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Abstract

Distributed learning schemes have emerged as promising alternatives to tradi-
tional centralized machine learning, especially in 5G environments where data is
generated at the edge.

This thesis investigates the impact of non-Independent and Identically Dis-
tributed (non-IID) data on the performance of various learning schemes, federated
and decentralized learning, using the UCI-HAR dataset as a proof-of-concept, since
it is a light real-world dataset suitable for simulating non-IID scenarios. We devel-
oped a scalable pipeline which is able to generate different non-IID distributions,
We develop a modular pipeline capable of generating multiple non-IID distributions,
simulating diverse network topologies, and evaluating model performance under
varied hyperparameters and distance metrics.

Our results show that when the heterogeneity in the data increases, centralized
aggregation methods fail to converge rapidly, and over a certain epoch, they are
suboptimal solutions. In contrast, decentralized approaches perform good under
non-IID distribution of the data.

As we said, in this paper, we developed two main distributed learning schemes,
however, some upgraded schemes were planned and can be developed in the future
works. One of them is an extension of decentralized learning, named reduced
decentralized learning, which tries to carefully remove the network links with
different metrics, and can reduce communication overhead, latency, and energy
consumption, with minimum decrease in the performance.

We finish the article by reviewing the obtained results, and pointing the main
limitations and challenges, and possible enhancements for future works. The most
important enhancements are working with a larger dataset, adding more metrics
for measuring the performance of the learning schemes, and trying to reduce the
gap between our simulation environment and real-world scenarios.

Keywords: Distributed Learning, 5G, Non-IID Data, Decentralized Learning,
Federated Learning
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Chapter 1

Introduction

1.1 Background and Motivation

5G is the fifth generation of mobile networks. In comparison with its predecessor,
4G, 5G offers some important features: higher data rates, ultra-low latency, greater
reliability and availability, and increased network capacity[1].

Several techniques have been used to achieve these features. Spectrum efficiency,
massive MIMO, beamforming, and SDN-based network architecture are the most
significant techniques that have been used[2]. By using higher frequency bands,
5G provides larger bandwidth; thus, it affects network capacity and availability, in
addition to higher data rates. Beamforming allows us to focus on the signals of the
users to improve signal quality. By adopting an SDN-based network architecture,
network slicing is enabled[3], providing a situation where different requirements of
different users can be met. This feature is useful when network requirements vary
from one user to another, or even for a user over a period of time.

Due to the aforementioned features of 5G, it has been deployed in many ap-
plications, most of which also incorporate AI. One of the most famous use cases
are smart cars and the autonomous driving. By expanding 5G networks, it is
possible to have vehicles, pedestrians, and infrastructure connected to each other.
Vehicles can exchange different types of data, such as traffic information or collision
warnings, with each other, and communicate with the infrastructure to receive
information and spread it throughout the network[3][4][5]. Another use case is the
integration of 5G into industry. Due to the high network capacity and low latency,
5G networks can meet the requirements of smart factories. Now, with an increased
number of smart devices, as well as moving entities such as robots and drones in
factories, 5G can help in operating, monitoring, and maintaining the industrial
processes[2].

This topic will be covered in Chapter 2; however, it is worth noting that
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traditional ML solutions were based on centralized data collection and training,
which is impractical in 5G use cases for several reasons. The first concern is privacy.
Storing all data in a single location is risky, because if this information is leaked,
a vast number of individuals can be affected by the exposure of their data. Also,
as the size of the data increases, ensuring privacy becomes more challenging, and
individuals have less control over how their data is used. In addition to concerns
about user privacy, data security can be challenging in a centralized scenario. Since
malicious parties can attack this centralized database and steal sensitive data,
strong security algorithms must be implemented, which are complex and costly.
Furthermore, centralized solutions have problems with the network, and more
specifically, bandwidth. Transmitting all data from different nodes to a centralized
database requires significant bandwidth and can lead to high latencies or even
network interruptions, which are not tolerated by real-time services. Therefore,
using distributed learning methods is vital. In these distributed learning methods,
data is processed locally so that it is not centralized in a database nor distributed
across the network. Instead, other information, such as the weights in training ML
models, is exchanged between the nodes.

1.2 Problem Statement
The distribution of data plays a key role in designing and training machine learning
models. In statistics, data is said to be independent and identically distributed
(IID) if and only if all random variables are mutually independent and share the
same probability distribution.

This assumption is important in classical machine learning solutions, all of which
are based on it. As we previously mentioned, traditional machine learning solutions
were centralized; a server trained the model and sent the weights back to the nodes.
Under the assumption of IID data, this solution is effective, as it assumes that the
data is homogeneous and that sharing the same weights across all nodes does not
create a problem.

However, in real-world scenarios such as 5G/6G use cases, it is not possible to
assume that the data is IID, since the dataset for each node is captured by different
sensors or under different circumstances. In a 5G network, the sensors used for the
collection of data can differ, the network graph may change over time (affecting
the distribution), and the nodes’ characteristics may also differ. Therefore, in
real-world problems we mostly deal with non-IID data. Although traditional ML
solutions can still perform acceptably, it is preferable to work with non-IID data
and design models accordingly.

