas. The results emphasize 
the economic and environmental benefits of this innovative infrastructure, highlighting its potential to 
address the demand for sustainable urban transport solutions while offering a cost-effective alternative to 
conventional energy sources. The experiments explored various configurations, such as optimal station 
placement, dock capacities, and pricing strategies, generating valuable insights into designing an efficient 
and user-friendly system. 
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The analysis first demonstrated that while randomly allocating solar-powered charging stations did result 
in some usage and some reduction in conventional energy consumption, there was insufficient statistical 
evidence to conclude that it could meaningfully reduce the number of pedestrians opting to travel directly 
to their final destination. On the other hand, strategically allocating stations using metaheuristic methods, 
such as the Ant Colony Optimization algorithm, significantly improved performance metrics. Compared to 
random allocation, strategic placement increased station utilization by approximately 30%, and energy 
savings rose by over 20%. Importantly, this optimization required no additional infrastructure costs, 
showcasing the value of simulation planning. 
 
Furthermore, the relationship between population density and the number of charging stations/docks was 
analyzed to maximize system usage while minimizing costs. The findings are summarized in the following 
table: 
 

  
Optimal N. of 

Charing Stations 

Optimal N. of 
Charging stations 

per km2 
Optimal N of 

charging docks 

Population density 
(ped / km2) 

100 12 6 4 
50 9 4 4 
33 12 4 4 

 
Table 5: Summary of results from experiment 9.1.3 and 9.1.4 

 
Pricing incentives were analyzed to understand their impact on user adoption, energy consumption, and 
profitability. While the most profitable approach is to avoid discounts, offering a 40% discount on scooter 
rentals was found to increase the number of pedestrians traveling to charging stations by 77%. At this 
discount level, profitability remained stable, with revenue around $750,000, a 51.7% reduction in 
conventional energy use, and a 257% increase in renewable energy consumption. 
 
The final step involved in the framework described in Section 9.1 is taking the final configuration for the 
implementation of solar powered charging station, which includes 9-12 charging stations, 4 docks per 
station, and a 40% discount and comparing it with the current "as-is" case of electric scooter rental services. 
From the results shown in figure 80 where it’s possible to observe that there are significant differences 
across all reference variables, except for total revenue and profitability which at first glance it is not possible 
to discern if there is a statistically significant difference. 
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 Figures 81: Histogram of reference variables of base case vs. final case 2 - the scenario with base case 
corresponds to when the variable “base case” is set to 0, while the scenario the final configuration is 

represented with a 1. 
 

Base Case Average of Total Revenue Average of Total Cost Profitability 
0  €                           801,429.48   €                       5,532.90   €   795,896.58  
1  €                           744,046.78   €                     11,754.25   €   732,292.53  

 
Table 6: Average profit with different discount rates 

 
Following the methodology already established to analyze if the results of this test are statistically 
significant the following hypothesis are defined: 
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𝐻0 = There is no significant difference between the final configuration case and the base case for the 
reference variables being tested.  

𝐻1 =  There is a significant difference between the two cases. 

Once the assumptions are validated the specific hypothesis are stated: taking the mean of the final 
configuration case (𝜇𝑆) and the mean of the base case (𝜇𝑠′); 

𝐻0 ⇒ 𝜇𝑆 = 𝜇𝑠′    𝐻1 ⇒ 𝜇𝑆 ≠ 𝜇𝑠′  

The data is then entered into the Minitab software and the two sample t-tests are run. 

9.2.1 Pedestrian behaviour 

 

Figure 82: Two sample t-test for Pedestrians traveling to final destination 

For pedestrians traveling to their final destination, the two-sample t-test returned a p-value of 0, which 
indicates that there is just sufficient statistical evidence to reject the null hypothesis and concludes that there 
is a significant difference between the mean of the two samples. This outcome implies that the observed 
difference is due to the implementation of the final configuration. Additionally, pedestrians traveling to 
charging stations was not analyzed since in the case where there are no charging stations the results are 
always zero, therefore the means always differ. 
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9.2.2 Conventional and Renewable Energy Consumption 

 

Figure 83: Welch's t-test for Conventional Energy Usage 

For conventional energy use, Welch's t-test returned a p-value of 0, indicating strong statistical evidence to 
reject the null hypothesis. This result suggests that there is a significant difference between the means of 
the two samples. Furthermore, since the 95% confidence interval for the difference does not contain 0, it 
confirms that the observed difference is both statistically significant and meaningful. This finding implies 
that the implementation of the final configuration has a definitive impact of the reduction of conventional 
energy used. 

