
POLITECNICO DI TORINO

Master of Science in Computer Engineering

Master Degree Thesis

Introducing Automatic Discovery
Mechanisms for the Computing

Continuum

Supervisors
Prof. Fulvio RISSO

Ing. Jacopo MARINO

Candidate
Matteo CICILLONI

ACADEMIC-YEAR 2024-2025

Abstract

The optimization of computing resources at the edge, combined with cloud-based
computational power, has gained significant attention in recent years under the
concept of the computing continuum. Within this context, the Flexible, scaLable,
secUre, and decentralIseD Operating System (FLUIDOS) project has emerged as
an implementation of this paradigm, enabling seamless resource management across
edge and cloud environments. Among its potential applications are optimizing
resource utilization for a fleet of robots, reducing power consumption while enabling
intensive computations, and facilitating interaction between connected vehicles
and infrastructure. A challenge in this landscape is the discovery of available
computational resources.

The scope of this thesis is the design and implementation of an evaluation frame-
work to benchmark, analyze and compare different discovery protocols within the
FLUIDOS ecosystem. The framework provides a structured approach by defining
network condition requirements, setting up a testbed with defined and repeatable
conditions, and implementing a benchmarking tool compatible with the FLUIDOS
architecture, capable of automating tests to ensure statistical significance. The
goal is to compare various protocol alternatives based on meaningful performance
metrics such as discovery time across varying network conditions and protocol
behavior at scale.

Experimental results highlight the distinct behaviors of discovery protocols based
on multicast and distributed hash table (DHT) overlay networks. The analysis
reveals significant differences in discovery time, scalability, and inherent networking
limitations, providing insights into the trade-offs between these approaches. These
findings contribute to a deeper understanding of resource discovery mechanisms
and offer a foundation for further development of discovery protocols in FLUIDOS,
giving users the ability to choose the most suitable protocol for their specific use
case.

Table of Contents

List of Tables 5

List of Figures 6

Acronyms 9

1 Introduction 11
1.1 Objectives . 12
1.2 Outline . 12

2 Data Sharing Technologies in Distributed Systems 14
2.1 Distributed Systems . 14
2.2 The CAP Theorem . 15
2.3 Conflict-Free Replicated Data Types 17

2.3.1 State-Based CRDT Counters (CvRDT) 17
2.3.2 Operation-Based CRDT Counters (CmRDT) 19
2.3.3 CRDTs Metadata . 20

2.4 Distributed Hash Tables . 21
2.4.1 Consistent Hashing . 21
2.4.2 Overlay Network . 21
2.4.3 DHT Routing . 22
2.4.4 DHT Performance . 23

2.5 Distributed Databases . 23
2.5.1 Apache Cassandra . 23
2.5.2 Cassandra Architecture . 24
2.5.3 Data Replication . 24
2.5.4 Cassandra Hardware Requirements 25

2.6 Blockchain . 26
2.6.1 Blockchain Types . 26
2.6.2 Blockchain elements . 27
2.6.3 Blockchain Consensus Algorithms 28

2

2.6.4 Proof of Work . 29
2.6.5 Proof of Stake . 30
2.6.6 Practical Byzantine Fault Tolerance 30
2.6.7 Blockchain Observations . 31

2.7 Multicast . 31
2.7.1 Multicast Routing . 32

2.8 Comparison . 33

3 Kubernetes 38
3.1 The Cattle Model and Scalability 39

3.1.1 Immutability and Declarative Configuration 39
3.1.2 Self-healing Capabilities . 39
3.1.3 Horizontal Scaling . 40

3.2 Kubernetes Architecture . 40
3.2.1 Control Plane Components 40
3.2.2 Data Plane Components . 41
3.2.3 API-driven Design . 42

3.3 Kubernetes Fundamental Components 42
3.3.1 Pods . 43
3.3.2 Deployments . 43
3.3.3 Services . 44
3.3.4 DaemonSets . 45
3.3.5 Custom Resources and Controllers 46

3.4 Kubernetes Networking . 47
3.4.1 Networking Model Fundamentals 47
3.4.2 Container Network Interface 48
3.4.3 Pod-to-Pod Communication 48
3.4.4 Service Discovery and Load Balancing 49
3.4.5 Network Policies and Security 49
3.4.6 External Communication . 50

4 FLUIDOS 51
4.1 Introduction . 51
4.2 The FLUIDOS Computing Continuum 52

4.2.1 Deployment Transparency 52
4.2.2 Communication Transparency 52
4.2.3 Resource Availability Transparency 53

4.3 Technology Foundation . 54
4.3.1 Kubernetes as the Substrate 54

4.4 FLUIDOS Architecture . 54
4.4.1 FLUIDOS Node . 55

3

4.4.2 FLUIDOS Supernode . 56
4.5 Liqo . 56

4.5.1 Virtual Cluster Federation 56
4.5.2 Resource Offloading . 56

4.6 FLUIDOS Node Architecture . 57
4.6.1 Core Components . 57
4.6.2 REAR - Resource Exchange And Registration 59

4.7 Discovery Protocols . 62
4.7.1 Network Manager . 62
4.7.2 Neuropil . 62

5 Evaluation Framework and Implementation 64
5.1 Framework Design . 64
5.2 Testbed Setup . 66
5.3 Relevant FLUIDOS Components and CRDs 67
5.4 Benchmark Implementation . 68
5.5 Network Condition Emulation . 70

6 Results 73
6.1 General results . 73
6.2 Multicast-based results . 74
6.3 DHT-based results . 80
6.4 Scalability results . 81

7 Conclusions 89
7.1 Future Work . 90

Bibliography 91

4

List of Tables

2.1 Comparison of Minimum and Recommended Hardware Requirements
for Apache Cassandra . 25

2.2 Comparison of Technologies for Discovery in Distributed Systems . 34

5

List of Figures

2.1 Venn diagram representing the intersection of the 3 CAP properties.
The red area represents the impossible combination of all 3 properties 16

2.2 Example of a CRDT set merging operation. 18
2.3 Example of overlay network . 22
2.4 Example of Apache Cassandra cluster 24
2.5 Representation of a blockchain . 27

3.1 Kubernetes architecture . 41
3.2 Kubernetes networking model . 47

4.1 FLUIDOS node architecture . 57

5.1 Scheme of the macvlan bridge mode [39] 66
5.2 VM setup for testing . 67

6.1 Discovery time distribution for multicast-based protocol under de-
fault network conditions (VM deployment) 75

6.2 Discovery time distribution for multicast-based protocol under de-
fault network conditions (bare-metal deployment) 75

6.3 Discovery time with 5% packet loss (bare-metal deployment) 76
6.4 Discovery time with 10% packet loss (bare-metal deployment) . . . 77
6.5 Discovery time with 25% packet loss (bare-metal deployment) . . . 77
6.6 Discovery time distribution with 5% packet loss 78
6.7 Discovery time with 10% packet loss 79
6.8 Discovery time with 25% packet loss 79
6.9 Discovery time distribution under default network conditions (VM

deployment) . 80
6.10 Discovery time distribution with 10% packet loss 81
6.11 Network Manager scalability under default network conditions . . . 82
6.12 Network Manager scalability with 5% packet loss 83
6.13 Network Manager scalability with 10% packet loss 83
6.14 Network Manager scalability with 25% packet loss 84

6

6.15 Neuropil scalability under default network conditions 85
6.16 Alternative view of Neuropil scalability under default conditions . . 85
6.17 Neuropil scalability with 10% packet loss 86
6.18 Box plot analysis of Network Manager scalability under default

conditions . 87
6.19 Box plot analysis of Network Manager scalability with 5% packet loss 87
6.20 Box plot analysis of Network Manager scalability with 10% packet loss 88
6.21 Box plot analysis of Network Manager scalability with 25% packet loss 88

7

Acronyms

DS
Distributed System

VM
Virtual Machine

CRDT
Conflict-free Replicated Data Type

SEC
Strong Eventual Consistency

LWW Set
Last-Write-Wins Set

DHT
Distributed Hash Table

DDBs
Distributed Databases

DB
Database

RF
Replication Factor

IoT
Internet of Things

9

PoW
Proof of Work

PoS
Proof of Stake

PBFT
Practical Byzantine Fault Tolerance

OSI
Open Systems Interconnection

IP
Internet Protocol

IGMP
Internet Group Management Protocol

PIM
Protocol Independent Multicast

UGV
Unmanned Ground Vehicle

UAV
Unmanned Aerial Vehicle

GPU
Graphics Processing Unit

CPU
Central Processing Unit

RAM
Random Access Memory

ASIC
Application-Specific Integrated Circuit

DLT
Distributed Ledger Technology

10

Chapter 1

Introduction

In recent years, cloud computing has become a widely used approach for accessing
computing power. It offers flexible and cost-effective solutions by allowing users to
run applications on hardware managed by cloud providers. These providers operate
large data centers and allocate resources based on different pricing models, such
as pay-per-use. However, this centralized model does not take full advantage of
the many computing resources available at the edge of the network, for examples
small servers, Internet of Things (IoT) devices, and 5G base stations. Using these
resources more efficiently could improve system performance, reduce delays, and
achieve lower energy consumption. The computing continuum aims to address
this challenge by integrating these resources into a more dynamic and adaptable
system.

The computing continuum is based on the idea that computation should take
place where it is most efficient. Tasks can be executed on small devices at the edge,
on intermediate nodes, or in powerful cloud data centers, depending on factors
such as latency, energy use, network conditions, and workload requirements. This
flexible system allows data to be processed closer to where it is generated when
possible, while still relying on cloud resources for more demanding tasks.

Within this context, the Flexible, scaLable, secUre, and decentralIseD Operating
System (FLUIDOS) project has been developed with the aim to make resource
management between edge and cloud environments more seamless and efficient.

An use case of FLUIDOS considered in this work is the management of computing
resources for fleets of autonomous robots. Since these robots run on battery power
and have not so powerful hardware, so limited in both operational time and available
resources, it could be beneficial to offload computation to more powerful resources
which have stable supply of energy, thus enabling the robots to run for longer
periods of time and perform more intense computations that could not be possible
with their onboard hardware. Another possible use case could be enabling better

11

Introduction

communication between connected vehicles and infrastructure.

In all these cases, one important step is to ensure that devices can find available
computing resources when needed. This is done through discovery protocols, which
allow computing nodes to locate and communicate with each other. Since different
protocols offer different advantages and limitations, it is important to evaluate
their performance under various conditions.

1.1 Objectives
The main goal of this thesis is to design and implement a framework to test, analyze,
and compare different discovery protocols within the FLUIDOS ecosystem. Having
a structured and automated way to evaluate these protocols is useful for different
reasons. First, it helps users choose the most suitable protocol for their needs by
providing clear information about performance and trade-offs. Second, it serves as
a tool for improving discovery protocols in FLUIDOS by offering a way to test new
implementations and modifications.

The evaluation framework will be designed to interact with the FLUIDOS node,
which represents an entity capable of computation within the FLUIDOS network.
It will measure key performance factors such as the time it takes to find and connect
to other FLUIDOS nodes under different network conditions and how well the
protocol works at scale.

To ensure that the results are reliable and can be reproduced, the system will
include automated testing under standardized conditions. This will allow for a fair
comparison of different discovery protocols and help identify their strengths and
weaknesses while ensuring statistical significance in the results.

1.2 Outline
The thesis is structured as follows:

• Chapter 2: analysis of modern data distribution technologies in distributed
architectures, assessing whether established protocols utilize the most effective
foundational technologies available

• Chapter 3: introduction to Kubernetes orchestration system, its architecture
and relevant components

• Chapter 4: introduction to FLUIDOS, its architecture and components, and
the discovery protocols currently used

12

Introduction

• Chapter 5: implementation of the evaluation framework, its requirements, the
design choices adopted and the implementation details of the benchmarking
tool

• Chapter 6: results of the experiments and analysis of the data collected

• Chapter 7: conclusions and future work

13

Chapter 2

Data Sharing Technologies
in Distributed Systems

The use cases described in Chapter 1, and computing continuum in general, can be
abstracted as nodes in distributed system of computing resources across edge and
cloud environments.

In this chapter distributed systems will be introduced together with their
characteristics and challenges. Then, the state of the art for different technologies
used to distribute data within the distributed systems context will be analyzed and
finally they will be compared among themselves to identify the most suitable for
the use cases described previously.

2.1 Distributed Systems
As computational demand grows for modern applications, scalability becomes
an issue for centralized systems which can only scale vertically by adding more
resources such as CPU, RAM and faster disks. This can become impractical:
adding physical hardware needs physical intervention and there is a technological
limit to the computational power that can be added to a single machine.

Furthermore, the problem of geographical distribution of the services provided
by said applications becomes apparent: how can a centralized system provide
services to users worlwide, especially considering the delay in response time due to
physical distance?

These new problems call for a new paradigm: Distributed Systems (DSs). DSs can
then be defined as computing systems in which multiple independent computing
entities collaborate to solve complex computational tasks.

Unlike traditional centralized systems, DSs divide computational workloads

14

Data Sharing Technologies in Distributed Systems

across numerous nodes across network, enabling improved scalability, reliability
due to fault tolerance, and performance. Compared to centralized systems, dis-
tributed systems can scale horizontally by adding more machines to the network,
usually via virtualization by dividing bare metal computing resources into virtual
machines(VMs) or containers. As nodes are part of a network, they do not need
to be in the same physical machine, but they can be located in different parts
of the world. This becomes very valuable when considering the need for scalable
applications that can be accessed by users around the world: for example, we can
imagine an infrastructure with servers located in Europe, the US and Asia. This
allows for more flexibility and resiliency for the whole infrastructure and is at the
base of the modern cloud computing paradigm.

Naturally this approach does not come only with advantages, but also with new
challenges to be solved. The fundamental challenge in distributed systems lies in
coordinating multiple independent computational entities that operate concurrently,
potentially across different physical locations and with possibility of communication
failure across the network. These systems must address several challenges:

• Making sure data is consistent across all nodes

• Handling potential node failures without system-wide disruption

• Maintaining communication reliable across potentially unreliable network
infrastructures

• Managing simultaneous process execution across multiple nodes

2.2 The CAP Theorem
The theoretical foundation for understanding distributed system limitations is
the Consistency, Availability, Partition Tolerance (CAP) theorem. This theorem
describes a fundamental trade-off in distributed system design: a system can
simultaneously provide at most two of three following properties:

1. Consistency: All nodes observe identical data at the same time

2. Availability: Every request receives a timely response

3. Partition Tolerance: The system continues functioning despite faults in network
communication

Notice that the CAP theorem is not an absolute rule equivalent to a mathematical
theorem [1], but rather a guide line to answer the following question: which property

15

Data Sharing Technologies in Distributed Systems

Partition
Tolerance

Availability

Consistency

AC

AP

CP

Figure 2.1: Venn diagram representing the intersection of the 3 CAP properties.
The red area represents the impossible combination of all 3 properties

between Consistency and Availability is desired in a particular distributed system
when a network partition occurs?

For the purposes of this research, given the inherent unpredictability of network
communications, partition tolerance becomes a critical requirement. Since the use
cases analyzed in the research problem are relative to physical moving systems,
such as drones and connected vehicles, high availability is the characteristic that
must be guaranteed.

The problem of discovering entities within a network can be simplified to the
distribution of data, in our case at the bare minimum the knowledge of the ip
address of another cluster.

The subsequent sections will explore various approaches to distributed data
examining distributed databases, conflict-free replicated data types, distributed
hash tables, blockchain technologies and multicast analyzing their advantages and
disadvantages in order to compare them.

16

Data Sharing Technologies in Distributed Systems

2.3 Conflict-Free Replicated Data Types
As discussed in section 2.2 in a highly available system strict consistency is sacrificed
and it is possible that information that is not up to date is served to the user.
What would happen in case of a concurrent update? How can conflicts be resolved?
Conflict-Free Replicated Data Types (CRDTs) are a class of data structures that
provide a solution to this problem since they are designed to be updated without
the need for synchronization[2].

The main feature of CRDTs is that they are designed to be commutative and
associative, meaning that the end result is independent of the order in which
operations are applied. This is why they are strongly eventual consistent (SEC).
SEC is a weaker form of consistency which guarantees - in absence of further
updates - that all replicas will eventually converge to the same state without any
form of synchronization.

The core principle behind CRDTs is the use of mathematically defined merge
functions or commutative operations that ensure consistency across replicas. CRDTs
are broadly classified into two categories:

• State-based CRDTs: These rely on merging states across replicas, where
updates are propagated by exchanging the full state. They have higher
communication overhead due to the full state transmission but are simpler to
implement.

