
POLITECNICO DI TORINO
Master Degree course in Ingegneria Informatica (Computer Engineering) -

Computer Networks and Cloud Computing

Master Degree Thesis

Evaluation Of FPGA-based In-band
Telemetry Methodologies For The

Responsible Internet

Supervisors
Prof. Riccardo Sisto
Prof. Fulvio Valenza
Prof. Paola Grosso (UvA)
Dr. Anestis Dalgkitsis (UvA)

Candidate
Luca Cetino

Academic Year 2024-2025

Acknowledgements

I would like to express my sincere gratitude to my technical supervisor, Dr. Anestis
Dalgkitsis, for his guidance throughout every step of this project and for his enthusiasm
for my progresses, which ultimately made me feel like a valuable part of the Multiscale
Networked System research group.

Many thanks to Professor Paola Grosso, who made this international exchange possi-
ble, providing me with an invaluable experience for both my engineering education and
personal growth. Several times, her speech and interventions resulted captivating, inspir-
ing me to dream of becoming a researcher at her level one day.

I also express my gratitude to my supervisor and co-supervisor, Professors Riccardo
Sisto and Fulvio Valenza who believed in me and gave me the opportunity to follow my
interests.

Last but certainly not least, I sincerely thank my loved ones: my family, for shaping
the person I am today and for their unfailing support throughout my academic career;
my life and adventure companion, Sara, whose bright positivity always brings light to my
eyes and heart; and my closest friends, Eugenio and Alessandro, who have grown up with
me and given me priceless memories over the years.

I owe you all so much.

ii

Abstract

As digital infrastructures become increasingly critical to society, concerns over their trust-
worthiness and reliability have gained attention among European policymakers. The con-
cept of Responsible Internet emerges as the next pivotal phase in their evolution, under-
lining the necessity of transparency in networks granting both critical service providers
and everyday users the ability to know where the data they inject into the network are
routed and which chain of providers handles them. To achieve such a goal and contribute
to dismantling the black box nature of networks, we explored In-band Network Telemetry,
a framework for collecting fine-grained metadata about the network’s state with low and
fixed transmission overhead. This technique relies on programmable data planes supported
by modern yet uncommon network devices, such as the FPGA-based SmartNICs. It mod-
ifies packet processing by embedding telemetry operations into the forwarding plane, thus
enabling telemetry data collection without the need for network sampling. In this thesis,
our focus was on developing data plane telemetry solutions utilizing the P4 programming
language, which allows for the flexible programming of network devices, such as FPGAs,
to enable custom packet processing and real-time telemetry data collection directly in the
forwarding plane.

Experimental validation was conducted within the FABRIC International Testbed,
which enables research at scale across scientific domains. This infrastructure supported the
deployment of the experimental programmable topology and allowed to conduct tests to
assess the ability of the telemetry system to operate efficiently while introducing a low and
negligible processing overhead compared to traditional packet processing, with a particular
focus on impact on latency and packet loss. This work contributes to bridging the gap
between network transparency and practical deployment, leveraging cutting-edge testbed
environments and paving the way for more transparent and accountable infrastructures.

Contents

1 Introduction 1
1.1 Existing Network Telemetry Techniques . 3

1.1.1 A Different Approach: In-band Network Telemetry 4
1.2 Programmability Flavors in Networking . 6

1.2.1 Bottom Up Design . 6
1.2.2 Top Down Design . 6

1.3 Thesis Outline . 7
1.3.1 Thesis Structure . 8

2 Technical Background 9
2.1 Field Programmable Gate Arrays and SmartNICs 9

2.1.1 AMD Alveo U280 Datacenter Accelerator SmartNIC 11
2.1.2 Programmable Hardware Switch . 12

2.2 P4: A Language for "Speaking" To Networks 13
2.2.1 XSA - Xilinx Switch Architecture for P4 15
2.2.2 Compiler and Synthesizer . 16

2.3 ESnet Framework . 17
2.3.1 Development Workflow . 18
2.3.2 Deployment Workflow . 18

2.4 FABRIC Testbed . 19
2.4.1 FABlib API . 20
2.4.2 FABRIC Strengths and Limitations 21

3 In-band Network Telemetry Application 23
3.1 Modes of Operation . 24

3.1.1 INT-XD (eXport Data) . 25
3.1.2 INT-MX (eMbed instruct(X)ions) 25
3.1.3 INT-MD (eMbed Data) . 25

ii

3.2 INT Metadata Header . 26
3.3 INT Header Placement . 28
3.4 Telemetry Metadata . 29

3.4.1 Node-level Metadata . 30
3.4.2 Ingress or Egress-level Metadata . 30

3.5 P4 application for Alveo Cards . 31
3.5.1 Headers and Structures . 31
3.5.2 Parser . 34
3.5.3 Processing . 35
3.5.4 Deparser and Pipeline Definition . 38

4 Experimental Evaluation 41
4.1 FABRIC Testbed Topology . 41
4.2 Flashing The Bitfile On The Smartnics . 43
4.3 Smartnic Configuration . 44
4.4 Generating Synthetic Traffic . 46
4.5 Sniffing and Analyzing INT Packets . 47

5 Performance Evaluation 51
5.1 Path Tracing Accuracy . 51
5.2 RTT Degradation Due To Telemetry Operations 53

5.2.1 Results Interpretation . 57
5.2.2 Limitations of the Approach . 58

6 Conclusion 59
6.1 Work Overview . 59
6.2 Challenges and Limitations Encountered . 60

6.2.1 Unsupported P4 Features On Target Platform 60
6.2.2 Unexpected Behaviour Of Metadata Interface 60
6.2.3 Behavioural Simulation . 61

6.3 Future Work . 62

7 Appendix 65
7.1 Jupyter Notebook For FABRIC Slice Deployment 65
7.2 Bash Scripts for SmartNIC Confiuguration 73
7.3 Python Script for Traffic Generation And Analysis 74

iii

Chapter 1

Introduction

The Internet is the technology that evolved into the backbone of modern communication.
Over the decades it became ubiquitous seamlessly interconnecting people and services
with unprecedented performances. Its scale has grown exponentially in terms of inter-
connected devices and the reach of its infrastructure. From its conception, this evolution
has influenced the complexity of computer networks, which face scalability challenges: the
explosive growth in the number of connected devices, the rise of cloud computing and
the emerging needs of ultra-low-latency applications push network infrastructures to their
limits. The digitalization of services which heavily rely on interconnected systems has
made the Internet a critical infrastructure for our society.

The inspiration for this thesis originates from the observation that, despite the diffu-
sion and evolution of Internet technology over the past decades, it still lacks important
properties often overlooked by everyday users and other stakeholders. It is taken for
granted as the technology that supports communications and serves as the foundation
for applications and services, an achievement that represents a remarkable success from
a plug-and-play design perspective. On the other hand, it is the very entity to which we
entrust the management of sensitive data and critical services, despite having little insight
into how it operates and fulfils its duty of delivering packets, much like what is commonly
referred to as a black box. The Internet is not secure by design. It also was not conceived
to be accountable, controllable or, most importantly, transparent in how it handles data
flows. These limitations have driven the need for advanced tools, yet there remains room
for improvement.

The research community proposed the concept of Knowledge Defined Networking
(KDN) with the idea of embedding AI and cognitive systems into the so-called Knowl-
edge Plane of a network [?]. The knowledge plane’s purpose is to construct an advanced
model of the entire system, resulting in an essentially autonomous entity that understands

1

1 – Introduction

what a network is, its purpose (how and why data must flow through it) and its users.
This approach aimed to achieve a self-configurable network based on a set of high-level
instructions, a network capable of automatically recognizing changes and issues, as well
as implementing or suggesting possible solutions. However, KDN is not the only approach
that heavily relies on knowledge about the network’s state. Extracting information from
the network is a fundamental aspect of implementing higher-level management frame-
works.

From a different perspective, the concept of Responsible Internet has emerged with a
more user-centred focus, aiming to establish a global infrastructure that enforces mech-
anisms to enhance transparency, accountability and controllability [?]. A key challenge
in this vision is gaining insights into how data flows traverse a network or a chain of
networks while simultaneously empowering users to choose their dependencies—that is,
the chain of operators handling their data flows, including ISPs, DNS providers, and
cloud services—when relying on the Internet infrastructure. Such a responsible infras-
tructure would also enable the verification and enforcement of compliance with policies
and other constraints expressed by critical service providers (i.e. healthcare system, the
transportation industry and other strategic sectors interconnected through the Internet)
and policymakers. At the same time, it would help dismantle the black box nature of
today’s networks, providing greater transparency and control.

From a technical perspective, the responsible Internet’s architecture introduces a Net-
work Inspection Plane (NIP) and a Network Control Plane (NCP). The NIP is a dis-
tributed system designed to observe, analyze, and describe the data-carrying network
with a particular focus on properties such as the jurisdiction of its providers and the se-
curity measures they implement. The NCP, on the other hand, serves as a sub-system
that enables users to define and express preferences regarding how their data should be
handled and by whom while in transit through the network. Hesselman et al. [?] designed
these components in alignment with the three high-level objectives that structure their
work: transparency and accountability are addressed by the NIP through the network
description it provides, while controllability is the primary goal of the NCP, allowing users
to specify how they want their traffic to be managed. This distinction in roles highlights
how the NIP relies on extracting network insights using different techniques, to generate
and share a transparent network description. Defined as a "machine-readable specification
of the properties and relations of a group of interrelated network operators", including an
operator description, this network description is made available to users. To achieve this,
network telemetry functions have been identified as a viable solution and serve as one of
the two proposed data sources for the NIP, alongside independent observers.

2

1.1 – Existing Network Telemetry Techniques

The introduction of the Responsible Internet concept has opened multiple research
directions and provides the context in which this thesis has been developed. In partic-
ular, the focus is on the data extraction methods to analyse the network from different
perspectives and for various objectives such as providing input for the NIP.

1.1 Existing Network Telemetry Techniques

Network telemetry encompasses a set of techniques designed to offer visibility into network
activity and performance. A subset of this vast field focuses on data flow tracing, while
telemetry can also be applied for monitoring network performance and health status.
Network telemetry is implemented through a wide range of tools, commonly referred to
as Network Management Systems (NMSs), which include:

• SNMP (Simple Network Management Protocol), a widely adopted standard for man-
aging network devices and monitoring their health using a structured database of
management objects called Management Information Base (MIB).

• NetFlow/IPFIX, a protocol introduced by Cisco in 1996 to analyze and monitor IP
traffic while providing network traffic models for bandwidth optimization. It does
not provide packet-level granularity.

• sFlow (sampled flow), a layer 2 packet sampler for network analysis and resource
optimization. It allows the export of truncated packets captured at a low level, along
with interface counters.

Despite being widely used in the industry for network resource optimization and remote
equipment management, traditional NMSs have several limitations, particularly in real-
time, fine-grained data collection.

1. The periodic polling/sampling introduces a stringent trade-off between the overhead
(caused by high sampling frequencies) and the resulting update latency.

2. As networks expand and their topology becomes more complex, monitoring systems
face scalability and overhead challenges, especially as the volume of the analyzed
traffic increases. Implementing a fully distributed, global-scale internet monitoring
system remains unfeasible.

3. Due to their different design goals, traditional NMSs may lack the granularity re-
quired to trace single data flows, which is essential for Responsible Internet observ-
ability.

3

1 – Introduction

4. Above all, they typically require intervention from the control (or management, in
the case of SNMP) plane of the network to export telemetry data.

These constraints highlight the need for an alternative solution to provide more accurate
and scalable data for the NIP. In response to these challenges, the next section introduces
an alternative telemetry approach designed to enhance observability while maintaining
efficiency and scalability.

1.1.1 A Different Approach: In-band Network Telemetry

In-band Network Telemetry (INT) is an innovative and relatively recent framework which
aims to collect real-time, detailed telemetry information, enabling network insights with a
low and fixed processing overhead. It provides fine-grained visibility down to a per-packet
level and allows the extraction of information as

• Path Trace: the path traversed by a packet or a flow of packets

• Network State: at each hop, a snapshot of the local network conditions experienced
by the packet can be collected

• Contributions to the State: information about other flows that have influenced
the observed network state can be included

4

1.1 – Existing Network Telemetry Techniques

Early Work

Millions of Little Minions: Using packets for
low latency network programming and

visibility, Sigcomm 2014

2014 2015 2017 2018 2020

Initial INT Spec P4 Applications
Working Group

Formation

INT v1.0
Dataplane

Specification

INT v2.0
Current INT v2.1

Dataplane
Specification

In-band Network Telemetry via Programmable
Data Planes, Sigcomm 2015 Demo

Figure 1.1. Highlights In INT Framework Evolution - Image Reproduced from [?]

The in-band nature of the telemetry refers to the insertion of metadata and values
within the data-carrying packets that traverse the network as dictated forwarding oper-
ations, even though three different modes of operation have been identified within this
framework (for this and other detailed aspects, see the dedicated section 3.1). By em-
bedding telemetry information directly into the data packets, INT eliminates the need for
an external monitoring channel and operates independently of the control and manage-
ment plane, significantly enhancing the scalability of the approach. INT also allows the
application’s endpoints to remain completely agnostic to the additional operations per-
formed during packet forwarding; this is crucial for enabling a gradual deployment and
adoption by network operators, minimizing the impact on the existing infrastructures and
the standard networking functions.

As shown in the timeline in Figure 1.1, which outlines the key milestones in the evo-
lution of the framework, the development of INT is closely tied to the P4 Applications
Working Group. This organization released the first INT specification 2015 and continued
to maintain and update it (see chapter 3). This close relationship stems from a funda-
mental architectural choice: INT operations are executed directly within the data plane
of network devices, requiring the ability to customize its behaviour and implement ad
hoc operations. This is where P4, a domain-specific language for programming packet

5

1 – Introduction

processors (data plane functionalities) becomes essential.

1.2 Programmability Flavors in Networking

1.2.1 Bottom Up Design

Network programmability is a paradigm that emerged in the context of high-complexity
network monitoring and management. It proposes using abstractions from the underlying
infrastructure to enable automation and dynamicity in network configurations, prioritizing
efficiency. This approach is often referred to as Software Defined Networking (SDN). SDN
enables the centralization of the network "intelligence" into a logical, software-based com-
ponent called a controller, decoupling the forwarding process of network packets (the data
plane) from the routing process and the network control (the control plane). In this dis-
tinction between the two architectural components of a network, the data plane executes
fixed and relatively simple functions, while protocol instances and auxiliary functions that
complement data forwarding are assigned to the flexible control plane. The immediate
advantage of this approach is the enhanced programmability of network control, allow-
ing administrators to optimize, secure, and efficiently manage network resources. while
SDN offers a powerful and flexible architecture for confined networks (LANs), it has the
limitation of leaving the data plane fixed and abstracted from the manager’s point of view.

1.2.2 Top Down Design

A different approach to enriching networks with programmability emerged with the intro-
duction of programmable hardware complemented by domain-specific languages such as
P4. These technologies allow changes to the way the data plane behaves, based on the
custom functions expressed in the code. This opened the door to

• The introduction of new features (e.g. new protocols)

• The reduction of complexity, as unused and legacy protocols can be removed

• Greater efficiency in resource usage, with a flexible use of tables

• Enhanced visibility thanks to new diagnostic and telemetry techniques, as the one
inspected in this thesis

• A software-driven approach with all its benefits, including rapid design cycle, fast
innovation, and the ability to fix data plane bugs in the field

6

1.3 – Thesis Outline

This level of flexibility in the network is what enables the implementation of in-band
network telemetry on hardware, capable of meeting the stringent performance require-
ments imposed by modern network speeds. Programmable network devices include:

• Flexible Match+Action switch ASICs (e.g. Intel Flexpipe, Cisco Doppler,
Cavium (Xpliant), Barefoot Tofino and others)

• DPU (Data Processing Unit), IPU (Infrastructure Processing Unit) and NPU (Net-
work Processing Unit); examples include devices from Pensando, NVIDIA, Netronome,
and Intel.

• FPGA (Field Programmable Gate Arrays) which are discussed later in chapter 2.
This category includes the device used in our INT experiments, manufactured by
Xilinx, although other manufacturers exist, such as Altera.

• traditional CPUs (Control Processing Unit), with applications and tools such as
Open vSwitch, eBPF, DPDK, and VPP.

Switch OS

Run-time API

Driver

Network Demands

Fixed-function ASIC

Switch OS

Run-time API

P4 Driver

Network Demands

Programmable IC

feedback

Figure 1.2. Network Programmability: Bottom-up vs. Top-down. Image Reproduced From [?]

1.3 Thesis Outline

The main contribution of this thesis is the implementation and evaluation of an In-band
Network Telemetry solution on FPGA-based hardware. I designed and deployed a P4
application compliant with the P4.org INT specification and tested it within a research
testbed. This work builds upon previous research by W. S. Petri [?], who inspected P4
programming and porting of P4 compiled artifacts on specific FPGA targets, outlining a

7

1 – Introduction

foundational framework for implementing INT on FPGAs. While Petri demonstrated how
an FPGA could support basic operations, this study extends this work by expanding the
network topology and developing a more comprehensive P4 application aligned with the
P4.org INT specification. In conclusion of this study, performance evaluations to assess
the time overhead introduced by INT-specific operations have been conducted.

Beyond the implementation, this thesis explores a set of techniques and tools for ex-
tracting data flow tracing along with other real-time network insights. The selected frame-
work, enables the collection and reporting of such information by embedding telemetry
operations directly within the data plane. This approach allows state information and
network metadata to be piggybacked onto the actual traffic traversing the network, elimi-
nating the need for a separate monitoring channel. The P4 INT application was deployed
on two FPGAs, whose performances were evaluated in terms of time overhead and their
ability to sustain high traffic rates.

This thesis ultimately aims to develop a proof of concept and demonstrate (INT)
in action through an experimental approach. To achieve this, a network topology is
deployed within the FABRIC testbed, a research infrastructure that enables controlled
experimentation. Within this environment, we define an INT core composed of hardware-
programmable switches, ensuring a practical evaluation of the proposed solution.

