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Abstract

In this thesis, we present our work aiming at tracking and studying the
swimming behavior of Paramecium, a unicellular eukaryotic microor-
ganism, in a free environment over long time scales, reminiscent of
the run-and-tumble motion of some flagellated bacteria, as it consists
of long runs interrupted by shorter reorientation events. To achieve
this, we started to develop an automatic tracking system using a trans-
lational stage mounted on a microscope. We recorded and analyzed
the trajectories of four Paramecia tracked for different time durations
and extrapolated mean velocity, mean square displacement and avoid-
ing reactions frequency from the data. Lastly, we briefly discuss how
- by analysing more trajectories and changing the physical and natural
conditions of the observations - a better understanding of Paramecium
dynamics can be achieved.
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Chapter 1

Context and motivations

Paramecium, a unicellular eukaryotic microorganism, belonging to the
phylum Ciliophora, is one of the most studied microorganisms in the
fields of cell biology and zoology (Figure 1.1). Characterized by its
elongated shape and motile cilia covering its entire surface, Parame-
cium exhibits remarkable agility and precision in navigating aquatic
environments as a highly swift organism [1].

Fig. 1.1 (A) and (B) Light and scanning electron microscopic appearance of Paramecium
caudatum. Scale bar in A and B = 100 um.



2 Context and motivations

1.1 Paramecium motion and avoiding reactions

In the absence of any obstacles, the motion of Paramecium is character-
ized by a helicoidal movement (it rotates along its major axis) interrupted
by reorientation events called avoiding reactions (ARs). ARs can occur
spontaneously or due to environmental stimulations (Figure 1.2, [2]).

Fig. 1.2 (A) Diagram of a Paramecium performing an avoiding reaction against an obstacle,
with successive positions marked from 1 to 6. The Paramecium interrupts its forward swim-
ming when it collides with the obstacle (1) the cilia reorient, causing backward swimming (2)
then an angular reorientation of its entire body occurs (3-5) when all the cilia have returned
to their initial beating direction, the Paramecium swims forward again (6).

Initially, Paramecium detects various stimuli - chemical, mechanical,
thermal and optical - thanks to specific receptors on its cell membrane.
In response to these stimuli, the receptors generate a receptor potential,
a graded depolarization proportional to the intensity of the stimulus.

When the receptor potential exceeds a critical threshold, calcium
channels located on the cilia are activated, leading to a rapid influx of
Ca’*" and the generation of an action potential. This action potential is
characterized by an extremely rapid initial phase followed by potassium
currents that restore the membrane potential to its resting level.

The localized influx of Ca>* within the cilia results in an increased
intraciliary calcium concentration, which reverses the direction of the
ciliary beat. Under normal conditions, the cilia beat towards the poste-
rior, facilitating forward movement; however, the CaT-induced “ciliary
reversal” causes the cilia to reverse their beat, propelling the Paramecium
backward. This mechanism underlies the avoiding reactions, enabling
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the organism to swiftly evade repellent or potentially harmful stimuli
such as sudden mechanical contacts or adverse environmental changes

[3].

1.2 Hydrodynamic regime

Our study focuses on a specific species of Paramecia: Paramecium
tetraurelia, whose length and width are approximately 120-150 pm and
30 um respectively.

The hydrodynamic regime in which Paramecium moves is charac-
terized by viscous forces dominating over inertial forces, allowing its
motion to be accurately described by low Reynolds numbers. In fact, the
medium in which Paramecium is cultured -wheat grass powder solution-
has density and viscosity nearly identical to water. When combined with
the typical size and swimming speed of Paramecium, this results in a
Reynolds number smaller than 1, of the order of 0.1, confirming that the
system operates in the viscous regime [4].

This behavior is common not only to Paramecium but also to other
microorganisms, such as bacteria, which similarly operate in a low-
Reynolds-number environment.

1.3 History-dependent behavioral effects

This thesis aims at following a single Paramecium over long time scales
to examine potential memory effects, 1.e., whether the organism’s behav-
ior depends on its history.

