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Abstract

This thesis is part of a broader research project aimed at developing a mathematical
model that integrates two NP-hard problems: the Service Network Design (SND)
and the Bin Packing Problem (BPP). The objective is to analyze the economic and
logistical benefits of such integration. The existing literature includes only a limited
number of studies on the integration of Scheduled Service Network Design (SSND)
with BPP, highlighting a significant research gap. Recent contributions have begun
to explore the impact of demand loading rules on vehicle utilization and packing
constraints in intermodal transport (Kienzle et al., 2024; Morganti et al., 2020), as
well as the challenges and advantages of integrating such constraints into network
capacity planning (Bruni et al., 2023). However, crucial aspects such as revenue
management and capacity selection in SSND remain underexplored. This study aims
to bridge this gap by proposing a unified problem formulation that incorporates these
elements, providing a framework applicable to contract negotiations and tactical
planning in transportation and logistics systems. As part of this research project,
the work carried out in this thesis represents a functional yet partial contribution.
Specifically, realistic test instances were randomly generated and validated by a
VBA script to ensure their compatibility with the corresponding network topology.
Subsequently, computational experiments were conducted to examine the integrated
model’s behaviour across different scenarios, with a particular focus on two key
parameters. Finally the same scenarios are tested on the non-integrated model,
where the classical SND problem is solved first, followed by the BPP model. The
numerical experiments show that the integrated model yields superior outcomes,
underscoring the benefits of a method that simultaneously takes the problem’s
tactical and operational aspects into account.
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Introduction

Modern economies depend on effective freight transportation since it affects societal
well-being, regional growth, and international trade. The difficulty of balancing
service quality, environmental sustainability, and economic success is at the heart
of this intricate system. The Service Network Design (SND) methodology offers a
solution by focusing on optimized planning of transportation networks for carriers
employing consolidation strategies. SND is built on consolidation networks, which
are essential for lowering operational expenses and enhancing logistical effectiveness.

Consolidation is a widely spread strategy aims to increase operational and
economic efficiency for shippers and carriers by consolidating freight with different
origins and destinations into the same units (vehicles, containers, etc.) for their
entire or partial journeys. The unit shipping cost and the travel duration should
thus be reduced, which is beneficial to all parties involved. Railroad, Less-than-
Truckload (LTL) motor carriers, shipping companies moving containers on oceans,
seas, rivers, and canals, postal services and express couriers, logistics service
providers, as well as synchro modal, city logistics, and physical internet systems
are prime examples of consolidation-based carriers moving a large and valuable
part of the world trade (consumer goods in particular) over short, medium, long,
and intercontinental distances [1].

SND acts as a link between operational planning, which oversees day-to-day oper-
ations, and strategic planning, which establishes long-term goals, in an increasingly
intricate logistics system. By addressing the intricate decisions associated with
these operations, SND plays a pivotal role in ensuring that carriers achieve both
profitability and service reliability. The significance of SND is further amplified
in today’s unpredictable environment. Political instability, fluctuating demand
patterns, and supply chain disruptions, such as those caused by global health
crises, underscore the need for resilient and adaptable transportation systems. SND
provides the tools to design such systems, enabling carriers to respond effectively
to changing conditions while maintaining operational stability.

The SND methodology is grounded in Operations Research (OR), utilizing
combinatorial optimization techniques to solve large-scale problems. These problems
are typically characterized by the interdependence of decisions across the network,
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Introduction

such as service scheduling, resource allocation, and freight routing. The ability to
manage these interconnected dynamics is essential for improving efficiency, reducing
costs, and ensuring an adequate level of service.

The models used in Supply Network Design can be classified along two main
dimensions: time (static vs. time-dependent models) and uncertainty (deterministic
vs. stochastic models):

1. Static Models: system factors like demand, operating expenses, and resource
availability are assumed to stay constant over time by static models. Long-
term assessments where temporal changes have little effect on strategic choices
are best suited for these models. For instance, a static model may be used
to figure out where industrial facilities or warehouses should be placed in an
existing logistics network.

2. Time-dependent models: on the other hand, consider temporal variations
in system parameters. These are particularly useful for problems where
parameters such as demand, resource availability, or costs vary significantly
over time. Time-dependent models are essential for managing perishable goods
transportation, fleet operation planning, or distribution systems with strict
time constraints, such as "just-in-time" deliveries.

3. Deterministic models: use fixed, known input values for parameters such as
demand, costs, capacities, and delivery times. These models are relatively
simpler to solve, as they do not account for uncertainty, but they may be less
realistic in complex scenarios. They are often used for scenario analyses to
evaluate the impact of strategic decisions under well-defined assumptions.

4. Stochastic models: take into account the uncertainty around one or more
important characteristics, including resource availability, transportation costs,
or future demand. In order to find solutions that function well even in
uncertain situations, these models frequently employ methods like Monte
Carlo simulations, robust optimization, or stochastic programming. They
also use probability distributions to describe uncertainty. Stochastic models
are particularly critical in dynamic and unpredictable environments, such as
global transportation networks affected by external events, weather conditions,
or economic fluctuations.

Solving SND problems relies on applying advanced optimization techniques,
often derived from combinatorial optimization. Some of the most commonly used
techniques are:

• LP and ILP: problems involving decisions represented by continuous or integer
variables, such as the number of distribution centers to open or the quantities
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of items to move, are solved using linear programming (LP) and integer linear
programming (ILP).

• Dynamic Programming: problems requiring sequential decision-making across
time are addressed by dynamic programming.

• Metaheuristic Algorithms: techniques like genetic algorithms, simulated anneal-
ing, and tabu search are frequently employed to solve optimization problems
that are too complex to accurately solve in a reasonable amount of time.

• Multi-objective optimization: makes it possible to reconcile competing goals,
such minimizing costs while enhancing service quality.

3



Chapter 1

Problem Description

1.1 Service Network Design
SND is a methodology focused on designing and optimizing service networks for
freight transportation. This involves making crucial decisions regarding route selec-
tion, resource planning, and management of freight flows. The primary objective is
to minimize the total system costs, including both fixed costs for activating services
and variable costs associated with freight transportation. In practical terms, SND
addresses complex problems related to managing transportation networks. Among
the main challenges are:

• Service network design: determining connections between origins and destina-
tions, including potential intermediate stops for load consolidation.

• Resource allocation: optimizing the use of vehicles, terminals, and other
infrastructure.

• Flow optimization: planning the most efficient routes to meet demand while
balancing costs and service levels.

A key characteristic of SND is its integrative approach: it does not focus solely
on optimizing a single aspect of transportation but considers the entire system
as an interconnected whole. This approach allows for effectively managing the
interactions among various system components, such as physical infrastructure,
transportation demand, and the services offered. The design and optimization
of a service network revolve around three fundamental components: the physical
network, the demand, and the service network. Each component plays a crucial
role in ensuring the efficiency and reliability of the system as a whole.
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1.1.1 Physical Network
The physical network represents the underlying infrastructure on which carriers
operate. It encompasses all the tangible elements of the system, providing the
framework for transportation and logistics activities. The physical network can be
broken down into two primary elements:

1. Nodes: serve as critical points within the network where freight is handled,
consolidated, or transferred. These include:

• Terminals: regional terminals act as points of origin or destination for
freight. Additionally, they may function as transfer points where goods
are unloaded and reloaded for further transportation.

• Hubs: designed to combine flows from several terminals, hubs are facilities
positioned in key locations. Hubs enable economies of scale, particularly in
long-haul transportation, by consolidating freight from multiple locations..
For example, combining smaller shipments into larger loads at hubs
improves efficiency and lowers overall transportation costs.

2. Arcs: represent the connections between nodes and the transportation links
within the network. These connections can include:

• Highways: connecting hubs and terminals, highways are essential for
long-distance vehicle freight transportation.

• Railways: railways provide cost-effective and sustainable options for bulk
commodities or long-distance freight.

• Maritime Routes: crucial to international trade, these routes connect
ports across continents and countries.

Each arc is defined by several attributes that influence its performance, such
as:

• Capacity: the maximum freight volume that can be transported along a
specific arc. Bottlenecks and delays may result from limited capacity.

• Travel Time: the time required to move goods between nodes. This is
influenced by factors such as distance, speed limits, and route conditions.

• Costs: the expenses associated with using the arc, which may include fuel
costs, tolls, or maintenance fees.

There is a physical network GP H = (N P H , AP H) that shows the physical
infrastructure system. Each node η ∈ N P H is a terminal, a hub, or a region,
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and each arc a ∈ AP H shows the possibility of a direct connection between two
terminals, which is shown by its starting and ending nodes several attributes
are associated with the network GP H , including capacities and costs expressed in
terms of vehicles, convoys, containers, or freight volumes. The arc length and the
infrastructure quality status are also considered [2].

The physical organizational model is the so called "hub and spoke" system,
also known as the star network. The hubs (primary nodes) act as collection
points and are directly connected to each other. Additionally, all secondary nodes
provide a connection (arc) to their respective hub. The figure 1.1 shows a graphical
representation of the "hub and spoke" network.

Figure 1.1: Hub and Spoke service network

This approach allows for the centralization of operations, reducing costs and
improving the efficiency of connections. This configuration reduces direct routes
between nodes, concentrating operations at the central hub to enhance efficiency.

1.1.2 Demand
Demand plays a crucial role as it refers to the transportation needs of shippers,
which are represented by origin-destination (OD) flows. These flows indicate the
movement of goods between specific points, outlining the required transportation
services for various types of freight. Each demand instance not only includes the
quantity of goods to be transported but also details the type, characteristics, and
specific conditions associated with the freight. For example, the demand could
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include bulk materials, perishable goods, hazardous substances, or specialized
freight that requires particular care in handling and transport.

By evaluating trends in demand, planners can optimize routes, minimize costs,
and allocate the right type of resources to meet these needs effectively. In practice,
demands can be aggregated to simplify the modeling process. Similar demands,
such as those originating from the same geographical area or involving similar
types of freight, can be combined into a single commodity flow. This aggregation
reduces the complexity of the transportation network, making it easier to design
and optimize. Demand is thus generally defined as the requests for transportation
of a set k of OD commodities, each commodity being an aggregation of shippers
with similar characteristics in terms of origin, destination, timing, type, product,
handling cost, and fare.

The demand characterization of most SND contributions in the literature con-
cerns a single category of customers, which are strongly believed to require service
regularly during the coming season. We identify this category as contract-based,
with associated commodity set KC . This demand must be satisfied by the designed
service network. Consequently, the total associated revenue RC is assumed to
be a given constant, to be ignored in planning and the SND minimization of the
total operation costs. To illustrate the capability of the SND methodology to
account for demand segmentation and service differentiation, we define a second
demand category, identified as irregular potential, with associated commodity set
KI . This category represents the aggregated volume of estimated demand the
carrier receives on a regular basis, while the plan is executed, from shippers without
formal understandings. This type of demand may be accepted or not. Let cat(k)
stand for the category of demand, cat(k) = C or I when k ∈ KC or KI , respectively.
The entire demand set is then K = KC ∪ KI , each commodity k ∈ K meaning a
request to move a quantity of freight volk from its origin O(k) to its destination
D(k) [2].

1.1.3 Service Network
The service network represents the operational framework through which carriers
fulfill transportation demands. It encompasses all the potential services that can be
activated to move goods across the network efficiently. Each service is characterized
by specific attributes that determine its suitability for varying types of freight,
routes, and cost structures. These attributes include:

1. Mode of Transportation: refers to the type of transportation that is used, such
as air, sea, train, or road. Each mode has specific advantages and limitations.
For example, rail and maritime modes are more economical for long-haul or
bulk goods, while road transportation is flexible and best for short distances.

7



Problem Description

2. Route Specification: the route specifies the path connecting the origin and
destination nodes. Routes can be direct or include intermediate stops for
loading, unloading, or cargo transfers. Route selection is affected by a num-
ber of variables, including cost, network congestion, and distance. Route
optimization can drastically cut down on operating costs and transit times.

3. Capacity: the maximum weight or volume that a service can manage is
referred to as its capacity. Capacity constraints must be carefully managed,
as exceeding limits can cause delays, additional costs, or the need for extra
services.

4. Cost Structure: each service incurs both fixed and variable costs. Fixed costs
include expenses such as activating a specific service, maintaining vehicles,
or hiring crews. Variable costs depend on the volume or weight of goods
transported, fuel consumption, and distance traveled.

Let G = (N , A) be the potential service network, defined based on the physical
nodes of the system N P H and the set of potential services Σ within the context
of the carrier resources, operation rules, economics, and service goals. A service
σ ∈ Σ follows a path in the physical network from its origin O(σ) to its destination
D(σ). Several other terminals may be located along this path. A direct service
passes by these terminals without stopping. The service is then represented as a
single arc a ∈ A, and A = Σ when all potential services are single-leg. A multi-leg
service halts at intermediary terminals on its route to drop and pick up loads.
When convoys are involved (e.g. rail, road, and barge trains), the service may also
stop to pick up or drop off individual or groups of vehicles (e.g., car or blocks for
railroads and trailers for LTL motor carriers operating multi-trailer road trains).
The service route is then described by the sequences of n(σ) terminal stops and
n(σ) - 1 service legs connecting them [2].

The entire effectiveness and financial success of the transportation system
depend heavily on the planning and administration of the service network. A
well-designed network can handle changes in freight volume, seasonal demand, and
service interruptions while guaranteeing that demand is satisfied with the fewest
possible delays and expenses. Carriers must constantly assess and modify their
service networks to meet changing consumer demands, legal specifications, and
technical breakthroughs. Formally, then, the basic arc-based SND formulation seek
to:
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min
Ø
σ∈Σ

fσyσ +
Ø
k∈K

Ø
a∈A

ck
axk

a (1.1)

s.t.
Ø

a∈A+
η

xk
a −

Ø
a∈A−

η

xk
a = dk, η ∈ N , k ∈ K, (1.2)

Ø
k∈K

xk
a ≤ uayσ(a), a ∈ A, (1.3)

xk
a ≤ uk

ayσ(a), a ∈ A, k ∈ K, (1.4)
yσ ∈ {0,1}, σ ∈ Σ, (1.5)
xk

a ≥ 0, a ∈ A, k ∈ K. (1.6)

Where A+
η = {(η, η′) ∈ A} and A−

η = {(η′, η) ∈ A}. Define the sets of outgoing
and incoming arcs for node η ∈ N , respectively, while dk = volk at the demand
origin η = O(k) − volk at the demand destination η = D(k), and zero at all other
nodes [1].

The objective of the SND minimizes the total cost of operating the system,
computed as the sum of the fixed costs associated with selecting the service network
and the variable cost of transporting commodities using the selected services.
Equations 1.2 are often referred to as flow-balance constraints and ensure that
all of a commodity’s demand departs from its origin, arrives at its destination,
and departs from any other locations at which it arrives. The expression on the
left-hand side of the linking constraints 1.3 computes the total flow traveling on
arc a ∈ A, whereas the expression on the right-hand side gives the global arc
capacity provided by the corresponding service (selected or not). The commodity-
disaggregated linking constraints are given by 1.4. Constraints 1.5 and 1.6 define
the variable domains [1].