In the federated learning scheme that will be described later, working with
non-IID data can be challenging. Since federated learning still uses a central
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node to collect local updates and update the global model sent back to the nodes,
non-IID data causes slower convergence and poorer global model accuracy due
to the intrinsic heterogeneity of the data among the nodes. Because the data is
diverse, a global model that fits all the data and performs well on every task is
rarely practical[6]. This confirms the importance of investigating distributed and
decentralized learning schemes.

1.3 Research Objectives
1.3.1 Distributions
In this paper, we designed and developed tools to generate different types of data
distributions to mimic real-world non-IID scenarios. This will be discussed further
in Chapter 3. The random distribution is the first distribution implemented by our
tool. In this distribution, data is randomly divided into nearly equal partitions,
and class balance in each portion can be guaranteed if the data is split randomly.
This distribution simulates scenarios in which data is unstructured across nodes,
yet balanced in terms of size.

The next distribution is the class-specific distribution, where we assign classes
to nodes selectively to simulate data imbalance, which in turn translates into
heterogeneity. This scenario closely resembles real-world cases in which data is
diverse in terms of size and distribution, such as user-specific data in mobile
networks. The final distribution implemented was the beta distribution, which
controls data imbalance by adjusting the beta parameter of the beta probability
distribution. This scenario is less common in real-world settings than the previous
distributions, but it can be used to test the performance and robustness of the
schemes against data heterogeneity, since the beta parameter allows for systematic
variation of the imbalance.

1.3.2 Learning Schemes
In this research, different learning schemes were designed and deployed. The first
scheme was the federated learning scheme, in which there is a server node and
many device nodes. Each node trains its model independently, and the server
aggregates all local models to generate a global model, which is then tested. The
E-Tree learning scheme is a cluster-based variant of the federated learning scheme.
In this scheme, nodes are grouped into clusters; each cluster aggregates its model
locally, and a global model is created from the cluster centers. Clustering can be
done randomly or using a clustering algorithm. Local updates are aggregated at
the cluster centers, which then synchronize with a global server. The next scheme
is decentralized learning, in which there is no server or central node; instead, nodes
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communicate only with their neighbors in the graph, and aggregation occurs locally,
where first, the neighbors for each node are determined, and after each node trains
its model, the models are aggregated locally.

Figure 1.1: Overview of different learning schemes.

1.3.3 Heterogeneity
In this section, different distance metrics that were used to quantify the impact of
heterogeneity are briefly introduced. The Frobenius norm is the first distance metric
used; it is useful for comparing feature subspaces, such as the SVD components
of a dataset. It is important in situations where datasets differ in their feature
representations, as it captures structural similarity. The second metric is the L2
distance, which quantifies feature differences by measuring the Euclidean distance
between normalized distributions. The final metric is the Wasserstein distance,
which primarily evaluates distribution alignment. These metrics play a crucial role
in quantifying dataset heterogeneity.

1.4 Contributions
In this paper, our main goal was to design and develop a pipeline to explore different
learning schemes, which were mainly focused on distributed learning schemes. We
wanted to compare the performance of these schemes under different conditions,
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Figure 1.2: 5G devices generating data.

especially under different data distributions, and also to study the performance of
the different schemes on the same data distribution. To reach our goals, we had
to develop different tools. The first tool was a dataset loading module, where we
developed the functions to properly load and preprocess the dataset.

We developed a tool for generating the graph needed for simulating the network,
and another tool for clustering algorithms used during the pipeline. More impor-
tantly, we created a module for generating different data distributions to mimic
IID and non-IID scenarios. We designed the structure of the learning schemes and
the training pipeline, which served as the module integrating all other parts.

These tools provide an opportunity to investigate the performance of different
learning schemes for 5G networks. We aimed to take into account the effects of
various factors that influence system performance or play a key role in real-world
applications, in order to create a strong baseline for future research in distributed
learning deployment in 5G networks, by developing a modular system consisting of
distribution generation, graph generation, a training pipeline, and results analysis.

1.5 Thesis Outline
This paper is structured as follows: In Chapter 2, the related literature is reviewed,
and important topics such as the integration of machine learning in 5G networks, an
introduction to federated and decentralized learning, and non-IID data distributions
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are discussed to provide a common understanding of the paper’s key aspects.
In Chapter 3, we describe our contributions to the research objectives. The
pipeline designed to implement the objectives, the data distribution mechanisms
for generating the required experimental distributions, and the deployed training
schemes are explained. In Chapter 4, we first discuss the experimental setup
and implementation details, and then present and discuss the obtained results,
concluding with the key findings.
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Chapter 2

Literature Review

2.1 Machine Learning in 5G/6G

The fast evolution of cellular networks, from 4G to 5G and 6G, has created both
an opportunity and a necessity to deploy ML solutions to address networking
challenges. In modern cellular networks, ML algorithms are being used for different
tasks, such as dynamic spectrum allocation, resource management, interference
mitigation, and quality-of-service (QoS) optimization. By feeding historical records
of data usage, incoming data from sensors, and real-time status of the network,
ML solutions can provide predictive maintenance, traffic forecasting, and adaptive
control mechanisms that can enhance both network efficiency and user experience
[7].