A preliminary example of history-dependent behavior can be found
in the study by Kunita et al., where measurements and modeling of the
swimming patterns of Tetrahymena (a protist closely related to Parame-
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cium) reveal that after being forced to swim in a circular arena for a
period, the organism continues to exhibit a circular motion even when
released into a larger arena. This observation suggests that the previous
experience of the organism influences its subsequent behavior [5].

Previous studies have shown that Paramecium is capable of learning
through classical conditioning. In a well-known experiment, Paramecia,
which normally do not respond to a sound tone, began to trigger an
escape response when the tone (e.g., 500 Hz) was repeatedly paired with
an electric shock. This phenomenon indicates that the cell has modified
its behavior based on experience, recording a form of "memory" that
allows it to anticipate the noxious stimulus [6].

We have begun developing an automatic tracking system whose prin-
ciple is to keep the organism centered in the field of view of a camera at
all times, using an xy translational stage, since we observe that individual
trajectories, velocities, and other features vary significantly, indicating
different phenotypes.



Chapter 2

Materials and methods

2.1 Samples preparation

In Appendix A, detailed protocols can be found, outlining the preparation
of the Paramecia medium, the bacteria medium (Klebsiella pneumoniae)
on which Paramecia feed, and the protocols for culturing both Paramecia
and bacteria. Once the culture of Paramecia has reached the stationary
phase, we proceed with the sample preparation.

In the initial approach, the sample consisted of two rectangular glass
slides attached together with double-sided scotch tape confining a drop
of Paramecia suspension in a quasi-2d geometry (Figure 2.1). It is
important to dilute the Paramecia solution to ensure that only a few of
them are present in the drop, as a large number of Paramecia would make
the tracking inefficient (see discussion in Section 3.2), as our objective
is to follow them individually.

We began by recording videos of the drop of Paramecia with varying
percentages of Protoslo, a viscous solution designed to slow down swim-
ming protists such as our ciliate Paramecium (Appendix A), in order to
facilitate the capture of the Paramecia.
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Fig. 2.1 Side view of the sample

2.2 Samples improvement

In the first approach, we used samples and droplets with small lateral
dimensions, causing the Paramecia to reach the borders in a short time
(Figure 2.2). Since we are using imagine analysis to locate the cells,
detecting them could be rather difficult, which is why we aim to minimize
contact with the borders by having much larger "pools". Additionally,
with the scotch tape height being around 50 um, the Paramecium was
very confined in this region, inhibiting its natural helicoidal movement,
and as a result, it stopped moving after a few minutes.

Fig. 2.2 Top view of the sample. A miscroscope glass slide (VWR) with dimensions 75 x
25 mm? and an cover slip (Epredia) with dimensions 55 x 25 mm? placed on top of it. A
droplet of Paramecia between them. Scotch tape height of 50 um.

We then modified the setup to create larger samples, using rectangular
glass slides bigger than the previous ones. By testing the cells’ behavior
with different scotch tape heights, we found that an optimal height was
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150 um (Figure 2.3). This gives the cells more freedom of movement
and extends their lifetime significantly.

Fig. 2.3 Top view of the new sample. Two cover slips (Deckglaser) with dimensions 70 x 45
mm? stacked on top of each other. A droplet of Paramecia between them. Scotch tape height
around of 150 um.



Chapter 3

Automatic tracking setup

3.1 Preliminary version

Automated tracking systems for individual swimmers are being devel-
oped by a number of authors (see e.g. [7]).

For the automatic tracking of our Paramecium, we have been working
on a system composed of a Windows 10 Pro based computer, a Hama-
matsu ORCA Fusion BT camera, a Marzhauser translation stage and
its controller, a National Instruments board (NI DAQ) that can generate
TTL signals, and an Olympus BX51WI microscope (with 2X objective,
yielding a spatial resolution of approximately 3 um/px) (Figure 3.1).