1.3.1 Thesis Structure

The following chapters are organized and structured as follows: chapter 2 provides a tech-
nical background on each component of the testbed as well as the tools used to design
and build the INT proof of concept, chapter 3 discusses the INT application developed to
run the experiments, which are extensively presented in chapter 4. I assessed the perfor-
mance impact caused by the telemetry through two performance experiments, which are
presented in chapter 5. Finally, chapter 6 draws conclusions. Useful resources referenced
throughout the document are fully reported in chapter 7, which contains the Python and
Bash scripts developed.

8

Chapter 2

Technical Background

This chapter provides the technical background necessary to replicate and potentially
extend the experiments conducted, which are later presented in chapter 4 and chapter 5.
It outlines the process of designing and deploying an INT domain using programmable
hardware to implement the data plane of network devices.

2.1 Field Programmable Gate Arrays and SmartNICs

A Field-Programmable Gate Array is a type of configurable integrated circuit which can be
programmed several times after the manufacturing process. It is part of the wider class of
programmable logic devices (PLDs) and it is essentially composed of several programmable
hardware blocks disposed in an array, with a connecting grid. Such blocks can act as
simple logic gates (AND, XOR) or even implement complex combinational functions. Some
memory elements are also included in the logic blocks. The hardware configuration of an
FPGA is written in a Hardware Description Language (HDL) an example is VHDL or
Verilog, which are widely used also in traditional ASIC design.

These devices allow a re-definition of the hardware configuration, which translates into
the capability of reprogramming the functions they implement. To understand why this
feature is crucial for our application, there’s the need to briefly present the traditional
architecture on which a network device, and in general a network, is based. As shown in
Figure 2.1, it can be divided into three main components:

• Control Plane: is the part of the architecture responsible for running complex
tasks and algorithms. It’s the implementation of the network protocols, once coded
into algorithms, that usually run on general-purpose CPUs. It results in populating

9

2 – Technical Background

Protocols

Table

Traffic

Control Plane Management Plane

Data Plane

Policies

Figure 2.1. General Architecture of a Network Device

the routing/forwarding tables of the most common network devices, during a tran-
sient state of the network (e.g. when the topology is determined or changes). Its
operations can be seen as conceptually articulated but executed once in a while, at
low frequencies. It is also often referred to as the slow path a packet can take within
the device.

• Data Plane: is the part of the architecture that will manage the majority of the in-
coming packets by repeating simple and fixed operations at a very high rate. Usually,
it is implemented in hardware with ASICs (Application Specific Integrated Circuits,
e.g. Longest Prefix Matching lookup in the routing table). Its low complexity and
focus on performances made it gain the title of fast path within the architecture.

• Management Plane: is a section of the architecture which gets used for configura-
tion and management purposes. It allows the enforcement of security policies as well
as the monitoring, troubleshooting and configuring of a network device. It is usu-
ally implemented with a dedicated network interface and it is the component polled
by the traditional Network Monitoring Systems to collect statistics and telemetry
metadata.

The INT framework proposes embedding telemetry operations in the data plane of a device.

10

2.1 – Field Programmable Gate Arrays and SmartNICs

However, this approach is not feasible when considering a data plane which is implemented
with an Application Specific Integrated Circuit ASIC, which is optimized for fixed and
simple operations such as routing and forwarding packets. ASIC-based data planes are
inherently rigid and lack the flexibility needed to support advanced packet processing
tasks, such as telemetry, which go beyond the standard functions typically implemented in
network hardware. As a result, ASICs do not provide native support for these operations.
On the other hand, offloading telemetry processing to a different architectural component,
such as the control plane, would require handling packets in the slow path, introducing
significant processing overhead [?]. Given these considerations, the advantage of leveraging
a programmable data plane, particularly one based on FPGA technology, becomes evident.
The compromise it strikes between the high performance needed in the data plane and
the flexibility and programmability required by complex processing in terms of packet
manipulation perfectly fits our context. Programmability in network device data planes
has already been introduced in existing SmartNICs (that is, smart Network Interface
Cards). These network interfaces were initially designed with a general-purpose CPU to
offload networking tasks from the main processor and, in some cases, included hardware
accelerators for specific functions (e.g. compression, encryption) [?]. This evolution led to
the development of FPGA-based SmartNICs, where the general-purpose CPU is replaced
with a reconfigurable FPGA chip, as seen in our target device, the AMD Alveo U280.

2.1.1 AMD Alveo U280 Datacenter Accelerator SmartNIC

The hardware platform selected for our INT operations, the AMD Alveo U280 Datacenter
Accelerator Card, is specifically designed to provide the flexibility required by the modern,
dynamically evolving needs of datacenters; this adaptability represents the main strength
as well as the key innovation compared to traditional networking equipment. It has a
considerable amount of onboard hardware resources, with a particular emphasis on its
FPGA (Field Programmable Gate Array) chip, which serves as the foundation of our im-
plementation. The hardware specifications of the AU280 card are summarized in Table 2.1
1:

All the detailed technical characteristics of the board and its FPGA chip can be found
in [?]. From the networking perspective, our focus is specifically on exploring the switching
architecture of the FPGA of the SmartNIC. Understanding this architecture will later help
us understand how network traffic interacts with the device’s components and which logical
blocks are responsible for processing and forwarding the packets.

1Data sourced from AMD portal: https://docs.amd.com

11

https://docs.amd.com

2 – Technical Background

Specification Active Cooling Version Passive Cooling Version
Product SKU A-U280-A32G-DEV-G A-U280-P32G-PQ-G
Total electrical card load 215W 215W
Thermal cooling solution Active Passive
Weight 1187g 1130g
Network interface 2x QSFP28
PCIe Interface Gen3 x16, Gen4 x8, CCIX
HBM2 total capacity 8 GB
HBM2 total bandwidth 460 GB/s
Look-up tables (LUTs) 1,304K
Registers 2,607K
DSP slices 9,024
Block RAMs 2,016
UltraRAMs 960
DDR total capacity 32 GB
DDR maximum data rate 2400 MT/s
DDR total bandwidth 38 GB/s

Table 2.1. AMD Alveo U280 card details

2.1.2 Programmable Hardware Switch

Figure 2.2 presents a schematic hardware block diagram for the programmable switching
architecture implemented by the FPGA. The diagram illustrates the four ingress ports
on the left and the respective egress on the right. These ports are referred to as PF0,
PF1, CMAC0 and CMAC1. The first two are Physical Functions which connect at high
speed the card with the host (server) via the PCIe bus. This means that, from the host’s
perspective, the smartNIC is mapped as a PCIe device. The latter two ports are 100Gb
Ethernet Medium Access Controllers (CMACs), they enable connections with external
networks and implement the Layer 2 (Data Link Layer) functions of the OSI model for
Ethernet interfaces.

Another crucial component is the Smartnic 322MHz App block, which represents the
FPGA fabric programmed to implement a custom packet processor. A set of interfaces
and FIFO queues interconnect the ingress/egress stages with this processor. The two AXI
(Advanced eXtensible Interface) Switches dynamically adjust traffic routing within the
device based on the SmartNIC’s configuration, managing both ingress and egress paths.
Additionally, the SmartNIC provides integrated probe counters, which are extremely useful
for tracking traffic statistics, including the number of packets received or sent through each
port, the flow of packets towards the internal packet processor, and metrics such as packet
errors and dropped packets.

12

2.2 – P4: A Language for "Speaking" To Networks

axi_fifo axi_fifo

axi_fifo axi_fifo

axi_fifo axi_fifo

axi_fifo axi_fifo

drop

drop

dropbypass_fifo bypass_tdest

axi_fifo axi_fifo

axi_fifo axi_fifo

axi_fifo axi_fifo

axi_fifo axi_fifo

Smartnic 322MHz App

AXI
Ingress
Switch

AXI
Egress
Switch

s_
axis

_a
dpt_t

x

PF1

s_
axis

_c
m

ac_r
x

CM
AC0

s_
axis

_a
dpt_r

x

PF0

s_
axis

_a
dpt_r

x

PF1

m
_a

xis
_c

m
ac_tx

CM
AC0

m
_a

xis
_c

m
ac_tx

CM
AC1

axi_reg_slice

axi_reg_slice

axi_split_join

regmap_decoder

reset_inst

PLL

endian_chk timestamp smartnic_reg_blk

App/Vitisnet
decoder

HBM0
I/F

HBM1
I/F

m
od_r

st
_d

one

s_
axis

_a
dpt_t

x

PF0

s_
axis

_c
m

ac_r
x

CM
AC1

m
od_r

st
n

s_
axil

 (r
egm

ap) CORE CLOCK

CMAC0 CLOCK

CMAC1 CLOCK

AXIL CLOCK

Figure 2.2. Programmable Switch Architecture - Scheme Reproduced by [?]

2.2 P4: A Language for "Speaking" To Networks

The previous section 2.1 presented the FPGA technology and its role in enabling the
programmability of high-performance data planes for network telemetry functions, with
focus on the fact that an FPGA gets programmed through a Hardware Description Lan-
guage. In this section, it is introduced the actual language used for programming the
packet processor, as well as the tools needed to translate the source code into a bitfile for
programming the FPGAs.

P4 (Programming Protocol-independent Packet Processors) is a domain-specific pro-
gramming language, specifically designed for defining the behaviour of packet processors
such as switches, routers, smartNICs, load balancers, packet filters and many others.
Unlike generic programming languages (C, Rust, ...) it offers a set of constructs and ab-
stractions suited for expressing networking functions. It allows the developers to describe
the programmable data planes that target various technologies, including CPUs, FPGAs
and NPUs [?]. By design, P4 is not dependent on the target platform, to ensure the

13

2 – Technical Background

maximum portability of the source code. Its modular approach requires some additional
components to function, which can be different for the various target platforms. Figure 2.3
is a graphical representation of the modular components involved in the development and
deployment of P4 code on a target device.

• P4 Language and Core Library: are the common modules provided by the com-
munity P4.org. They define the common abstractions and the constructs optimized
for the specific class of problems (the domain of reference: networking), indepen-
dently from the target platform.

• Architecture Definition and Extern Libraries: these components are vendor-
supplied and specific to a single target platform. The architecture definition is the
abstract model of the target device (i.e. the kind of device that will be programmed:
a switch, a router, a NIC and so on), each model defines different device components
(parser, match-action pipelines, deparser). Extern libraries are architecture-specific
software modules that allow us to interact with hardware functionalities specific of
each device.

Also, the P4.org community standardized some Architecture Definitions to abstract
different possible targets from the low-level hardware implementation, in order to sim-
plify the development process. Such standard P4 architectures are the PSA (Portable
Switch Architecture) which refers to a generic switching device; the PNA (Portable NIC
Architecture) is an abstraction of a generic network interface card; V1Model is the p4
architecture referred to software-emulated switching devices which usually run on generic
purpose CPUs (as the BMv2 switch). When it comes to the target of our interest, the
FPGA-based SmartNIC from Alveo, the architecture for abstracting such hardware is
provided by the vendor: Xilinx. This architecture model presents several programmable
blocks and fixed functions and is described in the following dedicated subsection 2.2.1.

14

2.2 – P4: A Language for "Speaking" To Networks

P4 Program

P4 Architecture Model

Extern Libraries

P4 Compiler

P4 Compiler
Backend

P4 Language

Core Library

Control Plane

Data Plane

CPU
Port

LOAD

R
U

N
TI

M
E

Development

Community Provided

Developer Provided

Vendor Provided

Deployment on Target

Ta
b

le
 E

n
tr

ie
s

 M
an

ip
u

la
ti

o
n

E
xt

er
n

C

o
n

tr
o

l

Extern
Objects

Tables

P
ac

ke
ts

IN

/O
U

T

Target-Specific
Configuration Binary

Figure 2.3. P4 Workflow and Its Components, Image Reproduced From [?]

2.2.1 XSA - Xilinx Switch Architecture for P4

The elements defined in a P4 program which targets an Alveo U280 board are similar to the
ones from other standard architecture models, even though they are specifically adapted
for this target device. Such elements are later mapped to the engines implemented on the
programmable hardware, during the compilation process (see subsection 2.2.2) and are
the following:

• Parser: this is the first stage of the processing pipeline and implements the parsing
of the incoming packet. This happens with the construction of a parse graph, the
headers and their fields within each packet are recognized based on what is expressed
in the program. The parser is described as a finite-state machine.

• Match-Action Pipeline: this component holds the core part of the program, where
the actual processing (once the packet is received and already parsed) takes place. It
is used to describe the forwarding or processing tables later populated with control
plane-defined entries. Here are also defined the Actions to be taken by the packet

15

2 – Technical Background

processor based on certain fields and the respective values written in the packet.

• Deparser: the last stage allows us to define the packet structure as it will look on
the egress link.

• Pipeline Definition: this represents the main pipeline definition and puts pieces
together expressing how the different components of the architecture are intercon-
nected, this directly reflects on which stages the packet gets processed by and in
which order. A graphical representation of the main pipeline can be found in Fig-
ure 2.4

Parser Match-Action Deparser

Figure 2.4. XSA Architecture Definition

2.2.2 Compiler and Synthesizer

Another set of crucial components needed before being able to deploy a P4 application
on a specific target, as depicted in Figure 2.3, is a P4 compiler backend and a set of
target-specific libraries. In this case, they are provided by the target vendor, Xilinx.

The tools that enable the translation from a P4 application to a target-specific con-
figuration binary (or bitfile), are proprietary and need a license to be used. In the case
of research and academic needs, evaluation licenses can be requested. For this work,
evaluation licenses were provided by the University of Amsterdam. Xilinx disposes of
a hardware-design suite comprehensive of two development tools: Vitis Networking P4
(VNP4) [?] and Vivado [?].

• VNP4: is a tool to convert high-level P4 code design requirements, expressed co-
herently to the XSA architecture model, into an AMD FPGA design solution. This

16

2.3 – ESnet Framework

design suite lets P4 developers leverage all the flexibility offered by the language
in designing new data planes with easy and powerful constructs to design packet
headers, data structures, and new processing implementations. A mapping is per-
formed by VNP4 towards a custom data plane architecture composed of Parsing,
Deparsing, Action and Look-up Engines. These components implement respectively
the extraction of header information from the packets, the insertion/deletion/ma-
nipulation of packet data, the manipulation of metadata derived from the packet
both locally or from other engines and the instantiation of memory search IP cores
(Intelectual Properties) to manage tables and look-ups with optimized memory con-
figurations. This tool ultimately abstracts the actual design at the hardware level
with the already presented HDLs (VHDL, Verilog and others), and its output is a
set of IP blocks implementing our design.

• Vivado: is a hardware design environment to create and implement digital circuits
for Xilinx FPGAs. It works in synergy with VNP4 allowing us to import the IPs in a
hardware design as pre-designed components. The following phases are the synthesis
of a netlist for the FPGA followed by the mapping of such netlist on the physical
FPGA resources. The process prepares a bitstream artifact ready to be loaded and
deployed on the target.

This compiler and synthesizer are complex and professional tools for hardware design and
engineering, with a steep learning curve. This is the reason why such tools were embedded
in an even higher level framework, presented in the next section, which permitted us to
concentrate on P4 development by automating the compilation, synthesis and implemen-
tation processes.

2.3 ESnet Framework

ESnet2 is a specialized, high-speed network infrastructure operated by the U.S. Depart-
ment of Energy, tailored to support the unique requirements of scientific research. It
ensures fast and secure data exchange and enables researchers to efficiently analyze and
share results, bridging the gap between experiments and discovery.

The ESnet SmartNIC Framework is a set of tools to simplify and improve SmartNIC-
oriented operations; it is possible to divide the set of resources it disposes into the De-
velopment Workflow and the Deployment Workflow. It provides a complete workflow to

2https://www.es.net/

17

https://www.es.net/

2 – Technical Background

program Alveo cards using P4, seamlessly integrating vendor tools (see subsection 2.2.2)
with various SmartNIC utilities. The framework is under active development, for this
reason, dependencies and versions of the tools may vary over time.

2.3.1 Development Workflow

All the tools that contribute to the development of P4 applications, the testing (and
debugging), the simulation and finally the compilation for porting them on Alveo FPGAs,
are included in the esnet-smartnic-hw repository. This is a collection of components
maintained independently as separate tools and included as submodules. The repository
structure includes the following modules and tools:

• Open NIC Shell: an FPGA-based NIC shell forked from the original provided by Xil-
inx. It is designed to run on the Alveo family of boards and contains customizations
for the ESnet SmartNIC Platform.

• ESnet Smartnic Hardware: a directory containing tools for the hardware design of
the ESnet SmartNIC Platform.

• ESnet Smartnic Firmware: utilities for designing and packing the firmware design
of the SmartNIC.

• ESnet FPGA Library: a directory supporting structured FPGA design methodology
providing general-purpose components.

• SVUnit: an open-source System Verilog verification framework for FPGAs.

• ESnet Regio: a tool enabling the automation of the implementation of FPGA register
map logic and software code.

This repository needs to be installed and all its submodules need to be initialized. Then, on
the same machine, it’s necessary to install Vivado (with VNP4 extension) and configure
its runtime environment. A customization of the Makefile contained in the repository
is required for setting appropriately the environment variables. Then it is possible to
simply build the P4 design by executing the application Makefile. If everything succeeds
a compressed archive containing the bitfile artifact will be generated. A complete tutorial
to replicate these steps and fully understand the workflow is made available by the ESnet
SmartNIC Team and can be found at [?] [?].

18

2.4 – FABRIC Testbed

2.3.2 Deployment Workflow

This last phase of the workflow permits the deployment of the compiled and zipped bitfile
(the hardware description artifact) on the FPGA card. It is composed of three essential
Docker images, which interoperate to grant access to a powerful set of experimental tools
to interact with the FPGA and hide the load and flash details managing the interaction
with the card drivers.

• xilinx-labtools-docker : this docker image can be built starting from the homonymous
GitHub repository. It is a crucial part of the setup as it will hold an instance of
Vivado Lab, a non-licensed software whose functionalities are hugely reduced when
compared to the full installation, but is still enough to manage the load of new
programs on the FPGA.