1.2 Bin Packing Problem
The BPP is a combinatorial optimization problem that has been studied greatly due
to its theoretical complexity and practical usefulness in many different disciplines.
At its core, the problem is a collection of objects, each with a weight, and a set
of bins with a fixed capacity. In addition to ensuring that the total weight of the
goods in each bin does not exceed its capacity, the assignment should minimize the
number of bins used. This seemingly simple problem has deep implications and
several real-world applications. Its relevance to computer science and operations
research stems from its role in modeling resource allocation, storage optimization,
and logistics planning.
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1.2.1 Mathematical Formulation
The mathematical formulation below corresponds to that of Martello and Toth,
who in 1990 decided to compile all knapsack problems in a book, as well as the bin
packing problem, which is not usually included in the knapsack area, but can be
interpreted as a multiple subset sum problem where all containers have the same
capacity c, all items must be selected, and it’s desired to minimize the number of
containers used. Given n items and n knapsacks (or bins) with

wj = weight of item j,

c = capacity of each bin

assign each item to one bin such that the total weight of the items in each bin, does
not exceed c and the number of bins used is a minimum. A possible mathematical
formulation of the problem is:

Minimize
z =

nØ
i=1

yi (1.7)

Subject to
nØ

j=1
wjxij ≤ cyi, i ∈ N = {1, . . . , n} (1.8)

nØ
i=1

xij = 1, j ∈ N (1.9)

yi ∈ {0,1}, i ∈ N (1.10)

xij ∈ {0,1}, i ∈ N, j ∈ N (1.11)
where

yi =

1 if bin i is used;
0 otherwise,

xij =

1 if item j is assigned to bin i;
0 otherwise.

We will suppose, as is usual that the weight wj are positive integers. Hence,
without loss of generality, we will also assume that:
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• c is a positive integer

• wj ≤ c for j ∈ N [3].

1.2.2 Importance and Applications
The BPP presents a fundamental trade-off between simplicity and computational
complexity. Even though the rules of the problem are simple to grasp, finding
the best solution gets much more difficult as the number of items goes up. This
complexity has led to many years of research aimed at finding effective solution
methods. One interesting thing about the BPP is how it is connected to other
combinatorial optimization problems, like the knapsack problem and scheduling
problems. These connections have resulted in insights from different fields, where
methods created for one issue can often be changed or used for another. For
example, the BPP has a lot in common with packing and cutting problems, which
also focus on optimizing resource use while following strict rules. The BPP has
been studied a lot since it was first formally defined. Much of the literature focuses
on approximation algorithms due to the difficulty of solving large instances exactly.

Heuristic and metaheuristic methods, like First Fit, Best Fit, and genetic
algorithms, are commonly used to find near-optimal solutions in an efficient way.
These methods give up some accuracy for faster results, which makes them really
useful in situations where time is important, such as making quick decisions in
logistics. Beyond heuristic methods, researchers have looked into the theoretical
parts of the problem, like finding lower bounds and recognizing structural properties.
The goal of these efforts is to help us understand how difficult the problem is and
to create standards for measuring how well algorithms perform. Exact algorithms
are not very common because they require a lot of computing power, but they are
still an important topic of research for small or very limited cases.

The significance of the BPP lies in its versatility, as it is applicable across various
industries.

1. Logistics and Transportation: design of packaging is an application area for
the BPP. The success of IKEA in minimizing inventory space is attributed to
its clever “flat” package designs. This example demonstrates the fact that,
instead of trying to store predetermined size and shape packages in a fixed
area of storage, the decision makers of the supply chain may come up with
optimal designs for packaging of items in order to maximize space utilization
[4].

2. Manufacturing: has applications in optimizing raw material cutting. For
instance, in steel manufacturing, large sheets are cut into custom-sized pieces
for use in construction, automotive, and machinery industries. Similarly,
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in textile production, fabric rolls are cut into patterns for making clothes,
upholstery, or other items. In these situations, the challenge is not just to
reduce waste but also to improve the cutting process. This helps to lower
machine idle times, stick to production schedules, and consider other factors
like the grain direction in fabrics or areas with defects in raw materials.

3. Project scheduling: is an issue in all stages of a supply chain. It is concerned
with the efficient utilization of given resources (time, people, budget) to
complete a sequence of activities, which have precedence relations among
themselves. Obviously, the decision-makers in all stages of the supply chain,
starting from suppliers’ tier reaching to the customers, have to deal with their
own projects. Project scheduling resembles the BPP in many aspects. The
problem of task allocation along a timeline can be modeled and solved as a
multi-dimensional BPP. The specific algorithms developed for the BPP may be
adapted effortlessly in this case. Manufacturing involves cutting raw materials
like steel or fabric into smaller pieces to reduce waste [4].

These applications extend beyond considering only weight or volume.

Figure 1.2: Three dimensional single bin filling [5]

Multidimensional variants introduce additional constraints, such as item dimen-
sions, shapes, or orientation, which mirror the complexities faced in real-world
scenarios. Figure 1.2 graphically illustrates this complexity by depicting the Three-
Dimensional Bin Packing Problem (3D-BPP). In summary, the BPP is not only an
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abstract mathematical challenge. This is a practical and important problem that
helps improve how resources are used and how efficient different industries can be.
The theoretical basis is based on mathematics, but its use in real-life situations like
logistics, manufacturing, transportation, and scheduling shows how important it is
in practice. Efficient resource packing, whether for physical goods, raw materials,
or shipments, directly impacts cost-effectiveness, sustainability, and operational
efficiency in these industries.

The adaptability of BPP shows interesting opportunities for combining it with
more complicated logistical issues, like SND. As seen, in SND, resources must be
distributed across various services within a network. This is often limited by how
much capacity we have, the level of demand, and the costs of operating. The
SND includes many important factors like routing, scheduling, and service-level
needs. However, the main ideas of BPP as resource allocation, optimization, and
constraint satisfaction fit nicely with what SND aims to achieve. So, by using BPP
optimization methods, it’s possible to think of solutions that not only solve regular
resource-packing problems but also make service networks work better, which can
lower costs and improve how the system performs.

The ongoing progress in BPP research, such as creating new algorithms and
looking into multidimensional or irregular packing methods, offers even more
possibilities for addressing the complicated issues found in SND. As technology
and computing power improve, combining BPP techniques with service network
design could lead to more efficient, sustainable, and cost-effective solutions. The
integration of these optimization methods shows how theoretical knowledge connects
with practical uses. It provides new ways for industries to use resources better,
reduce waste, and improve the overall efficiency of service networks.

1.3 The integration of Bin Packing Problem in
Service Network Design

As integrated vehicle routing problems combine optimization problems that are
usually NP-hard by themselves, the prevailing attitude among operations researchers
has been, until recently, to tackle each problem independently, at the expense of
global optimization. On the other side, combining two, or more, hard problems
causes a significant increase of the computational burden required, but tends to
provide considerably better solutions than solving optimally each problem, often
even if the integrated problem is solved with a heuristic [6].

Actaully, in today’s literature, there is very little available on the integration
of the two problems. Few studies have explored the experimentation of such
integration, but those who have, even if with some differences compared to the
model that will be presented in this thesis, have shown that combining the two
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problems brings clear advantages of various kinds.
Flamand et al., propose a new variant of the transportation problem with

multiple types of commodities to be transported from multiple supply nodes to
multiple demand nodes via several vehicles of different types that may be available
at supply nodes with different quantities. These vehicles have different capacities
and each type of commodity accommodates different amount of space (weight)
on them. It is noteworthy that if the quantities of the various commodities to be
shipped by each supplier are fixed, the problem reduces to the well-known variable
size BPP (or equivalently, the multiple length cutting stock problem) [7].

Coté et al. state that loading issues are closely related to multi-dimensional
packing problems, especially extensions of the classical (one dimensional) BPP.
In their paper they have considered the capacitated vehicle routing problem with
two-dimensional loading constraints, which is an integrated problem where the
capacitated vehicle routing problem is combined with the problem of finding a
feasible loading pattern for a set of rectangular-shaped items. It’s proposed a
solution approach that addresses the integrated problem by means of an exact
algorithm and compared such approach with three not integrated approaches that
consider the routing and the loading aspects of the problem separately. It’s shown
that the cost of a solution obtained with a not integrated approach may be as large
as twice the cost of an optimal integrated solution [6].

Moreover, Hewitt et Lehuédé estabilish that formulating with consolidations
also facilitates modeling issues that have not yet been addressed in the literature,
such as bin-packing considerations when computing vehicle capacity needs. In
addition, the proposed modeling technique for bin-packing considerations in a
consolidation-based formulation yields instances that are easier to solve than those
wherein capacity is modeled in an aggregate sense [8].

Including packaging considerations, like Bin Packing, into distribution networks
is an important innovative idea in solving complicated logistical issues. This method
allows us to define consolidations directly on the physical network, which removes
the need for formulations that rely on space-time networks. The result is a compact
formulation particularly suited for small-scale problems. It works better than the
usual space-time network formulations that have knapsack-style capacity limits.
The importance of this integration is that it can overcome the traditional way of
doing things, where tactical and operational modeling are handled separately. This
separation can cause problems with cost estimation and finding ways to consolidate
effectively.

From the first evidence in the literature, the integrated approach provides:

• Better consolidation opportunities: by combining the two problems, it helps
to optimize routes and demand allocation at the same time, which reduces
waste and makes better use of resources.
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• More realistic costs: taking into account the operational complexities during
the tactical modeling phase allows for more precise and relevant cost estimates.

• Lower computational complexity: the compact formulation makes it easier
to solve small problems without solving in an independent manner the SND
problem and the BPP.

The two models have been tested in this thesis and the results obtained from the
comparison of the two models will be presented in the last section. he findings
indicate that the integrated model is not only computationally less expensive, since
it eliminates the need to solve an additional problem, but also enhances profit
maximization through improved consolidation.
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Chapter 2

SND integrated with BPP

In this chapter, the integrated model is presented as an improved and more efficient
version of the non-integrated and independent models found in the literature. In
the model, carriers are part of the supply side, offering transportation capacity
through what is called scheduled services.

2.1 Model
Each service has its own features:

• Starting and ending terminals: showing the physical nodes of departure and
arrival.

• Departure time and arrival time: respectively from the starting terminal to
the destination terminal.

• Service duration: the time needed to travel directly from the starting point to
the destination.

From the perspective of an individual service, transportation is considered unimodal,
as each service uses a single mode of transport for the connection between the origin
and destination. As a result, the physical network representation maintains this
unimodal structure. However, from the perspective of the carriers, transportation
can take on a multimodal nature, especially when carriers act as intermediaries and
combine multiple modes to move loads between terminals. Each service is uniquely
labeled and associated with a specific mode of transport, determined by its nature
(e.g., land, maritime, or air) and the corresponding infrastructure (e.g., railway,
road, etc.). The capacity offered by a service is expressed in terms of pre-reserved
space blocks (also known as allotments). These blocks correspond to standardized
load units, each characterized by a specific type, such as 20- or 40-foot containers,
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railcars, or vehicles with multiple loading spaces. Two additional characteristics of
load units are their costs and capacities, measured in terms of volume, weight, or
length. Each service has a limited number of load units, which belong to a specific
mode of transport. However, not all types of load units are compatible with every
service. Clearly, a single carrier can perform multiple services. Before defining
the service cost, it is crucial to first explain what contracts are and how they are
managed.

Carriers offer service contracts to shippers, who give all important information
about their transportation needs to the intermediary platform. All requests for
supply and demand are provided in the system before the planning period begins.
The platform is important for managing the system because it makes important
decisions, as:

1. Acceptance or rejection requests from shippers that are not part of a contract,
making sure that the goods are picked up from the origin after the release
time.

2. Delivery occurs before the deadline. Moreover, all contractual demands, i.e.,
those for which a contract with the shippers exists, must be fulfilled.

Figure 2.1 shows the interactions between shippers and carriers from the per-
spective of this intermediary. The intermediary platform leverages spatial and
temporal consolidation of multi-shipper requests to design an optimized service
network. This network offers several advantages, primarily increased efficiency by
eliminating the need to explicitly model each time interval, thereby simplifying
both problem comprehension and management. The approach also offers flexibility
in incorporating constraints, allowing for the inclusion of complex rules related
to vehicle capacity and packing requirements. Unlike traditional methods based
on time-space networks, the proposed compact representation is both simpler and
more efficient, particularly for smaller-scale problems. However, for larger problems,
a hybrid model is introduced, combining consolidation-based modeling with a
traditional time-space representation, enabling the management of various problem
configurations depending on the number of consolidations possible within each time
period.

The pysical network is similar to the one presented in section 1.1 of chapter
1 with some updates. Operations at terminals in different periods are modelled
as time-stamped nodes of the form (n, t) ∈ N and time-stamped arcs. There are
two types of arcs in A, the sets of service arcs AΣ and the sets of holding arcs
AH . A = AΣ ∪ AH . A service arc, joining nodes (n, t) and (n′, t′), models the
operation of a single-leg service σ ∈ q between its origin o(σ) = n and destination
d(σ) = n′, starting at time α(σ) = t and arriving at time β(σ) = t′. A holding
arc, joining nodes (n, t) and (n, t + 1), models the possibility of holding the freight
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Figure 2.1: M1M system [9]

at node n from period t to t + 1. Each potential service has a fixed service cost
fσ. Each service σ has associated a set of loading units Jσ. In what follows, we
apply the generic term bin to refer to the loading unit associated with services.
Let J = t

σ∈Σ Jσ Jσ ∩ J ′
σ = ∅, ∀σ /= σ′ ∈ Σ be the set of loading units available in

the service network. The set of bin types is denoted by Π = {1, 2, . . . , π, . . . , nΠ}
and each bin j ∈ J has a type (ϕ(j) ∈ Π) that is characterised by capacity Qπ ,
fixed cost, cF

π and variable unitary cost ca
π . Each service σ has a global capacity

Uσ, that is defined on the basis of the characteristics of the system considered [10].
Demand is categorized in two types: contract demand KC , which must be

satisfied and non contract demand KNC which could be dissatisfied. So K =
KC ∪ KNC . Each item has a size vi (expressed in the same unit as the container
capacity), while the size of the shipper’s request is the sum of the volumes of its
items, indicated as di. All items associated with the same request are available
simultaneously (availability time) at the origin and must be delivered to the final
destination by the common due date. Each potential request from non-contract
customers can be accepted or rejected based on its revenue. In contrast, contract
customer requests must be accepted. Clearly, accepting a request implies delivering
all its items.