Fig. 3.1 Setup. (A) Marzhauser Tango controller (B) xy translational stage (C) Camera (D)
Objective (E) Joystick (F) NI DAQ (G) Intensity light controller.
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Communication between these elements is managed through a Matlab
2023a program, whose principle is to keep the organism centered in the
field of view of the camera at all times. The operations executed in and
the structure of the program are organized as follows:

1. Call the directories’ paths for the functions used in the code, and
create a folder to save the videos, data, and parameters of the
experiment (on an SSD drive for fast saving).

2. Set the parameters: duration of the experiment, exposure time,
frame rate, pixel/um conversion.

3. Set the size of the square window used for the tracking.

4. Open and configure the stage controller using two functions:

‘open_xystage.m’ and ’config_xystage.m’.

5. Prepare the NI DAQ counter to generate a TTL output signal to
trigger the camera.

6. Open and configure the camera parameters. Define a ROI (Region
Of Interest) in which to track the Paramecium.

7. Open the preview window, and when a Paramecium enters the
region (using a joystick to locate it), close the window and start the
program.

8. The program calls a callback function (Appendix B) for each frame
(in Matlab, a callback function is a function that is executed when
a specific event or condition occurs, in our case the event is "im-
age acquired"): it captures the image, creates a binary image by
selecting an intensity threshold (chosen by maximizing the area of
the mask superposed onto the brightfield image of the individual
cell) where the Paramecium appears as a white object against a
dark background, uses 'regionprops’ (built-in Matlab function that
performs morphological operations on binary images) to get the
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centroids and areas of the regions, retains only regions with an
area greater than a specified value (to eliminate "defects" like dust),
selects the centroid nearest to the center of the ROI, calculates dx
and dy (the distances from the center of the ROI in the x and y
directions), and then uses the "translate.m’ function (written by us)
to move the stage, keeping the Paramecium centered in the ROL.

9. Finally, it saves the data and parameters along with the correspond-
ing video.

3.2 Problems encountered and solutions

This version of the program has several issues, ranging from the linearity
and clarity of the code to the practicality of capturing "good" videos.
Here, "good" means tracking the Paramecium for long periods without
losing it from the ROI, losing it at the borders (Paramecia and borders
would merge into a unified region, after thresholding the image), or
mistakenly following another Paramecium.

Let’s analyze the critical issues arising from the program by dis-
cussing some of the points given above in Section 3.1.

3. To improve the speed of the program, we can define a smaller win-
dow for tracking. Specifically, we reduced the window from a 576 x 576
px? square to a 288 x 288 px> one. This allows the ’regionprops’ func-
tion to identify the centroids and areas of the regions within this smaller
window, enhancing the code’s performance by a few milliseconds.

4. Adjusting the ’config_xystage.m’ parameters, particularly velocity
and acceleration, can help in following the Paramecium without losing it
(x and y stage velocities equals to 10 mm/s, x and y stage accelerations
equals to 0.085 mm2/s). Care must be taken with the acceleration value,
as a high value can cause stage vibrations that affect the Paramecium’s
motion. Indeed Paramecia are mechanosensitive ([3],[8]). The goal is
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to find a balance between a high enough value to track the Paramecium
effectively and a low enough value to avoid unwanted vibrations.

7. Actually, we don’t need to initiate the Paramecium tracking using
the manual joystick. We added a preliminary part to the callback function
that automatically searches for the Paramecia. We need to account for
the additional time the program requires for capture, but you can move
the joystick after starting the program. When a Paramecium enters
the region, tracking begins, and the joystick is disabled. Now, we can
start tracking Paramecia moving at their typical velocities in aqueous
solutions (maximum velocity ~ 1 mm/s).

8. This is the core of the program, and it required some improvements.
We divided this part into two subparts: one for catching the Paramecium
and the other for the "centering problem." The program now waits for
the Paramecium to enter a smaller region centered within ROI before
starting tracking. Specifically, this new region is a square with a side
length of 96 px. Due to the Paramecia’s velocity, starting tracking from
a ROI corner might result in losing it after a few seconds.

