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Summary

The following research explores the integration of Large Language Models (LLMs) into
Goal-Oriented Requirements Engineering (GORE) within software development, with a
particular emphasis on Requirements Engineering (RE). By leveraging transformer-based
architectures such as Generative Pre-trained Transformers (GPT), in particular the one
developed by Open AI, Chat GPT, the research investigates their potential to address key
challenges in requirements elicitation, analysis, and specification. Specifically, it examines
how LLMs could be fundamental in facilitating the automated extraction of stakeholder
goals from textual requirements documentation, enhancing the systematic derivation of
system objectives.

Furthermore, the research evaluates the role of LLMs in aligning high-level system goals
with the specifications of Representional State Transfer (REST) Application Program-
ming Interfaces (APIs). By employing LLMs for sub-goal analysis and API mapping,
it becomes possible to develop novel methodologies for bridging the gap between user-
centric requirements and technical implementation, thereby promoting consistency and
coherence throughout the software development lifecycle.
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Chapter 1

Introduction

1.1 Overview of the problem
Software development involves translating high-level goals and requirements into concrete
implementation details, often realized through the use of Application Programming In-
terfaces (APIs).
In this scenario, bridging the gap between abstract requirements and specific API func-
tions poses significant challenges to developers. A potential solution could be found in
the realm of Large Language Models (LLMs).
One of the main goals of this research is to explore the multifaceted nature of this problem,
by identifying key factors that contribute to the gap and examining the LLM strategy to
mitigate its impact.

As a starting point, our objective is to investigate the genesis and fundamental factors
that contribute to this divergence. The gap mentioned above arises from a multitude
of interconnected variables that complicate the translation of abstract requirements into
concrete implementations.

Firstly, ambiguity in requirements specifications. The high-level goals provided by the
client often lack the precision and granularity required for direct translation into specific
API functions. [1]
Ambiguous requirements can result in misinterpretations and divergent implementations,
leading to inefficiencies and inconsistencies in the software development process. In a
scientific paper conducted by Nuseibeh and Easterbrook (2000), it is highlighted that
requirements are often written in natural language, which is inherently ambiguous and
prone to multiple interpretations. In this scenario, stakeholders may express requirements
in broad terms, leaving significant room for developers’ interpretations, which can lead
to different implementations of the same requirement. [2]
This ambiguity is further exacerbated by the fact that stakeholders have different perspec-
tives and priorities, resulting in discrepancies in both their understanding and articulation
of requirements.
A closer examination of the research conducted by Nuseibeh and Easterbrook, combined
with insights from additional sources, reveals that ambiguity is a significant challenge
across various project domains. The following bar chart illustrates that government and
public sector projects experience the highest levels of ambiguity (70%), while embedded
systems, although still concerning, exhibit relatively lower levels of ambiguity of around
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50%. [11]
It is crucial to note that high rates of ambiguity often lead to project delays and cost
overruns, underscoring the need for more effective requirements engineering practices.

Software
Development

Embedded
Systems

Financial
Systems

Healthcare
Systems

Government
Public Sector

0

20

40

60

80

100

60
50

55
65

70

Project Type

Pe
rc

en
ta

ge
of

A
m

bi
gu

ou
s

R
eq

ui
re

m
en

ts
(%

)

Ambiguity Percentage

Figure 1.1: Percentage of ambiguous requirements across different project domains.

Another threat can be depicted is the variability that characterizes the API func-
tionality. APIs typically offer a wide range of functions to accomplish several tasks, and
selecting the most appropriate for a given requirement can not be so trivial.
In this context, developers must navigate through a plethora of options, taking into ac-
count factors such as performance, compatibility, and maintainability, in order to make
informed decisions. This decision-making process can be particularly daunting when
dealing with APIs that offer overlapping functionalities or when documentation is not
comprehensive or up-to-date.
Moreover, the wide range of functionalities provided by modern APIs can overwhelm
developers, making it difficult to choose the best function for a specific requirement. [3]

In addition to this, the dynamic nature of APIs also represents a challenge. APIs evolve
over time, introducing more complexity as new functions are added, deprecated, or sim-
ply modified. This continuous evolution requires developers to constantly update their
knowledge and adapt their previous implementations, which can be resource-intensive
and error-prone. [4]

Drawing from the study "How do developers react to API evolution? A large-scale
empirical study," published in the Software Quality Journal [5], the following line chart
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illustrates the increasing percentage of deprecated API methods over a five-year period.
This trend underscores the dynamic nature of APIs and the challenges developers face
in maintaining up-to-date applications, showing in percentage a linear increase in API
deprecation. The study analyzed the Pharo ecosystem, which includes approximately
3.600 distinct systems over six years, to observe the evolution of API and its impact.
The findings revealed that as APIs evolve, client developers often need to adapt to new
functionalities, and client systems may require modifications to align with updated APIs.
This continuous evolution requires that developers remain vigilant and proactive in up-
dating their applications to ensure compatibility and functionality.
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Figure 1.2: Trend of API methods deprecation over five years.

Finally, the mismatch in domain technology compounds the challenge of bridging the
gap: the domain-specific jargon used by stakeholders to describe high-level goals and re-
quirements can be vastly different from the terminology used in API documentation and
programming paradigms. This discrepancy, as for the ambiguity previously described,
can result in miscommunications between stakeholders, developers, and API users, which
hinders effective collaboration and problem solving, leading to suboptimal API imple-
mentations. [6]

In this scenario, a fundamental question spontaneously arises: How is it possible to
effectively bridge this gap?
This question is the crucial one that drives our research.
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1.2 Bridging the gap
Software engineering practitioners employ a variety of strategies aimed at enhancing re-
quirements elicitation, analysis, and specification processes.

The first and most widely used strategy can be seen in the adoption of goal-oriented
requirement engineering (GORE) methodologies.
In general, goal-oriented approaches facilitate a holistic understanding of the needs and
preferences of stakeholders, allowing a more structured and coherent translation of high-
level goals into specific API calls. By focusing on the underlying goals and objectives
driving the software development effort, practitioners find a way to prioritize requirements
and identify the most relevant API functions to achieve them, breaking down broad goals
into more manageable subgoals and tasks, allowing easier mapping to API calls. [3]
This strategy could be considered as the fundamental one used in our research.

A complementary approach to GORE methodologies is the use of model-driven de-
velopment techniques, which provide a structured and systematic methodology. This
strategy involves creating formal models that encapsulate the fundamental aspects of
the problem domain, enabling developers to clearly define and analyze the relationships
between high-level goals, system requirements, and API functions. By offering a visual
and structured representation of these elements, model-driven development helps bridge
the gap between abstract specifications and concrete implementations.
Moreover, the most significant advantage of this approach lies in its capacity to support
iterative refinement and continuous validation of requirements. Through this iterative
process, stakeholders can actively participate in reviewing the evolving system model,
providing feedback at each stage, which in turn improves their understanding of the ex-
pected behavior of the system and ensures that requirements remain aligned with business
and user needs. [7]

In addition, another contribution to our research environment is given by domain-
specific languages (DSLs). These languages provide significant advantages in software
development by offering customized solutions for specific problem domains.
Unlike general-purpose programming languages such as Java or Python, which are de-
signed for broad applicability, domain-specific languages are crafted to address the unique
requirements, constraints, and semantics of a particular application domain. This spe-
cialization allows DSLs to serve as powerful tools for translating abstract requirements
into concrete API functions with greater precision. In this scenario, one of their most
valuable contributions lies in their ability to minimize ambiguity in requirement specifi-
cations and facilitate seamless alignment between domain knowledge and technological
implementation. By reducing the cognitive gap between stakeholders and developers,
DSLs help ensure that software solutions remain closely aligned with domain-specific
needs, ultimately improving efficiency and maintainability.

Ultimately, the integration of natural language processing (NLP) techniques and
LLMs offers a promising avenue to automate the mapping of requirements to API. By
training LLMs on a large corpus of software documentation and API usage examples,
developers can leverage these models to automate the process of this mapping.

In particular, NLP is a field of artificial intelligence and computational linguistics con-
cerned with enabling computers to understand, interpret, and generate human language
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in a way that is both meaningful and useful. In the context of this research, LLMs can
be used to parse high-level requirement descriptions and suggest relevant API functions,
thus streamlining the development process and reducing the room for human error.

An important example is that LLMs can analyze textual requirements and automati-
cally generate code snippets or API calls that match the described functionality, signifi-
cantly speeding up the development process while improving accuracy. [8]

A comprehensive study titled "An Analysis of Ambiguity Detection Techniques for
Software Requirements Specification (SRS)" by Khin Hayman Oo et al. [19] explores the
prevalence and challenges associated with ambiguity in Software Requirements Specifi-
cations (SRS) and examines several techniques for its detection, showing the potential
of NLP techniques within this context. Ambiguity is important to acknowledge in the
scenario of SRS since it can lead to misinterpretations, inconsistencies, and costly errors
in software development. The study categorized the ambiguity detection methods into
three primary approaches.

1. Manual Approach
This traditional technique relies on human reviewers who carefully examine SRS
documents to identify ambiguous terms, inconsistent language, and contradictions.
Reviewers manually inspect the text, applying their expertise to detect vague or
unclear statements that could lead to misunderstandings during implementation.
Although this method allows for nuanced interpretation, it is time-consuming and
prone to human error.

2. Semi-Automatic Approach Using Natural Language Processing (NLP)
In this method, NLP tools help human reviewers detect ambiguous terms and struc-
tures. These tools are designed to process natural language within the Software
Requirements Specification, highlighting potential areas of ambiguity by analyzing
syntax, semantics, and contextual meaning.
Although not fully automated, this approach takes advantage of the capabilities of
NLP algorithms to enhance the accuracy and speed of ambiguity detection.

3. Semi-Automatic Approach Using Machine Learning
This technique incorporates machine learning algorithms, such as Naïve Bayes text
classification, to autonomously identify ambiguous statements within the SRS. By
training the machine learning model on a dataset of labeled ambiguous and non-
ambiguous phrases, the algorithm learns to predict ambiguity in new, unseen SRS
documents. This approach significantly reduces human intervention and can scale
effectively with larger datasets.

The study provides a quantitative evaluation of these approaches, highlighting their re-
spective strengths and drawbacks.
The Naïve Bayes classifier demonstrated strong performance, achieving a precision of
85% and a recall of 78 %, where:

• Precision refers to the proportion of correctly identified ambiguous statements out
of all statements flagged as ambiguous, which means that 85% of the detected am-
biguities were actual ambiguities.

• Recall measures the proportion of actual ambiguous statements correctly identified
by the classifier, indicating that it successfully detected 78% of all ambiguities present
in the dataset.
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On the other hand, the manual review process, although still effective, achieved a
lower precision of 70% and required significantly more time and effort.
This underscores the trade-off between accuracy and efficiency: manual reviews allow for
thorough examination, while machine learning-based and NLP-assisted approaches offer
faster, more scalable, and more automated solutions for detecting ambiguity in SRS. [19]
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Figure 1.3: Comparison of ambiguity detection approaches in SRS.
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Chapter 2

Background and related work

2.1 Literature review on LLMs in software develop-
ment

The progress of Generative Artificial Intelligence (GAI) in recent years has catalyzed
a paradigm shift in the field of software engineering, particularly in the domain of Re-
quirements Engineering (RE).
Generative Artificial Intelligence, encompassing a spectrum of Artificial Intelligence tech-
niques focused on autonomously generating new content, has emerged as a transformative
force that paves the way for reshaping traditional software development practices.