2.1.1 Mathematical Formulation
We consider the following sets of decision variables: yσ ∈ {0,1}, σ ∈ Σ, for the
selection of service σ; zj ∈ {0,1}, j ∈ J , selects or not bin j; xi

aj ∈ {0, 1}, represents
the possible assignment of item i ∈ I(k) to bin j of service σ, and it is defined for
given demand k ∈ K ∀a ∈ AΣ, i ∈ I(k), j ∈ Jσa|ϕ(j) ∈ Πk. The binary variables
wi

a ∈ {0, 1}, a ∈ AH , i ∈ I, indicate if item i is held on arc a, λk ∈ {0, 1}, k ∈ K,
whether or not demand k is accepted.
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The objective function (2.1) maximizes the total profit expressed as a difference
between revenues and costs. The total cost of selecting services, securing bins,
holding items at terminals, transporting items through the designed system is con-
sidered. Constraints (2.2) ensure that each item is routed from its origin node to
its destination node, respecting the temporal constraints. Constraints (2.3) enforce
a feasible assignment of items to bins, respecting the bin capacity. Constraints
(2.4) express the service maximum capacity in terms of the total capacity of bins
operating on that service. Constraints (2.5) link the z and y variables ensuring that
only if a service is opened, then we can use the bins of that service. Constraints
(2.6) require that the demand of all regular customers are totally accepted and
delivered. Finally, constraints (2.7)-(2.11) express the nature of the variables.

Maximize q
k∈K

pkλk − ( q
σ∈Σ

fσyσ + q
j∈J

cF
ϕ(j)zj + q

a∈AH

q
k∈K

hk( q
i∈I(k)

wi
a) +q

a∈AΣ

q
i∈I

q
j∈J

ca
ϕ(j)vix

i
aj) (2.1)

Subject to q
a∈A+

(n,t)

q
j∈Jσa

xi
aj + q

a∈A+
(n,t)

wi
a −

1 q
a∈A−

(n,t)

q
j∈Jσa

xi
aj + q

a∈A−
(n,t)

wi
a

2

=


λk, if (n, t) =

1
o(k), α(k)

2
−λk, if (n, t) =

1
d(k), β(k)

2
0, otherwise

∀(n, t) ∈ N , ∀k ∈ K, ∀i ∈ I(k)(2.2)

q
i∈I

vix
i
aj ≤ Qϕ(j)zj, ∀a ∈ AΣ, ∀j ∈ Jσa (2.3)q

j∈Jσ

Qϕ(j)zj ≤ Uσyσ, ∀a ∈ AΣ (2.4)q
j∈Jσ

zj ≤ |Jσ|yσ, ∀σ ∈ Σ (2.5)

λk = 1, ∀k ∈ KC (2.6)
yσ ∈ {0,1}, ∀σ ∈ Σ (2.7)
zj ∈ {0,1}, ∀j ∈ J (2.8)

xi
aj ∈ {0,1}, ∀k ∈ K, ∀a ∈ AΣ, ∀i ∈ I(k), j ∈ Jσa|ϕ(j) ∈ Πk (2.9)

wi
a ∈ {0,1}, ∀a ∈ AH , ∀i ∈ I (2.10)

λk ∈ {0,1}, ∀k ∈ K (2.11)

where A+
(n,t) = {a =

1
(n′′, t′′), (n′, t′)

2
∈ A|n′′ = n, t′′ = t} and A−

(n,t) = {a =1
(n′, t′), (n′′, t′′)

2
∈ A|n′′ = n, t′′ = t}, for each (n, t) ∈ N .

The objective of function 2.1 is to maximize total profit, calculated as the
difference between revenues and costs. The model considers all costs related to
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service selection, bin allocation, item storage at terminals, and transportation
through the designed system. Constraints 2.2 ensure that each item is routed from
its origin node to its destination node while respecting time constraints. Constraints
2.3 guarantee that the assignment of items to bins is feasible without exceeding
their capacity. Constraints 2.4 define the maximum service capacity based on the
total capacity of the bins operating within that service. Constraints 2.5 establish
the relationship between the z and y variables, ensuring that bins assigned to
a service can only be used if that service is activated. Constraints 2.6 require
that all requests from regular customers are fully accepted and delivered. Finally,
constraints 2.7 to 2.11 define the nature of the model variables.

2.1.2 Space-Time Network
Figure 2.2 illustrates an example on a physical network of five terminals, over a
schedule length of seven periods. Each node is uniquely numbered, resulting in a
total of 35 nodes in the network. This means that in the specific example showed
in the figure a possible service 9 to 22 resulting in a service which has the following
features:

• Departure terminal: 4.

• Departure time: 2.

• Arrival terminal: 2.

• Arrival time: 5.

Figure 2.2: Space-Time Network
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It is important to note that a commodity can remain at the same terminal for
multiple time periods to facilitate consolidation when it is the optimal solution.

Based on the idea of consolidation on physical links at particular dispatching
moments, the authors offer a novel formulation. According to this method, a
collection of demands that can all travel simultaneously along the same physical
link is represented by a consolidation connected to an arc or service. This idea
makes it possible to allocate resources in a more organised and effective manner,
maximising demand flow and reducing duplication and inefficiencies.

A key advantage of this formulation is its ability to predefine the set of con-
solidations associated with each physical link due to the relatively simple service
structure. By generating these consolidations a priori, the model allows for the
incorporation of more complex packing considerations and constraints without too
much increasing computational complexity. This enhances the overall feasibility and
flexibility of the model, making it particularly valuable for network optimization.
Furthermore, a key advantage of this framework is that it does not require a time-
space network formulation because consolidations are established directly on the
actual network. This leads to a more compact and scalable solution by streamlining
the modelling process and increasing computational efficiency. For larger issue
instances, traditional time-space network formulations, which frequently depend
on knapsack capacity constraints become computationally costly and challenging
to scale. On the other hand, the suggested model provides a more efficient and
performance-oriented alternative that is more appropriate for practical applications
with limited dimensions.

The formulation greatly improves operational efficiency and decision-making
in transportation and logistics networks by utilising this aggregation mechanism.
It offers a reliable and computationally effective substitute for traditional models,
guaranteeing improved physical link utilisation while preserving a high standard
of service quality. This method shows exceptional efficacy in managing intricate
logistical problems, marking a significant advancement in the field of network
optimisation.
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Chapter 3

Instances Generation

3.1 Demand Generation

Demand scenarios are systematically generated using Microsoft Excel to guarantee
a diverse and comprehensive dataset for study. This phase entails the stochastic
production of critical parameters that define each demand instance within the
simulation framework. For each test scenario, the subsequent items are produced
randomly.

Origin and destination nodes: each demand instance is linked to a randomly
designated starting node and an ending node, signifying the source and destination
points within the transportation network. This randomisation guarantees that the
model is evaluated over diverse spatial distributions. Departure and Arrival Times:
The temporal elements of each demand are assigned arbitrarily. The departure
time indicates when demand activates inside the system, whereas the arrival time
denotes the anticipated conclusion of the transportation operation. These factors
introduce temporal variability, enabling the model to be assessed under various
scheduling restrictions.

Request volume (k): the quantity or volume linked to each demand is another
essential variable that is created randomly. This parameter affects capacity limita-
tions and overall resource distribution inside the optimisation framework, rendering
it crucial for performance evaluation. After generating a sufficiently large number of
demand instances in Excel, these structured datasets, typically comprising several
test cases, are exported and supplied as input to AIMMS, a sophisticated modelling
environment for mathematical optimisation. The details of AIMMS and its function
in the simulation process will be studied in the subsequent chapter.

AIMMS processes datasets supplied by Excel to produce structured .data files,
which function as the standardised input format for executing the optimisation
model. These files .data encompass many test scenarios, facilitating the methodical
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assessment of the model’s efficiency and correctness under diverse settings. This
method converts unrefined demand data into organised computational scenarios,
enabling thorough performance evaluation and model verification.

3.1.1 Consolidation: potential issue in generating commodi-
ties randomly

The M1M model assumes that commodities can be consolidated, meaning combined,
to maximize the capacity of arcs (e.g., trucks or railway routes). When there are
different commodities sharing the same origin, destination, departure time, and
arrival time, the model treats these commodities as independent. As a result,
consolidation may be handled incorrectly, leading to redundant utilization of arc
capacity. Consequently, the capacity of an arc might be artificially filled due to
duplication, preventing the consolidation of other genuinely distinct commodities.
This leads to inefficient consolidation, increasing the number of transports required
and, consequently, the costs. Additionally, having duplicated commodities with
identical attributes contradicts physical logic, as two identical flows cannot exist
simultaneously. It is equivalent to representing two shipments that are the same
thing. This compromises the data consistency and the validity of the model. To
prevent these issues, it is essential to implement validation checks and clean the
dataset before using it in the M1M model.

The dataset represents a set of instances of commodities, each characterized
by a set of attributes describing specific transport operations within a logistics
network. Operationally, validation involves creating a unique key in the script
based on origin, destination, departure time, and service duration, and identifying
duplicate keys, meaning all commodities that share these four identical attributes.
Departure times or service durations are then adjusted to generate different keys.
Adopting a clean and accurate dataset is crucial to fully exploit the potential of the
M1M model and to make informed and effective strategic decisions in managing
the logistics network.

The original Macros included two scripts for managing non-cyclic cases and
two for cyclic cases; moreover, there was the fifth script named "Generate random
values" was designed to generate random values between 1 and 14 in column J of the
worksheet. While functional, this script can be easily replaced with a straightforward
formula directly in the worksheet. To achieve the same result without running the
macro, you can use the following formula in column J: ROUND(RAND()*13+1,0).

All the others four scripts have been updated, and the most significant improve-
ment across all of them is the introduction of a new data structure: the dictionary.
This change has drastically reduced computational costs and improved efficiency.
In fact, the two scripts that were able to modify the duplicate keys found had too
high computational costs and could provide a solution with times greater than 5
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minutes (for each sheet). So the old version was very slow and heavy, while the
new one is faster and lighter. The following code is part of all 4 scripts, they were
based on this structure:

1 For i = 2 To lastRow
2 currentKey = ws . C e l l s ( i , "B" ) . Value & ws . C e l l s ( i , "F" ) . Value & ws .

C e l l s ( i , "H" ) . Value & ws . C e l l s ( i , " I " ) . Value
3

4 For j = 2 To lastRow
5 I f i <> j Then
6 comparisonKey = ws . C e l l s ( j , "B" ) . Value & ws . C e l l s ( j , "F" ) . Value & ws

. C e l l s ( j , "H" ) . Value & ws . C e l l s ( j , " I " ) . Value
7

8 I f currentKey = comparisonKey
9 ws . C e l l s ( i , "H" ) . Ca l cu la t e

10 ws . C e l l s ( i , " I " ) . Ca l cu la te

The code used two loops, one inside the other, to compare every row with all
other rows in the sheet. This process was repeated until no more duplicates were
found. Because of the two loops, the code had to check every row multiple times.
This resulted in a computational cost of O(n2), where “n” is the number of rows.
For large datasets, this made the macro extremely inefficient. Moreover, when a
duplicate was found, the macro updated certain cells, but it didn’t handle these
updates in the best way. It repeated calculations that could have been avoided.

3.1.2 Optimized VBScripts
The new code uses a dictionary to manage data more efficiently and performs extra
checks on things like spaces and uppercase letters. A dictionary is like a table
where each entry has two parts: a key and a value. The key is a unique identifier,
and the value is the associated data. In this macro, the key is a combination of
values from columns B, F, H, and I (after cleaning and standardizing them). The
value is the row number where the key was first found. When processing a row,
the macro checks if the key already exists in the dictionary:

• If the key exists, it means the row is a duplicate, and the code updates the
relevant cells.

• If the key does not exist, it is added to the dictionary with the current row
number as its value.

The dictionary allows the macro to find duplicates without checking every row
against all the others. This reduces the computational cost from O(n2) to O(n),
which is a significant improvement for large datasets. Before adding information to
the dictionary, the new code cleans up the data by:
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• Removing extra spaces.

• Making everything uppercase so it’s not case sensitive (even if in the 4 scripts
this check is superfluous since the key only contains numbers and “-“)

Instead of just comparing rows, the new code also checks for duplicates more
carefully and updates certain cells with random values to refresh the data. As
previously described, there are four scripts: two handle non-cyclic cases, and
two handle cyclic cases. The code of the two pairs is almost identical, with the
only difference being that in the cyclic case, the (key) cells on which the checks
and potential modifications are performed differ from the cells in the non-cyclic
case. Below, the two scripts for the non-cyclic case are shown, and then the small
differences with the two scripts for the cyclic case will be highlighted. The following
script is named CheckDuplicated-NonCyclic() and it aims to search and to find
the number of total duplicated rows but also their position in the sheet, so their
row number.

1 Sub CheckDuplicated_NonCyclic ( )
2 Dim ws As Worksheet
3 Dim lastRow As Long
4 Dim i As Long
5 Dim currentKey As St r ing
6 Dim d i c t As Object
7 Dim d u p l i c a t e s As St r ing
8 Dim count As Long
9 Set ws = ThisWorkbook . Act iveSheet

10

11 ’ To f i n d the l a s t not empty row
12 lastRow = ws . C e l l s (ws . Rows . count , "B" ) . End( xlUp ) .Row
13

14 ’ To I n i t i a l i z e the d i c t i o n a r y
15 Set d i c t = CreateObject ( " S c r i p t i n g . Dic t ionary " )
16

17 ’ output v a r i a b l e s
18 d u p l i c a t e s = " Dupl icated rows : " & vbCrLf
19 count = 0
20

21 ’ Cycle on a l l l i n e s and generate a key by concatenat ing the
r i g h t va lue s

22 For i = 2 To lastRow
23 currentKey = UCase (Trim ( CStr (ws . C e l l s ( i , "B" ) . Value ) ) ) & "−"

& _
24 UCase ( Trim( CStr (ws . C e l l s ( i , "F" ) . Value ) ) ) & "−"

& _
25 UCase ( Trim( CStr (ws . C e l l s ( i , "H" ) . Value ) ) ) & "−"

& _
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26 UCase ( Trim( CStr (ws . C e l l s ( i , " I " ) . Value ) ) )
27

28 ’ Ex i s tence check
29 I f d i c t . e x i s t s ( currentKey ) Then
30 d u p l i c a t e s = d u p l i c a t e s & "Row " & i & " ( dup l i c a t e o f row

" & d i c t ( currentKey ) & " ) " & vbCrLf
31 count = count + 1
32 Else
33 d i c t . Add currentKey , i
34 End I f
35 Next i
36

37 ’ To show r e s u l t s
38 I f count > 0 Then
39 MsgBox d u p l i c a t e s & vbCrLf & " Total number o f dup l i c a t e rows :

" & count , vbInformation
40 Else
41 MsgBox " There are no dup l i c a t e rows . " , vbInformation
42 End I f
43 End Sub

In VBA, dictionaries can be accessed through the “Scripting.Dictionary” object,
which is part of the Microsoft Scripting Runtime library. However, this library
is not natively available on MacOS systems, as it relies on ActiveX components
that are exclusive to Windows. As a result, when working on Mac, it is necessary
to create a custom class to replicate the functionality of a dictionary, allowing
cross-platform compatibility for VBA scripts. Will be shown after how to readapt
this code to make it work on MacOS systems. It is important to emphasize that
all four codes are based on the structure of the existing sheets, which contain the
following attributes in the respective columns:

• Column B: starting node.

• Column F: destination node.

• Column H: departure time (non-cyclic case).

• Column I: service duration (non-cyclic case).

• Column L: departure time (cyclic case).

• Column M: service duration (cyclic case).