Once a Paramecium is "caught", a new tracking section begins. This
new version doesn’t search for the Paramecium nearest to the center;
instead, it looks for the one closest to the position of the tracked Parame-
cium in the previous frame. We thus no longer need to dilute the Parame-
cia solution very much, as the code is now clearer (it now prevents
another Paramecium in its vicinity from being caught). Furthermore, it
doesn’t take additional processing time compared to the previous version.

An important technical aspect that cannot be overlooked is the ’trans-
late.m’ function’s task. It includes the 'mor’ command (provided by
Marzhauser translational stage), which induces a relative movement
from the actual position of the Paramecium. The ’mor’ instruction
must complete its movement before taking the new command. Mov-
ing the stage could take too long, causing us to lose the Paramecium
or encounter unwanted oscillations (also due to the delay TTL pulse
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at which it is sent). The solution is to reduce the real dx and dy by a
factor of 10 (experimentally tested for 50 fps and these specific stage
acceleration values). This approach achieves convergence similar to a
PID (Proportional-Integral-Derivative) controller, but utilizes only the
proportional term (a part of code of the new callback function code is
provided in Appendix B).



Chapter 4

Data analysis and results

We experienced several difficulties in the observations: it is indeed
challenging to keep the sample free of dust or other defects that can
complicate tracking, and to achieve the right dilution to ensure an optimal
number of Paramecia is also difficult. However, we managed to capture
some videos to initiate the study of Paramecium trajectories.

Trajectories, velocity, mean square displacement, and avoiding re-
actions frequency have been calculated using a Python code that we
wrote.

These videos are recorded at 50 frames per second. We’ll report
our first attempts to analyze four videos of different time durations of
different Paramecia:

e Exp.0 —> 22 seconds
e Exp.l —> 44 seconds
e Exp.2 —> 149 seconds

* Exp.3 —> 266 seconds (a bit more than 4 minutes) (click here for
the video)


https://drive.google.com/file/d/1S4mMhQUm5uiWr536CuHlFqnD1MAAyGFF/view?usp=drive_link
https://drive.google.com/file/d/1S4mMhQUm5uiWr536CuHlFqnD1MAAyGFF/view?usp=drive_link
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4.1 Trajectories and velocity

Let’s start plotting the relative displacements dx and dy (for each frame)
of the paramecium with respect to the center of the ROI.
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Fig. 4.1 dx and dy of Exp.1

Figure 4.1 provide an indication of the mean velocity of the parame-
cium. For an estimation, we can consider 0.02 mm as a result of the
travelled distance /dx2 + dy?. This yields S22 — /5 (0.02 sec-
onds since we are working at 50 fps).

It is possible to reconstruct a typical trajectory. Utilizing the ’cumsum’
function (built-in Python function), we obtain a cumulative sum of the
relative displacement frame by frame.

We remark that we are well aware that this is not the correct way to
proceed and thus the reconstructed trajectories are a very crude approxi-
mation.

The saved values of dx and dy are reduced by a factor of 10. To
reconstruct the real trajectories, we need to consider the real displace-
ments that bring the Paramecium to the center of the ROI, therefore, it is
necessary to find a way to determine the real position of the translational
stage. As discussed in Section 5.1, we encountered unexpected problems
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and timing issues to get the actual position of the stage, preventing us

from correctly reconstructing the trajectories at 50 Hz and even at lower

frame rates.
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Fig. 4.2 Trajectories: (a) Exp.0 (b) Exp.1 (c) Exp.2 (d) Exp.3

From Figure 4.2, we observe the characteristic 'run and tumble like’
movement of the paramecium and how it spreads over a larger region

with increasing observation time.

Figures (a), (b), and (c) (Figure 4.2) suggest that a hydrodynamic
interaction of the cell with the upper and lower boundaries could be at
play here, explaining the highly curved trajectories. In contrast, Figure
(d) shows a different behavior, suggesting that the Paramecium is moving
in the middle of the boundaries [9]. Hence, there is a need to track it in a
3d environment (as recalled also in Section 5.3).
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Although being affected by some inaccuracies, we determined the
mean velocity of the four paramecia by summing the results of travelled
distances for each time step and dividing the total by the duration of the
experiment.