At the forefront of this technological revolution are the already-depicted Large Lan-
guage Models (LLMs). As already stated, Large Language Models are sophisticated
AI systems endowed with extraordinary linguistic capabilities, which enable them to
comprehend, generate, and manipulate human-like text with unprecedented fluency and
coherence. [7]

LLMs, exemplified by landmark technologies such as the Generative Pre-trained
Transformer (GPT) series, have become compulsory tools in automating various soft-
ware development tasks, including natural language understanding, code generation, doc-
umentation synthesis, and software testing. [9]
The GPT series, developed by OpenAI, has set a new benchmark in the field of NLP
by demonstrating how pre-trained transformer architectures can perform a wide array of
language-related tasks with minimal fine-tuning. [10]

The remarkable capabilities of these models are underpinned by the attention mech-
anism, which allows them to focus on different parts of the input text dynamically, thus
capturing complex dependencies and context.

These advancements have enabled LLMs to tackle sophisticated language tasks, such
as few-shot learning, where the model can adapt to new tasks with only a few exam-
ples, showcasing their versatility and robustness in handling diverse linguistic challenges.
The implications of these capabilities are extensive, as they offer new methodologies for
addressing long-standing issues in software engineering, such as the ambiguity and incon-
sistency of software requirements. [7]
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On the other hand, the field of Requirements Engineering (RE) is crucial to the
successful delivery of software systems, which includes activities such as generating, an-
alyzing, specifying, and validating requirements.
Here, the gap becomes evident: Traditional RE processes often suffer from inefficiencies,
ambiguities, and inconsistencies in requirement specifications. These challenges can lead
to project delays, increased costs, and compromised software quality.

Moreover, the inherent complexity of modern software systems, coupled with the dy-
namic nature of stakeholder requirements, exacerbates these challenges, and requires more
robust and adaptive approaches to RE. [2]

In this scenario, Large Language Models present a promising solution, since they offer
a diverse array of practical applications in RE, addressing challenges across the entire RE
lifecycle.

During requirement elicitation, LLMs can analyze stakeholder communications, user
feedback, and domain-specific documents to extract implicit requirements and identify
potential conflicts or inconsistencies. This capability is particularly valuable in envi-
ronments where requirements are continuously evolving, as it ensures that all relevant
information is captured and appropriately addressed. Furthermore, in this phase, LLMs
can help synthesize various inputs into cohesive requirement statements, thereby improv-
ing the clarity and precision of the elicitation process. [12]

In requirement analysis, LLMs can categorize requirements, extract domain concepts,
and identify relationships between requirements and system functionalities. Using natural
language processing capabilities, LLMs can perform automated analysis of requirements
to uncover hidden dependencies and ensure comprehensive coverage of all necessary as-
pects. This automated analysis is instrumental in maintaining the integrity of require-
ments throughout the project lifecycle, reducing the risk of overlooked or misunderstood
requirements. [13]

In addition, LLMs can significantly improve the specification of requirements by gener-
ating clear, precise, and unambiguous statements from high-level descriptions. They can
also help validate requirements by comparing them with predefined criteria or existing
documentation to ensure consistency and completeness. [14]
This validation process is crucial to mitigate the risk that errors propagate through sub-
sequent stages of the software development lifecycle.

Going deeper in the analysis, LLMs can also support the maintenance and evolution of
requirements by automatically updating documentation in response to changes in stake-
holder needs or system functionalities. This capability ensures that the requirements
specification remains relevant and aligned with the evolving project context.

Another important aspect to be taken into consideration is the fact that the integration
of LLMs into Requirement Engineering processes can facilitate enhanced traceability
and manageability of requirements. That means that LLMs can map requirements to
design documents, code modules, and test cases, providing a comprehensive traceability
matrix that supports impact analysis and change management. This traceability is of
great importance, since it is vital to ensure that all changes in requirements are systemat-
ically reflected across all related artifacts, thereby maintaining coherence and consistency
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throughout the software development process. [15]

By leveraging all the capabilities described above, the ability to improve the efficiency
and accuracy of Requirements Engineering processes arises, enhancing the overall quality
and success of software development projects.

This technological advancement not only mitigates traditional challenges in RE but
also opens new avenues for innovative software engineering practices. As LLMs continue
to evolve, their integration into RE processes is expected to become more sophisticated,
leading to further improvements in software development outcomes. The ongoing research
and development in this field highlights the potential of LLMs to drive the significant ad-
vancements in the way requirements are managed and implemented in software projects,
paving the way for more agile and responsive development methodologies.
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2.2 The integration of LLMs in RE: a case study
A research review titled "Generative AI for Requirements Engineering: A Systematic Lit-
erature Review" analyzed 105 articles about requirements engineering published between
2019 and 2024. [20]
This review explores the methods and techniques used in Generative Artificial In-
telligence (GAI), specifically Large Language Models, within the field of RE, which
corresponds to our field of scope. The review highlights the practical impact of LLMs in
automating and improving several phases of the RE lifecycle.

One of the critical findings of the review involves BERT. BERT (Bidirectional Encoder
Representations from Transformers) is a type of pre-trained deep learning model used
primarily for Natural Language Processing (NLP) tasks. Developed by Google, it repre-
sents a significant advancement in the field of NLP due to its ability to understand the
context of words in a sentence in both directions: left-to-right and right-to-left, hence the
term "bidirectional."
This study focused particularly on the requirement specification phase, showing
how BERT can automatically identify missing terminologies in software specifications
that could otherwise be overlooked. The results revealed a significant increase in the
completeness of requirement documents due to the model’s ability to identify missing
terms and concepts crucial for comprehensive requirements.

In particular, the research presented quantitative data that compare the percentage of
missing terminology identified in the requirements documents before and after the appli-
cation of BERT.
Before using BERT, a significant portion (30%) of terminology was left unaddressed,
which could potentially lead to ambiguities or incomplete specifications.

30

70

Terminology Missing
Terminology Identified

Figure 2.1: Identification of missing terminology before LLMs imple-
mentation.
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After BERT was integrated into the process, this number decreased significantly. Only
9% of the terminology remained unaddressed, with 21% of the previously missing ter-
minology identified, demonstrating the potential power of LLMs in improving the com-
pleteness of requirements.

9
91

Terminology Missing
Terminology Identified

Figure 2.2: Identification of missing terminology after LLMs implemen-
tation.

These findings reinforce the potential of LLMs to support RE professionals by au-
tomating tasks that traditionally require profound manual effort.
Although human expertise remains essential for validation and refinement, AI-driven
models offer a scalable, efficient, and highly accurate approach to refining requirement
documents.
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2.3 The Role of LLMs in Software Engineering
The field of language processing has undergone significant transformations over the
past decades, driven by advancements in computations power, machine learning tech-
niques, and access to large-scale datasets. Traditional Language Models (LMs) have
served as the foundation for text generation and comprehension, allowing several Natural
Language Processing (NLP) applications. However, the gradual appearance of Large
Language Models has redefined the landscape, introducing models with billions of
parameters that can understand, generate, and manipulate human language with un-
precedented accuracy. Unlike earlier models, LLMs are trained on expansive and diverse
corpora, allowing them to capture intricate patterns in linguistic structures and simulate
human-like text generation. These models, including transformer-based architectures
such as BERT, GPT-3, and GPT-4, have demonstrated exceptional proficiency in several
NLP tasks, including text summarization, question answering, sentiment analysis, and
contextual understanding. By learning from vast textual datasets, LLMs are progressively
bridging the gap between human language and machine-generated language, making them
invaluable tools for researchers exploring the nuances of human communication.

2.3.1 The impact of LLMs on software engineering
Alongside advancements in language processing, Software Engineering is increasingly
leveraging innovations driven by large language models (LLMs). Traditionally, SE tasks
have relied on structured programming paradigms, manual code reviews, and extensive
documentation to ensure software quality. However, LLMs have introduced a paradigm
shift by demonstrating their capability to automate and enhance critical aspects of soft-
ware development. One of the key reasons for this transformation is that many SE
challenges can be framed as text-based problems. Since programming languages share
syntactic similarities with natural language, LLMs can be leveraged for a wide range of
SE tasks, including:

• Code summarization - Automatically generate high-level descriptions of code
functionality.

• Code completion - Predict and suggest the next lines of code based on context.

• Bug detection and debugging - Identify potential errors, while simultaneously
proposing fixes.

• Code translation - Convert code between different programming languages.

• Natural-language-to-code (NL2Code) tasks - Generate executable code from
human-readable descriptions.

The effectiveness of LLMs in these areas has been demonstrated through several empir-
ical studies. In a study conducted in 2021, named "Evaluating Large Language Models
Trained on Code", the power of LLMs within the coding environment had been investi-
gated. In particular, Codex, a LLM with 12 billion parameters, has exhibited remarkable
proficiency in handling complex coding tasks, solving 72.31% of Python programming
challenges formulated by human evaluators. This highlights the practical utility of LLMs
in real-world software engineering scenarios, where automation and efficiency are critical.
[21]
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2.3.2 The choice of GPT-4 interface
Among the various LLMs available, GPT-4 from OpenAI has been selected as the primary
model for this research due to its state-of-the-art performance, versatility, and robustness
in handling SE tasks. Several factors contributed to this decision:

1. Enhanced language understanding and reasoning
GPT-4 exhibits improved contextual understanding, reasoning capabilities, and co-
herence in text generation compared to its predecessors. This is particularly valuable
in SE tasks that require a deep understanding of technical documentation, code se-
mantics, and software requirements.

2. Superior performance in code-related tasks
OpenAI has demonstrated that GPT-4 significantly outperforms previous models
in code generation, debugging, and optimization. Its ability to process complex
programming logic makes it an ideal tool for automating SE workflows.

3. Scalability and adaptability
Unlike domain-specific models, the GPT interface is a general-purpose LLM that can
be fine-tuned or adapted to specific SE tasks. This flexibility allows for a broader
range of applications, from requirements analysis to automated documentation gen-
eration.

4. Robustness in handling natural language and code
Many SE tasks require bridging the gap between natural language and programming
languages (e.g., converting natural language specifications into executable code).
GPT-4 excels in NL2Code tasks, making it a powerful asset for requirement engi-
neering and automated software development.

5. Empirical validation
Prior research and industry applications have showcased GPT’s effectiveness in SE,
with companies integrating it into development pipelines for tasks like automated
code review, documentation generation, and AI-assisted coding. Its real-world ap-
plicability further validates its relevance to this study.

Given these advantages, GPT-4 served as the foundational model for this research, pro-
viding a comprehensive framework to explore the integration of LLMs in Requirements
Engineering.
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2.4 Semantic API alignment as a solution
One innovative approach leveraging Large Language Models within the context of re-
quirements engineering is the Semantic API Alignment (SEAL) framework.
SEAL aims to bridge the gap between high-level user goals and specific Application Pro-
gramming Interface (API) functions by automatically aligning them with appropriate
API calls through semantic similarity and content-aware analysis. This methodology en-
hances the efficiency and accuracy of software development processes, particularly within
Goal-Oriented Requirements Engineering, where aligning goals with technical specifica-
tions is crucial for successful project outcomes. [16]
A distinctive feature of the SEAL framework is its ability to analyze not only the lit-
eral terms but also the contextual meaning and intent behind the requirements under
scope. This capability allows the framework to identify more relevant and contextually
appropriate API functions, thereby reducing the risk of mismatches and ensuring that
the underlying needs of stakeholders are met effectively.