As shown in the image, this specific code performs checks on columns B-F-H-I,
as it is specifically designed for the control of the non-cyclic case.
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Figure 3.1: Excel structure: commodity generation in non-cyclic case

To ensure that the code was functioning properly, a simple verification system
for the script was implemented. This system is based on the creation of four new
columns (attributes): two to verify the correct functioning of the scripts related to
the non-cyclic case, and two to verify the correct functioning of the two codes for the
cyclic case. As shown in the figures for the non-cyclic case, a key is created in one
cell by concatenating the values from columns B-F-H-I (the previously mentioned
attributes). In the adjacent cell, a simple "COUNTIF" formula is implemented to
count how many times that key appears in the entire column of keys. Here the
concatenation formula and its result:

→

Figure 3.2: Concatenation Formula

In the following figure the “countif” formula and the overall output:

Figure 3.3: CountIf Formula
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Essentially, this checks whether each key generated for each row has a duplicate,
i.e., whether it is repeated. If so, the value "2" will appear in the "check" column.
By filtering all "2" values, it is immediately clear how many and which rows are
duplicated.

→

Figure 3.4: Filtering process

In this way, by running the script, it is possible to verify whether the script’s
output matches the easily implemented cross-check in the spreadsheet.

→

Figure 3.5: Macro Check Duplicated Commodities: non-cyclic

It’s evident from last 2 figures that the script’s output matches the cross-check in
the spreadsheet. Once the duplicate keys (i.e., the commodities) have been identified,
it is necessary to run the second script, "FindAndUpdateDuplicatesNonCyclic".
The following piece of script is a part of the full algorithm which is visible in full
in the appendix section.

1

2 ’ Check i f key e x i s t s
3 I f d i c t . e x i s t s ( currentKey ) Then
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4 ’ i f e x i s t s , updates va lue s o f a v a i l a b i l t y time and
durat ion ( coloumn H and I )

5 ws . C e l l s ( i , "H" ) . Value = WorksheetFunction . Round(Rnd( ) ∗
7 + 1 , 0)

6 ws . C e l l s ( i , " I " ) . Value = WorksheetFunction . Round(2 + Rnd
( ) ∗ 4 , 0)

The algorithm is essentially similar in the use of the dictionary as a data
structure. However, it does not stop at identifying duplicates but also modifies
the values in columns H and I by generating random values, as shown in the code
above.

Very rarely, during the regeneration of the two key attributes, it might happen
that the newly generated keys become duplicates of already existing keys. For this
reason, it is highly recommended to rerun the previous script, "CheckDuplicat-
edNonCyclic", after executing this one to ensure that the output confirms there
are no duplicate rows remaining. If duplicates are still found, simply rerun the
"FindAndUpdateDuplicatesNonCyclic" script again, and the issue will be resolved.
Nonetheless, this remains a very rare occurrence.

The figure 3.6 shows what happens in the excel file.

→

Figure 3.6: Macro Update Duplicated Commodities: non-cyclic

As seen in the figure, all keys are now different from each other. As a result, the
“NonCyclicCheck” coloumn only contains “1”. In conclusion this is the operational
model of the script combined with the cross-verification process implemented.
However, a user might want to apply the code in scenarios where time cyclicity is
considered. For example, in cases where a service starts at time 12, has a duration
of 5 periods, and finishes at time 3, assuming a period length of 14.

For this second case, where cyclicity exists, two additional scripts have been
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designed. These are structurally identical to the two previously discussed scripts,
with the only difference being the cells used to form the key in this cyclicity scenario.

Figure 3.7: Cyclic case

Since, as mentioned earlier, the codes were designed based on the existing sheet
structure, as shown in the previous image, the key in this case will be constructed
using columns B-F-L-M. In the same way as seen before, two columns for verifying
the correct functioning of the scripts have also been created for the cyclicity case.

As a result, the concatenation formula for the cyclic key is:

1

2 =B3&"−"&F3&"−"&L3%"−"&M3

The process of executing macros is the same but in this case the cyclic case
macros are chosen that’s illustrated in the following teo figures.

→

Figure 3.8: Macro Check Duplicated Commodities: cyclic

The code pair is basically the same of NonCyclic case. The only difference is
the key which is made of the two attributes of cyclic case (coloumn L and M) in
addition to the first two unchanged coloumns B and F representing starting and
arrival node. The following code is only a part of CheckDuplicated-Cyclic to show
the only change in the key. The entire code for both Check and Updates macros is
attached in the appendix section.

1

2 For i = 2 To lastRow
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→

Figure 3.9: Macro Update Duplicated Commodities: cyclic

3 currentKey = UCase (Trim ( CStr (ws . C e l l s ( i , "B" ) . Value ) ) ) & "−"
& _

4 UCase ( Trim( CStr (ws . C e l l s ( i , "L" ) . Value ) ) ) & "−"
& _

5 UCase ( Trim( CStr (ws . C e l l s ( i , "M" ) . Value ) ) )
6 UCase ( Trim( CStr (ws . C e l l s ( i , "F" ) . Value ) ) ) & "−"

& _

Another small difference with respect the NonCyclic case is depicted in the next
part of code. The row: ws.Cells(i, “M”).Value = WorksheetFunction.Round(1+Rnd()*9,0)
in which the random values are generated between 1 and 10, while in the other
case they were been generated between 2 and 6. Anyway this difference is basically
given by the constraints of the problem.

1

2 ws . C e l l s ( i , "L" ) . Value = WorksheetFunction . Round(Rnd( ) ∗ 7 +
1 , 0)

3 ws . C e l l s ( i , "M" ) . Value = WorksheetFunction . Round(1 + Rnd( ) ∗
9 , 0)

Scripts in MacOS

As previously said In VBA, dictionaries are typically implemented using the
Scripting.Dictionary object, part of the Microsoft Scripting Runtime library. This
approach works seamlessly on Windows systems, but it poses a challenge on
macOS because ActiveX components, such as the Scripting Runtime library, are
not supported. Consequently, Scripting.Dictionary cannot be used natively on Mac.
To address this limitation, a custom class module was created to replicate the
functionality of a dictionary. This custom solution allows the script to handle key-
value pairs, check for duplicate keys, and retrieve or update stored values ensuring
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compatibility with macOS. The custom dictionary class, named clsDictionary,
provides methods to:

• Add: insert a new key-value pair.

• Remove: delete a specific key and its associated value.

• Exists: check if a key already exists.

• Retrieve the value associated with a given key.

As can be seen in the following algorithm, the implementation of this class required
the use of two internal collections:

• dictKeys: to store the list of keys.

• dictItems: to store the list of corresponding values.

1 Pr ivate dictKeys As C o l l e c t i o n
2 Pr ivate d i c t I t ems As C o l l e c t i o n
3 Pr ivate Sub C l a s s _ I n i t i a l i z e ( )
4 Set dictKeys = New C o l l e c t i o n
5 Set d i c t I t ems = New C o l l e c t i o n
6 End Sub
7 ’ to add an element
8 Publ ic Sub Add( key As Str ing , Item As Variant )
9 Dim index As Long

10 On Error Resume Next
11 ’ to f i n d thekey
12 index = dictKeys ( key )
13 I f Err . Number = 0 Then
14 Err . Raise 457 , , " Chiave g i à e s i s t e n t e "
15 End I f
16 On Error GoTo 0
17 ’ i f the re i s not e r ror , add the key and the element in the

c o l l e c t i o n
18 dictKeys . Add key , key
19 d i c t I t ems . Add Item , key
20 End Sub
21 ’ to v e r i f y i f key e x i s t s
22 Publ ic Function Ex i s t s ( key As St r ing ) As Boolean
23 Dim k As Variant
24 On Error Resume Next
25 For Each k In dictKeys
26 I f k = key Then
27 Ex i s t s = True
28 On Error GoTo 0
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29 Exit Function
30 End I f
31 Next k
32 Ex i s t s = False
33 On Error GoTo 0
34 End Function
35

36 ’ to get a value with key
37 Publ ic Function Item ( key As St r ing ) As Variant
38 Item = dic t I t ems ( key )
39 End Function
40

41 ’ to remove a key and an element
42 Publ ic Sub Remove( key As St r ing )
43 dictKeys . Remove key
44 d i c t I t ems . Remove key
45 End Sub

With the clsDictionary class implemented, the original VBA scripts relied on
Scripting.Dictionary needed modifications. Below are the key adjustments:

1 Dim d i c t As Object
2

3 Set d i c t = CreateObject ( " S c r i p t i n g . Dic t ionary " )

Moreover, on Windows, the syntax dict(key) = value could directly add or update
a key-value pair. In the macOS-compatible script, this is replaced with:

1 I f d i c t . Ex i s t s ( currentKey ) Then
2 d i c t . Remove currentKey
3 End I f
4 d i c t . Add currentKey , True

Finally on Windows, dict(key) retrieves the value associated with a key. In the
custom class, the equivalent is the following:

1 d i c t . Item ( currentKey )

Finally the full codes are in appendix section. In conclusion, by implementing
a custom class module, the lack of scripting. Dictionary support on macOS was
successfully addressed. These changes ensure that the VBA scripts maintain
their functionality while remaining compatible across both Windows and Mac
environments. This approach demonstrates the importance of adaptability when
dealing with platform-specific limitations in VBA development.
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Chapter 4

Modeling with AIMMS

The mathematical model was developed using the AIMMS software. AIMMS
enabled the creation and translation of the mathematical formulation, as well as
the generation of results from various simulations.

Optimising challenges are developed and solved using the modelling tool AIMMS.
Like other tools such as AMPL and OPL, it has its own proprietary language
that lets users specify goals, constraints, and variables. AIMMS uses specialised
tools called solvers, rather than solving problems straight forwardly. A solver is a
program designed to determine the best answer from a mathematical model entered
into it. Various kinds of issues are solved with solvers including:

• LP: with a linear objective function and constraints.

• ILP : with integer or mixed-integer variables (MILP).

• Non-Linear Programming (NLP): with nonlinear constraints or objectives.

• Stochastic Programming: with uncertain parameters.

AIMMS offers a number of advanced modeling concepts not found in other
languages, as well as a full graphical user interface both for developers and end-users.
Aimms includes world-class solvers (and solver links) for linear, mixed-integer, and
nonlinear programming such as baron, cplex, conopt, gurobi, knitro, path, snopt and
xa, and can be readily extended to incorporate other advanced commercial solvers
available on the market today. In addition, concepts as stochastic programming
and robust optimization are available to include data uncertainty in your models.
The multidimensional modeling language in Aimms offers a powerful index notation
which enables you to capture the complexity of real-world problems in an intuitive
manner. In addition, the language allows you to express very complex relationships
in a compact manner without the need to worry about memory management or
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sparse data storage considerations. The combined declarations and procedures
using these multidimensional structures can be organized, edited and displayed
using an advanced interactive model editor [11].

As a result, AIMMS lets users pick a solver for their resolution and streamlines
the building of optimisation models. The usual procedure follows this:

• The model is written in AIMMS using its modeling language.

• The user chooses a solver (e.g., CPLEX).

• AIMMS formats the model such that the solver may understand it.

• The solver processes the data and returns the optimal solution.

This approach allows users to focus on problem formulation rather than the
programming of the solving algorithm.

4.1 Identifiers
Obviously, this is not the place to explain all the tools and capabilities of AIMMS, as
there are various detailed guides for this purpose. Instead, only the most commonly
used methods will be presented to carry out this thesis project.

All data in AIMMS is kept in identifiers, which are essential components for
managing and defining a model. In addition to storing data, identifiers are essential
for functions and procedures because they allow the computation of new values from
preexisting data. Through dynamic value updates and system-wide consistency,
this structure enables AIMMS to manage mathematical models effectively.

AIMMS offers a variety of identifier types, each of which has a distinct purpose
inside a model:

AIMMS provides several types of identifiers, each serving a specific function
within a model:

• Set: define discrete domains over which other identifiers operate. Sets are
essential for structuring models and organizing data efficiently.

• Parameters: store numerical values that can be fixed constants or dynamically
derived from external inputs. Parameters allow the integration of real-world
data into the model.

• Variables: represent the key decisions that need to be optimized. They can be
continuous, integer, or binary, depending on the problem.
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• Constraints: impose restrictions on the model, ensuring that the solution
remains feasible and adheres to real-world limitations, such as capacity or
budget constraints.

• Objective: specifies the criterion to be optimized, whether it be minimization
(e.g., cost reduction) or maximization (e.g., profit or efficiency increase).

• Procedures and Functions: enable custom operations and advanced calcula-
tions. These elements manipulate identifiers to automate tasks, update data,
and implement algorithms tailored to specific optimization needs.

Figure 4.1: Identifiers on AIMMS

The figure 4.1 shows the identifiers window of the AIMMS software. It displays
all the identifiers available within the software. The following figures will similarly
be taken as screenshots from AIMMS, based on the project in question.

All the identifiers are accesibles in the model explorer. The Aimms Model
Explorer provides you with a simple graphical model representation. The model
tree lets you store information of different types, such as identifier declarations,
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procedures, functions, and model sections. Each piece of information is stored as a
separate node in the model tree, where each node has its own type-dependent icon.

As shown in the figure 4.2, the structuring nodes allow you to subdivide the
information in your model into a logical framework of sections with clear and
descriptive names. This is one of the major advantages of the Aimms model tree over
a straightforward text model representation, as imposing such a logical subdivision
makes it much easier to locate the relevant information when needed later on. This
helps to reduce the maintenance cost of Aimms applications drastically. [11]

Figure 4.2: The AIMMS Model Explorer [11]

4.1.1 Sets, Parameters and Variables

The model’s structural foundation is defined by sets, which are finite collections
of elements that function as references for other identifiers, including parameters,
variables, and constraints. They facilitate the generalisation of operations within
the model by enabling the aggregation of similar elements, thereby establishing a
hierarchical structure.
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A set can be either simple, consisting of a single group of elements, or multidi-
mensional, incorporating multiple sets to represent relationships between different
categories. Specific principles can be applied to specific groups of elements with
greater flexibility by defining subsets within a broader set. Additionally, sets
may be either static, which maintains a consistent set of elements throughout
the optimisation process, or dynamic, which changes in response to the model’s
conditions. As an example, only a few identifiers from the model presented in the
chapter will be shown.

For privacy reasons, sensitive data from the AIMMS model cannot be fully
disclosed as the publication has not yet been finalized and these data are subject
to confidentiality agreements.

Figure 4.3 shows one of the sets of the model: the demand set. It includes all
the requests received from customers to be handled by the system. They come
from the random generation decribed in chapter 2.1.2.

Figure 4.3: Set: Demand

Clear and scalable modelling necessitates the utilisation of sets. These are
employed to index other identifiers, thereby eliminating the necessity to explicitly
define each relationship between variables and enhancing the model’s readability and
maintainability. For example one identifier that could be indexed is the parameter.
Parameters are numerical values that provide essential information within the
model and are used to specify properties, constraints, or conditions that influence
the decision-making process. Unlike decision variables, parameters are not modified
by the solver but serve as input data for computational operations. Parameters can

38



Modeling with AIMMS

be assigned explicitly as fixed values, computed based on formulas, or dependent
on other variables in the model. They can also be dynamically updated throughout
iterations, enabling simulations based on different circumstances. Thanks to the
indexing feature It’s feasible the definition of data matrices that vary based on
the elements of the reference sets, structuring information in a tabular format and
optimizing the computation process.