. : . 14.99mm __
mean velocity of the Paramecium of Exp.0 —> 57" = 0.70mm/s

N : . 33.44mm __
mean velocity of the Paramecium of Exp.1 —> 355 = 0.76 mm /s

» mean velocity of the Paramecium of Exp.2 —> 1923300 — (.70 mm /5

. - . 240.86mm __
mean velocity of the Paramecium of Exp.3 —> 5228 =0.91mm/s

Actually, the value found for the mean velocity is not completely at
odds with the findings reported in the literature [2], where it is reported
that a Paramecium can cover a distance equal to four times its body
length in one second (approximately 0.6 mm/s).

The Paramecium in Exp.3 has a higher velocity compared to the oth-
ers. This, once again, remarks our decision to follow only one Parame-
cium at a time, as there could be different phenotypes with varying
characteristics.

To ensure that we are maintaining the Paramecium at the center of
the ROI, we can monitor the centroid position frame by frame.
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Fig. 4.3 cx and cy of Exp.3 (px position)
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From figure 4.3, it’s evident that factors such as the velocity of the
Paramecium, mechanical constraints of the stage system, and time limita-
tions of the program contribute to instances where the Paramecium isn’t
consistently positioned at the center of the ROI. However, the primary
objective remains to track its movement without losing it.

4.2 Mean square displacement

We can measure the deviation of the position of a Paramecium with
respect to a reference position over time. The mean square displacement
is the most common measure of the spatial extent of random motion. We
measured it for Exp.3, which represents the Paramecium’s motion over
the longest time.

We divided the path of our Paramecium in different ways, according
to values given by a vector of different time steps. We chose these values
randomly in a more or less linear manner.

400 »
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Fig. 4.4 Mean square displacement

For example, for At equal to 5 s, we selected the x and y positions
of our Paramecium at intervals of 5 s and discarded all other values.



18 Data analysis and results

Then, we calculated the squared distance traveled from one point to the
next and finally averaged these values. We repeated this procedure for
different values of Ar (Figure 4.4).

We can approximately observe:

1. a ballistic regime at small times. The mean square displacement
exhibits a parabolic behavior.

2. a diffusive regime at larger times. The mean square displacement
increases linearly with time [10].

4.3 Avoiding reactions

Another feature that we can delve into is the one linked to the avoiding
reactions. Avoiding reaction (AR) occurs when the Paramecium is
stimulated by various means (mechanical, chemical, optical, or thermal).
It often swims backward, then turns, and swims forward again in a new
direction.

We wrote a code that classifies the movement as ’Run’ whenever the
angle formed by the old direction and the new one is less than 40°, and
as "AR’ otherwise (we analyzed only Exp.3 here as well).

120

100

40
20
0
0 50 100 150 200 250
Time (s)

Runs (mm)
3

Fig. 4.5 Runs and ARs (40° Threshold)
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From Figure 4.5, we can see that there are some short runs along with
a very long one, which lasts approximately 140 s and covers about 130
mm.

Then we differentiated between the angles formed by the old direction
and the new one to see if there were any changes in the total number of
avoiding reactions. We discovered that, for this specific trajectory, when
the angles are less than the chosen threshold of 40°, the number of avoid-
ing reactions grows significantly. However, if we increase the threshold,
the number of avoiding reactions remains more or less the same (unless
the angles are too large, causing the trajectory to be considered a single
run).

This suggests that the 40-degree angle is a suitable threshold for
differentiating and identifying when an avoiding reaction occurs.

We remark that this is a rough analysis. We identified an AR without
considering the backward movement and the velocity value. Indeed,
compared to Escoubet’s work, our AR frequency is much lower (we
obtained 0.02 avoiding reactions per second, instead of about 0.16, Figure
4.6, [2]).
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Conclusions and Next Goals

There are still some problems with the trajectory plots, and the analysis
that has just been completed only regards the behavior of Paramecia
in a free environment for a maximum duration of 4 minutes. We want
to track them for longer times and in an environment with obstacles to
investigate potential memory effects in their movement.

