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Abstract

In an era in which smart systems intrinsically integrate cyber, physical, and human
components, threat analysis requires an approach that overcomes the limitations
of traditional models—not by considering purely cyber threats but by focusing on
the interaction between these domains. Based on the hybrid model described in
“A Hybrid Threat Model for Smart Systems” and on the TAMELESS tool—an
automatic tool that, through formal rules, derives the security state of complex
systems—this thesis aims to enhance TAMELESS to make it more exhaustive,
efficient, and accessible.
Initially, the study focused on analyzing real cases involving interactions between
cyber, physical, and human elements, verifying the applicability of TAMELESS
rules to these scenarios. Subsequently, an analysis was conducted on the nature
of the properties and relationships, which highlighted the coherence of the rela-
tionships defined in the model. This analysis extended to the formal verification
of the rules using the PRISM tool, a model checker for the formal modeling and
analysis of systems that exhibit random or probabilistic behavior, used to verify
the activation, correctness, and consistency of the derivation system.
In parallel, a modification was made to the TAMELESS system by implementing a
graphical interface that allows for an intuitive visualization of the graph represent-
ing the system to be analyzed and the resulting attack graph. An update was made
to the original TAMELESS code, enabling communication with the new versions
of the Neo4J graph database. Furthermore, during the study it was decided to
make the tool more exhaustive in interpreting the results; for this reason, a change
was made to the vulnerability analysis workflow, integrating a module based on
LLAMA 3.1 with RAG technology that, leveraging the MITRE ATT&CK dataset,
extracts and subsequently verifies the applicability of attack techniques to the
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individual nodes of the system. The analysis performed in parallel by the Large
Language Model allows for the merging of the results derived from TAMELESS
with the information coming from MITRE ATT&CK, not only partially reducing
the graph and facilitating the identification of attack paths, but also suggesting
specific detection and mitigation methods and calculating the probability and risk
associated with each node.

The use of LLMs, increasingly impactful nowadays, allows for a significant
improvement in understanding the results and compromise processes in hybrid
smart systems, without distorting the formal nature of the system. Moreover, it
makes TAMELESS accessible to a wider audience of users, alongside well-known
and established methodologies such as MITRE ATT&CK.
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Chapter 1

Introduction

1.1 Context and Objectives

Nowadays, within a context of continuous constant technological development and
a new industrial revolution underway, is possible to see a growing expansion of
elements that need an intrinsic combination of human, physical and cyber elements.
A vivid example are devices called the Internet of Things (IoT), which are identified
as a “network of physical objects that are connected to the internet using software,
sensors, and other technologies”. This enables these “smart” systems to collect and
share data, making communication and automation possible. These technologies
are not only applicable for ’smart houses’ or wearable devices (smart watches),
but they are broadly used in the industrial realities too. Within the pool of IoT
landscape there exist systems known as “Cyber Physical Systems” (CPS), that are,
engineered systems that integrate computational elements with physical processes,
creating a tight interconnection between the digital and physical worlds. Referring
specifically to the industrial domain are defined “Industrial Control Systems” (ICS),
systems that incorporate hardware, software, and network connectivity to observe
and begin to take control of production processes within manufacturing, critical
infrastructure, and other industries settings.
However, the integration of such systems requires a broader reflection on the pos-
sible threats affecting these new devices. Attacks today are not only limited to
components in the cyber domain, but target physical vulnerabilities and aspects of
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Introduction

human behavior. Traditional threat analysis methodologies, which are predomi-
nantly focused on the cyber aspect, fail to capture the interaction and propagation
of threats across these domains, not considering alternative paths for the tampering
of non-cyber components, and thus leaving fundamental aspects of the overall sys-
tem security uncovered. For example, in an industrial plant, unauthorized physical
access can facilitate an attack on a digital control system, while a human error,
such as a phishing campaign, can compromise sensitive data and pave the way for
further attacks. For this reason, it is necessary to adopt a holistic and integrated
approach, capable of modeling the interdependencies between components and
supporting the analysis of scenarios in which hybrid attacks, combining physical,
digital, and human elements, can be anticipated and effectively countered.

Given the context that has been outlined, the thesis work is based on the hybrid
threat model described in "A Hybrid Threat Model for Smart Systems" [1] and
on the use of the TAMELESS tool, which leverages formal rules to derive the
security state of complex systems. The main objective of the work is to enhance
TAMELESS, making it more comprehensive and accessible through the integration
of new technologies and methodologies aimed at achieving a deeper threat analysis,
defining metrics such as risk and probability for the various identified threats,
without losing the formal component of the model. In particular, the study
began by addressing the analysis of smart systems, looking for and examining
real-world cases in which cyber, physical, and human components interact, and
demonstrating how TAMELESS can identify the critical elements in these examples,
thereby proving that the approach it employs is effective even for complex systems.
Another aspect of the work involves further enhancing TAMELESS.
First, given the current lack of formal verification of the model rules, a formal
verification process is carried out using the PRISM tool, which validates the
derivation rules and ensures the accuracy and soundness of the model. In addition,
an intuitive GUI has been implemented for the visualization of attack graphs,
simplifying both the input of data representing the system and the interpretation
of the results by the user. The tool has also been updated to integrate the
latest versions of the Neo4J graph database, which improves the management of
relationships and ensures compatibility with new system versions.
Finally, the thesis introduces a new vulnerability analysis module based on a
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Large Language Model, which utilizes LLaMA 3.1 with RAG technology to extract
techniques from the MITRE ATT&CK dataset, verifying and integrating the attack
techniques applicable to individual entities. This analysis, conducted in parallel
with the analysis carried out by TAMELESS using a LLM, not only makes it
possible to partially reduce the attack graph by improving the visualization of
attack paths, but also suggests specific methods of detection and mitigation by
calculating the probability and risk associated with each technique.
The adoption of LLM models and the integration with established methodologies
such as MITRE ATT&CK make TAMELESS a tool accessible to a wider audience,
expanding the possibilities for application in different contexts and contributing to
a more exhaustive approach to the security of complex systems.

1.2 Structure of the Thesis

The body of the thesis is organized as follows:

• Chapter 2 – Background Context: In this chapter, an overview of currently
available threat models is provided, explaining the need for the use of the
model presented on ‘A Hybrid Threat Model for Smart Systems’[1]. An overall
view of the TAMELESS tool is then provided and its functionality, concluding
with a presentation of the other tools used in this work.

• Chapter 3 – Case Studies and Evaluation of the Model: This chapter
describes the examples identified that will later be tested by the new system.

• Chapter 4 – Formal Verification of the Model: This chapter presents
an overview of the limitations already present in the model and its rules
and relationships. In addition, the study conducted on the nature of the
relationships and interactions with the various domains is shown, and finally
the formal verification with the PRISM tool is presented, defining the model
used and discussing the results obtained.

• Chapter 5 – Technological Integration of TAMELESS: This chapter
illustrates the main modifications made to TAMELESS, showing the changes
applied to the original code and presenting the new graphical interface.
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• Chapter 6 – Enhanced TAMELESS: This chapter presents the main
contribution of this thesis, defining the new threat analysis workflow with the
addition of the LLaMA-based vulnerability scanning module. It also shows
how the probability and risk metrics defined for each node and technique
identified are determined.

• Chapter 7 – Validation: This chapter illustrates the results obtained from
the new workflow, validating them alongside the new metrics acquired, and
reflecting on the contribution achieved by the introduction of the new module.

• Chapter 8 – Conclusions and Future Works: This final chapter summa-
rizes the results of the thesis, also presenting the limitations of the work, and
proposes directions for future research.
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Chapter 2

Background Context

2.1 Threat Analysis Models and Hybrid Threat
Model

Threat modeling is a term applied to techniques used for modeling and analyzing
IT systems with the purpose of identifying how the system or its affiliated services
can be attacked. It is mainly implemented during the design and development
phases of a system’s or technological service’s lifecycle, allowing for the necessary
modifications to enhance the system’s security as much as possible.

Nowadays, there are several types of threat models, each with different char-
acteristics, that can be used together to make the analysis more reliable. The
paper “Threat Modeling: A Summary of Available Methods.” [2] presents a fairly
comprehensive overview of the main threat modeling methods currently available
on the market, ranging from the more traditional and well-known approaches, such
as STRIDE to some methods that can be considered hybrid, depending on how
they are used, such as OCTAVE.

Below, still taken from the paper, a summary table identifying the main features
for each model is extracted.
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Table 2.1: Threat Modeling Methods Features. Adapted from [2]

Threat Modeling
Method

Features

STRIDE • Helps identify relevant mitigating techniques.
• Is the most mature.
• Is easy to use but is time consuming.

PASTA • Helps identify relevant mitigating techniques.
• Directly contributes to risk management.
• Encourages collaboration among stakeholders.
• Contains built-in prioritization of threat mitigation.
• Is laborious but has rich documentation.

LINDDUN • Helps identify relevant mitigating techniques.
• Contains built-in prioritization of threat mitigation.
• Can be labor intensive and time consuming.

CVSS • Contains built-in prioritization of threat mitigation.
• Has consistent results when repeated.
• Automated components.
• Has score calculations that are not transparent.

Attack Trees • Helps identify relevant mitigating techniques.
• Has consistent results when repeated.
• Is easy to use if you already have a thorough understanding

of the system.
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Threat Modeling
Method

Features

Persona non
Grata

• Helps identify relevant mitigating techniques.
• Directly contributes to risk management.
• Has consistent results when repeated.
• Tends to detect only some subsets of threats.

Security Cards • Encourages collaboration among stakeholders.
• Targets out-of-the-ordinary threats.
• Leads to many false positives.

hTMM • Contains built-in prioritization of threat mitigation.
• Encourages collaboration among stakeholders.
• Has consistent results when repeated.

Quantitative
TMM

• Contains built-in prioritization of threat mitigation.
• Has automated components.
• Has consistent results when repeated.

Trike • Helps identify relevant mitigating techniques.
• Directly contributes to risk management.
• Contains built-in prioritization of threat mitigation.
• Encourages collaboration among stakeholders.
• Has automated components.
• Has vague, insufficient documentation.
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Threat Modeling
Method

Features

VAST Modeling • Helps identify relevant mitigating techniques.
• Directly contributes to risk management.
• Contains built-in prioritization of threat mitigation.
• Encourages collaboration among stakeholders.
• Has consistent results when repeated.
• Has automated components.
• Is explicitly designed to be scalable.
• Has little publicly available documentation.

OCTAVE • Helps identify relevant mitigating techniques.
• Directly contributes to risk management.
• Contains built-in prioritization of threat mitigation.
• Encourages collaboration among stakeholders.
• Has consistent results when repeated.
• Is explicitly designed to be scalable.
• Is time consuming and has vague documentation.

The threat modeling methods listed above are very effective for traditional IT
systems, but they fail to comprehensively capture the threats that affect smart
systems. In particular, hTMM is the only one among the proposed models labeled
as the "Hybrid Threat Modeling Method," yet it does not sufficiently integrate, like
the other models, the interactions among the human, cyber, and physical domains
typical of smart systems; therefore, it is not applicable to our scenarios. In fact, a
hybrid threat model is defined as a system that integrates traditional and modern
threat modeling techniques through the combined use of traditional risk assessment
and innovative data-driven analysis, allowing simultaneous consideration of the
IT, physical, and human dimensions and providing a complete overview of the
vulnerabilities and threats that can affect the system.
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2.2 TAMELESS

Given the issues presented in the previous paragraph, is provided an overview
of TAMELESS (Threat & Attack ModEL Smart System)[3], an automated tool
designed specifically to address these challenges in smart systems which relies on
an XSB Prolog interpreter[4]. TAMELESS implements a hybrid threat model that
explicitly incorporates human, cyber, and physical components, along with the
relationships between them, into its analysis.

The model allows the representation of entities and threats of different nature
in a single graph representing the system to be analyzed,specifying the security
properties of these entities, that “represent how the security state of the components
can change” and the relationships between the components[1]. For entities and
threats, the authors define: “An entity is a system or system component that can be
of a cyber, physical, or human nature” and “A threat is one or a sequence of actions
that directly or indirectly changes a property that can alter the security state of
an entity”[1]. Using a set of defined derivation rules, TAMELESS automatically
infers additional, derived properties.

Figure 2.1: TAMELESS’s architecture and workflow (Adapted from [1]).
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Figure 2.1 illustrates the structure of TAMELESS: the security architect first
inputs the nodes representing the system, then requests the start of the analysis
by issuing a query to the system. At this point, Prolog will verify that the rules
defined in the threat model can be applied, thereby determining the various derived
properties for the nodes in the graph. After that, the user will be able to see the
results of the analysis and verify the state of the various entities of the system.

The analysis performed with TAMELESS is static, meaning it is based on fixed
information about the system; if these were to change (for example, the insertion
of a new node), the analysis must be repeated. This must also be done if the user
wants to change any information in the system, to verify that any countermeasures
are effective.

In conclusion, TAMELESS allows for effectively verifying the security state of
the various components of a smart system, taking into account the different natures
of the elements. In the following chapters, an in-depth analysis of the properties,
relationships, and rules defined in the model will be addressed.

2.3 Support Technologies and Tools

Now, the tools that were used for the project’s application part are introduced,
providing an overview of their usage.

2.3.1 MITRE ATT&CK Framework

MITRE ATT&CK is a framework developed by MITRE with the goal of collecting
the techniques and tactics used by attackers based on real-world observations [5].
To facilitate the identification of various threats, the framework is organized
hierarchically. It primarily defines three macro areas, known as technology domains:
• Enterprise: representing traditional enterprise networks and cloud technologies;
• Mobile: for mobile communication devices;
• ICS: for industrial control systems.

Thanks to these domains, there is a clear distinction between the different types
of threats that can be exploited. Each domain contains elements called tactics,
which represent the “why” or the reason an adversary is performing an action;
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examples include Initial Access, Lateral Movement, Defense Evasion, etc.
Each tactic, in turn, includes the techniques that represent “how” adversaries

achieve tactical goals by performing an action. This is the core of the information
that provides a detailed description of the threat, enabling the user to thoroughly
understand its functioning and how it might be exploited. Each technique is
identified by a specific ID in the format Txxxx (for example, T0827 Loss of
Control). In addition to the threat description, a technique also carries other useful
information for understanding the attack, such as the platforms, indicating which
systems are vulnerable to that specific threat. Moreover, there is the presence of
sub-techniques, which is a more specific or lower-level description of adversarial
behavior, and finally, real-life examples of where that threat has been exploited.
One of the most useful pieces of information, which will be utilized in our work,
concerns mitigation and detection. Indeed, each technique or sub-technique can
be linked to these aspects, thus providing important details to best defend the
system.

Finally, to make all this information easily accessible, the ATT&CK framework
provides what are called “Matrix”, a tabular representation where the columns
corresponde to the tactics and each row lists the various techniques. In this case,
a matrix will not be used to extract the data; instead, the JSON files directly
accessible from the ATT&CK Navigator GitHub repository [6] will be utilized.

This framework is an excellent resource for the work, as it will allow the identi-
fication of techniques for various application domains in the IT world, especially
in the field of ICS, and above all, it will enable the identification of detection and
mitigation methods very easily, thereby enhancing the information provided by
TAMELESS and allowing the user to take appropriate actions to avoid the problem.
Naturally, as stated by the framework’s developers, it is not 100% complete, each
company faces completely different and unique threats, but it is certainly a good
basis for predicting and identifying threats to smart systems.