• Operation-based CRDTs: These propagate individual operations instead of
the full state, relying on the commutativity of operations to ensure consistency.
Not all operations can be commutative, for example in sets, in which case
metadata containing ordering information is required to resolve conflicts.

Two examples to further understand the concept of state-based and operation-based
CRDTs will be now presented.

2.3.1 State-Based CRDT Counters (CvRDT)
In a state-based counter each replica maintains a state vector where each entry
corresponds to a replica’s contribution. Updates modify the local state, and replicas
periodically exchange and merge their states.

Let R = {R1, R2, . . . , Rn}. Each replica Ri maintains a vector Ci = [ci1, ci2, . . . , cin],
where cij represents the count contributed by replica Rj as known by Ri. Local
updates modify cii, the entry corresponding to the local replica:

cii ← cii + k (k ∈ Z+)

17

Data Sharing Technologies in Distributed Systems

Replica A

a c

a b c

Replica B

b

a b c

(a,c) (b)

Figure 2.2: Example of a CRDT set merging operation.

When two replicas Ri and Rj exchange states, their state vectors are merged
element-wise using the max function:

Ci[k] = max(Ci[k], Cj[k]) ∀k ∈ {1, 2, . . . , n}

The total counter value at Ri is the sum of all elements in its state vector:

Ctotal =
nØ

k=1
cik

To illustrate the state based counter let us make an example. Assume to have
three replicas (R1, R2, R3):

Their initial states are:

C1 = [0, 0, 0], C2 = [0, 0, 0], C3 = [0, 0, 0]

The following updates are applied to the replicas:

1. R1 increments by 1: C1 = [1, 0, 0]

2. R2 increments by 2: C2 = [0, 2, 0]

3. R3 increments by 1: C3 = [0, 0, 1]

18

Data Sharing Technologies in Distributed Systems

The replicas then propagate their states and merge them:

C1 = [1, 0, 0] + [0, 2, 0] + [0, 0, 1] = [1 + 0 + 0, 0 + 2 + 0, 0 + 0 + 1] = [1, 2, 1]

Ctotal = C1 = C2 = C3 = 1 + 2 + 1 = 4
It can be seen from these two examples that the final state of the replicas is the

same. Notice that the difference in the two categories of CRDTs mainly depends
on the implementation.

2.3.2 Operation-Based CRDT Counters (CmRDT)
In an operation-based counter ocal operations, such as increment or decrement,
are broadcast to other replicas. Furthermore, the order in which operations are
applied is not important, as long as the operations are commutative.

Let us assume to have a set of replicase R = {R1, R2, . . . , Rn} , and O represent
the set of all operations (increment or decrement).

For any replica Ri:

• Each operation ok ∈ O is of the form:

ok = INC(k) or ok = DEC(k)

where k ∈ Z+ is the magnitude of the operation.

• The state of the counter at Ri is:

Ci =
Ø

ok∈Oi

ok

where Oi is the set of operations applied at Ri.

• Operations are propagated to other replicas:

∀ok ∈ Oi, ok is broadcast to Rj (j /= i)

Then, to make an example let us consider replica R1 applies an increment
operation INC(1) and replica R2 applies an increment operation INC(2).

1. Replica R1: Applies INC(1), so C1 = 1.

2. Replica R2: Applies INC(2), so C2 = 2.

Subsequently, each operation is broadcast to the other replica and applied:

19

Data Sharing Technologies in Distributed Systems

3. Locally at replica R1 after applying the operation from R2:

C1 =
Ø

ok∈Oi

ok = INC(1) + INC(2) = 1 + 2 = 3

4. The same happens at replica R2:

C2 =
Ø

ok∈Oi

ok = INC(2) + INC(1) = 2 + 1 = 3

Then we can observe that despite the order of the operations, the final state in
each replica is the same, thus ensuring eventual consistency.

2.3.3 CRDTs Metadata
Notice the condition that in the previous examples the operations are commutative.
This is not always the case, for example in the case of a set CRDT, where the order
of addition and deletion in the set matters. Several concurrency semantics exist,
such as Last-Write-Wins Set (LWW Set), which prioritizes the last write in the set.

In case of concurrency metadata such as timestamps or unique identifiers are
used to resolve conflicts. Metadata is necessary to identify causality with the
concepts of the happens-before relationship and total ordering among updates[3].
The use of metadata can lead to increased memory usage which is evident in
unoptimized implementations, and even in modern implementations the growth of
metadata is linear with the number of replicas[4][5].

To summarize CRDTs, they are a powerful tool to ensure eventual consistency
and high availability. They do not require synchronization, for example in the form
of locks or consensus mechanisms. Operations-based CRDTs are more efficient in
terms of communication compared to state-based CRDTs, as they only require the
delta of the state to be transmitted, but require the use of metadata to resolve
conflicts.

The main disadvantages are the high memory usage for CRDTs that store
metadata which is not to be disregarded especially in limited memory environments,
even though some solutions to this problem have been proposed [4].

Recent advancements, such as the PS-CRDT model [5], optimize communica-
tion by integrating publish/subscribe mechanisms. This reduces communication
overhead and enhances scalability, making CRDTs more suitable for dynamic
environments such as mobile edge computing.

20

Data Sharing Technologies in Distributed Systems

2.4 Distributed Hash Tables
A Distributed Hash Table (DHT) is a DS which implements the functionality of
a hash table, as in key-value pairs are stored in the DHT. The responsibility for
storing and retrieving the values associated with the keys is distributed among
the nodes in the network. This makes DHTs inherently scalable and resistant to
failures.

DHTs rely on overlay networks and hashing techniques such as keyspace par-
titioning, whose most common implementation is consistent hashing, to organize
nodes and data. These characteristics make DHTs effective in environments where
nodes frequently join or leave the network, a phenomenon known as churn, which
is common in mobile and edge computing environments. The two key aspects of
their operation are the mapping of keys to nodes and the routing of requests to
the appropriate nodes which will be discussed in the following sections.

2.4.1 Consistent Hashing
For example, assume to use a 160-bit hash space, which translates to 40-digit
hexadecimal identifiers, and to have an amount of data that cannot be contained
within a single node. The solution would be to divide the data into partitions and
assign each part to a different node. This problem is solved by consistent hashing
[6]: when data is added to the DHT, a hash function such as SHA-1 is applied to
the data, obtaining an hash value.

Nodes in the DS are also given an hash value obtained for example from the
ip address of the node. Then, each node becomes responsible for a portion of the
hash space - which is organized in logical ring of successive hashes - and data is
assigned to the node whose hash value is the closest to the hash value of the data.

It also has to be considered that nodes in the cluster can fail, leave or join
the DHT. This would mean that the previous division of the hash space is no
longer valid, since the space is divided equally among nodes. In a traditional
system this would mean redistributing all the data across the nodes, which is a
very expensive operation especially from the point of view of the network. With
Consistent Hashing, instead, only a portion of the data is redistributed allowing
for less data to be moved, thus a more efficient system.

2.4.2 Overlay Network
Despite being a concept independent from DHTs, overlay networks are fundamental
for the operation of DHTs, often coming toghether in the same package as in the
case of Tapestry [7]. All the nodes in the DHT form the overlay network which

21

Data Sharing Technologies in Distributed Systems

Underlay

Overlay

Figure 2.3: Example of overlay network

is a logical network that is built on top of the physical network, providing logical
addresses instead of physical ones. Nodes are assigned an unique identifier within
the network, which might be derived from the physical ip address of the node but
is independent from it. This has the advantage of abstracting the physical network
and allowing for more flexibility in the routing of messages and that working with
private or public ip addresses is not an issue.

Each node in the overlay network maintains a routing table containing informa-
tion about other nodes. The routing table is designed such that for any key each
node has either a node responsible for that specific key or a node that is closer to
the key. In order to reach a key this process typycally requires a O(log n) number
of hops relative to the number of nodes.

2.4.3 DHT Routing
Let us make an example of routing, considering a particular implementation of
DHT called Tapestry. Tapestry is a p2p overlay routing infrastructure that provides
efficient, scalable and location-independent routing [7].

For the sake of simplicity let us consider an identifier space of hexadecimal
strings of length m = 4, providing a total of 164 = 65,536 possible identifiers. Let
the network contain the following four nodes with identifiers A1F0, A2C3, B4D5,
and C3E7. A data item with identifier A2F5 is stored at the node whose identifier
is closest to A2F5 numerically.

22

Data Sharing Technologies in Distributed Systems

To route a query for A2F5, suppose the query originates at node A1F0. The
process involves matching progressively longer prefixes of the target identifier with
entries in the routing table. At each step, the query is forwarded to the node with
the closest match for the next unmatched digit in the target identifier.

Starting at node A1F0, the query identifies that the first matching prefix is A,
and the routing table at A1F0 directs the query to node A2C3, which shares the
prefix A2 with the target. At A2C3, the next prefix A2F matches partially, and
the query is forwarded to the next closest node, which is responsible for A2F5.
The query terminates once the target node or data item is found.

2.4.4 DHT Performance

DHT are demonstrated to scale well with the number of nodes in the network,
as the routing table size grows logarithmically with the number of nodes. With
respect to hardware requirements to run a DHT, it has been shown that DHTs can
run on commodity hardware, and in particular the computing and power load is
low enough to be run for several hours on Nokia n95 mobile phones [8].

2.5 Distributed Databases

We then begin our analysis by looking at distributed databases (DDBs) which
specialize in data storage and retrieval across a network of nodes.

DDBs represent a critical evolution in data management technologies, addressing
the limitations of traditional centralized database systems by distributing data and
computational processes across multiple networked nodes [9]. Unlike monolithic
database architectures, DDBs aim to provide horizontal scalability, high availability,
and robust fault tolerance which are all properties that were discussed earlier with
respect to general distributed systems. Furthermore, databases are optimized for a
very high number of transactions and scale well with a high number of nodes.

2.5.1 Apache Cassandra

Apache Cassandra is a NoSQL distributed database developed by Facebook in
order to solve the problem of handling high-volume data guaranteeing at the same
time resiliency of the system in case of failures and flexibility.

NoSQL databases are designed to be flexible, especially with respect to the
disparity of data types and schema definition.

23

Data Sharing Technologies in Distributed Systems

Figure 2.4: Example of Apache Cassandra cluster

2.5.2 Cassandra Architecture
The distributed system of Cassandra is based on a masterless architecture in which
all nodes - organized into a a cluster or "ring"- can provide the same functions. For
example, in case a coordinator node - responsible for assigning the ownership of data
among nodes - fails, another node can be elected in its place. The communication
among nodes happens through a peer-to-peer protocol called Gossip protocol, which
allows nodes to exchange information about the state of the cluster and detect
failures. To summarize, the main components of Cassandra are:

• Node: The fundamental unit of Cassandra’s distributed system, representing
an individual server in the cluster.

• Cluster: A collection of nodes that work together to store and manage
distributed data.

• Gossip Protocol: A peer-to-peer communication mechanism that allows
nodes to exchange state information and detect node failures [10].

• Consistent Hashing: A technique used for distributing data across nodes,
ensuring minimal data redistribution when the cluster configuration changes
[6].

2.5.3 Data Replication
In order to guarantee resiliency, data is not stored on a single node but is replicated
across multiple nodes. The number of nodes the data is replicated to is defined

24

Data Sharing Technologies in Distributed Systems

by the so called replication factor(RF), which is a parameter that can be set
by the user. For instance a replication factor RF of 3 means that the data is
replicated across 3 nodes. In case of a node failure then, the requested data can
still be retrieved from the other nodes. Replication also offers another advantage:
geographical distribution. Data can be replicated across nodes in different parts
of the world thus allowing to serve users across different regions with low latency.
Data replication works in conjunction with consistent hashing such that multiple
nodes are responsible for a portion of the hashing space.

To confirm that the CAP theorem is a continuum[1], Cassandra has a tunable
consistency level. One example of consistency level is the quorum level, which
requires a majority of nodes to agree on a read or write operation. The consistency
level depends on the replication factor:

QUORUM = ⌊RF

2 + 1⌋

For every request the receiving node becomes the coordinator for that request and
is responsible for contacting the other nodes containing the data. The coordinator
then waits for the responses from the nodes and if the number of responses reaches
the quorum level, the operation is considered successful.

Compared to the CRDT system presented previously, the quorum mechanism is
still a form of eventual consistency since it makes sure that data served is the one
in the majority of nodes.

2.5.4 Cassandra Hardware Requirements
The following table compares the minimum and recommended hardware require-
ments for running Apache Cassandra effectively. While lighter requirements may
exist, they are generally not suitable for production environments and should only
be considered for testing or development purposes.

Table 2.1: Comparison of Minimum and Recommended Hardware Requirements
for Apache Cassandra

Hardware Component Minimum Req. Recommended Req.
CPU 2 cores 8+ cores
Memory (RAM) 8 GB 32+ GB
Disk HDD, 1 TB SSDs with high IOPS

For lighter usage scenarios, such as local testing or small-scale development,
Apache Cassandra can run on systems with dual-core CPUs and 8 GB of RAM[11].

25

Data Sharing Technologies in Distributed Systems

Such configurations are not recommended for production, as they can lead to
significant performance degradation and instability.

2.6 Blockchain
Blockchain is one of the most significant technologies of the last years as it became
especially popular because of its use in cryptocurrencies, with the most famous
being Bitcoin.

At its core, it is a decentralized digital ledger that records transactions across a
network of computers. Each record in this ledger is called a block, and each block
is cryptographically linked to the previous one, forming a chain of information that
is extremely difficult to alter or tamper with.

The main characteristics of blockchain are its decentralized nature, allowing
for a distributed form of consensus of information without the need for a central
authority, and its immutability which means that once a block is added to the
chain it cannot be altered. This allows for trust with respect to the information
stored in the blockchain, which is publicly available and can be checked by nodes
in the system. Furthermore, the consensus mechanism are byzantine fault tolerant,
meaning that the system can tolerate a certain number of malicious nodes, making
blockchain a natively secure technology.

Even though its initial use cases were limited to cryptocurrencies, as it solved
the problems of single point of failure in centralized systems, opaque and potentially
manipulated transactions making currency distributed, transparent and - at least
in principle - democratic, blockchain technology has been experimented with in
a variety of fields such as supply chain management, voting systems and more
interestingly in robotics and Internet of Things (IoT) [12].

2.6.1 Blockchain Types
Blockchain can be classified based on two main characteristics: the ability to access
the network and the ability to write and commit data.

In the first case the distinction is between public and private blockchains. In
public blockchains, anyone can access the network and participate in the consensus
mechanism. Private blockchains, on the other hand, allow only selected nodes to
participate in the network.

In the second case the distinction is between permissioned and permissionless
blockchains. Permissionless blockchains allow anyone to write and commit data
to the blockchain by default. In permissioned blockchains, usually used in single

26

Data Sharing Technologies in Distributed Systems

Block n-1

Header

Previous Block
Address

Timestamp

Nonce

Merkel Root

Block n

Header

Previous Block
Address

Timestamp

Nonce

Merkel Root

Block n+1

Header

Previous Block
Address

Timestamp

Nonce

Merkel Root

Figure 2.5: Representation of a blockchain

administrative contexts such as enterprises, only few nodes are allowed to write
and commit data.

The combination of these characteristics leads to four types of blockchains[12]:

• Public Permissionless: allows anyone to participate, write and commit.
Examples include Bitcoin and Ethereum.

• Public Permissioned: anyone can enter and read transactions, but only
selected nodes can write and commit. A possible use case is a voting system.

• Private Permissionless: not very common, possible use cases are internal
enterprise collaborations where network access is restricted but participants
can freely submit transactions.

• Private Permissioned: closed entry only few selected nodes can write.
Usually used in enterprise environments, an example is Hyperledger.

2.6.2 Blockchain elements
The blockchain is based on three main elements: blocks, hashes and miners. The
block is the container of the data on the distributed ledger, it can be logically
equiparated to a data structure containing the list of transactions. The blocks are
linked to each other through a cryptographic hash. Every block has an associated
block header containing various information regarding the previous and current
block.

27

Data Sharing Technologies in Distributed Systems

Let us take Bitcoin as an example: the contents of the header are the hash of
the previous block, the hash of the current block, the timestamp of the block, the
difficulty level, the merkle root of the transactions in the block and finally the
nonce. The hash of the previous block is a 256-bit number obtained by applying
the SHA-256 algorithm to the transactions of the previous block plus its header.
In this way it can be assured that the block is linked to the previous one and that
the chain is not tampered with, for example by inserting fake blocks containing
fraudulent transactions.