Variables are foundational components that represent the decisions to be made
within an optimization model. Unlike parameters, which contain fixed numerical
values, variables are the elements whose values are determined by the solver during
the optimization process. Their role is crucial, as they define the possible courses of
action that the model can take to accomplish the specified objective while respecting
the imposed constraints. They are often subject to constraints that restrict their
feasible range and ensure that the solution remains realistic and aligned with the
problem’s requirements.

The parameter "acceptance rate", shown in the following figure, serves as a
simple example of the interconnection between variables, parameters, and sets. In
reality, what is taken from the Demand set is its cardinality, meaning the number
of elements (requests) it contains.

Figure 4.4: Parameter: Acceptance Rate

This parameter measures, as a percentage, how many requests have been satisfied
out of the total received. It is a key metric that helps determine the appropriate
sizing of the contractual request set based on the model’s performance.

The variable lambdaAccepted is a binary variable, as shown in the figure 4.5,
and is defined within the index domain k, which corresponds to the indexing of the
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Demand set. The fact that it is binary means that it can only take values of 0 or 1.

Figure 4.5: Variable: Lambda Accepted

Essentially, lambdaAccepted functions as a vector, where each request k is
assigned either 0 or 1, depending on whether it has been accepted or not. The
figure below specifically displays the vector containing only the positive values,
corresponding to the accepted requests in that particular scenario.

Hence, when you right-click on an identifier and choose "Data," a specific data
table or dialogue box with the values currently associated with that identifier is
displayed. This feature is very helpful for understanding the structure of a model
and confirming that variables, sets, and parameters contain the expected values.
This acts as a strong tool for inspecting, entering, and changing data inside a model.
Users can work directly with the model’s data without changing the fundamental
mathematical formulation thanks to this functionality, which offers an organised
method of visualising, editing, and analysing the values linked to various identifiers.

When working with large-scale models, where programmatic data inspection
might be difficult, this functionality is very helpful. Through the graphical interface,
users may easily access and change values without having to write extra code to
extract information.

There are also others identifier of parameter type which are more specific and
suitable for some special situations.The Element Parameter, which accepts values
from a predetermined set. An element parameter, as opposed to a typical numerical
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Figure 4.6: Lambda Accepted: Data

parameter, refers to a particular element within a set rather than having a numerical
value. This feature, which enables more modularity and flexibility, is especially
helpful when a model calls for dynamic reference of set elements. It can be used
for instance, to monitor the selected or active element of a given set.

Instead of storing numerical data, the String Parameter is made to hold tex-
tual values. Because of this, it is very helpful for documentation, labelling, and
dynamically specifying attributes connected to output. In real-world applications,
a String Parameter can be used to hold category names, descriptions, or other
metadata that improves the model’s interpretability. Since the main purpose of
AIMMS is numerical optimisation, the String Parameter only plays a supporting
role in improving the model’s documentation and clarity rather than having a
direct impact on mathematical calculations.

A measurement unit to be connected to variables, constraints, or other parame-
ters in the model is specified by the Unit Parameter. Unit consistency is supported
by AIMMS by default, guaranteeing that all computations adhere to the proper
dimensional analysis. By specifying a Unit Parameter, users may guarantee that
model operations adhere to accurate unit conversions, lowering the possibility of
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mistakes and enhancing computation accuracy.

4.1.2 Procedures and Math Program Inspector
Procedures in AIMMS are essential for managing the flow of execution, carrying out
calculations, automating processes, and dynamically changing data inside a model.
Procedures use an imperative programming paradigm, which means they carry out
a series of operations in a predetermined order, in contrast to declarative elements
like sets, parameters, and variables, which specify the mathematical structure of
the optimisation model. They are therefore crucial for managing intricate reasoning
that cannot be adequately conveyed by equations and constraints alone.

In AIMMS, a procedure is a collection of statements that specify the order in
which certain calculations or operations must be carried out. These statements,
which enable users to construct logic that manipulates data, regulates execution,
or communicates with the solver, can include assignments, loops, conditional
structures (if-else), and function calls. Modular and reusable coding structures are
made possible by procedures’ ability to call other procedures or functions.

Aimms supports several methods to initiate procedural model execution. More
specifically, you can run procedures:

• from within another procedure of your model,

• from within the graphical user interface by pressing a button, or when changing
a particular identifier value, or

• by selecting the Run procedure item from the right-mouse menu for any
procedure selected in the Model Explorer.

The first two methods of running a procedure are applicable to both developers and
end-users. Running a procedure from within the Model Explorer a useful method
for testing the correct operation of a newly added or modified procedure [11].

Procedures also make it possible for AIMMS to use user-defined algorithms.
Some models need extra logic that cannot be effectively represented by constraints
alone, even while the solver manages the fundamental mathematical optimisation.
In these situations, procedures can apply decomposition techniques, metaheuristic
methodologies (such simulated annealing or genetic algorithms), or unique heuristics
to more effectively handle large-scale or computationally complicated problems.

Figure 4.7 shows a simple procedure which aims to load multiple case files and
for each of them it runs another prodcedure: Solve SND wiht profit.

A case file is a file that includes all of the information about sets, parameters,
variables, and solution outcomes as well as a snapshot of the model’s current state.
With the use of this file, It’s possible to save and then to reload a particular set of
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Figure 4.7: Procedure: Batch Creation

inputs and outputs without having to manually re-enter data or recalculate the
entire model.

To load a case in AIMMS It’s necessary to use the proper menu, as shown in
the figure below.

Figure 4.8: Load Case

Once the appropriate button in the drop-down menu is clicked, the desired case
must be selected from the list as appears in the figure.

Batch execution which is visible in figure 4.7 is made possible by AIMMS’s ability
to choose numerous cases at once. This functionality is very helpful when working
with large-scale models that need to automatically evaluate various situations.
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Figure 4.9: Case Files

Multiple case selection allows AIMMS to analyse them in a sequential manner
without user intervention, greatly increasing workflow efficiency for scenario analysis
and optimisation. This enables users to compare various input sets and see how
they affect the model’s results. Furthermore, batch execution makes it easier to
assess results and improve the model based on methodical observations by guaran-
teeing consistency in performing preset scenarios under identical computational
parameters.

Another important tool usable in AIMMS is the Math Program Inspector. It
is used for examining, troubleshooting, and improving mathematical models both
before and after they have been solved. It gives users a thorough understanding of
the composition and properties of an optimisation model, enabling them to identify
possible problems, evaluate computational performance, and optimise formulations
for increased accuracy and efficiency.

Model structure analysis is one of its main features, allowing users to look at
important elements including variables, constraints, goal functions, and parameters.
Redundancies, inconsistencies, or missing components that could impair the solver’s
performance can be found by visualising the model’s structure. The tool also makes
constraint and variable examination easier, enabling users to examine the values
of variables and evaluate both active and inactive constraints. This guarantees
that variables behave as predicted during the optimisation process and aids in
identifying binding constraints that restrict the possible solution space.

The Math Program Inspector must be chosen from the specific "Tool" menu in
order to be used as seen in figure 4.10. One of the most often utilised features in
this project is "Subtract Causing Infeasibility."

For identifying and fixing infeasibilities in an optimisation model, the "Subtrac-
ture Causing Infeasibility" tool is quite helpful. A mathematical model’s inability
to identify a workable solution frequently indicates that the limitations placed on
the problem are too onerous, leaving no workable solution within the specified
feasible range. This feature aids in determining whether constraints render the
model impracticable.

Upon activation, the Math Program Inspector examines the constraint list and
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Figure 4.10: Math Program Inspector

Figure 4.11: Substructure Causing Infeasibility

methodically eliminates any that make it impractical. Figure 4.11 shows how to
select the "Substracture Causing Infeasibility" from the right actions menu.

AIMMS’s Math Program Inspector and procedures offer strong tools for mathe-
matical model analysis, debugging, and optimisation. Procedures allow users to
apply customised operations that improve model flexibility and automation, while
the Math Program Inspector helps to uncover infeasibilities, refine restrictions, and
improve solver performance. When combined, these features guarantee increased
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effectiveness, precision, and command over challenging optimisation issues, which
eventually leads to more robust and reliable decision-making procedures.
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Chapter 5

Computational Experiments:
Discussion and Conclusion

Although they are minor in comparison to the project’s total scope, the operational
components of the work and the contribution will be discussed in this part. The
purpose of this section is to give readers a clear understanding of the strategy used
and the knowledge acquired by carrying out specific operations.

As stated in the introduction, the project forming the foundation of this thesis
aims to assess the advantages and performance of combining two different optimisa-
tion problems: the BPP and the SND. In order to evaluate the impact and efficacy
of this integration in a methodical and quantitative way, the research focuses on
examining the solution provided by a mathematical model that integrates these
two logistical and economic difficulties.

By contrasting the results of the integrated method with those of tackling the
two problems independently, the effectiveness of the suggested model is evaluated.
The potential benefits of tackling these issues inside a single framework as opposed
to considering them as separate optimisation problems can be better understood
thanks to the comparative analysis. In the end, the results help assess if this
combined strategy can result in better decision-making procedures in pertinent
operational and industrial situations.

5.1 Scope of experiments
The work and experiments carried out in this thesis serve solely as a functional
contribution to the broader objective of the overall research project. Their purpose
is to support and complement the larger study by providing specific insights and
analyses that contribute to the final goal.
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In particular, it will present the findings from multiple computational exper-
iments that were conducted in order to investigate and examine the model’s
behaviour in various scenarios. The purpose of the numerical experiments is to
first evaluate the integrated model of SND and BPP, analyze the results generated
by running this model, and then compare these results with those obtained from
the model that does not consider the integration of BPP with SND. As will be
shown later, integration provides benefits in terms of optimization, leading to cost
reductions and, consequently, increased profits.

Before comparing the two models, a profit estimation analysis was conducted.
Specifically, the model was executed in two different ways. In the first run, the
objective was to minimize costs, using the obtained result as a proxy for potential
profits. Subsequently, in the second execution, the model was run to maximize
profits, defined as revenues minus costs. At this stage, various variables and
parameters were analyzed with an emphasis on two crucial parameters that were
particularly relevant to the analysis.

The first parameter analysed is the acceptance rate, which is crucial for deter-
mining the appropriate sizing of the set of contractual requests. Additionally, it
provides insight into whether the average obtained value is realistically "good."
This means assessing whether the model, as the number of received requests (k)
varies over a given time horizon, is capable of delivering reasonable results. If so,
this would indicate a potential adaptability of the model to real-world applications.
In essence, the acceptance rate serves as an initial indicator of the model’s per-
formance, which must then be evaluated alongside its computational cost to fully
assess its practical feasibility and efficiency.

The second step, as said, involved obtaining a preliminary, albeit rudimentary,
estimate of the profits associated with each request. To achieve this, it was first
necessary to compute the total costs by summing the unit costs of each request.
Then, potential profits were estimated under the assumption that they follow the
costs according to a uniform distribution. As will be shown, significant profits were
obtained in all the tested cases, demonstrating the good performance of the model
and confirming its effectiveness.

5.2 Experimental plan
Experiments were conducted on three different network topologies, each subjected
to a set of tests on specific instances, 10 for each demand class designed to represent
real-world scenarios. These instances included randomly generated services, allowing
for the simulation of variable operating conditions and testing the adaptability of
the model under different constraints.

The first network topology was taken from Lanza et al. (2021) and is illustrated
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in the corresponding figure. This topology is itself inspired by Crainic et al. (2014b).
As shown in the figure 5.1, the network consists of five nodes and ten arcs. For this
topology, three demand classes were considered, specifically with k values set at 15,
20, and 25. For simplicity, from now on, the instances generated for this topology
will be referred to as "Lanza."

Figure 5.1: Physical and space-time service networks [12]

The space-time configuration shown in the figure 5.1(b) represents a network
that is set up to control both the potential for strategic waiting and the dynamism
of flows. The nodes’ arrangement demonstrates a well-organised chronological
progression, but the existence of holding arcs, particularly those with lengthy,
curved connections, indicates a flexible resource management strategy in which
availability and route optimisation are the primary constraints in addition to time.

The second and third network topologies, as proposed by Taherkhano et al.,
correspond to bipartite and grid structures. Additionally, preliminary experiments
were conducted on a fourth topology, the hypercorridor network, which is also
depicted in the figure. However, the initial results obtained from this network
suggested that further investigation might be required before drawing meaningful
conclusions. Consequently, its analysis was temporarily set aside in favor of focusing
on the other three networks. The second image of 5.2 shows a network with eight
nodes and sixteen edges called Bipartite (8,16). With connections mostly between
pieces from different sets, the structure emphasises two separate groups of nodes. In
assignment models, such as matching problems in optimisation or representations
of the interactions between two different groups (e.g., tasks and available resources),
this kind of network is common. The presence of cross connections reveals that
there is a more flexible distribution of connections rather than a strict one-to-
one correlation between the groups, while the orientation of the edges suggests a
movement of information or resources between the two sets. A clear structure that
is helpful for routing and allocation issues is highlighted by the lack of internal
cycles inside the separate sets.
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The third image depicts a grid-structured network, so called Grid (9,19), with
nine nodes and nineteen edges. This arrangement is typical of spatial models in
which every node is linked to its immediate neighbours, resulting in a system that is
very regular and structured. Multiple alternate routes between nodes suggest great
redundancy and good fault tolerance, which makes this arrangement appropriate
for communication networks or transportation models. The existence of diagonal
connections in comparison to the basic orthogonal layout suggests greater flexibility
in the transfer of resources or the dissemination of information, and the directed
edges display connection directions that imply a flow dynamic. Because it reduces
the average distance, the grid layout is especially helpful for routing issues in
physical networks, such energy distribution or traffic on the roads. For both the
bipartite and grid networks, three different sets of shipper demands were considered,
each with increasing sizes: 50, 75, and 100. This allowed for an evaluation of how
the model behaves under varying levels of demand intensity and provided insights
into its scalability and efficiency.

Figure 5.2: The physical network topologies [13]

The instances were generated based on the three different network topologies
to evaluate their impact on the acceptance rate and total costs. Additionally, the
services include all possible routes within each network.

For privacy reasons, the specific characteristics of the services and their associated
costs will not be disclosed. For each demand class, 10 instances were generated,
except for the topology taken from Lanza et al., where the number of instances per
demand set was increased to 20. The computational experiments were performed
on a laptop equipped with an Intel i3-2310M CPU @ 2.10 GHz and 6GB of RAM.
The mathematical model was solved using the CPLEX 22.1 solver, and all instances
were solved to optimality.