2.3.2 PRISM

PRISM is a "probabilistic model checker, a tool for formal modelling and analysis
of systems that exhibit random or probabilistic behaviour."[7] It is used in various
fields, from communication protocols to systems biology.
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The operation of PRISM is based on two main phases:

• The definition of a model.

• The definition of the properties to be verified regarding the model.

A model is built using the PRISM language, which is simple and state-based. Its
main components are the modules and the variables; indeed, a model is composed
of one or more modules that can communicate with each other. Each module
is characterized by local variables, and their values at any given time define its
condition. The system’s overall state is then determined by the combined conditions
of all modules.[7]

To define a module, the keyword "module" is used, followed by the name of
the model; to delimit the end of the module, the keyword "endmodule" is used.
Inside the module, are defined the variables, which are expressed by specifying the
name and the initial state. An example is the following:

1 controlBA : bool init false;

The behavior of each module is indicated by a set of commands called "actions";
they define the change of one or more variables of the model.

An example that is present in the model that will be analyzed later is the
following:

1 [ compromiseA_rule6 ] compromisedB & controlBA & spreadBT &
!safeA -> 1 : ( compromisedA ’ = true) & (restoredA ’ =
false);

The label inserted inside the "[ ]" is called an "action" and it is the reference
to the command in the PRISM language. The variables that follow, namely
"compromisedB & controlBA & spreadBT & !safeA", are called "guard". If the
condition specified by the guard is satisfied, then the action will be executed, and
the update of the variables to the right of "->" will be performed. Each update
is assigned a probability, which indicates the actual probability that the variable
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changes its state; in this model it is considered 1, since it is desired that the
variables to definitely change state if the guard is satisfied.

At the beginning of the PRISM model, it is necessary to specify the type of
probabilistic models, since the tool allows one to work with different types. Among
these, is possible to find:

• discrete-time and continuous-time Markov chains (DTMCs and CTMCs).

• Markov decision processes (MDPs) and probabilistic automata (PAs).

• probabilistic timed automata (PTAs).

• partially observable MDPs and PTAs (POMDPs and POPTAs).

• interval Markov chains and MDPs (IDTMCs and IMDPs). [7]

The focus is placed on the DTMC (Discrete-Time Markov Chain) model used
in this work. The DTMC is a probabilistic model that describes the evolution
of a system in discrete time steps. Each state of the system evolves into one or
more subsequent states according to transitions that occur with fixed probabilities.
Since the security analysis model of TAMELESS [1] is based on formal rules that
derive properties starting from the initial state of the system, these rules can be
interpreted as discrete transitions from one security state to another, which is
perfectly representable by the DTMC probabilistic model.

Once a probabilistic model has been chosen and the various modules defined,
PRISM provides tools to evaluate the metrics and correctness of the model through
the properties. PRISM’s property specification language subsumes several well-
known probabilistic temporal logics, such as PCTL (Probabilistic Computation
Tree Logic) [7], which allows to describe expected behaviors or constraints on the
model. The properties enable to verify that the system evolves as expected and to
quantify the probability that an event occurs.

There are different types of properties:

• Qualitative: They specify behaviors without associating numerical probability
values.

• Quantitative: They assign probabilistic thresholds, so the property will be
true if the threshold is met.
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Various operators are available for constructing the different properties:

• Logical operators:

– & (AND), | (OR), ! (NOT), to combine conditions.

• Temporal operators:

– X (next): indicates the property that must hold in the immediately
following state.

– F (eventually): indicates that at some point in the future the property
will become true.

– G (globally): indicates that the property must remain true for all future
states.

– U (until): expresses that one property must remain true until another
property becomes true.

• Probabilistic operators:

– The typical syntax is P[op threshold] (formula), where op can be ≥,
≤, etc.

PRISM has proven to be a fundamental tool for verifying the rules of TAMELESS;
it has provided evidence that the rules of the threat model are well-formed and
reliable.

2.3.3 Neo4J Graph Database

Neo4J is an open source graph database developed in Java [8]. It is a non-relational
database which, unlike classic relational databases, is highly efficient at handling
transactional data, and allows effective data management in contexts where the
data are highly interconnected. A NoSQL database of this type uses a graph
structure with nodes, edges, and properties to store the data.

The main features of Neo4J can be extrapolated, which are:
• Horizontal scalability (in the Enterprise version) : it allows easily adding

more nodes to the system. In the Community version, scalability is vertical.
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• Neo4j has its own language, created by the company for its query methods –
the Cypher language.

• The storage is disk-based – through a proprietary file system.
• Its integrity is ACID guaranteed.
• It has a very intuitive and very accessible interface. [9]

The language used by Neo4J is quite intuitive and powerful; it easily allows
creating nodes, with the addition of properties (as in the example "name" and
"type"), and also relationships between nodes. An example found in the TAMELESS
code [3] is the following:

1 CREATE ( attacker : ENTITY {name:" attacker ", type:"human"})
RETURN attacker

In addition to the ”CREATE” keyword, Neo4J’s Cypher language provides
”MATCH” to return nodes present in the database or ”WHERE” for filtering,
as well as keywords that allow more complex operations such as ”COUNT” or
”ORDER BY”.

The database manages transactions implicitly, on an isolated view of the database,
through a REST endpoint "tx/commit". The process is as follows:

• The query written in the Cypher language is encapsulated in a CypherResponse
object which prepares the JSON message to be sent.

• A POST request is made to the "tx/commit" endpoint. At this point, the
transaction is opened, the query is executed, and then the commit is performed
(i.e., the transaction is closed) in a single operation.
– If the query is executed successfully, the transaction is automatically commit-

ted.
– If the query fails, the JSON response will contain errors and the transaction

will not be committed, thereby rolling back the operation.

Thanks to its nature and functionalities, Neo4J is naturally the best choice for
the TAMELESS system, which primarily works with graphs and therefore with
highly interconnected data.
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2.3.4 LLaMA 3.1 with RAG

LLaMA (Large Language Model Meta AI) is a family of Large Language Models
developed by Meta AI. In this thesis work, the LLaMA 3.1 model was chosen, as
it is considered state-of-the-art in the field of LLMs. This version of LLaMA is
provided in three variants, which are distinguished by the number of parameters:
one version with 8 billion parameters, another with 70 billion, and one with up
to 405 billion. This configuration allows for a trade-off between computational
resource requirements and model performance. The selected version is the one with
8 billion parameters, as it is sufficient to yield satisfactory results and proved to be
the right compromise between the necessary computing resources and efficiency.

LLaMA 3.1 was released under a license that permits its open-source use for both
research and commercial purposes, an element that has enabled its widespread use
and spreading. Moreover, several key features of the LLM can be identified, such
as multilingualism, coding, reasoning, and tool usage. Its efficiency and scalability
have also been improved compared to previous models and some competitors,
presenting a fairly simple and stable architecture[10] (Figure 2.2).

Figure 2.2: LLaMA architecture (Adapted from [10]).

Although LLaMA is a reliable model, in this thesis it is used to identify and
subsequently validate vulnerabilities present in the MITRE ATT&CK dataset. To
reduce errors and hallucinations – situations where the model produces outputs
that are semantically and syntactically correct but based on false assumptions or
far removed from factual reality – and given the complexity of the required task,
the Retrieval-Augmented Generation (RAG) technique was introduced.

RAG is a technique used to improve the output of LLMs by allowing them
to generate responses based not only on their training data but also on external
authoritative sources, such as the complete dataset of MITRE ATT&CK tactics
and techniques for various domains.
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Figure 2.3: RAG with LLM workflow. Adapted from AWS [11]

As can be seen in Figure 2.3, the query generated by the user is not immediately
sent to the LLM but is first converted into a vector and matched against vector
databases to retrieve a number of documents relevant to the query. This information
is added to the original query, providing better context to the model and enabling
it to return a pertinent answer.

The implementation of RAG in this work is carried out using the LangChain
library, a framework for developing applications powered by large language models
(LLMs)[12]. It is mainly used to seamlessly integrate language models and vector
databases; in this specific case, it is employed to interface with a FAISS index.

FAISS (Facebook AI Similarity Search) is an open-source library developed
by Facebook AI Research for similarity search and clustering of high-dimensional
vectors[13]. The FAISS index is built from the text embeddings obtained with a
SentenceTransformer model. These embeddings represent the threat data extracted
from the MITRE ATT&CK dataset. Once created, the index is saved locally and
subsequently loaded to execute queries.

In this configuration, given the query, the retriever provided by LangChain per-
forms a search on the vector database to extract information regarding the threats.
This information is added to the LLaMA prompt to search for vulnerabilities
suitable for a specific node.
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The use of this technology has enabled the acquisition of valid data and improve
the information regarding the possible threats that can affect the nodes of the
system, thereby enriching the formal analysis carried out by TAMELESS.

18



Chapter 3

Introduction to the Case
Studies

3.1 Examination of the Attack Examples

In this chapter, a selection of the attacks analyzed during the course of the thesis
is presented. They were chosen because they align perfectly within the application
domain of TAMELESS and represent several scenarios that may occur. Below, all
these cases will be analyzed by the new system and the results obtained will be
discussed.

3.1.1 Water Supply System Hack

On February 5, 2021, Oldsmar, a small town in Florida, was hacked into at their
water treatment plant and the hackers attempted to alter the chemical composition
of the water[14]. Specifically, they increased the amount of sodium hydroxide from
100 parts per million to 11,100 parts per million, a level that could have made the
water highly toxic if consumed by humans.
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Figure 3.1: Water Supply Attack (Adapted from [15]).

The attack was carried out as follows:

1. The attackers presumably obtained the login credentials of the system through
a phishing campaign, exploiting the human factor and weaknesses in security
training.

2. Using access credentials, the attackers took control of TeamViewer, a software
that allows employees to remotely access the system, whose security was not
properly managed, due to the lack of multifactor authentication mechanisms
and adequate controls.

3. Once inside the system, hackers took control of the plant’s IoT-enabled devices.
They increased the concentration of sodium hydroxide by changing the settings
in the SCADA software.

In the actual incident, the attack was not successfully completed, as an operator
noticed the excessive levels of sodium hydroxide in the water and managed to
intervene, preventing a fatal outcome. However, the incident clearly highlights how
the lack of adequate technical controls and the vulnerability of the human factor
can combine to create a hybrid attack capable of simultaneously affecting both the
cyber and physical domains.

The case under examination fits perfectly within the ICS category, highlighting
how these systems represent critical and sensitive assets, whose security is strictly
linked to the safety of people.
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3.1.2 Cyberattack on the Ukrainian Power Grid

In December 2015 the Ukrainian Power Grid suffered a major multi-front attack,
which disconnected several electrical substations, causing power outages for several
hours [16].

Attack Steps:

1. The attackers gained access to the entire system through a phishing email
containing a malicious document. Once opened, it allowed the installation of
malware on the system.

2. The installed malware was originally developed for DDoS attacks but was
modified to target SCADA systems (BlackEnergy). The malware was used
to maintain access to the system and to move laterally within the network.

3. Once the SCADA system was entered by the attackers, they started the
malware, whose purpose was to remove all the data from the system. This
resulted in the deletion of system files on multiple workstations, which caused
it to be difficult for the recovery operations to be executed..

4. Once the power outage was triggered, two additional sub-attacks were executed
that further complicated recovery:

• The UPSs (Uninterruptible Power Supplies) were tampered with and
reconfigured so that, once a power outage occurred, the UPS would execute
a programmed disconnection of its connected load. This prevented the
UPS from fulfilling its role of ensuring continuous power supply during
outages, thereby delaying the restoration of electrical service.

• The attackers launched a DDoS attack on the power companies’ customer
service phone lines, preventing customers from reporting issues that could
have served as an early warning signal.

This case is very interesting not only because it fully involves all three domains
of interest, demonstrating how they are interconnected, but also because it is a
sophisticated, multi-phase attack. Therefore, it serves as a case study for testing the
efficiency of the new system by analyzing its behavior under such attack scenarios.
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3.1.3 Flicker Frequency Attack

Flicker Frequency Attack [17] is an attack developed in a laboratory that involves
IoT devices, specifically smart lights. Researchers have observed that these devices
are not adequately protected and that their unconventional use can cause direct
harm to people.

This attack is based on a smart LED vulnerability that takes advantage of
the way smart LEDs control brightness through pulse-width modulation (PWM).
Smart LED bulbs are by default powered and controlled by commands from a
dedicated controller through the entire time of their operation. Those commands
will, in turn, change the brightness by altering the PWM duty cycle. However,
with the Flickering Frequency Attack, the attacker uses API functions that are not
mentioned in the documentation to avoid the smoothing methods which work with
various frequencies. The process is as follows:

1. The attacker, having gained access to the same network to which the smart
LED bulbs and their controller are connected, constructs a UDP command
to send to the controller. The controller acts as a gateway between the
LAN and the lights and features a control interface accessible from the LAN.
This command is designed to force the LED to rapidly switch between two
brightness levels that are very close to each other.

2. Since the LED operates by rapidly turning on and off, the attacker precisely
controls the timing of these changes by modifying the PWM duty cycle. By
setting the off periods to extremely short intervals, the attacker can induce a
flickering effect at a frequency that, while imperceptible under normal viewing
conditions, is high enough to disrupt normal neural processing in individuals
with photosensitive epilepsy.

This attack underscores the importance of protecting these devices, as the
potential hazards of IoT devices when security is not adequately considered can
be significant. This case was selected because it unites the cyber domain with the
human domain, highlighting how the compromise of computer systems can have
direct repercussions on daily life and the health of individuals, thereby necessitating
an integrated approach to ensure overall resilience against increasingly sophisticated
attacks.
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3.1.4 Stuxnet

In 2010, the Natanz nuclear facility in Iran was attacked by the Stuxnet worm, a
highly sophisticated malware designed to sabotage industrial control systems [18].
The attack unfolded in several distinct phases:

1. The attackers introduced Stuxnet into the facility’s air-gapped network via
infected USB drives, thereby bypassing traditional network isolation measures.

2. Once inside, Stuxnet exploited four zero-day vulnerabilities in Microsoft
Windows to escalate privileges and propagate laterally throughout the network.

3. The worm specifically sought out systems running the software used to control
the centrifuges. By subtly altering the operational speeds of these centrifuges,
Stuxnet induced damaging fluctuations that accelerated wear and eventually
led to their failure, all while concealing its actions with advanced rootkit
techniques.

4. As a result of this targeted manipulation, the Iranian nuclear enrichment
program experienced significant delays. The attack underscored the dangerous
potential of cyber weapons to inflict real world physical damage on critical
infrastructure.

The cyber-physical hybrid nature of this case is especially important as the
attack depicts a very impactful correlation between a cyber attack and physical
systems, showing how a well-crafted cyber attack can wreck a physical system.
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Chapter 4

Formal Verification of the
Threat Model

This chapter aims to examine the constraints defined in the threat model [1].
In particular, an analysis will be conducted on the application of the various
relationships based on the nature of the different entities that compose them. Then,
the model defined on PRISM will be presented, which allows the rules defining the
model to be represented, concluding with a discussion of the results obtained.