Renewable energy usage is not analyzed as for the case in which no solar panels are introduced the amount 
of renewable energy used is always zero. 

9.2.3 Economic viability 

 

   

Figure 84: Two sample t-test for total cost and revenue 
 
For both revenue and costs, the tests return a p-value of less than 0.05, indicating sufficient statistical 
evidence that implementing the final configuration with a 40% discount will impact profitability. While the 
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additional revenue from selling electricity back to the grid helps offset the reduced margins from discounted 
rides, there will still be a 7.9% decline in profit margin. 
In conclusion, from an environmental perspective, the optimized solution results in approximately a 90% 
reduction in conventional energy usage, accompanied by an average renewable energy consumption of 356 
kWh. Furthermore, there is about a 30% decrease in the number of pedestrians traveling directly to their 
final destination, as more users choose to utilize the solar-powered charging stations instead at a cost of 
7,9% reduction in profit margins. 
 
Ultimately, the interpretation of these results supports the conclusion that solar-powered charging stations 
represent a viable and forward-looking solution for enhancing micro-mobility in urban areas. In particular, 
strategic station placement using metaheuristics, optimizing the density of stations and docks, and 
implementing targeted discounts are this thesis’ main recommendations. The key lies in understanding 
which are the sustainability goals that companies want to achieve. 
 
The outcomes also pave the way for further research, particularly in refining optimization techniques, 
integrating larger urban datasets, and exploring additional incentives to promote user adoption to reduce 
the impact in profit margins. This chapter demonstrates how economic practicality and environmental 
consciousness can converge to create a greener, more efficient future in urban mobility. 

10. Conclusions and Recommendations 
This thesis aimed to address the key challenges of urban mobility by assessing the economic feasibility and 
sustainability of integrating solar-powered charging stations into electric scooter rental services. As 
urbanization drives the demand for greener transport solutions, this research focused on developing an 
AnyLogic simulation model to evaluate different strategies for implementing solar-powered charging 
stations. The goal was to determine whether solar energy could effectively reduce conventional energy 
consumption, lower operational costs, and enhance the profitability of e-scooter services.   
 
By leveraging a simulation-based approach in AnyLogic, it was possible to test multiple scenarios without 
the financial risks of real-world pilot programs. The model optimized the placement and configuration of 
charging stations, assessed their influence on user adoption, and quantified both economic and 
environmental outcomes. Beyond answering the research question, this study developed a flexible and 
scalable simulation model that companies can use to evaluate charging station deployment strategies before 
implementation, ensuring informed decision-making and maximizing sustainability and profitability. 

10.1 Challenges, Debugging and Limitations 
Recreating a dynamic and intricate system within the constraints of Java and AnyLogic presented several 
challenges. Two primary obstacles encountered during the modeling process were sequentiality and the 
concatenation effect. 
 
The sequentiality challenge primarily involved the necessity for certain operations to occur in a specific 
order within the AnyLogic model to produce the correct output. For example, agents had to first select a 



101 
 

scooter, then calculate the time required to walk to the scooter, assess whether it was within a reasonable 
distance, and finally proceed to the delay block and the walking state. While this sequence may appear 
logically sound when described, AnyLogic's default behavior, where transitions between blocks occur with 
zero-time delay, could result in insufficient computation time. This could cause the walking time to remain 
uncalculated when the agent entered the delay block, leading to an error in the simulation run. To address 
this issue, a delay block with a 1 millisecond delay was inserted, allowing the computation to catch up. 
Although this solution may not seem intuitive to someone unfamiliar with the model, it was deemed 
effective, as the cumulative added time did not exceed 10 milliseconds during trips typically ranging from 
15 to 45 minutes, making the impact negligible. 
 