In the problem formulation, demand is divided into two types: contractual and
non-contractual. Contractual demand must always be satisfied due to imposed
constraints, while non-contractual demand has no such requirement and can be
accepted or rejected based on optimization criteria. The first objective is to compute
all demands that can be satisfied and to get the accepatance rate of each scenario.
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To ensure the problem remains feasible, the contract set is initially left unre-
stricted and empty. If, instead, 70% of the demand set were randomly assigned
to the contract set, the problem would likely become infeasible. This is because
all contractual demands must be fulfilled, but since we cannot predict in advance
whether a particular demand (e.g., demand 2) will be satisfied—depending on fac-
tors such as existing services between nodes, bin capacities, and timing constraints,
some demands might remain unmet, making the problem unsolvable.

This infeasibility is visually represented in the figure 5.3, where the constraints
shown in blue are not satisfied. This issue has been identified using the Math
Program Inspector, which allows for a detailed analysis of constraint violations.

Figure 5.3: Constraints causing infeasibility

By leaving the contract set empty at this stage, an optimal solution can be
obtained, represented by the lambda vector. This vector contains the subset of
demands selected from the total demand set. Additionally, this phase enables the
calculation of total costs, as profits are set to zero, making the objective function
negative.

In the second phase, the lambda vector obtained from the first phase is fixed
within the original problem. This means that the selection of demands is now
assumed to be predetermined and cannot be altered. Essentially, the contract set
is now explicitly defined as the exact set of demands that were satisfied in the first
phase. Moreover, the total costs computed in the first phase are used as input to
estimate the possible profits associated with each demand. This is done through a
specific formula which will be shown in the following section, that links the costs to
potential revenue generation. By incorporating these profit estimates, the model
now captures a more realistic economic perspective of the problem.

At this stage, the true value of the objective function is obtained. Since both the
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revenues (derived from the accepted demands) and the total costs are now known,
the model can accurately evaluate its financial performance. Additionally, by
calculating the ratio of contractual demands to total demands, the model provides
a key insight: this ratio represents the percentage of contract demand that can be
feasibly sustained under the specific simulation conditions. This percentage serves
as an indicator of the model’s capacity to integrate contractual commitments while
maintaining feasibility and profitability. This approach is essential for estimating
the appropriate sizing of the contract set. Specifically, it helps determine whether
the percentage of total demand that can be satisfied is sufficient to ensure not only
a reliable service level but, more importantly, the profitability of the service based
on the fixed costs.

5.3 Output of Integrated Model SND + BPP
First, all available cases were executed using the integrated model. As mentioned,
this approach involved an initial cost estimation by minimizing them while setting
profits to zero. Subsequently, these estimated costs were used to determine the
profits. In this way, during the second execution, the profit for each case was
obtained, which corresponded to the objective function value and was defined as
revenue minus costs. The instances were executed with a time limit of 3600 seconds.
While the actual solving time for each instance was recorded and noted, an in-depth
analysis of computational costs was not within the scope of this thesis. The only
requirement was to ensure that each instance reached optimality within the given
time limit. As previously mentioned, the primary objective of the first execution
was to determine precisely which demands were satisfied for each case, measuring
both the acceptance rate for each specific scenario and the average acceptance rate
for each demand class.

The objective function in this phase always assumed a negative value. This is
due to the structure of the function itself: since in this first execution revenues
were set to zero, and the problem is formulated as a minimization problem, the
solver naturally returned the lowest possible negative objective value. In figure
5.4 is shown a standard output of a specific instance of this first computation. In
particular the instance is taken by grid topology set for k=50.

The complete output shows the time taken, the various types of costs identified
in the model, and, most importantly, the total costs used to estimate profits.
Additionally, the lambda accepted values indicate exactly which requests were
accepted by the model. The results provide useful insights for optimizing transport
networks, highlighting the benefits of an integrated approach in solving the Service
Network Design problem with packing constraints. By gathering data for grid
topology from all demand classes (50,75,100) the following table has been got.
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Figure 5.4: Output of first computation

Demand (K) Average Acceptance Rate (%)
50 69.0
75 68.7
100 69.0

Table 5.1: Grid Topology: acceptance rate

The acceptance rate for the grid topology shown in the table 5.1 is basically the
same for the three demand classes. The low standard deviation suggests that there
are no significant irregular fluctuations in the acceptance rates.

For each tested topology, the average acceptance rates are shown in the following
table. The Lanza cases have a higher average acceptance rate than the other two.
This is because the Lanza instances consist of 20 cases for each demand class, while
the other two topologies have only 10 cases per class. Additionally, the Lanza
topology includes three demand classes with k=15, k=20 and k=25 whereas the
other two topologies have demand classes with k=50, k=75 and k=100.

By multiplying the objective function by -1, we obtained the total cost value.
This total cost, along with the set of satisfied demands, was then used in the second
execution of the instances to derive the profit value for each individual demand.
Specifically, the formula used to compute individual profits is as follows.
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Demand (K) Average Acceptance Rate (%)
Grid 69 %

Bipartite 71 %
Lanza 88 %

Table 5.2: Average Acceptance Rate

1 p r o f i t ( k ) :=2∗ c e i l ( ( t o t a l c o s t ∗( uniform ( 0 . 8 , 1 . 4 ) ) ) / card (NumDemands)

The current approach uses a random factor with uniform distribution in the
interval [0.8,1.4] to calculate profits based on total costs. Simply said, this approach
might not be sufficient to capture the reality of the issue. A uniform distribution
means that all values inside the interval are equal, unless there is a preference
for a particular profit level. However, in the context of an economic optimisation
problem, it is reasonable to assume that some profit intervals are more likely than
others. For example, in many real-world scenarios, the profits tend to follow a less
balanced distribution, with a higher concentration around a central value and a
lower likelihood of extremely low or extremely high equilibria.

Analysing past data from comparable situations and creating a distribution
based on actual observations is a more accurate option. A function that takes into
account pertinent factors like the distance related to the demand, the necessary
volume, or other operational parameters could be derived in place of choosing a
multiplicative factor at random. Analysis of historical data may show, for instance,
that profits often correlate with the value of the transported items or the length of
the route. In this instance, a coefficient that evaluates each demand’s contribution
in light of these factors might be included in the calculation.This method improves
the model’s adherence to reality and lowers the possibility of producing irrational
profits by allowing for the creation of a profit distribution that is not random
but rather represents the patterns shown in historical data.However, the results
obtained from the second calculation step are examined. This step utilises the
demands selected in the first phase along with the total costs. The outcome of this
second computation reveals that the average value of the objective function is so
positive, indicating that gains are being generated.

Figure 5.5 is the typical output of a Lanza instance with k=25 related to the
second run. It can be observed that in this second execution, the profits are
no longer zero, and the objective function is no longer negative. This is due to
the previous estimation of total costs, which then made it possible to derive the
profits in a somewhat rudimentary way. In addition to the individual mini-reports
generated for each tested instance, as shown in the figure 5.5, the procedure also
created a summary output that compactly gathered all relevant information for
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Figure 5.5: Output of second computation

each demand class of each topology. Consequently, the summarized results are
visible as shown in the figure 5.6.

Figure 5.6: Output of integrated model

From this output, it is possible to quickly calculate the average acceptance rate,
as done previously, and also obtain information about the optimality of the solution
and the value of the objective function. The way an instance’s name is structured
is not random but follows a specific logic.
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• The first number represents the number of accepted requests, meaning those
that were satisfied.

• In the first part, "Grid," "Bip," or "Ins" indicate the type of topology being
referenced.

• The second number represents the demand class which the instance belongs
to.

• The third one is the number of bins.

• Then, a progressive number identifies the instance (first, second, etc.).

• Finally, the last number indicates the total demand for items of that specific
instance.

In Appendix B, all the results will be presented in tabular form, as shown in
the figure. To enhance visual impact and clarity, and to simplify everything, the
instance names will be reformulated as follows:

• Progressive number.

• Topology name.

• Demand class.

As mentioned, table 5.3 shows the positive average net profit results obtained
for Grid topology, associated with the corresponding demand class.

Demand (K) Average Objective Value (euro)
50 73839
75 91047
100 108840

Table 5.3: Grid Topology: objective values for the integrated model

A direct proportional relationship between the two variables is evident: as k
increases, the net profits (profits) also increase. In the following table, the results
of the integrated model are presented. This model was developed to optimize the
decision-making process and its benefits will be shown in the next paragraphs.
The values reported provide insights into how different demand levels impact
the objective function, hence the total profits. The whole dataset is available in
Appendix B for a more thorough examination.

The results of the integrated model clearly reveal an upward trend in profits as
demand rises, as the accompanying table illustrates. From a business standpoint,
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Topology Demand (K) Average Objective Value (euro)

Grid
50 73839
75 91047
100 108840

Bipartite
50 71791
75 88911
100 110227

Lanza
15 55276
20 90244
25 101870

Table 5.4: Average profits for different topologies

this positive association indicates that higher demand levels result in higher overall
profitability. These findings demonstrate that the model well reflects the dynamic of
increasing revenues while preserving operational efficiency, which is a primary goal
in any optimisation process. Furthermore, the model’s approach is strengthened
by the reality that earnings increase consistently with demand. It shows that
there are no major inefficiencies in the system’s ability to handle the increased
workload and resource allocation. Next, the results of the non-integrated model
will be introduced. A comparison between the two approaches will be provided,
highlighting the differences in their performance. This analysis aims to demonstrate
the optimization achieved through the integrated model by contrasting it with the
results obtained from the non-integrated one. The comparison will emphasize the
extent to which the integrated approach leads to improved efficiency and better
outcomes in the decision-making process.

5.4 Comparison between the 2 models
The second objective was to assess the value of integrating bin packing consideration
into the model. We perform this analysis by measuring the difference in the net
revenues obtained by solving our integrated model, with respect to a non-integrated
approach which solves the problem without considering bin packing constraints
and tries to integrate them a posteriori, gradually increasing the flexibility of
the decision-making pro- cess. More precisely, we examine two two-step decision
processes, with different flexibility in the re-optimization of the resource utilization.
In the first case, the service network is devised on the basis of the solution of the
problem without bin packing consideration. Keeping fixed the service selection
(only the y variables will be fixed) the plan is then adjusted to eventually reassign
items to bins over the network of open services. This entails reoptimizing the
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itineraries of the items and possibly changing the assignments decision of items to
services. In the second policy (case), the service network and the assignment of
items to services is devised on the basis of the solution of the problem without bin
packing consideration. More in detail, the policy fixes the service and the items
itineraries (and consequently the assignment of items to services) and tries, for
each service, to accommodate the items into the bins associated to that service
[10].

Data has been gathered and arranged in Excel to enable a more thorough study.
Finding patterns and trends is made easier using this method since it enables a
more organised and transparent analysis of the data. Additional statistics have
been calculated and informative visual representations of the data, including graphs
and summary tables, have been produced by utilising Excel’s features. This kind
of data organisation has improved comprehension of the effects of varying demand
levels on profitability. To replicate the same example, the figure presents the results
of the same instances shown in figure 5.7 of Lanza, with K = 15. However, this
time, the results correspond to the non-integrated model. This allows for a direct
comparison between the two approaches, highlighting the differences in performance
and optimization outcomes. By analyzing these results, it is possible to assess how
the absence of integration affects the overall efficiency of the solution and whether
deviations emerge when compared to the integrated model.

Figure 5.7: Output of non-integrated model

The performance comparison between the two models was conducted in Excel,
allowing for the calculation of the average profit increase and the average acceptance
rate for each topology and demand class. This approach made it possible to analyze
the impact of the integrated model across different scenarios, highlighting its
efficiency in handling various demand structures. By aggregating results across
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multiple instances, the analysis provides an extensive view of how the integrated
approach improves overall system performance. Figure 5.8 compares the separate
and integrated models for the Grid topology with K = 50, showing their impact on
objective value, profit increase, and acceptance rate. Three key points emerge from
the image:

• The average objective value is 64944 for the Separate model and 73839 for the
integrated one.

• This means an average profit increase of 13.7%, proving that the integrated
model performs better.

• The average acceptance rate is 69% indicating a good level of service and the
model’s ability to accommodate a significant portion of the demand.

Figure 5.8: Grid-50: Comparison

The profit increase is calculated by dividing the difference between the objective
value in the integrated model and the objective value in the separate model by the
objective value in the separate model. These results confirm that the integrated
model is more efficient in increasing profits. The same results are shown in the image
5.9 in a bar chart illustrating the profit gap between the two models: separate or
unintegrated (blue) and integrated (orange). The X-axis displays the ten instances
executed for this specific class of demand, while the Y-axis represents profit values,
ranging up to approximately 120000. Each instance is associated with two bars,
enabling a direct comparison of profitability between the two models. The data
clearly show that the integrated model consistently outperforms the separate model
in all instances. Although in some cases the difference is minimal, in others, such
as "04-Grid50" and "07-Grid50," the overall gap is enough larger as seen in the
previous figure with average profit increase, demonstrating an advantage of the
integrated approach. This bar chart provides an immediate visual representation
of the differences between the two models. Observing the variations in bar heights,
it is possible to quickly identify the superior performance of the integrated model
in every instance. The complete dataset can be found in Appendix B, where all
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Figure 5.9: Grid-50: Bar Chart

the detailed values are reported. In this section, the discussion will focus on the
general results obtained for each topology, as well as the average profit increase,
which takes into account all 120 instances executed for this thesis work. Rather
than analyzing individual cases, the goal is to provide a broader overview of the
performance differences between the models.

Below, bar charts are presented for each topology, visually illustrating the
comparison between different models. In addition to the histograms, tables are also
provided, summarizing the average profit increase for each demand class within
every topology. These tables allow for a clearer understanding of how the integrated
approach impacts profitability across various scenarios, offering a more structured
interpretation of the results.

Figure 5.10 illustrates the average profit increase calculated across all cases
related to the Grid topology, meaning that the values take into account all 30
instances (10 for each demand class) executed for this specific topology. This
visual representation provides an immediate and intuitive understanding of how
the integrated approach performs in comparison to the separate approach across
the entire dataset for this topology. In contrast, table 5.5 presents a more detailed
breakdown, showing the average profit increase corresponding to each demand
class within the Grid topology. This allows for a clearer analysis of how different
demand patterns influence the overall profitability improvements, offering a more
structured interpretation of the results. While in the case of the table 5.3 showing
the relationship between the number of requests and the objective value, a directly
proportional trend was observed between the two variables, the situation is different
when analyzing the percentage profit increase between the two models. In this case,

60



Computational Experiments: Discussion and Conclusion

Figure 5.10: Grid: Average Delta Profit

in table 5.5 the relationship between the number of requests and the percentage
profit increase is inversely proportional. This means that as the number of requests
increases, the relative profit improvement achieved by the integrated model com-
pared to the separate model tends to decrease. This inverse trend suggests that
the advantages of integration are more significant when the number of requests
is lower, while the gap between the two models becomes smaller as the request
volume grows. Below, table 5.6 is presented that summarizes these findings for

Demand (K) Average Profits Increase
50 13.7%
75 10.0%
100 7.1%

Table 5.5: Grid Topology: Average Profits Increase for Demand Class

the other two topologies as well. This table provides a full overview, allowing for
a direct comparison of how the relationship between demand and profit increase
behaves across different network configurations. In both of the additional cases, a
similar inversely proportional relationship between demand and profit difference
is observed. This confirms the trend seen in the Grid topology, reinforcing the
idea that the relative advantage of the integrated model decreases as the number
of requests increases. This pattern suggests that while the integrated approach
consistently outperforms the separate model, its impact is more pronounced when
the request volume is lower, gradually diminishing as the demand grows.