4.1 Limitation of the existing Model

The threat model defined in [1] establishes a syntax based on a series of properties
and relations that allow the correct expression of rules, which constitute the
functioning of the model. These are syntactically defined, but they have not been
formally verified, failing to demonstrate that the system is indeed sound —that
is, that every property derivable from its rules is actually true with respect to
the model’s semantics. Furthermore, it is difficult to prove the correctness of the
system because the properties and relations have been abstracted from concrete
experiences rather than from formal axioms. In this chapter, the module will be
formulated in PRISM to determine whether it is sound or not. In parallel,the nature
of the relationships among the various entities will be analyzed, with particular
attention to their interaction across the physical, cyber, and human domains. This
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study will not only highlight the possible ambiguities arising from the informal
interpretation of the relations but will also provide insights for a future semantic
formalization.

4.2 Analysis of Relationships between Entities

This paragraph aims to delve into the limitations of the threat model presented in
[1], focusing in particular on the analysis of the nature of the relationships that bind
the various system entities to one another or to potential threats. As mentioned
earlier, the model adopts a syntax based on properties and relationships to express
the operating rules governing its functioning. However, an in-depth analysis of the
correctness of these relationships has not been carried out, and it has not been
defined whether they are indeed valid for all cases that may arise in the application
context in which the model operates.

In particular, the model defines several relationships between entities and possible
threats, which have been abstracted from experience and concrete examples. Among
the main relationships, we extract only the basic ones, i.e., those that will later
form the high-level relationships. The following definitions are adapted from [1]:

• Protect (A, B, T): This relationship expresses that entity A protects B from
threat T. For example, a firewall (A) protects a server (B) from cyberattacks
(T ).

• Monitor (A, B, T): This indicates that A monitors B to detect the presence
of threat T. For instance, an IDS system can monitor a server’s network traffic
to identify intrusions.

• Contain (A, B): This specifies that entity A contains B and represents the
structure of the system. For example, a room (A) contains a server (B).

• Control (A, B): This expresses that A controls B, as in the case where an
IT administrator (human) controls access to an IT system.

• Depend (A, B): This represents the functional dependency, meaning that
the proper functioning of A depends on that of B. For example, an application
(A) may depend on the functioning of a server (B).

25



Formal Verification of the Threat Model

• Check (A, B): This indicates that A verifies whether B is functioning
correctly, for example through monitoring systems that detect malfunctions.

• Replicate (A, B): This means that A is a replica of B and is used to ensure
recovery or operational continuity in the event of a failure.

• Spread (A, T): This defines that entity A is capable of propagating threat
T ; for instance, an infected device might spread malware to other network
components.

• Potentially Vulnerable (A, T): This indicates that entity A may be-
come vulnerable to threat T under certain circumstances, for example if it
malfunctions.

The analysis carried out mapped these relationships across the three domains,
physical, cyber and human, evaluating all possible combinations and examining
their interactions. Thus, for a ternary relationship such as Protect(A,B,T), every
combination was evaluated for each element, for instance, (Human, Cyber, Cyber),
(Physical, Physical, Human), (Cyber, Physical, Cyber), etc. Each combination was
assessed to verify whether the relationship with those elements is indeed meaningful
in our model. To do so, a concrete example was sought to demonstrate the logical
sense of the relationship.

The results of the analysis highlighted some critical issues:

1. The relationships, although defined in an intuitive manner (e.g., “Contain”
indicates the composition of the system), result in different interpretations
across the various domains. For example, the “Contain” relationship in the
cyber domain translates into a logical dependency, whereas in the physical
domain it refers to a spatial relationship.

2. In practice, the analysis verified that all the relationships are applicable
independently of the nature of the factors that compose them, meaning that
there is an example that demonstrates their logical application. The only
exception is the "Contain" relationship, which is not applicable to the Human
domain, regardless of the nature of the other end of the relationship. No
example was found that does not lead to a logical and semantic ambiguity.
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From this analysis it is possible to conclude that, although the threat model offers
an intuitive and operationally valid framework for representing the interactions
among entities in the physical, cyber, and human domains, it presents some
ambiguities that must be carefully considered, particularly as evidenced by the
"Contain" relationship.

4.3 Verification Methodology with PRISM

The threat model outlined in “A Hybrid Threat Model for Smart Systems” [1]
describes a set of rules that are used to determine the state of various entities,
actually identifying derived properties. It is possible to distinguish these rules into
Basic Derivation Rules and Specific Derivation Rules. An overview of the
defined rules will first be presented, and then a formal analysis will be addressed
with PRISM.

"Basic derivation rules state that if a property is assumed true, then naturally
it can be derived to be true (Rules 1-3). Furthermore, these rules express the
transitivity of relations such as Replicate and Depend."[1]

αComp(A, T ) → κComp(A, T ) (1)
αVul(A, T ) → κVul(A, T ) (2)
αMalfun(A) → κMalfun(A) (3)
Replicate(A, B) ∧ Replicate(B, C) → Replicate(A, C) (4)
Depend(A, B) ∧ Depend(B, C) → Depend(A, C) (5)

These rules act as basic rules or axioms, establishing that if a property is assumed,it
can also be derived, while formalizing the transitivity of certain relationships. Being
inherently deterministic, they can be excluded in a formal analysis with PRISM,
as their effect is intrinsic to the system and does not influence probabilistic evolution.

Focus is now on the Specific Derivation Rules, which represent the “reasoning
about how threats can compromise different entities and propagate through the
system” [1]. The analysis will be conducted on the rules extracted from [1].
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• Rule 6: A can be compromised by threat T when A is not safe from T and
an entity B, which controls A, can be compromised and spread threat T.

• Rule 7: A can be compromised by threat T when A is not safe from T, and
A is connected to B through C, B can be compromised and spreads T, and
either C can be compromised or C is not protected against T.

• Rule 8: A can be compromised by threat T when A is not safe from T, and
either A contains B or is contained in B,and B can be compromised and spread
T.

• Rule 9: specifies that an entity A, compromised by threat T can malfunction.

• Rule 10: specifies that A can malfunction when A depends on B and B
malfunctions.

• Rule 11: states that when A malfunctions, and A is potentially vulnerable to
threat T, then A can be vulnerable to T.

• Rule 12: states that when A can be compromised by threat T and A is
monitored for threat T by some entity that is not compromised, then T can
be detected for A.

• Rule 13: states that when threat T can be detected for A and A has been
replicated, then A can be restored.

• Rule 14: states that when A can malfunction and is checked then A can be
fixed.

[1] Specific derivation rules are represented formally, as it will be the syntax used
to represent them on PRISM.
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Control(B, A) ∧ κComp(B) ∧ Spread(B, T ) ∧ ¬Safe(A, T )

→ κComp(A, T ) (6)

Connect(C, B, A) ∧ κComp(B) ∧ Spread(B, T ) ∧ ¬Safe(A, T )

∧
!
κComp(C) ∨ ¬Def(C, T )

"
→ κComp(A, T ) (7)!

Contain(B, A) ∨ Contain(A, B)
"

∧ κComp(B) ∧

Spread(B, T ) ∧ ¬Safe(A, T ) → κComp(A, T ) (8)

κComp(A, T ) → κMalfun(A) (9)

Depend(A, B) ∧ κMalfun(B) → κMalfun(A) (10)

κMalfun(A) ∧ PotentiallyVul(A, T ) → κVul(A, T ) (11)

κComp(A, T ) ∧ Mon(A, T ) → κDet(A, T ) (12)

κDet(A, T ) ∧ Rep(A) → κRest(A) (13)

κMalfun(A) ∧ Che(A) → κFix(A) (14)

The model, defined within the formal verification framework, is now presented. As
mentioned in Chapter 2 the DTMC probabilistic model will be used.

First,the form containing the local variables is defined. In this case, they all
represent properties and relationships with their respective initial values, chosen so
as not to trigger any rules.

Listing 4.1: PRISM Module Variables
1 compromisedA : bool init false;
2 compromisedB : bool init false;
3 compromisedC : bool init false;
4 controlBA : bool init false;
5 spreadBT : bool init false;
6 safeA : bool init true;
7 defC : bool init true;
8 malfunctionA : bool init false;
9 malfunctionB : bool init false;

10 vulnerableA : bool init false;
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11 restoredA : bool init false;
12 dependentAB : bool init false;
13 detectedA : bool init false;
14 monitoredA : bool init false;
15 replicaA : bool init false;
16 checkA : bool init false;
17 connectCBA : bool init false;
18 protectC : bool init true;
19 containBA : bool init false;
20 potentiallyVulA : bool init false;

Once the local variables are represented, the actions that will change their states
are defined; then, referring back to the formal rule writing seen earlier, the actions
that are needed to activate each rule are represented. Let’s consider at an example
for rule 6:

Listing 4.2: PRISM role 6
1 [ compromiseB ] ! compromisedB -> 1 : ( compromisedB ’ = true);
2 [ controlBA ] ! controlBA -> 1 : (controlBA ’ = true);
3 [ spreadBT ] ! spreadBT -> 1 : (spreadBT ’ = true);
4 [ loseSafety ] safeA -> 1 : (safeA ’ = false);
5 [ compromiseA_rule6 ] compromisedB & controlBA & spreadBT &

!safeA -> 1 : ( compromisedA ’ = true) & (restoredA ’ =
false);

As seen above, when the condition specified by the guard is met, the action
is performed, leading to the state change of the variables specified to the right
of the action. It is intended to emphasize that the execution of PRISM is not
sequential like that of a typical imperative program, but during model checking,
PRISM explores the entire state space in a systematic way, to evaluate the various
properties specified. Thus, in this example, all variables that are part of rule 6
have been explicated consecutively just to improve readability and understanding
of the module.

In addition, each rules will also have an associated reset action to return some
variables, used temporarily for rule activation, to their default value once the
rule has been executed, maintaining state consistency and preventing undesirable
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behavior due to flags that persist beyond their initial purpose. An example is as
follows :

Listing 4.3: PRISM reset role 6
1 [ resetRule6 ] compromisedA & ( compromisedB | controlBA |

spreadBT | !safeA) -> 1 : (controlBA ’ = false);

After defining all the rules with the corresponding reset actions, the module
is concluded by introducing the introduction of the formula, an operator made
available by the model checker that avoid duplicate code. To define it, a label
followed by an expression is written after the keyword formula, ensuring a more
compact notation for properties. An example is the following:

Listing 4.4: PRISM formula role 6
1 formula role6 = compromisedB & controlBA & spreadBT &

!safeA;

In this way, a formula is defined for all the rules presented so far.

4.4 Results and Discussion of the Validation

After the creation of the model, the properties of interest for formal verification
must be defined.
First, it was verified that each rule is activated without creating a logical conflict
with other rules. To achieve this, the model must verify that each rule, once
activated during a transition, consistently returns (P >= 1) the expected result
at the next transition. The properties script is as follows :

Listing 4.5: PRISM properties
1 P >=1 [ F ( role6 & (X compromisedA ))]
2

3 P >=1 [ F ( role7 & (X compromisedA ))]
4

5 P >=1 [ F ( role8 & (X compromisedA ))]
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6

7 P >=1 [ F ( role9 & (X malfunctionA ))]
8

9 P >=1 [ F ( role10 & (X malfunctionA ))]
10

11 P >=1 [ F ( role11 & (X vulnerableA ))]
12

13 P >=1 [ F ( role12 & ( X detectedA ))]
14

15 P >=1 [ F ( role13 & (X restoredA & ! compromisedA ))]
16

17 P >=1 [ F ( role14 & (X fixedA & ! compromisedA ))]

The F operator is used to verify that the content of the parentheses is validated
at a certain time frame. In the PRISM language, F means ’eventually’ and returns
true, if at any transition, the content of its parentheses is true. For each rule,
verification is performed to ensure that its conditions are eventually checked without
interference from other rules. To simplify notation, the previously defined ’formula’
is applied. In addition to verifying their activation, it is necessary to check that
the result is correct. To achieve this, the AND operator is used. Furthermore, to
ensure that the result is recognized by the system at the next transition, the X
operator, known as ’next’, is applied. This operator returns true if the result is
visible in the subsequent state.
For rules 13 and 14, in addition to verifying the outcome of the actions, verification
confirmed that the implication of the rules is satisfied, meaning that a restored or
fixed entity cannot be compromised again. This ensures the liveness of the system
and its resilience.

To better verify the resilience of the model and ensure that it does not become
locked in a given state, it was defined an even more thorough property. This
property ensures that whenever “compromisedA” becomes true, it eventually (F)
succeeds to restore the entity and at the next state it must not be compromised
again. Here, the operator G (Globally) is introduced which is only valid if its
condition is valid for all states along the model path. This is the properties:
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1 P >=1 [ G ( compromisedA => (F restoredA & (X
! compromisedA )) ) ]

In addition, it is necessary to verify that the system can deal with multiple cycles
of compromise and restoration, ensuring that there is a nonzero probability that, if
the system is compromised, it can be restored to be compromised again.

1 P>0 [ F ( compromisedA & (F ( restoredA & (F compromisedA ))
)) ]

However, at the same time is also essential to verify that an entity can pass
from a compromised state to a restored one, without immediately return to being
compromised, so recovering and maintaining its safe state.

1 P>0 [ ( compromisedA ) => (F ( restoredA & (X ! compromisedA )))

The analysis continues by verifying that an compromised state cannot exist
without the actual presence of the conditions, so at least one of the rules leading
to that state must be verified.

1 P >=1 [ G ( !role6 & !role7 & !role8 & !role9 =>
! compromisedA ) ]

It is also intended to emphasize the "Detect" relationship, going to verify that if
an entity is compromised and also monitored, then the system can reliably detect
the threat in any path state.

1 P >=1 [ G ( compromisedA & monitoredA =>( F detectedA ) ) ]

The formal analysis is concluded by ensuring model consistency, preventing
state variables from remaining activated and allowing the system to return to a
safe state.
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1 P >=1 [ G ( restoredA => ( compromisedA = false) ) ]
2

3 P >=1 [ G ( fixedA => ( malfunctionA = false) ) ]

Once all properties have been verified, it is possible to say that the formal
analysis has shown that the system is robust, consistent, and capable of handling
critical transitions. The model succeeds in ensuring the correct activation of the
rules, without any conflict between them. It also proves to support multiple cycles
of compromise and recovery by not creating deadlocks or loops in the system, and
prevents unwarranted transitions by ensuring that various states are verified when
supported by the correct conditions.

34



Chapter 5

Evolution and Technological
Integration of TAMELESS

5.1 Compatibility with Neo4j

TAMELESS code remained essentially unchanged from the original version; the
modifications that have been made were only necessary to update it to the new
versions of Neo4J, making TAMELESS a tool that is fully usable and up-to-
date. For this reason, the main changes have been made to the file Neo4jDB
located at "TAMELESS/src/it/polito/dp2/TAMELESS/sol/db/Neo4jDB.java",
which acts as an "Orchestrator" between the service layer and the DAO (Data
Access Object), and to the file MyNeo4jClient located at "TAMELESS/sr-
c/it/polito/dp2/TAMELESS/sol/db/MyNeo4jClient.java", which is the DAO itself,
directly handling communication with the database.

The old version of Neo4J managed communication by providing a REST API
to perform CRUD operations. The base endpoint was "http://localhost:7474/db",
and in addition to that, there were other endpoints available for data management.
Among the most common there are:

• /node – used for managing nodes, allowing for read, write, update, and delete
operations.

• /relationships – used for managing relationships between nodes.
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• /schema – used to manage the database schemas, such as uniqueness con-
straints and indexes.