2.4.1 Core mechanisms of SEAL
The SEAL framework is built upon several key mechanisms that facilitate the alignment
process:

1. Goal analysis and decomposition
LLMs are employed to analyze high-level user goals and decompose them into sub-
goals or tasks. This decomposition involves breaking down complex requirements
into manageable components that can be directly linked to specific API functions.
For instance, a high-level goal such as "enhance user authentication" can be decom-
posed into two subgoals like "implement two-factor authentication" and "integrate
biometric verification," each of which can be mapped to specific API calls. This step
provides a detailed roadmap for implementation that aligns technical solutions with
business objectives.

Enhance User Authentication

Implement
Two-Factor Authentication

Integrate
Biometric Verification

Figure 2.3: Decomposition of high-Level Goal into subgoals.
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2. Semantic Linking and Mapping
Once the subgoals are identified, LLMs map these tasks to appropriate API func-
tions by understanding the semantics of both the requirements and the APIs. This
semantic mapping involves deep learning models trained on an extensive corpus of
software documentation and API usage examples, enabling precise and contextually
relevant matches between requirements and API functions.
Advanced techniques such as embedding representations and transformer architec-
tures are employed to capture the nuances of both natural language requirements
and technical API descriptions. Embedding representations allow LLMs to encode
semantic information in a high-dimensional space, facilitating the detection of sim-
ilarities and relationships between requirements and API functions. This approach
leverages the power of transformer-based models, which have revolutionized natu-
ral language processing by enabling deep contextual understanding and capturing
complex dependencies in text.

Enhance User Authentication

Implement
Two-Factor Authentication

Integrate
Biometric Verification

Google
Auth API

Twilio
2FA API

Apple Face
ID API

Fingerprint
SDK

Figure 2.4: Mapping of low-level goals to API functions.

3. Iterative refinement and validation
SEAL employs an iterative approach according to which initial mappings are val-
idated and refined through feedback loops involving stakeholders, developers, and
the model GPT itself.
This iterative process is fundamental in fine-tuning the alignment and addressing
any discrepancies or ambiguities. Continuous feedback ensures that the mappings
remain both accurate and aligned with evolving user expectations and technical
constraints. On the other hand, the input coming from the developers assists the
validation of the technical feasibility of the suggested API functions.
This iterative refinement is supported by advanced techniques such as:
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• Active learning
The model incrementally improves its performance by incorporating new data
and feedback over time.

• Self-critique mechanism
This is a prompt engineering technique, which is going to be used later in the
research and involves prompting the model to evaluate its own output, identify
errors or weaknesses, and refine its response accordingly. Instead of just gen-
erating a response, the model is explicitly instructed to critically evaluate the
output for coherence, bias, or other issues and then to revise and improve the
response based on its own critique.

Initial mapping of goals to APIs

Stakeholder feedback:
business alignment check

Developer Review:
technical feasibility check

Self-critique mechanism:
model self-refinement

Refined mapping with adjustments

if needed

Figure 2.5: Iterative refinement process in the SEAL framework.
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4. Dynamic adaptation to API evolution
APIs are dynamic and often evolve over time. SEAL includes mechanisms to adapt to
these changes by updating the mappings as new API functions are added or existing
ones are modified. This dynamic adaptation is facilitated by periodic retraining
of LLMs on updated datasets, ensuring that the mappings remain relevant and
accurate despite changes in the API landscape. For example, if a new API function
is introduced that provides a more efficient way to achieve a certain sub-goal, SEAL
can quickly adapt and update its mapping to utilize this new function, as described
in the following diagram.

Initial API Mapping

Monitor API Changes

Updated API? Update API Mapping

Retrain LLM on Updated Data

yesno

Figure 2.6: Dynamic adaptation process in the SEAL framework.
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Chapter 3

Methodology

3.1 Research Roadmap
This research follows a structured roadmap designed to systematically investigate the role
of Large Language Models (LLMs) in bridging the gap between abstract requirements
and concrete API functionalities. The study is guided by a set of fundamental research
questions, which served as the foundation for our methodology and ensured a focused
exploration of key challenges and opportunities.

3.1.1 Phases of Investigation
The research follows a two-phase approach, progressively refining techniques and method-
ologies to maximize the effectiveness of LLMs in Requirements Engineering (RE).

• Phase 1: Standard Prompting and Initial Analysis
The first phase focuses on exploring how LLMs can facilitate the alignment between
high-level requirements and API functionalities. In this stage, standard prompting
techniques are used without exploiting extensive refinement. This is done to establish
a baseline for the ability of the model to map requirements to APIs. The aim is
to evaluate the initial performance of LLMs in handling requirement elicitation and
identifying their strengths and weaknesses in requirement mapping.

• Phase 2: Prompt Refinement and Enhanced Mapping
Building upon the insights from the first phase, the second phase introduces ad-
vanced prompt engineering techniques to refine and enhance requirement mapping.
This phase investigates how various refinements, including Chain-of-Thought (CoT)
prompting, Few-Shot learning, and structured decomposition, can improve the accu-
racy and consistency of LLM-generated mappings. The research will then focus on
iterative improvements, testing different strategies to optimize alignment between
requirements and API functionalities.
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3.1.2 Core investigation topics
This study aims to address four fundamental research questions, each contributing to a
comprehensive understanding of LLMs’ role in Requirements Engineering. .

1. How can LLMs support requirements elicitation, analysis, and specifica-
tion?
Requirements elicitation is often hindered by ambiguity and incomplete stakeholder
input. This research explores whether LLMs can analyze textual requirements, infer
missing elements, and structure requirements in a way that improves clarity and
completeness. Furthermore, the study provides an investigation about the ability of
the GPT model to assist in requirements analysis by identifying patterns, inconsis-
tencies, and dependencies across different specifications.

2. How effective is prompt engineering in improving the mapping accuracy?
The study examines whether different prompt engineering techniques influence the
ability of LLMs to accurately map requirements to API functionalities. The research
compares basic prompting techniques with advanced methodologies such as context-
aware prompting, constraint-based prompting, and iterative refinement to determine
their impact on mapping precision.

3. Can LLMs enhance API alignment in Goal-Oriented Requirements Engi-
neering (GORE)?
GORE frameworks focus on defining system objectives based on stakeholder goals,
but the transition from goals to implementation remains a challenge. This research
investigates whether LLMs can assist in breaking down high-level goals into struc-
tured subgoals and align them with suitable API calls, thus improving the coherence
of the requirements engineering process.

4. How can Semantic API Alignment (SEAL) improve the translation of
high-level goals into actionable API calls?
SEAL provides a methodology for linking user-centric goals to API functions, but
its effectiveness when combined with LLMs has not been extensively studied. This
research explores whether integrating LLMs with SEAL can result in more accurate
and context-aware requirement-to-API mappings, potentially improving automation
in software development processes.

All of these research questions play a crucial role in determining the viability and
reliability of the following proposed approach.
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3.2 The proposed approach
To evaluate the feasibility of this approach, a series of structured conversational in-
teractions are conducted with the GPT-4 engine using the ChatGPT online interface.
Tailored prompts are designed to emulate the autonomous behaviors expected of each dis-
tinct agent present in the architecture. These interactions focus on a range of applications
sourced from the EMB database, maintaining alignment with those chosen in "Semantic
API Alignment: Linking High-level User Goals to APIs.", Feldt, R., & Coppola, R. (2024)
[16], the article used as a crucial reference for this research.

It is crucial to remember that, at this initial stage, the advanced techniques offered
by prompt engineering will not be leveraged. As already pointed out, this choice en-
sures a foundational assessment of the methodology’s feasibility based solely on standard
prompts, allowing for a clearer evaluation of the baseline capabilities of the conversational
agent in mapping goals to API interactions.

3.2.1 Structure of the tailored prompts
The first prompt (PR1) is designed to identify the potential stakeholder relevant
to the application under scope. To achieve this, the stakeholder selection outlined in
Coppola’s case study, the Catwatch application, is used as a reference point.
This prompt aims to align ChatGPT’s responses with the stakeholder framework defined
in previouss research, effectively "training" the model to mirror the stakeholder identifi-
cation process within a similar context.

Prompt PR1

I need you to choose a stakeholder based on the reasoning already made on the
choice of this one:

*Context:* You are assisting in the goal elicitation process for: [CatWatch
is a web application that fetches GitHub statistics for your GitHub accounts,
processes, and saves your GitHub data in a database, then makes the data available
via a REST API. The data reveals the popularity of your open source projects,
most active contributors, and other interesting points. As an example, you
can see the data at work behind the Zalando Open Source page. To compare it
to CoderStats: CatWatch aggregates your statistics over a list of GitHub accounts.].

*Stakeholder Description:* [Owner of a GitHub account]
So, if the stakeholder chosen for the CatWatch application was the Owner of a
Github account, what could be, using the same identical reasoning, the stakeholder
for the following application:
[Description of the application in the Database EMB]

Table 3.1: Structure of prompt PR1.
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The second prompt (PR2) asks the model to generate high-level goals for the appli-
cation from the perspective of the identified stakeholder.
This step aims to capture the primary objectives and expectations of the previously iden-
tified stakeholder (obtained as an output from PR1), establishing a framework of goals
that drive the application’s purpose. It is of extreme importance to mention that only
the goals given from a final user perspective are going to be considered, ignoring the goals
given from a development perspective.
Moreover, it is worth mentioning that this mapping was performed through just one
iteration. The mapping will then be refined as the research goes on thanks to:

• The application of additional iterations.

• The use of advanced Prompt Engineering techniques.

Prompt PR2

** Prompt: “Elicit High-Level Goals for a Specific Stakeholder in a New Software
Project”**

*Context:* You are assisting in the goal elicitation process for :[Description of
the application]

*Stakeholder Description:* [Output of Prompt PR1]

*Task:* Based on your understanding of the typical needs and interests of this
specific stakeholder in such projects, help generate a list of high-level goals.

For each goal:
1.**Provide a One-Sentence Description:** Clearly state the goal, considering the
stakeholder’s perspective and needs.
2. **Explain the Motivation:** Provide a one-sentence explanation of why this
goal is relevant and important for this specific stakeholder.

Consider aspects such as:
- **Functional Needs**: What are the primary functionalities or services the stake-
holder expects from the software?
- **Quality and Performance Expectations**: Are there specific standards or per-
formance criteria the stakeholder might prioritize?
- **Operational or Business Objectives**: How does the stakeholder intend to use
the software to achieve their operational or business goals?

Please ensure that the goals are realistic, clearly articulated, and align with the
general objectives and challenges typical to the stakeholder’s role or interests in
such software projects.

Table 3.2: Structure of prompt PR2.
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The third prompt (PR3) instructs the agent to break down the high-level goals
identified in the previous step into a more detailed set of low-level goals.
This decomposition process is designed to outline specific, actionable objectives that align
with the broader aims of the stakeholder, facilitating a structured path from overarching
goals to concrete application functionalities.