The merkle root is a hash of all the transactions in the block, the difficulty level
is a number that determines how difficult it is to find a valid hash for the block and
will be explained in more detail in the consensus algorithms section. The nonce is
a random number that is used to find a valid hash for the block.

Finally, the miners are the nodes in the network that are responsible for adding
new blocks to the blockchain. They do so by solving a complex mathematical
problem that usually requires a lot of computational power. In the next section we
will discusse how these elements interact with each other and how consensus on
the distributed ledger is reached.

2.6.3 Blockchain Consensus Algorithms

In this section we will discuss the answers to the following questions: how are blocks
validated and added to the blockchain? How is consensus reached and maintained
in the blockchain network? What is the defense against malicious nodes in the
network?

In order for a block to be added to the blockchain, it must be validated by
the network. This translates to finding a valid hash for the block. For a hash to
be considered valid, it must be lower than a target value called difficulty level, a
256-bit number which is dynamically adjusted in order to guarantee a transaction
time of around 10 minutes.

The process of finding the valid hash is called mining. The miners in the network
compete to find the valid hash using their computational power. In order to find
the valid hash, which is computed by hashing both the contents of the block and
of its header, the only value that can be changed is the nonce.

The process of mining is shown in the following pseudo code:

28

Data Sharing Technologies in Distributed Systems

Algorithm 1 Finding a Valid Hash in Bitcoin Proof of Work
1: Input: Block header data B, Target T
2: Output: Valid nonce N and hash H
3: Initialize N ← 0 ▷ Start with nonce 0
4: while true do
5: H ← SHA-256(SHA-256(B + N)) ▷ Double SHA-256 of the block
6: header and nonce
7: if H ≤ T then
8: Return N, H ▷ Valid hash found
9: end if

10: Increment N ← N + 1 ▷ Try the next nonce
11: end while

In simple terms, set the nonce to a value, obtain the hash, check if the hash is
lower than the target value, if not increment the nonce and try again. This process
is very computationally intensive since no optimized algorithm for finding the hash
exists: only the brute force approach is possible.

After a valid hash is found, the block is broadcasted to the network and the
other nodes validate the block by checking the hash and the transactions contained
in the block. If the block is valid, it is added to the blockchain and the process
starts again for the next block. The miner that found the solution is rewarded with
a certain amount of cryptocurrency for the computational (and power consuming)
effort.

This consensus mechanism is called Proof of Work (PoW).

2.6.4 Proof of Work
In proof of work the guarantee of validity of the block is given by the high
computational power required to find the valid hash. Many nodes are incentivized
to participate in the network because of monetary reward.

This in turn increases the security of the network as the more nodes participate
the more computational power is available in the network. In order to tamper with
the blockchain a malicious node would need to have more computational power
than the rest of the network combined. Even if a malicious node were to find a
valid hash once, it would have to find it again for the next block and so on, which
is highly unlikely.

Furthermore, in the case of a fork in the blockchain, so two parallel chains are
created, the valid chain would be the one with the most computational power
behind it, thus validanting blocks more rapidly. After some time the longest chain
would be the legit one, and the network would converge to it as only the longest
chain is considered valid.

29

Data Sharing Technologies in Distributed Systems

This mechanism, even though secure, has some disadvantages: it is very compu-
tationally intensive and power consuming, thus making it intrinsically not scalable.

In order to overcome these downsides, other consensus mechanisms have been
developed, such as Proof of Stake, which will be discussed in the next section.

2.6.5 Proof of Stake
Proof of Stake (PoS) is an alternative consensus mechanism to PoW that aims to
address the energy consumption and scalability issues of PoW. In PoS, validators
are chosen based on the number of tokens they hold and "stake" in the network.
The more tokens a validator holds, the higher the chance of being selected to
validate the next block.

Unlike PoW, there is no computational puzzle to solve - validators simply
verify transactions and create new blocks when selected. The security comes from
validators having their stake at risk, rather than from expended computational
power. This approach is more energy-efficient than PoW, as it does not require
the same level of computational power. However, PoS has been criticized for
potentially leading to increased centralization, as wealthy stakeholders It is evident
how the tradeoff between scalability and decentralization is a fundamental aspect
of blockchain technology.

2.6.6 Practical Byzantine Fault Tolerance
Other consensus mechanisms have been proposed with a particular aspect to solve
with respect to PoW and PoS. One such algorithm is Practical Byzantine Fault
Tolerance (PBFT). PBFT is a consensus mechanism designed to solve the Byzantine
Generals Problem in distributed systems.

The Byzantine Generals Problem refers to the challenge of achieving coordinated
agreement in a system where some components may act maliciously or fail arbitrarily.
It illustrates the difficulty that a set of generals faces when trying to form a unified
strategy while communicating solely via messengers who might be unreliable or
deceptive. A solution must ensure that loyal generals can consistently agree
on a single plan, despite any subset of traitorous or failing generals interfering
with communications. This concept lies at the heart of many modern consensus
mechanisms, as it highlights the critical need to tolerate arbitrary faults and
potential malice within distributed networks.

Unlike PoW or PoS, PBFT achieves consensus through a voting process among
known validators. PBFT can tolerate up to f faulty nodes in a network of 3f + 1
total nodes, providing Byzantine fault tolerance. While it offers high transaction

30

Data Sharing Technologies in Distributed Systems

throughput and immediate finality, it requires significant communication overhead
between nodes and is better suited for smaller networks with known participants.

The communication complexity of PBFT grows quadratically with the number of
nodes (O(n2)), making it impractical for large networks with hundreds or thousands
of nodes. This quadratic scaling is due to the requirement that each node must
communicate directly with every other node during consensus.

2.6.7 Blockchain Observations
From the analysis of blockchain technology several observations can be made. First,
blockchain utilizes consensus mechanisms to provide data consistency across nodes,
making it particularly suitable when immutability and transparency are needed.

The immutable nature of the ledger and the built-in cryptographic protection
make blockchain inherently secure against tampering and malicious attacks. Fur-
thermore, the ability to operate without a central authority makes it resilient to
single points of failure.

However, blockchain faces significant issues in terms of scalability and resource
consumption. The computational requirements for consensus mechanisms like PoW
are substantial, making them impractical for resource-constrained environments
such as mobile or IoT devices. Even more efficient consensus mechanisms like
PoS and PBFT still require significant computational resources compared to other
distributed system approaches.

The communication overhead in blockchain networks can also be substantial.
For instance, PBFT’s quadratic communication complexity makes it unsuitable
for large networks, while PoW’s requirement to broadcast blocks to all nodes can
lead to significant network traffic. These factors make blockchain less suitable for
applications requiring high throughput or real-time performance in resource-limited
environments.

2.7 Multicast
Despite not being a technology used in the context of geographically distributed
systems, this section will present the concept of multicast communication, which is
relevant for the efficient communication in a private network. Because of policies
on network efficiency and security, multicast traffic is blocked by default in the
public internet, since it is a limited form of broadcast that can quickly saturate
network links and overwhelm devices, as well as posing security concerns.

In traditional unicast communication, a sender transmits data packets to a single

31

Data Sharing Technologies in Distributed Systems

receiver. While this approach works well for one-to-one communication, it becomes
inefficient when the same data needs to be sent to multiple receivers. In a scenario
where a video stream needs to be delivered to thousands of users unicast would
require the sender to create and transmit thousands of separate data streams. This
would lead to significant bandwidth consumption and network congestion, easily
saturating network links.

Multicast addresses this issue by allowing a single data stream to be sent to
multiple receivers simultaneously. It operates at the network layer (Layer 3) of the
OSI model and utilizes a special class of IP addresses known as multicast addresses.
These addresses range from 224.0.0.0 to 239.255.255.255 in IPv4. Multicast enables
efficient data distribution by allowing routers to replicate and forward packets
only to the network segments where there are interested receivers, thus conserving
bandwidth.

2.7.1 Multicast Routing
To illustrate how multicast works, consider an example where a node subscribes to
a multicast channel and receives a packet. The process begins with the receiver
node expressing its interest in a specific multicast group by sending an Internet
Group Management Protocol (IGMP) join message to its local router. The router,
upon receiving the IGMP join message, updates its multicast forwarding table to
include the new receiver in the multicast group.

The local router then communicates with upstream routers using a multicast
routing protocol like Protocol Independent Multicast (PIM) to ensure that multicast
traffic for the requested group is forwarded to it. The upstream routers, in turn,
update their forwarding tables and ensure that the multicast traffic is propagated
down the correct branches of the distribution tree.

When the sender transmits a multicast packet, it is forwarded by the routers
along the distribution tree. Each router checks its multicast forwarding table to
determine the outgoing interfaces that have subscribed receivers. The packet is
then replicated and forwarded only on those interfaces, ensuring that it reaches all
interested receivers without unnecessary duplication.

As the packet traverses the network, each router performs similar checks and
forwarding actions until the packet reaches the final receivers. This efficient
packet replication and forwarding mechanism significantly reduces the bandwidth
consumption and processing overhead compared to unicast, especially in scenarios
with a large number of receivers.

In summary, multicast provides an efficient solution for one-to-many communi-
cation. It is particularly useful and light on resources for distribution of data to

32

Data Sharing Technologies in Distributed Systems

multiple receivers in a private network, such as in a local area network.

2.8 Comparison
According to the problem at hand, the solution for discovery should be highly
available and fault tolerant, it should be completely decentralized to avoid single
points of failure and should be lighweight with respect to both hardware and network
resources. A possible use case is indeed a Unmanned Ground Vehicle (UGV) that
needs to offload some computation to the edge, so the discovery mechanism should
be able to work in a resource constrained environment.

We assume a dynamic network where nodes can join and leave the network at
any time and are expected to do so, so behaviour in presence of churn should be
considered. Furthermore, the energy efficiency of the solution is a key aspect to
consider since different technologies have different power requirements.

With these requirements in mind it is now possible to summarize the character-
istics of the technologies and compare them.

33

Data Sharing Technologies in Distributed Systems

Table 2.2: Comparison of Technologies for Discovery in Distributed Systems

Property CRDTs DHT Distributed
DBs

Blockchain

Key Features SEC and
conflict
resolution
without
synchronization

Consistent
hashing, churn
resistant,
overlay network

High
throughput

Distributed
ledger with
immutable,
transparent and
secure
transactions

Scalability Hundreds of
nodes[5]

Thousands of
nodes[7], O(log
n) for routing
table size

Tens of
Thousands of
nodes[13], up to
450 per cluster

Limited
scalability due
to the overhead
of consensus

CPU Low,
comparable to
DHT

Low, can be run
on nokia n95
mobile phones[8]

2 minimum, 8+
recom-
mended[11]

High, even
though GPU or
ASIC
computation is
more popular

RAM High in
unoptimized
version, 110MB
for 1000 nodes
in some
conditions[4]

Less than
128MB for 1000
nodes[8]

8GB minimum,
32+ GB recom-
mended[11]

GBs order of
magnitude

34

Data Sharing Technologies in Distributed Systems

Table 2.2 presents the key features, hardware requirements and power consump-
tion. As discussed in the previous sections all presented technologies are highly
available and partition tolerant so the focus of the analysis will be the hardware
requirements and power consumption.

CRDTs used as data structures guarantee eventual consistency without the
need for synchronization. Appropriate kind of CRDTs to share a set of address
information such as a LWW Set. need to also share metadata, whose unbounded
storage can be an issue from the point of view of memory usage and cannot be
ignored. Enes et al. [4] consider this problem in a environment under churn.

By implementing a garbage collection mechanism, the authors show that the
memory usage in a 4 node network sharing a add-wins set - which is functionally
equivalent to a LWW Set but gives priority to the addition of elements and uses
unique tags instead of timestamps - after 10000 add operations is less than 2MB,
while the unoptimized version reaches this amount around 3000 add operations. It
is shown that memory usage also increases with the number of nodes due to the
increased metadata received from other nodes. Nevertheless, the authors show that
when stabilizing the system and increasing the number of nodes from 1 to 8, the
memory usage increases by around 110KB. Projecting this result to 1000 nodes
sets the memory usage to around 110MB, which is a reasonable amount of memory
for a modern device. Further research is needed to understand power and CPU
requirements.

DHT stores key-value pairs across the network, where each node is responsible for
a portion of the keyspace. Consistent hashing ensures minimal data redistribution in
case of churn. DHT implementation usually come togheter with an overlay network,
such as Tapestry which provides efficient, scalable and location-independent routing.
Usual implementations are scalable for a high number of nodes, as lookup time and
data storage grow logarithmically. Zhao et al. [7] show that Tapestry performs well
on the PlanetLab network, a global-scale testbed for distributed systems research.
Even in conditions of churn, Tapestry is able to maintain a high level of performance
with 1000 nodes communicating in the network. With respect to hardware and
power requirements, Ou et al. [8] demonstrate that the Kademlia DHT, which
differs from Tapestry mainly in the routing algorithm, is able to be run by nokia
n95 mobile phones from 2009 for several hours, showing that DHTs are suitable for
resource constrained environments.

Distributed DBs are designed to provide horizontal scalability, high availability,
and robust fault tolerance. Internally they use concepts such as consistent hashing
in Apache Cassandra or CRDTs in Riak[14]. They provide high transaction
throughput but are resource intensive, requiring for example a minimum of 8GB
and 2 cores to run Cassandra effectively [11]. They are designed to handle a

35

Data Sharing Technologies in Distributed Systems

high number of requests and despite being decentralized, they are expected to
be supervised by a single administrative entity, making them less suitable for a
completely decentralized environment.

Blockchain technology guarantees immutability, integrity and security of the
data stored in the ledger. The main issue with blockchain is the high computational
power required for consensus mechanisms like PoW, which require specialized
hardware such as GPUs or ASICs in order to solve in less time the cryptographic
nonce puzzle. Evolutions like PoS decrease power consumption and thus hardware
requirements but centralize validators in the network.

Research in the field of robotics has been conducted in order to benefit from the
security aspects of blockchain in industrial, swarm, UAV and multirobot systems,
as discussed by Ferrer et al. [12]. They conclude that for use cases of mobile
teleoperated robots limited energy, storage and computation capacity are major
impediments to blockchain integration due to computationally intensive consensus
mechanisms.

Strobel et al. [15] integrate DLT technology with swarm robotics in the use case
of a search and rescue mission. They show that the DLT implementation is able to
perform the task even in presence of byzantine agents, but conclude that it will
not have a positive influence on energy consumption.

Sedlmeir et al. [16] show the amount of energy consumed by PoW blockchains,
with Bitcoin estimated to require power in the order of Giga Watts worlwide, and at
least three orders of magnitude more energy per transaction than PoS blockchains.
It is also shown that some blockchains such as Hedera[17] are very low in energy
consumption, but make it so by being permissioned networks and thus centralized.

In conclusion, all the technologies presented are highly available and partition
tolerant. Blockchain is the most secure technology but also the most resource
intensive one, requiring high computational power and energy consumption. Both
conditions are not suitable for our use case. The immutability of transactions is
not relevant to the problem of address discovery since only the current address
is relevant. A simpler solution, should it be needed, would be to log locally the
history of discovered nodes.

Distributed DBs are designed for high transaction throughput and are expected
to be supervised by a single administrative entity, making them not suitable for
a completely decentralized environment. Furthermore they have considerable
hardware requirements (minimum of 2 CPU cores, 8GB RAM[11]) which makes
them not suitable for resource constrained environments.

DHTs distribute the responsibility for storing and retrieving data in the network.

36

Data Sharing Technologies in Distributed Systems

They are designed with churn scenarios in mind and are able to run on commodity
hardware such as mobile phones with reasonable memory and energy consumption.
Furthermore, they often come with an overlay network such as Tapestry that
provides efficient routing and allows for operation in both private and public IP
networks.

CRDTs provide eventual consistency without the need for synchronization. Their
memory usage is on par with the one of DHTs in case of optimized implemen-
tations[4]. CRDTs are ideal in case of concurrent operations since they resolve
conflicts without central coordination, a characteristic that is not needed in the
use case of address discovery since the address of nodes should be propagated by
nodes themselves. Indeed if a node is not able to communicate its address to the
network, the network would not be able to communicate with it and thus offload
computations to it.

After comparing the technologies we can conclude that DHTs are currently the
most suitable technology for the problem of address discovery in a distributed
system. They address the scalabilty, low resource and power requirements, with
mature overlay network implementations such as Tapestry they provide network
independent routing and are able to handle churn scenarios.