The second challenge involved managing the complex web of agent interactions, particularly in referencing 
agents across different levels. With four agents interacting within the main agent, one of the primary 
difficulties was ensuring proper reference to agents, such as charging stations, pedestrians, or chargers, after 
the pick-up process. This is because in the pick-up block one agent is inserted within the agent of higher 
level. To resolve this, auxiliary variables, such as "pickUpBy" and "parkedIn," were introduced to enable 
communication and to pick up certain variables from lower-level agents. 
 
Debugging the model also proved to be challenging, especially in relation to sequentiality issues. The 
parallel execution of multiple processes sometimes resulted in situations where one message needed to be 
sent before another to maintain the correct sequence. However, the Java interface did not explicitly indicate 
the cause of such issues, simply reporting an execution error. As a result, debugging required a manual and 
iterative process. Fortunately, the traceln function in Java allowed for real-time visualization of variable 
outputs during simulation, enabling the identification of bugs through a trial-and-error approach. 
Although the final model runs efficiently and produces valid, real-world representative data, future 
researchers are encouraged to carefully consider these challenges when building upon this work. 
 
When considering the main limitations of the work presented in this thesis, several key points must be 
highlighted: 
 
Computational Limitations: The model was designed with a high level of generalization to accommodate 
various cities, each with unique characteristics such as size, population densities, scooter distribution, 
placement algorithms, and more. However, to fully exploit the potential of this model, greater 
computational power is necessary than was available during the writing of this thesis. Specifically, running 
the model over multiple years could provide valuable insights, particularly in evaluating the costs associated 
with maintenance and the purchase of new scooters. Additionally, further investigation is encouraged into 
scenarios where charging stations are equipped with varying numbers of charging docks, as well as 
examining the effects of incorporating more than the 15 charging stations considered in this thesis. 
 
Weather Patterns: The decision to base all simulations on a single weather dataset from one city, while 
useful for deriving preliminary results and maintaining the scope of this work, introduces limitations. 
Significant differences in outcomes may arise when comparing weather conditions in a city like Torino, 
with its relatively sunny climate, to those in a less sunny city. Therefore, this thesis encourages future 
research to assess how these results may vary across different cities, considering local weather patterns. 
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Traffic and Competition: The assumptions regarding travel time and competition were simplified as ideal 
conditions to align with the scope of this thesis. However, in the real-world economics of the rental scooter 
industry, competition is fierce. Once a first mover adopts solar-powered charging stations, it is likely that 
competing companies will quickly implement similar solutions. Consequently, the results obtained in this 
study are optimistic and represent ideal conditions. In a real-world scenario, it is expected that revenue 
would be significantly lower than the values generated by the model due to increased competition and 
market saturation. 
 
Fixed Scooter-to-Population Ratio: This assumption assumes that the simulation will be established at a 
city with pre-existing scooter infrastructure and a number of scooters that is enough to maintain a smooth 
operation without shortage or excess of scooters. This may not y not fully capture variations in real-world 
demand, seasonal fluctuations, or changes in user behavior over time. 
 
Charger behaviour: The model assumes that chargers will continue searching for scooters with less than 
30% battery until either no low-charge scooters remain, or the van reaches full capacity. However, this may 
not always be the most efficient strategy. For example, a charger with seven scooters may have to travel 
across the entire map to collect one last scooter, which might not be practical. In reality, a charger may 
decide to proceed with charging before reaching full capacity to optimize time and efficiency. Future 
research could refine charger behavior by incorporating more dynamic decision-making based on travel 
distance, time constraints, and operational efficiency. 
 
Choosing charging station logic: The chooseCS function was developed to choose the closest charging 
station to the pedestrian’s final destination. However, this logic has its limitations, there could be a case 
where the closest CS may be beyond the final destination, i.e. there may be a CS 300m before the final 
destination and a CS 200m after the final destination. The function would choose the latter; however, the 
total journey time will be higher for the traveler, and this not may accurately describe real-world behaviours. 
This was done to balance computational time and complexity. 
 
Pre-existing infrastructure: To develop this model it was assumed that the city that was being evaluated 
for the implementation of charging stations already had a pre-existing fleet of e-scooters and therefore this 
cost was not considered. This limits the applicability of the model and if readers wish to evaluate a city in 
which e-scooters are not yet present should take this into consideration. 
 