• smartnic-dpdk-docker : this image, similarly to the previous one, can be built based
on the respective GitHub repository and serves as an essential component for inter-
acting with the FPGA at runtime once it is flashed with the hardware description
bitfile, in particular granting access to DPDK (Data Plane Development Kit), an
application for high-performance processing and efficient data plane operations.

• esnet-smartnic-fw: this image is bitfile dependent, which implies it needs to be re-
built every time a new artifact is compiled starting from a P4 application. This
image will be run as a Docker container disposing of the largest set of CLI tools to
manage and interact with the FPGA once it is ready. They are later on referred to
as ESnet CLI Tools.

2.4 FABRIC Testbed

FABRIC (FABRIC is Adaptive ProgrammaBle Research Infrastructure for Computer Sci-
ence and Science Applications) [?] is an international research infrastructure that enables
cutting-edge experimentation in many areas of computer science including the one of
interest for this study, which is networking. The infrastructure is a distributed set of
equipment at commercial collocation spaces, national labs and campuses. Its core resides
in the U.S. and each of the 29 FABRIC sites has large amounts of computing and stor-
age resources, interconnected by high-speed, dedicated optical links. It also connects to
the Internet and recently, FABRIC Across Borders (FAB) extended the network with 4
additional nodes in Asia and Europe, among which, there is a node in the University of
Amsterdam. Figure 2.5 shows the global network of the FABRIC research testbed, with
the terabit core links highlighted in yellow and the 100G links displayed in blue. This

19

2 – Technical Background

particular testbed was selected because it suits the needs of our experiments: it allows us
to test non-standard networking operations as INT, with custom network topologies. Still,
it most importantly grants access to advanced hardware such as FPGA-based SmartNICs,
in particular AMD/Xilinx Alveo U280 boards.

Figure 2.5. FABRIC Testbed - Image Sourced From [?]

2.4.1 FABlib API

The creation of an isolated, controlled test environment is managed through the Python
APIs exposed by the FABRIC Testbed, FABlib. These are typically called using a Jupyter
Notebook on FABRIC JupyterHub and make use of the following key concepts:

• slice: it is the container object describing a single network topology. It holds all
the VMs and defines how they are interconnected. This object gets first created and
then submitted to the orchestrator, on this later phase it is automatically validated
and if the validation succeeds it is deployed by the FABRIC Orchestrator.

• node: it is a single Virtual Machine. It is added to a slice and configured with the
image it is based on, the amount of computing or storage resources it has and the
eventual special hardware it will have access to. The Virtual Machines will expose
a management plane used by the experimenter to log in and download any software

20

2.4 – FABRIC Testbed

from the Internet. They have also the data plane which implements the experiment
topology.

• network: it’s the set of networking equipment used to interconnect the VMs on
their data plane.

• component: it is a piece of special hardware (GPUs, Network Cards, NVMe drives,
FPGAs) dedicated to a particular VM. Such components are attached to the PCIe
bus of the servers which host the virtual machines and are exclusively dedicated to a
node with the device passthrough technology which implies minimal VMM involve-
ment.

Before the creation of a topology, the availability of resources in the physical sites must
be checked using the resource overview portal of FABRIC. The FABlib APIs also include
functions to execute commands on specific nodes, upload files on them and retrieve infor-
mation: this ensures considerable flexibility and a great level of automation of the topology
creation and management. Slices last for a default time interval of 24 hours, to ensure
resources are freed up whenever they are not needed anymore for an experiment.

2.4.2 FABRIC Strengths and Limitations

This research environment, which allowed exploration of In-band Network Telemetry, pro-
vides a powerful and flexible testbed for networking experiments, offering access to cus-
tomizable topologies and advanced hardware. The APIs exposed by FABRIC enable a
good level of automation of the topology provisioning and deployment. Finally, the hosts
composing the topology have the possibility to run custom scripts to realize non-standard
network operations, which reduces the complexity of the INT implementation as it can
be tested against specifically created network traffic. On the other hand, it also comes
with several limitations to be considered while designing and executing experiments. Not
every physical site of the FABRIC network has a SmartNIC and this translates sometimes
into a resource shortage which can make it difficult to reserve some for an experiment.
Moreover, if a slice needs more than a single FPGA, it will need to unfold across differ-
ent physical sites, which can make the topology cover large geographical distances. This
may not be ideal for experiments requiring low-latency communication between FPGAs,
where the added delay from geographically distributed resources could negatively impact
performance. However, this characteristic can be advantageous for experiments that aim
to study wide-area network behaviours.

21

2 – Technical Background

This chapter outlined the technological foundations on which the In-band Network
Telemetry proof of concept is based. We explored the peculiarities of network devices to
evict their limitations and the solutions offered by modern technologies (programmable
data plane devices) to the structural limitations and requirements imposed by networking
operations (mainly performances, difficult to scale with software emulations). A complete
workflow to program FPGAs with P4 applications was proposed and finally, the testbed
which hosted the experiments was presented. Figure 2.6 summarizes the technological
embedding this work is based on and clarifies how the presented tools interact with each
other. The following chapter will present the INT implementation deployed leveraging all
these technologies.

ESnet DeploymentESnet Development

VM #4VM #1

FABRIC International Testbed

VM #3

VM #2

FPGA

Binary ArtifactVNP4 Vivado

Figure 2.6. Technologies And Software Utilized

22

Chapter 3

In-band Network Telemetry
Application

Telemetry enables real-time metrics collection from the compatible components of the
network, also referred to as INT hops/devices. Telemetry information is collected by the
devices’ data planes, while the packets are processed with traditional networking opera-
tions. The approach is based on pushing such information into the headers of the packets
that pass by. Such manipulation requires a specialized set of operations to be performed on
the packets, which are not yet defined in any standard. New headers and their placement
into a common packet must be defined. To address these problems, the P4.org commu-
nity released an INT specification, which provided guidelines that can be followed when
developing or testing an INT application.

The discussion in this chapter is based on the P4 INT Specification v2.1 [?]. The
specification defines

• Modes of operation (INT-MD, INT-MX, INT-XD)

• Header structure

• Header location within the header stack of the packet

• Set of metadata each INT device could potentially export

Before diving into the technical definition presented in the specification, it is useful to
define some terminology coherently with the document:

• INT Source: It is the trusted component that inserts INT headers into the packets
it sends. This insertion can be based on the flows it routes and in this case, a Flow
Watchlist is configured in this node.

23

3 – In-band Network Telemetry Application

• Flow Watchlist: It is a match-action table configured in the data plane of the
devices, can recognize the flows based on a set of header fields and apply or insert
INT instructions based on the configuration it holds.

• INT Packet: A packet containing an INT header. The three possible INT header
types are defined below in section 3.1.

• INT Node: An INT-capable network device that regularly inserts, adds to, removes
or processes INT instructions from INT headers. It can be a router, a switch, or a
NIC.

• INT Instruction: Instructions to be executed by the INT Nodes. They indicate
which INT data to export and can be either configured in a Flow Watchlist or carried
in the INT header.

• INT Transit Hop: A trusted entity that extracts and exports telemetry data based
on the instructions it executes. The data can be embedded into the packets processed
or directly exported towards a Monitoring System, based on the mode of operation.

• Monitoring System: A trusted entity that collects the telemetry data received by
different devices. It can be physically distributed but logically centralized.

• INT Sink: It’s the counterpart of the INT Source, it extracts the INT Header
to make the whole process transparent to traditional network devices and systems.
It does not preclude the possibility of nested INT domains. Upon stripping INT
headers, it decides whether to send or not the per-flow metadata collected to the
monitoring system.

• INT Domain: Represents a set of interconnected and consistently configured INT
nodes under the same administration. The edges of a domain should implement INT
Source/Sink capabilities to prevent INT data from leaking out. The P4.org spec-
ification defines packet formats and device behaviour to guarantee interoperability
between different manufactured devices.

3.1 Modes of Operation

Since its introduction, a large number of INT variations have been presented and have
been developed in research environments and industry. The original one provided both INT
instructions to be executed by network devices and INT data collected to be embedded in
the packets traversing the network. The P4 specification for INT defines 3 different modes

24

3.1 – Modes of Operation

of operation for INT distinguishing them based on the grade of manipulation the packet
experiences.

3.1.1 INT-XD (eXport Data)

No packet modification is required, as each hop exports the telemetry data from its data
plane towards the monitoring system based on the matches configured in its internal Flow
Watchlists. This means that when a packet is received and recognized to belong to a
specific flow configured at one of these table entries, the corresponding INT instruction is
executed and the data is exported. The packet leaves the INT hop unchanged.

3.1.2 INT-MX (eMbed instruct(X)ions)

Minor and fixed packet modification is required at the INT source, which is embedding
into the packet header the instructions to be executed on the subsequent nodes. The other
INT hops will then export their telemetry data to the monitoring system accordingly while
forwarding the packet. The last INT hop, or INT Sink, has to remove the INT instructions
header before forwarding it to the recipient. This mode of operation also supports the
embedding of metadata from the source node into the Domain Specific Instruction field
of the header.

3.1.3 INT-MD (eMbed Data)

The packet is modified the most in this case, as both the instructions and the metadata
are embedded into the header. The instructions are inserted by the source node. While
the packet proceeds in its path, each INT Transit node appends its telemetry data to
the stack that follows the INT header. The INT Sink node strips both instructions and
metadata from the packet before delivering it and then can selectively send the collected
and aggregated data to the monitoring system. This way the packet size increases as
it traverses more and more INT hops, which requires an appropriate setup of the MTU
(Maximum Transmission Unit) allowed for the network segment implementing INT as well
as limitations about the maximum number of hops that can insert data into the packet
header. This mode of operation can reduce the overhead on the monitoring system as it
doesn’t receive reports from different nodes.

For this study, INT-MD mode was preferred, as it allows maximum flexibility in terms
of instructions to execute on each hop by simply adjusting the bits encoded in the instruc-
tion field of the header. Moreover, this is what best implements the concept of "in-band"

25

3 – In-band Network Telemetry Application

telemetry as data is directly inserted into the traffic without any report packets generated
and directed to the monitoring system.

3.2 INT Metadata Header

The P4.org specification defines three different types of INT headers: the INT-MD type,
the INT-MX type, and the Destination type. In this section, only the INT-MD Header
type is presented and explained, as it is the one chosen for implementation. The INT-MD
Metadata Header is 12 bytes long and it is followed by a stack of metadata populated
by the hops that process the packet. Each metadata trace is either 4 or 8 bytes long,
depending on what is indicated in the hop_ml field of the Metadata Header. Each hop
adds the same amount of metadata, but the overall length of the INT-MD Header can
vary, as different packets may traverse a different number of INT hops.

Next Protocol

Domain ID

DS Flags

Instruction Mask

DS Instruction

LengthType

Ver

G

D

Rsvd

E M Reserved Hop ML Rem. Hop Cnt

INT Metadata Stack (Each Hop: Hop_ ML * 4B of metadata)

0 157 31

Figure 3.1. INT-MD Header Structure

The following provides a detailed breakdown for each field of the header shown in
Figure 3.1:

• Ver (4b): Indicates the version of the INT metadata header, it is set to 2 in this
implementation.

26

3.2 – INT Metadata Header

• D (1b) - Discard: a flag which indicates whether the INT Sink should discard the
packet after extracting the telemetry metadata, or deliver it to the recipient. This is
useful in case INT is applied to synthetic rather than live traffic, which might indeed
be discarded.

• E (1b) - Exceeded: Indicates whether an INT hop was unable to prepend its
metadata due to the maximum hop count being exceeded (Remaining Hop Cnt
reached 0). This must be set to 0 by the INT Source.

• M (1b) - MTU Exceeded: This bit has to be set if an INT hop cannot add its
metadata without exceeding the egress link’s MTU. In such cases, the hop does not
add any metadata and sets the bit instead. This indicates that one or more hops
didn’t append their metadata traces, but does not specify which nodes encountered
the issue.

• Reserved (12b): These bits are reserved for future use, they should be set to 0 by
the INT Source and ignored by other nodes.

• Hop ML (5b) - Per hop Metadata Length: Set by the INT Source, this field
indicates to other nodes the amount of metadata, in 4B words, to insert. It is limited
to a maximum of 31 and it includes the Domain Specific Metadata, unless the INT
domain employs the ’source-only Domain Specific Metadata’ (defined below).

• Remaining Hop Count (8b): Specifies the number of INT hops that can append
their metadata to the stack. Each INT node adding metadata, including the INT
Source, must decrement this value by 1. If a packet arrives with this field already
set to 0, the INT instructions should be ignored, and no data should be added. This
field is set by the INT Source to the maximum number of hops allowed.

• Instruction Bitmap (16b): Encodes of the INT instructions to be executed by
the hops. Each bit represents a specific standard metadata value, as defined in [?]:

– bit 0 (The Most Significant Bit - MSB): Node ID

– bit 1: Level 1 Ingress Interface ID (16 bits) + Egress Interface ID (16 bits)

– bit 2: Hop latency

– bit 3: Queue ID (8 bits) + Queue occupancy (24 bits)

– bit 4: Ingress timestamp (8 bytes)

– bit 5: Egress timestamp (8 bytes)

– bit 6: Level 2 Ingress Interface ID + Egress Interface ID (4 bytes each)

27

3 – In-band Network Telemetry Application

– bit 7: Egress interface Tx utilization

– bit 8: Buffer ID (8 bits) + Buffer occupancy (24 bits)

– bit 15: Checksum Complement

– The remaining bits are reserved.

Each bit set instructs INT hops to insert 4B of metadata, except for the bits 4 to 6,
which require 8 bytes each. The Hop ML is set accordingly by the INT Source.

• Domain Specific ID (16b): Uniquely identifies the INT domain. If this value
matches with any of the IDs known by the node, further processing of the following
Domain Specific fields is performed.

• Domain Specific Instruction (16b): Bitmap of instructions specific to the INT
Domain, identified by the DS ID field. Each bit requests a specific DS Metadata.
The amount of DS metadata added by each hop must be a multiple of 4 bytes and
consistent with the value set in the Hop ML field.

In the application described later, the DS Instruction field is used to encode the operation
requested by the source to each node (see chapter 4, section 4.4).

3.3 INT Header Placement

The P4.org specification outlines different options for the header placement within a
packet’s header stack. The INT header can indeed be inserted in different locations,
either as an option or an encapsulation payload for any encapsulation protocol currently
available. In this section, INT over GRE (Generic Routing Encapsulation) is presented as
it is the preferred header placement for this application. The synthetic traffic used in the
experiments include a GRE header. Figure 3.2 illustrates the final header stack a packet
will have when it leaves the source.

The added GRE Header includes the following fields:

• Type (4b): Specifies the type of INT header following the GRE header. The
possible values, as defined in the P4.org specification, are discussed in section 3.2.
In this application the header is always INT-MD, which corresponds to type 2.

• G (1b) - GRE Encapsulation Indicator: Indicates whether the original packet
received at the INT Source was already GRE encapsulated (0) or not (1). This
helps the INT Sink discriminate when it should remove the GRE header, as an
encapsulation terminator.

28

3.4 – Telemetry Metadata

Ethernet IPv4 GRE INT Shim INT-MD Payload

Type Next ProtocolG Rsvd Length

Figure 3.2. INT Header location - INT over IPv4/GRE

• Rsvd (3b): Reserved bits for future use, set to 0 and ignored.

• Length (8b): Specifies the total length of the INT Metadata header and INT
metadata stack, excluding the shim header, measured in 4B words. This can help
non-INT devices skip INT headers during parsing.

• Next Protocol (16b): Contains an EtherType value, as defined by IANA 1, indi-
cating the protocol that comes after the INT metadata stack.

3.4 Telemetry Metadata

The type of metadata which can be exported using the INT framework is a rich and
assorted set, as potentially any device-level information can be collected. The use case to
which INT can be applied strongly influences the kind of data to extract from the INT
domain. Devices can be heterogeneous in the architecture as well as the supported set of
defined and available metadata. The INT Specification [?] divides the telemetry metadata
into three different classes: Node Level, Ingress Level and Egress Level.

1IANA, "IEEE 802 Numbers" available at https://www.iana.org/assignments/ieee-802-numbers/
ieee-802-numbers.xhtml, accessed December 6, 2024.

29

https://www.iana.org/assignments/ieee-802-numbers/ieee-802-numbers.xhtml
https://www.iana.org/assignments/ieee-802-numbers/ieee-802-numbers.xhtml

3 – In-band Network Telemetry Application

3.4.1 Node-level Metadata

Device-level metadata includes all the information that can be related to a packet which is
processed by a device and that is not specifically related to the ingress/egress interfaces.
Some metrics of interest can be regarding the time the packet spent in the device’s queues.
Others can regard the device itself.

• Node ID: A unique identifier within the INT domain. This value is usually ad-
ministratively assigned and can be useful to trace the path each packet took when
traversing the network.

• Control Plane State Version Number: A value holding the version of the control
plane state. This can be automatically updated by the device’s control plane when-
ever the version of its state changes, for example, the IP Forwarding Information
Base for a router.

• Queue ID: This identifier is related to the queue the device used to serve the INT
packet.

• Instantaneous Queue Length: A snapshot indicating the queue length, in bytes,
cells or packets. This can give insights into the state of the device for example
regarding its congestion state.

• Average Queue Length: This is an aggregated metric that can reflect the trend
over a period for the device’s internal state.

• Queue Drop Count: the dropped packet counter for the specific queue.

• Buffer ID: It identifies to identify the physical buffer the packet traversed. This is
useful when a buffer is shared among different queues.

• Instantaneous/Average Buffer Length: The instantaneous or average value in
bytes or cells for the physical buffer occupancy.

3.4.2 Ingress or Egress-level Metadata

Metadata can specifically refer to ingress or egress statistics about the device. Ingress
information can be used to infer the previous hop the packet was processed by or the time
at which it was received. Other metrics can regard the resource utilization for the ingress
queue/buffer of the device. The egress counterparts are also defined and can be supported
by devices.

30

3.5 – P4 application for Alveo Cards

• Interface ID: The identifier of the interface on which the packet was received. The
specification supports a stack of up to 2 interfaces and each device can utilize a
specific semantics for this metadata.

• Timestamp: The device’s local time reference when the packet was received or
emitted. A time delta between the ingress and egress timestamp allows us to calcu-
late the latency experienced by the packet for the processing into each device.