37

Chapter 3

Kubernetes

As the computational demand for modern applications continued to grow in recent
years, a shift in paradigm occurred in the way software was developed, deployed,
and managed. Traditional monolithic applications, incorporating all the business
logic and functionality into a single codebase and deployed on physical servers could
not handle the need for scalability, reliability, and agility that modern applications
demanded.

This led to the rise of microservices architecture, where applications are broken
down into smaller, loosely coupled services that can be developed, deployed, and
scaled independently. Vertical scaling, where a single server is upgraded with more
resources to handle increased load, was no longer sufficient. Instead, horizontal
scaling became the preferred approach, where multiple instances of a service are
deployed across a distributed infrastructure via virtualization or containerization
technologies. Managing all the instances of these services across a distributed
infrastructure is a complex task that cannot be done manually: imagine handling
thousands of containers that might fail and need a restart. This is where container
orchestration systems come into play.

Kubernetes (often abbreviated as K8s) emerged from Google’s internal container
orchestration system called Borg, which Google had been using for over a decade
to manage its vast infrastructure [18]. In 2014, Google open-sourced Kubernetes,
making it available to the broader community. Since then, it has grown to become
the de facto standard for container orchestration and is now maintained by the
Cloud Native Computing Foundation (CNCF).

The development of Kubernetes addressed a critical need in the industry. As more
organizations began adopting containerization technologies like Docker, they faced
significant challenges in managing and orchestrating large numbers of containers
across distributed environments. Before Kubernetes, deploying and managing

38

Kubernetes

containerized applications at scale was a complex and labor-intensive process that
often resulted in operational inefficiencies and reliability issues [19].

3.1 The Cattle Model and Scalability
Traditional infrastructure management followed what is now referred to as the
“pets model”, where servers were individually named, carefully maintained, and
treated as unique, indispensable entities. When issues arose, administrators would
diagnose and repair these servers, taking great care to preserve their state and
configuration, much like caring for a pet [20].

Kubernetes embodies a fundamentally different paradigm known as the “cattle
model”. In this approach, computing resources are standardized, stateless, and
disposable - treated as undifferentiated members of a herd rather than unique
individuals. This philosophical shift represents one of Kubernetes’ core design
principles and enables many of its most powerful features.

Under the cattle model, individual nodes and containers are considered expend-
able. When a container or node fails or exhibits problematic behavior, rather than
attempting to diagnose and repair it, the system simply terminates and replaces
it with a fresh instance. This approach offers several significant advantages for
modern distributed systems:

3.1.1 Immutability and Declarative Configuration
The cattle model embraces immutability as a fundamental principle. Containers
are treated as immutable units that should not be modified after deployment.
Instead of updating running containers, Kubernetes creates new ones with the
updated configuration and gradually replaces the old ones. This approach ensures
consistency and predictability across environments and enables powerful features
like rollouts and rollbacks [21].

Configuration is handled declaratively rather than imperatively. Administrators
specify the desired state of the system - how many replicas should run, what re-
sources they should have access to, how they should be networked - and Kubernetes
continuously works to ensure the actual state matches this desired state.

3.1.2 Self-healing Capabilities
Perhaps the most significant benefit of the cattle model is Kubernetes’ ability to
self-heal. When a node fails, becomes unresponsive, or cannot maintain expected
performance, Kubernetes automatically reschedules the affected workloads onto
healthy nodes. Similarly, when individual containers crash or fail health checks,
Kubernetes automatically restarts them or creates replacement instances [22].

39

Kubernetes

This self-healing capability minimizes downtime and reduces operational burden.
System administrators no longer need to perform middle-of-the-night interventions
to restart failed services or provision new servers when hardware fails. Instead,
they can focus on higher-value activities while Kubernetes handles routine recovery
tasks automatically.

3.1.3 Horizontal Scaling
The cattle model facilitates horizontal scaling - adding more instances rather than
increasing the resources of existing ones. Kubernetes enables services to scale
out dynamically in response to increasing demand and scale in when demand
decreases. This elasticity improves resource utilization and ensures applications
remain responsive under varying loads [23].

Horizontal scaling also improves fault tolerance through redundancy. By running
multiple instances of each service across different nodes, Kubernetes ensures that
the failure of any single container or node does not bring down the entire service.
Traffic is automatically redistributed to the remaining healthy instances while
replacements are spun up.

3.2 Kubernetes Architecture
Kubernetes follows a distributed architecture that enables its scalability, resilience,
and flexibility. At its core, the system employs a master-worker pattern with a
clear separation between the control plane and the data plane. This architectural
approach allows Kubernetes to manage thousands of containers across hundreds of
nodes while maintaining operational stability.

3.2.1 Control Plane Components
The control plane serves as the brain of the cluster, managing the overall state
and making global decisions about cluster operation. It maintains a record of all
resources within the cluster, monitors their status, and takes action to ensure the
actual state aligns with the user’s defined intent. These components are typically
deployed in a high-availability configuration across multiple machines to ensure
fault tolerance [22].

The control plane consists of several key components:

• API Server - The front-end interface for the Kubernetes control plane that
exposes the Kubernetes API. All communications, both internal (between
components) and external (from users), flow through the API Server. It

40

Kubernetes

validates and processes RESTful requests and updates the corresponding
objects in etcd.

• etcd - A distributed, consistent key-value store that serves as Kubernetes’
primary datastore for all cluster data. Its consistency and high-availability
properties ensure that the cluster state is reliably maintained even during
hardware or network failures.

• Scheduler - Responsible for assigning newly created pods to nodes. The
scheduler makes placement decisions based on resource requirements, hard-
ware/software/policy constraints, and other specifications. It embodies so-
phisticated algorithms to ensure optimal workload distribution across the
cluster.

• Controller Manager - Runs controller processes that regulate the state
of the cluster. These controllers include the Node Controller (monitoring
node health), Replication Controller (ensuring the correct number of pods
are running), Endpoints Controller (populating endpoint objects), and many
others. Each controller implements a control loop that watches the shared
state and makes changes to move the current state toward the desired state.

k-proxy

kubelet

sched
sched

sched

Control Plane

Node

etcd

Kubernetes cluster

api
api

api

c-c-m
c-c-m

c-c-m

c-m
c-m

c-m

Node Node

k-proxy

kubelet kubelet

k-proxy
Control plane

Scheduler
sched

Cloud controller

manager

(optional) c-c-m

Controller

manager c-m

kubelet
kubelet

kube-proxy
k-proxy

(persistence store)
etcd

etcd

Node

API server
api

Figure 3.1: Kubernetes architecture

3.2.2 Data Plane Components
The data plane comprises worker nodes that execute the actual workloads. These
nodes host the containerized applications and handle networking and storage
operations. Worker nodes operate largely autonomously, with the ability to continue

41

Kubernetes

running existing workloads even during temporary disconnections from the control
plane [23].

Each worker node in the data plane runs several essential components:

• Kube-proxy - A network proxy that runs on each node, implementing part of
the Kubernetes Service concept. It maintains network rules that allow network
communication to pods from inside and outside of the cluster. Kube-proxy
uses the operating system’s packet filtering layer or runs in userspace mode to
handle forwarding.

• Kubelet - The primary node agent that runs on each node. It takes a set
of PodSpecs provided by the API server and ensures that the containers
described in those PodSpecs are running and healthy. The kubelet doesn’t
manage containers that weren’t created by Kubernetes.

• Container Runtime - The software responsible for running containers. While
Docker was historically the most common runtime, Kubernetes now supports
multiple container runtimes through the Container Runtime Interface (CRI).
Options include containerd, CRI-O, and others. The container runtime handles
low-level container operations such as image pulling and container execution.

3.2.3 API-driven Design
The entire Kubernetes system is built around a unified API. All operations - from
deploying applications to querying resource status - are performed through this
API. This API-centric approach provides several architectural advantages:

First, it enables a clean separation between the control plane and client tools.
Any authorized client can interact with the cluster through the same API, whether
it’s the official command-line tool (kubectl), a custom script, or a third-party
application.

Second, the API provides a consistent way to interact with all resources in the
system. The same patterns apply whether managing core resources like pods and
services or custom resources defined through extensions.

Third, the API server acts as the sole point of truth within the cluster. All
changes to cluster state must go through the API server, which validates them and
stores the resulting state in the persistent storage backend (etcd). This centralized
state management ensures consistency across the distributed system [24].

3.3 Kubernetes Fundamental Components
Kubernetes organizes computational resources and applications using a set of
fundamental abstractions that form the building blocks of any deployment. These

42

Kubernetes

abstractions represent physical resources, application workloads, networking, and
configuration.

3.3.1 Pods
The Pod is the smallest and most basic deployable unit in Kubernetes. A Pod
represents a single instance of a running process in a cluster and encapsulates one
or more containers, shared storage, network resources, and specifications for how
to run the containers [22].

Pods are designed to be ephemeral, disposable entities. When a Pod is deleted
or fails, Kubernetes does not resurrect it - instead, it creates a new Pod to replace
it. This aligns with the cattle model discussed earlier and is fundamental to
understanding Kubernetes’ approach to application management.

1 apiVersion : v1
2 kind: Pod
3 metadata :
4 name: nginx -pod
5 labels :
6 app: nginx
7 spec:
8 containers :
9 - name: nginx

10 image: nginx :1.19
11 ports:
12 - containerPort : 80

Listing 3.1: Example Pod Manifest

This manifest defines a simple Pod running an Nginx container. The Pod
specification includes resource requests and limits - a crucial aspect for proper
scheduling and resource management within a cluster.

3.3.2 Deployments
While Pods are the basic unit, directly creating Pods is rarely the ideal approach.
Instead, Kubernetes offers higher-level abstractions that manage Pods automatically.
The Deployment controller provides declarative updates for Pods and ReplicaSets,
ensuring that the desired number of Pod replicas are running at all times [23].

1 apiVersion : apps/v1
2 kind: Deployment
3 metadata :

43

Kubernetes

4 name: nginx - deployment
5 labels :
6 app: nginx
7 spec:
8 replicas : 3
9 selector :

10 matchLabels :
11 app: nginx
12 template :
13 metadata :
14 labels :
15 app: nginx
16 spec:
17 containers :
18 - name: nginx
19 image: nginx :1.19
20 ports:
21 - containerPort : 80

Listing 3.2: Example Deployment Manifest

This manifest creates a Deployment that maintains three replicas of the Nginx
Pod. If any Pod fails or is deleted, the Deployment controller automatically creates
a new one to maintain the desired state of three replicas.

3.3.3 Services
Kubernetes Pods are ephemeral - they can be created, destroyed, or rescheduled
based on cluster conditions. This dynamic nature makes it challenging for applica-
tions to reliably communicate with each other. The Service resource solves this
problem by providing a stable network endpoint to access a dynamic set of Pods
[25].

1 apiVersion : v1
2 kind: Service
3 metadata :
4 name: nginx - service
5 spec:
6 selector :
7 app: nginx
8 ports:
9 - port: 80

10 targetPort : 80
11 protocol : TCP

44

Kubernetes

12 type: ClusterIP

Listing 3.3: Example Service Manifest

This manifest creates a Service that provides a stable IP address and DNS name
for accessing the Nginx Pods. The Service selects Pods with the label app: nginx
and forwards traffic to port 80 on those Pods.

3.3.4 DaemonSets
DaemonSets provide a way to ensure that a specific Pod runs on all (or a subset
of) nodes in a cluster. As nodes are added to the cluster, Pods are automatically
added to them; as nodes are removed, the Pods are garbage collected. This pattern
is particularly useful for cluster-wide operations such as log collection, monitoring,
and networking plugins [21].

1 apiVersion : apps/v1
2 kind: DaemonSet
3 metadata :
4 name: node - monitoring
5 labels :
6 app: monitoring -agent
7 spec:
8 selector :
9 matchLabels :

10 app: monitoring -agent
11 template :
12 metadata :
13 labels :
14 app: monitoring -agent
15 spec:
16 containers :
17 - name: monitoring -agent
18 image: monitoring /agent:v1
19 volumeMounts :
20 - name: varlog
21 mountPath : /var/log
22 volumes :
23 - name: varlog
24 hostPath :
25 path: /var/log

Listing 3.4: Example DaemonSet Manifest

45

Kubernetes

This manifest creates a DaemonSet that runs a monitoring agent on every node
in the cluster. The agent has access to the host’s /var/log directory to collect logs.
DaemonSets are particularly relevant to the FLUIDOS project as they provide
a mechanism for deploying components that need to run on every node, such as
networking plugins or discovery agents.

3.3.5 Custom Resources and Controllers
Kubernetes provides an extension mechanism through Custom Resource Definitions
(CRDs) and custom controllers. This enables the definition of new resource types
that extend the Kubernetes API, allowing for domain-specific abstractions that
integrate seamlessly with the platform [26].

1 apiVersion : apiextensions .k8s.io/v1
2 kind: CustomResourceDefinition
3 metadata :
4 name: knownClusters . discovery . fluidos .eu
5 spec:
6 group: discovery . fluidos .eu
7 names:
8 kind: KnownCluster
9 plural : knownClusters

10 singular : knownCluster
11 shortNames :
12 - kc
13 scope: Namespaced
14 versions :
15 - name: v1alpha1
16 served : true
17 storage : true
18 schema :
19 openAPIV3Schema :
20 type: object
21 properties :
22 spec:
23 type: object
24 properties :
25 clusterID :
26 type: string
27 endpoint :
28 type: string
29 lastSeen :
30 type: string
31 format : date -time

46

Kubernetes

32 required : [" clusterID ", " endpoint "]

Listing 3.5: Example Custom Resource Definition

This CRD defines a new resource type called ‘KnownCluster‘ that represents
a discovered FLUIDOS node. The custom controller for this resource would
implement the logic for managing the lifecycle of these resources, including discovery,
monitoring, and cleanup operations.

In the context of the FLUIDOS project, these custom resources are crucial for
representing discovered nodes in the network and enabling cross-cluster communi-
cation [27].

3.4 Kubernetes Networking
Kubernetes networking provides the foundation for communication between con-
tainers, pods, services, and external clients. Understanding this networking model
is essential for grasping how applications communicate within and across clusters,
especially in distributed environments like those addressed in the FLUIDOS project.

Figure 3.2: Kubernetes networking model

3.4.1 Networking Model Fundamentals
The Kubernetes networking model rests on a set of fundamental principles designed
to simplify application communication while maintaining necessary isolation. At
its core, the model ensures every pod receives a unique IP address across the

47

Kubernetes

cluster. Containers sharing a pod also share a network namespace, allowing them
to communicate via localhost. The model guarantees that pods on the same node
can communicate with each other directly without network address translation
(NAT), as can pods across different nodes. Perhaps most importantly, the IP
address that a pod sees itself as is the same IP that other pods or services see it as.

This flat networking approach creates a uniform communication space that
eliminates many traditional networking complexities. Applications no longer need
to discover host IPs or manage port mappings, as each pod becomes directly
addressable from any other pod in the cluster. This simplicity enables developers
to design applications as if they were running on traditional networks while gaining
the scalability and reliability benefits of containers.

3.4.2 Container Network Interface

While Kubernetes defines the networking model, it delegates implementation to
Container Network Interface (CNI) plugins. This approach follows a clear separa-
tion of concerns, allowing Kubernetes to focus on orchestration while specialized
networking solutions handle the complex task of network configuration. The CNI
specification provides a common interface for third-party networking solutions to
integrate with Kubernetes, creating a rich ecosystem of options.

Various CNI implementations have emerged to address different requirements
and environmental constraints, for example Calico, Flannel, Cilium [28], [29], [30].

3.4.3 Pod-to-Pod Communication

Pod-to-pod communication forms the foundation of Kubernetes networking. When
pods reside on the same node, they communicate through the node’s internal bridge
network. Each pod connects to this bridge via a virtual Ethernet pair, with one end
in the pod’s network namespace and the other in the root namespace connected to
the bridge. This direct connection allows efficient local communication without
leaving the node.

Communication between pods on different nodes is more complex and varies
depending on the CNI implementation. Some solutions, like Flannel, create overlay
networks using technologies such as VXLAN or GRE tunnels to encapsulate traffic
between nodes. Others, like Calico, program direct routes using routing protocols
like BGP, avoiding the encapsulation overhead at the cost of more complex network
configuration. Regardless of implementation details, the result appears the same
to containers: seamless communication across the cluster with pods addressable by
their unique IP addresses.