Prompt PR3

**Prompt: "Elicit Low-Level Goals for a Specific Stakeholder in a New Software
Project"**

*Context:* You are assisting in the goal refinement process for a software. The
high-level goals of the software are the following: [Output of Prompt PR2 ]

*Task:* Based on your understanding of the typical tasks that compose the se-
quence of high-level goal, provide, if possible, a decomposition of goals into sub-
goals. Each low-level goal should theoretically correspond to a single action of the
actor with the software.
Please give goals from the perspective of the user using the application, not devel-
opment goals.

For each goal:
1. **Provide a One-Sentence Description:** Clearly state the goal, considering the
stakeholder’s perspective and needs.
2. **Explain the Motivation:** Provide a one-sentence explanation of why this
goal is relevant and important for this specific stakeholder.

Please ensure that the goals are realistic, clearly articulated, and align with the
general objectives and challenges typical to the stakeholder’s role or interests in
such software projects.
Please also make sure that the goals are goals of the actors using the software, and
not development goal for the implementation of the software.

Table 3.3: Structure of prompt PR3.
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The fourth prompt (PR4) directs the agent to interpret the JSON structure of the API
and generate a detailed list of available endpoints.
For each endpoint, the prompt specifies the inclusion of key details required for usage:
the endpoint’s name, a brief description, supported HTTP verbs, parameters (including
type and name), output format, and the expected result. This structured output enables
a clear and actionable summary of the API, supporting efficient integration and use by
the agents.

Prompt PR4

**Prompt: “Extract API documentation from a Swagger FILE”**

*Context:* You are assisting in the API abstraction of a given software. The
swagger file documenting the APIs of the software is the following: [SWAGGER
FILE ]

*Task*: please list all the endpoints from this swagger file excerpt and list for each
of them:
- the path of the endpoint
- the verb used for the endpoint
- the tag of the endpoint
- the summary of the endpoint
- the description of the endpoint
- the operationId of the endpoint
- the consumed and produced type of the endpoint
- the parameters to call the endpoint.

Table 3.4: Structure of prompt PR4.
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The fifth prompt (PR5) takes as input the list of low-level goals generated from P3
and the details of the REST endpoint from P4. Its purpose is to create a 1-to-many
mapping between these low-level goals and the corresponding API calls.
This mapping serves as a critical step in assessing the feasibility and practicality of the
research approach, determining if the specified goals can be effectively addressed through
available API interactions.

Prompt PR5

**Prompt: “Mapping between API endpoints and low-level goals” **

*Context:* You are assisting in the mapping of goals of a software to its API
endpoints.

The low-level goals of the software are the following: [Output of PR3 ]

The endpoints of the software are the following: [Output of PR4 ]

*Task*: please map each goal to a sequence of calls to the given endpoints. If a
goal is not mapable to an endpoint, please write that the goal cannot be enforced
by using the current set of endpoints.

Table 3.5: Structure of prompt PR5.
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3.2.2 How the prompts are interconnected
The output of certain prompts serve as input for subsequent ones, creating a sequence
of interconnected interactions. Going deeper on the level of details, the process begins
with Prompt PR1, which generates an initial output that feeds into Prompt PR2. This
output then drives the response of Prompt PR3, continuing the flow of interaction.
Notably, Prompt PR5 is influenced by the outputs of both Prompt PR3 and PR4, demon-
strating how prompts can branch out and build on multiple prior outputs.

Prompt PR1

Prompt PR2
(PR1’s output)

Prompt PR3
(PR2’s output)

Prompt PR4

Prompt PR5
(PR3’s and PR4’s outputs)

Figure 3.1: How the prompts are interconnected.

The figure illustrates how the output of each prompt shapes the next, ensuring a cohesive
and coherent flow of information that refines and evolves the system’s responses. This
interconnected approach allows for a more contextually aware and responsive process.
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3.3 Inspirational example
As a case study, the research started through the testing on an application from the EMB
database known as the ‘Features Model.’ This example was essential to gain a clearer
understanding of the functionality of the methodology and to evaluate its feasibility.
Moroever, this application was chosen as the starting point for our research particularly
due to its completeness in both API documentation and Github description.

3.3.1 Description of the case study

In the second prompt (PR2), the model is instructed to generate high-level goals based
on the application’s description. To facilitate this, the GPT interface was provided with
a description extracted from the GitHub repository. However, before moving to the
testing phase, it is crucial to first understand the nature of the application under scope.
A feature model is a structured and concise representation of all products within a
Software Product Line (SPL), organized around the concept of features.
SPL development emphasizes the systematic and efficient creation of a family of related
software products that share common features while accommodating variations based on
specific needs. The goal is to offer a REST-based service for:

• Defining Products and Their Features.
This involves specifying the set of products within the SPL, detailing the features
available for each product, and outlining the activation constraints that govern the
interdependencies and relationships between those features.

• Defining Product Configurations.
A product configuration is defined as a specific combination of active features of the
available set. These configurations must adhere to the feature activation constraints,
ensuring that the resulting configuration is valid and meets the product’s design
criteria.

• Querying Active Features for a Configuration.
This functionality allows querying the active features of a configuration. By lever-
aging this capability, an application can dynamically adjust its behavior during
run-time. The behavior may be influenced by various factors, such as the logged-in
user, the client, or any other contextual information. This enables a flexible and
context-aware execution of the software, optimizing its performance and user expe-
rience based on the active configuration. In essence, this service allows for precise
control over the set of features activated in a product, ensuring that the software
behaves consistently according to predefined constraints while supporting flexibility
for different use cases.

This application served as our guiding example, shaping the process all the way from
PR1 to PR5.

3.3.2 Testing the case study
Initially, the description of the application under scope in the GitHub database contained
limited information. To deal with this, further research was conducted to provide the
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agent with a sufficiently detailed description. The following description was provided to
the ChatGPT interface in prompt PR1 and prompt PR2.

As defined by Wikipedia, "a feature model is a compact representation of all the
products of the Software Product Line (SPL) in terms of features".
The focus of SPL development is on the systematic and efficient creation of similar
programs.
The goal of this project is to provide a REST-based service for:

Defining products, their available features, and the activation constraints
between features.

Defining product configurations, understood as a set of active features of
those supported by the product that fulfill the feature constraints.

Querying the active features for a configuration, so an application in run-
time can change its behavior according to the active features of a configuration
depending, for instance, on the logged user, the client, etc.

The project provides REST resources for defining and querying both products and
product configurations.
Let’s use as a running example an e-learning website that supplies infrastructure
to its clients so they can provide online courses. The company charges its clients
according to the enabled features, so the web application adapts its behavior
by showing or hiding links and sections when a student is logged in. Some of
the supported features are video lessons, online forums and chats for support,
payments with credit card, PayPal or wires, redeem codes, etc.

Working with products:

Add a product

Add new features

Remove a feature

Request a list with the names of all available products

Request the features and constraints of a product

Remove an existing product and all its configurations

Table 3.6: Description of the case study: Features Model.
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Working with products:

Feature constraints can be removed after adding a product

Automatic feature inclusion: When a feature requires another feature, it
will be automatically added to the configuration when the source feature is
added.

Feature exclusions: When a feature excludes another feature, it will turn
the configuration invalid if both of them are active.

Add a new configuration for one product

Activate/Deactivate a feature in a configuration

Remove a configuration

Query all the active feature names in a configuration

Table 3.7: Description of the case study: Features Model, continuation.

Starting with the initial description and systematically tracing the entire sequence from
PR1 to PR5, the first mapping was conducted. It is essential to acknowledge that
the mapping was a 1:many one, between each individual API endpoint, extracted
from the SWAGGER file, and its corresponding low-level goal, with the possibility for
one individual API endpoint to cover several low-level goals. This step was crucial in
validating the alignment between the extracted API functionalities and the intended
objectives.

Moreover, it is important to highlight that, as the research progresses, a recurring
pattern emerged. Specifically, the model demonstrated a strong ability to accurately
map certain categories of goals while consistently omitting others. This observation will
be further explored in the second phase to understand the underlying reasons behind
these exclusions and their potential implications.
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High-level Goal Low-Level Goals Mapped Endpoint
Maximize Revenue Oppor-
tunities

1.1 Set different pricing tiers for
feature bundles
1.2 Track feature usage for
billing purposes
1.3 Enable promotional discounts
on features

1.1 Cannot enforce with current set of endpoints.
1.2 GET /products/{productName}
/configurations/{configurationName}
/features
1.3 Cannot enforce with current set of endpoints.

Enhance product cus-
tomizability

2.1 Allow clients to customize
their feature sets
2.2 Enable personalization based
on user roles
2.3 Track client-specific con-
figurations and feature usage
2.4 Provide tools for clients to
manage their configurations

2.1 POST /products/{productName}
/configurations/{configurationName} - Add a con-
figuration to a product.
POST /products/{productName}
/configurations/{configurationName}
/features/{featureName}
- Add a feature to a specific configuration.
2.2 Cannot enforce with current set of endpoints.
2.3 GET /products/{productName}
/configurations/{configurationName}
/features - Get active features for a configuration.
2.4 GET /products/{productName}
/configurations - Get configurations for a product.
GET /products/{productName}
/configurations/{configurationName} - Get config-
uration by name for a product.
PUT /products/{productName}
/configurations/{configurationName} - Update a
specific configuration (implied).

Improve User Experience 3.1 Provide a user-friendly inter-
face for configuration management
3.2 Generate detailed analytics and
reports for clients

Cannot enforce with current set of endpoints.
Cannot enforce with current set of endpoints.

Facilitate Efficient Client
Management

4.1 Track client-specific con-
figurations and feature usage
4.2 Provide tools for clients to
manage their configurations

4.1 GET /products/{productName}
/configurations/{configurationName}
/features - Get active features for a configuration.
4.2 GET /products/{productName}
/configurations - Get configurations for a product.
GET /products/{productName}
/configurations/{configurationName} - Get config-
uration by name for a product.
POST /products/{productName}
/configurations/{configurationName} - Add config-
uration to a product.

Support Continuous Im-
provement with new fea-
tures

5.1 Regularly update the sys-
tem with new features
5.2 Conduct periodic reviews and
updates based on market trends

5.1 POST /products/{productName}
/features/{featureName} - Add a feature to a prod-
uct.
PUT /products/{productName}
/features/{featureName} - Update a feature of a
product.
5.2 Cannot enforce with current set of endpoints.

Table 3.8: Features Model: goals and endpoints.

Application N° of Endpoints N° of Low-Level Goals % Low-Level Goals Mapped
Features Model 12 13 58.33%

Table 3.9: Statistics about our inspiration example.

The application of Large Language Models in aligning high-level user goals to APIs
through Semantic API alignment has demonstrated promising results, with more than
50% of low-level goals correctly mapped.
However, despite its potential, this initial approach, which lacks prompt refinement and
does not leverage the advantages of prompt engineering and other techniques, has notable
limitations that significantly affect its scalability and reliability. The research continued
by applying the same approach and methodology to other applications from the same
database of Features Model, the application presented above.
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3.4 Output statistics
This section presents the output statistics obtained from the analysis of APIs using the
SEAL framework. A total of 11 applications from the EMB database were tested,
including:

• Cyclotron, a web-based platform designed to create and manage dashboards with
ease. It provides a built-in editor and a set of customizable components, enabling
users, even those without programming skills, to design and modify dashboards
effortlessly. Dashboards are structured as JSON documents, which define all nec-
essary properties for rendering, allowing for a streamlined and flexible approach to
data visualization.

• Features Model, the case study presented above.