5.1 Real position of the Paramecium

The trajectories plotted in Section 4.1 are actually not really accurate.
It is not clear what the x and y axes represent. These trajectories are
obtained using a ’cumsum’ function and represent the relative movement
of the Paramecia. To have faithful trajectories, it is required to know
the real position of the Paramecia on the translation stage and on the
glass slide at all times. We are working on this, but it turns out to be a
very technical problem, mainly concerning timing issues, and it is taking
more time than expected.

We have modified the program by removing the NI DAQ counter
and generating a TTL output to trigger the camera directly from the
Marzhauser Tango controller.
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Using a ‘readpos_ontrigger.m’ function, we can read the position of
the Paramecium on the stage and then move it with a ’go’ command
(provided by Marzhauser translational stage) to bring the Paramecium
to the center of the ROI. Unlike the "'mor’ command, the ’go’ command
does not complete its movement before accepting a new instruction; it
takes the new instruction immediately.

This new version takes between 20 and 40 ms, significantly slowing
down the program’s speed.

5.2 From Matlab to Python

Testing all parts of the program, we realized that there are some limita-
tions arising from the Matlab language and the serial communication
protocol used to sending/receiving commands to/from the stage con-
troller. The ’threading structure’ in Python might help and speed up the
program. Using threads allows a program to perform multiple operations
concurrently within the same process space.

Another reason to switch to Python could be to leverage its Al capa-
bilities. Indeed, for most Al applications, Python is generally considered
easier and more versatile due to its wide range of libraries, supportive
community, and simple syntax. For example, YOLO (You Only Look
Once) is a well-known object detection algorithm used for object detec-
tion in images and videos. It is renowned for its speed and accuracy, as it
performs object prediction and localization within a single convolutional
neural network. In practice, YOLO can detect objects of various classes
within an image, returning the coordinates of bounding boxes that sur-
round the detected objects along with their class labels and detection
probabilities [11]. Already tested in our group, YOLO could be a perfect
tool for detecting Paramecia and distinguishing them from obstacles and
borders.
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5.3 General objectives

To conclude, we can enhance the analysis results through three different
approaches:

1. Adding a third dimension, allowing the Paramecium to move also
along the z direction and thus exhibit its natural motion. Detec-
tion along this direction is made possible by using a piezoelectric
cantilever, taking advantage of the piezoelectric effect.

2. Extending our analysis to other paramecium species, for example,
Pawn (genetically modified Paramecia that exhibit almost no ARs
along their path), or testing the movement of Paramecia in different
media (studying the effect of the environment on foraging) and un-
der different experimental conditions (varying temperature, varying
ion concentration, adding obstacles, ...).

3. Improving the analysis of the results by averaging multiple trajec-
tories: more precise values of mean velocity, mean square displace-
ment, and avoiding reactions frequency.

5.4 Conclusion

In summary, we have further developed an operative tracking system
that successfully tracks Paramecia in natural conditions at high speeds
(typically up to ~ 1 mm/s). However, achieving accurate measurements
of their real positions is crucial and must be implemented to reconstruct
correct trajectories. Despite these acknowledged limitations, due to the
short duration of the internship, we were unable to solve this issue. By ad-
dressing these technical challenges, exploring the capabilities of Python,
and considering additional dimensions and species, we should improve
our understanding of Paramecium behavior in complex environments
and better investigate potential memory effects.



Appendix A

Protocols

A.1 Protocol for preparation of medium for Klebsiella
pneumoniae

LB BROTH

Use the LB broth from Sigma-Aldrich (1.3022) and and follow the
instructions provided. Briefly:

1. Dissolve 20 g of LB broth powder in 1 L of distilled;
2. Autoclave for 15 min at 121 °C;

3. Let cool.

AMPICILLIN
Solubility Ampicillin is soluble in water (50 mg/mL).