10.2 Final Conclusions and Recommendations  

This thesis sets out to address the growing challenges posed by urbanization, particularly the need for 
sustainable and efficient urban mobility solutions. By leveraging the potential of solar-powered charging 
stations for electric scooters, it aimed to provide both an environmentally sustainable and economically 
viable alternative to conventional urban transport systems. The simulation-based methodology employed 
in this study allowed for a robust analysis of the interactions between users, infrastructure, and 
environmental variables, shedding light on how renewable energy solutions may advance urban micro-
mobility. 
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From an academic perspective, this thesis contributes significantly to the interdisciplinary literature on 
urban sustainability and renewable energy integration. It bridges gaps in the literature by combining user 
behavior analysis, simulation modeling, and renewable energy applications. The main contributions are:  

1. Behavior Modeling: This study explored how users interact with fixed infrastructure, offering 
insights into travel behavior and deviations under incentives. 

2. Optimized Infrastructure Placement: The application of the Ant Colony Optimization metaheuristic 
provides a new approach to the strategic deployment of solar-powered charging stations, ensuring 
high utility and cost-effectiveness. 

3. Economic and Environmental Analysis: By quantifying both energy sustainability and profitability 
metrics, this work evaluates urban micro-mobility solutions that can incentivize businesses to go 
green without having to sacrifice profits or having to go against stakeholder’s interests. 

In practice, these findings provide actionable insights for stakeholders in the electric scooter rental industry. 
This thesis recommends implementing strategically placed charging stations with four docks and offering 
a 40% discount to encourage users to choose charging stations over driving directly to their final destination. 
This approach enables a significant reduction in conventional energy consumption with only a minimal 
decrease in profitability. However, companies looking to balance sustainability with financial performance 
could adjust the discount rate or implement dynamic pricing to mitigate the impact on profitability while 
still promoting environmentally friendly behavior. 

Future research could address the limitations of this work by integrating real-time solar data, broader 
parameter variations, and longitudinal studies of user behavior. Additionally, incorporating emerging 
technologies like AI-driven dynamic pricing and real-time fleet management could enhance the practical 
applicability of the findings. 

Interestingly during the analysis of the survey results, when plotting the calculated WTP against trip 
duration, a clear downward trend emerges. This suggests that participants' willingness to pay per minute 
decreases as trip duration increases, likely due to the overall cost becoming limiting for longer travel times. 
This trend implies the existence of an absolute limit to what participants are willing to pay, regardless of 
travel duration. While understanding this metric requires in-depth analysis, given its fundamental role in 
consumer decision-making, the scope of this thesis does not permit the exploration of its implications. 
Nevertheless, this observation is highlighted as a potential area for future researchers to investigate further. 
 

 
 Figures 85 and 86: Scatter charts of WTP and duration 



104 
 

 

In conclusion this thesis highlights the transformative potential of solar-powered charging stations for urban 
mobility. By combining environmental consciousness with an economic mindset, the study offers a 
roadmap for scaling sustainable micro-mobility solutions in cities worldwide. As urban areas continue to 
grow and the demand for efficient transport intensifies, these findings provide a crucial steppingstone for 
decision-makers, paving the way toward greener, more inclusive urban futures. 
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APPENDIX   
A.0 Computer Specifications  
 
Device name DESKTOP-C0FK8FD 
Processor Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz   1.99 GHz 
Installed RAM 16.0 GB (15.8 GB usable) 
System type 64-bit operating system, x64-based processor 
 
A.1 Survey 

Urban Mobility and Sustainability: 

Exploring Commuter Preferences and 

Innovative Solutions 
Dear Participant, 

Thank you for taking part in this survey! The purpose of this questionnaire is to gather information 

about commuting and travel habits in cities. The data you provide will help us create a realistic 

simulation model of city life, where agents will represent people like yourself, commuting to work, 

school, or running daily activities. Your input is vital in shaping the behavior of these agents in a 

virtual environment, allowing us to analyze and optimize transportation systems and urban 

planning. 