• Packet Counter: A counter for the received/emitted packet can be held by the
device for the specific logical (or physical) interface by which the INT packet passed.
Also dropped packets can be counted.

• Byte Counter: A counter to add information about the number of processed/-
dropped bytes.

• Ingress RX Utilization: Even if the exact mechanism is vendor-defined, the INT
specification supports this metadata which can give information about the resource
utilization of the physical/logical interface on which the INT packet was received.
The same is also defined for Egress TX Utilization.

3.5 P4 application for Alveo Cards

In our scenario, the programmable switches will be required by the INT Source to export
a limited set of device-specific metadata based on what will be encoded in the instruction
field of each packet. In the present section, it is described the P4 application developed to
implement these operations in the data plane. As presented in subsection 2.2.1 the Xilinx
Alveo U280 board is based on a specific architecture to be matched by the P4 application.
Indeed, the architecture reflects directly on the design of the code. The XSA architecture
the FPGA is based on defines three components: a Parsing Engine, a Match-Action
Engine and a Deparsing Engine.

3.5.1 Headers and Structures

The headers section of the code, as shown in Listing 3.1, contains the definition of the
headers and the respective fields that will be recognized and extracted when parsing an
INT packet. Standard headers (Ethernet: line 1, IPv4: line 7, GRE: line 22) as well as
INT header (line 35) and metadata stack (line 57 and 63) are defined in this section. To
maintain coherence with the P4 specification, the INT header is divided into a shim header

31

3 – In-band Network Telemetry Application

and a proper metadata stack, pre-allocated to contain the telemetry metadata. The stack
is composed of two switch report headers.

1 header ethernet_t {
2 bit <48> dstAddr ;
3 bit <48> srcAddr ;
4 bit <16> etherType ;
5 }
6
7 header ipv4_t {
8 bit <4> version ;
9 bit <4> ihl;

10 bit <8> diffserv ;
11 bit <16> totalLen ;
12 bit <16> identification ;
13 bit <3> flags;
14 bit <13> fragOffset ;
15 bit <8> ttl;
16 bit <8> protocol ; // set to 0x2F for GRE encapsulated packets
17 bit <16> hdrChecksum ;
18 ipv4_addr_t srcAddr ;
19 ipv4_addr_t dstAddr ;
20 }
21
22 header gre_t{
23 bit <1> C; // tied to 0 as no checksum is used
24 bit <1> R;
25 bit <1> K; // set to 0 for basic GRE
26 bit <1> S;
27 bit <1> s;
28 bit <3> recursion ;
29 bit <5> flags;
30 bit <3> version ;
31 bit <16> protocol_type ; // TBD_INT in P4 specification
32 /* other fields are optional */
33 }
34
35 header int_shim_t {
36 bit <4> type; // INT -MD has type 1 in P4 specification
37 bit <1> G; // GRE flag - if 0 original packet had GRE

encapsulation
38 bit <3> Rsvd;
39 bit <8> length ; // length without the int data and header !
40 bit <16> next_protocol ; // ethernet type
41 }
42
43 header int_t{
44 bit <4> ver;
45 bit <1> D;

32

3.5 – P4 application for Alveo Cards

46 bit <1> E;
47 bit <1> M;
48 bit <12> reserved ;
49 bit <5> hop_ml ;
50 bit <8> remaining_hop_cnt ;
51 bit <16> instruction_mask ;
52 bit <16> domain_id ;
53 bit <16> ds_instr ;
54 bit <16> ds_flags ;
55 }
56
57 header switch_int0_t {
58 bit <16> swid;
59 bit <16> trust_level ;
60 bit <64> timestamp ;
61 }
62
63 header switch_int1_t {
64 bit <16> swid;
65 bit <16> trust_level ;
66 bit <64> timestamp ;
67 }

Listing 3.1. Headers Section of the P4 Application

Immediately after the headers section, there is the definition of the headers and the
smartnic metadata data structures. The former (see line 1 of Listing 3.2) is be popu-
lated upon packet arrival and parsing (described later in subsection 3.5.2), and enables
manipulation of header fields during packet processing. The latter (defined at line 12)
is designed to store metadata associated with each packet, automatically populated with
data retrieved from the SmartNIC, that can also potentially be used for telemetry pur-
poses.

1 struct headers {
2 ethernet_t ethernet ;
3 ipv4_t ipv4;
4 gre_t gre;
5 int_shim_t int_shim_header ;
6 int_t int_header ;
7 switch_int0_t int_data_sw0 ;
8 switch_int1_t int_data_sw1 ;
9 }

10
11
12 struct smartnic_metadata {
13 bit <64> timestamp_ns ; // in ns , set at packet arrival time.
14 bit <16> pid; // 16b packet id (read only)
15 bit <3> ingress_port ; // 3b ingress port

33

3 – In-band Network Telemetry Application

16 bit <3> egress_port ; // 3b egress port
17 bit <1> truncate_enable ; // 1b set to 1 to enable truncation
18 bit <16> truncate_length ; // 16b set to desired length of egress packet
19 bit <1> rss_enable ; // 1b set to 1 to override open -nic -shell rss

hash result with ’rss_entropy ’ value.
20 bit <12> rss_entropy ; // 12b set to rss_entropy hash value (used for

open -nic -shell qdma qid selection).
21 bit <4> drop_reason ; // reserved (tied to 0).
22 bit <32> scratch ; // reserved (tied to 0).
23 }

Listing 3.2. Headers and Metadata Structures

3.5.2 Parser

The parser is the logic part in charge of recognizing packet header fields and extracting
information from its bytes to be used for later processing. The parser will allow the
generation of the parse graph, where vertices are the parsing states while edges represent
the transition between states. Each parsing starts from a start state, from this common
root different state transitions are selected based on values contained in the extracted
header fields and finally, each path in the graph terminates with either the accept or
reject.

1 parser ParserImpl (packet_in packet ,
2 out headers hdr ,
3 inout smartnic_metadata sn_meta ,
4 inout standard_metadata_t std_meta) {
5
6 state start {
7 transition parse_ethernet ;
8 }
9

10 state parse_ethernet {
11 packet . extract (hdr. ethernet);
12 transition select (hdr. ethernet . etherType) {
13 ETHERTYPE_IPv4 : parse_ipv4 ;
14 default : accept ; // NOT | ethernet |+| IP |+| ... | -> don ’t

care
15 }
16 }
17
18 state parse_ipv4 {
19 packet . extract (hdr.ipv4);
20 transition select (hdr.ipv4. protocol) {
21 PROTOCOL_GRE : parse_gre_encapsulation ;
22 default : accept ; // If not an encapsulated packet -> don ’t

care

34

3.5 – P4 application for Alveo Cards

23 }
24 }
25
26 state parse_gre_encapsulation {
27 packet . extract (hdr.gre);
28 transition select (hdr.gre. protocol_type){
29 TBD_INT : parse_int_shim ;
30 default : accept ; // If encapsulated packet NOT containing INT

-> don ’t care
31 }
32 }
33
34 state parse_int_shim {
35 packet . extract (hdr. int_shim_header);
36 transition parse_in_band ;
37 }
38
39 state parse_in_band {
40 packet . extract (hdr. int_header);
41 transition parse_int_sw0 ;
42 }
43 state parse_int_sw0 {
44 packet . extract (hdr. int_data_sw0);
45 transition parse_int_sw1 ;
46 }
47
48 state parse_int_sw1 {
49 packet . extract (hdr. int_data_sw1);
50 transition accept ;
51 }
52 }

Listing 3.3. The Parser

A representation of the parsing graph generated can be found in Figure 3.3. As illustrated,
the parser designed for this INT application starts from the Ethernet header, it then
expects an IPv4 header (based on the value of the ethernet type field) and proceeds parsing
that. Then, following the same logic, it looks for a GRE header containing an INT shim
header and finally the INT metadata stack. If any of these layers is missing in the headers,
the packet is not actively managed by the application. This means that for the proposed
implementation, it is out of our scope to handle every class of traffic and the focus is on
managing only properly formatted INT traffic.

35

3 – In-band Network Telemetry Application

parse
Ether parse

IPv4

accept

parse
GRE

parse
INT
shim

parse
INT parse

INT
sw0

parse
INT
sw1

start

Figure 3.3. Parse Graph

3.5.3 Processing

The processing section holds the definition of the control block for the Match-Action
Pipeline. Here, all the actions are coded together with their parameters (received by the
control plane). This allows us to define how packets will be manipulated by the custom
switch. In the same control block, there is the definition of the tables, which require a
key the look-up will be based on as well as the set of actions that will be eventually taken
as a response to a look-up. Of course, these tables are later populated at switch runtime
by the control plane (or in this case, by the management plane). In this implementation,
three tables are defined:

• int operation (shown in Listing 3.4): performs a lookup based on the domain-
specific instruction field of the INT header based on an exact matching and defines
the possible INT actions to be taken in response. These actions represent the collec-
tion of telemetry metadata in-band, with the insertion of metadata directly in the
correct metadata stack field of the packet.

• ipv4 routing: implements a simple routing table, the lookup is based on the desti-
nation IP address with the longest prefix-matching logic. The implementation of all
the routing functionalities is beyond the scope of this work.

• l2 forwarding (shown in Listing 3.5): this table implements a switching logic based
on physical addresses derived from the Ethernet header. The lookup is based on the

36

3.5 – P4 application for Alveo Cards

destination MAC address to select an egress port, based on an exact matching.

table int_operation {
key = {

hdr. int_header . ds_instr :
exact ;
}
actions = {

sw0_push_id ;
sw1_push_id ;
sw0_push_ingress_timestamp ;
sw1_push_ingress_timestamp ;
sw0_push_trust_level ;
sw1_push_trust_level ;
drop;

}
default_action = drop;
size = 32;

}

Listing 3.4. INT Operation Table

table l2_forwarding {
key = {

hdr. ethernet . dstAddr : exact
;
}
actions = {

l2_forward ;
// backward_learning ;
// flooding ;
NoAction ;
drop;

}
default_action = NoAction ();
size = 16;

}

Listing 3.5. L2 Forwarding Table

At the end of this control block, it is possible to find the apply control which allows
us to define in which order and based on which conditions the different tables are applied
to a packet. It is also possible to check for metadata values automatically updated by the
SmartNIC, such as the presence of errors detected by the Parser. In this section of the
code, given in Listing 3.6, note that INT operation table is applied only if the hop counter
permits so, coherently with the maximum number of allowed devices.

37

3 – In-band Network Telemetry Application

apply {
// 1. errors in the packet
if (std_meta . parser_error != error. NoError) {

drop ();
return ;

}
// 2. valid ethernet and valid INT header -> apply INT and forward
if (hdr. ethernet . isValid () && hdr. int_header . isValid ()) {

sn_meta . rss_entropy = 12w0;
sn_meta . rss_enable = 1w0;
if(hdr. int_shim_header .type == INT_MD && hdr. int_header .

remaining_hop_cnt > 0){
hdr. int_header . remaining_hop_cnt = hdr. int_header .

remaining_hop_cnt - 1;
int_operation .apply ();

}
if (hdr. int_header . remaining_hop_cnt == 0) {

hdr. int_header .M = 1;
}
l2_forwarding .apply ();

}
// 3. valid ethernet without INT -> apply forward
else if(hdr. ethernet . isValid () && hdr.ipv4. isValid ()){

l2_forwarding .apply ();
}
else{

drop ();
}

}

Listing 3.6. Apply Logic

3.5.4 Deparser and Pipeline Definition

At the end of the code is possible to find the de-parser control block which simply indicates
how to put together all the pieces that compose a packet to output it on the egress interface.
This step allows us to eventually modify the structure of the packet as it will look on the
wire, but in our application, it is emitted with the very same structure as the incoming one
because the metadata are inserted in the right field of the INT header. The definition of
the Xilinx Pipeline is useful to indicate which components are requested for the hardware
implementation and in which order they will be traversed by the packet. Our pipeline is
composed by the three elements: Parser, Match-Action, Deparser.

1 control DeparserImpl (packet_out packet ,
2 in headers hdr ,
3 inout smartnic_metadata sn_meta ,

38

3.5 – P4 application for Alveo Cards

4 inout standard_metadata_t std_meta) {
5 apply {
6 packet .emit(hdr. ethernet);
7 packet .emit(hdr.ipv4);
8 packet .emit(hdr.gre);
9 packet .emit(hdr. int_shim_header);

10 packet .emit(hdr. int_header);
11 packet .emit(hdr. int_data_sw0);
12 packet .emit(hdr. int_data_sw1);
13 }
14 }
15
16 XilinxPipeline (
17 ParserImpl (),
18 MatchActionImpl (),
19 DeparserImpl ()
20) main;

Listing 3.7. Deparser and Pipeline Definition

39

40

Chapter 4

Experimental Evaluation

This chapter provides an in-depth and technical description of the experiment. Our
methodology follows the existing P4 specification for INT [?], aiming to simplify the
architecture while preserving generality and reproducibility. The experiment’s primary
goal is to demonstrate a proof of concept for an INT domain implemented on real infras-
tructure, leveraging the computational acceleration provided by FPGA-based smartNICs
on the FABRIC Testbed. These smartNICs execute the INT operations encoded in the
INT header using the INT-MD mode of operation. The traffic is enriched with telemetry
metadata and analyzed on the last hop of the domain, highlighting the potential of FPGA
acceleration in real-world INT deployments.

4.1 FABRIC Testbed Topology

The first step in setting up the experiment is the design, setup and deployment of the
topology that will host the machines and network devices emulating the INT Domain. All
the components of the experimental network deployed on FABRIC are assigned distinct
roles for the experiments, in this sense the topology is not symmetrical. The traffic flows
from a source to a sink, or destination, passing by the two INT devices. The roles are
clarified below as well as in Figure 4.1:

• source: The INT Source node, on which the traffic is crafted with the desired en-
coding of the Domain Specific Instruction (refer to section 4.4). This node represents
one edge of the INT domain.

• fpga1, fpga2: The two INT devices implemented with the programmable data
planes. They will process the packets, executing the DS Instruction requested by
the source.

41

4 – Experimental Evaluation

• sink: The INT Sink node, collecting the INT traffic and breaking down the packets
into their components to analyse the received metadata. In a real scenario, this
device would be also in charge of crafting report packets towards an INT Monitoring
System, which is beyond the scope of this study.

Source

FPGA1 FPGA2

Sink

INT Domain

Figure 4.1. Logical topology of the INT Domain

Such a set of resources is created and managed through a Jupyter Notebook interacting
with the FABRIC orchestrator using the Fablib API. The full Jupyter Notebook developed
to deploy the network can be found in Listing 7.1. The following Figure 4.2 shows the
topology created on FABRIC testbed.

This topology emulates the INT domain needed for the experiment. It includes four
virtual machines interconnected by three traditional layer 2 switches. Since each site (or
node) of the FABRIC Testbed international network has access to at most one SmartNIC,
the slice is distributed over two different sites. Each VM has the following set of resources
allocated:

• Ubuntu 20.04 Focal Fossa as image

• 8 CPU cores

• 16 GB of RAM

• 100 GB of secondary storage

42

4.2 – Flashing The Bitfile On The Smartnics

Figure 4.2. FABRIC Testbed Slice Implementing The INT Domain

The two VMs in the middle, referred to as fpga1 and fpga2 in Figure 4.2, also have
access to the SmartNIC (Alveo U280) as a dedicated component, passed through the
virtualization stack. The FPGAs are accessed and managed through the virtual machines
which will no longer be directly involved in the experiment after the preparation phase.

Traditional networking equipment (l2bridge1, l2bridge2, l2bridge3 in Figure 4.2) is
needed to interconnect the machines but is transparent to the experiment’s purpose. It is
indeed only in charge of bridging the traffic from the output interface of one of our INT
hosts to the input interface of the next one as if they were directly connected.

4.2 Flashing The Bitfile On The Smartnics

Once the topology is ready, the SmartnNICs need to be programmed with the bitfiles
produced by the compilation and synthesis processes. The Vivado Vitis Networking P4
invoked by means of the ESnet Development Workflow zips them in hardware description
artifacts which can be flashed on the Alveo cards to configure and customize their data
planes. The procedure makes use of a set of tools available on the management VMs
which have access to the FPGAs, presented in section 2.3. First, the build environment
must be prepared by creating the two Docker images xilinx-labtools-docker1 and

1GitHub repository for Xilinx LabTools Docker image: https://github.com/esnet/
xilinx-labtools-docker/tree/main

43

https://github.com/esnet/xilinx-labtools-docker/tree/main
https://github.com/esnet/xilinx-labtools-docker/tree/main

4 – Experimental Evaluation

smartnic-dpdk-docker2. Then, it is possible to build a new firmware image, which
depends on the previously built hardware description artifact. This results in a third
Docker image named esnet-smartnic-fw3. This process results in the provisioning of
the powerful set of tools made available by the framework, which include:

• Data Plane Development Kit (DPDK): an application that allows bypass-
ing the kernel of the server hosting the FPGA to connect directly to it, for high-
performance packet processing and data plane operations.

• Pktgen: a DPDK application to easily transmit packets from the FPGA through
its 2x100G ports. It also enables communication with the management VM via the
PCIe bus.

• ESnet CLI Tools: set of command-line tools that provide control over the QDMA
queues, access to the probe counters to trace the packets and perform statistics,
management of parameters and configuration of the control plane rules of the P4
application and eventually control over the FPGA internal switch.

.