• Language Tool, an open-source proofreading software that supports over 20 lan-
guages, including English, Spanish, French, German, Portuguese, Polish, and Dutch.
Unlike basic spell checkers, it detects a wide range of grammatical, stylistic, and con-
textual errors, helping users improve the accuracy and clarity of their writing.

• OCVN, which stands for Open Contracting Vietnam. OCVN is a project designed
to streamline the processing and analysis of Vietnam’s public procurement data. It
enables the import of procurement records from MS Excel into a NoSQL storage
system following the Open Contracting Data Standard (OCDS). With built-in vi-
sualization tools, OCVN allows users to generate live dashboards featuring charts,
maps, and data tables, as well as custom comparison charts. Since the data is stored
natively in the OCDS format, it can be efficiently exported without additional in-
formation, ensuring high performance and seamless data interoperability.

• Market, an e-commerce web application built to facilitate online shopping and order
management. It provides a visual representation of products, allowing customers to
browse, add, remove, and modify items in their shopping cart before placing an order.
The system securely stores registered users’ cart contents in a database for future
access. On the administrative side, the Market control panel enables efficient prod-
uct and category management, order tracking, and stock availability adjustments.
Orders can be processed from "in progress" to "executed." The platform ensures se-
curity through customer registration, authentication, restricted admin access, and
double-checking form inputs on both the client and server sides.

• Bibliothek, a Java library designed to simplify and optimize file download man-
agement within applications. It provides an intuitive API that allows developers to
efficiently handle downloads, including starting, pausing, resuming, and canceling
them as needed. Key features include progress tracking through listeners, robust er-
ror handling, and thread management to ensure downloads do not interfere with the
main application process. With its flexible and developer-friendly design, Bibliothek
is a powerful tool for integrating seamless and reliable download functionality into
Java-based projects.

• Corona-Warn, Germany’s official contact tracing application designed to help mit-
igate the spread of COVID-19 using Apple and Google’s exposure notification API.
Available for both iOS and Android, the app employs Bluetooth technology to ex-
change anonymous, encrypted data between nearby devices running the app. All
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data is stored locally on users’ phones, ensuring privacy and preventing unautho-
rized access.A key component of the system is the Verification Service, which ensures
the integrity of upload requests. It includes a Verification Server for request valida-
tion, a Verification Portal for hotline employees to generate teleTANs for diagnostic
key uploads, an Identity and Access Management system to control access for au-
thorized health personnel, and a Test Result Server to securely deliver lab results
to users. This infrastructure enables a secure and privacy-preserving approach to
digital contact tracing.

• Genome Nexus, a comprehensive platform designed for the rapid, automated an-
notation and interpretation of genetic variants in cancer. It serves as a centralized
resource that integrates data from multiple sources to streamline the analysis of
genetic mutations. By converting DNA changes into their corresponding protein al-
terations, predicting functional effects, and providing insights into mutation frequen-
cies, gene functions, and clinical relevance, Genome Nexus supports high-throughput
cancer genomics research. This tool is essential for researchers and clinicians seeking
to understand the implications of genetic variations in oncology.

• Gestao Hospitalar, a project that aims to develop a tool to support the Sistema
Único de Saúde (SUS), Brazil’s public health system, one of the largest and most
complex in the world. SUS provides universal, free healthcare services ranging from
routine checkups to advanced procedures like organ transplants. By ensuring com-
prehensive health coverage for all citizens, it prioritizes not only treatment but also
prevention and quality of life. The proposed tool seeks to enhance SUS efficiency
by reducing waste and optimizing resource allocation, starting from patient needs,
ultimately improving the system’s sustainability and effectiveness.

• SpaceX, designed to support the management of space-related data, particularly
for capsules and cores, on a data aggregation platform.

• ReservationsAPI, which aims to streamline the reservation process, through a
simplified reservation management, allowing users to easily book and manage their
reservations. The system features user registration and authentication for secure
access, ensuring a smooth user-reservation relationship management. It also inte-
grates with existing systems, providing a unified experience. Additionally, it offers
comprehensive reporting and analytics to track and analyze reservation data, while
ensuring customization and flexibility to meet different user needs and preferences.

Leveraging the same reasoning used for the choice of the Features Model application, the
10 remaining applications were selected from the EMB database because they had the
most comprehensive and complete API documentation and Github descriptions among
all the others.

The data collected include the number of endpoints, the number of low-level goals, and
the percentage of low-level goals correctly mapped by endpoints for each application.
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Application N° endpoints N° low-level goals % llgoals mapped

Cyclotron 53 35 17.1%
Features Model 12 30 43.33%
Language Tool 99+ 18 44.44%
OCVN 99+ 17 33.3%
Market 13 25 48%
Bibliothek 8 20 5%
Corona-Warn 5 39 10.53%
Genome Nexus 58 34 85%
Gestao Hospitalar 12 24 50%
SpaceX 20 18 50%
ReservationsAPI 7 13 53.85%

Table 3.10: Statistics on 11 applications sourced from the EMB database.

The results shown in Figures 3.2 and 3.3 provide key insights about the overall effective-
ness of the SEAL framework in mapping low-level goals to API endpoints.

As shown in Figure 3.2, 72.7% of the applications analyzed achieved a mapping percent-
age above 30%. Although this result is promising, it may still be insufficient to ensure
a reliable and systematic alignment of requirements with API functionalities. In re-
quirements engineering (RE), achieving a higher mapping percentage is crucial to reduce
ambiguity and improve software traceability.

72.7

27.3

llgoals mapped > 30%
llgoals mapped ≤ 30%

Figure 3.2: Percentage of applications with % llgoals mapped > 30%.
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Figure 3.3 further refines this perspective, showing that only 18.2% of the applications
achieved a mapping percentage exceeding 50%. This is particularly relevant because 50%
could be considered a minimum threshold for acceptable alignment in RE contexts. A
percentage of mapping below this value may indicate difficulties in linking abstract user
goals to concrete API functionalities, reducing the practical applicability of the frame-
work in real-world scenarios.

18.2

81.8

llgoals mapped > 50%
llgoals mapped ≤ 50%

Figure 3.3: Percentage of applications with % llgoals mapped > 50%.

Another important observation is the potential correlation between mapping percent-
ages and the comprehensiveness of API documentation and application descriptions.
Specifically, applications with long and detailed Swagger files, or those with extensive
and structured descriptions on platforms such as GitHub, may exhibit higher mapping
percentages. This observation aligns with the one that applications like Genome Nexus
(85%) and ReservationsAPI (53.85%), which feature well-documented APIs and descrip-
tions, outperform others like Bibliothek (5%) and Corona-Warn (10.53%), where API
documentation might be incomplete or insufficiently detailed.
This suggests that improving the length and specificity of API descriptions could
be a key factor in improving the performance of the SEAL framework.
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3.5 Current Limitations
Despite this initial approach demonstrates high potential in leveraging ChatGPT for
requirements engineering (RE) tasks, several limitations impact its effectiveness. These
constraints arise from dependencies on contextual clarity, challenges in goal mapping,
technical constraints, and broader platform-level limitations. This section outlines the
key challenges observed during implementation, highlighting areas where improvements
are needed.

1. Contextual and Operational Limitations

A major limitation of this approach comes from its reliance on a comprehensive
input context. ChatGPT response quality is highly dependent on the precision and
clarity of the prompts. When provided with incomplete or ambiguous inputs, the model
often generates inconsistent or irrelevant responses.
Although iterative prompt refinement can mitigate this issue in controlled environments,
it becomes impractical in complex RE tasks where obtaining exhaustive context is
neither feasible nor efficient.
Additionally, the platform struggles with retaining information across extended multi-
turn interactions. This shortcoming hinders its effectiveness in tasks that require
persistent contextual memory, such as the hierarchical goal decomposition central to
SEAL. In practice, frequent prompt recalibration was necessary to align user goals with
API calls, introducing inefficiencies that reduce the scalability of the system, particularly
in environments involving multiple stakeholders and intricate software ecosystems.

2. Inconsistencies in Goal Mapping and Output Generation

Another critical challenge lies in the ability of the model to translate high-level
goals into actionable steps. Although the ChatGPT interface can generate plausible
mappings, it often fails to justify its reasoning or provide transparent explanations for
omitted goals. This lack of interpretability introduces barriers to trust and usability,
particularly in software engineering contexts where precise traceability and validation
are crucial.
It is of crucial importance to note that during the Goal Elicitation phase, a notable is-
sue was observed: ChatGPT consistently generates four low-level goals for each high-level
goal, regardless of the complexity of the latter. Although this structured approach may
seem beneficial, it often results in redundant or irrelevant goals, increasing complexity,
and diminishing mapping quality. Some high-level goals inherently require fewer steps,
yet the model imposes an arbitrary quota, leading to unnecessary elaboration.
Furthermore, handling non-functional requirements remains a significant challenge.
Goals related to security, data privacy, and compliance often fail to align effectively
with API calls due to their abstract nature and the model’s limited understanding of
such dimensions. Addressing this issue may require advanced reasoning techniques, such
as chain-of-thought (CoT) prompting, which has shown promise in improving logical
coherence. Several studies have demonstrated the effectiveness of Chain-of-Thought
prompting in enhancing the reasoning capabilities of Large Language Models. For
example, Wei in a study conducted during 2022, showed that generating a series of
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intermediate reasoning steps significantly improves LLM performance on complex tasks,
such as arithmetic and common-sense reasoning. [22].
Additionally, Madaan et al. (2023) found that CoT prompting helps models fill in
missing common-sense information, particularly aiding in difficult reasoning problems
and long-tail questions. [23]

3. Technical and Architectural Constraints

From a technical standpoint, the reliance of the model on predefined API docu-
mentation, such as Swagger files, exposes further limitations. The model struggles to
infer or supplement missing details when documentation lacks granularity. For example,
if endpoint descriptions do not specify input-output formats, the model may generate
incomplete or invalid API call sequences. The absence of self-correction mechanisms
exacerbates this issue, as the model does not inherently refine its outputs without
external intervention.
Another notable constraint is its sensitivity to application size and complexity.
As already described previously, the analysis indicates that applications with detailed
textual descriptions and fewer endpoints yield better mapping accuracy. The additional
context enables more precise goal-to-API alignments, while a lower number of endpoints
reduces ambiguity. In contrast, applications with sparse descriptions or a large number
of endpoints exhibit reduced mapping precision, as the model struggles to distribute
abstract goals across an extensive API landscape.

4. Broader Platform-Level Limitations

Beyond task-specific challenges, ChatGPT and similar language models exhibit
broader limitations that impact their applicability in specialized domains. One sig-
nificant issue is hallucination, in which the model confidently generates incorrect or
fabricated information. In high-stakes software engineering contexts, this behavior poses
substantial risks. Although techniques such as Generate Knowledge Prompting have
been explored to mitigate inaccuracies, their practical implementation remains in early
stages and requires further refinement.
In this scenario, another systemic challenge is the difficulty of the model in balancing
generalization with domain-specific expertise. Although fine-tuning on specialized
datasets or leveraging structured prompt engineering methods, such as perspective
prompting or the RGC (Role, Goal, Context, Constraint) framework ,could enhance
adaptability, these strategies require substantial resources and may not be universally
viable.