• /transaction – used to handle multiple transactions in a single request. To
use it, the query had to be written using the Cypher language.

For the various endpoints, CRUD operations were carried out using the corre-
sponding HTTP calls (GET, POST, PUT, DELETE). In practice, to perform a
simple operation such as reading a node, a GET request can be directly issue to
the "/node" endpoint, specifying the node’s id. Neo4J would directly handle the
transaction. If a more complex operation is required, it is necessary to manually
open a transaction by making a request to the "/transaction" endpoint to make
the operation atomic. In such cases, managing rollbacks for errors or failures
is also necessary. Furthermore, the old version of Neo4J did not manage node
authentication, a mechanism that makes communication with the DB more secure
by ensuring that only authorized users can perform operations on the database.

The new versions of Neo4J, from 4.x onward, have brought several improvements.
The first among these is the implementation of authentication to connect to the
database. This is carried out through the register function of the Client object,
which performs Basic Authentication provided by the HTTP protocol. Therefore,
the HTTP request will include an "Authorization" header whose value is the
"credentials", that is, the combination of the username and password separated by
a ":" and encoded in Base64.

1 client . register (( ClientRequestFilter ) requestContext -> {
2 String credentials = "neo4j: tameless ";
3 String encodedCredentials =
4 Base64 . getEncoder ().
5 encodeToString ( credentials . getBytes ());
6 requestContext . getHeaders ().add(" Authorization ", "Basic

" + encodedCredentials );
7 });

In addition, communication still takes place through HTTP requests, but the
base path of the endpoint has been changed to "http://localhost:7474/db/neo4j",
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and all the other endpoints have been removed and replaced by the new endpoint:
"/tx/commit". This change still allows a Cypher query to be executed in an
atomic transaction, autonomously handling commit and rollback, and improving
the efficiency of the database, albeit at the cost of making the code a bit more
complex.

Thus, in the file "MyNeo4JClient.java" all the modifications described above
have been applied, leading to changes in several functions to make the system
compatible with the new versions. An example of a change is as follows, moving
from this version:

1 Response response = target .path("node").path(id. toString ())
2 . request ()
3 . delete ();

to this one:

1 String query = "MATCH (n) WHERE id(n) = " + id. longValue () +
2 " DETACH DELETE n";
3

4 CypherRequest request = new CypherRequest ();
5 Statements stat = new Statements ();
6 stat. setStatement (query);
7 stat. getResultDataContents ().add("REST");
8 request . getStatements ().add(stat);
9

10 CypherResponse response = target .path("tx").path(" commit ")
11 . request ( MediaType . APPLICATION_JSON_TYPE )
12 .post( Entity .json( request ),CypherResponse .class);

Regarding the file "Neo4JDB.java", small modifications have been applied to
some functions to better adapt them to the changes made in the underlying layer.
Finally, one last modification was made to TAMELESS: a new endpoint
"http://localhost:8080/TAMELESS/rest/system/all" has been added. Through
a DELETE call is possible to remove all nodes and relationships present in the
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graph by leveraging the delete functions already present in the system. This change
was added to automate analyses through the GUI, allowing the system to switch
automatically from one example to another.

5.2 Development of the GUI

To use TAMELESS and perform a threat analysis, it is required to use the APIs
provided by the tool. This facilitates the integration with with other systems, but
at the same time it does not make it easily accessible and usable by most users,
especially because the results are currently returned in JSON format, leading to a
not intuitive interpretation. For these reasons, it was decided to integrate a GUI
into the system: a fairly simple but effective interface that allows for the easy input
of the graph to be analyzed and the clear visualization of the results.

To build the interface, the React framework[19] was used, which simplifies
the development of components and data management. To improve the visual
appearance, Tailwind CSS[20] was employed, a framework that facilitates the rapid
and intuitive construction of functional graphical interfaces.

The main components of the graphical interface are two: GraphEditor.jsx,
which allows the insertion of the graph, the security properties, and the initiation
of the analysis; and GraphResults.jsx, which enables the visualization of the
results, with the option to view only those obtained through formal analysis or to
integrate them with those obtained from LLaMA.

Regarding GraphEditor.jsx, a section divided into three parts has been
included:

1. A form for inserting nodes that features a box to type the node’s label and a
select for the type (Human, Cyber, Physical);

2. A second form for inserting edges where it is possible to select, among the
nodes present in the graph, the source node and the target node;

3. A box for loading the test cases to simplify the testing process. The data
representing the attacks discussed in Chapter 3 are loaded through an ap-
propriate function (loadData.js), allowing the immediate visualization of the
graph (Figure 5.1).
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Figure 5.1: GraphEditor’s form.

The graph visualization was performed using the Cytoscape[21] library, which
allows transforming data into an interactive graphical representation, dynamically
arranging the nodes and providing the possibility to automatically rearrange them
using the “Rearrange Graph” button (Figure 5.2).

Figure 5.2: Cryptoscape graph visualization (Ukrainian Power Grid).

39



Evolution and Technological Integration of TAMELESS

The graph presented here represents the Cyberattack on the Ukrainian
Power Grid discussed previously. The blue nodes represent the system’s entities;
the edges represent the relationships, denoted by a label; and the security properties
are represented by the red nodes. The nodes representing the threats have been
intentionally excluded, as it was preferred to simplify the interface in this initial
phase.

To add or modify a relationship, simply click on the corresponding edge. Once
done, a form will open allowing the selection of the desired relationship to add and
specify either the threat or a third node, based on the selected type of relationship
(Figure 5.3). If, instead, the user wants to add or modify the properties of a node,
simply click on it; a second form will open that allowing the view of the various
properties already present and to delete or add new ones. From the same form,
it is also possible to delete the node or save the newly added relationship; in this
case, a new node will appear in the graph visualization (Figure 5.4).

Figure 5.3: Graph relation form Figure 5.4: Security Properties form
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Once the graph is defined, the analysis is started by clicking the “Start Analysis”
button. Here, the data will be sent to the orchestrator (graph_processor.py), whose
functioning will be presented in the next chapter, and a status bar will appear
that informs the user of the analysis progress. This is done using the polling
technique: every 5 seconds, the component calls the “/get_results” endpoint of
the orchestrator to obtain information on the analysis progress. This mainly refers
to the analysis performed with the LLM, as it is the most resource-intensive and
time consuming; therefore, information on the overall system completion percentage
and progress details for a specific node will be displayed.

Figure 5.5: Analysis Status bar.

Once the analysis is completed, by clicking the “Show Results” button the sec-
ond component GraphResults.jsx will be invoked. It will contact the /get_results
endpoint of the orchestrator, which will return the data containing the results of
both analyses performed in parallel. Initially, only the results obtained from the
formal analysis will be displayed, showing all the system nodes and the respective
threats declared in the properties earlier. Furthermore, each node has a security
status represented by a color, and a legend is provided to associate each color with
its meaning.
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Figure 5.6: Ukrainian Power Grid TAMELESS results.

Below this screen, there is another button that allows the visualization of the
results obtained with ATT&CK. Once pressed, the graph will change; in fact, it
will be filtered to contain all the entities present in both sets of results, thereby
reducing the “noise” caused by the other nodes and highlighting the main attack
path. However, it is always possible to return to the main view to obtain a complete
picture of the entities present in the system. Additionally, some metrics are reported
that might be of interest to the end user and that emphasize the contribution of
the model. The main metrics chosen are three:

1. Graph reduction obtained when merging the results;

2. The number of nodes added by ATT&CK, which have been associated with a
threat but were not identified by the formal analysis;
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3. The names of these entities, allowing for immediate identification and verifica-
tion.

Figure 5.7: Ukrainian Power Grid Combined Results.

Furthermore, it is possible to click on each node to view the tactics and techniques
identified by the LLM. As shown in Figure 5.8, several pieces of information are
provided:

• The probability that the node is compromised.

• The technique along with its corresponding ID.

• The probability related to the exploit of that specific technique, combining
the information from MITRE with that from TAMELESS.

• A description taken from the MITRE dataset.
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• The reason provided by the model to justify the exploitability of the technique
on that node.

• Detection techniques recommended by ATT&CK to best identify the threat.

• A direct link to the MITRE website, to have a complete overview of the
identified technique.

• A list of all possible mitigations to be implemented.

This data is provided to give the user a complete overview, showing not only
the possible threats that can affect the node, but also various countermeasures,
allowing for the best possible defense of the system. The calculation of metrics,
such as probability and risk, will be discussed in more detail in the next chapter.

Figure 5.8: LLaMA example results .
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Chapter 6

LLM-Enhanced Threat
Analysis

In this chapter, the main modification made to TAMELESS is addressed, namely
the change in the flow concerning the threat analysis process, introducing a parallel
process executed with LLaMA that will identify possible threats for each entity in
the system. Therefore, the new architecture, the integration with the results of
TAMELESS, and an analysis of the probability and risk metrics that have been
added will be presented.

6.1 MITRE ATT&CK via LLAMA 3.1 with RAG

During the study regarding the rules of TAMELESS and the verification of their
applicability to the identified case studies, an important feature of the tool emerged,
namely its generality. TAMELESS is capable of representing many scenarios,
adapting well to various situations and examples, successfully identifying the
security states of different entities. Given this characteristic, the work was extended
to provide additional information, enabling the user not only to determine whether
a node may be compromised but also identify the actual threats that could endanger
the node.

For this reason, it was decided to extract data on the most common threats
from a dataset, and after research, the ideal candidate for the analysis scenarios of
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TAMELESS turned out to be MITRE ATT&CK. Once the framework for extracting
threats was identified, it was necessary to determine a technique that would allow
to retrieve these vulnerabilities based on the node being analyzed. Additionally,
it was crucial that this threat could be exploited considering the entire system in
which the node is embedded.

As a result, an LLM was selected for this task, enabling it to "reason" about the
node: first by identifying possible threats and then, in a second phase (using another
prompt), validating them based on the entire system and the node’s connections.

The structure of the new workflow is presented here:

Figure 6.1: TAMELESS plus LLaMA workflow.
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The Security Architect, through the use of the GUI, inputs the data representing
the system to be analyzed, including the relationships and properties of the various
entities. Once the analysis begins, the graph is sent to an orchestrator, which,
after obtaining the data, initiates two parallel analyses. First, it forwards the
graph information to TAMELESS, which conducts its analysis as it did previously.
Subsequently, the same data is leveraged for an analysis with LLaMA. For each
node contained in the graph, a request is sent to LLaMA to identify possible threats.
Before the request reaches the model, it is enriched via RAG with information
about threats contained in the dataset.

Once the list containing the MITRE tactics and techniques is obtained, it is
iterated to send each individual threat to a second endpoint of the LLaMA module,
which this time will validate it considering the entire system.

When both the TAMELESS analysis and the LLaMA analysis are completed,
the results are sent directly to the GUI, which performs a merge, allowing users to
view the formal result from TAMELESS or a smaller graph containing only the
unified results from both analyses.

This provides an overview of how the new analysis process functions; now, the
operation of the various components will be presented in more detail.

The user enters the data to form the graph, generating a JSON file containing:

1. The list of nodes with their respective id, label, and type;

2. all the edges of the graph, which indicate the source and target node, the name
of the relationship, and the category that specifies the type of relationship;

3. a second object called analysisData containing the key data for the two
analysis processes:

• SecurityProperties, which indicate the information that defines a prop-
erty of an entity.

• Relations, a list containing all the relationships between entities and
threats defined in the TAMELESS format.
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1 {
2 "nodes": [
3 {
4 "id": " attacker ",
5 "label": " attacker ",
6 "type": "human"
7 },
8 ...
9 ],

10 "edges": [
11 {
12 " source ": " mail_server ",
13 " target ": " attacker ",
14 " relation ": " connect ",
15 " category ": " Relation3Entities "
16 },
17 ...
18 ],
19 " analysisData ": {
20 " securityProperties ": [
21 {
22 " nodeId ": " attacker ",
23 " property ": " compromised ",
24 " threat ": " maliciosPourpose "
25 },
26 ...
27 ],
28 " relations ": [
29 {
30 " source ": " mail_server ",
31 " target ": " attacker ",
32 " relation ": " connect ",
33 " thirdNode ": " operators ",
34 " threat ": null ,
35 " category ": " Relation3Entities "
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36 },
37 ...
38 ] } }

These data are sent to the dispatcher called "graph_processor.py", a Flask server
that exposes three endpoints:

• /process_graph handles receiving the data and starting the parallel analysis;
it splits the data to perform the analysis with TAMELESS and opens a thread
to perform the analysis with the LLM.

• /progress is contacted by the frontend via polling to update the loading bar.

• /get_results returns a JSON object containing the results of the two analyses.

6.1.1 TAMELESS analysis

The analysis with TAMELESS is managed by two components: tameless_analysis.
py and tameless_handler.py.

Both provide a class, respectively TamelessAnalysis and TamelessHandler.
The first one creates a TamelessHandler object and defines methods to analyze
the data structure mentioned earlier and to create a cache. This will be an element
that contains all the information from the TAMELESS analysis, i.e., all the entities,
threats, properties, and relations with their respective IDs from the Neo4J database,
and, at the end of the analysis, also the results. This was done because TAMELESS
returns a URI to be recalled to obtain detailed information about the various nodes,
as well as the IDs of the elements involved in the result, typically the ID of one or
more entities and the ID of the involved threat. To avoid an additional GET call,
it was preferred to save the data locally so as to have a direct association between
IDs and the various information of the node.

The TamelessHandler object, on the other hand, provides a series of methods
that enable communication with the tool’s API; so by creating XML objects, it
allows for the insertion of entities, threats, properties, and relations. Naturally, it
also allows requesting the computation of the results, which, as mentioned, will
then be saved in the cache.
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6.1.2 LLaMA analysis

Figure 6.2: LLaMA flow diagram.

The analysis with LLaMA involves the same graph_processor.py and the module
llama_vulnerability_analyzer.py, which is responsible for loading the model and
defining the prompts, another Flask server that exposes two endpoints: "/identify"
and "/validate". The model is downloaded using the HuggingFace library [22],
which allows loading the model into memory without saving it locally. Despite
this, to make the process lighter and avoid saturating computational resources, a
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4-bit quantization of the model has been added, using the BitsAndBytesConfig
library. In this way, the model’s weights are represented in 4 bits, instead of the
usual 16 or 32 bits. However, this entails a loss of accuracy in the representation of
the model’s weights, which is nevertheless minimized through specific algorithms.

To enable a parallel analysis, and because LLM execution takes too long to keep
an HTTP connection open, its execution has been entrusted to a separate thread
that carries out the operation. The thread runs a function that, by extracting the
data from the JSON, recreates a graph structure using the networkx library. Once
the graph is defined, it iterates through it to process each individual node. For every
node, a second function is called to define a partial context,– a string describing
all the elements of the system including the relationships and security properties
related to that specific node. Additionally, a rag_context is generated, which
contains only all the properties of that node. Then the node information, together
with the partial context, is sent to the "/identify" endpoint which, once it receives
the data, first checks whether the FAISS Index has been created or not. If the index
is not present, it extracts the data from the ATT&CK dataset using the Sentence
Transformer library, specifically the model all-MiniLM-L6-v2 [23]. It then performs
data embedding, by taking strings (tactics, techniques, descriptions, and MITRE
ATT&CK IDs) and transforming them into a series of numberical vector, which
represents the semantic features of the text. This allows comparing the meaning of
the texts mathematically and performing semantic searches, finding related content.