This survery will take a maximum of 10 minutes to answer, please answer the following questions 

based on your personal commuting experiences. Your responses will remain anonymous and will be 

used solely for research purposes. 

* Indicates required question 

1. Do you regularly commute to any of the following places? (Select primary * commuting 

route)  Mark only one oval. 

Work 

School/University 

Daily activities (e.g. grocery shopping, gym, etc..) 

I don't have regular commutes 



110 
 

Commuting 
2. How many days per week do you usually commute or engage in activities? * 

Mark only one oval. 

1 day 

2-3 days 

4-5 days 

6-7 days 

3. At what time do you most frequently begin your commute or activity?  * 

 
Example: 8:30 AM 

4. At what time do you  most frequently return from your commute or activity?  * 

 
Example: 8:30 AM 

5. How long does your commute or activity usually take? (one way)  * 

Mark only one oval. 

<15 minutes 

15-30 minutes 

30-45 minutes 

45-60 minutes 

+ 60 minutes 

6. Do your commute or activity times vary between weekdays and weekends? * 
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Mark only one oval. 

Yes, I commute at different times 

No, my commute times are the same 

I don't commute on weekends 

7. How much do you currently spend on your commute per day (one way)? * 

Mark only one oval. 

< €2 

€2 -€5 

€5 - €10 €10 

- €15 more 

than €15 

Commuting 
8. Do you have any other regular commuting routes?   (Select secondary commuting * route) 

Mark only one oval. 

Work 

School/University 

Daily activities (e.g. grocery shopping, gym, etc..) 

 I don't have any other commuting routes Skip to question 15 

Commuting 
9. How many days per week do you usually commute or engage in secondary * activities? 

Mark only one oval. 
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1 day 

2-3 days 

4-5 days 

6-7 days 

10. At what time do you most frequently begin your secondary commute or activity?  * 

 
Example: 8:30 AM 

11. At what time do you  most frequently return from your secondary commute or * 
activity?   

 
Example: 8:30 AM 

12. How long does your secondary commute or activity usually take? (one way)  * 

Mark only one oval. 

<15 minutes 

15-30 minutes 

30-45 minutes 

45-60 minutes 

+ 60 minutes 

13. Do your second commute or activity times vary between weekdays and * weekends? 

Mark only one oval. 
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Yes, I commute at different times 

No, my commute times are the same 

I don't commute on weekends 

14. How much do you currently spend on your secondary commute per day (one * 

way)?  

Mark only one oval. 

< €2 

€2 -€5 

€5 - €10 €10 

- €15 more 

than €15 

Electric Scooters 
 In this section, we will focus on electric scooters, which are becoming a popular mode of transport 

in many cities. We aim to understand your experience with scooters, if any, and your preferences for 

using them as part of your commute. Your answers will help us better simulate how scooters can 

serve as a viable transportation option in a city.   

15. Have you ever used an electric scooter for commuting or other purposes? * 

Mark only one oval. 

Yes 

No 

16. Do you use an electric scooter as regular part of your commute or travel routine? * 

Mark only one oval. 
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Yes, it's my primary mode of transport 

Yes, but only sometimes 

No, but I would consider it as my main mode of commuting 

No, but I would use it as an occasional mode of transport 

No, and I don't plan to use it 

Choosing a scooter 
17. When choosing an electric scooter, what is the maximum amount of time you * 

would be willing to walk to pick one up before considering other transportation options? 

Mark only one oval. 

< 2 minutes 

2-5 minutes 

5-10 minutes 

+ 10 minutes 

18. If you arrive at the location of the scooter you were planning to pick up, but * 

someone else has taken it, what would you do? 

Mark only one oval. 

 I would search for another scooter nearby Skip to question 19 

I would switch to another mode of transportation (e.g., bus, walking, ride-sharing) 

 It depends on how far the next available scooter is Skip to question 19 

Choosing a scooter 
19. How far would you be willing to walk to find another available scooter? * 

Mark only one oval. 
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<2 minutes 

2-5 minutes 

5-10 minutes 

+10 minutes 

Solar powered charging docks 
 We're exploring the idea of implementing solar-powered charging stations for electric scooters. This 

solution aims to reduce reliance on traditional electricity sources, offering an environmentally 

friendly option that lowers carbon emissions and promotes sustainability in urban transportation. By 

charging scooters using clean energy, we could significantly reduce the environmental impact of 

daily commutes.   