48

Kubernetes

3.4.4 Service Discovery and Load Balancing

The ephemeral nature of pods presents challenges for building reliable applications.
Pods can be created, destroyed, or rescheduled at any time, making direct pod-to-
pod communication unreliable for long-lived connections. Kubernetes addresses
this challenge through Services, an abstraction that provides a stable endpoint for
a dynamic set of pods.

Services function as an internal load balancer, selecting a set of pods based on
labels and providing a single stable IP address and DNS name to access them. The
kube-proxy agent, running on every node, implements this abstraction by creating
network rules that distribute traffic to the selected pods. These rules vary based
on the operation mode - userspace, iptables, or IPVS - with each offering different
performance and feature tradeoffs.

Kubernetes also implements an internal DNS service that automatically registers
each service. When a service is created, it receives a DNS entry in the format
<service-name>.<namespace>.svc.cluster.local, allowing pods to discover services
by name rather than by IP address. This DNS-based discovery mechanism enables
service-oriented architectures where components find each other through well-known
names, simplifying application configuration and enabling dynamic reconfiguration.

While service discovery works seamlessly within a single cluster, it becomes
more challenging in multi-cluster environments. The standard Kubernetes DNS
does not span cluster boundaries, creating a significant limitation for distributed
applications. The discovery protocols evaluated in this thesis address this gap
by extending Kubernetes’ service discovery capabilities to work across cluster
boundaries, enabling truly distributed applications.

3.4.5 Network Policies and Security

By default, Kubernetes allows unrestricted communication between all pods in
a cluster. This open approach simplifies initial deployment but falls short of
security best practices, particularly in multi-tenant environments. Network Policies
address this concern by providing a mechanism to control traffic flow between pods,
functioning similarly to a network firewall.

Network Policies define rules specifying which pods can communicate with
each other and on which ports. These policies can filter traffic based on pod
labels, namespaces, IP ranges, and port numbers, allowing fine-grained control over
network communication. For example, a policy might restrict a database pod to
accept connections only from specific application pods and deny all other traffic,
implementing the principle of least privilege.

49

Kubernetes

3.4.6 External Communication
Kubernetes provides several mechanisms for pods to communicate with external
services and for external clients to access services within the cluster. For outbound
communication, pods typically reach external networks directly, with the node
performing source NAT on the outgoing traffic. This allows external services to
respond to the request without requiring direct routing to the pod network.

For inbound communication, Kubernetes offers several service types with increas-
ing levels of external accessibility. NodePort services expose an application on a
static port on each node’s IP address, making it accessible from outside the cluster
at <node-ip>:<node-port>. LoadBalancer services extend this by provisioning
an external load balancer with a public IP in supported cloud environments. For
HTTP and HTTPS traffic, Ingress controllers provide more sophisticated routing
based on hostnames and paths, often with additional features like SSL termination
and authentication.

50

Chapter 4

FLUIDOS

4.1 Introduction

FLUIDOS represents a paradigm shift in distributed computing, aiming to leverage
the vast, underutilized processing capacity at the edge. This capacity is currently
scattered across heterogeneous edge devices that struggle to integrate with each
other and form a seamless computing continuum [27].

Traditional cloud computing models centralize resources in large data centers,
creating a clear separation between edge devices and cloud infrastructure. This
model fails to efficiently utilize the growing computational power available at the
edge, leading to increased latency for latency-sensitive applications and unnecessary
data transfers to distant data centers. Furthermore, the rigid boundary between
edge and cloud environments prevents seamless resource utilization across the
computing continuum [31].

FLUIDOS overcomes these limitations by enabling the creation of a virtual
computing space spanning across multiple physical domains. This allows services
started within this virtual space to leverage all available resources within the same
virtual domain, regardless of physical location. In the FLUIDOS ecosystem, a
service can seamlessly scale based on resource availability across the entire virtual
infrastructure, potentially having instances running simultaneously at the telco
edge and in cloud datacenters, effectively blurring the rigid cluster boundaries that
currently exist [27].

The project builds on the foundation of Kubernetes while extending its ca-
pabilities to address the unique challenges of the computing continuum. This
chapter explores the FLUIDOS architecture, its key components, and the discovery
protocols that are tested in this thesis.

51

FLUIDOS

4.2 The FLUIDOS Computing Continuum
While the concept of a computing continuum might appear to exist today with appli-
cations already relying on components distributed across different locations—from
edge devices to cloud data centers—the FLUIDOS approach to liquid computing
introduces three distinctive characteristics that set it apart from existing solutions.

4.2.1 Deployment Transparency
Traditional distributed applications require explicit configuration to deploy each
component to a specific target location. In conventional systems, DevOps engineers
must predetermine whether a microservice runs at the edge datacenter or in the
cloud, with these locations fixed and decided a priori. This rigid deployment model
creates significant challenges for dynamic optimization, as any runtime adjustments
require complex re-deployment orchestration—a capability that current technologies
largely lack.

FLUIDOS revolutionizes this approach through its intent-based interface, which
ensures that each microservice starts in the optimal location based on service
requirements and infrastructure status. This abstraction layer allows DevOps
teams to interact with a single deployment and control point, while the underlying
FLUIDOS system automatically places services in the most appropriate locations
across the computing continuum. Moreover, the system continuously evaluates
placement decisions and can dynamically relocate services as conditions change.

This deployment transparency significantly simplifies operations and enables
more efficient resource utilization by automatically matching workload requirements
with the most suitable available resources, whether they exist at the edge, in a
telco facility, or in the cloud.

4.2.2 Communication Transparency
In traditional distributed systems, communication between microservices varies
significantly depending on their relative locations. Services within the same cluster
communicate differently from those in separate clusters, requiring distinct network-
ing configurations and security policies. For example, Kubernetes uses ClusterIP
services for internal cluster communication but requires NodePort or LoadBalancer
services for external communications.

This location-dependent communication model forces developers to explicitly
configure services based on their deployment location, further complicating any
potential redeployment or scaling operations. While some technologies like message
brokers (e.g., Kafka) partially address these issues through publish/subscribe

52

FLUIDOS

mechanisms, they cannot guarantee reduced latency and may not be suitable for
all application types.

FLUIDOS creates a virtual cluster spanning multiple physical clusters, allowing
applications to operate seamlessly across this virtual space. All communications
between microservices are mediated by the FLUIDOS virtual network fabric,
providing consistent communication primitives regardless of service location. This
approach eliminates the need for complex, error-prone configurations that must
account for whether services reside in the same or different clusters [27].

With FLUIDOS, two services in the same virtual domain communicate as though
they were in the same cluster, even if physically deployed on entirely different
infrastructure components. This communication transparency enables more flexible
application architectures and simplifies both development and operations.

4.2.3 Resource Availability Transparency

Current container orchestration technologies restrict services to using only the
resources available within their own cluster. This limitation applies both during
initial deployment and subsequent scaling operations. As a result, services may
experience disruptions due to resource constraints in one cluster, even when abun-
dant resources are available in adjacent clusters within the same administrative
domain.

This problem, while less significant in cloud datacenters with virtually unlimited
resources, becomes critical in edge environments where resources are inherently
limited. Edge deployments typically comprise a small number of servers with
constrained capabilities, making the ability to leverage nearby resources crucial for
maintaining service quality.

FLUIDOS overcomes this limitation by creating a virtual computing space that
spans multiple physical domains. Services running in this virtual space can access
all resources belonging to the same virtual domain, regardless of physical location.
This capability enables seamless scaling based on resource availability across the
entire virtual infrastructure.

For example, a service might automatically expand to have instances running
simultaneously at the telco edge and in cloud datacenters, effectively erasing
traditional cluster boundaries. This resource availability transparency maximizes
infrastructure utilization and resilience, particularly important for edge computing
scenarios where resources may be limited and heterogeneous.

53

FLUIDOS

4.3 Technology Foundation

4.3.1 Kubernetes as the Substrate
FLUIDOS adopts Kubernetes as its technological foundation, a choice driven by
several compelling factors. Kubernetes has emerged as the de facto standard
for container orchestration, offering a robust platform for managing container-
ized applications at scale [22]. Its adoption by FLUIDOS leverages several key
advantages:

Kubernetes provides a cloud-native approach to application deployment and
management, offering unprecedented agility and efficiency compared to traditional
virtual machine-based systems. Its scalability allows applications to expand across
numerous servers within a cluster, handling substantial traffic loads without down-
time. The platform’s portability means it functions across various environments,
from on-premises installations to multiple cloud providers [23].

Particularly relevant for FLUIDOS is Kubernetes’ support for deployments across
varying scales. Different Kubernetes distributions accommodate both large-scale
deployments in cloud datacenters and small-scale implementations on resource-
constrained edge devices, making it an ideal candidate for building the meta-
operating system concept that FLUIDOS represents [32].

Additionally, Kubernetes offers flexibility through its extensive feature set for
managing containerized applications, including scaling, deployment, updates, and
monitoring capabilities, while supporting various container runtimes. Its resource
optimization automatically allocates containers based on available resources and
workload demands, a critical feature for the resource-constrained environments
often found at the edge [21].

The platform’s robust community support has created a rich ecosystem of add-
ons and tools that FLUIDOS can leverage and extend. However, while Kubernetes
forms the technological foundation, the FLUIDOS architecture and its proof-of-
concept components are designed with broader applicability in mind, potentially
enabling their reuse with alternative technological substrates.

4.4 FLUIDOS Architecture
The FLUIDOS architecture embodies several fundamental characteristics that
define its approach to distributed computing:

• Intent-driven design allows consumers to assign execution constraints to
workloads through high-level policies without requiring knowledge of infras-
tructural details. This approach extends the "cattle service model" to a broader

54

FLUIDOS

scale, treating computational resources as interchangeable units rather than
unique entities requiring individual attention.

• Decentralized architecture creates a resource continuum through a peer-
to-peer approach without central control points, management entities, or
intrinsically privileged members. Following a decentralized model similar to
the Internet, FLUIDOS fosters coexistence among various actors, from large
cloud providers to territory-linked enterprises and small office/home owners.

• Multi-ownership support ensures each actor maintains full control over
their infrastructure while deciding what resources and services to share and
with whom. While individual clusters typically remain under single-entity
control, the entire resource continuum spans different administrative domains.

• Fluid topology allows members to join or leave the virtual continuum at
any time, regardless of infrastructure size, accommodating everything from
enterprise-grade data centers to IoT and personal devices.

The FLUIDOS architecture consists of two main components: Nodes and
Catalogs. While Nodes form the fundamental building blocks of the ecosystem,
Catalogs are optional components that facilitate cross-domain interactions and
provide user interfaces for public access [27].

4.4.1 FLUIDOS Node
A FLUIDOS Node represents a unique computing environment under the control of a
single administrative entity. Multiple Nodes can exist under different administrative
controls, allowing for a decentralized ecosystem. Each Node comprises one or more
machines modeled with a common, extensible set of primitives that abstract the
underlying details while exposing significant distinctive features.

In practical terms, a FLUIDOS Node is orchestrated by a single Kubernetes
control plane and can consist of either a standalone device or a collection of
devices such as those found in a datacenter. While device homogeneity simplifies
management, it is not a requirement within a Node. Essentially, a FLUIDOS Node
corresponds to a Kubernetes cluster extended with FLUIDOS-specific capabilities.

A FLUIDOS Node encapsulates a set of resources including computing, storage,
networking, and accelerators, along with software services that can be utilized
locally or shared with other nodes. Each Node features autonomous orchestration
capabilities, accepting workload requests, executing jobs on administered resources
when requirements and security policies are met, and maintaining a consistent set
of policies for inter-node interactions.

55

FLUIDOS

4.4.2 FLUIDOS Supernode
A FLUIDOS Supernode serves as a gateway for domain nodes lacking direct Internet
access or knowledge of other domains. While functioning similarly to standard
nodes, Supernodes possess knowledge of other domains or catalogs for interaction.
These interactions utilize the same protocols and components as regular node
communications, though the sources and destinations of information differ [27].

Beyond their gateway function, Supernodes act as aggregation points in the
information distribution chain. Their specific tasks are detailed in component
documentation, while their interactions are evident in workflows spanning multiple
domains.

4.5 Liqo
Liqo forms an integral part of the FLUIDOS ecosystem, providing the technical
foundation for virtual cluster federation. Developed as an open-source project, Liqo
enables dynamic and seamless resource sharing across multiple Kubernetes clusters,
creating a unified virtual cluster that presents itself as a single entity to users [33].

4.5.1 Virtual Cluster Federation
Liqo’s federation capabilities allow FLUIDOS to create virtual clusters that span
physical boundaries. Through Liqo, a Kubernetes cluster can dynamically extend
its capacity by leveraging resources from other clusters. This extension process is
transparent to users and applications, which continue to interact with what appears
to be a single cluster.

The federation process works through a peering mechanism that establishes
trust relationships between clusters. Once peered, clusters can share resources
based on configurable policies that define what resources are shared, with whom,
and under what conditions. This capability is fundamental to FLUIDOS’s goal of
creating a fluid computing continuum that spans from edge to cloud.

4.5.2 Resource Offloading
Liqo implements a resource offloading mechanism that enables workloads to be
scheduled on remote clusters. This process is handled transparently by extending
the Kubernetes scheduler with awareness of remote resources. When local resources
are insufficient or when specific capabilities are required that are only available
in remote clusters, Liqo can offload workloads while maintaining their logical
association with the home cluster.

56

FLUIDOS

4.6 FLUIDOS Node Architecture

The FLUIDOS node architecture builds upon Kubernetes, leveraging its ability to
abstract underlying physical resources and capabilities in a uniform way regardless
of whether dealing with single devices or full-fledged clusters. This foundation
provides standard interfaces for resource consumption while extending Kubernetes
with new control logic responsible for node-to-node interactions and enabling
advanced policies and intents that are not natively supported by the orchestrator.

Figure 4.1: FLUIDOS node architecture

4.6.1 Core Components

The architecture revolves around two central elements: the Node Orchestrator
and the Available Resources database. The Node Orchestrator manages service
requests across local and remote nodes within the same fluid domain, coordinates
interactions with both local components and remote nodes, and ensures services
adhere to trust and security relationships. The Available Resources database
maintains current information about resources and services available locally or
acquired from remote nodes.

Beyond these central elements, several specialized modules extend the function-
ality of a FLUIDOS node:

57

FLUIDOS

Discovery Manager

The Discovery Manager is responsible for identifying other FLUIDOS nodes, main-
taining a local database of feasible peering candidates. Each candidate is charac-
terized by:

• A globally unique identifier

• Parameters necessary for peering and resource acquisition (e.g., network
endpoints)

• Distinguishing features (geographical location, resource availability, hardware
capabilities, software services)

• Optional pricing and billing models

These features, exposed through generic key-value labels, enable both policy-
driven filtering and a priori ranking during resource acquisition. The Discovery
Manager supports multiple approaches:

• FLUIDOS catalogs - directories of nodes that may be public or require au-
thentication

• Multicast DNS - enabling seamless on-LAN clustering of independent devices

• Manual configuration - a fallback approach when other methods are unsuitable

The discovery process is governed by user-specified policies that determine
whether the current node should be announced through certain approaches and
which discovered peers should be accepted based on capabilities or trust levels.

Node Orchestrator

The Node Orchestrator coordinates service requests, determining whether they
should be executed locally or offloaded to remote FLUIDOS nodes based on the
Available Resources database. It interacts with the Resource Acquisition Manager
to trigger acquisition of new resources when existing ones are insufficient.

Service requests are specified through an intent-driven API, describing desired
outcomes rather than implementation details. Each request includes:

• Soft constraints (desired characteristics with priorities)

• Hard constraints (mandatory requirements)

58

FLUIDOS

These constraints are expressed in high-level service characteristics such as geo-
graphical location, maximum latency, specialized hardware needs, high availability
guarantees, and cost constraints. The Node Orchestrator translates these intents
into actual scheduling decisions with information from telemetry services.

When processing a request, the Node Orchestrator selects the target FLUIDOS
node based on specified constraints by consulting the Available Resources database.
If no suitable resources are found, it triggers the Resource Acquisition Manager to
query peering candidates. Ultimately, it either schedules the workload locally or
offloads it to a remote node through the remote service handler.

Resource Acquisition Manager

The Resource Acquisition Manager negotiates the acquisition of resources and
services from remote FLUIDOS nodes. It can be triggered proactively based on
policies to ensure future resource availability or reactively by the Node Orchestrator
when matching resources are unavailable for a service request.

The process begins by consulting the peering candidates database, filtered and
ranked based on service characteristics. The module then sends resource requests to
selected candidates, specifying required capabilities and constraints. These requests
are handled by the resource exporter module on the counterpart cluster, which may
offer matching resources, a subset, or a superset based on availability and policies.