Once the index is created, the langchain library allows creating an object called
"retriever" that, given a query as input, uses the FAISS index to retrieve the most
relevant information or documents. The query received by the retriever is as follows:

1 query = f"""
2 Node Name: { node_name }
3 Node Type: { node_type }
4 Context :{ rag_context }
5 """
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Using this information, the retriever selects a number of documents that are
returned to the function and added as Context to the model’s prompt. At this
point, all the node information, the system context, and the rag context are passed
to LLaMA.

The prompt, which can be found in Appendix A.1, is structured as follows. In
addition, several prompt engineering techniques are applied:

1. Through the Role-playing technique [24], the model is asked to take on the
role of a “cybersecurity expert,” specifying its main goal, so that the responses
are generated in a specific professional context.

2. Detailed contextual information, relevant to the task, is provided, ensuring
that the model has the necessary data to produce pertinent answers.

3. The task is made explicit, but through the “Chain-of-Thought Prompting”
technique [25], it is broken down into smaller, more manageable steps, guiding
the model through detailed instructions.

4. Based on the supplied of the node type, the model gets a set of conditional
instructions that are provided. These are meant to guide it in finding the
most suitable methods based on the node being analyzed, by providing the
explanations and examples.

5. The model is forced to generate a specific output format, through Output
formatting [26]. In this case, a strict JSON format is requested, and an
example is provided to ensure consistency and ease of response processing.

6. Finally, specific constraints for output generation have been inserted, helping
the model maintain a focused and relevant answer.

The model will return a raw response that includes the entire prompt and then
its answer, which will be a JSON containing the following fields:
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1 {
2 " response ": [
3 {{
4 " Tactic ": {{ tactic }},
5 " Technique ": {{ technique }} - {{ MITRE ID}},
6 " Description ": {{ Official MITRE Description }}
7 }},
8 ...
9 ]

10 }

The response will contain the entire prompt; for this reason, a flag like "«<END
PROMPT»>" has been introduced at the end, which is used to manipulate the
text through regex and obtain the list of threats. This list is iterated, and for each
threat, a string containing all the nodes in the system, all the relationships, and
the properties of the various nodes is sent to the second "/validate" endpoint, along
with the system context.

This information will be included in the second prompt,which can be found in
Appendix A.2, which, similarly to the other one, is structured as follows:

1. Again, through the Role-playing technique[24], the model is asked to assume
the role of a “cybersecurity expert,” specifying its main goal, namely to verify
whether that particular threat is applicable to that node.

2. Detailed contextual information relevant to the task is provided, including
information about the node, the threat to be analyzed, and the system context.
In this way, the model has the necessary information to generate pertinent
answers.

3. The task is again subdivided into various sections such as “Understanding
the System Graph Relationships,” “Node Type Vulnerability Guidelines,”
and “Target Node Focus and Validation Rules.” This gives the model clear
instructions on how to approach the assigned task. This structured breakdown
of the problem enhances the model’s ability to follow step-by-step logical
reasoning, aligning with the Chain-of-Thought Prompting approach [25]
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4. Through Ontology Definition, the interpretation of the relationships found in
the system is made explicit to the model, giving it the information needed
to understand the system’s structure and behavior, and to evaluate possible
indirect attack paths. Ontologies help structure knowledge into hierarchical
and non-hierarchical relationships, which can be learned and inferred by Large
Language Models [27].

5. Several conditional instructions are given to the model depending on the
node type, which provides explanations and examples to guide the model in
determining whether the threat actually exists for the node under the analysis
or not.

6. The model is forced to generate a specific output format, through Output
formatting [26]. A strict JSON format is again requested, and an example is
provided, to ensure ease of response processing.

The response requested from the model is as follows:

1 {
2 " response ": {{
3 " Exploitable ": <Yes/No >,
4 " Reason ": <Brief explanation based on the node ’s

own characteristics , its security properties , and any
direct relationships that enable or prevent exploitation >

5 }}
6 }

Thus, the task is to determine if the threat is exploitable or not and provide a
reasoning element, which was useful for understanding whether the model truly
understood the structure of the system, and it is also a useful tool for the system’s
end user, as it provides information that can be helpful in understanding the origin
of the threat.

This process is carried out for all nodes, in order to have a complete analysis of
the system. As soon as the process is concluded, a JSON file is created with the
results for each node.
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6.2 Merging of the Results: Graph Reduction

After completing the analysis, two separate results are obtained from the two
services in JSON format. The TAMELESS result is saved directly in the cache
previously presented; it contains the information on nodes, threats, properties,
and relations saved in the database and to which TAMELESS referred.The cache
also stores results indicating whether a node can be: compromised, vulnerable,
malfunctioning, restored, detected, or fixed.

1 {
2 ...
3 " results ": {
4 " canBeCompromised ": [
5 {
6 " property_name ": " canBeCompromised ",
7 "self": "http :// localhost :8080/ results /3",
8 " entity_id ": "1",
9 " threat_id ": "2"

10 }
11 ],
12 " canBeVulnerable ":[]
13 ...
14 }
15 }

Concerning the results obtained from the analysis with the LLM, after the
graph_processor has manipulated the prompt results, a JSON containing all the
nodes analyzed is obtained. For each of them,information is provided on the
vulnerability that was identified and analyzed, as well as the model’s response.
Everything is organized in a structure similar to the following:

1 {
2 " node_1 ": [
3 {
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4 " vulnerability ": {
5 " Tactic ": Tactic_name ,
6 " Technique ": Technique_name and MITRE ID ,
7 " Description ": Description taken from ATT&CK
8 },
9 " validation ": {

10 " Exploitable ": Yes or No ,
11 " Reason ": LLM reasoning
12 }
13 },
14 ],
15 }

Once the data is available, the frontend component "GraphResults.jsx", which is
responsible for displaying the results to the user, receives this information extracted
from the input graph (Figure 6.3).

Figure 6.3: Stuxnet Input Graph.
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The filtering of the results occurs through a series of specific steps that transform
the raw data into a more streamlined graphical representation. Initially, a graph is
generated starting from the entities and threats present in the TAMELESS cache
(Figure 6.4); if the entities appear in the results provided by the analysis, a style is
added that visually represents their security status. The edges used to connect the
various nodes are always taken from the cache, utilizing the defined relations.This
provide a visual representation of the graph with the node states obtained from the
formal analysis. If it is decided to display the data together with the results from
LLaMA (Figure 6.5), they are modified to obtain a more defined representation.
A set of entities is built from the results of TAMELESS and those of the LLM.
Subsequently, a new set is created that includes only the entities that appear in at
least one of the two sets, by filtering the edges so that they connect exclusively the
nodes included in this new set. Moreover, the percentage reduction of the graph
is determined by comparing the initial node count with the number of remaining
nodes after filtering, providing a quantitative metric of the process’s effectiveness.
Finally, the number of "added" nodes coming from the LLM analysis is determined,
that is, those that were not present in the original TAMELESS list.

Figure 6.4: Stuxnet TAMELESS Results.
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The final graph (Figure 6.5) obtained in this way will be a simplified representa-
tion of the system, which allows users to concentrate on the critical vulnerabilities
and on the connections that actually represent potential attack points. The filter-
ing that is carried out reduces the "noise" by eliminating superfluous nodes and
highlighting the essential information, which is particularly useful when analyzing
the security of complex systems.

Figure 6.5: Stuxnet Combined results.

6.3 Calculation of the Probability and the Risk

During the visualization of the results, other useful metrics for the end user are
calculated, such as the probability of a node being compromised using only the
data provided by TAMELESS and the probability and risk associated with each
identified ATT&CK technique.

6.3.1 Calculation of the Node’s Probability

To define the probability associated with each node, only internal factors of the
formal analysis have been taken into account, by determining which elements can
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establish the susceptibility of an entity to compromise. It is assumed that if the
formal analysis shows that a node is already compromised, then its probability is
maximal, i.e., 1.

For all other security states, the probability is calculated by defining the following
metrics:

1. Assessing the state of the node (Vuln). If the node is considered
vulnerable, it is more likely to be compromised. It is also assessed whether it is
malfunctioning, as, even if this does not directly lead to the node’s compromise,
it might be unable to activate protection mechanisms. Therefore, a numerical
value of 1 is assigned if the node is vulnerable, 0.6 if the node is malfunctioning,
and 0 if it is in neither state.

2. The number of connected nodes in a compromised state (CompConn) is calcu-
lated. If the node is connected to other compromised nodes (also referring to
Rule 7 of the model), the probability will increase.

3. The number of adjacent nodes that can perform a threat spread (ThreatSpread)
is verified, a factor that significantly contributes to the compromise of the
entity.

4. The number of nodes adjacent to the entity under analysis that control it or
on which it depends is determined. These nodes, if in a compromised state
(RelControl and RelDepend), are considered factors that may increase the risk of
compromise.

5. Finally, the number of nodes that can protect the entity (Protection) are
verified, not considering a specific threat, but taking into account its protective
function. This is regarded as a factor that can lower the probability.

Therefore, the probability will be calulated in this way:

Pcompromise = w1 · Vuln + w2 · CompConn + w3 · Threatspread + w4 · RelControl

+ w5 · RelDepend − w6 · Protection

with
6Ø

n=1
wn ≤ 1.
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6.3.2 Calculation of the Technique’s Probability

Once the risk associated with a single node has been calculated, it was decided
to define a probability metric for each individual technique identified by the LLM
as exploitable. The calculation involves the same factors previously seen but adds
information derived from the technique itself. Indeed, MITRE ATT&CK provides
indirect indications regarding the complexity an attacker faces in executing an
attack. Among the additional factors, is possible to find:

• Permission: The permissions required to execute a certain threat were
analyzed. The higher the required permissions, such as “Administrator”
or “Root”, the lower the probability. Conversely if roles like “User” are
required, the probability will be higher, because it is easier to obtain such
permissions to exploit the vulnerability. The value is extracted from the field
"x_mitre_permissions_required" of the MITRE technique, and a numerical
value was assigned for each: 0.4 if “Root” or “Administrator” privileges are
required, 0.6 for “User” privileges, and 0.8 if no specific privileges are required.

• SystemReq: Another factor considered is the system prerequisites necessary
for the threat, such as specific configurations, active services, etc. A high
number of prerequisites indicates that the technique is more complex, as it
requires the victim to have specific characteristics to be vulnerable to the
attack. The value is extracted from the field "x_mitre_permissions_required"
(as stated in the original text). Here too, a numerical value is assigned based
on the number of required prerequisites: a value of 0.8 if the list is empty, 0.6
if at most 2 are required, and 0.3 for all others.

• killChainScore: The last factor considered indicates the stage of the attack
process to which the technique belongs. Each technique can be associated with
different attack stages, which are identified by the technique’s name. Some
stages are considered more complex and difficult to implement than others.
Among the various stages, three of the most difficult have been chosen:

– Privilege Escalation: Privilege elevation involve exploiting vulnerabili-
ties or misconfigurations to obtain higher-level access, an action that is
difficult to execute given the measures adopted by modern systems.
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– Persistence: Maintaining access over time is challenging because systems
are subject to updates, patches, and continuous monitoring.

– Defense Evasion: Evading defenses and masking activities requires
highly advanced obfuscation techniques.

If the considered technique belongs to one of these three, it is assigned a value
of 0.5; otherwise, it is assigned a value of 0.8.

The final probability is expressed in the following form, combining a topological
and systemic evaluation provided by TAMELESS and an operational evaluation
provided by MITRE ATT&CK:

PTechnique = w1 · Vuln + w2 · CompConn + w3 · Threatspread + w4 · RelControl

+ w5 · RelDepend − w6 · Protection + w7 · Permission + w8 · SystemReq

+ w9 · KillChainScore

with
9Ø

n=1
wn ≤ 1.

6.3.3 Calculation of the Risk

Risk is determined, following the NIST directive, "taking into account the im-
pact that would result from the events and the likelihood of the events
occurring" [28]. It will be associated with each technique.

As the parameter related to the "likelihood of the events occurring", the previ-
ously defined PT echnique is used; therefore, to obtain the risk, the impact must be
calculated.

The impact is determined by taking several factors into account:

1. The importance of the node within the system structure: To determine
this, the relationships of the node within the system are considered. The
number of entities controlled by this node (RelControl), the number of entities
that depend on it (RelDepend), and the number of direct connections with
other nodes (RelConnect) are calculated. All these factors indicate how
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central and important a node is in the system, so its compromise could have
greater effects.

2. Classification of ATT&CK tactics: Each tactic in the dataset is associated
with a tactic based on its purpose, specifically, the phase of the attack in which
it can be placed. Since each technique is associated with an intrinsic meaning,
its impact can be identified. For example, there are more impactful techniques
such as "Impair Process Control" which aims to manipulate or sabotage
the physical processes of an ICS system, or "Inhibit Response Function"
which encompasses techniques that aim to disable or hinder security or incident
response functions. These tactics, if applied, are very impactful, while there are
others such as "Reconnaissance" which aim to gather pre-attack information
and are less directly impactful on the system. A value has been assigned to
each in order to provide a qualitative estimate of the impact.

3. Identification of defensive elements: For the analyzed entity, the number
of nodes that have a direct relation of Protection, Monitor, Check, and Replicate
is determined. These are all relationships that can mitigate the impact by
reducing the risk that the threat is exploited.

The impact is defined as :

Impact = w1 · RelDepend + w2 · RelConnect + w3 · RelControl + w4 · TechniqueImpact

+ w5 · RelProtect − w6 · RelCheck + w7 · RelMonitor + w8 · RelReplicate

Once the impact calculation is outlined, the defined risk can be defined as :

Risk = Impact × PTechnique

In this way, the risk would not be delineated between two extremes and thus
difficult to understand and compare. For this reason, it was decided to limit it
between 1 and 5, and to do this, a sigmoid transformation was used, which maps
a real input into a limited range, usually between 0 and 1. To obtain extremes
between 1 and 5 the following formula was used:

Risk = 1 + 4 ×
3

x

x + 1

4
Where x = Impact × PTechnique.
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• If x = 0 if the product is zero, then

x

x + 1 = 0,

and the risk is
risk = 1.

• If x tends to infinity, then
x

x + 1 → 1,

and therefore the risk tends to

1 + 4 = 5.

The validation of these formulas was done using case study examples from the
research conducted. An example in which the method Spearphishing Attachment
T1566.001 for the entity Operator in the scenario Cyberattack on the Ukrainian
Power Grid reached the value of 2.621 on the previously defined risk scale can be
seen in Figure 5.8. This denotes a risk factor that is slightly above the average;
thus, it is an important threat vector but not to the extent of being a critical
one, as it only gives system access instead of being the main tactic that caused
substation sabotage.
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7.1 Tests and Results

In this section, the results obtained from the tests performed on the case studies
presented in Chapter 3 are shown. First, the context and its components will be
introduced, along with the system’s input graph. Furthermore, the results from
the formal analysis will be presented, detailing the attack paths and any critical
issues. Finally, the outcomes achieved with the combination of TAMELESS and
LLaMA will be showed, including the reduced graph, followed by an overview of
the most relevant techniques identified for each node.