4.3 Smartnic Configuration

The first configuration to apply concerns the internal switch of the SmartNICs. By default,
once the device is programmed, the logical ingress interfaces of the SmartNICs are directly
connected to the drop stage, meaning that every packet received by the two 100G ports
gets dropped without being processed by the data plane application. For the purpose of
this experiment, it is necessary to attach these logical input interfaces to the processing
pipeline. This is achieved using the command:

sn -cfg batch configure - switch -i port0:app0 -i port1:app0}

While the output interface for each packet is determined by the P4 logic and its defined
rules, it is worth mentioning that it is possible to override the egress port decision with
a similar command. This feature proves useful for accommodating the specific needs of
different experiments. Other configurations help modify the default values and ensure
that the switch reaches the expected final state, aligning with our assumptions about the

2GitHub repository for SmartNIC DPDK Docker image: https://github.com/esnet/
smartnic-dpdk-docker

3GitHub repository for Smartnic Firmware image:https://github.com/esnet/esnet-smartnic-fw

44

https://github.com/esnet/smartnic-dpdk-docker
https://github.com/esnet/smartnic-dpdk-docker
https://github.com/esnet/esnet-smartnic-fw

4.3 – Smartnic Configuration

internal paths followed by packets once they are received by the SmartNIC. The full switch
configuration is available in the script reported in Listing 7.2, while the final state of the
switch can be inspected using the command:

sn -cfg batch show -switch - config

whose output is shown in the following Figure 4.3.

Ingress Port Remapping

Ingress Connection

Egress Port Remapping

Figure 4.3. Output from the command sn-cfg batch show-switch-config

The final step is to populate the control plane rules for the loaded P4 application. This
requires inserting entries in the appropriate tables of the processing pipeline, defining the
values to match against, the actions to take and the related parameters, if any. The
command to insert such rules is:

sn -p4 insert table rule -t <TAB -NAME > -m <MATCH -VALUE > --action <ACTION >
[--param "P1 P2 ..."]

Since the P4 application processes packets by inserting INT metadata according to the
received instruction, the two FPGAs need to be configured with custom parameters to be
exported based on the same instruction values. Table 4.1 presents the configuration for
each switch.

45

4 – Experimental Evaluation

INT Instruction FPGA1 FPGA2
push switch ID 0x101 0x201
push switch TL trust level trust level

push ingress timestamp timestamp timestamp

Table 4.1. Mapping of INT Instructions to FPGA1 and FPGA2 Parameters

The complete script containing the parameters for each P4 rule can be found in List-
ing 7.3. The three types of available metadata differ significantly in nature, as clarified
below. Switch identifiers are administratively assigned in this step of the configuration,
after the SmartNICs are programmed, by differentiating the parameter associated with
the same action. In contrast, the trust levels are hard-coded into the application, de-
fined directly within the appropriate actions in the P4 code. While the precise semantics
of these values fall outside the scope of this work, their purpose is to enable the collection
of metadata from switches that cannot be administratively altered. These trust values
could potentially represent a combination of various metrics, such as the confidentiality
level or the reliability of a given switch in processing specific classes of packets. Lastly, the
timestamps are directly exported by the SmartNICs based on their local clock, without
requiring manual assignment or additional configuration.

4.4 Generating Synthetic Traffic

The network traffic generated for the experiment consists of a set of synthetic packets
originating from the INT Source node. This traffic is generated using a Python script and
the powerful packet manipulation library Scapy, which is available in Listing 7.4. The
script first defines custom packet classes to represent the header formats recognized by
the P4 application. Among these, one corresponds to the INT Shim header, another to
the INT header, and another the INT Metadata stack. Next, the script includes a layer-
binding section, where the header stack is constructed using Ethernet, IPv4, GRE and the
custom INT headers. Finally it creates the packet assigning specific values to the following
header fields:

• destination MAC address of the INT sink node

• source MAC address of the INT source node

• Ethernet type 0x1717, used to indicate the encapsulated payload is an INT packet

• Initial value for the INT Hop Count field of 32, which is decremented at each hop

46

4.5 – Sniffing and Analyzing INT Packets

• The Domain Specific Instruction field, set to request different metadata from the
devices, which will be appended to the packet.

The outgoing packet is displayed by the script both as raw bytes and in a formatted
(pretty-printed) view and is then sent out from the source node’s interface using the srp1
function offered by Scapy. An example of a packet generated using this method for the
experiment can be found in Figure 4.4. The packet structure is displayed with each header
clearly separated, and every field is labelled with its corresponding name to facilitate the
interpretation of the packet’s composition. In this visualization note the INT headers are
stacked and composed coherently with the P4 application’s parsing logic.

4.5 Sniffing and Analyzing INT Packets

The INT sink represents the final hop of the INT domain, meaning that its role is logi-
cally opposite to that of the source. In a real scenario, where telemetry metadata would be
carried by application-generated traffic, this hop would be required to further process the
packets to normalize and deliver them to their intended recipients, while simultaneously
extracting the collected metadata. Additionally, such metadata would have to be prepared
for the INT Monitoring System entity not present in this experiment. In this implemen-
tation, this node listens for packets arriving at its interface, parses them, and analyses
the fields composing each header. Since the traffic used in this experiment does not carry
payload data intended for delivery, the packets are not forwarded beyond this point. The
analysis of incoming traffic is conducted using Tcpdump as packet-sniffing tool, allowing
us to capture packets and display their raw byte format. Figure 4.5 presents the output
for the command sudo tcpdump -nlvvx -i enp7s0 executed on the sink node when a
packet is received. The automatic analysis performed by Tcpdump detects inconsistencies
in the packet structure, such as missing bytes or invalid checksums as can be noticed in
Figure 4.5. These anomalies arise from the traffic generation script, which does not ensure
full compliance with real-world packet structures. Nevertheless, packet capture confirms
that the two SmartNICs successfully manipulated the packet to embed their metadata.
At the sink node, the packet contains the data requested by the source to each INT hop
while other metadata fields reflect changes introduced at each stage of the topology. The
captured packet, presented in Figure 4.5, includes the following metadata:

• switch ID 1: this field is inserted by the first INT device, fpga1, which exports the
expected value 0x101 based on its control plane configuration section 4.3.

• switch ID 2: The second INT device, fpga2, adds its unique identifier within the
INT domain, which holds the value 0x201, consistent with its configuration.

47

4 – Experimental Evaluation

Ethernet Header

IPv4 Header

GRE Header

In-band Network Telemetry Header

In-band Network Telemetry Shim Header

INT Metadata Stack

Figure 4.4. Breakdown of an INT packet crafted by Scapy script

• Remaining Hop Count: Each INT device decrements this field at every hop.
Initially set to 32 (0x20), it reaches the sink node with a final value of 30 (0x1E)
after two hops as can be observed in the highlighted bytes in Figure 4.5.

The analyzed packet is generated by the Python script described in section 4.4 (available

48

4.5 – Sniffing and Analyzing INT Packets

INT Header And Metadata

Switch ID #1
Switch ID #2

Figure 4.5. A packet captured by Tcpdump, INT portion of the packet and
metadata are highlighted

in Listing 7.4), with a Domain Specific Instruction field value of 0x0001, corresponding
to the push switch ID action configured on the SmartNICs. This instruction enables the
INT domain to reconstruct the traffic path with packet-level granularity. Each INT device
leaves a trace in the packet, allowing the final node to identify all INT switches that have
processed it.

49

50

Chapter 5

Performance Evaluation

The efficiency of the INT technique presented strongly depends on the system’s ability to
maintain high performance while ensuring reliability and accuracy in measurements. When
executing telemetry operations on programmable hardware such as the AU280 board, it is
crucial to evaluate the potential impact on performance. In particular, this study focuses
on determining the proportion of packets correctly enriched with switch traces as they
traverse the topology and on assessing the additional cost in terms of network latency
incurred by these packets. This chapter presents two experiments designed to provide
an objective assessment of the efficiency and the limitations of the application deployed
on FPGAs, contributing to a better understanding of its performance in an experimental
network.

5.1 Path Tracing Accuracy

Accuracy in tracing the path followed by a flow is defined as the ability of INT devices
to mark the packets they process with the metadata entries requested by the telemetry
instruction. A low tracing accuracy would result in some packets being lost while traversing
the topology or in some packets not carrying the expected INT data. Recalling the logic of
the packet processor implemented in P4 and the architecture of the target device, several
factors could cause packet loss:

• Packets dropped at the ingress stage of the SmartNIC’s internal processing pipeline.

• Packets dropped due to the default action in the P4 logic when a match lookup
results in a miss.

• Packets dropped at the egress stage of the SmartNIC’s internal processing pipeline.

51

5 – Performance Evaluation

• Packets discarded upon the error check failure (parser_error field of the standard
metadata structure set).

• Packets with an unexpected header structure are discarded by the application after
parsing.

• Packets overflow a FIFO queue interconnecting different processing stages in the
pipeline.

• Packets lost in traditional networking equipment, such as L2 switches or the L2
site-to-site switches of the FABRIC topology

Given the variety of potential causes impacting the tracing accuracy, a key metric
is the ratio of packets received at the INT sink to the number of packets generated by
the INT source for the test flow. Additionally, after packet inspection performed by the
INT sink node, the percentage of packets carrying the expected metadata extracted from
the network is computed. To obtain these measurements, the in-band network telemetry
experiment from chapter 4 was repeated using the same topology and SmartNIC config-
uration. As previously presented in Figure 4.2, the topology consists of an INT source,
two chained FPGAs and an INT sink at the opposite end. This experiment requires an
additional software component running on the sink node to count and parse incoming
packets and perform statistical analysis. A Python + Scapy script is responsible for the
following tasks:

• Sniffing network packets on the interface receiving traffic from the node labelled
fpga2.

• Processing each incoming packet through a callback function to analyze its raw bytes
and search for the expected telemetry metadata. Since the INT instruction encoded
in the header queries the switches for their identifiers, these are the values searched
within the bytes composing the INT metadata stack using a regular expression.

• Maintaining counters for the total number of packets received on the interface and
the number of packets where the regex pattern matched.

This experiment confirms that no packet loss occurs within the INT domain, as every
packet is correctly processed by the INT nodes and reaches the destination carrying the
expected metadata. This meets the expectations given the low data rate. The computed
packet loss percentage, defined in Equation 5.1, is 0%.

52

5.2 – RTT Degradation Due To Telemetry Operations

(Numsent − Numrecv)
Numsent

∗ 100 (5.1)

While this result confirms that the INT processing pipeline successfully embeds teleme-
try data without discarding packets under these conditions, it does not provide insights
into the system’s behavior under higher traffic loads. Additionally, this experiment does
not evaluate the potential impact of telemetry operations on end-to-end latency, which is
instead analysed in the next section

5.2 RTT Degradation Due To Telemetry Operations

The second performance experiment involves a slightly more complex topology configura-
tion and aims to examine the degradation of the round-trip time experienced by packets
when they are forwarded by the switches performing additional telemetry operations, along
with basic L2 forwarding. The logic of the experiment is to generate traffic while keeping
a detailed timestamp of when each packet leaves the interface of the source host. The
packets are then injected into the INT domain and traverse the topology as usual, col-
lecting switch traces in the telemetry metadata. For this experiment, the packet routing
was modified to create a logically circular topology, ensuring that the traffic returns to
the same host where it was generated. This setup, illustrated in Figure 5.1 allows to
timestamp the received packets again and compute the latency between the time_tx and
time_rx timestamps.

To avoid inconsistencies and obtain accurate timing measurements, any potential
source of application-level processing was excluded by recording timestamps at the low-
est possible level: the Ethernet layer. This was achieved using Tcpdump packet sniffer
features. This command offers the option -tttt, useful to obtain the maximum times-
tamp resolution down to one microsecond. Once the packets reach the first and second
FPGA switches, they are forwarded back to the source via the bypass paths of the two
INT switches rather than continuing toward the sink node. This behaviour depends on
the FPGA switch configuration and can be adjusted with the commands reported below.
The node labelled fpga1 is configured by linking its port0 to the application logic (app0),
ensuring that the traffic received from the INT source is processed. On the other hand,
the ingress port1 is connected to the egress port0 via the bypass path. Similarly, the fpga2
node is configured with the ingress port0 connected to the P4 logic. However, instead of
forwarding traffic to port1 for delivery to the sink node, the configuration overwrites the
application’s egress selection with the same port, ensuring that traffic is delivered back to
the source without additional processing

53

5 – Performance Evaluation

bypassbypass

Source

INT operation INT operation

INT Domain

Figure 5.1. Topology Configuration For RTT Experiment

1 sn -cfg batch configure - switch -i port0:app0 -i port1: bypass
2 sn -cfg batch configure - switch -e app0:port1:port1 -e bypass :port1:port0

This setup eliminates the need to synchronize the source and destination clocks for coherent
timing measurements, as the traffic flow originates and terminates on the same machine
(the source).

Half of the total generated packets are used to establish a baseline latency measure-
ment. These packets are not INT-formatted and instead, they contain a dummy UDP
payload. According to the P4 application behaviour, these packets are not enriched with
metadata but are simply forwarded. The experiment then continues with INT packets, re-
peating the latency measurements to assess the impact of telemetry operations. A Python
script generates the packets using the Scapy library, while Tcpdump operates at a lower
level, capturing traffic on the interface and storing the results in a file. The file is then
parsed and processed by a separate program responsible for computing latency, specifi-
cally analyzing the inter-packet-gap, defined as the time delta between two consecutive
lines of the capture file. To mitigate the impact of fluctuations and reduce the noise in
the graph, a moving average with a sliding window of 10 data points was applied. The
resulting graph is reported in Figure 5.2, showing the smoothed latency trends for normal
(in blue) and INT packets (in red). The x-axis represents the packet index while the

54

5.2 – RTT Degradation Due To Telemetry Operations

y-axis shows the measured RTT in milliseconds. From the figure, it is possible to observe

Figure 5.2. Moving average of normal and INT packets RTT

that, on average, the round-trip time measured in this experiment is not significantly
affected by the telemetry operations. The mean RTT for INT packets remains close to
that of non-INT packets, suggesting that the additional processing does not introduce
appreciable overhead. However, the graph reveals some fluctuations. In certain areas, the
lines show higher latency values for INT packets compared to standard-formatted packets,
possibly due to temporary queuing periods in the FPGA switches. In contrast, in other
sections of the graph, INT packets appear to exhibit a lower round-trip time. Despite
these fluctuations, the overall trend does not indicate a systematic performance degra-
dation caused by INT processing. The latency remains in an acceptable range and this
suggests that the FPGA implementation can efficiently handle the additional processing
to execute telemetry functions without significantly impacting network performance.

To gain further insight into the results, additional statistics were extracted from the
same packet capture recorded in the tcpdump output file. These statistics are presented
in the following.

1. The Cumulative Distribution Function of the delays, shown in Figure 5.3, il-
lustrates the probability that a given round-trip time falls within a specific range.
The x-axis represents the delay in milliseconds while the y-axis shows the cumulative

55

5 – Performance Evaluation

probability. The CDF curves for both normal and INT packets allow us to compare
their latency distributions. From this graph, we observe that both distributions
are very similar with most delays falling within the range of 41.35 ms to 41.55 ms.
However, the red curve (representing packets with INT) appears a little left-shifted,
indicating that a fraction of packets experience lower delays. This confirms that INT
processing does not introduce appreciable additional latency in most cases. At the
tail of the distribution we notice both curves converging rapidly to 1, meaning that
extreme delays are very few.

Figure 5.3. Cumulative Distribution Function of RTTs

2. The histogram in Figure 5.4 illustrates a detailed view of the delay distribution by
showing the frequency of different values. In the plot, the x-axis represents processing
delays in milliseconds, while the y-axis indicates density (or relative frequency of each
value). Here, we see that both normal and INT packets (respectively in blue and red)
present a peak around 41.45 ms, reinforcing the observation from the previous results
that INT processing does not dramatically shift the overall latency distribution. The
two distributions are nearly overlapping however there are minor differences. The
red bars (INT-formatted packets) exhibit a higher density in the 41.40 to 41.45 ms
range suggesting that some packets collecting INT metadata returned faster than

56

5.2 – RTT Degradation Due To Telemetry Operations

expected on the source. In contrast, the normal packets represented by blue bars have
a slightly wider spread toward higher latencies. The variations are small, indicating
that any added processing overhead introduced by INT operations remains negligible
in this practical evaluation.

Figure 5.4. Histogram of Delay Distribution

5.2.1 Results Interpretation

The unexpected result where network latency is lower for packets processed with additional
INT operations compared to traditional L2 forwarding, can be explained considering dif-
ferent network conditions that are not controllable in this experiment. Since FABRIC
nodes are indirectly connected via shared links, the instantaneous load conditions are un-
predictable and may vary. As can be observed in the presented graphs, this led to INT
packets experiencing less congestion compared to regular packets, resulting in lower la-
tency. Additionally, the implementation of telemetry on FPGA hardware is expected to
introduce negligible overhead compared to delays caused by congestion and buffering in
the network. If telemetry operations are executed fast enough, competing traffic in the
network could have had a greater impact on the latency of regular packets than those
carrying INT instructions and metadata. In conclusion, the lower latency observed for

57

5 – Performance Evaluation

INT packets does not necessarily mean that telemetry processing improves the overall
network performance but rather that network conditions, which are not fully controllable
or predictable, had a greater impact on regular packets than on those carrying INT. Some
additional limitations of this experiment must be considered and are discussed in the
following section.

5.2.2 Limitations of the Approach

One key observation is that the measured delays are in the order of tens of milliseconds.
While this time scale is suitable for evaluating round-trip times in a network, it is consid-
ered too coarse to capture finer latency variations introduced by different packet processing
paths within the hardware implementing the data plane. The predominant contribution to
the observed round-trip time stems from the large geographical distances spanned by the
experimental network deployed within FABRIC Testbed. The physical sites involved in
this topology are CLEM (Clemson University, rack location at 340 Computer Court, An-
derson, SC 29625) and KANS (Kansas City, rack location at 1100 Walnut Street, Kansas
City, MO 64106). These locations are not directly connected through a dedicated link,
meaning that the traffic traverses multiple intermediate segments, potentially adding fur-
ther, uncontrolled, latency variations. Additionally, another limitation of this experiment
is the traffic rate at which it was conducted. The test was conducted sending one packet at
a time and as a result the traffic load remained low and did not stress the per-port capac-
ity of the FPGAs. This means that potential queuing effects or congestion-related delays
(factors that could become significant in a high-load scenario) are not represented in the
results. A final aspect to consider is that the experiment involves two FPGA switches in
the data path. Since the packets undergo telemetry processing at both FPGA nodes, the
tests are effectively estimating the cumulative time overhead introduced by both devices
together. However, in a more developed and realistic topology, the number of telemetry-
enabled hops would likely be higher, potentially making the total processing delay more
noticeable and impactful on overall network performance.