Different business models are supported, including:

• Reserved resources - dedicated to the requesting node and billed regardless of
consumption

• Pay-per-use - charging only for resources actually consumed without guaran-
teeing continuous availability

Upon receiving offers, the Resource Acquisition Manager filters and ranks them
based on user-defined policies, accepting those that best match requirements. The
Contract Manager then formalizes the exchange, potentially using smart contracts,
and adds acquired resources to the Available Resources database.

4.6.2 REAR - Resource Exchange And Registration
The REAR (Resource Exchange And Registration)[34] component serves as the uni-
fied interface through which FLUIDOS nodes exchange information about available
resources and services. Acting as an intermediary layer between discovery protocols
and the Node Orchestrator, REAR standardizes the resource advertisement and
discovery processes regardless of the underlying protocol implementation.

REAR provides a consistent API for:

59

FLUIDOS

• Publishing node capabilities and available resources

• Discovering other nodes and their advertised resources

• Establishing initial communication channels for subsequent resource negotia-
tions

• Maintaining up-to-date information about the resource landscape

This abstraction enables FLUIDOS to support multiple discovery mechanisms
simultaneously, each optimized for different network environments while presenting a
unified view to higher-level components. All discovered cluster information is stored
in KnownCluster Custom Resource Definitions (CRDs), which include essential
connection details such as IP addresses and ports for inter-cluster communication.

Virtual Fabric Manager

The Virtual Fabric Manager establishes the computing continuum abstractions
that enable seamless execution of workloads across multiple nodes. Once a resource
offer is accepted, it sets up the virtual node abstraction along with network and
storage fabrics through interaction with the remote node.

This functionality is provided by Liqo, a project that extends Kubernetes
abstractions to multi-cluster scenarios in three main directions:

• Virtual Node: Abstracts a remote FLUIDOS node as a local Kubernetes
node, synchronizing necessary artifacts to enable seamless remote execution
of unmodified workloads.

• Network Fabric: Ensures transparent and secure communication between
workloads spread across multiple nodes, automatically managing potential
conflicts such as overlapping address spaces.

• Storage Fabric: Enables a data continuum allowing workloads to attach to
data lakes on the hosting node, following the data gravity approach to prevent
expensive data migration and comply with regulatory requirements.

Privacy and Security Manager

The Privacy and Security Manager guarantees the security of all parties involved in
the resource continuum. It works with the Trust and Security Agent, a component
on each FLUIDOS node that certifies the correctness of predefined operations.

During node discovery, it ensures the trustworthiness of advertised features
through appropriate proof mechanisms. For resource acquisition, it leverages a

60

FLUIDOS

rating and metrics database to filter and rank peering candidates based on previous
experiences.

The manager ensures security from both perspectives:

• Host perspective: Guarantees that offloaded workloads do not harm the local
system by confining related workloads in dedicated sandboxes with appropriate
limitations on resource consumption, operations, and network connectivity. It
also prevents side-channel attacks and supervises the provisioning of additional
security mechanisms.

• Guest perspective: Provides guarantees that offloaded workloads are ex-
ecuted correctly without tampering and that telemetry data from hosting
nodes is accurate. This information enriches the reputation value of specific
nodes for future resource acquisition decisions.

The manager also handles Security Orchestration, dynamically selecting and
configuring security services through interactions with the local orchestrator and
telemetry services.

Telemetry Service

The Telemetry Service monitors infrastructure components, collecting observability
parameters crucial for enforcing and verifying workload requirements. It consists
of:

• Local Telemetry Service: Monitors the performance of the local node to
determine locally available resources.

• Remote Telemetry Service: Exposes aggregated information about guest
workloads to their original nodes, enabling monitoring of execution and verifi-
cation of SLA compliance.

The Remote Trust and Security Agent plays a key role in preventing nodes from
misrepresenting application performance. The collected monitoring data enriches
the ratings and metrics database, influencing future resource acquisition decisions.

Cost Manager

The Cost Manager evaluates the burdens of computational workloads on nodes,
considering both monetary and non-monetary factors. Three primary cost functions
have been identified:

• Operational monetary costs

61

FLUIDOS

• Environmental costs, particularly carbon emissions

• Hardware production monetary costs

The cost function is designed to be generic and parameterizable to accommodate
multiple cost types. The manager works closely with the local resource manager to
monitor resources and sensors on machines and access external data such as the
carbon intensity of local electricity grids.

4.7 Discovery Protocols
Central to the FLUIDOS architecture are the discovery protocols that enable nodes
to find and connect with each other. These protocols form the primary subject of
this thesis and are critical for establishing the dynamic, peer-to-peer network that
underlies the FLUIDOS ecosystem.

The discovery protocols in FLUIDOS must operate across diverse network
environments, including scenarios with limited connectivity, NAT traversal require-
ments, and varying levels of network quality. Two primary approaches have been
implemented and evaluated:

4.7.1 Network Manager
The Network Manager implements a multicast-based discovery protocol that allows
FLUIDOS nodes to announce their presence and capabilities to other nodes on the
network. It leverages multicast for local network discovery. Its implementation
sends announcement messages at 5s intervals, while garbage collection removes
stale entries after 20s. The main limitation of this approach is its limitation to
private network environments due to multicast restrictions on the public Internet.

Key features of the Network Manager include:

• Self-announcement through periodic multicast messages

• Capability advertisement including resource availability

• Automated peer management and garbage collection

4.7.2 Neuropil
Neuropil[35] implements a DHT-based discovery approach that provides a more
scalable solution for large-scale deployments. Based on a distributed hash table
architecture, Neuropil creates a structured overlay network based on the Tapestry
DHT that enables efficient node discovery without relying on broadcast or multicast

62

FLUIDOS

mechanisms, allowing its operation across the public Internet and in churn scenarios.
Furthermore, Neuropil provides end-to-end encryption for secure communication
between nodes, ensuring data privacy and integrity.

Key features of Neuropil include:

• Decentralized node discovery without central coordination

• Structured overlay network for efficient routing

• End-to-end encryption for secure communication

• Resilience to network partitions and churn scenarios

63

Chapter 5

Evaluation Framework and
Implementation

This chapter presents the design and implementation of the evaluation framework.
The benchmarking tool is developed in Python, which leverages the Kubernetes
Python client library to interact with the Kubernetes API.

5.1 Framework Design
A structured methodology was defined and followed in the design process:

1. Definition of specific use cases and their related requirements

2. Formulation of meaningful metrics for protocol evaluation

3. Development of benchmarking and automation tools

4. Collection and analysis of experimental data

As described in chapter 1, the primary FLUIDOS use case considered in this work
involves offloading intensive computation from battery-powered UGVs to extend
battery life while enabling more complex processing tasks. Vehicle-infrastructure
communications represent another promising application area, potentially enabling
autonomous driving, traffic management, and similar services. Both scenarios
involve challenging network conditions, with robots or vehicles operating in remote
areas, moving at high speeds or scenarios with many devices generating interference.

It is not possible to define specific figures that can be considered bad network
conditions, as these can vary significantly depending on the specific use case.
Research in connected vehicles offers some insights into 5G network performance,

64

Evaluation Framework and Implementation

but these are relevant for a specific setup-e.g 5G in motorway section[36]. For this
reason, the evaluation considers different steps of network degradation, starting
from the default network conditions and gradually increasing packet loss to 5%, 10%,
and 25%, in order to test the behaviour of the discovery protocols under different
scenarios. The final user of FLUIDOS, being aware of the network conditions in
which their system will operate, can choose the most suitable protocol for their
specific use case.

The metrics to be collected during the evaluation are as follows:

1. Node discovery time: Measurement of the time required for a device to
discover another cluster

2. Graceful exit time: Evaluation of how long it takes for a device to inten-
tionally leave the network and communicate its departure to other nodes

3. Node failure detection time: Assessment of how quickly the network
detects when a node is no longer online (e.g., by tracking Time-To-Live
expirations)

4. Multi-tenancy capability: Evaluation of each protocol’s ability to:

• Support multiple simultaneous network groups

• Allow devices to belong to multiple groups concurrently

• Manage cross-group discovery and communication

For computational offloading to occur, the client device must first discover an
available cluster. From a user perspective, what matters is the time elapsed from
starting the robot until it can begin offloading computation tasks. The evaluation
therefore measures the interval between the activation of the discovery application
pod and the receipt of information about an available cluster (specifically, its IP
address and port).

The implementation begins with a minimal test configuration: direct communi-
cation between two computation clusters, each running a FLUIDOS node. This
approach allows testing basic functionality before proceeding to more complex
scenarios such as scalability testing. The testing process is automated by resetting
conditions in Kubernetes to simulate a fresh FLUIDOS node starting, enabling
statistical analysis of protocol behavior across multiple trials.

65

Evaluation Framework and Implementation

5.2 Testbed Setup
The testing environment consists of two Ubuntu 20.04 virtual machines, each
configured with 4 vCPUs and 4GB RAM. While virtualization offers considerable
flexibility, it also imposes certain networking limitations. For simplicity, network
connectivity between the VMs is treated as a black box that allows them to
communicate as if they were on the same Layer 2 network. The virtual machines
run K3S instances as the orchestrator, selected for its low resource requirements
[37].

The network configuration is particularly critical for the multicast-based Network
Manager protocol. Standard Kubernetes pods receive a single virtual interface,
but through the Multus meta-plugin[38], multiple interfaces can be assigned to
a pod. Since Kubernetes networking does not natively support multicast, the
NetworkManager implementation uses Multus to create a secondary interface
running macvlan in bridge mode.

Figure 5.1: Scheme of the macvlan bridge mode [39]

Macvlan creates multiple interfaces with different Layer 2 MAC addresses on
a single physical interface. In bridge mode, it connects all endpoints through the
physical interface, as shown in fig. 5.1. This configuration enables multicast traffic
to flow between FLUIDOS nodes within the same LAN.

66

Evaluation Framework and Implementation

Figure 5.2 illustrates the complete virtual machine setup used for testing.

VM1

Fluidos Node

NetworkManager

VM2ens18
mac-vlan

ens18
mac-vlan

Linux network stack

eth1
10.200.0.101/24

eth0
10.42.0.x/24

cni0

Fluidos Node

NetworkManager

eth1
10.201.0.101/24

eth0
10.42.0.x/24

cni0

vm
pod

Figure 5.2: VM setup for testing

5.3 Relevant FLUIDOS Components and CRDs
In the FLUIDOS architecture, information about available clusters is stored in a
Custom Resource Definition called KnownCluster. An example instance is shown
below:

1 Name: knowncluster - zygjltygdu
2 Namespace : fluidos
3 Labels : <none >
4 Annotations : <none >
5 API Version : network . fluidos .eu/ v1alpha1
6 Kind: KnownCluster
7 Metadata :
8 Creation Timestamp : 2025 -02 -10 T20 :05:05 Z
9 Generation : 1

10 Resource Version : 10951929
11 UID:

f9e9ff74 -9df1 -4d49 -92b6 - eb51c4aa98b6
12 Spec:
13 Address : 172.18.0.8:30000
14 Status :
15 Expiration Time: 2025 -03 -03 T11 :05:25 Z
16 Last Update Time: 2025 -03 -03 T11 :05:15 Z
17 Events : <none >

67

Evaluation Framework and Implementation

Listing 5.1: Example of a KnownCluster CRD instance

The key fields in this resource are Address, which contains the cluster’s IP
address and port for REAR, and the Status fields that implement a timeout
mechanism through Expiration Time and Last Update Time.

For discovery services, FLUIDOS employs two different Kubernetes controller
types: DaemonSet for the multicast-based NetworkManager and Deployment for
the DHT-based Neuropil implementation.

A critical aspect of the implementation involves controlling pod count for testing
purposes. This will be expanded upon in the next section

5.4 Benchmark Implementation
The benchmarking tool measures the time interval from discovery pod initializa-
tion until the detection of an available cluster (indicated by the creation of a
KnownCluster resource). The benchmark process follows this sequence:

1. Scale down all discovery pods to zero

2. Delete existing KnownCluster resources and events to establish clean test
conditions

3. Start the discovery pod and begin timing

4. Monitor for KnownCluster resource creation, then stop timing

5. Repeat multiple times to generate statistically significant results

While simply deleting the previous pod and allowing Kubernetes to recreate it
might seem sufficient, this approach would not provide adequate control over the
testing process. Instead, the implementation employs specialized patch operations
for both resource types to ensure the pod count is set to zero while other operations,
such as the deletion of other resources before the next test run, are executed.

For the DaemonSet, the node selector is modified with a non-existent label:

1 def disable_daemonset ():
2 """ Patch the DaemonSet to add a non - existent node label

(disable it)."""
3 patch = [
4 {
5 "op": "add",

68

Evaluation Framework and Implementation

6 "path ": "/ spec/ template /spec/ nodeSelector ",
7 "value ": {"non -existent -label ": "true "}
8 }
9]

10 v1_daemonset . patch_namespaced_daemon_set (daemonset_name ,
11 namespace ,
12 patch)
13 print (" DaemonSet disabled (non - existent node label

applied).")

Listing 5.2: Function to disable the daemonset

For the Deployment, the replica count is directly set to zero:

1 def disable_neuropil ():
2 """ Scale down the Neuropil deployment to 0 replicas ."""
3 patch = [
4 {
5 "op": " replace ",
6 "path ": "/ spec/ replicas ",
7 "value ": 0
8 }
9]

10 v1_deployment . patch_namespaced_deployment (np_deployment ,
11 namespace ,
12 patch)
13 print (" Neuropil deployment scaled down to 0 replicas .")

Listing 5.3: Function to disable the deployment

When initiating services for testing, similar functions perform the inverse opera-
tions. To capture timing data, the implementation uses Kubernetes’ watch API to
monitor for resource creation:

1 def watch_for_first_cr_creation (mode):
2 """ Watch for the creation of the first KnownClusters CR
3 and measure the time it takes ."""
4 creation_time = None
5 start_time = datetime .now ()
6 if mode == " netman ":
7 enable_daemonset ()
8 else: # mode == " neuropil "
9 enable_neuropil ()

10 w = watch.Watch ()

69

Evaluation Framework and Implementation

11 print (" Watching for the creation of the first
KnownClusters CR ...")

12

13 for event in
w. stream (v1_custom . list_namespaced_custom_object ,

14 group= cr_api_group ,
15 version = cr_api_version ,
16 namespace =namespace ,
17 plural = cr_kind_plural):
18 if event['type '] == 'ADDED ':
19 cr_name = event['object '][' metadata '][' name ']
20 print(f" Detected creation of KnownClusters CR:

{ cr_name }")
21 creation_time = datetime .now () - start_time
22 w.stop () # Stop the watch as we only need the

first CR creation
23 break
24 F.write(f"{ creation_time . total_seconds ()}\n")
25 F.flush ()
26 return creation_time

Listing 5.4: Function to watch for the creation of the KnownCluster CR

This process is repeated multiple times to generate statistically significant results.

5.5 Network Condition Emulation
Testing under default network conditions requires no modifications to the FLUIDOS
node configuration. However, evaluating performance under degraded network
scenarios necessitates additional implementation steps. The Linux Traffic Control
(tc) command with the netem module is employed to simulate adverse network
conditions, introducing controlled delay and packet loss.

The netem module affects outgoing packets from the interfaces to which it is
applied. This means that in a two node setup, node A and node B, if the measures
are taken on node A then the netem conditions have to be applied on the interface
on node B. Applying these conditions requires direct access to container network
interfaces, which presents a significant challenge: containers typically lack the
necessary permissions to modify network settings due to security restrictions.

Since FLUIDOS nodes are deployed using Helm charts (a package management
solution for Kubernetes applications), the _helpers.tpl file was modified to grant

70

Evaluation Framework and Implementation

the required permissions. The security constraints were removed and the container
was given root access with NET_ADMIN capabilities:

1 ...
2 {{/*
3 Get the Pod security context
4 */}}
5 {{- define " fluidos . podSecurityContext " -}}
6 # runAsNonRoot : true
7 # runAsUser : 1000
8 # runAsGroup : 1000
9 # fsGroup : 1000

10 {{- end -}}
11

12 {{/*
13 Get the Container security context
14 */}}
15 {{- define " fluidos . containerSecurityContext " -}}
16 runAsUser : 0 # Runs the container as the root user
17 runAsGroup : 0 # Runs the container as the root group
18 capabilities :
19 add:
20 - NET_ADMIN # Grants the container permission to

modify network interfaces
21 allowPrivilegeEscalation : true
22 {{- end -}}

Listing 5.5: Configuration to allow for network conditions modifications

To avoid manual configuration of network conditions for each test iteration,
the pod manifest fluidos-network-manager-daemonset.yaml was modified to
automatically configure the network when starting:

1 command : ["/ bin/sh", "-c"]
2 args:
3 - |
4 apk add --no -cache iproute2 &&
5 tc qdisc add dev eth1 root netem loss 10% &&
6 /usr/bin/network - manager \

Listing 5.6: Modified manifest to automatically configure packet loss, in this case
10%

This approach enables automated testing under consistent adverse network

71

Evaluation Framework and Implementation

conditions, ensuring reproducibility and reliability across all experiments.