Overall, these limitations highlight the need for improved contextual understanding,
reasoning capabilities, and adaptive methodologies to enhance the effectiveness of the
interface in requirements engineering and related domains.
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Chapter 4

Advancing Semantic API
Alignment

4.1 A deep dive into Prompt refinement and Prompt
Engineering

Prompt Engineering is the process of designing and refining the input prompts pro-
vided to Large Language Models, with the aim of maximizing the relevance, accuracy,
and utility of their outputs. It operates at the intersection of human creativity and
computational reasoning, where the careful crafting of input instructions enables these
models to better interpret and generate contextually appropriate responses. [24]
Unlike traditional programming, where algorithms are explicitly coded, Prompt Engi-
neering leverages the pre-trained knowledge embedded in LLMs, using prompts to extract
insights or perform specific tasks. This approach transforms vague or complex objectives
into structured and actionable instructions that effectively lead the model to the desired
outcomes. By doing so, it reduces the ambiguity and enhances the logical consistency of
the results generated.

4.1.1 Prompt engineering applicability in the SEAL framework
In the context of our research, Prompt Engineering emerges as a key tool to bridge
high-level user objectives with the technical functionality of APIs. This connection, facil-
itated through structured prompts, allows the model to map abstract goals into concrete
actions that align with the requirements of stakeholders. The ability to tailor the model
responses through carefully constructed prompts ensures that the output remains rele-
vant to the task at hand, minimizing extraneous or irrelevant data. Moreover, it enables
iterative refinements, where initial outputs can be evaluated and prompts adjusted to
address limitations or inconsistencies, further enhancing the precision of the results.
In a domain like Semantic API Alignment, where the focus is on aligning user goals with
API endpoints, Prompt Engineering offers a scalable and flexible solution to manage the
complexities inherent in requirements elicitation and mapping. It provides a framework
for systematically exploring different perspectives, enhancing outputs, and ensuring that
the alignment process is efficient and accurate. This adaptability makes it particularly
valuable for addressing the diverse challenges that arise in requirements engineering, from
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eliciting stakeholder needs to operationalizing these into technical specifications.

It is crucial to point out that Prompt Engineering is not merely a method of extracting
output. Instead, it can be considered as a lens through which complex systems can be
understood and optimized. Its iterative nature aligns closely with the principles of our
research, which require repeated interactions and refinements to achieve optimal map-
pings between goals and APIs.
By embedding techniques such as Chain-of-Thought reasoning, Perspective Prompting,
and Priming within the prompts, the process facilitates a deeper exploration of the prob-
lem space, ensuring that no critical aspect is overlooked. [7]

4.1.2 Key study on the potential impact of prompt engineering
The impact of Prompt Engineering has been extensively studied in recent years. Google
Research conducted one of the most significant studies in 2022, where Chain-of-
Thought (COT) prompting, one of the most used and promising techniques of prompt
engineering, was evaluated in PaLM, a 540 billion-parameter language model. [22]

The research on Chain-of-Thought (CoT) prompting explores how it enhances the per-
formance of Large Language Models (LLMs) by structuring complex reasoning tasks into
smaller, intermediate steps. This method is inspired by human cognitive processes, where
we break down problems into manageable parts to improve clarity and decision-making.
By incorporating these intermediate steps, CoT prompting guides the model through
each stage of the reasoning process, allowing it to arrive at more accurate conclusions,
especially in tasks requiring multiple steps of logic.

In particular, the study focused on mathematical problem-solving, which often involves
intricate multi-step reasoning. To assess the effectiveness of CoT prompting, the re-
searchers used the GSM8K benchmark, a dataset specifically designed to test mathemat-
ical reasoning in models. In this case, accuracy refers to the model’s ability to correctly
solve mathematical problems within the benchmark, where each problem requires logical
thinking and the ability to break tasks dwon into intermediate steps.
The results revealed the following.

• PaLM without CoT prompting
The model achieved an accuracy of 60%, which means that it correctly solved 60%
of the problems but struggled with the multi-step reasoning in the remaining 40%.

• PaLM with CoT prompting
When CoT prompting was applied, accuracy increased significantly up to 80%. This
improvement demonstrated the effectiveness of guiding the model through structured
reasoning steps, allowing it to solve more problems accurately.

• Fine-tuned models
These models had been specifically trained on the dataset to handle mathemati-
cal reasoning and also achieved an 80% accuracy. This result suggested that CoT
prompting alone could achieve comparable results to models that were fine-tuned
for the task, showing that structured reasoning through prompts could be just as
effective as specialized training.
Summing up, the study shows that prompt engineering techniques like CoT prompt-
ing can deliver results that are competitive with more traditional, fine-tuned models,
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making it a promising approach for enhancing model performance across a variety
of domains. [22]
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Figure 4.1: Comparison of PaLM accuracy with and without CoT prompting.
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4.2 Application of PE in the case study
4.2.1 Techniques employed in the early stage
During the already-shown early phases of this research, prompt engineering was pivotal
in tasks such as eliciting user goals, breaking them down into manageable subgoals,
and mapping these to API functionalities. To achieve this, the research relied on four
key techniques: Priming, Perspective Prompting, Chain-of-Thought (CoT), and the
Role-Goal-Context (RGC) framework. These methods were fundamental in the analysis,
since they allowed us to tailor the model’s responses more precisely, ensuring that the
outputs align with the scope of the research.

Priming involves setting the stage for the model by providing it with a detailed
introduction to the task at hand. This might include a description of the context,
expected outcomes, and even examples to guide the model’s understanding. Essentially,
priming gives the model a "mental framework" to work within, making its responses
more targeted and relevant.

Example of Priming

Task: Generate high-level goals for a software development project.

Context: The goal is to design a web application for an e-commerce plat-
form that allows users to browse and purchase products.

Expected Outcome: High-level goals that focus on enhancing user experi-
ence, improving product browsing, and increasing sales.

Application of Priming technique: "You are tasked with generating
high-level goals for the development of a web application for an e-commerce
platform. The primary focus is on improving the user experience and maximizing
sales."

Table 4.1: Application of priming in PR2.

The prompt PR2, mentioned above, is a great example of how the priming technique
is applied effectively. First, it sets the scene by offering a clear context. The description
of the application and the stakeholder, combined with the purpose of the task, helps
the model understand what it is working on and why. This background information is
essential to steer the model’s focus in the right direction.
Moreover, the task is clearly defined and broken down. The model is not simply
asked to generate high-level goals; but it is also given instructions on how to approach
the task. For each goal, it is told to write a one-sentence description, explain its
relevance, and consider specific aspects such as functionality, quality expectations, and
business objectives. This level of detail reduces ambiguity and ensures that the outputs
align closely with the needs of the stakeholder.
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Perspective prompting takes the process a step further by asking the model to analyze
a task from different points of view. This technique is particularly useful in requirements
engineering, where the expectations of various stakeholders, such as developers, project
managers, and end users, may differ significantly.

Example of Perspective Prompting

Task: Define requirements for a mobile application.

Developer Perspective: The app must be scalable, fast, and compatible
with various devices.

End-User Perspective: The app should be intuitive, easy to navigate,
and visually appealing.

Application of Perspective prompting: "From the perspective of the
developer, generate high-level requirements for a mobile app, ensuring scalability
and performance. From the perspective of the end user, consider usability and
design."

Table 4.2: Application of perspective prompting in PR2.

The prompt PR2 asks the model to generate high-level goals explicitly from the
stakeholder’s perspective, ensuring relevance to their needs and interests. The emphasis
on discarding development-oriented goals further aligns with this technique, ensuring
that the generated outputs are tailored to a specific viewpoint.

Another technique is the one mentioned in the last chapter: Chain-of-Thought prompt-
ing. As already stated, CoT prompting encourages the model to break down complex
tasks into small logical steps. By prompting the model to reason through each step of the
process, this technique makes its thought process more transparent and easier to evaluate.

Example of Chain-of-Thought

Task: Break down the process of developing a new feature for a mobile app.

Step 1: Identify the feature’s purpose and goals.
Step 2: Define the technical requirements and design specifications.
Step 3: Develop the feature and conduct testing.

Application of Chain-of-Thought: "First, clarify the purpose of the fea-
ture. Then, outline the technical specifications needed to implement it. Finally,
explain how the feature will be tested and validated."

Table 4.3: Application of CoT prompting in PR3.
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In prompt PR3, the model is asked to decompose high-level goals into low-level, action-
able goals. The structure encourages step-by-step reasoning to ensure logical consistency
and clear alignment between broader goals and more specific subgoals. Additionally,
the prompt’s request to explain the motivation for each sub-goal encourages a coherent
process.

Finally, the Role-Goal-Context framework provides a structured approach to prompt
engineering by explicitly defining the model’s role, the desired goal, and the specific
context of the task. This clarity helps the model stay focused, so as to produce outputs
that are highly relevant and actionable.

Example of Role-Goal-Context

Role: Assistant

Goal: Generate high-level requirements for a new software product.

Context: The product is a mobile application designed for online learn-
ing.

Application of Role-Goal-Context: "You are assisting in the goal elici-
tation process for a mobile app designed for online learning. Generate high-level
goals that focus on improving accessibility, user engagement, and educational
effectiveness."

Table 4.4: Application of Role-Goal-Context, used in all prompts.

The structure of all the prompts explicitly defines the role (e.g., “You are assisting in
the goal elicitation process”), the goal (e.g., “Generate high-level goals”), and the context
(e.g., “Description of the application” or “Stakeholder description”). This clear framework
helps the model remain focused on the task and produce outputs relevant to the specified
role and context.

These techniques were pivotal in shaping the effectiveness and precision of the approach,
serving as the foundation to align the model’s output with the research objectives and
ensuring the robustness of the methodology.
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4.2.2 Iterative refinement through new techniques
In the subsequent analysis, new techniques were applied in order to further refine the
prompts, addressing the limitations identified in the initial phase and mentioned above,
and enhancing the precision and utility of the model’s output.
These advanced techniques build upon the foundation established earlier, ensuring that
the prompts not only generate relevant results but also do so with greater consistency
and alignment to the objectives.

The first technique, Few-Shot Prompting, introduces examples of input-output pairs
within the prompt to guide the model.
By demonstrating a clear structure and expected outcome, this technique helps the model
in understanding patterns and reducing ambiguity in its responses, allowing to align a
much higher percentage of low-level goals. In concise words, few-shot prompting leverages
the model’s pre-trained capabilities by showing it how to approach similar tasks.
For example, in the original task of decomposing high-level goals into low-level ones,
the prompt is enhanced to include a sample output. In particular, instead of only stating:

Excerpt from prompt PR3

Decompose the following high-level goals into low-level ones.

Table 4.5: Original prompt PR3.

↓

Prompt refined through the use of Few-Shot Prompting

Decompose the following high-level goals into low-level ones.
For example, if the high-level goal is ‘Monitor project popularity,’ the subgoals
could be:
1. Track popularity trends over time;
2. Compare popularity across projects.

Table 4.6: Refined prompt PR3.
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The second technique employed, Fill-in-the-Blank Prompting, introduces placehold-
ers within the prompt to direct the model toward generating structured and precise
outputs. This approach narrows the scope of the task by focusing on specific elements
that need completion, effectively guiding the model’s attention. For instance, in mapping
goals to API endpoints, the original prompt might state:

Excerpt from prompt PR4

List all API endpoints for achieving the goal.

Table 4.7: Original prompt PR4.

↓

Prompt refined through the use of Fill-in-the-Blank Prompting

List all API endpoints for achieving the goal.
Complete the following structure for each API endpoint:

• Endpoint Path: [ ];

• HTTP Verb: [ ];

• Description: [ ].