58

Chapter 6

Conclusion

6.1 Work Overview

As modern communication networks evolve and gain importance in the services they sup-
port, everyday users, critical service providers and policymakers have increasing concerns
about the reliability of these infrastructures. This highlights the necessity of adopting
advanced tools for network monitoring and traffic management. Traditional telemetry
techniques are based on out-of-band methods such as SNMP or NetFlow, and they present
several limitations, including the polling-based approach and their dependency on control
plane operations. The In-band Network Telemetry framework represents an alternative
approach that allows for the collection of information about the network state by directly
embedding data within the traffic packets as they traverse the topology. This method-
ology offers a detailed and real-time view of the network state by leveraging data plane
operations, significantly enhancing the scalability and the achievable level of detail. To
implement custom telemetry functions in the data plane of network devices, a class of pro-
grammable hardware devices was investigated, with a focus on FPGA-based smartNICs.
This research was supported by the implementation of a proof-of-concept experimental
network capable of collecting metadata from switches as they process packets. For this
purpose, the FABRIC Testbed infrastructure was used, providing the necessary hardware
components, specifically the Alveo U280 Datacenter Accelerator cards. The technological
framework used to interact with these remote hardware facilities included a toolchain that
allowed high-level packet processing operations, formalized in a P4 program, to be trans-
formed into a bitfile to be flashed onto the SmartNIC. Through this process, the FPGA
chip was configured with the desired hardware functions. The success of the demonstrative
INT domain implementation was validated through two performance tests: one to eval-
uate the accuracy of our system in marking INT packets with the switch identifiers and

59

6 – Conclusion

collecting the path trace, and another to measure the potential time overhead introduced
by INT operations when compared to traditional L2 forwarding.

6.2 Challenges and Limitations Encountered

6.2.1 Unsupported P4 Features On Target Platform

The P4 language has some inherent limitations, and additional restrictions are imposed
by the platform on which an application runs. In particular, the unsupported features
from which the developed application would benefit, especially in its design and logic, are
highlighted.

1. if statements in actions are not supported. This prevents the possibility of per-
forming differentiated actions based on decisions made dynamically for each packet
within the same action (e.g. selecting the switch identifier to be pushed dynam-
ically, rather than defining separate actions, which would increase the number of
table entries).

2. stack of headers cannot be implemented in P4 code. As a result, all INT metadata
headers must be statically allocated at the source. Using headers stack would allow
INT metadata to be treated as a homogeneous collection of data structures, each
representing a switch trace. This approach would enable indexed access, reducing
both table usage and code redundancy.

3. Packets cannot be cloned or recirculated, two actions that are respectively useful
for generating reports and for re-injecting packets into the processing pipeline.

6.2.2 Unexpected Behaviour Of Metadata Interface

Vitis Networking P4 offers metadata ports, which serve as a secondary interface to facili-
tate the exchange of sideband packet-related data between the engines that compose the
pipeline and potentially external systems. Metadata is associated with a single packet and
processed concurrently with the packet itself. From the data plane of the smartNIC, within
the P4 code, metadata is accessible as a data structure that must be defined according to
the VNP4 documentation [?].

1 struct smartnic_metadata {
2 bit <64> timestamp_ns ; // 64b timestamp (ns). Set at packet arrival
3 bit <16> pid; // 16b packet id used by platform (READ ONLY)
4 bit <3> ingress_port ; // 3b ingress port
5 bit <3> egress_port ; // 3b egress port

60

6.2 – Challenges and Limitations Encountered

6 bit <1> truncate_enable ; // 1b set to 1 to enable truncation
7 bit <16> truncate_length ; // 16b set to desired length of egress pkt
8 bit <1> rss_enable ; // 1b set to 1 to override rss hash result
9 bit <12> rss_entropy ; // 12b set to rss_entropy hash value (

10 bit <4> drop_reason ; // reserved (tied to 0).
11 bit <32> scratch ; // reserved (tied to 0).
12 }

Listing 6.1. Smartnic Metadata Struct

It is automatically populated by the SmartNIC upon packet arrival on CMAC ports.
Some of its fields are write-protected, while others are reserved. During the development
phase of the INT application, this structure attracted our attention because it provides
a subset of the metadata relevant to our study, as presented in section 3.4. However, in
all the experiments where the INT source queried the smartNICs for such metadata, the
retrieved values were consistently zero, as if the structure had never been initialized. This
unexpected behaviour suggested two possible explanations: either the metadata fields were
not being populated correctly by the hardware, or additional configuration steps of the
open-nic-shell were required to enable their extraction. To further investigate this issue,
a behavioural simulation of the P4 application has been conducted. Such simulation did
not exhibit the anomaly, the metadata were successfully extracted from the designated
data structure.

6.2.3 Behavioural Simulation

The execution of the P4 behavioural simulation is driven by a specific Makefile available
within the ESnet Development Workflow [?], which leverages the VNP4 software flow,
depicted in Figure 6.1. The software flow involves the following components:

• P4C_vitisnet Compiler, which takes the P4 code as input to, compiles it and
produces a JSON file as output, to be used by the Behavioural Model.

• Behavioural Model, a software component responsible for creating an independent
replica of the operations described in the source file, allowing comparison against
the expected behaviour and the RTL implementation. It consists of 2 applications:
p4bm-vitisnet, which models the data plane, and p4bm-vitisnet-cli which models
the control plane of the emulated device.

The behavioural model also takes as input a stream of packets described in a pcap file,
along with an input metadata file, where each line holds the metadata values associated
with a single packet. The model then generates two corresponding output files: one holding

61

6 – Conclusion

the packets modified and processed according to the P4 logic, the other containing output
metadata values.

P4

P4C- vitisnet
Compiler

P4bm-vitisnet/
p4bm-vitisnet-cli

Behavioral Model
RTL Simulator

HW
test

Launch
Simulation

(RTL)

Run Synthesis/
Implementation

IP catalog or IP integrator

Vitis Networking P4 IP

P4C- vitisnet
Compiler

json file

sv
files

.bit

{}

MetaMeta

CLI SW Flow Vivado HW FlowIn.pcap Out.pcap

Figure 6.1. Software and Hardware Flows of VNP4. Image reproduced from [?]

Although the simulation was successful and the metadata extraction worked correctly
while testing the telemetry application, the set of metadata provided by the device re-
mains limited. Specifically, the smartnic_metadata structure does not include valuable
metrics such as instantaneous and average resource utilization, for instance the queue oc-
cupancy between different processing engines. Several other potentially useful telemetry
fields are not yet supported by the SmartNIC used in this study.

6.3 Future Work

While the previous section discussed the limitations and challenges of the presented appli-
cation, this section outlines possible directions for future work, considering both practical
enhancements and more ambitious research paths.

Implementing the INT source and INT sink on the same programmable hardware

62

6.3 – Future Work

device would allow testing the telemetry methodology with real application-generated
traffic, making the INT domain fully transparent to the application endpoints. This
would also enable compatibility with performance testing applications (e.g. iperf3 and
ping), allowing evaluation of the maximum achievable throughput and identification of
the potential bottleneck in the testbed. Additionally, a complete topology including all
roles defined in the INT specification [?] would need a dedicated monitoring system, which
integration could enable metadata aggregation network analysis generation.

To improve and extend the P4-based telemetry application, a future direction involves
enabling the dynamic calculation of each switch’s Trust Level, replacing the predefined and
hard-coded values in the P4 logic. This metric could be dynamically computed based on
the network administrator’s intent and could include factors such as the switch’s position
within the network (core vs. edge), the version of the firmware running on the device and
the security policies enforced by the device manufacturer (e.g. access control, anomaly
detection). Moreover, once the SmartNIC’s set of available and collectable hardware data
is expanded, additional insights could be leveraged to refine the trust level calculation
further.

The increase in packet header size due to the insertion of switch metadata can be miti-
gated with various techniques, one of which is the spreading of telemetry metadata across
multiple packets within the same data flow. This technique, known as Per Flow Aggrega-
tion (PFA) [?], helps maintain a "lightweight" in-band network telemetry approach.

Beyond passively collecting network state data, INT could also be leveraged to en-
force user-defined network policies, bridging the gap between transparency and control.
For instance, specific fields within the packet header could encode user-defined privacy
preferences, which would then be used by INT-compatible devices to refine routing deci-
sions based on these constraints [?]. Such an implementation on programmable hardware
switches is not yet available. As part of an ongoing research effort, we are working on
a demonstration project that combines machine learning techniques for automatic path
selection and congestion detection, further exploring the intersection between telemetry,
network automation, and user-defined policies.

63

64

Chapter 7

Appendix

This appendix contains the scripts and complete programs used for this study and refer-
enced in the previous chapters. They are useful for automatizing the configuration of the
SmartNICs as well as the insertion of table entries from the control plane of the switches.

7.1 Jupyter Notebook For FABRIC Slice Deployment

1 # Deploying Inband Network Telemetry Domain - Fabric
2 # ==
3
4 # Two compute nodes will include FPGAs. These devices are made available
5 # as FABRIC components and can be added to your nodes like any other
6 # component . The project must have Component .FPGA permission tag in order
7 # to be able to provision them.
8 # This experiment is deploying a topology that involves 2 FPGA nodes ,
9 # acting as In -band Network Telemetry hardware switches . They are

10 # programmed using the ESnet Workflow , with a bitstream resulting as the
11 # compilation of the INT p4 logic. The artifact created under an
12 # EVALUATION LICENSE with Vivado using the Xilinx proprietary workflow ,
13 # expires after 48 hours.
14
15 # Setup the Experiment
16 # --------------------
17 from fabrictestbed_extensions . fablib . fablib import FablibManager as

fablib_manager
18
19 fablib = fablib_manager ()
20
21 fablib . show_config ();
22 import random
23
24 FPGA_CHOICE =’FPGA_Xilinx_U280 ’

65

7 – Appendix

25 # don ’t edit - convert from FPGA type to a resource column name
26 # to use in filter lambda function below
27
28 choice_to_column = {
29 " FPGA_Xilinx_U280 ": " fpga_u280_available ",
30 }
31
32 column_name = choice_to_column .get(FPGA_CHOICE , " Unknown ")
33 # The following are the sites hosting an Alveo card pre - flashed with the

ESnet Workflow bitfile
34 allowed_sites = [’CLEM ’, ’DALL ’, ’STAR ’, ’MICH ’, ’PRIN ’, ’SALT ’, ’SRI ’, ’

TACC ’, ’NCSA ’, ’WASH ’, ’UCSD ’, ’LOSA ’, ’KANS ’]
35
36 fpga_sites_df = fablib . list_sites (output =’pandas ’, quiet=True ,

filter_function = lambda x: x[column_name] > 0, force_refresh =True)
37 # note that list_sites with ’pandas ’ doesn ’t actually return a dataframe

like doc sez , it returns a Styler based on the dataframe
38 if fpga_sites_df :
39 fpga_sites = fpga_sites_df .data[’Name ’]. values . tolist ()
40 else:
41 fpga_sites = []
42 print(f’All sites with FPGA available : { fpga_sites }’)
43 if len(fpga_sites) <=1:
44 print(’Warning - no enough sites with available FPGAs found ’)
45 else:
46 if allowed_sites and len(allowed_sites) > 1:
47 fpga_sites = list(set(fpga_sites) & set(allowed_sites))
48 if len(fpga_sites) == 0:
49 print (’Unable to find sites with available FPGAs ’)
50 else:
51 print(’Selecting a site at random ’ + f’among { allowed_sites }’ if

allowed_sites else ’’)
52 site1 , site2 = random . sample (fpga_sites , 2)
53 print(f’Preparing to create slice in sites {site1} and {site2}’)
54
55 # final site override if needed
56 #site = ’DALL ’
57
58 # Give the slice and the nodes in it meaningful names.
59 slice_name =f’INT slice - {site1} + {site2}’
60
61
62 fpga1_name =’fpga1 ’
63 fpga2_name =’fpga2 ’
64 sink_node_name =’sink -node ’
65 source_node_name =’source -node ’
66 bridge1_name =’l2bridge1 ’
67 bridge2_name =’l2bridge2 ’
68 bridge3_name =’l2bridge3 ’

66

7.1 – Jupyter Notebook For FABRIC Slice Deployment

69
70 print(f’Will create slice "{ slice_name }" across sites {site1}, {site2}’)
71
72 /* Create a slice with a node with FPGA at desired site
73 --
74
75 This slice has four VMs - two with the FPGA and the others with a simple
76 NIC - we will want to flow traffic across them. */
77 # Create Slice. Note that by default submit () call will poll for 360

seconds every 10 -20 seconds . Waiting for slice to come up. Normal
expected time is around 2 minutes .

78 slice = fablib . new_slice (name= slice_name)
79 image = ’docker_ubuntu_20 ’
80
81 # Add node with a 70G drive and 8 CPU cores using Ubuntu 20 image - INT

node 1
82 int_node1 = slice . add_node (name=fpga1_name , site=site1 , cores =8, ram =16,

disk =70, image=image)
83 fpga1_comp = int_node1 . add_component (model= FPGA_CHOICE , name=’fpga1 ’)
84 fpga1_p1 = fpga1_comp . get_interfaces () [0]
85 fpga1_p2 = fpga1_comp . get_interfaces () [1]
86
87 # Add node with a 70G drive and 8 CPU cores using Ubuntu 20 image - INT

node 2
88 int_node2 = slice . add_node (name=fpga2_name , site=site2 , cores =8, ram =16,

disk =70, image=image)
89 fpga2_comp = int_node2 . add_component (model= FPGA_CHOICE , name=’fpga2 ’)
90 fpga2_p1 = fpga2_comp . get_interfaces () [0]
91 fpga2_p2 = fpga2_comp . get_interfaces () [1]
92
93 # Add two more nodes acting as source and destination of the traffice flow
94 src = slice . add_node (name= source_node_name , site=site1 , cores =4, disk =50,

image=image)
95 src_iface =src. add_component (model=’NIC_Basic ’, name=’nic1 ’). get_interfaces

() [0]
96 src_iface . set_mode (’auto ’)
97
98 dst = slice . add_node (name= sink_node_name , site=site2 , cores =4, disk =50,

image=image)
99 dst_iface =dst. add_component (model=’NIC_Basic ’, name=’nic2 ’). get_interfaces

() [0]
100 dst_iface . set_mode (’auto ’)
101
102 # Use L2Bridge network services to complete the topolgy
103 net1 = slice. add_l2network (name= bridge1_name , interfaces =[fpga1_p1 ,

src_iface], type=’L2Bridge ’)
104 net2 = slice. add_l2network (name= bridge2_name , interfaces =[fpga1_p2 ,

fpga2_p1])

67

7 – Appendix

105 net3 = slice. add_l2network (name= bridge3_name , interfaces =[fpga2_p2 ,
dst_iface], type=’L2Bridge ’)

106
107
108 # Submit Slice Request
109 slice. submit ();
110 /* Setup IOMMU and Hugepages
111 =========================
112
113 For DPDK to function properly we need to setup hugepages and IOMMU on
114 the VM , this is useful in case we want to generate traffic directly on
115 one of the VMs with the FPGA instead of using one of the simple nodes
116 (source and sink). */
117 #First of all , check if the FPGA is detected in both its PFs on the two INT

nodes
118 command = "lspci -Dd 10ee:"
119 int_node1 = slice . get_node (name= fpga1_name)
120 int_node2 = slice . get_node (name= fpga2_name)
121 print("Node 1")
122 stdout , stderr = int_node1 . execute (command)
123 print("Node 2")
124 stdout , stderr = int_node2 . execute (command)
125
126 slice = fablib . get_slice (name= slice_name)
127 int_node1 = slice . get_node (name= fpga1_name)
128 int_node2 = slice . get_node (name= fpga2_name)
129
130 commands = list ()
131 # commands . append (" sudo sed -i ’s/ GRUB_CMDLINE_LINUX =\"\\(.*\\) \"/

GRUB_CMDLINE_LINUX =\"\\1 amd_iommu =on iommu=pt default_hugepagesz =1G
hugepagesz =1G hugepages =8\"/ ’ /etc/ default /grub ")

132 commands . append ("sudo sed -i ’s/ GRUB_CMDLINE_LINUX =\"\"/ GRUB_CMDLINE_LINUX
=\" amd_iommu =on iommu=pt default_hugepagesz =1G hugepagesz =1G hugepages
=8\"/ ’ /etc/ default /grub")

133 commands . append ("sudo grub - mkconfig -o /boot/grub/grub.cfg")
134 commands . append ("sudo update -grub")
135
136 for command in commands :
137 print (f’Executing { command }’)
138 stdout , stderr = int_node1 . execute (command)
139
140 for command in commands :
141 print (f’Executing { command }’)
142 stdout , stderr = int_node2 . execute (command)
143
144 print(’Done ’)
145 # Reboot the node (this sometimes generates an EOFError exception - ignore
146 it and continue)
147 reboot = ’sudo reboot ’

68

7.1 – Jupyter Notebook For FABRIC Slice Deployment

148
149 print(reboot)
150 int_node1 . execute (reboot)
151 print(reboot)
152 int_node2 . execute (reboot)
153
154 slice. wait_ssh (timeout =360 , interval =10, progress =True)
155
156 print("Now testing SSH abilites to reconnect ...",end="")
157 slice. update ()
158 slice. test_ssh ()
159 print(" Reconnected !")
160
161 # Check that IOMMU was enabled
162
163
164 slice = fablib . get_slice (slice_name)
165 int_node1 = slice. get_node (fpga1_name)
166 int_node2 = slice. get_node (fpga2_name)
167
168 command = ’dmesg | grep -i IOMMU ’
169
170 print(’Observe that the modifications to boot configuration took place and