72

Chapter 6

Results

This chapter presents the experimental results obtained from benchmarking FLUI-
DOS discovery protocols under various network conditions and deployment scenarios.
As mentioned in chapter 5, a two node VM setup was used for the initial testing of
the protocols and compared with test runs obtained from physical machines, then
the number of nodes was increased to evaluate the scalability of the protocols.

6.1 General results

Before presenting the results, some considerations regarding the evaluation metrics
defined in section 5.1 are necessary.

Due to the current implementation of the protocols, some functionalities were
not available.

• No graceful leave mechanisms are currently present in either protocol.

• In the case of Network Manager, the KnownCluster CRs are deleted after 20s,
while in Neuropil no cleanup mechanism is present but should be implemented.

• No multi-tenancy support is present for Network Manager,but a workaround
can be achieved by using defined multicast channels for each tenant, while
Neuropil has authorization and authentication mechanisms in place.

With these considerations in mind, the following section present a deep dive
into the analysis of the node discovery times for the two protocols under different
network conditions.

73

Results

6.2 Multicast-based results

The multicast-based discovery protocol, implemented through Network Manager,
was tested first with the 2 VMs setup presented in fig. 5.2, consisting of two nodes
that will be from now on referred as node A and node B. During testing node A
has its discovery pod stopped and started as each test run is started, while node B
remains running. The discovery time is measured as the time it takes for node A
to discover node B.

Before going to the the figures and results, it is important to note that the
implementation on Network Manager sends the multicast announce message every
5s. This is relevant to the results, as the implementation of the benchmark tool
presented in chapter 5 aligns its measures to this time interval: the absolute first
run of the tool is not considered in the results, as it starts at a random time
with respect to the last received announce message. This applies to all the tests
presented in this works, except for the scalability tests.

After receiving the announce message and creating the KnownCluster CR, the
benchmark sends a request to Kubernetes to destroy the discovery pod and waits
an arbitrary amount of time sleep_time by calling the time.sleep(sleep_time)
function, before starting the next run. For the figures presented in this chapter, if
not otherwise stated, the sleep_time was set to 2s.

The first test was conducted under default network conditions, with no packet
loss. Figure 6.1 shows the distribution of discovery times for the multicast-based
protocol run on the VM setup. The results show an almost normal distribution
with a peak around 2.968s.

To verify if this behaviour depends on the deployment scenario, the same test
was run on a bare-metal setup, consisting of two physical machines running a 4-core
Intel N100 CPU, 16GB of DDR5 RAM and a 500GB SSD drive, connected to
the same switch. From fig. 6.2, it can be seen that the distribution of discovery
times is different compared from the one on the VM, showing a more uniform
distribution with a 100ms difference between the minimum and maximum discovery
time, while on the VM setup the difference is in the order of magnitude of tenths of
milliseconds. This results is most probably due to virtualization, but the difference
between the two setups is not deemed significant for the end user.

74

Results

2.956 2.958 2.960 2.962 2.964 2.966 2.968 2.970 2.972
Time (s)

0

2

4

6

8

10

12

14

16

18

Fr
eq

ue
nc

y
(c

ou
nt

)

Multicast-based Protocol - Ideal network - VM

Figure 6.1: Discovery time distribution for multicast-based protocol under default
network conditions (VM deployment)

2.82 2.84 2.86 2.88 2.90 2.92
Time (s)

0

2

4

6

8

10

Fr
eq

ue
nc

y
(c

ou
nt

)

Multicast-based Protocol - Ideal network - Baremetal

Figure 6.2: Discovery time distribution for multicast-based protocol under default
network conditions (bare-metal deployment)

Having achieved a baseline for the multicast-based protocol, the next step is to

75

Results

test it under bad networking conditions. The test was conducted with 5%, 10%
and 25% packet loss. The last measure, despite being over the conditions limits
discussed in the introduction of this thesis, is interesting to see the behavior of
the protocol under extreme conditions. The impact of packet loss is expected to
increase discovery times by 5s for each lost announce message. Naturally as packet
loss increases, the more announce messages are lost and the longer the discovery
time. The results are shown in figs. 6.6 to 6.8 for the tests run on the VM setup,
while figs. 6.3 to 6.5, show the results obtained from the bare-metal setup.

0 1 2 3 4 5 6 7 8 9
Time (s)

0

10

20

30

40

50

60

Fr
eq

ue
nc

y
(c

ou
nt

)

Multicast-based Protocol - 5% Packet Loss - Baremetal

Figure 6.3: Discovery time with 5% packet loss (bare-metal deployment)

76

Results

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time (s)

0

10

20

30

40

50

60
Fr

eq
ue

nc
y

(c
ou

nt
)

Multicast-based Protocol - 10% Packet Loss - Baremetal

Figure 6.4: Discovery time with 10% packet loss (bare-metal deployment)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Time (s)

0

10

20

30

40

50

60

Fr
eq

ue
nc

y
(c

ou
nt

)

Multicast-based Protocol - 25% Packet Loss - Baremetal

Figure 6.5: Discovery time with 25% packet loss (bare-metal deployment)

The results are in line with the expectations. As can be seen starting from
fig. 6.3 the majority of samples cluster around 2.9s as per the baseline test, but
some of the samples are instead clustered around 7.9s, which is the expected time
increased by 5s meaning that in these cases the first announce message was lost

77

Results

and was instead received at the second attempt.

This behaviour is more pronounced as the packet loss increases. From fig. 6.5 it
can be seen as a higher percentage of samples cluster around (2.9 + k · 5)s with
k ∈ N, and the worst samples in terms of discovery time achieve discovery at 18s.

Nonetheless, the protocol is still able to discover the other node, and more
importantly, the discovery takes less than 20s. This is relevant as the implementation
of Network Manager cleans up the KnownCluster CRs after 20s and if the protocol
took more than this time there would be time intervals in which node A would not
see node B as available.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time (s)

0

20

40

60

80

Fr
eq

ue
nc

y
(c

ou
nt

)

Multicast-based Protocol - 5% Packet Loss - VM

Figure 6.6: Discovery time distribution with 5% packet loss

78

Results

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time (s)

0

20

40

60

80
Fr

eq
ue

nc
y

(c
ou

nt
)

Multicast-based Protocol - 10% Packet Loss - VM

Figure 6.7: Discovery time with 10% packet loss

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Time (s)

0

10

20

30

40

50

60

70

Fr
eq

ue
nc

y
(c

ou
nt

)

Multicast-based Protocol - 25% Packet Loss - VM

Figure 6.8: Discovery time with 25% packet loss

Test runs on the VM setup show similar results. The trend of clustering around
baseline and increasing by 5s for each lost announce message is still present.

The differences with the physical machine results are the distribution of samples,
which follows the results already seen in fig. 6.1, and the fact that in the 5% packet

79

Results

loss test, the worst case scenario is 12.9s discovery time.

6.3 DHT-based results

The results for the DHT-based discovery protocol, implemented in Neuropil, follow
the same structure as the multicast-based ones. Notice that in this discovery
process the node joins an overlay network by bootstrapping to a node located in
Germany via the public internet, with a latency of 25ms which remained constant
for the durations of the tests.

An outcome of the testing is that the DHT-based protocol in its current im-
plementation is not as reliable as the multicast-based one. Some difficulties were
encountered during testing, such as a bug that did not allow automated testing to
be run for more than 30 minutes, as node B would cease to appear online requiring
its manual reset. From fig. 6.9 it can be seen that the baseline results have a
considerably higher discovery time, with measures ranging from 35s and going up
to more than 60s. As packet loss increases the discovery time increases as well as
seen in fig. 6.10.

30 35 40 45 50 55 60 65
Time (s)

0

5

10

15

20

25

Fr
eq

ue
nc

y
(c

ou
nt

)

DHT-based Protocol - VM

Figure 6.9: Discovery time distribution under default network conditions (VM
deployment)

80

Results

30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Time (s)

0

2

4

6

8

10

12
Fr

eq
ue

nc
y

(c
ou

nt
)

DHT-based Protocol - 10% Packet Loss - VM

Figure 6.10: Discovery time distribution with 10% packet loss

6.4 Scalability results
After establishing the baseline for the two protocols and having tested them in a
two node setup, the next step is the evaluation of their behaviour with a higher
number of nodes.

Running multiple Kubernetes clusters requires a significant amount of resources,
so the tests were run on a machine with Intel(R) Xeon(R) Gold 6442Y CPU with
96 logical cores, 512GB DDR5 RAM and 1.5TB SSD. To reduce the resource
consumption, the clusters were run using Kubernetes in Docker (KinD) [40] which
runs a containerized Kubernetes instance. The setup consists of 24 KinD clusters,
so 24 FLUIDOS nodes, all connected to the same custom docker network, which
behaves as a switch. In this setup, 23 remain always online, while 1 node called
node A is started and stopped for each test run.

The scalability tests were run under default network conditions and with 5%,
10% and 25% packet loss. Each test run consists in gathering the time taken for the
discovery of every new node, corresponding to the creation of a new KnownCluster
CR, until every node is discovered. Since the number of discoverable nodes in a
system with N nodes is N-1, the test run ends when 23 nodes are discovered. Every
test consists of 100 test runs.

figs. 6.11 to 6.14 are line plots for 10 of the 100 runs. The aim of these plots is
to show qualitatively the variability of the discovery times, while statistical results

81

Results

will be provided later in this section. It can be noticed that each individual run
has some inconsistencies in the discovery times, as a particular run that discovers
10 nodes before another does not necessarily discover all the other 23 nodes first.

In default network conditions, it can be qualitatively observed from fig. 6.11 that
the discovery time distribution remains almost constant for each number of nodes
discovered. This cannot be said for bad network conditions, as seen in figs. 6.12
to 6.14 where especially from 20 nodes discovered onwards, the discovery time
variation increases considerably.

0 1 2 3 4 5 6 7
Time (s)

1

5

10

15

20

23

25

23

N
um

be
r

of
 N

od
es

 D
is

co
ve

re
d

Multicast-based - Ideal Network Conditions

Figure 6.11: Network Manager scalability under default network conditions

figs. 6.15 to 6.17 show the scalability results for the DHT-based protocol, Neuropil.
Before commenting the results, notice that bootstrap node located in Germany is
setup in such a way that only 14 nodes are present in its routing table, limiting
the number of nodes that can be discovered with this test setup. The results show
that the current implementation of Neuropil is not yet ready to be released at
scale. fig. 6.15 shows that out of 10 runs, none were able to find all other nodes.
Furthermore, as time progresses, the muximum number of nodes discovered each
run decreases. fig. 6.16 shows the same trend, but in this case out of 10 runs, 3 of
them did not find any other node. Having observed that the protocol currently
does not behave as intended, these test should be repeated in order to obtain data
that is statistically significant.

82

Results

0 1 2 3 4 5 6 7 8 9 10 11 12
Time (s)

1

5

10

15

20

23

25

23
N

um
be

r
of

 N
od

es
 D

is
co

ve
re

d

Multicast-based - 5% packet loss

Figure 6.12: Network Manager scalability with 5% packet loss

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Time (s)

1

5

10

15

20

23

25

23

N
um

be
r

of
 N

od
es

 D
is

co
ve

re
d

Multicast-based - 10% packet loss

Figure 6.13: Network Manager scalability with 10% packet loss

83

Results

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Time (s)

1

5

10

15

20

23

25

23

N
um

be
r

of
 N

od
es

 D
is

co
ve

re
d

Multicast-based - 25% packet loss

Figure 6.14: Network Manager scalability with 25% packet loss

84

Results

40 45 50 55 60 65 70 75 80
Time (s)

1

5

10

12

14

N
um

be
r

of
 N

od
es

 D
is

co
ve

re
d

DHT-based - Ideal Network Conditions

Run 1
Run 2
Run 3
Run 4
Run 5
Run 6
Run 7
Run 8
Run 9
Run 10

Figure 6.15: Neuropil scalability under default network conditions

40 45 50 55 60 65 70 75
Time (s)

1

5

10

12

14

N
um

be
r

of
 N

od
es

 D
is

co
ve

re
d

DHT-based - Ideal Network Conditions 2
Run 1
Run 2
Run 3
Run 4
Run 5
Run 6
Run 7

Figure 6.16: Alternative view of Neuropil scalability under default conditions

85

Results

40 45 50 55 60
Time (s)

1

5

10

12

14

N
um

be
r

of
 N

od
es

 D
is

co
ve

re
d

DHT-based - 10% packet loss
Run 1
Run 2
Run 3
Run 4
Run 5
Run 6
Run 7
Run 8
Run 9

Figure 6.17: Neuropil scalability with 10% packet loss

Figures 6.18 to 6.21 show the box plot analysis of the Network Manager scalability
tests. Results for Neuropil could not be gathered due to the current implementation
of the protocol not allowing for automated testing of its behaviour at scale.

As seen in fig. 6.18, in ideal network conditions the distribution of node discovery
time per number of nodes discovered remains approximately constant. As packet
loss increases, the distribution of discovery times becomes more variable, as shown
in figs. 6.19 and 6.20 , where the interquartile range increases for the same number
of nodes discovered. For example, considering 10 nodes discovered, the interquartile
range in ideal conditions is approximately half compared to the 5% packet loss
case.

Notice that in the 25% packet loss case, shown in fig. 6.21, this behaviour is
not as pronounced for low numbers of nodes discovered and for some cases the
interquartile range is even lower compared to the 5% and 10% packet loss cases. It
is instead more pronounce for higher numbers of nodes discovered, considering in
this case from 18 nodes discovered onwards.

Considering the median values of discovery time for the number of nodes
discovered, it can be seen that the median discovery time increases with higher
packet loss. Analyzing the difference between the median discovery time for 23 nodes
and 1 node, in fig. 6.18 it can be observed to be approximately (7.5− 3)s ≃ 4.5s for
ideal conditions, in fig. 6.19 (10−2.5)s ≃ 7.5s for 5% packet loss, (11−2.5)s ≃ 8.5s

86

Results

for 10% packet loss and finally (16− 3)s ≃ 13s in the case of 25% packet loss as
shown in figs. 6.20 and 6.21.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Discovery Time (s)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

N
um

be
r

of
 N

od
es

 D
is

co
ve

re
d

Multicast-based - Ideal Network Conditions

Figure 6.18: Box plot analysis of Network Manager scalability under default
conditions

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Discovery Time (s)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

N
um

be
r

of
 N

od
es

 D
is

co
ve

re
d

Multicast-based - 5% packet loss

Figure 6.19: Box plot analysis of Network Manager scalability with 5% packet
loss

87

Results

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Discovery Time (s)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

N
um

be
r

of
 N

od
es

 D
is

co
ve

re
d

Multicast-based - 10% packet loss

Figure 6.20: Box plot analysis of Network Manager scalability with 10% packet
loss

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Discovery Time (s)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

N
um

be
r

of
 N

od
es

 D
is

co
ve

re
d

Multicast-based - 25% packet loss

Figure 6.21: Box plot analysis of Network Manager scalability with 25% packet
loss

88

Chapter 7

Conclusions

This thesis has presented a comprehensive evaluation framework for discovery
protocols in the FLUIDOS ecosystem, focusing on comparing the performance of a
multicast-based protocol (Network Manager) and a DHT-based protocol (Neuropil)
under various network conditions and deployment scenarios.

The experimental results demonstrate that the multicast-based protocol provides
reliable and consistent discovery performance across both virtual machine and
bare-metal deployments. Under ideal network conditions, the discovery time
averaged around 2.9 seconds, with minimal variation between deployment scenarios.
As packet loss increased from 5% to 25%, the protocol exhibited a predictable
degradation pattern, with discovery times increasing by approximately 5 seconds
for each lost announce message, but maintaining functionality even under extreme
conditions.