Table 4.8: Refined prompt PR4.

The final technique, Self-Critique Mechanism, prompts the model to evaluate and
refine its own output by identifying potential errors or inconsistencies. This iterative
approach capitalizes on the model’s reasoning capabilities, allowing it to self-correct and
improve.

This added layer of introspection ensures that the outputs are not only relevant
but also optimized for clarity and alignment.
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Excerpt from prompt PR3

Decompose the following high-level goals into low-level ones.

Table 4.9: Original prompt PR3.

↓

Prompt refined through the use of Fill-in-the-Blank Prompting

Decompose the following high-level goals into low-level ones.
For example, if the high-level goal is ‘Monitor project popularity,’ the subgoals
could be:
1. Track popularity trends over time;
2. Compare popularity across projects.

After listing the subgoals, critique your response by identifying if any sub-
goals are redundant, unclear, or irrelevant to the high-level goal. Suggest
improvements if necessary.

Table 4.10: Refined prompt PR3, after the deployment of 2 techniques.

These new techniques significantly enhance the prompts by introducing examples, struc-
ture, and a self-evaluation process. Few-Shot Prompting provides the model with tangi-
ble guidance, Fill-in-the-Blank ensures consistent formatting and focus, and Self-Critique
Mechanisms elevate the quality of outputs by incorporating an iterative feedback loop.
Together, these refinements enable a deeper alignment of the model’s outputs with the
research objectives, moving closer to achieving robust and actionable results.
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4.3 Improving the worst outputs
The application of advanced prompt engineering techniques introduced in the second
phase led to a marked improvement in the overall performance of the model. By
refining the prompts and incorporating strategies such as Few-Shot Prompting, Fill-in-
the-Blank Prompting, and Self-Critique Mechanisms, the framework addressed many of
the issues identified in the initial phase. These techniques not only enhanced the accuracy
and relevance of the outputs but also demonstrated significant potential in resolving some
of the more complex challenges inherent in aligning user goals with API functionalities.

To assess the impact of these refined prompts, they were applied to the three applica-
tions that had exhibited the poorest mappings during the first phase of the study. These
applications had initially suffered from a combination of vague goal decomposition, incon-
sistent mapping to API endpoints, and redundant output. The results before the second
stage of the analysis were the following:

System N° of Endpoints N° of LLGs LLGs Mapped (%)
Cyclotron 53 35 17.1%
Bibliothek 8 20 5%

Corona-Warn 5 39 10.53%

Table 4.11: Summary of outputs without Prompt Engineering.

After implementing the improved prompts, the results showed a substantial enhancement
in the quality of the mappings, with clearer goal definitions and more precise alignment
to API endpoints. The use of structured templates and iterative feedback mechanisms
ensured that previously ambiguous or incomplete mappings were replaced with actionable
and coherent results.

System N° of Endpoints N° of LLGs LLGs Mapped (%)
Cyclotron 53 19 36%
Bibliothek 8 9 55.6%

Corona-Warn 5 10 60%

Table 4.12: Summary of outputs with Prompt Engineering.

This notable improvement in goal-to-API mapping quality can be attributed in part to the
decrease in the number of low-level goals generated for each high-level goal. This
reduction in the number of subgoals was a direct result of the refined prompt engineer-
ing techniques employed in this phase. Techniques like Fill-in-the-Blank and Few-Shot
Prompting helped guide the model toward generating more concise and focused outputs
by clearly defining the expected structure and scope of the subgoals. Additionally, the

58



4.3 – Improving the worst outputs

introduction of Self-Critique Mechanisms encouraged the model to evaluate its responses,
eliminating redundant or irrelevant subgoals and focusing only on those with clear and
actionable relevance to the high-level objective.

This reduction in subgoals also aligns with the overall goal of minimizing the extraneous
cognitive load on stakeholders, ensuring that the generated output remains manageable
and directly relevant to the intended application. The streamlined approach highlights
how prompt engineering not only improves output quality, but also fosters a more targeted
and efficient process to map high-level goals to actionable technical implementations.
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4.4 Remaining Limitations and Future Challenges
Despite the significant improvements introduced through the prompt engineering tech-
niques discussed above, several limitations and challenges persist in applying Large Lan-
guage Models (LLMs) for Semantic API Alignment.
These challenges highlight areas where further refinements and complementary strategies
are required to enhance the robustness and reliability of this approach.

1. Context Retention and Scalability Issues
Although techniques such as Few-Shot Prompting and Chain-of-Thought rea-
soning have improved the model’s ability to generate structured outputs, LLMs still
struggle with context retention over extended interactions.
This limitation becomes particularly evident in large-scale projects where multiple
iterations are required to refine the goal-to-API mapping. The inability to persis-
tently maintain long-term context necessitates repeated re-feeding of information,
leading to inefficiencies in complex requirements engineering scenarios.

2. Handling of Non-Functional Requirements (NFRs)
Our approach demonstrates significant progress in aligning functional goals with
API endpoints. However, it still lacks an effective mechanism for handling Non-
Functional Requirements (NFRs).
Security, performance, compliance, and usability-related goals often remain un-
mapped due to their abstract nature. In this scenario, heuristic approaches and
manual interventions can mitigate some of these gaps. However, a more structured
framework, possibly integrating domain-specific constraints or external validation
tools, is still needed to address NFRs comprehensively.

3. Dependence on API Documentation Quality
The effectiveness of SEAL remains highly dependent on the quality and complete-
ness of available API documentation. If documentation lacks detailed descriptions,
parameter specifications, or response formats, the model struggles to make an accu-
rate mapping.
Automated documentation augmentation techniques or hybrid approaches that com-
bine LLMs with knowledge graphs could be explored to mitigate this dependency.

4. Handling Edge Cases and Rare Scenarios
Current refinements have optimized the model’s capability to generalize across com-
mon requirements, but the so-called edge cases and highly specific scenarios still
pose significant challenges.
Uncommon API behaviors, undocumented features, or context-sensitive implementa-
tions often lead to misalignments. Future work should focus on incorporating adap-
tive learning mechanisms or reinforcement learning techniques to improve LLMs’
handling of rare and ambiguous cases.

60



4.4 – Remaining Limitations and Future Challenges

5. Need for Continuous Human Supervision
Although prompt engineering has enhanced automation in goal-to-API alignment,
human intervention remains crucial in verifying mappings, refining outputs, and en-
suring accuracy. The model still lacks the ability to self-correct when encountering
conflicting or ambiguous requirements.
Incorporating interactive human-in-the-loop (HITL) frameworks could help balance
automation with expert oversight, ensuring higher reliability in real-world applica-
tions.

6. Limited Support for API Evolution
APIs evolve over time, with new endpoints being introduced and deprecated reg-
ularly. Although some level of dynamic adaptation is achievable through periodic
retraining, the current methodology does not offer real-time adaptation to API up-
dates. Future research should explore mechanisms that enable continuous learning
from API change logs, version histories, and automated schema analysis to maintain
long-term alignment.
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Chapter 5

Extending the reach of SEAL

5.1 Categorization of remaining unmapped goals
Despite the advancements introduced through the refinement techniques of prompt engi-
neering, a portion of low-level goals still remains unmapped to API functionalities.
Identifying these unmapped goals and understanding their characteristics is crucial to
refine the SEAL framework and, in general, the presented approach. The key idea is that
if certain categories of goals remain consistently unmapped across all 11 applications,
recognizing these recurring patterns could enable targeted model training, improving its
ability to detect and address these goals more effectively.

5.1.1 Unmapped categories in our research
By analyzing and categorizing all the unmapped goals across the 11 applications in the
EMB database, three main categories emerged as consistently misaligned with API func-
tionalities:

1. Abstract and Conceptual Goals
These goals represent high-level business or strategic objectives that lack a direct,
one-to-one correspondence with API operations. Unlike well-defined functional re-
quests, such as retrieving user data or processing a transaction, abstract goals often
require a combination of multiple processes, human decision-making, or external an-
alytics to be fulfilled.
Examples could include enhance brand reputation, expand market influence, opti-
mize customer engagement strategies.
The complexity of these goals stems from their broad scope and the fact that they
often involve qualitative rather than quantitative measures, making them inherently
difficult to map to discrete API calls.

2. Non-Functional Goals
As already depicted, this category includes goals that pertain to system qualities
rather than specific functionalities. These goals define requirements such as to en-
sure data security, achieve high availability, or comply with industry regulations (e.g.,
GDPR, HIPAA).
Since APIs are designed to expose functionalities rather than enforce overarching
system properties, non-functional goals often remain unmapped or only partially
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addressed through indirect mechanisms. For example, while an API might offer au-
thentication endpoints, ensuring system-wide security involves broader architectural
considerations, external monitoring solutions, and compliance audits, which are not
inherently covered by API endpoints.

3. Implicit and Composite Goals.
These goals require multiple API interactions, sequential processing, or data aggre-
gation steps to be fully satisfied. Unlike simple API calls that retrieve or modify a
single piece of data, implicit and composite goals involve chaining operations across
multiple endpoints to derive meaningful results.
Examples include generate customer behavior insights from historical transactions,
create an automated report of system performance metrics, or personalize user rec-
ommendations based on real-time data. The failure to map these goals often stems
from the absence of built-in orchestration mechanisms that can automatically con-
struct and execute multi-step workflows, forcing developers to implement such logic
manually.

5.1.2 Quantification of the unmapped goals
Table 5.1 presents the categorization of unmapped goals based on their characteristics.
The distribution highlights the prevalence of abstract and conceptual goals, which con-
stitute the largest portion (45%), followed by non-functional goals (30%) and implicit
or composite goals (25%). This classification helps to identify the challenges in aligning
certain goal types with concrete implementation steps.

Category Percentage of Total Unmapped Goals
Abstract and Conceptual Goals 45%
Non-Functional Goals 30%
Implicit and Composite Goals 25%

Table 5.1: Categorization of unmapped goals.

It must be acknowledged that failing to map these goals can lead to several risks.
When abstract goals are overlooked, the API strategy may diverge from broader business
objectives, reducing its overall effectiveness. In the same scenario, ignoring non-functional
goals can introduce performance bottlenecks, security vulnerabilities, and compliance
issues, making the system more prone to failures. Furthermore, without proper mapping,
many composite goals rely on manual intervention, limiting the potential benefits of
automation and increasing operational complexity.
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5.2 Designing Prompts for Successive Mapping
To address the unmapped categories presented above, this section introduces three dis-
tinct prompting strategies, each tailored to facilitate the alignment of abstract, non-
functional and composite goals with API functionalities. These strategies are grounded
in Prompt Engineering techniques, ensuring that the model generates structured and
contextually relevant outputs.
It has to be taken into account that this study serves as an initial exploration into the
intersection of goal-oriented requirements engineering and LLM-driven API mapping,
aiming to establish a methodological foundation for future research. Notably, this ap-
proach considers newly formulated general goals rather than those derived directly from
the 11 applications sourced from the research, ensuring a broad and adaptable framework
for evaluation.

5.2.1 Few-Shot Prompting for Conceptual Goals
Conceptual goals are inherently high-level and abstract, often lacking a direct one-to-
one correspondence with API functionalities. Traditional API documentation typically
focuses on concrete operations, making it difficult to translate these broad objectives into
actionable system behaviors. To cope with this challenge, few-shot prompting provides
structured examples within the prompt, guiding the model toward the generation of
responses that align conceptual goals with relevant API interactions.