7.1.1 Water Supply System Hack

Context and Initial Input

As described in Chapter 3, the water supply system hack is an attack that exploits
a human vulnerability, in this case, a phishing campaign, that led to the tampering
of the component regulating the chemical agents in the water, ultimately poisoning
it and making it dangerous for human consumption. This example was reported
and tested in the new system; its representation was produced by placing oneself in
the role of a Security Architect who attempts to verify the system without having
full knowledge of all the possible attack details, but making general assumptions.
By taking the system information from the attack report, the resulting graph is as
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follows:

Figure 7.1: Water Supply input graph.

The relationships have been determined based on the described structure (Fig-
ure 7.1), while the security properties have been defined according to general
assumptions, specifically:

• Attacker (Human): Compromised by MaliciousPourpose and enables the
Spread of the PhishingAttack threat.

• Operator (Human): is assumed to be Vulnerable to PhishingAttack given
their human nature, and allows the Spread of Manipulation since they control
the SCADA via the Remote Access Tool.

• SCADA (Physical): is found to be Vulnerable to Manipulation because it
is controlled by the Operator.
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• Chemical Adjustment Unit (Physical): is Potentially Vulnerable to
Manipulation, since the SCADA sends commands without real protection.

The Attacker must always be considered as Compromised because it is an intrinsic
constraint of the model. An entity that is used to compromise another must itself
be considered inherently compromised; therefore, the solution is to assume the
attacker as compromised, in the sense of its "willingness" to attack the system.

TAMELESS Results

Figure 7.2: Water Supply TAMELESS Results.

From the results of the formal analysis (Figure 7.2), it is possible to observe an attack
path where the entities Attacker, Operator, and Scada System are Compromised.
The Chemical Adjustment Unit is Malfunctioning, indicating that its operation
has been compromised, leading to the tampering of the chemical components.
Therefore, from this information, an attack path is identified that is compatible
with the original one, although no additional information is provided. For this
reason, the results of TAMELESS are combined with those obtained from the LLM.
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Combined Results with LLaMA

Figure 7.3: Water Supply Combined Results.

By displaying and merging the results from the LLaMA analysis (Figure 7.3), it
is possible to immediately notice a reduction of the graph, specifically by 22.22%,
and the addition of some nodes that were not previously identified by the formal
analysis, such as firewall, mail server, and remote access tool. In addition to defining
these metrics, the combination of the results aims to provide additional information
regarding the compromise and protection of the various entities. Among the most
relevant, the following stand out in particular:

• Attacker and Operator: Spearphishing Attachment (T1566.001) and
Spearphishing Link (T1566.002) are both techniques applicable to human
nodes, which presumably represent the method used to carry out the attack.
While it is entirely appropriate to highlight these techniques for the Operator,
the same is not exactly true for the Attacker, since they do not incur an attack
in this context; however, these techniques assigned to the Attacker may be
useful if considered as possible ways the attacker could use to threaten the
system.
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• Mail Server: all techniques related to an email server used for phishing
campaigns are identified, such as Spearphishing Attachment and Link, Remote
Email Collection (T1114.002), and Email Collection (T1114).

• Remote Access Tool: both variants of Spearphishing (T1566.001 and
T1566.002), as well as those related to Remote Services (T1210) and Process
Injection (T1055) are appropriate, because the remote access tool is a software
component vulnerable to these specific exploits and effectively acts as a bridge
between the Operator and the SCADA system.

• SCADA System: the Remote Service (T1210) technique is correctly identi-
fied, in line with the expected attack vector.

• Chemical Adjustment Unit: the techniques highlighted are Remote Services
(T1210) and Process Injection (T1055). The former highlights the remote
control by the SCADA, while the latter indicates the injection of possible
malicious commands.

7.1.2 Flicker Frequency Attack

Context and Initial Input

This attack demonstrates how smart system devices, if used with malicious intent
and not properly protected, can directly compromise people’s safety. In this
scenario, the attacker, having access to the LAN in which both the controller and
the smart light bulb are present, is able to send commands to the controller through
unprotected APIs. This operation allows the modification of the PWD duty cycle,
triggering epileptic seizures in predisposed individuals.
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Figure 7.4: Flicker Frequency Attack input graph.

The relationships between the nodes were taken from the attack description [17]
and are visible in Figure 7.4. Regarding the security properties, the following have
been defined:

• Attacker (Human): It is considered Compromised due to MaliciousIntent,
which expresses the desire to attack the system. It is also considered an entity
that performs the Spread of UnauthorizedAccess, since the goal is to access
the APIs without authentication.

• API (Cyber): It is classified as Vulnerable to UnauthorizedAccess because
it is not protected by any authentication mechanism and allows the sending
of commands, thereby facilitating the Spread of RemoteManipulation.

• LED Controller (Cyber): It is considered Vulnerable to RemoteManip-
ulation because it receives commands from the API. Furthermore, it is the
component that sends signals to the LED bulb.
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• LED Bulb (Physical): This represents the smart light bulb used in the
example. It modulates its light based on the commands sent by the controller.

• LAN (Cyber): This represents the internal network to which all elements of
the system are connected.

TAMELESS Results

Figure 7.5: Flicker Frequency Attack TAMELESS Results.

A well-defined attack path arises from the results of the formal analysis. Specifically,
the attacker succeeds in compromising the API, which, by managing the Controller,
leads to its compromise. Since the LED bulb depends on an already compromised
node, becoming malfunctioning ultimately leads to the success of the attack. Again,
the TAMELESS results allow for correct identification of the attacked components
and reconstruction of the attack path. However, as in the previous case, detailed
information on the exact mechanism that led to the compromise is lacking.
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Combined Results with LLaMA

Figure 7.6: Flicker Frequency Attack Combined Results.

In this case, the metrics indicate that there is no reduction of the original graph;
rather, the only difference is that the node "discarded" by the formal analysis is
added to the new graph. This is due to the specificity of the attack, which was
developed for a laboratory study. Consequently, the graph is relatively small and
represents exclusively the components involved.

Analyzing the techniques identified by LLaMA, it is possible to identify among
the most relevant ones:

• API: The technique Exploit Public-Facing Application (T1190) is identified
because the API node is exposed and menages the Led Controller node,
representing an entry point for the attack; additionally, Execution through
API (T0871) is detected, which describes the use of APIs to execute malicious
code.

• LED Controller and LAN: For both nodes, a single applicable technique is
identified, namely Exploit Public-Facing Application T1190. This technique is
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pertinent since both interact with the API node, which is externally exposed
and therefore vulnerable.

The identified techniques provide a comprehensive overview of how the attack
unfolded; however, given its specificity, the reconstruction is not entirely complete.

7.1.3 Cyberattack on the Ukrainian Power Grid

Context and Initial Input

The cyberattack on the Ukrainian power grid is an extremely complex attack that
unfolded in several phases: (I) the main attack on the substations, which caused a
power outage and a complete blackout; (II) the attack on the UPS systems, which
prevented the immediate restoration of power; (III) the attack on the call center,
which hindered communication with customers, making a timely intervention
difficult. To represent this case, a general approach was chosen, without delving
into the specific details of the attack, in order to verify whether TAMELESS was
capable of identifying the various phases and whether integrating TAMELESS
analysis provided a concrete improvement to the overall analysis.

Figure 5.2 shows the initial input graph. The security properties considered are:

• Attacker (Human): It was assumed to be Compromised due to Malicious-
Intent, indicating a willingness to attack the system. It is also considered an
entity that performs the Spread of a PhishingAttack to gain access.

• Operators (Human): They have been classified as Vulnerable to Phishin-
gAttack due to their human nature and, by interfacing with the SCADA
system, they facilitate the Spread of RemoteManipulation.

• SCADA System (Physical): It is Vulnerable to the RemoteManipulation
threat since it is controlled by the operators.

• Mail Server (Cyber): Although it does not have dynamic properties as-
signed, it plays a role in connecting the attacker to the system.

• VPN Access (Cyber): This cyber node represents the access point through
a virtual private network, which connects the operator to the SCADA system.
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• Uninterruptible Power Supply (Physical): This is a critical physical
component for ensuring operational continuity in the event of a power outage.

• Substation (Physical): This represents the transformation station, a key
nodal point in the energy distribution network.

• Power Grid (Physical): This physical node represents the entire electrical
infrastructure, acting as a link between the substation and the end users.

• Telephone Line (Physical): This entity is used to connect the call center
to the attacker and to the residential users.

• Call Center (Physical) and Call Center System (Cyber): The physical
node Call Center and its corresponding cyber counterpart, Call Center
System, represent the communication and support system.

This comprehensive representation, which integrates both the nodes with specific
security properties and supporting nodes, offers a detailed view of the system’s
structure and the possible attack vectors, providing a valid starting point for the
overall security analysis.

TAMELESS Results

Figure 5.6 shows the results of the formal analysis conducted with TAMELESS.
The graph indicates that the nodes Attacker, Operators, and SCADA System
are in a compromised security state, while the Substation is malfunctioning,
confirming the success of the attack. The main attack path, which starts at the
attacker and ends at the substation, is correctly identified; however, without further
specific information, the other attacks cannot be fully detected.

Combined Results with LLaMA

With the filtering performed by incorporating the results obtained from LLaMA
analysis (Figure 5.7), the attack path becomes clearer and simplified. In particular,
a total graph reduction of 33.33% is observed and four nodes have been added
compared to the formal analysis, namely Call Center System, Mail Server,
Uninterruptible Power Supply, and VPN Access. The nodes related to
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parallel attacks are thus identified with greater precision, providing further guidance
to the security architect during system analysis.

Observing the identified techniques, the following emerge:

• Mail Server: Techniques such as Spearphishing Attachment (T1566.001)
and Spearphishing Link (T1566.002) are identified, reflecting the initial at-
tack vector; moreover, execution techniques such as Command and Scripting
Interpreter (T1059.001) and Process Injection (T1055) appear plausible for
executing malicious code.

• Operators: Spearphishing techniques (both attachment and link) are detected,
consistent with the human nature of the operators.

• VPN Access: The technique Exploit Public-Facing Application (T1190)
appears applicable, indicating a potential weakness at the entry point.

• SCADA System: The model identifies two techniques, Command and
Scripting Interpreter (T1059.001) and Process Injection (T1055), which are
consistent with the goal of compromising the SCADA system (for instance, to
install the BlackEnergy malware and facilitate lateral movement within the
network).

• Uninterruptible Power Supply: The technique Loss of Protection (T0837)
is reported, deemed appropriate considering the tampering experienced by the
UPS systems.

• Call Center System: Techniques such as Spearphishing Attachment (T1566.001),
Spearphishing Link (T1566.002), Phishing (T1566), and Remote Services
(T1210) are identified; although plausible, they are not entirely consistent
with the actual dynamics of the attack.

The addition of this information provides a more complete view of the attack
dynamics: although the techniques are fairly general, they offer a plausible insight
into the threats that can compromise the security state of the various entities.
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7.1.4 Cyberattack on the Ukrainian Power Grid - Detailed

Context and Initial Input

Figure 7.7: Ukrainian Power Grid - Detailed input graph.

Based on previous results, further information was incorporated into the analysis
to achieve a deeper understanding of the attack. The enhanced input graph
(Figure 7.7) includes additional security properties that more accurately represent
real-world attack scenarios.

The objective is to verify whether the augmented system can recognize previously
occurred attacks while providing a detailed reconstruction of the attack path for
the security architect. This enriched input simulates not only direct compromises,
but also secondary effects that cascade through interconnected nodes, thereby
providing a more comprehensive view of the potential vulnerabilities within the
network.

Compared to the previous example, the following security properties have been
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added:

• Attacker (Human): it is explicitly indicated that the attacker performs the
Spread of the DenialOfService threat.

• Operators(Human): the property Spread of CredentialTheft has been
added. This means that the attackers could compromise operators and steal
VPN credentials to access the network.

• VPN Access: since the access credentials have been leaked, the node is now
considered Vulnerable to CredentialTheft.

• SCADA System (Physical): in addition to being Vulnerable to Remote-
Manipulation, it also allows for Spread of that specific threat, since the
tampering of the SCADA has led the compromise of the UPS.

• Uninterruptible Power Supply (Physical): this node is classified as
Vulnerable to RemoteManipulation due to potential tampering, which could
lead to a shutdown of the power backup systems.

• Call Center System (Cyber): explicitly represented as Vulnerable to
DenialOfService.

TAMELESS Results

From the results of the formal verification (Figure 7.8), it emerges that the entities
Attacker, Operators, Scada System, Call Center System, and Uninter-
ruptible Power Supply are all classified as Compromised. While, the nodes Call
Center and Substation are in a state of Malfunctioning, indicating operational
disruptions. Finally, the VPN Access node is confirmed as Vulnerable, which
aligns with the input assumptions regarding leaked credentials.

The main attack path, which starts from Attacker and ending at Substation,
is correctly identified, demonstrating the model’s capability to trace a direct,
high-impact breach. Futhermore, secondary attack paths that affect the Call
Center System and Uninterruptible Power Supply are also successfully
traced, highlighting the cascading effect of compromised nodes throughout the
network.
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Figure 7.8: Ukrainian Power Grid - Detailed TAMELESS Results.

Combined Results with LLaMA

The combined results (Figure 7.9), obtained by integrating the analysis performed
with the LLM (LLaMA), show an 8.33% reduction of the graph and the addition of
three nodes compared to the formal analysis, those related to Mail Server, Power
Grid and Telephone Line. In particular, the additional techniques detected are:

• Attacker: techniques such as Application Exhaustion Flood (T1499.002),
Spearphishing Attachment (T1193) and Masquerading (T1036.001) that high-
light attack methods compatible with the real case.

• Call center: for the call center node, treated as physical, the technique
System Service Discovery (T1007) has been identified. This technique allows
the attacker to detect active services and map the internal network, providing
essential information to plan further phases of the attack.

• Call Center System: techniques such as Service Stop (T0881) and Denial
of Service (T0837) highlight the operational impact of an attack on the call
center system. The interruption of critical services can compromise the ability
to respond and coordinate, exacerbating the consequences in case of an attack.
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• Operators: techniques such as Phishing (T1566) and Spearphishing Attach-
ment (T1193) have been identified by the model as being used to compromise
access to control systems.

• VPN Access: the technique Exploit Public-Facing Application (T1190)
demonstrates a vulnerability in public-served port expositions that are accom-
panied by the software. This type of security breach could offer a potential
intruder the opportunity to break into the network through poorly protected
interfaces, thus making it possible to move laterally within the infrastructure.

• SCADA System: in addition to the techniques already identified, the
technique Exploitation of Remote Services (T1210) emerges, which allows for
remote access to SCADA systems.

• Uninterruptible Power Supply: the techniques Device Restart/Shutdown
(T0816) and Denial of Service (T1499) are added to indicate the shutdown of
the UPS.

• Power Grid: the technique Loss of Control (T0827) is recognized, namely, it
is a situation in which operators are not able to have control over the grid,
and can cause prolonged outages and potential physical damage to facilities.

The additional informations provided as input lead to a significant improvement in
the final result compared to the previous case, providing a complete view of the
attack and demonstrating that the integrated system with LLaMA analysis allows
the operator to reconstruct in detail an attack that was suffered. Furthermore, by
following these indications for mitigation and detection, the integrated system not
only allows the reconstruction of the entire attack path, but also provides practical
guidance to prevent similar incidents from recurring.
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Figure 7.9: Ukrainian Power Grid - Detailed Combined Results.

7.1.5 Stuxnet

Context and Initial Input

In the Stuxnet case study, the attack targeted the Natanz nuclear facility in Iran
in 2010, using extremely sophisticated zero-day exploits designed to sabotage
industrial control systems. The input graph, as shown in Figure 6.3, contains the
basic information needed to generally describe a potential attack.