In contrast, the DHT-based protocol showed significantly higher baseline discov-
ery times (35-60 seconds) and less consistent performance. The protocol exhibited
reliability issues during extended testing periods, requiring manual intervention
to maintain functionality. More critically, scalability testing revealed that the cur-
rent implementation of Neuropil is not yet ready for large-scale deployment, with
inconsistent node discovery capabilities and declining performance in multi-node
environments. Nonetheless, the protocol demonstrated potential for improvement,
allowing for discovery of nodes spanning international geographical locations.

Scalability analysis of the multicast-based protocol demonstrated its ability
to maintain relatively consistent discovery times as the network expanded to 24
nodes. The statistical box plot analysis revealed that while the interquartile range
of discovery times increased with higher packet loss, the protocol continued to
function effectively across all tested conditions.

The evaluation framework developed for this study provided a structured ap-
proach to benchmarking discovery protocols in FLUIDOS, enabling automated

89

Conclusions

testing and providing statistical analysis of significant performance metrics. Fur-
thermore, this work will provide from now on a replicable testing methodology
that can be extended to evaluate future discovery protocols and improvements to
existing ones, such as Neuropil.

7.1 Future Work
Based on the findings and limitations of this study, several directions for future
work can be identified. First of all, a re-evaluation of the DHT-based protocol
would be beneficial in a successive release to allow for a more comprehensive
analysis of its performance and reliability. Moreover, the testing setup could be
extended to include more complex network topologies, higher node counts and
different networking scenarios such as high node churn in the network. Finally, the
evaluation framework could be extended to include additional performance metrics
such as network overhead and energy consumption.

90

Bibliography

[1] Eric Brewer. «CAP twelve years later: How the "rules" have changed». In:
Computer 45.2 (2012), pp. 23–29 (cit. on pp. 15, 25).

[2] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. «Conflict-
Free Replicated Data Types». In: Stabilization, Safety, and Security of Dis-
tributed Systems. Springer. 2011, pp. 386–400. doi: 10.1007/978-3-642-
24550-3_29. url: https://link.springer.com/chapter/10.1007/978-
3-642-24550-3_29 (cit. on p. 17).

[3] Nuno Preguiça. Conflict-free Replicated Data Types: An Overview. 2018. arXiv:
1806.10254 [cs.DC]. url: https://arxiv.org/abs/1806.10254 (cit. on
p. 20).

[4] Jim Bauwens and Elisa Gonzalez Boix. «Memory efficient CRDTs in dynamic
environments». In: Proceedings of the 11th ACM SIGPLAN International
Workshop on Virtual Machines and Intermediate Languages. VMIL 2019.
Athens, Greece: Association for Computing Machinery, 2019, pp. 48–57. isbn:
9781450369879. doi: 10.1145/3358504.3361231. url: https://doi.org/
10.1145/3358504.3361231 (cit. on pp. 20, 34, 35, 37).

[5] António Barreto, Hervé Paulino, João A. Silva, and Nuno Preguiça. «PS-
CRDTs: CRDTs in highly volatile environments». In: Future Generation
Computer Systems 141 (2023), pp. 755–767. issn: 0167-739X. doi: https:
//doi.org/10.1016/j.future.2022.12.013. url: https://www.scienc
edirect.com/science/article/pii/S0167739X22004186 (cit. on pp. 20,
34).

[6] David Karger, Eric Lehman, Tom Leighton, Rik Panigrahy, Matthew Levine,
and Daniel Lewin. «Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the World Wide Web». In: (1997), pp. 654–
663 (cit. on pp. 21, 24).

[7] B.Y. Zhao, Ling Huang, J. Stribling, S.C. Rhea, A.D. Joseph, and J.D. Kubia-
towicz. «Tapestry: a resilient global-scale overlay for service deployment». In:
IEEE Journal on Selected Areas in Communications 22.1 (2004), pp. 41–53.
doi: 10.1109/JSAC.2003.818784 (cit. on pp. 21, 22, 34, 35).

91

https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29
https://link.springer.com/chapter/10.1007/978-3-642-24550-3_29
https://link.springer.com/chapter/10.1007/978-3-642-24550-3_29
https://arxiv.org/abs/1806.10254
https://arxiv.org/abs/1806.10254
https://doi.org/10.1145/3358504.3361231
https://doi.org/10.1145/3358504.3361231
https://doi.org/10.1145/3358504.3361231
https://doi.org/https://doi.org/10.1016/j.future.2022.12.013
https://doi.org/https://doi.org/10.1016/j.future.2022.12.013
https://www.sciencedirect.com/science/article/pii/S0167739X22004186
https://www.sciencedirect.com/science/article/pii/S0167739X22004186
https://doi.org/10.1109/JSAC.2003.818784

BIBLIOGRAPHY

[8] Zhonghong Ou, Erkki Harjula, Otso Kassinen, and Mika Ylianttila. «Perfor-
mance evaluation of a Kademlia-based communication-oriented P2P system
under churn». In: Computer Networks 54.4 (2010), pp. 689–705 (cit. on pp. 23,
34, 35).

[9] Avinash Lakshman and Prashant Malik. «Cassandra: A decentralized struc-
tured storage system». In: ACM SIGOPS Operating Systems Review 44.2
(2010), pp. 35–40 (cit. on p. 23).

[10] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,
Howard Sturgis, Dan Swinehart, and Doug Terry. «Epidemic algorithms for
replicated database maintenance». In: Proceedings of the sixth annual ACM
Symposium on Principles of Distributed Computing. 1987, pp. 1–12 (cit. on
p. 24).

[11] Apache Software Foundation. Cassandra Hardware Choices. n.d. url: https:
//cassandra.apache.org/doc/5.0/cassandra/managing/operating/
hardware.html (cit. on pp. 25, 34–36).

[12] U.S.P. Srinivas Aditya, Roshan Singh, Pranav Kumar Singh, and Anshuman
Kalla. «A Survey on Blockchain in Robotics: Issues, Opportunities, Challenges
and Future Directions». In: Journal of Network and Computer Applications
196 (2021), p. 103245. issn: 1084-8045. doi: https://doi.org/10.1016/
j.jnca.2021.103245. url: https://www.sciencedirect.com/science/
article/pii/S1084804521002435 (cit. on pp. 26, 27, 36).

[13] Uber Engineering. How Uber Optimized Cassandra Operations At Scale. n.d.
url: https://www.uber.com/en-IT/blog/how-uber-optimized-cassand
ra-operations-at-scale/ (cit. on p. 34).

[14] Basho Technologies. Riak. n.d. url: https://riak.com (cit. on p. 35).
[15] Alex Khawalid, Dan Acristinii, Hans van Toor, and Eduardo Castelló Ferrer.

«Grex: A Decentralized Hive Mind». In: Ledger 4 (Apr. 2019). doi: 10.5195/
ledger.2019.176. url: https://ledger.pitt.edu/ojs/ledger/article/
view/176 (cit. on p. 36).

[16] Moritz Platt, Johannes Sedlmeir, Daniel Platt, Jiahua Xu, Paolo Tasca, Nikhil
Vadgama, and Juan Ignacio Ibanez. «The Energy Footprint of Blockchain
Consensus Mechanisms Beyond Proof-of-Work». In: 2021 IEEE 21st Interna-
tional Conference on Software Quality, Reliability and Security Companion
(QRS-C). IEEE, Dec. 2021. doi: 10.1109/qrs-c55045.2021.00168. url:
http://dx.doi.org/10.1109/QRS-C55045.2021.00168 (cit. on p. 36).

[17] L. Baird, M. Harmon, and P. Madsen. Hedera: A Governing Council & Public
Hashgraph Network, The Trust Layer of the Internet. Whitepaper. Version 2.1.
Accessed: 2021-11-07. 2021. url: https://hedera.com/hh_whitepaper_v2.
1-20200815.pdf (cit. on p. 36).

92

https://cassandra.apache.org/doc/5.0/cassandra/managing/operating/hardware.html
https://cassandra.apache.org/doc/5.0/cassandra/managing/operating/hardware.html
https://cassandra.apache.org/doc/5.0/cassandra/managing/operating/hardware.html
https://doi.org/https://doi.org/10.1016/j.jnca.2021.103245
https://doi.org/https://doi.org/10.1016/j.jnca.2021.103245
https://www.sciencedirect.com/science/article/pii/S1084804521002435
https://www.sciencedirect.com/science/article/pii/S1084804521002435
https://www.uber.com/en-IT/blog/how-uber-optimized-cassandra-operations-at-scale/
https://www.uber.com/en-IT/blog/how-uber-optimized-cassandra-operations-at-scale/
https://riak.com
https://doi.org/10.5195/ledger.2019.176
https://doi.org/10.5195/ledger.2019.176
https://ledger.pitt.edu/ojs/ledger/article/view/176
https://ledger.pitt.edu/ojs/ledger/article/view/176
https://doi.org/10.1109/qrs-c55045.2021.00168
http://dx.doi.org/10.1109/QRS-C55045.2021.00168
https://hedera.com/hh_whitepaper_v2.1-20200815.pdf
https://hedera.com/hh_whitepaper_v2.1-20200815.pdf

BIBLIOGRAPHY

[18] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John
Wilkes. «Borg, Omega, and Kubernetes: Lessons learned from three container-
management systems over a decade». In: Queue 14.1 (2016), pp. 70–93 (cit. on
p. 38).

[19] Kelsey Hightower, Brendan Burns, and Joe Beda. Kubernetes: The Complete
Guide to Master Kubernetes. O’Reilly Media, 2017 (cit. on p. 39).

[20] Randy Bias, Thomas A Limoncelli, and Christina J Hogan. The Practice of
Cloud System Administration: DevOps and SRE Practices for Web Services.
Vol. 2. Addison-Wesley Professional, 2016 (cit. on p. 39).

[21] Gigi Sayfan. Mastering Kubernetes: Level up your container orchestration
skills with Kubernetes to build, run, secure, and observe large-scale distributed
apps. Packt Publishing, 2021 (cit. on pp. 39, 45, 54).

[22] Brendan Burns, Joe Beda, and Kelsey Hightower. Kubernetes: Up and Run-
ning: Dive into the Future of Infrastructure. O’Reilly Media, 2021 (cit. on
pp. 39, 40, 43, 54).

[23] Marko Luksa. Kubernetes in Action. Manning Publications, 2018 (cit. on
pp. 40, 42, 43, 54).

[24] Kubernetes. Kubernetes API. 2023. url: https://kubernetes.io/docs/
concepts/overview/kubernetes-api/ (cit. on p. 42).

[25] Kubernetes. Cluster Networking. 2023. url: https://kubernetes.io/docs/
concepts/cluster-administration/networking/ (cit. on p. 44).

[26] Kubernetes. Custom Resources. 2023. url: https://kubernetes.io/docs/
concepts/extend-kubernetes/api-extension/custom-resources/ (cit.
on p. 46).

[27] FLUIDOS Project. FLUIDOS Public Deliverables, D2.1 Scenarios, Require-
ments and Reference Architecture – V.1. 2023. url: https://fluidos.eu/
public-deliverables/ (cit. on pp. 47, 51, 53, 55, 56).

[28] Project Calico. Calico Open Source: Networking and Security for Containers,
VMs, and Native Host Workloads. 2023. url: https://www.projectcalico.
org/ (cit. on p. 48).

[29] CoreOS. Flannel: A Network Fabric for Containers. 2023. url: https://
github.com/flannel-io/flannel (cit. on p. 48).

[30] Isovalent. Cilium: eBPF-based Networking, Security, and Observability. 2023.
url: https://cilium.io/ (cit. on p. 48).

[31] Blesson Varghese, Rajkumar Buyya, Nalini Subramanian, and Erol Kendall.
«Computing across the continuum: Challenges and opportunities». In: IEEE
Internet Computing 25.6 (2021), pp. 25–35 (cit. on p. 51).

93

https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://fluidos.eu/public-deliverables/
https://fluidos.eu/public-deliverables/
https://www.projectcalico.org/
https://www.projectcalico.org/
https://github.com/flannel-io/flannel
https://github.com/flannel-io/flannel
https://cilium.io/

BIBLIOGRAPHY

[32] Yuang Liu, Cheng Yang, Li Jiang, Shengli Xie, and Yan Zhang. «Edge
computing for the Internet of Things: A case study». In: IEEE Internet of
Things Journal 6.3 (2019), pp. 4187–4198 (cit. on p. 54).

[33] Liqo Project. Liqo: Dynamic and Seamless Kubernetes Multi-Cluster. 2023.
url: https://liqo.io/ (cit. on p. 56).

[34] FLUIDOS Project. REAR: REsource Allocation and Ranking. 2023. url:
https://github.com/fluidos-project/REAR (cit. on p. 59).

[35] pi-lar GmbH. Neuropil. url: https://www.neuropil.org/tutorial/ (cit.
on p. 62).

[36] Dániel Ficzere, Gábor Soós, Pál Varga, and Zsolt Szalay. «Real-life V2X
Measurement Results for 5G NSA Performance on a High-speed Motorway».
In: 2021 IFIP/IEEE International Symposium on Integrated Network Man-
agement (IM). 2021, pp. 836–841 (cit. on p. 65).

[37] Rancher Labs. K3s Requirements. n.d. url: https://docs.k3s.io/install
ation/requirements?_highlight=requ (cit. on p. 66).

[38] Intel Corporation. Multus CNI: Enabling Multiple Network Interfaces for Pods
in Kubernetes. 2023. url: https://github.com/k8snetworkplumbingwg/
multus-cni (cit. on p. 66).

[39] Red Hat. Introduction to Linux interfaces for virtual networking. 2018. url:
https://developers.redhat.com/blog/2018/10/22/introduction-to-
linux-interfaces-for-virtual-networking#ipvlan (cit. on p. 66).

[40] Kubernetes. Kubernetes in Docker. n.d. url: https://kind.sigs.k8s.io/
(cit. on p. 81).

94

https://liqo.io/
https://github.com/fluidos-project/REAR
https://www.neuropil.org/tutorial/
https://docs.k3s.io/installation/requirements?_highlight=requ
https://docs.k3s.io/installation/requirements?_highlight=requ
https://github.com/k8snetworkplumbingwg/multus-cni
https://github.com/k8snetworkplumbingwg/multus-cni
https://developers.redhat.com/blog/2018/10/22/introduction-to-linux-interfaces-for-virtual-networking#ipvlan
https://developers.redhat.com/blog/2018/10/22/introduction-to-linux-interfaces-for-virtual-networking#ipvlan
https://kind.sigs.k8s.io/

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Objectives
	Outline

	Data Sharing Technologies in Distributed Systems
	Distributed Systems
	The CAP Theorem
	Conflict-Free Replicated Data Types
	State-Based CRDT Counters (CvRDT)
	Operation-Based CRDT Counters (CmRDT)
	CRDTs Metadata

	Distributed Hash Tables
	Consistent Hashing
	Overlay Network
	DHT Routing
	DHT Performance

	Distributed Databases
	Apache Cassandra
	Cassandra Architecture
	Data Replication
	Cassandra Hardware Requirements

	Blockchain
	Blockchain Types
	Blockchain elements
	Blockchain Consensus Algorithms
	Proof of Work
	Proof of Stake
	Practical Byzantine Fault Tolerance
	Blockchain Observations

	Multicast
	Multicast Routing

	Comparison

	Kubernetes
	The Cattle Model and Scalability
	Immutability and Declarative Configuration
	Self-healing Capabilities
	Horizontal Scaling

	Kubernetes Architecture
	Control Plane Components
	Data Plane Components
	API-driven Design

	Kubernetes Fundamental Components
	Pods
	Deployments
	Services
	DaemonSets
	Custom Resources and Controllers

	Kubernetes Networking
	Networking Model Fundamentals
	Container Network Interface
	Pod-to-Pod Communication
	Service Discovery and Load Balancing
	Network Policies and Security
	External Communication

	FLUIDOS
	Introduction
	The FLUIDOS Computing Continuum
	Deployment Transparency
	Communication Transparency
	Resource Availability Transparency

	Technology Foundation
	Kubernetes as the Substrate

	FLUIDOS Architecture
	FLUIDOS Node
	FLUIDOS Supernode

	Liqo
	Virtual Cluster Federation
	Resource Offloading

	FLUIDOS Node Architecture
	Core Components
	REAR - Resource Exchange And Registration

	Discovery Protocols
	Network Manager
	Neuropil

	Evaluation Framework and Implementation
	Framework Design
	Testbed Setup
	Relevant FLUIDOS Components and CRDs
	Benchmark Implementation
	Network Condition Emulation

	Results
	General results
	Multicast-based results
	DHT-based results
	Scalability results

	Conclusions
	Future Work

	Bibliography