Storage/Stability The stability of ampicillin solutions depends on
temperature and pH. Ampicillin solutions should not be autoclaved.
Stock solutions should be sterilized by filtration. Ampicillin solutions
can be added to agars or culture media that have been autoclaved and
cooled to 45-50 °C. Culture plates with ampicillin can be stored at 2—8
°C for up to two weeks. Stock solutions may be stored at 2—8 °C for up
to 3 weeks. For long-term storage (4—6 months), stock solutions should
be stored at -20 °C. At 37 °C in culture, ampicillin is stable for up to 3
days.

pH-dependent behavior Ampicillin in solution is not very stable

at pH 7. The optimal pH of the stock solution should be less than 7.
Additionally, the buffer identity affects solution stability. For example,
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Tris 1s deleterious to ampicillin at pH 7, but not at pH 5. Conversely,
citrate is suitable at pH 7, but not at pH 5. Acetate buffer seems optimal
at pH 6.

Preparation of a 5 mL stock solution of ampicillin at 50 mg/mL:

1.
2.
3.

4,
5
6.

For each mL, use 50 mg of ampicillin powder;
Fill a 15 mL Falcon tube with 5 mL of distilled water;

Mix the 250 mg of ampicillin powder with the water until com-
pletely dissolved;

Filter-sterilize it using a 0.22 um pore size syringe filter.
Aliquot the solution into Eppendorf tubes;

Store the aliquots in the freezer at -20 °C.

PETRI DISHES WITH LB AGAR

To prepare 4 Petri dishes with 2% (w/v) agar in LB broth, using a
total volume of 100 mL:

1.
2.

Pour 100 mL of LB broth into a glass bottle;

Weigh 2 g of agar powder and add it to the bottle. Mix well until
the agar is homogeneously or nearly dissolved;

. Microwave the mixture for at least 3 min.

. Allow the mixture to cool to between 45 and 50 °C. Once it reaches

this temperature range, add 100 L of ampicillin (1/1000 dilution,
total volume 100 mL of LB broth);

. Pour the solution into 4 Petri dishes, with approximately 25 mL per

dish.

GROWTH CONDITIONS

The K. pneumoniae bacteria can be cultivated in either a ventilated
incubator set at 37 °C or a smaller incubator used for Paramecia set at
27 °C, as both conditions are suitable. However, caution is necessary
when using the ventilated incubator because its powerful fan may cause
Petri dishes to desiccate. To prevent this, place the Petri dishes inside a
cardboard box and add a water-soaked handkerchief.
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A.2 Protocol for Paramecia medium

For 1 L of solution WGP (concentrated version):

* 900 mL of milliQ water.

* 50 mL of buffer solution 20X. To prepare 1 L of such 20X buffer
solution, we take 1 L of milliQ water, then we dissolve into it the
following chemicals:

1. 15 g of Trizma (Tris) base;
2. 4 g of NaH2PO4 x H20;
3. 15 g of Na2HPO4 x 2 H20.

* 50 mL of 20X WGP infusion. For preparing 1 L of WGP 20X
infusion, we follow these steps:

1. Add 100 g of wheat grass powder to 800 mL of milliQ water in a
large flask or a beaker;

2. Stir continuously with a magnetic stirrer and heat with the heater
to bring it to a boil. Boil for 15 minutes;

3. Once cooked, allow it to cool slightly before filtering it using 500
mL disposable filtration units. Attach the filter to a pump to draw
the infusion through, removing any remaining aggregates that could
form a thick layer. After filtering, the volume is typically reduced
to significantly less than 800 mL. The filtered infusion appears
quite dark but not turbid;

4. Adjust the volume to 1 L and store it in the refrigerator at +4 °C. If
deposits form at the bottom of the bottle, refilter the entire solution
using disposable Nalgene filters.

The pH is adjusted to 7.0.