In the model, the key entities are:

• Attacker (Human): a node which, by assumption, is Compromised and
possesses the ability to Spread the Malware threat. It is preset as the initially
compromised element to initiate the attack path.

• Vector (Physical): it represents the physical channel used to introduce
the malware into the network. No significant dynamic properties have been
assigned, as its role is solely that of a vehicle.

• Windows Machine (Cyber): a node that exhibits properties such as being
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Vulnerable to a Malware threat and having the ability to Spread it. This
reflects how the malware was introduced into the system.

• Corporate Network (Cyber): a node that connects the IT entities and
facilitates the lateral movement of the attack, despite not presenting specific
security properties.

• SCADA System (Physical): a node that controls industrial processes; it
has been labeled as Vulnerable to Malware and is capable of Spread via
Manipulation actions, given its ability to control the PLC Controller.

• PLC Controller (Physical): this node is marked as Vulnerable and has
the ability to Spread threats related to Manipulation.

• Centrifuge (Physical): it represents the centrifuges used for nuclear enrich-
ment; it is marked as Potentially Vulnerable to Manipulation, highlighting
the uncertainty regarding the degree of exposure while indicating the potential
physical impact of the attack.

• Firewall and Security Software: both support nodes, of Cyber type, repre-
senting the physical infrastructure, network defense systems, and cybersecurity
solutions. Although they do not display dynamic input properties, they are
connected via relationships (e.g., Protect) that contextualize their defensive
role.

In summary, the input graph for Stuxnet provides a comprehensive representation
of the attack path, with the goal of not getting too specific but providing general
indications of a possible attack, in order to assess the potential of the techniques
identified with LLaMA.

TAMELESS Results

The formal analysis conducted for the Stuxnet case by TAMELESS, as shown in
Figure 6.4, highlights a well-defined attack path: the entities Attacker, Windows
Machine, SCADA System, and PLC Controller are all Compromised, while
the entity centrifuge is in a critical state of Malfunctioning.

In particular:
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• The Attacker node is confirmed as compromised, serving as the origin of the
malware.

• The SCADA System and the PLC Controller show compromise that
propagates through control and dependency relationships, representing the
spread of the malware toward the industrial systems.

• The Centrifuge node is particularly critical, being the final element of the
attack: its vulnerability, indicated as PotentiallyVulnerable, underlines the risk
of physical damage and the inevitable compromise following the manipulation
of industrial controls.

The TAMELESS model, by applying its derivation rules, confirms the logical flow
of the attack: the initial compromise of the Attacker node propagates through the
system connections, resulting in a cascade of compromises up to the centrifuges. The
support nodes, such as Firewall and Security Software, although not exhibiting
initial vulnerability dynamics, do not intervene in countering the propagation of
the attack.

Combined Results with LLaMA

The integration of the results obtained from the formal analysis of TAMELESS with
those derived from the LLM (Figure 6.5) has led to a more detailed representation
of the attack path. The combination of the two approaches resulted in a reduction
of the overall graph by 36.36% and the addition of supplementary nodes, such as
those related to protection purposes, including the Firewall and the Security
Software.

The combined results show:

• Windows machine: The node is particularly vulnerable, and LLaMA has
identified the following relevant techniques: CMSTP T1191, which exploits the
CMSTP tool to install Connection Manager profiles, facilitating infiltration;
Netsh Helper DLL T1546.007, which allows persistence to be established by
executing malicious content. Techniques related to the cyber nature of the
node are also identified, such as Spearphishing Attachment T1566.001 and
Spearphishing Link T1566.002.
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• SCADA System: For this node, techniques have been identified that high-
light its exposure, such as: Command and Scripting Interpreter T1059.001
that enables the execution of malicious commands via scripting interpreters;
CMSTP T1191 and CMSTP T1218.003 that both show how the system can be
compromised through the delivery of malware; Netsh Helper DLL T1546.007
that reinforces the risk of persistence through the execution of malicious DLLs.

• PLC Controller: The entity is vulnerable to techniques that compromise its
monitoring capability; for example, Detect Operating Mode T0868 and Detect
Program State T0870 allow the collection of information on the current state
of the controller, facilitating targeted attacks. Additionally, control techniques
such as Program Upload T0845 enable the loading of programs from the PLC,
extracting critical information about the industrial process.

• Centrifuge: As the final target of the attack, this node has been identified
with techniques of great importance: Compromise Software Dependencies and
Development Tools T1474.001 indicates how the manipulation of software
dependencies can compromise the node, even when applied in a physical
context; Exploitation of Remote Services T0866 highlights the risk of lateral
movement through the exposure of remote services.

• Firewall: Techniques have been identified for discovery that are potentially
non-damaging but which highlight possible issues in the security configuration,
such as Security Software Discovery T1518.001, Internet Connection Discovery
T1016.001, and Network Service Scanning T0841.

• Security Software: Finally, this node shows vulnerabilities that can be
exploited to compromise the system’s defenses, such as Security Software
Discovery T1518.001 and Internet Connection Discovery T1016.001, which
indicate that even security systems can be subject to discovery techniques.
Additionally, System Service Discovery T1007 enables the detection of active
services, providing useful information to the attacker.

The combination of the two sets of results provides the security architect with
a fairly complete and integrated view of the Stuxnet attack path, with greater
granularity in identifying the attack techniques applicable to each node by drawing
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on insights from the MITRE ATT&CK dataset, thus offering practical guidance
for the detection, mitigation, and prevention of future attacks.

7.1.6 Stuxnet - Detailed

Context and Initial Input

Just as was done for the case of the "Cyber Attack on the Ukrainian Power Grid",
it was decided to test the case study again, providing the input graph with more
specific information. The objective is to verify the behavior of the system integrated
with LLaMA and to demonstrate that the model can indeed help in finding useful
and detailed information regarding the threats that can compromise the system.

Figure 7.10: Stuxnet - Detailed Input Graph.

Compared to the previous test, the entities have remained unchanged, while the
security properties have been modified:
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• Attacker (Human): The node has been recognized as capable of performing
the Spread of the Stuxnet Payload, thereby more specifically highlighting its
initial role in the attack.

• Vector (Physical): In the previous case, no properties were assigned. In
this new test, it is instead considered capable of Spread of the Malware and,
specifically, of the Stuxnet Payload, recognizing its actual role as the initial
attack vector.

• Windows Machine (Cyber): The node has maintained the properties
previously identified but has added two more. It has been recognized as
Vulnerable to Zero day Exploit and LNK, both vulnerabilities identified
during the real attack.

• SCADA System (Physical): In addition to the previous properties, it
has been labeled as Vulnerable to Manipulation and SiemensPLCExploit
with the ability to Spread through actions of Manipulation, based on the
information obtained from the attack.

• PLC Controller (Physical): For this node, its vulnerability to the malware
has been explicitly stated, and it has been named StuxnetController.

• Centrifuge (Physical): The node has been marked as potentiallyVulnerable
not only to manipulation but also to centrifugeOverload.

The input data for this test are much more detailed and specific than the
previous case, thus, it provides a more accurate attack path representation. In
this way, it is feasible to run tests to observe how the model behaves and to check
whether it is reliable.

TAMELESS Results

The result obtained from TAMELESS for this new test remained unchanged com-
pared to the previous case. The previously defined attack path is confirmed: the
entities Attacker, Windows Machine, SCADA System, and PLC Controller
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are all Compromised while the entity Centrifuge is in a critical state of Malfunc-
tioning. Naturally, the graph contains specific information on the threats that were
previously identified, the same ones that were specified in the input.

Figure 7.11: Stuxnet - Detailed TAMELESS Results.

Combined Results with LLaMA

The results obtained using the LLaMA module (Figure 7.12) differ significantly
from those of the previous case. In this test, a 9.09% reduction of the input graph
is observed. This value is lower than in the previous case, but as noted in the
"Ukrainian Power Grid - Detailed" example, it occurs because with more information
the model becomes more precise and includes more nodes. Listed below are all the
techniques deemed most relevant for the case study:

• Attacker: Compared to the previous case, possible techniques applicable
to this node have been identified, although they remain completely generic
regarding its human nature. The identified techniques are: Spearphishing
Attachment (T0865), Spearphishing Link (T1566.002), and social engineering
techniques that can be used as an initial access point to the system.
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• Vector: Also in this case, techniques that were not identified in the previous
one have been recognized. Techniques such as Code Injection (T1055.001) and
Boot Record Infection (T1542.001) perfectly represent the role of the vector as
the initiator of the attack.

• Windows machine: For this node, LLaMA has identified, in addition to the
CMSTP T1191 technique, other relevant techniques related to the context of
the attack. For example: Remote Services (T1021) used for lateral movement;
Process Injection (T1055.001) since code injection is a key technique for
malware propagation; and Abuse of Service (T1068) used by Stuxnet to obtain
elevated privileges.

• SCADA System: LLaMA has identified several techniques related to the
context of the attack. For instance, Engineering Workstation Compromise
(T0818) highlights how the compromise of workstations can represent an entry
point for gaining control of the system. Program Organization Units (T0844)
employs the code-prepending technique to infect the PLCs, thereby compro-
mising the control logic. Loss of Control (T0827) indicates the achievement of
a critical state in which the industrial system loses its ability to operate safely;
Finally, Remote Services (T1021) underscores how the connection between the
Windows Machine node and the SCADA System facilitates the lateral
movement of the attack.

• PLC Controller: The analysis conducted by LLaMA highlights some tech-
niques that the attack will need to use for its success. In particular, the
Standard Application Layer Protocol (T0869) technique demonstrates how the
connection to the vulnerable SCADA system makes the node susceptible to
protocol level exploits. The application of Detect Operating Mode (T0868)
underlines the importance of monitoring the operational state.

• Centrifuge: In this particular node, the analysis has identified several tech-
niques that reflect the critical role of the target. For example, Loss of Safety
(T0880) highlights how a compromise of this node may lead to dangerous
operating conditions, while Masquerading (T1036) indicates the possibility of
masking anomalies through the manipulation of operational parameters.
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• Firewall: LLaMA approach highlights various relevant techniques. For exam-
ple, Connection Proxy (T0884) suggests that weak configurations may expose
the node, whileSystem Network Configuration Discovery (T1016) leverages
the firewall’s role as a network information hub.

• Security Software: Finally, the analysis highlights techniques useful for
compromising defenses. In particular, Server Software Component (T1505)
shows how the abuse of extensible functionalities of server components can
compromise the node’s security, while Security Software Discovery (T1518.001)
confirms that an inadequate configuration makes the system susceptible to
information gathering techniques.

From the obtained techniques, it can be seen how the model succeeds in currently
representing the threats that may afflict the system, providing the necessary tools
for its understanding and verification.

Figure 7.12: Stuxnet - Detailed Combined Results.
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7.2 Comparative Analysis and Discussion

This section present a comparison between the results of the purely formal analysis
performed with TAMELESS and those obtained through the integration of LLaMA
with MITRE ATT&CK. The objective is to understand how the new module may
affect the final threat analysis, both qualitatively and quantitatively.

7.2.1 Quantitative Analysis of Metrics

Graph Reduction

A useful metric introduced with the new system is the reduction of the attack
graph. It indicates how effectively the filtering reduces potential nodes that add
complexity to the graph, thus making it harder to identify the attack path.

Figure 7.13 summarizes the reductions in the different scenarios:

Figure 7.13: Graph Reduction per Case Study.

From these values, several considerations emerge:

1. In complex cases such as "Cyber Attack on the Ukrainian Power Grid" and
"Stuxnet", which are multi-step and sophisticated attacks, a substantial reduc-
tion of the graph is observed. The integrated analysis is particularly useful in
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very complex contexts, where the information extracted from LLaMA’s results
helps filter out less relevant nodes.

2. For scenarios like “Water Supply System Hack” there is a moderate reduction
of the final graph, while “Cyber Attack on the Ukrainian Power Grid - Detalied”
and “Stuxnet - Detalied” show an even lower percentage of reduction. In these
cases, the initial graphs were already more detailed, leading the LLM module
to achieve a smaller reduction in nodes, even while introducing more specific
information.

3. Finally, in the “Flicker Frequency Attack” the graph remains unchanged. The
scenario was already focused on the attack, leaving little space for further
filtering.

Table 7.1 reports the graph reduction statistics:

Table 7.1: Statistical Summary of Graph Reduction Percentages

Statistic Value (%)
Average (Mean) 18.22
Median 15.66
Maximum 36.36
Minimum 0.00

These data indicate that, on average, the new system leads to a significant
simplification of the graph, thereby improving the understanding of the attack
paths.

Probability and Risk Metrics

Another metric that has been added concerns the probability and risk that are
primarily associated with each node and the corrisponding techniques identified.
From the data provided in the tests, it is noticeable that a risk, which integrates
probability with impact, is determined by the importance of the node within the
system’s structure and by the identified MITRE technique. High risk values are
associated with nodes that control critical and fundamental processes. For example:
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• The SCADA System in the case of "Water Supply System Hack" has an
associated risk of 3.128 out of 5 for the ’Remote Services’ technique, as it is a
central node that directly controls the Chemical Adjustment Unit.

• The APIs, with regard to the "Flicker Frequency Attack", being an important
node that allows control of the ’Led Controller’, have an associated risk of
3.068 out of 5.

• Also, the SCADA System for the case study "Cyberattack on the Ukrainian
Power Grid" has an associated risk value of 3.564 for the Process Injection
technique and 3.28 for the Exploitation of Remote Services technique in the
"Verified" case study.

• Finally, for "Stuxnet", an example is always the SCADA system, with a value
of 3.629 for the Netsh Helper DLL technique and a value of 3.221 for the
Remote Services technique in the "Detailed" test.

All other nodes have a slightly lower risk, which aligns with the expected results.
Regarding probability, it is noticeable that high values are often associated with

nodes that are directly exposed or have dependency relationships with compromised
nodes. Moreover, by definition, all nodes identified as compromised by the system
have a probability equal to 1. This probability slightly decreases based on the type
of technique associated with the node, as it depends on the required permissions,
the necessary system requirements, and the type of tactic to which the identified
technique belongs. For all other nodes, the probability ranges between medium
and high when the node has an altered security state. For example, in the case of
"Stuxnet", the centrifuge has a value of 0.77. Similary, if a node is highly dependent
on compromised nodes, such as the Corporate Network, which has a probability of
0.70, its probability is also elevated.

Other nodes that do not have particular relationships with compromised nodes
or altered security states have a lower probability, as with Vector, again for the
"Stuxnet" case study. It has a probability of being compromised of 0.20, which
rising to 0.3 for some associated techniques.
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These values enable the end user to focus on the most critical nodes of the system,
highlighting their importance within the structure, so that effective countermeasures
can be identified to prevent a potential attack.

7.2.2 Qualitative Discussion of Results

Addition of Nodes

Another metric introduced by the new module is the addition of nodes that were
not included in the formal analysis conducted with TAMELESS. The graph shown
in Figure 7.14 illustrates the number of nodes added by the LLM for each analyzed
case study.

Figure 7.14: Number of nodes added per Case Study.