20. If solar-powered charging stations for scooters were available, would you be * 

willing to deviate from your final destination to drop off the scooter at a charging 

station? 

Mark only one oval. 

Yes 

No 

It depends 

21. How much of a discount on your ride would make you consider deviating to leave * the 

scooter at a solar charging station?  Mark only one oval. 

 0 1 2 3 4 5 6 7 8 9 10 

100% discount 

 

This content is neither created nor endorsed by Google. 
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 Forms 

 
A.2 Survey Results 
 

 

 
 Table A.1: Chi - Square test calculation for Weibull fit distribution 

 

 
 Table A.2: Chi - Square test calculation for Gamma fit distribution 

 
 

https://www.google.com/forms/about/?utm_source=product&utm_medium=forms_logo&utm_campaign=forms
https://www.google.com/forms/about/?utm_source=product&utm_medium=forms_logo&utm_campaign=forms
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A.3 Operational Model - UI 

 
 Figure A.1: Main Agent 

 
 Figure A.2: Pedestrian Agent 
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 Figure A. 3: Scooter Agent 

 
 Figure A4: Charging Station Agent 
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 Figure A 5 :Charger Agent 

 

 
 Figure A.6: All Auxiliary Parameters  
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A.4 Operational Model - Main Codes and Logics 
 

A.4.1 Code for generating frequented locations 
// Generate random locations for work 

for (int i = 0; i < nrWorkLocations; i++) { 

   double workX, workY; 

   // Ensure unique coordinates 

   do { 

       if (randomTrue(0.5)) { 

           workX = uniform(0, maxX); 

           workY = 100 * ((int) (Math.random() * (maxY / 100))); // y is a 

multiple of 100 

       } else { 

           workY = uniform(0, maxY); 

           workX = 100 * ((int) (Math.random() * (maxX / 100))); // x is a 

multiple of 100 

       } 

   } while (occupiedLocations.contains(workX + "," + workY)); 

   // Add to the list and mark position as occupied 

   workLocations.add(workX + "," + workY); 

   occupiedLocations.add(workX + "," + workY); 

} 

// Generate random locations for school 

for (int i = 0; i < nrSchoolLocations; i++) { 

   double schoolX, schoolY; 

   do { 

       if (randomTrue(0.5)) { 

           schoolX = uniform(0, maxX); 

           schoolY = 100 * ((int) (Math.random() * (maxY / 100)));  

       } else { 

           schoolY = uniform(0, maxY); 

           schoolX = 100 * ((int) (Math.random() * (maxX / 100)));  

       } 

   } while (occupiedLocations.contains(schoolX + "," + schoolY)); 

   schoolLocations.add(schoolX + "," + schoolY); 

   occupiedLocations.add(schoolX + "," + schoolY); 

} 

// Generate random locations for other activities 

for (int i = 0; i < nrOtherActivities; i++) { 

   double otherX, otherY; 

   do { 

       if (randomTrue(0.5)) { 

           otherX = uniform(0, maxX); 

           otherY = 100 * ((int) (Math.random() * (maxY / 100)));  

       } else { 

           otherY = uniform(0, maxY); 

           otherX = 100 * ((int) (Math.random() * (maxX / 100)));  

       } 

   } while (occupiedLocations.contains(otherX + "," + otherY)); 

   otherActivityLocations.add(otherX + "," + otherY); 

   occupiedLocations.add(otherX + "," + otherY); 

} 
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A.4.2 Code for assigning destination to pedestrians when leaving the “base” state 
 