Few-Shot Prompting for Conceptual Goals

Prompt:
Given the goal "Optimize user engagement", list API interactions that track user
activity, suggest content, and provide recommendations.

Example:

• Retrieve user activity logs via GET /user/activity

• Generate personalized recommendations using POST /recommendations

• Send engagement notifications via POST /notifications/send

Table 5.2: Designing few-shot prompting.

By including explicit examples, the model is guided toward providing structured responses
that align with the goal of enhancing engagement, making it easier to link conceptual
goals to API actions.
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5.2.2 Constraint-Based Prompting for Non-Functional Goals
Non-functional goals, such as security, compliance, and performance, pose a unique chal-
lenge in goal-to-API mapping. Unlike functional goals, which directly align with API
operations, non-functional requirements typically describe system qualities rather than
discrete functionalities. To address this, constraint-based prompting explicitly integrates
constraints into the prompt, encouraging the model to evaluate API endpoints based on
specific non-functional criteria.

Constraint-Based Prompting for Non-Functional Goals

Prompt: Identify API endpoints that process personal data. For each endpoint,
assess compliance with GDPR regulations.

Example:

• GET /user/profile - Contains personal data, check encryption policies.

• POST /user/update - Modifies user data, ensure access control measures.

• DELETE /user/remove - Handles data deletion, verify compliance with reten-
tion policies.

Table 5.3: Designing Constraint-based prompting.

By explicitly integrating compliance requirements into the prompt, this approach steers
the model toward recognizing quality attributes that influence API selection and usage,
making non-functional goal fulfillment more systematic and reliable.

5.2.3 Multi-Step Prompting for Composite Goals
Composite goals involve multiple interdependent actions, requiring a sequence of API
interactions to achieve a desired outcome. Unlike single-function mappings, these goals
necessitate multi-step reasoning, where each step builds upon the previous one. Multi-
step prompting structures the prompt in a way that breaks down composite goals into
sequential API calls, enabling the model to generate responses that reflect a logical exe-
cution flow.

Multi-Step Prompting for Composite Goals

Prompt: For "Generate a financial summary", follow these steps:

Step 1: Retrieve all user transactions using GET /transactions
Step 2: Aggregate transaction totals and calculate spending trends.
Step 3: Format results as a structured report using POST /report/generate.

Table 5.4: Designing multi-step prompting.
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By decomposing high-level objectives into distinct logical steps, this prompting technique
enhances the model’s planning and reasoning capabilities, ensuring a structured and
effective mapping of composite goals to API operations.

By leveraging few-shot, constraint-based, and multi-step prompting, this study improves
the alignment of unmapped goals with existing API functionalities, addressing the chal-
lenges outlined in previous sections. These strategies serve as a starting systematic
approach to improve goal decomposition and operationalization, paving the way for
more advanced methodologies in LLM-driven requirements engineering and semantic API
alignment. Future research can build upon this foundation by refining prompt structures
and exploring adaptive techniques that further enhance goal-to-API mappings.
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Chapter 6

Conclusions and future
perspectives

The integration of Large Language Models (LLMs) in Requirements Engineering (RE),
particularly through the framework of Semantic API Alignment (SEAL), has emerged
as a promising approach for automating the mapping of stakeholders’ goals to API
functionalities. Although this research has demonstrated significant potential to improve
the efficiency of the RE process, it has also highlighted several challenges and limitations
that must be addressed for this technology to reach its full potential.

6.1 Key Findings and Research Outcomes
The primary objective of this research was to assess the effectiveness of LLMs in au-
tomating the alignment of requirements with API functionalities. The findings indicate
that LLMs can indeed play a crucial role in facilitating the elicitation process of
requirements and mapping abstract goals to actionable API endpoints.
Specifically, the results showed that 72.7% of the applications tested in the first stage of
the investigation surpassed a 30% mapping threshold. This indicates that, in the initial
stages, LLMs are capable of identifying and linking a significant portion of the required
goals with relevant APIs.
In addition, the refinement of the prompting techniques during the second stage of the
research led to substantial improvements in mapping precision. The targeted prompt
engineering resulted in an increase in mapping accuracy up to 40% for selected appli-
cations, and most of all, all 11 applications tested showed a mapping percentage above
30% in this second stage. This suggests that, with iterative refinements, LLMs can pro-
gressively improve their ability to align requirements with API functionalities, further
improving the automation of the RE process. These findings underscore the promising
role of LLMs in enhancing the efficiency of RE, especially when coupled with appropriate
prompt engineering techniques.
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6.2 Limitations and Challenges
Despite the encouraging results, several challenges and limitations remain. These issues
hinder the scalability and reliability of LLM-driven SEAL frameworks.
One of the most significant issues is the inconsistency and incompleteness often found in
the API documentation. Many APIs lack clear, standardized documentation, which
complicates the task of aligning abstract requirements with available functionalities. In
such cases, LLMs can struggle to identify the correct API endpoints or may generate in-
complete or inaccurate mappings, which can undermine the effectiveness of the approach.

Another limitation is the reliance on manual prompt engineering and iterative refine-
ments. Although prompt engineering is crucial to improve the alignment process, it
remains a labor-intensive task that requires significant expertise. The need for contin-
uous human intervention raises concerns about the scalability of this approach. As
the complexity of requirements increases, the need for more refined and tailored prompts
grows, further increasing the burden on human engineers. This reliance on manual adjust-
ments makes the process less autonomous, reducing the overall efficiency of the system.
Furthermore, the current state of LLMs alone is insufficient to achieve a fully autonomous
and reliable solution for requirements engineering. Despite showing significant promise,
LLMs are still heavily dependent on the quality of the input prompts and the training
data. In particular, LLMs may fail to handle edge cases, rare requirements, or unfore-
seen complexities in the requirements, which can significantly impact the accuracy of the
mapping process.

6.3 The Need for Hybrid Approaches
Given these limitations, it is clear that LLMs alone cannot provide a fully autonomous
and scalable solution, due to the complexities inherent in requirements engineering. Fu-
ture advancements in this area should focus on integrating hybrid AI approaches,
which should combine the strengths of LLMs with other artificial intelligence techniques,
such as rule-based systems, constraint solvers, and expert-driven knowledge bases. [25]
These hybrid approaches can help address the challenges posed by inconsistent API doc-
umentation, rare requirements, and complex mappings. Several specific hybrid AI tech-
niques that could be integrated into LLM-driven SEAL frameworks are the following:

• Integration of Knowledge Graphs
Knowledge graphs represent domain-specific information in a structured format,
capturing entities and relationships within a given domain. By integrating knowledge
graphs with LLMs, the model can leverage the graph’s structured data to better
understand the context of the requirements and identify relevant API endpoints.
This integration allows LLMs to map abstract goals to APIs more effectively by
understanding the underlying relationships between different components within the
system. For example, if a goal is related to processing user data, the knowledge graph
can highlight relevant APIs related to data handling and privacy compliance.
Moreover, knowledge graphs provide a rich source of domain expertise, which can aid
the model in handling complex or domain-specific requirements, thereby improving
the robustness and relevance of the API mappings. [26]
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• Incorporating Rule-Based Systems
Rule-based systems can enhance the decision-making capabilities of LLMs by ap-
plying pre-defined rules that guide the mapping process. These rules can encode
domain-specific knowledge, such as API usage constraints, regulatory requirements
(e.g., GDPR), and performance thresholds.
For example, a rule-based system could enforce that all APIs related to user authen-
tication must adhere to specific security protocols, such as OAuth2. When integrated
with LLMs, such rules can provide a layer of validation to ensure that the generated
API mappings meet non-functional requirements. The combination of rule-based
systems and LLMs allows for the best of both worlds: LLMs provide flexibility and
adaptability in generating responses, while the rule-based systems ensure that these
responses are compliant with established standards and requirements. [27]

• Constraint Solvers for Non-Functional Goals
Non-functional requirements (NFRs) such as security, scalability, and performance
often require precise constraints to be applied during the API selection process.
Constraint solvers are specialized algorithms designed to optimize solutions based
on a set of constraints. By integrating constraint solvers with LLMs, the system can
be more effective in selecting APIs that not only fulfill functional requirements but
also meet non-functional goals.
For instance, the solver can ensure that the chosen API for data storage complies
with data retention policies or that it meets latency thresholds. This hybrid approach
improves the accuracy of API mapping, especially when dealing with complex NFRs
that require specialized knowledge beyond the capabilities of LLMs alone. [25]

• Human-in-the-Loop (HITL) Integration:
Although LLMs show impressive results, human expertise is still needed to ensure
the correctness and alignment of the generated mappings. A Human-in-the-Loop
(HITL) approach allows human experts to step into the process, reviewing and
refining the LLM-generated API mappings.
HITL can be particularly useful in cases where the LLM encounters ambiguity or
when dealing with rare, complex, or highly specific requirements that the AI model
might not fully understand. Humans can provide judgment and domain knowledge to
correct or guide the model’s output, improving the overall accuracy and reliability of
the solution. Moreover, HITL integration facilitates the continuous learning process
of the LLM. As humans provide feedback and corrections, the model can improve
over time, becoming more adept at handling similar cases in the future. [28]

• Reinforcement Learning (RL) for Iterative Refinement:
Strongly related to the previous one, another important approach to improve the
current model is Reinforcement learning (RL). RL is an AI technique where models
learn through trial and error by receiving feedback from their actions. Integrating
RL with LLMs can allow the system to iteratively refine its mappings by learning
from its mistakes.
In the context of API mapping, RL can be used to continuously improve the model’s
decision-making process by rewarding correct mappings and penalizing incorrect
ones. This approach helps optimize the API selection process, especially when the
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requirements are complex or evolve over time.
RL can also be used to adapt the system to new, previously unseen requirements,
making the approach more flexible and dynamic in addressing evolving needs. [29]

6.4 Future Perspectives and Research Directions
The promising results coming from this study suggest several avenues for future research.
One key direction is the continued development and refinement of prompt engineering
techniques. Future work could explore the use of more advanced prompt structures,
such as few-shot learning and zero-shot learning, to further enhance the ability of LLMs
to generalize and apply their knowledge to a broader range of requirements and API
interactions.
In addition, further investigation into the integration of hybrid AI approaches will be
crucial to overcome the limitations of current LLM-based solutions. Research into com-
bining LLMs with other AI techniques, such as machine learning, reinforcement learning,
and knowledge-based reasoning, could lead to more robust and scalable solutions for API
mapping. Specifically, multi-modal approaches, which combine textual data from LLMs
with other forms of structured data (e.g., API documentation, code repositories, and
system specifications), could enhance the model’s ability to handle complex and diverse
requirements.
Another important area of future research involves improving the evaluation metrics
used to assess the effectiveness of LLM-driven SEAL frameworks. Current evaluation
methods, such as accuracy percentages, do not always capture the full complexity of the
task. Future research could explore the use of more sophisticated metrics, such as the
F1-score, to provide a more nuanced understanding of the feasibility and performance of
the model.
In addition, conducting real-world case studies and pilot projects will be essential to assess
the practical applicability and scalability of LLM-based solutions in different domains.
Finally, collaboration with industry is essential to bridge the gap between academic
research and real-world applications. Engaging with industry professional to better un-
derstand the challenges they face in requirements engineering and API mapping can help
shape the development of more effective and practical solutions.
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