The solution is then autoclaved at 121 °C for 20 min.
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IMPORTANT NOTE ABOUT THE USE OF THE WGP

To make the WGP medium usable with Paramecia, Klebsiella pneu-
moniae must be injected a day before and allowed to grow. These bacteria
not only serve as food for theParamecia, but they also make the WGP
usable by digesting chemical components that are toxic to the Paramecia.
In summary, without the bacteria, the WGP would not be suitable for
cultivating Paramecia. The bacteria are essential for preparing a usable
WGP (WGP is bad for Paramecia; WGPb is good for Paramecia).

PROTOSLO COMPOSITION

Chemical Name CAS# i3
Water T7a2-18-5 ag.25
Hydroxyethyl Cellulose 9004-52-0 1.7

Methylparaben 59-76-3 0.05



Appendix B

Callback functions

thresh = 125;%32767;

imgbh = imcomplement{img):thresh;
s = regionprops(imgb, 'Centroid’, *Area’);
centroids = cat(l, s.Centroid);

areas = cat({l,s.Area);

ikeep = find(areas » 15@); Xpara thresh
cx = centroids(ikeep,1);

cy = centroids(ikeep,2);

d2center = ((cx-width_x/2)."24(cy-width_y/2).~2).78.5;
[~,idx] = sort(dZcenter);

ex = cx(idx(1));

cy = ey(idx(1});

dx = (cx - width_x/2)*pix;

dy = (cy - width_y/2)*pix;

translate(tango, -dx/1@,-dy/18);
cx_array(k) = cx;

cy_array(k) = cy;

dx_array(k) = dx/18;
dy_array(k) = dy/1e;

fTIF.WriteIMG(img);

Fig. B.1 A part of the code of the callback function from the preliminary version of the
automatic tracking program, addressing the centering problem
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thresh = 125;%32767;
imgbh = imcomplement(img)>thresh;
s = regionprops(imgb, ‘Centroid’, "Area');
if ~isempty(s)
centroids = cat(l, s.Centroid);
areas = cat(l,s.Area);
ikeep = find{areas > 15@); Xpara thresh
if numel{ikeep) ~= @
cx = centroids(ikeep,1);
cy = centroids(ikeep,2);
if e ==
disp("looking for the paramecium...')
d2center = ((cx-width_x/2).~2+(cy-width_y/2).~2).70.5;
[~,idx] = sort(d2center);
cx = ox(idx(1));
cy = cy(idx(1));
if cx » (width_x-width_x1)/2 && cx < (width_x+width_x1)/2 && cy| > (width_y-width_y1)/2 && cy < (width_y+width_y1)/2
disp('here we are...')
e = @;
dx = (cx - width_x/2)*pix;
dy = (cy - width_y/2)*pix;
translate(tango,-dx/1@,-dy/1@);
cx_array(k) = cx;
cy_array(k) = cy;
dx_array(k) = dx/18;
dy_array(k) = dy/1e;
k =k + 1;
end
else
if numel{cx) ==
cx = ex(1);
cy = cy(1);
dx = (cx - width_x/2)*pix;
dy = (cy - width_y/2)*pix;
else
diffx = abs{cx - cx_array(k-1));
[~, idxx] = sort(diffx);
top_2_indices = idxx(1:2);
diffyl = abs(cy(top_2_indices(1)) - cy_array(k-1));
diffy2 = abs(cy(top_2_indices(2)) - cy_array(k-1));
if diffyl + diffx(top_2_indices(l)) < diffy2 + diffx(top_2_[indices(2))
cx = cx(top_2_indices(1));
cy = cy(top_2_indices(1));
dx = (cx - width_x/2)*pix;
dy = (cy - width_y/2)*pix;
else
cx = cx(top_2_indices(2));
cy = cy(top_2_indices(2));
dx = (cx - width_x/2)*pix;
dy = (cy - width_y/2)*pix;
end
end
translate(tango,-dx/18,-dy/10);
cx_array(k) = cx;
cy_array(k) = cy;
dx_array(k) = dx/18;
dy_array(k) = dy/18;
k=k+ 1;
end
end
end
fTIF.WriteIMG(img);

Fig. B.2 A part of the code of the callback function from the updated version of the automatic
tracking program, addressing the centering problem
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