// Generate initial coordinates 

int initialDestinationType = (int) Math.round(triangular(1, 2, 4)); // 

Triangular distribution returning 1, 2, 3, or 4 

switch (initialDestinationType) { 

   case 1: // Other activities 

       int i = (int) Math.round(uniform(0, main.nrOtherActivities-1));  // 

Random index for other activities 

       String initialOtherActivity = main.otherActivityLocations.get(i);  // 

Retrieve coordinate as string 

       initialX = Double.parseDouble(initialOtherActivity.substring(0, 

initialOtherActivity.indexOf(','))); 

       initialY = 

Double.parseDouble(initialOtherActivity.substring(initialOtherActivity.indexO

f(',') + 1)); 

       break; 

   case 2: // Work 

       int i2 = (int) Math.round(uniform(0, main.nrWorkLocations-1));  // 

Random index for work locations 

       String initialWork = main.workLocations.get(i2);  // Retrieve 

coordinate as string 

       initialX = Double.parseDouble(initialWork.substring(0, 

initialWork.indexOf(','))); 

       initialY = 

Double.parseDouble(initialWork.substring(initialWork.indexOf(',') + 1)); 

       break; 

   case 3: // School 

       int i3 = (int) Math.round(uniform(0, main.nrSchoolLocations-1));  // 

Random index for school locations 

       String initialSchool = main.schoolLocations.get(i3);  // Retrieve 

coordinate as string 

       initialX = Double.parseDouble(initialSchool.substring(0, 

initialSchool.indexOf(','))); 

       initialY = 

Double.parseDouble(initialSchool.substring(initialSchool.indexOf(',') + 1)); 

       break; 

   case 4: // Completely random 

       if (randomTrue(0.5)) { 

           initialX = uniform(0, main.maxX); 

           initialY = round(uniform(0, main.maxY) * 100) / 100; 

       } else { 

           initialY = uniform(0, main.maxY); 

           initialX = round(uniform(0, main.maxX) * 100) / 100; 

       } 

       break; 

} 

// Generate final coordinates 

int finalDestinationType = (int) Math.round(triangular(1, 2, 4)); // 

Triangular distribution returning 1, 2, 3, or 4 

switch (finalDestinationType) { 

   case 1: // Other activities 

       int i1 = (int) Math.round(uniform(0, main.nrOtherActivities-1));  // 

Random index for other activities 
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       String finalOtherActivity = main.otherActivityLocations.get(i1);  // 

Retrieve coordinate as string 

       finalX = Double.parseDouble(finalOtherActivity.substring(0, 

finalOtherActivity.indexOf(','))); 

       finalY = 

Double.parseDouble(finalOtherActivity.substring(finalOtherActivity.indexOf(',

') + 1)); 

       break; 

   case 2: // Work 

       int i2Final = (int) Math.round(uniform(0, main.nrWorkLocations-1));  

// Random index for work locations 

       String finalWork = main.workLocations.get(i2Final);  // Retrieve 

coordinate as string 

       finalX = Double.parseDouble(finalWork.substring(0, 

finalWork.indexOf(','))); 

       finalY = Double.parseDouble(finalWork.substring(finalWork.indexOf(',') 

+ 1)); 

       break; 

   case 3: // School 

       int i3Final = (int) Math.round(uniform(0, main.nrSchoolLocations-1));  

// Random index for school locations 

       String finalSchool = main.schoolLocations.get(i3Final);  // Retrieve 

coordinate as string 

       finalX = Double.parseDouble(finalSchool.substring(0, 

finalSchool.indexOf(','))); 

       finalY = 

Double.parseDouble(finalSchool.substring(finalSchool.indexOf(',') + 1)); 

       break; 

   case 4: // Completely random 

       if (randomTrue(0.5)) { 

           finalX = uniform(0, main.maxX); 

           finalY = round(uniform(0, main.maxY) * 100) / 100; 

       } else { 

           finalY = uniform(0, main.maxY); 

           finalX = round(uniform(0, main.maxX) * 100) / 100; 

       } 

       break; 

} 
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A.4.3 Code for generating randomly placed charging stations and docks 
 
if(option == 0){ 

// To avoid placing two stations at the same spot, use a set to store occupied 

positions 

for (int i = 0; i < nrChargingStations; i++) { 

   double stationX, stationY; 

   // Generate random X and Y as multiples of 100, ensure they are not occupied 

by another station 

   do { 

       stationX = 100 * ((int) (Math.random() * 11));  

      stationY = 100 * ((int) (Math.random() * 11));   