IOMMU is detected ’)
171 stdout , stderr = int_node1 . execute (command)
172 stdout , stderr = int_node2 . execute (command)
173
174
175 int_node1 . config ()
176 int_node2 . config ()
177
178 # Disable IOMMU support in VFIO (the passing through doesn ’t actually
179 work)
180 # Enable unsafe_noiommu_mode for the vfio module
181 command = "echo 1 | sudo tee /sys/ module /vfio/ parameters /

enable_unsafe_noiommu_mode "
182
183 stdout , stderr = int_node1 . execute (command)
184 stdout , stderr = int_node2 . execute (command)
185
186 # Install Docker compose
187 # ----------------------
188 commands = ["sudo usermod -aG docker ubuntu ",
189 " newgrp docker ",
190 "mkdir -p ~/. docker /cli - plugins /",
191 "curl -SL https :// github .com/ docker / compose / releases / download /

v2 .27.2/ docker -compose -linux - x86_64 -o ~/. docker /cli - plugins /docker -
compose ",

192 "chmod +x ~/. docker /cli - plugins /docker - compose ",

69

7 – Appendix

193 "curl -SL https :// github .com/ docker / buildx / releases / download /v0
.11.2/ buildx -v0 .11.2. linux -amd64 -o ~/. docker /cli - plugins /docker - buildx
",

194 "chmod +x ~/. docker /cli - plugins /docker - buildx ",
195 " docker compose version ",
196]
197
198 for command in commands :
199 print (f’Executing { command } on node 1’)
200 stdout , stderr = int_node1 . execute (command)
201 print (f’Executing { command } on node 2’)
202 stdout , stderr = int_node2 . execute (command)
203
204 print(’Done ’)
205
206 /* Program FPGA and run applications on it
207 ---------------------------------------
208
209 First we - download pre -built dpdk and xilinx - labtools containers and
210 install their images - download a previously built p4 artifact -
211 checkout the ‘‘esnet -smartnic -fw ‘‘ code , add the artifact and build a
212 configuration of containers we can then execute . */
213 # Build dpdk and xilinx - labtools docker images , then place your artifact

file in ~/
214 commands = [
215 "git clone https :// github .com/esnet/smartnic -dpdk - docker .git",
216 "cd ~/ smartnic -dpdk - docker ; git submodule update --init --recursive ",
217 "cd ~/ smartnic -dpdk - docker ; docker build --pull -t smartnic -dpdk - docker

:${USER}-dev .",
218 " docker image ls"
219]
220
221 for command in commands :
222 print (f’Executing { command }’)
223 stdout , stderr = int_node1 . execute (command)
224 stdout , stderr = int_node2 . execute (command)
225
226 print("\n\nSCP from node attached to the persistent storage , the artifact

file and the xilinx -labtools - docker image")
227
228 # update the env_file values to match the name of the artifact file
229 env_file = """
230 SN_HW_VER =0
231 SN_HW_BOARD =au280
232 SN_HW_APP_NAME = p4_only
233 """
234
235 commands = [
236 "git clone https :// github .com/esnet/esnet -smartnic -fw.git",

70

7.1 – Jupyter Notebook For FABRIC Slice Deployment

237 "cd ~/ esnet -smartnic -fw; git submodule init; git submodule update ",
238 f"echo ’{ env_file }’ | sudo tee ~/ esnet -smartnic -fw/. env",
239]
240
241 for command in commands :
242 print (f’Executing { command }’)
243 stdout , stderr = int_node1 . execute (command)
244 stdout , stderr = int_node2 . execute (command)
245 print("Done")
246
247 commands = [
248 " docker pull lucacet /xilinx -labtools - docker : ubuntu ",
249 " docker tag lucacet /xilinx -labtools - docker : ubuntu xilinx -labtools -

docker :ubuntu -dev",
250 " docker image rm lucacet /xilinx -labtools - docker : ubuntu "
251]
252
253 for command in commands :
254 print (f" Executing { command } - 1")
255 stdout , stderr = int_node1 . execute (command)
256 print (f" Executing { command } - 2")
257 stdout , stderr = int_node2 . execute (command)
258
259 print("Done")
260 /* Test sn -cfg , configure CMACs
261 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
262
263 Should see normal looking output . If everything is 0x0000 or 0xffff , the
264 binding to FPGA from VFIO did not work. */
265 command = "cd esnet -smartnic -fw/sn -stack /; docker compose exec smartnic -fw

sn -cfg --tls - insecure show device "
266
267 stdout , stderr = int_node1 . execute (command)
268 stdout , stderr = int_node2 . execute (command)
269
270 /* Let ’s configure CMACs. It succeeds if we see ’’MAC ENABLED /PHY UP -> UP’

’ for both CMACs Rx and Tx. If
271 not , it is possible FEC is not turned off in the dataplane switch . */
272
273 # upload sn -cli config script
274 sn_cli_script = ’sn -cli -setup ’
275
276 result = int_node1 . upload_file (sn_cli_script , sn_cli_script)
277 result = int_node2 . upload_file (sn_cli_script , sn_cli_script)
278
279 commands = [
280 f"chmod a+x { sn_cli_script }",
281 f"mv { sn_cli_script } ~/ esnet -smartnic -fw/sn -stack/ scratch ",

71

7 – Appendix

282 f"cd ~/ esnet -smartnic -fw/sn -stack /; docker compose exec smartnic -fw
scratch /{ sn_cli_script }"

283]
284
285 for command in commands :
286 print(f’Executing { command }’)
287 stdout , stderr = node1. execute (command)
288
289 /* Extend the slice (as needed)
290 ----------------------------
291
292 If you need to extend the storage slice , you can just execute the
293 following two cells. They display the slice expiration date and
294 optionally extend by 2 weeks. */
295
296
297
298 slice_name =" INT slice - CLEM + KANS"
299 slice = fablib . get_slice (name= slice_name)
300 nets = slice . list_networks ()
301 nodes = slice. get_nodes ()
302
303
304 # Renew the slice
305
306 from datetime import datetime
307 from datetime import timezone
308 from datetime import timedelta
309
310 # Set end host to now plus 14 days
311 end_date = (datetime .now(timezone .utc) + timedelta (days =14)). strftime ("%Y-%

m-%d %H:%M:%S %z")
312
313 try:
314 slice = fablib . get_slice (name= slice_name)
315
316 slice.renew(end_date)
317 except Exception as e:
318 print(f" Exception : {e}")
319
320 /* Delete the Slice (as needed)
321 ---------------------------- */
322
323 slice = fablib . get_slice (name= slice_name)
324 slice. delete ()

Listing 7.1. Jupyter Notebook for Slice Definition and Deployment

72

7.2 – Bash Scripts for SmartNIC Confiuguration

7.2 Bash Scripts for SmartNIC Confiuguration

1 #!/ bin/bash
2 sn -cfg batch configure - switch -s port0:port0 -s port1:port1 -s host0:host0

-s host1:host1
3 sn -cfg batch configure - switch -i port0:app0 -i port1:app0
4 sn -cfg batch configure - switch -e app0:port0:port0 -e app0:port1:port1
5
6 sn -cfg --tls - insecure batch configure -port -p 0 -s enable
7 sn -cfg --tls - insecure batch configure -port -p 1 -s enable
8
9 sn -cfg batch show -switch - config

Listing 7.2. Script for SmartNIC’s Internal Switch Configuration

1 #!/ bin/bash
2
3 SN_P4_CMD ="sn -p4 --tls - insecure insert table rule"
4
5 if [[$# -ne 1 || ($1 != "s1" && $1 != "s2")]]; then
6 echo "Usage: $0 <s1|s2 >"
7 exit 1
8 fi
9

10 SW=$1
11
12 configure_int_operation () {
13 printf "\ nConfiguring int_operation table for $SW ...\n"
14 if [[$SW == "s1"]]; then
15 $SN_P4_CMD -t int_operation -m 0x0001 --action sw0_push_id --param 0

x101
16 $SN_P4_CMD -t int_operation -m 0x0002 --action

sw0_push_ingress_timestamp
17 $SN_P4_CMD -t int_operation -m 0x0004 --action sw0_push_trust_level
18 else
19 $SN_P4_CMD -t int_operation -m 0x0001 --action sw1_push_id --param 0

x201
20 $SN_P4_CMD -t int_operation -m 0x0002 --action

sw1_push_ingress_timestamp
21 $SN_P4_CMD -t int_operation -m 0x0004 --action sw1_push_trust_level
22 fi
23 }
24 configure_l2_forwarding () {
25 printf "\n\ nConfiguring l2_forwarding table ...\n"
26 if [[$SW == "s1"]]; then
27 $SN_P4_CMD -t l2_forwarding -m 0 x0A671380B76D --action l2_forward --

param 1
28 $SN_P4_CMD -t l2_forwarding -m 0 x029AF99EEF7F --action l2_forward --

param 0

73

7 – Appendix

29 else
30 $SN_P4_CMD -t l2_forwarding -m 0 x0A671380B76D --action l2_forward --

param 1
31 $SN_P4_CMD -t l2_forwarding -m 0 x029AF99EEF7F --action l2_forward --

param 0
32 fi
33 }
34
35 # Clear the table before applying configuration
36 sn -p4 --tls - insecure clear table
37 # Call configuration functions
38 configure_int_operation
39 # configure_ipv4_routing
40 configure_l2_forwarding
41
42 printf "\n\n\nP4 table configuration completed for $SW\n"

Listing 7.3. Script for Table Entries Insertion In SmartNIC’s Control Plane

7.3 Python Script for Traffic Generation And Analysis

1 from scapy.all import *
2 import binascii
3
4 class Ethernet (Packet):
5 name = " Ethernet "
6 fields_desc = [
7 MACField (" dstAddr ", " 00:00:00:00:00:00 "),
8 MACField (" srcAddr ", " 00:00:00:00:00:00 "),
9 XShortField (" etherType ", 0x0800),

10]
11
12 class IPv4(Packet):
13 name = "IPv4"
14 fields_desc = [
15 BitField (" version ", 4, 4),
16 BitField ("ihl", 5, 4),
17 ByteField (" diffserv ", 0),
18 ShortField (" totalLen ", 0),
19 ShortField (" identification ", 0),
20 BitField ("flags", 2, 3),
21 BitField (" fragOffset ", 0, 13) ,
22 ByteField ("ttl", 64) ,
23 ByteField (" protocol ", 0x2F), # GRE
24 XShortField (" hdrChecksum ", 0),
25 IPField (" srcAddr ", " 10.0.0.1 "),
26 IPField (" dstAddr ", " 10.0.0.2 "),

74

7.3 – Python Script for Traffic Generation And Analysis

27]
28
29 class GRE(Packet):
30 name = "GRE"
31 fields_desc = [
32 BitField ("C", 0, 1),
33 BitField ("R", 0, 1),
34 BitField ("K", 0, 1),
35 BitField ("S", 0, 1),
36 BitField ("s", 0, 1),
37 BitField (" recursion ", 0, 3),
38 BitField ("flags", 0, 5),
39 BitField (" version ", 0, 3),
40 XShortField (" protocol_type ", 0x1717), #INT custom Ethernet Type
41]
42
43 class IntShim (Packet):
44 name = " IntShim "
45 fields_desc = [
46 BitField ("type", 0x3 , 4),
47 BitField ("G", 1, 1),
48 BitField ("Rsvd", 0, 3),
49 ByteField (" length ", 20) ,
50 XShortField (" next_protocol ", 0x0800), # IPv4 after INT stack
51]
52
53 class IntHeader (Packet):
54 name = " IntHeader "
55 fields_desc = [
56 BitField ("ver", 0x2 , 4),
57 BitField ("D", 0, 1),
58 BitField ("E", 0, 1),
59 BitField ("M", 0, 1),
60 BitField (" reserved ", 0, 12) ,
61 BitField (" hop_ml ", 48, 5),
62 ByteField (" remaining_hop_cnt ", 32) ,
63 XShortField (" instruction_mask ", 0x0001),
64 XShortField (" domain_id ", 1),
65 XShortField (" ds_instr ", 0x0001),
66 XShortField (" ds_flags ", 0),
67]
68
69 class SwitchInt0 (Packet):
70 name = " SwitchInt0 "
71 fields_desc = [
72 XShortField ("swid", 0),
73 XShortField (" trust_level ", 0),
74 XLongField (" timestamp ", 0),
75]

75

7 – Appendix

76
77 class SwitchInt1 (Packet):
78 name = " SwitchInt1 "
79 fields_desc = [
80 XShortField ("swid", 0),
81 XShortField (" trust_level ", 0),
82 XLongField (" timestamp ", 0),
83]
84
85 bind_layers (Ethernet , IPv4 , etherType =0 x0800)
86 bind_layers (IPv4 , GRE , protocol =0 x2F)
87 bind_layers (GRE , IntShim , protocol_type =0 x1717)
88 bind_layers (IntShim , IntHeader)
89 bind_layers (IntHeader , SwitchInt0)
90 bind_layers (SwitchInt0 , SwitchInt1)
91
92 dst_mac = "06: AD:E2:A9 :34: C9"
93 src_mac = " 06:03:79:10: FC :85"
94 pkt = (
95 Ethernet (dstAddr =dst_mac , srcAddr =src_mac , etherType =0 x0800) /
96 IPv4(srcAddr =" 192.168.1.2 ", dstAddr =" 192.168.1.3 ", totalLen =0 x420) /
97 GRE () /
98 IntShim (next_protocol =0 x0800) /
99 IntHeader (remaining_hop_cnt =32, ds_instr =0 x0001) /

100 SwitchInt0 () /
101 SwitchInt1 ()
102)
103
104 print(" Packet bytes in hexadecimal :")
105 print(binascii . hexlify (bytes(pkt)). decode (’utf -8’))
106
107 pkt.show ()
108
109 iface = " enp7s0 "
110
111 resp = srp1(pkt , iface=iface , timeout =3, verbose =False)

Listing 7.4. Python Script for INT Source Emulation

1 from scapy.all import *
2 import time
3
4
5 packet_size = 78
6 data_rate = 100 # Desired rate in Mbps
7 num_packets = 100 # Total packets to be sent
8
9 class Ethernet (Packet):

10 name = " Ethernet "
11 fields_desc = [

76

7.3 – Python Script for Traffic Generation And Analysis

12 MACField (" dstAddr ", " 00:00:00:00:00:00 "),
13 MACField (" srcAddr ", " 00:00:00:00:00:00 "),
14 XShortField (" etherType ", 0x0800),
15]
16
17 class IPv4(Packet):
18 name = "IPv4"
19 fields_desc = [
20 BitField (" version ", 4, 4),
21 BitField ("ihl", 5, 4),
22 ByteField (" diffserv ", 0),
23 ShortField (" totalLen ", 0),
24 ShortField (" identification ", 0),
25 BitField ("flags", 2, 3),
26 BitField (" fragOffset ", 0, 13) ,
27 ByteField ("ttl", 64) ,
28 ByteField (" protocol ", 0x2F), # GRE
29 XShortField (" hdrChecksum ", 0),
30 IPField (" srcAddr ", " 10.0.0.1 "),
31 IPField (" dstAddr ", " 10.0.0.2 "),
32]
33
34 class GRE(Packet):
35 name = "GRE"
36 fields_desc = [
37 BitField ("C", 0, 1),
38 BitField ("R", 0, 1),
39 BitField ("K", 0, 1),
40 BitField ("S", 0, 1),
41 BitField ("s", 0, 1),
42 BitField (" recursion ", 0, 3),
43 BitField ("flags", 0, 5),
44 BitField (" version ", 0, 3),
45 XShortField (" protocol_type ", 0x1717), # custom INT ethertype
46]
47
48 class IntShim (Packet):
49 name = " IntShim "
50 fields_desc = [
51 BitField ("type", 0x3 , 4),
52 BitField ("G", 1, 1),
53 BitField ("Rsvd", 0, 3),
54 ByteField (" length ", 20) ,
55 XShortField (" next_protocol ", 0x0800), # IPv4 after INT stack
56]
57
58 class IntHeader (Packet):
59 name = " IntHeader "
60 fields_desc = [

77

7 – Appendix

61 BitField ("ver", 0x2 , 4),
62 BitField ("D", 0, 1),
63 BitField ("E", 0, 1),
64 BitField ("M", 0, 1),
65 BitField (" reserved ", 0, 12) ,
66 BitField (" hop_ml ", 48, 5),
67 ByteField (" remaining_hop_cnt ", 32) ,
68 XShortField (" instruction_mask ", 0x0001),
69 XShortField (" domain_id ", 1),
70 XShortField (" ds_instr ", 0x0001),
71 XShortField (" ds_flags ", 0),
72]
73
74 class SwitchInt0 (Packet):
75 name = " SwitchInt0 "
76 fields_desc = [
77 XShortField ("swid", 0),
78 XShortField (" trust_level ", 0),
79 XLongField (" timestamp ", 0),
80]
81
82 class SwitchInt1 (Packet):
83 name = " SwitchInt1 "
84 fields_desc = [
85 XShortField ("swid", 0),
86 XShortField (" trust_level ", 0),
87 XLongField (" timestamp ", 0),
88]
89
90 bind_layers (Ethernet , IPv4 , etherType =0 x0800)
91 bind_layers (IPv4 , GRE , protocol =0 x2F)
92 bind_layers (GRE , IntShim , protocol_type =0 x1717)
93 bind_layers (IntShim , IntHeader)
94 bind_layers (IntHeader , SwitchInt0)
95 bind_layers (SwitchInt0 , SwitchInt1)
96
97 dst_mac = "0A :67:13:80: B7:6D"
98 src_mac = "02:9A:F9:9E:EF:7F"
99 pkt = (

100 Ethernet (dstAddr =dst_mac , srcAddr =src_mac , etherType =0 x0800) /
101 IPv4(srcAddr =" 192.168.1.2 ", dstAddr =" 192.168.1.3 ", totalLen =0 x4E) /
102 GRE () /
103 IntShim (next_protocol =0 x0800) /
104 IntHeader (remaining_hop_cnt =32, ds_instr =0 x0001) /
105 SwitchInt0 () /
106 SwitchInt1 ()
107)
108
109

78

7.3 – Python Script for Traffic Generation And Analysis

110 print(f" Sending { num_packets } packets at { data_rate } Mbps ...")
111
112 # Send packets at desired data rate
113 start_time = time.time ()
114 sendpfast ([pkt] * num_packets , mbps=data_rate , loop =1, iface=" enp7s0 ")
115 end_time = time.time ()
116 print("ok")
117 duration = end_time - start_time
118
119 print(f" Packet transmission completed in { duration :.2f} seconds .")
120 print(f" Actual transmission rate: { packet_size * num_packets * 8 / (1000000