Finally, the histograms below show the average increase, considering all the
instances of the two remaining topologies, without categorizing them based on the
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Topology Demand (K) Average Profits Increase

Grid
50 13.7%
75 10.0%
100 7.1%

Bipartite
50 9.9%
75 7.9%
100 7.8%

Lanza
15 10.6%
20 6.1%
25 4.3%

Table 5.6: Average profits increase for different topologies

demand class. Even in the case of the last two topologies, the results continue to
demonstrate the advantages of the integrated model, confirming its effectiveness
and superiority in comparison to alternative approaches.

Figure 5.11: Lanza: Average Delta Profit

The chart in the figure 5.13 is an effective way to visualize what has just been
observed in the various tables. It illustrates how the percentage change in average
profits evolves across three different topologies, as the value of K increases. Overall,
the trend shows a steady decline in profit improvements for all topologies as K
grows, indicating that the relative benefit of these configurations diminishes with
larger values. Finally, the average is also calculated across all 120 values, considering
all instances of the three topologies and including all demand classes. The results
reveal an overall profit increase of 7.8%, which is gained by adopting the integrated
model. This outcome further highlights the advantages of the integrated approach in
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Figure 5.12: Bipartite: Average Delta Profit

Figure 5.13: Delta Average Profits by Demand Class and Topology

improving overall profitability across different configurations and demand scenarios.
Results are shown in figure 5.14. The results of this analysis clearly demonstrate
that the integrated model consistently performs better than the separate model in
terms of both profitability and efficiency. The advantages of integration are evident
across different levels of analysis: first, when comparing each demand class within
every topology, second, when considering each topology as a whole, and finally,
when looking at individual instances regardless of topology. In all these cases, the
integrated model results in higher profits and a well-structured acceptance rate,
proving its superiority in optimizing decision-making.

However, a key trend that emerges is that the benefits of the integrated model
tend to decrease as demand increases. This suggests that integration is particularly
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Figure 5.14: All Instances: overall benefits from integrated model

effective when the system operates under moderate or lower demand conditions,
where optimization has a greater impact on resource allocation and profitability.
Despite this gradual reduction in benefits, the improvements remain evident across
all scenarios, confirming that the integrated model represents a more efficient and
structured approach to managing logistics and optimizing operations. The results
underline that, even if the magnitude of the benefits may vary, the integrated model
consistently provides a more profitable and strategically sound solution.

5.5 Discussion and Conclusion
To conclude this work, it is important to summarize the key steps taken throughout
the thesis. The thesis work began with the creation of instances in Excel in
order to develop distinct scenarios that represented varied operational settings.
These instances were designed to simulate different network topologies and demand
classes, ensuring that the models could be tested under diverse conditions. Having
a structured dataset that could be used to assess how well various optimisation
techniques performed was the aim. To make sure the Excel instances were properly
constructed and that the data was consistent, it was crucial to check them after they
were generated. VBA scripts were created for this purpose and used to verify that
the instances that were generated were proper. By assisting in the detection and
correction of potential data mistakes, these scripts made sure that the input given
to the models was trustworthy and representative of actual situations. Once the
instances were validated, the next step was to estimate costs, which were used as a
proxy to determine profits. The profit of each request was computed by multiplying
a reference parameter (parProfit) by a random factor uniformly distributed between
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0.8 and 1.4, and then dividing by the total number of requests. This approach
ensured that profits varied across different requests while maintaining a consistent
overall distribution.

With the input data ready, the integrated model was developed and tested. This
model combines the SND problem with the BPP, meaning that the allocation of
requests and the optimization of space utilization were handled simultaneously.
The integrated model aimed to maximize profits while efficiently assigning and
transporting demand, taking into account capacity constraints and operational
costs. The results showed that the integrated model led to higher profits and better
resource utilization, making it a more efficient solution compared to a separate
approach. A non-integrated model, in which the two optimisation issues (SND
and BPP) were solved independently, was also used to evaluate the true impact of
integration. This made it possible to compare the integrated and non-integrated
methods directly. The outcomes demonstrated that the integrated model produced
notable efficiency gains and consistently beat the non-integrated model. The final
part of the analysis involved a quantitative comparison between the two models,
conducted in Excel. The average profit increase and the acceptance rate were
calculated for each demand class within every topology, for each topology as a whole,
and for all instances without distinguishing by topology. The results confirmed
that, regardless of the scenario, the integrated model consistently delivered better
performance. The results show an inverse relationship between demand levels
and the benefits of the integrated model. As demand increases, the advantage of
integration tends to decrease, likely due to the system reaching a saturation point
where optimization has less impact. However, even at higher demand levels, the
integrated model still provides better efficiency and profitability compared to the
non-integrated approach. In conclusion, this thesis demonstrated the advantages of
integrating service network design with bin packing. The integrated model resulted
in higher profitability and better resource allocation, making it a more effective
and strategically advantageous approach. While the impact of integration becomes
less pronounced as demand increases, its benefits remain evident across all cases,
proving that this method can be applied successfully to optimize logistics and
transportation operations.
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Full Scripts

A.1 Scripts for Windows

A.1.1 Check Duplicated-NonCyclic

1 Sub CheckDuplicated_NonCyclic ( )
2 Dim ws As Worksheet
3 Dim lastRow As Long
4 Dim i As Long
5 Dim currentKey As St r ing
6 Dim d i c t As c l s D i c t i o n a r y
7 Dim d u p l i c a t e s As St r ing
8 Dim count As Long
9 Set ws = ThisWorkbook . Act iveSheet

10

11 ’ To f i n d the l a s t not empty row
12 lastRow = ws . C e l l s (ws . Rows . count , "B" ) . End( xlUp ) .Row
13

14 ’ To I n i t i a l i z e the d i c t i o n a r y as an ob j e c t o f the new c l a s s
c r ea ted

15 Set d i c t = New c l s D i c t i o n a r y
16

17 ’ output v a r i a b l e s
18 d u p l i c a t e s = " Dupl icated rows : " & vbCrLf
19 count = 0
20

21 ’ Cycle on a l l l i n e s and generate a key by concatenat ing the
r i g h t va lue s

22 For i = 2 To lastRow
23 currentKey = UCase (Trim ( CStr (ws . C e l l s ( i , "B" ) . Value ) ) ) & "−"

& _
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24 UCase ( Trim( CStr (ws . C e l l s ( i , "F" ) . Value ) ) ) & "−"
& _

25 UCase ( Trim( CStr (ws . C e l l s ( i , "H" ) . Value ) ) ) & "−"
& _

26 UCase ( Trim( CStr (ws . C e l l s ( i , " I " ) . Value ) ) )
27

28 ’ Ex i s tence check
29 I f d i c t . Ex i s t s ( currentKey ) Then
30 d u p l i c a t e s = d u p l i c a t e s & "Row " & i & " ( dup l i c a t e o f row

" & d i c t . Item ( currentKey ) & " ) " & vbCrLf
31 count = count + 1
32 Else
33 d i c t . Add currentKey , i
34 End I f
35 Next i
36

37 ’ To show r e s u l t s
38 I f count > 0 Then
39 MsgBox d u p l i c a t e s & vbCrLf & " Total number o f dup l i c a t e rows :

" & count , vbInformation
40 Else
41 MsgBox " There are no dup l i c a t e rows . " , vbInformation
42 End I f
43 End Sub

A.1.2 Find and Update Duplicated-NonCyclic

1

2 Sub FindAndUpdateDuplicates_NonCyclic ( )
3 Dim ws As Worksheet
4 Dim lastRow As Long
5 Dim i As Long
6 Dim currentKey As St r ing
7 Dim d i c t As c l s D i c t i o n a r y
8 Dim updateDone As Boolean
9

10 Set ws = ThisWorkbook . Act iveSheet
11 lastRow = ws . C e l l s (ws . Rows . count , "B" ) . End( xlUp ) .Row
12 ’ D ic t ionary i s c r ea ted thanks our new c l a s s de f ined
13 Set d i c t = New c l s D i c t i o n a r y
14 ’ I n i t i a l i z e the f l a g
15 updateDone = False
16

17 ’ Cycle over a l l rows
18 For i = 2 To lastRow
19 ’ Key Generation
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20 currentKey = UCase (Trim ( CStr (ws . C e l l s ( i , "B" ) . Value ) ) ) & "−"
& _

21 UCase ( Trim( CStr (ws . C e l l s ( i , "F" ) . Value ) ) ) & "−"
& _

22 UCase ( Trim( CStr (ws . C e l l s ( i , "H" ) . Value ) ) ) & "−"
& _

23 UCase ( Trim( CStr (ws . C e l l s ( i , " I " ) . Value ) ) )
24 ’ Key e x i s t e n c e check
25 I f d i c t . Ex i s t s ( currentKey ) Then
26 ’ I f i t a l r eady e x i s t s , updates i t
27 ws . C e l l s ( i , "H" ) . Value = WorksheetFunction . Round(Rnd( ) ∗

7 + 1 , 0)
28 ws . C e l l s ( i , " I " ) . Value = WorksheetFunction . Round(2 + Rnd

( ) ∗ 4 , 0)
29 ’ Update key in d i c t i o n a r y
30

31 currentKey = UCase (Trim ( CStr (ws . C e l l s ( i , "B" ) . Value ) ) ) & "
−" & _

32 UCase ( Trim( CStr (ws . C e l l s ( i , "F" ) . Value ) ) ) & "−"
& _

33 UCase ( Trim( CStr (ws . C e l l s ( i , "H" ) . Value ) ) ) & "−"
& _

34 UCase ( Trim( CStr (ws . C e l l s ( i , " I " ) . Value ) ) )
35

36 ’ S ince here we cannot d i r e c t l y use dictCurrentKey we
have to do t h i s

37 I f d i c t . Ex i s t s ( currentKey ) Then
38 d i c t . Remove currentKey
39 End I f
40 d i c t . Add currentKey , True ’
41

42 ’ Flag
43 updateDone = True
44 Else
45 d i c t . Add currentKey , i
46 End I f
47 Next i
48 ’ F ina l message
49 I f updateDone Then
50 MsgBox " Dupl i ca te s have s u c c e s s f u l l y been updated ! " ,

vbInformation
51 Else
52 MsgBox "No d u p l i c a t e s found . " , vbInformation
53 End I f
54 End Sub

A.1.3 Check Duplicated-Cyclic
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1

2 ’As NonCyclic one but with d i f f e r e n t key−c e l l s
3 Sub CheckDuplicated_Cyclic ( )
4 Dim ws As Worksheet
5 Dim lastRow As Long
6 Dim i As Long
7 Dim currentKey As St r ing
8 Dim d i c t As c l s D i c t i o n a r y
9 Dim d u p l i c a t e s As St r ing

10 Dim count As Long
11 Set ws = ThisWorkbook . Act iveSheet
12

13 lastRow = ws . C e l l s (ws . Rows . count , "B" ) . End( xlUp ) .Row
14

15 Set d i c t = New c l s D i c t i o n a r y
16

17

18 d u p l i c a t e s = " Dupl icated rows : " & vbCrLf
19 count = 0
20

21 For i = 2 To lastRow
22 currentKey = UCase (Trim ( CStr (ws . C e l l s ( i , "B" ) . Value ) ) ) & "−"

& _
23 UCase ( Trim( CStr (ws . C e l l s ( i , "F" ) . Value ) ) ) & "−"

& _
24 UCase ( Trim( CStr (ws . C e l l s ( i , "L" ) . Value ) ) ) & "−"

& _
25 UCase ( Trim( CStr (ws . C e l l s ( i , "M" ) . Value ) ) )
26

27 I f d i c t . Ex i s t s ( currentKey ) Then
28 d u p l i c a t e s = d u p l i c a t e s & "Row " & i & " ( dup l i c a t e o f row

" & d i c t . Item ( currentKey ) & " ) " & vbCrLf
29 count = count + 1
30 Else
31 d i c t . Add currentKey , i
32 End I f
33 Next i
34

35 I f count > 0 Then
36 MsgBox d u p l i c a t e s & vbCrLf & " Total number o f dup l i c a t e rows :

" & count , vbInformation
37 Else
38 MsgBox " There are no dup l i c a t e rows . " , vbInformation
39 End I f
40 End Sub
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A.1.4 Find and Update Duplicated-Cyclic

1 As NonCyclic but with d i f f e r e n t r e f e r e n c e c e l l s and d i f f e r e n t Random
FUnction

2 Sub FindAndUpdateDuplicates_Cyclic ( )
3 Dim ws As Worksheet
4 Dim lastRow As Long
5 Dim i As Long
6 Dim currentKey As St r ing
7 Dim d i c t As c l s D i c t i o n a r y
8

9 Dim updateDone As Boolean
10

11 Set ws = ThisWorkbook . Act iveSheet
12 lastRow = ws . C e l l s (ws . Rows . count , "B" ) . End( xlUp ) .Row
13 Set d i c t = New c l s D i c t i o n a r y
14

15 updateDone = False
16

17 For i = 2 To lastRow
18 currentKey = UCase (Trim ( CStr (ws . C e l l s ( i , "B" ) . Value ) ) ) &

"−" & _
19 UCase ( Trim( CStr (ws . C e l l s ( i , "F" ) . Value ) ) ) & "−"

& _
20 UCase ( Trim( CStr (ws . C e l l s ( i , "L" ) . Value ) ) ) & "−"

& _
21 UCase ( Trim( CStr (ws . C e l l s ( i , "M" ) . Value ) ) )
22

23 I f d i c t . Ex i s t s ( currentKey ) Then
24 ws . C e l l s ( i , "L" ) . Value = WorksheetFunction . Round(Rnd( ) ∗

7 + 1 , 0)
25 ws . C e l l s ( i , "M" ) . Value = WorksheetFunction . Round(1 + Rnd

( ) ∗ 9 , 0)
26

27 currentKey = UCase (Trim ( CStr (ws . C e l l s ( i , "B" ) . Value ) ) ) &
"−" & _

28 UCase ( Trim( CStr (ws . C e l l s ( i , "F" ) . Value ) ) ) & "−"
& _

29 UCase ( Trim( CStr (ws . C e l l s ( i , "L" ) . Value ) ) ) & "−"
& _

30 UCase ( Trim( CStr (ws . C e l l s ( i , "M" ) . Value ) ) )
31

32 I f d i c t . Ex i s t s ( currentKey ) Then
33 d i c t . Remove currentKey
34 End I f
35 d i c t . Add currentKey , True
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A.2 Scripts for MacOS
A.2.1 Check Duplicated-NonCyclic

1

2 Sub CheckDuplicated_NonCyclic ( )
3 Dim ws As Worksheet
4 Dim lastRow As Long
5 Dim i As Long
6 Dim currentKey As St r ing
7 Dim d i c t As c l s D i c t i o n a r y
8 Dim d u p l i c a t e s As St r ing
9 Dim count As Long