   } while (occupiedPositions.contains(stationX + "," + stationY));   

   // Mark this position as occupied 

   occupiedPositions.add(stationX + "," + stationY); 

   // Assign the same coordinates to all docks in this charging station 

   for (chargingStation s : chargingStations) { 

       // Check if the charging station belongs to the current group  

       if (s.chargingStationNumber >= i * maxNumCS && s.chargingStationNumber 

< (i + 1) * maxNumCS) { 

           s.X = stationX; 

           s.Y = stationY; 

       } 

   } 

} 

} 
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A.4.4 Code for generating optimally placed charging stations and docks 
if (option == 1){ 

// Step 1: Count occurrences of each location in frequentlyVisited 

int freqCount = frequentlyVisited.size(); // Total number of locations 

String[] uniqueLocations = new String[freqCount]; // To store unique locations 

int[] locationCounts = new int[freqCount];  

int uniqueIndex = 0; 

for (String location : frequentlyVisited) { 

   boolean found = false; 

   for (int i = 0; i < uniqueIndex; i++) { 

       if (uniqueLocations[i].equals(location)) { 

           locationCounts[i]++; 

           found = true; 

           break; 

       } 

   } 

   if (!found) { 

       uniqueLocations[uniqueIndex] = location; 

       locationCounts[uniqueIndex] = 1; 

       uniqueIndex++; 

   } 

} 

// Step 2: Sort uniqueLocations by their counts in descending order 

for (int i = 0; i < uniqueIndex - 1; i++) { 

   for (int j = i + 1; j < uniqueIndex; j++) { 

       if (locationCounts[i] < locationCounts[j]) { 

           int tempCount = locationCounts[i]; 

           locationCounts[i] = locationCounts[j]; 

           locationCounts[j] = tempCount; 

           String tempLocation = uniqueLocations[i]; 

           uniqueLocations[i] = uniqueLocations[j]; 

           uniqueLocations[j] = tempLocation; 

       } 

   } 

} 

// Step 3: Assign charging stations to the most frequently visited locations 

int stationIndex = 0; // Index for charging stations 

for (int i = 0; i < uniqueIndex && stationIndex < nrChargingStations; i++) { 

   String location = uniqueLocations[i]; 

   String[] coordinates = location.replace("(", "").replace(")", 

"").split(","); 

   double stationX = Double.parseDouble(coordinates[0]); 

   double stationY = Double.parseDouble(coordinates[1]); 

   for (chargingStation s : chargingStations) { 

       if (s.chargingStationNumber >= stationIndex * maxNumCS && 

           s.chargingStationNumber < (stationIndex + 1) * maxNumCS) { 

           s.X = stationX; 

           s.Y = stationY; 
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       } 

   } 

 
A.4.5 Code for assigning destination to chargers when leaving the “base” state 
//Generate initial X and Y 

if(randomTrue(0.5) == true){ 

 initialX = uniform(0,main.maxX); 

 initialY = round(uniform(0,main.maxY)*100)/100; 

} 

else{ 

 initialY = uniform(0,main.maxY); 

 initialX = round(uniform(0,main.maxX)*100)/100; 

} 

//generate final X and Y  

// Pick a random index from the positionList 

      int randomIndex = (int) (Math.random() * main.occupiedPositions.size()); 

       String position = main.occupiedPositions.get(randomIndex); 

       // Split the "X,Y" string into two parts (X and Y) 

       String[] coordinates = position.split(","); 

       // Convert the split strings into doubles 

       double stationX = Double.parseDouble(coordinates[0]); 

       double stationY = Double.parseDouble(coordinates[1]); 

       // Set finalX and finalY of the charger to the chosen position 

       finalX = stationX; 

       finalY = stationY; 
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9.1.1 Zero resource case vs. Solar-powered charging station without incentive case 
 

 

 

 

 
 

 

 
 Figure A.7: Kolmogorov-Smirnov normality test and F-test variance test for reference variables 
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9.1.2 Solar-powered charging station allocation: Random vs Metaheuristic 
 

 

 

 

 

 

 

 

 

 
 Figure A.8: Kolmogorov-Smirnov normality test and F-test variance test for reference variables 
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