As highlighted by the graph, the integration of the LLM module provides a
significant contribution to enriching the final analysis. In most cases, the model
identifies relevant entities, actually involved in real-world cases, that were not
considered in the formal analysis. For example, in the case of the "Water Supply
System Hack", the model identifies the node related to the Remote Access Tool,
while for the "Cyberattack on the Ukrainian Power Grid," nodes such as the Call
Center System and the Uninterruptible Power Supply emerge, critical elements in
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the attack’s dynamics.
Other nodes, although less critical, may appear superfluous for the completion

of the attack. However, they still contribute to a more comprehensive view of
possible attack paths, also highlighting auxiliary techniques.

Mitigation and Detection

Beyond adding new nodes, the new module enhances the analysis by leveraging
the characteristics of MITRE ATT&CK. In addition to providing useful insights
about the technique, it also associates a set of Mitigation techniques and Detection
strategies. This information is fundamental for making the system resilient to
identified threats.

For example, for the technique Spearphishing Attachment (T1566.001) in
the case of the Ukrainian Power Grid, the module highlights that:

• Mitigation:

– User Training: Train operators to recognize possible attacks or unau-
thorized access attempts to reduce the success rate of social engineering
techniques.

– Restrict Web-Based Content: Limit access to certain websites, block
specific downloads, or prevent the opening of particular attachments.

– Antivirus/Antimalware: Keep security solutions updated with signature-
based and behavioral detection techniques to identify malicious attach-
ments.

• Detection:

– Monitoring Email and Network Traffic: Use intrusion detection systems
to intercept anomalous patterns and typical signs of spearphishing based
on signatures and behavior.

– Process Analysis: Observe endpoint behavior to detect the execution of
suspicious processes.

Overall, the obtained results highlight how the system, through this information,
provides immediate operational support for incident identification and response.
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This approach fully exploits the potential of MITRE ATT&CK, leveraging its
contribution to attack prevention. It is important to note that these Mitigation
and Detection techniques are not always available for all identified techniques.
An example is Loss of Protection (T0837), identified for the node Uninterruptible
Power Supply. This occurs especially when the threat is too generic and represents
a compromised system state, making it difficult to identify a specific attack that
caused it.
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Chapter 8

Conclusions and Future
Developments

8.1 Conclusions

The primary goal of this thesis was to enhance and expand the hybrid threat analysis
system named TAMELESS, by incorporating large language models with the
MITRE ATT&CK framework, thereby enhancing the completeness and efficiency
of threat analysis.

One of the main elements analyzed in the research was the formal verification
of the derivation rules of the model using the PRISM tool, allowing for a formal
check on the coherence of the system. The formal analysis confirmed that the rules
defined in the model are consistent and do not contain any contradictions, and that
the system is competent in correctly handling the transitions among the different
security states.

Simultaneously, the integration of a Large Language Model (LLM) with Retrieval-
Augmented Generation (RAG) technology made it possible to merge the method-
ological rigor characteristic of conventional analysis with a more responsive and
adaptive one, without compromising the formal consistency of the model. This inte-
gration allowed the system to identify potential attack paths and even recommend
techniques that could pose a threat to a given entity. It also relates these techniques
to corresponding mitigation and detection strategies based on information from
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the MITRE ATT&CK framework.
Another significant improvement involves the introduction of a user-friendly

graphical interface, which makes interaction with the system easier for the user,
allows for visualization of the attack graph as well as the different metrics introduced,
and improves understanding of the analysis results. This enhancement has made
TAMELESS more accessible, especially for users without a high level of expertise
in the model.

In conclusion, this dissertation has demonstrated the validity of the suggested
approach by verification on real-world case studies, including high-profile events
such as "Stuxnet" and the "Cyber attack on the Ukrainian Power Grid". The results
demonstrated that the new module complements the analysis process with more
information regarding the nodes involved compared to the formal analysis, thereby
enhancing the identification of attack pathways and making threat reduction
recommendations.

8.2 Limitations and Critical Issues

The limitations identified during the thesis work will now be presented, highlighting
some shortcomings that TAMELESS may have, even with the addition of the new
model.

The first evident limitation is the Large Language Model used. LLaMA 3.1
at 8B is an efficient and lightweight model, excellent for various applications,
but its performance cannot be compared to larger and more complex models.
It was chosen because, despite the remarkable computing power of the IridisX
platform [29], kindly provided by the University of Southampton, its computing
nodes were isolated, preventing the direct download of a model onto the node. To
address this issue, the model necessarily had to be small enough. As a result, the
obtained responses were less precise, reasoning patterns were repetitive, and in
some simulations, hallucinations also occurred.

A second aspect to explore further is the use of the MITRE ATT&CK dataset.
Although it is a well-known and authoritative source for identifying vulnerabilities,
it does not contain all the necessary information. Each company experiences
different attacks, and representing all of them would be impossible, especially when
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the threats targeting the system are new or highly complex. This study introduced
the case study "Flicker Frequency Attack," demonstrating how a very specific attack
is particularly difficult to represent accurately.

Another limitation is the formal verification of the rules correctness. Since these
rules are created and formulated based on real examples, formally verifying the
completeness of all rules in the system is more complex. An important step in this
direction was taken using PRISM, which confirmed the consistency of the system
rules.

Finally, the lack of a temporal aspect in the system has not been addressed
or overcome. The analysis performed is static, meaning that the security state is
evaluated at that exact moment without the possibility of modification. Thus, if a
security architect, after analyzing TAMELESS results or the identified mitigation
and detection techniques, decides to change the system structure, the entire analysis
would need to be performed again from the beginning.

These limitations bring into focus the areas of the system that need additional
work so that the analysis becomes more accurate and reliable.

8.3 Perspectives and Future Developments

Taking into account the system limitations identified, possible future developments
are proposed that could further improve the analysis.

Since the current LLM model has limitations for such a complex task, it is
suggested to modify it by incorporating a more powerful model. One option is
to upgrade to the same LLaMA 3.1, but with the 70B token version, aiming to
maintain a favorable trade-off between performance and execution time of the
analysis.

Another proposed modification is the integration of additional databases contain-
ing threat information, to seamlessly complement MITRE ATT&CK and attempt
to fill its gaps. A valid alternative could be the "Common Vulnerabilities and
Exposures" (CVE) repository [30], which, in addition to improving model coverage,
could improve risk assessment by leveraging the "Common Vulnerability Scoring
System" (CVSS)[31].

Finally, the generated graph currently represents only the final security state of
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the system entities without illustrating how these states were derived. Introducing
a mechanism that shows the reasoning behind these security states, possibly by
displaying the applied rules, would enable a more transparent and detailed analysis
of the compromise path, providing valuable insights for evaluating the entire system.

The work performed demonstrates how combining formal methods and LLMs
increases threat analysis without losing the strict and reliable rules, while also
additionally offering a more comprehensive view of the threats targeting the system.
The results have provided opportunities for new areas of research and development,
with the goal of making TAMELESS an increasingly complete and accessible tool.
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LLaMA Module Prompts

A.1 MITRE ATT&CK Vulnerability Identifica-
tion Prompt

1 prompt = f"""
2 You are a cybersecurity expert using the MITRE

ATT&CK framework to identify vulnerabilities .
3

4 ### Node Information
5 - Name: { node_name }
6 - Type: { node_type }
7

8 ### System Graph Context
9 { graph_context }

10

11 ### RAG Context :
12 { context }
13 ### Task
14
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15 Identify potential vulnerabilities for this node
based on its name , type , the known vulnerabilities
indicated in the system graph context (e.g., dynamic
properties such as ’vulnerable ’) and logical attack
paths.

16

17 Your goals are:
18 1. Examine the System Graph Context for any dynamic

properties that indicate the node is ’vulnerable ’,
in that section you will find all the known
vulnerabilities for the specific node , include the
corresponding MITRE ATT&CK technique .

19 If the node is marked as vulnerable (for
example , with an associated threat like
DenialOfService for the node call_center_system ),
automatically include this vulnerability in your
response with the corresponding MITRE ATT&CK
technique .

20 2. Discover new vulnerabilities using Node
Information , System Graph Context , and RAG Context
analysis . Try to understand what the node name can
represent in the System Graph Context .

21 Ensure that the proposed vulnerabilities are
realistic and logically derived from the node ’s
connections and type.

22

23 #### 1. Select MITRE ATT&CK Techniques Based on
Node Type

24 Each node type has specific categories of
vulnerabilities that apply to it. Focus only on
relevant vulnerabilities :

25

26 - Physical nodes
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27 - Susceptible to physical access , tampering , and
sabotage .

28 - If part of an Industrial Control System (ICS),
they can also be indirectly affected by cyber
threats .

29 - Exclude purely cyber -based exploits (e.g.,
software -based malware , phishing , etc .) unless a
direct relationship justifies otherwise .

30

31 - Human nodes
32 - Targeted primarily through social engineering

techniques (phishing , credential theft ,
impersonation , etc .).

33 - Can be exploited to gain access to cyber
systems .

34 - Exclude vulnerabilities that apply only to
software , networks , or hardware .

35

36 - Cyber nodes
37 - Vulnerable to software and network -based

attacks (e.g., remote code execution , authentication
bypass , malware , etc .).

38 - If connected to a physically accessible system ,
physical access may be an indirect factor.

39 - Exclude vulnerabilities that require direct
human or physical manipulation .

40

41 - General Rule:
42 - Only assign vulnerabilities that logically

apply to the node type.
43 - If an attack technique requires conditions that

are not met , but is still applicable , include it
without modifications .
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44

45 #### 2. Use System Graph to Validate Attack Paths
46 - Identify realistic attack vectors using actual

graph connections , analyze all the node ’s relations .
47 - If the node is connected to another node with

known spread or vulnerabilities , prioritize and
evaluate that threat.

48

49 #### 3. Ensure Relevant MITRE ATT&CK Techniques
50 - Select a diverse set of techniques across

multiple tactics (e.g., Initial Access , Execution ,
Discovery ).

51 - Avoid irrelevant techniques .
52 - If a technique has missing conditions but is

still applicable , include it without modifications .
53

54 ---
55

56 Respond only with this strict JSON format and
take inspiration from the example provided below:

57

58 ### Example :
59

60 {{
61 " response ": [
62 {{
63 "Tactic ": {{ tactic }},
64 " Technique ": {{ technique }} - {{ MITRE ID}},
65 " Description ": {{ Official MITRE

Description }}
66 }},
67 ...
68 ]
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69 }}
70

71 ### Your Response :
72 Always include the description and the MITRE ID ,

which refers to the unique identifier from the MITRE
ATT&CK framework associated with the specific
technique (e.g., T0837).

73 Do not include any other text. Respond with a
valid JSON object.

74 The Description should not include your reasoning .
75 <<<END PROMPT >>>
76 """

A.2 System Graph Vulnerability Validation Prompt

1 prompt = f"""
2 You are a cybersecurity expert. Analyze the

following system structure and assess if the given
vulnerability is applicable to the specified node.

3

4 ### Node Information
5 - Name: { node_name }
6 - Type: { node_type } (e.g., physical , cyber , human)
7

8 ### Vulnerability
9 - Tactic: {tactic}

10 - Technique : { technique }
11 - Description : { description }
12

13 ### System Graph Context
14 { graph_context }
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15

16 Analyze the system structure and relationships .
Your primary focus must be on determining if the
vulnerability applies directly to the specified node
based on its characteristics and dynamic properties .
Consider other nodes only if there is a clear ,
direct relationship that creates an attack vector
enabling the vulnerability on the target node.

17

18 ---
19

20 ### Understanding the System Graph Relationships
21 The relationships in the system graph determine how

vulnerabilities propagate and affect nodes.
22 The system relationships are structured as follows :
23

24 - ** Contain (A, B):** A contains B, representing
system composition (e.g., a server contains data).

25 - ** Control (A, B):** A controls B (e.g., a
controller controls sensors ).

26 - ** Connect (A, B, C):** A connects B to C (e.g., a
network connects two servers ). *Note: Connect is
unidirectional .*

27 - ** Depend(A, B):** A depends on B for
functionality (e.g., a database server depends on
storage ).

28 - ** Check(A, B):** A verifies that B is functioning
normally .

29 - ** Replicate (A, B):** A is a replica of B,
enabling redundancy .

30 - ** Protect (A, B, T):** A protects B from threat T
(e.g., a firewall protects a system from hacking ).
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31 - ** Monitor (A, B, T):** A monitors B for threat T
(e.g., an IDS detects cyber - attacks ).

32 - ** Spread(A, T):** A can propagate threat T (e.g.,
phishing can spread malware ).

33 - ** PotentiallyVulnerable (A, T):** A could become
vulnerable to threat T under certain conditions .

34

35 ---
36

37 ### Node Type Vulnerability Guidelines
38 Each node type has specific categories of

vulnerabilities that apply to it. Focus only on
relevant vulnerabilities :

39

40 - Physical nodes
41 - Susceptible to ** physical access , tampering ,

and sabotage **.
42 - If part of an ** Industrial Control System

(ICS)**, they can also be indirectly affected by
cyber threats .

43 - ** Exclude purely cyber -based exploits ** (e.g.,
software -based malware , phishing , etc .) unless a
direct relationship justifies otherwise .

44

45 - Human nodes
46 - Targeted primarily through ** social engineering

techniques ** (phishing , credential theft ,
impersonation , etc .).

47 - Can be exploited to gain access to cyber
systems .

48 - ** Exclude vulnerabilities that apply only to
software , networks , or hardware **.

49
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50 - Cyber nodes
51 - Vulnerable to ** software and network -based

attacks ** (e.g., remote code execution ,
authentication bypass , malware , etc .).

52 - If connected to a ** physically accessible
system **, physical access may be an indirect factor.

53 - ** Exclude vulnerabilities that require direct
human or physical manipulation **.

54

55 ---
56

57 ### Target Node Focus and Validation Rules for the
Vulnerability

58 1. Direct Applicability to the Target Node **
59 - Assess whether the vulnerability logically

affects a node of type { node_type } based solely on
its own characteristics and dynamic properties .

60 - If the vulnerability is clearly not applicable
to the target node , mark ‘" Exploitable ": "No"‘ and
explain why (e.g., a vulnerability that requires
social engineering is not applicable to a purely
physical node).

61

62 2. Evaluation of Direct Attack Vectors
63 - Only consider other nodes if a direct ,

explicit relationship (from the system graph)
enables the attack vector for the target node.

64 - Do not infer indirect or speculative attack
paths that involve nodes with no clear linkage to
the target.

65

66 3. Node Type Consistency
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67 - Validate that the vulnerability technique is
inherently applicable to a node of type { node_type }.

68 - For example , techniques requiring human
interaction or social engineering should not be
deemed applicable to nodes that are purely physical
unless a direct relationship or additional property
justifies it.

69

70 4. Explanation Quality
71 - Provide a concise , unique explanation that

justifies why the vulnerability is or is not
exploitable for the target node.

72 - Include mention of any direct relationships
that support exploitation if applicable .

73 - Do not include your internal reasoning or
extraneous text only the final determination and
explanation .

74

75 ---
76 ### Task
77 Determine if the vulnerability is applicable to the

node and provide a reasoned response in the
following strict JSON format:

78

79 {{
80 " response ": {{
81 " Exploitable ": <Yes/No >,
82 "Reason ": <Brief explanation based on the

node ’s characteristics , its dynamic properties , and
any direct relationships that enable or prevent
exploitation >

83 }}
84 }}
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85

86 Do not include any other text. Respond with a valid
JSON object.

87

88 <<<END PROMPT >>>
89 """
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