* duration)}:.2f Mbps")

Listing 7.5. Python Script for INT Source Emulation - Controlled Bitrate For Accuracy Test

1 from scapy.all import *
2 import time
3
4 DST_MAC = "06: AD:E2:A9 :34: C9"
5 SRC_MAC = " 06:03:79:10: FC :85"
6 PAYLOAD = " Performance test packet "
7 NUM_PACKETS = 1000
8 ETHERTYPE_TBD_INT = 0x1717
9

10 class Ethernet (Packet):
11 name = " Ethernet "
12 fields_desc = [
13 MACField (" dstAddr ", " 00:00:00:00:00:00 "),
14 MACField (" srcAddr ", " 00:00:00:00:00:00 "),
15 XShortField (" etherType ", 0x0800),
16]
17
18 class IPv4(Packet):
19 name = "IPv4"
20 fields_desc = [
21 BitField (" version ", 4, 4),
22 BitField ("ihl", 5, 4),
23 ByteField (" diffserv ", 0),
24 ShortField (" totalLen ", 0),
25 ShortField (" identification ", 0),
26 BitField ("flags", 2, 3),
27 BitField (" fragOffset ", 0, 13) ,
28 ByteField ("ttl", 64) ,
29 ByteField (" protocol ", 0x2F), # GRE
30 XShortField (" hdrChecksum ", 0),
31 IPField (" srcAddr ", " 10.0.0.1 "),
32 IPField (" dstAddr ", " 10.0.0.2 "),
33]
34
35

79

7 – Appendix

36 class GRE(Packet):
37 name = "GRE"
38 fields_desc = [
39 BitField ("C", 0, 1),
40 BitField ("R", 0, 1),
41 BitField ("K", 0, 1),
42 BitField ("S", 0, 1),
43 BitField ("s", 0, 1),
44 BitField (" recursion ", 0, 3),
45 BitField ("flags", 0, 5),
46 BitField (" version ", 0, 3),
47 XShortField (" protocol_type ", ETHERTYPE_TBD_INT), # INT encapsulated
48]
49
50 class IntShim (Packet):
51 name = " IntShim "
52 fields_desc = [
53 BitField ("type", 0x3 , 4),
54 BitField ("G", 1, 1),
55 BitField ("Rsvd", 0, 3),
56 ByteField (" length ", 20) ,
57 XShortField (" next_protocol ", 0x0800), # IPv4 after INT stack
58]
59
60 class IntHeader (Packet):
61 name = " IntHeader "
62 fields_desc = [
63 BitField ("ver", 0x2 , 4),
64 BitField ("D", 0, 1),
65 BitField ("E", 0, 1),
66 BitField ("M", 0, 1),
67 BitField (" reserved ", 0, 12) ,
68 BitField (" hop_ml ", 48, 5),
69 ByteField (" remaining_hop_cnt ", 32) ,
70 XShortField (" instruction_mask ", 0x0001),
71 XShortField (" domain_id ", 1),
72 XShortField (" ds_instr ", 0x0001),
73 XShortField (" ds_flags ", 0),
74]
75
76 class SwitchInt0 (Packet):
77 name = " SwitchInt0 "
78 fields_desc = [
79 XShortField ("swid", 0),
80 XShortField (" trust_level ", 0),
81 XLongField (" timestamp ", 0),
82]
83
84 class SwitchInt1 (Packet):

80

7.3 – Python Script for Traffic Generation And Analysis

85 name = " SwitchInt1 "
86 fields_desc = [
87 XShortField ("swid", 0),
88 XShortField (" trust_level ", 0),
89 XLongField (" timestamp ", 0),
90]
91
92 bind_layers (Ethernet , IPv4 , etherType =0 x0800)
93 bind_layers (IPv4 , GRE , protocol =0 x2F)
94 bind_layers (GRE , IntShim , protocol_type =0 x1717)
95 bind_layers (IntShim , IntHeader)
96 bind_layers (IntHeader , SwitchInt0)
97 bind_layers (SwitchInt0 , SwitchInt1)
98
99

100 def send_and_measure (packet , iface):
101 latencies = []
102 conf. sniff_promisc = True # ensure to accept returning packets
103
104 def filter_response (response):
105 return response . haslayer (Ether) and (response [Ether]. dst == "2a

:2b:2c:2d:2e:2f" or response [Ether]. dst == "06: ad:e2:a9 :34:00 ")
106
107 for _ in range (NUM_PACKETS):
108 start_time = time.time () # Timestamp before sending
109 response = sniff(iface=iface , timeout =2, count =1, lfilter =

filter_response , started_callback = lambda : sendp(packet , iface=iface ,
verbose =False))

110 end_time = time.time () # Timestamp after reception
111
112 if response :
113 latency = (end_time - start_time) * 1000 # in ms
114 latencies . append (latency)
115 print (f" Packet RTT: { latency :.2f} ms")
116 else:
117 print ("No response received ")
118 return latencies
119
120 # Normal packet (no INT)
121 def create_normal_packet ():
122 return Ethernet (dstAddr ="06: AD:E2:A9 :34:00 ", srcAddr =SRC_MAC ,

etherType =0 x0800) / IPv4(srcAddr =SRC_IP , dstAddr =DST_IP , totalLen =0x420
, protocol =0 x11) / UDP () / PAYLOAD

123
124 # Packet wirh INT header - source emulation
125 def create_int_packet ():

81

7 – Appendix

126 return Ethernet (dstAddr ="06: AD:E2:A9 :34:00 ", srcAddr =" 06:03:79:10: FC :91
", etherType =0 x0800) / IPv4(srcAddr =SRC_IP , dstAddr =DST_IP , totalLen =0
x420) / GRE () / IntShim (next_protocol =0 x0800) / IntHeader (
remaining_hop_cnt =32, ds_instr =0 x0001) / SwitchInt0 () / SwitchInt1 ()

127
128 def main ():
129 iface = " enp7s0 "
130 print (" Testing normal packets ...")
131 normal_packet = create_normal_packet ()
132 # normal_packet .show ()
133 normal_latencies = send_and_measure (normal_packet , iface)
134
135 print ("\ nTesting INT packets ...")
136 int_packet = create_int_packet ()
137 # int_packet .show ()
138 int_latencies = send_and_measure (int_packet , iface)
139
140 print ("\ nResults :")
141 if len(normal_latencies) != 0:
142 print(f" Normal Packet Avg RTT: {sum(normal_latencies) / len(

normal_latencies):.2f} ms")
143 else:
144 print(f" Normal Packet Avg RTT: {sum(normal_latencies) / 1:.2f} ms"

)
145
146 if len(int_latencies) != 0:
147 print(f"INT Packet Avg RTT: {sum(int_latencies) / len(

int_latencies):.2f} ms")
148 else:
149 print(f"INT Packet Avg RTT: {sum(int_latencies) / 1:.2f} ms")
150
151
152 if __name__ == " __main__ ":
153 main ()
154 from scapy.all import *
155 import time
156
157 DST_MAC = "06: AD:E2:A9 :34: C9"
158 SRC_MAC = " 06:03:79:10: FC :85"
159 PAYLOAD = " Performance test packet "
160 NUM_PACKETS = 1000
161 ETHERTYPE_TBD_INT = 0x1717
162
163 class Ethernet (Packet):
164 name = " Ethernet "
165 fields_desc = [
166 MACField (" dstAddr ", " 00:00:00:00:00:00 "),
167 MACField (" srcAddr ", " 00:00:00:00:00:00 "),
168 XShortField (" etherType ", 0x0800),

82

7.3 – Python Script for Traffic Generation And Analysis

169]
170
171 class IPv4(Packet):
172 name = "IPv4"
173 fields_desc = [
174 BitField (" version ", 4, 4),
175 BitField ("ihl", 5, 4),
176 ByteField (" diffserv ", 0),
177 ShortField (" totalLen ", 0),
178 ShortField (" identification ", 0),
179 BitField ("flags", 2, 3),
180 BitField (" fragOffset ", 0, 13) ,
181 ByteField ("ttl", 64) ,
182 ByteField (" protocol ", 0x2F), # GRE
183 XShortField (" hdrChecksum ", 0),
184 IPField (" srcAddr ", " 10.0.0.1 "),
185 IPField (" dstAddr ", " 10.0.0.2 "),
186]
187
188
189 class GRE(Packet):
190 name = "GRE"
191 fields_desc = [
192 BitField ("C", 0, 1),
193 BitField ("R", 0, 1),
194 BitField ("K", 0, 1),
195 BitField ("S", 0, 1),
196 BitField ("s", 0, 1),
197 BitField (" recursion ", 0, 3),
198 BitField ("flags", 0, 5),
199 BitField (" version ", 0, 3),
200 XShortField (" protocol_type ", ETHERTYPE_TBD_INT), # INT encapsulated
201]
202
203 class IntShim (Packet):
204 name = " IntShim "
205 fields_desc = [
206 BitField ("type", 0x3 , 4),
207 BitField ("G", 1, 1),
208 BitField ("Rsvd", 0, 3),
209 ByteField (" length ", 20) ,
210 XShortField (" next_protocol ", 0x0800), # IPv4 after INT stack
211]
212
213 class IntHeader (Packet):
214 name = " IntHeader "
215 fields_desc = [
216 BitField ("ver", 0x2 , 4),
217 BitField ("D", 0, 1),

83

7 – Appendix

218 BitField ("E", 0, 1),
219 BitField ("M", 0, 1),
220 BitField (" reserved ", 0, 12) ,
221 BitField (" hop_ml ", 48, 5),
222 ByteField (" remaining_hop_cnt ", 32) ,
223 XShortField (" instruction_mask ", 0x0001),
224 XShortField (" domain_id ", 1),
225 XShortField (" ds_instr ", 0x0001),
226 XShortField (" ds_flags ", 0),
227]
228
229 class SwitchInt0 (Packet):
230 name = " SwitchInt0 "
231 fields_desc = [
232 XShortField ("swid", 0),
233 XShortField (" trust_level ", 0),
234 XLongField (" timestamp ", 0),
235]
236
237 class SwitchInt1 (Packet):
238 name = " SwitchInt1 "
239 fields_desc = [
240 XShortField ("swid", 0),
241 XShortField (" trust_level ", 0),
242 XLongField (" timestamp ", 0),
243]
244
245 bind_layers (Ethernet , IPv4 , etherType =0 x0800)
246 bind_layers (IPv4 , GRE , protocol =0 x2F)
247 bind_layers (GRE , IntShim , protocol_type =0 x1717)
248 bind_layers (IntShim , IntHeader)
249 bind_layers (IntHeader , SwitchInt0)
250 bind_layers (SwitchInt0 , SwitchInt1)
251
252
253 def send_and_measure (packet , iface):
254 latencies = []
255 conf. sniff_promisc = True # ensure to accept returning packets
256
257 def filter_response (response):
258 return response . haslayer (Ether) and (response [Ether]. dst == "2a

:2b:2c:2d:2e:2f" or response [Ether]. dst == "06: ad:e2:a9 :34:00 ")
259
260 for _ in range (NUM_PACKETS):
261 start_time = time.time () # Timestamp before sending
262 response = sniff(iface=iface , timeout =2, count =1, lfilter =

filter_response , started_callback = lambda : sendp(packet , iface=iface ,
verbose =False))

263 end_time = time.time () # Timestamp after reception

84

7.3 – Python Script for Traffic Generation And Analysis

264
265 if response :
266 latency = (end_time - start_time) * 1000 # in ms
267 latencies . append (latency)
268 print (f" Packet RTT: { latency :.2f} ms")
269 else:
270 print ("No response received ")
271 return latencies
272
273 # Normal packet (no INT)
274 def create_normal_packet ():
275 return Ethernet (dstAddr ="06: AD:E2:A9 :34:00 ", srcAddr =SRC_MAC ,

etherType =0 x0800) / IPv4(srcAddr =SRC_IP , dstAddr =DST_IP , totalLen =0x420
, protocol =0 x11) / UDP () / PAYLOAD

276
277 # Packet wirh INT header - source emulation
278 def create_int_packet ():
279 return Ethernet (dstAddr ="06: AD:E2:A9 :34:00 ", srcAddr =" 06:03:79:10: FC :91

", etherType =0 x0800) / IPv4(srcAddr =SRC_IP , dstAddr =DST_IP , totalLen =0
x420) / GRE () / IntShim (next_protocol =0 x0800) / IntHeader (
remaining_hop_cnt =32, ds_instr =0 x0001) / SwitchInt0 () / SwitchInt1 ()

280
281 def main ():
282 iface = " enp7s0 "
283 print (" Testing normal packets ...")
284 normal_packet = create_normal_packet ()
285 # normal_packet .show ()
286 normal_latencies = send_and_measure (normal_packet , iface)
287
288 print ("\ nTesting INT packets ...")
289 int_packet = create_int_packet ()
290 # int_packet .show ()
291 int_latencies = send_and_measure (int_packet , iface)
292
293 print ("\ nResults :")
294 if len(normal_latencies) != 0:
295 print(f" Normal Packet Avg RTT: {sum(normal_latencies) / len(

normal_latencies):.2f} ms")
296 else:
297 print(f" Normal Packet Avg RTT: {sum(normal_latencies) / 1:.2f} ms"

)
298
299 if len(int_latencies) != 0:
300 print(f"INT Packet Avg RTT: {sum(int_latencies) / len(

int_latencies):.2f} ms")
301 else:
302 print(f"INT Packet Avg RTT: {sum(int_latencies) / 1:.2f} ms")
303
304

85

7 – Appendix

305 if __name__ == " __main__ ":
306 main ()

Listing 7.6. Python Script for Performance Test

1 from datetime import datetime
2 import matplotlib . pyplot as plt
3 import numpy as np
4
5 def parse_tcpdump (file_path):
6 without_int = []
7 with_int = []
8 with open(file_path , ’r’) as f:
9 packets = f. readlines ()

10 mid_point = len(packets) // 2
11 for i, line in enumerate (packets):
12 if " 192.168.1.2 " in line and " 192.168.1.3 " in line:
13 ts = line.split(’ ’)[0] + ’ ’ + line.split(’ ’)[1]
14 if i < mid_point :
15 without_int . append (ts)
16 else:
17 with_int . append (ts)
18 return without_int , with_int
19
20 def calculate_delay (timestamps):
21 fmt = "%Y-%m-%d %H:%M:%S.%f"
22 deltas = []
23 for i in range (0, len(timestamps) - 1, 2):
24 time1 = datetime . strptime (timestamps [i], fmt)
25 time2 = datetime . strptime (timestamps [i + 1], fmt)
26 deltas . append ((time2 - time1). total_seconds () * 1e3) # Convert to

milliseconds
27 return deltas
28
29 def moving_average (data , window_size =10):
30 return np. convolve (data , np.ones(window_size)/ window_size , mode=’valid ’

)
31
32 def generate_plot (without_int_delays , with_int_delays , output_file):
33 plt. figure (figsize =(10 , 6))
34
35 # Smoothed moving average lines
36 if len(without_int_delays) >= 10:
37 smoothed_without_int = moving_average (without_int_delays)
38 plt.plot(range (10, len(without_int_delays) + 1),

smoothed_without_int , linestyle =’-’, color=’blue ’, label=" Without INT")
39
40 if len(with_int_delays) >= 10:
41 smoothed_with_int = moving_average (with_int_delays)

86

7.3 – Python Script for Traffic Generation And Analysis

42 plt.plot(range (10, len(with_int_delays) + 1), smoothed_with_int ,
linestyle =’-’, color=’red ’, label="With INT")

43
44 plt.title(" Processing Delay Comparison ")
45 plt. xlabel (" Packet Number ")
46 plt. ylabel ("Delay (ms)") # Now in milliseconds
47 plt. legend ()
48 plt.grid(True)
49 plt. savefig (output_file)
50 print (f"Graph saved to: { output_file }")
51
52 file_path = " packets .log"
53 output_file = " processing_delay_comparison .png"
54
55 without_int , with_int = parse_tcpdump (file_path)
56 without_int_delays = calculate_delay (without_int)
57 with_int_delays = calculate_delay (with_int)
58
59 generate_plot (without_int_delays , with_int_delays , output_file)

Listing 7.7. Python Script for Parsing Tcpdump Output and Generating Plots

87

	Introduction
	Existing Network Telemetry Techniques
	A Different Approach: In-band Network Telemetry

	Programmability Flavors in Networking
	Bottom Up Design
	Top Down Design

	Thesis Outline
	Thesis Structure

	Technical Background
	Field Programmable Gate Arrays and SmartNICs
	AMD Alveo U280 Datacenter Accelerator SmartNIC
	Programmable Hardware Switch

	P4: A Language for "Speaking" To Networks
	XSA - Xilinx Switch Architecture for P4
	Compiler and Synthesizer

	ESnet Framework
	Development Workflow
	Deployment Workflow

	FABRIC Testbed
	FABlib API
	FABRIC Strengths and Limitations

	In-band Network Telemetry Application
	Modes of Operation
	INT-XD (eXport Data)
	INT-MX (eMbed instruct(X)ions)
	INT-MD (eMbed Data)

	INT Metadata Header
	INT Header Placement
	Telemetry Metadata
	Node-level Metadata
	Ingress or Egress-level Metadata

	P4 application for Alveo Cards
	Headers and Structures
	Parser
	Processing
	Deparser and Pipeline Definition

	Experimental Evaluation
	FABRIC Testbed Topology
	Flashing The Bitfile On The Smartnics
	Smartnic Configuration
	Generating Synthetic Traffic
	Sniffing and Analyzing INT Packets

	Performance Evaluation
	Path Tracing Accuracy
	RTT Degradation Due To Telemetry Operations
	Results Interpretation
	Limitations of the Approach

	Conclusion
	Work Overview
	Challenges and Limitations Encountered
	Unsupported P4 Features On Target Platform
	Unexpected Behaviour Of Metadata Interface
	Behavioural Simulation

	Future Work

	Appendix
	Jupyter Notebook For FABRIC Slice Deployment
	Bash Scripts for SmartNIC Confiuguration
	Python Script for Traffic Generation And Analysis