10 Set ws = ThisWorkbook . Act iveSheet
11

12 ’ To f i n d the l a s t not empty row
13 lastRow = ws . C e l l s (ws . Rows . count , "B" ) . End( xlUp ) .Row
14

15 ’ To I n i t i a l i z e the d i c t i o n a r y as an ob j e c t o f the new c l a s s
c r ea ted

16 Set d i c t = New c l s D i c t i o n a r y
17

18 ’ output v a r i a b l e s
19 d u p l i c a t e s = " Dupl icated rows : " & vbCrLf
20 count = 0
21

22 ’ Cycle on a l l l i n e s and generate a key by concatenat ing the
r i g h t va lue s

23 For i = 2 To lastRow
24 currentKey = UCase (Trim ( CStr (ws . C e l l s ( i , "B" ) . Value ) ) ) & "−"

& _
25 UCase ( Trim( CStr (ws . C e l l s ( i , "F" ) . Value ) ) ) & "−"

& _
26 UCase ( Trim( CStr (ws . C e l l s ( i , "H" ) . Value ) ) ) & "−"

& _
27 UCase ( Trim( CStr (ws . C e l l s ( i , " I " ) . Value ) ) )
28

29 ’ Ex i s tence check
30 I f d i c t . Ex i s t s ( currentKey ) Then
31 d u p l i c a t e s = d u p l i c a t e s & "Row " & i & " ( dup l i c a t e o f row

" & d i c t . Item ( currentKey ) & " ) " & vbCrLf
32 count = count + 1
33 Else
34 d i c t . Add currentKey , i
35 End I f
36 Next i
37
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38 ’ To show r e s u l t s
39 I f count > 0 Then
40 MsgBox d u p l i c a t e s & vbCrLf & " Total number o f dup l i c a t e rows :

" & count , vbInformation
41 Else
42 MsgBox " There are no dup l i c a t e rows . " , vbInformation
43 End I f
44 End Sub

A.2.2 Find and Update Duplicated-NonCyclic

1 Sub FindAndUpdateDuplicated_NonCyclic ( )
2 Dim ws As Worksheet
3 Dim lastRow As Long
4 Dim i As Long
5 Dim currentKey As St r ing
6 Dim d i c t As c l s D i c t i o n a r y
7 Dim updateDone As Boolean
8

9 Set ws = ThisWorkbook . Act iveSheet
10 lastRow = ws . C e l l s (ws . Rows . count , "B" ) . End( xlUp ) .Row
11 ’ D ic t ionary i s c r ea ted thanks our new c l a s s de f ined
12 Set d i c t = New c l s D i c t i o n a r y
13 ’ I n i t i a l i z e the f l a g
14 updateDone = False
15

16 ’ Cycle over a l l rows
17 For i = 2 To lastRow
18 ’ Key Generation
19 currentKey = UCase (Trim ( CStr (ws . C e l l s ( i , "B" ) . Value ) ) ) & "−"

& _
20 UCase ( Trim( CStr (ws . C e l l s ( i , "F" ) . Value ) ) ) & "−"

& _
21 UCase ( Trim( CStr (ws . C e l l s ( i , "H" ) . Value ) ) ) & "−"

& _
22 UCase ( Trim( CStr (ws . C e l l s ( i , " I " ) . Value ) ) )
23 ’ Key e x i s t e n c e check
24 I f d i c t . Ex i s t s ( currentKey ) Then
25 ’ I f i t a l r eady e x i s t s , updates i t
26 ws . C e l l s ( i , "H" ) . Value = WorksheetFunction . Round(Rnd( ) ∗

7 + 1 , 0)
27 ws . C e l l s ( i , " I " ) . Value = WorksheetFunction . Round(2 + Rnd

( ) ∗ 4 , 0)
28 ’ Update key in d i c t i o n a r y
29
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30 currentKey = UCase (Trim ( CStr (ws . C e l l s ( i , "B" ) . Value ) ) ) & "
−" & _

31 UCase ( Trim( CStr (ws . C e l l s ( i , "F" ) . Value ) ) ) & "−"
& _

32 UCase ( Trim( CStr (ws . C e l l s ( i , "H" ) . Value ) ) ) & "−"
& _

33 UCase ( Trim( CStr (ws . C e l l s ( i , " I " ) . Value ) ) )
34

35 ’ S ince here we cannot d i r e c t l y use dictCurrentKey we
have to do t h i s

36 I f d i c t . Ex i s t s ( currentKey ) Then
37 d i c t . Remove currentKey
38 End I f
39 d i c t . Add currentKey , True ’
40

41 ’ Flag
42 updateDone = True
43 Else
44 d i c t . Add currentKey , i
45 End I f
46 Next i
47 ’ F ina l message
48 I f updateDone Then
49 MsgBox " Dupl i ca te s have s u c c e s s f u l l y been updated ! " ,

vbInformation
50 Else
51 MsgBox "No d u p l i c a t e s found . " , vbInformation
52 End I f
53 End Sub

A.2.3 Check Duplicated-Cyclic

1

2 ’As NonCyclic one but with d i f f e r e n t key−c e l l s
3 Sub CheckDuplicated_Cyclic ( )
4 Dim ws As Worksheet
5 Dim lastRow As Long
6 Dim i As Long
7 Dim currentKey As St r ing
8 Dim d i c t As c l s D i c t i o n a r y
9 Dim d u p l i c a t e s As St r ing

10 Dim count As Long
11 Set ws = ThisWorkbook . Act iveSheet
12

13 lastRow = ws . C e l l s (ws . Rows . count , "B" ) . End( xlUp ) .Row
14
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15 Set d i c t = New c l s D i c t i o n a r y
16

17

18 d u p l i c a t e s = " Dupl icated rows : " & vbCrLf
19 count = 0
20

21 For i = 2 To lastRow
22 currentKey = UCase (Trim ( CStr (ws . C e l l s ( i , "B" ) . Value ) ) ) & "−"

& _
23 UCase ( Trim( CStr (ws . C e l l s ( i , "F" ) . Value ) ) ) & "−"

& _
24 UCase ( Trim( CStr (ws . C e l l s ( i , "L" ) . Value ) ) ) & "−"

& _
25 UCase ( Trim( CStr (ws . C e l l s ( i , "M" ) . Value ) ) )
26

27 I f d i c t . Ex i s t s ( currentKey ) Then
28 d u p l i c a t e s = d u p l i c a t e s & "Row " & i & " ( dup l i c a t e o f row

" & d i c t . Item ( currentKey ) & " ) " & vbCrLf
29 count = count + 1
30 Else
31 d i c t . Add currentKey , i
32 End I f
33 Next i
34

35 I f count > 0 Then
36 MsgBox d u p l i c a t e s & vbCrLf & " Total number o f dup l i c a t e rows :

" & count , vbInformation
37 Else
38 MsgBox " There are no dup l i c a t e rows . " , vbInformation
39 End I f
40 End Sub

A.2.4 Find and Update Duplicated-Cyclic

1

2 As NonCyclic but with d i f f e r e n t r e f e r e n c e c e l l s and d i f f e r e n t Random
FUnction

3 Sub FindAndUpdateDuplicated_Cyclic ( )
4 Dim ws As Worksheet
5 Dim lastRow As Long
6 Dim i As Long
7 Dim currentKey As St r ing
8 Dim d i c t As c l s D i c t i o n a r y
9

10 Dim updateDone As Boolean
11
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12 Set ws = ThisWorkbook . Act iveSheet
13 lastRow = ws . C e l l s (ws . Rows . count , "B" ) . End( xlUp ) .Row
14 Set d i c t = New c l s D i c t i o n a r y
15

16 updateDone = False
17

18 For i = 2 To lastRow
19 currentKey = UCase (Trim ( CStr (ws . C e l l s ( i , "B" ) . Value ) ) ) &

"−" & _
20 UCase ( Trim( CStr (ws . C e l l s ( i , "F" ) . Value ) ) ) & "−"

& _
21 UCase ( Trim( CStr (ws . C e l l s ( i , "L" ) . Value ) ) ) & "−"

& _
22 UCase ( Trim( CStr (ws . C e l l s ( i , "M" ) . Value ) ) )
23

24 I f d i c t . Ex i s t s ( currentKey ) Then
25 ws . C e l l s ( i , "L" ) . Value = WorksheetFunction . Round(Rnd( ) ∗

7 + 1 , 0)
26 ws . C e l l s ( i , "M" ) . Value = WorksheetFunction . Round(1 + Rnd

( ) ∗ 9 , 0)
27

28 currentKey = UCase (Trim ( CStr (ws . C e l l s ( i , "B" ) . Value ) ) ) &
"−" & _

29 UCase ( Trim( CStr (ws . C e l l s ( i , "F" ) . Value ) ) ) & "−"
& _

30 UCase ( Trim( CStr (ws . C e l l s ( i , "L" ) . Value ) ) ) & "−"
& _

31 UCase ( Trim( CStr (ws . C e l l s ( i , "M" ) . Value ) ) )
32

33 I f d i c t . Ex i s t s ( currentKey ) Then
34 d i c t . Remove currentKey
35 End I f
36 d i c t . Add currentKey , True

A.2.5 Dictionary Class

1 Pr ivate dictKeys As C o l l e c t i o n
2 Pr ivate d i c t I t ems As C o l l e c t i o n
3 Pr ivate Sub C l a s s _ I n i t i a l i z e ( )
4 Set dictKeys = New C o l l e c t i o n
5 Set d i c t I t ems = New C o l l e c t i o n
6 End Sub
7 ’ to add an element
8 Publ ic Sub Add( key As Str ing , Item As Variant )
9 Dim index As Long

10 On Error Resume Next
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11 ’ to f i n d thekey
12 index = dictKeys ( key )
13 I f Err . Number = 0 Then
14 Err . Raise 457 , , " Chiave g i à e s i s t e n t e "
15 End I f
16 On Error GoTo 0
17 ’ i f the re i s not e r ror , add the key and the element in the

c o l l e c t i o n
18 dictKeys . Add key , key
19 d i c t I t ems . Add Item , key
20 End Sub
21 ’ to v e r i f y i f key e x i s t s
22 Publ ic Function Ex i s t s ( key As St r ing ) As Boolean
23 Dim k As Variant
24 On Error Resume Next
25 For Each k In dictKeys
26 I f k = key Then
27 Ex i s t s = True
28 On Error GoTo 0
29 Exit Function
30 End I f
31 Next k
32 Ex i s t s = False
33 On Error GoTo 0
34 End Function
35

36 ’ to get a value with key
37 Publ ic Function Item ( key As St r ing ) As Variant
38 Item = dic t I t ems ( key )
39 End Function
40

41 ’ to remove a key and an element
42 Publ ic Sub Remove( key As St r ing )
43 dictKeys . Remove key
44 d i c t I t ems . Remove key
45 End Sub
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Tables

B.1 Bipartite: Full Results

Instance Separate Integrated
01-Bip50 60716 63918
02-Bip50 46324 54767
03-Bip50 64890 69063
04-Bip50 64386 66750
05-Bip50 79546 89062
06-Bip50 55120 55595
07-Bip50 56866 69583
08-Bip50 62588 67329
09-Bip50 98933 106639
10-Bip50 63673 75202
01-Bip75 82975 96216
02-Bip75 64221 74901
03-Bip75 62705 69124
04-Bip75 74130 73918
05-Bip75 96644 105959
06-Bip75 82287 85209
07-Bip75 83159 94002
08-Bip75 88905 83449
09-Bip75 111390 121140
10-Bip75 77540 85194
01-Bip100 91244 97518
02-Bip100 103298 110216
03-Bip100 94699 103292
04-Bip100 84465 100340
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Instance Separate Integrated
05-Bip100 102063 113569
06-Bip100 94962 106286
07-Bip100 101108 108682
08-Bip100 120221 124734
09-Bip100 136382 135833
10-Bip100 93789 101797

B.2 Grid: Full Results

Instance Separate Integrated
01-Grid50 54022 69402
02-Grid50 61728 71261
03-Grid50 63093 68383
04-Grid50 67819 86102
05-Grid50 61158 63255
06-Grid50 67733 81688
07-Grid50 62382 75004
08-Grid50 56482 63350
09-Grid50 57557 59413
10-Grid50 97466 100536
01-Grid75 87286 97474
02-Grid75 74033 79019
03-Grid75 82575 81650
04-Grid75 77659 88520
05-Grid75 75976 79216
06-Grid75 85363 102889
07-Grid75 86297 100501
08-Grid75 76174 88978
09-Grid75 75260 85077
10-Grid75 107090 107147
01-Grid100 118545 128355
02-Grid100 85320 87749
03-Grid100 82701 90243
04-Grid100 98360 104008
05-Grid100 83652 90799
06-Grid100 113007 126151
07-Grid100 103966 112025
08-Grid100 119266 125543
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Instance Separate Integrated
09-Grid100 94373 104295
10-Grid100 117468 119233

B.3 Lanza: Full Results

Instance Separate Integrated
01-Lanza15 29752 31872
02-Lanza15 34475 39272
03-Lanza15 39950 53141
04-Lanza15 21924 28881
05-Lanza15 64696 59979
06-Lanza15 48021 53637
07-Lanza15 40732 40436
08-Lanza15 25301 29176
09-Lanza15 40388 48640
10-Lanza15 58679 72060
11-Lanza15 47257 45740
12-Lanza15 56768 68658
13-Lanza15 75419 77266
14-Lanza15 71639 70668
15-Lanza15 62834 63483
16-Lanza15 64380 68635
17-Lanza15 59551 75292
18-Lanza15 57848 65307
19-Lanza15 35324 45477
20-Lanza15 64728 67893
01-Lanza20 62955 77130
02-Lanza20 72004 86271
03-Lanza20 71803 72792
04-Lanza20 70323 77140
05-Lanza20 76677 79779
06-Lanza20 63595 65461
07-Lanza20 54834 68981
08-Lanza20 79331 76605
09-Lanza20 63688 86400
10-Lanza20 95910 94630
11-Lanza20 105501 104654
12-Lanza20 111295 124664
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Instance Separate Integrated
13-Lanza20 98683 103398
14-Lanza20 85560 94955
15-Lanza20 98820 96898
16-Lanza20 96119 106585
17-Lanza20 113357 108048
18-Lanza20 95835 84346
19-Lanza20 100473 105898
20-Lanza20 72527 78097
01-Lanza25 66611 65132
02-Lanza25 82437 90966
03Lanza25 61370 60461
04-Lanza25 102467 108993
05-Lanza25 105134 123293
06-Lanza25 66718 85854
07-Lanza25 106024 111970
08-Lanza25 69792 75691
09-Lanza25 85249 88163
10-Lanza25 62479 74470
11-Lanza25 124543 134110
12-Lanza25 88252 95117
13-Lanza25 120412 120852
14-Lanza25 98351 95899
15-Lanza25 131969 133853
16-Lanza25 112747 124110
17-Lanza25 119737 107493
18-Lanza25 128364 128976
19-Lanza25 112099 95167
20-Lanza25 108663 116823

B.4 Comparison

Demand Class Bipartite Grid Lanza
K=50 13.7% 9.9% 10.6%
K=75 10.0% 7.9% 6.1%
K=100 7.1% 7.8% 4.3%
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