A trending development in the ML field is the increasing need for privacy-
aware learning. Traditional ML approaches, which were centralized, were based on
aggregating raw data at a central server, which leads to concerns about privacy and
data ownership. To solve these problems, distributed learning algorithms are being
developed, which can be seen as on-device learning. In these learning schemes,
edge devices train local models with their own data, and only share their model
updates or weights, rather than the data itself. This solution can help address
privacy concerns, as well as reduce latency and network load, which are key factors
for a real-time network [8] [9].

The shift towards distributed learning not only addresses privacy but also helps
devices rapidly adapt to ongoing changes, such as fluctuations in network loads,
which contributes to a more robust network infrastructure. Also, the computational
power at edge devices is increasing, and they are increasingly capable of supporting
complex ML training [10].

6G networks are being designed with principles that have ML as an intrinsic
feature. Many tasks like traffic prediction, routing, and security in 6G could be
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handled by distributed AI models, achieving ultra-reliable and adaptive network
performance in real time. Early 6G studies highlight use-cases such as intelligent
resource allocation, network self-healing, and advanced security analytics driven by
machine learning in simulation and testbeds. While 6G is not yet deployed, these
studies indicate a trend where future networks will have ML algorithms integrated
as core components for decision-making and automation [11].

In summary, the application of ML in modern cellular networks is affecting
network management. Distributed learning schemes are being developed to secure
user data privacy, as well as to enable more effective network management tasks, to
reduce latency and energy consumption and also to increase real-time adaptability.

Figure 2.1: Evolution of mobile network technologies.

2.2 Federated and Decentralized Learning

2.2.1 Federated Learning
Federated learning (FL) is one of the main distributed learning schemes which
allows multiple devices to collaboratively learn a model while keeping their sensitive
training data localized. In the FL architecture, a central server named orchestrator
manages the training process and the distribution of the weights. Each device
trains its local model on its data, sends its model updates to the server, and the
server aggregates the local models and produces a new global model, which is again
sent to the users for further local training by each device. The process is repeated
until the model converges [12] [13].

Although traditional FL, which is based on a server-client model, is a good
baseline for collaborative learning, it also has some potential drawbacks. The main
problem of this scenario is its vulnerability to a single point of failure. One of the
ways to solve the problems of the classical FL method is to use a hierarchical FL,
which creates groups or clusters from the nodes, and then follows an approach
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similar to the FL approach, with the difference of adding a local aggregation step at
the cluster centers. Each node trains its local model on the local data, updates the
cluster center about the model, the cluster center aggregates its cluster members’
models and sends the aggregated model to the central node, which aggregates all
the models and sends back the global model to the cluster centers, which then send
it back to their members. This hierarchical approach can lead to a reduction in
communication overhead, and overcome the challenge of data diversity, especially
in cases where devices are heterogeneous [14] [15].

2.2.2 Decentralized Learning
Another type of distributed learning is decentralized or peer-to-peer learning, in
which there is no central node in the network. Instead, each node trains its model
locally and shares its model updates with each other[16] [17]. By doing these
updates, model parameters converge throughout the network. The decentralized
approach is more scalable and robust against a single point of failure, but as
mentioned in [18], network topology plays a key role in this approach.

An important note in the decentralized learning approach, as mentioned in [19],
is the problem of lazy nodes. Lazy clients are the nodes that use the trained models
of their neighbors, add artificial noise to make a change, and distribute it in the
network. This is one of the most important challenges of decentralized learning
that needs to be addressed.

By developing distributed learning methods, some concerns about data privacy
are solved, and by using the increasing computational power of edge devices,
distributed learning solutions will be more widely deployed.

2.3 Non-IID Data Distributions
In probability theory, a data distribution is referred to as independent and identi-
cally distributed (IID) if all random variables in that distribution possess those
features. In many scientific fields, including machine learning, the main and classical
assumption about the data was that it is IID. Although this assumption simplifies
problem solving, it also introduces significant challenges.

The IID assumption only deals with the subset of the problem space where it
holds, and leads to a gap in existing solutions, making them biased towards IID
data. However, real-world complex problems usually involve non-IID data, which
leads to problems for classical ML solutions [20].

Due to the heterogeneity in the nodes’ data in distributed learning, especially
in FL, data cannot be considered IID, and this non-IID nature is one of the key
challenges for FL. Different nodes have different data distributions, which can result
in a degradation in global model performance [21].
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According to [22], there are some solutions to address the problem of non-IID
data in FL. The solutions can be divided into data-based, model-based, algorithm-
based, and framework-based. Data-based approaches mostly focus on compensating
for the non-IID nature of the data, by sharing it or enhancing it. Model-based
solutions try to fix the problem by modifying the optimization techniques or
changing the way that the global model is aggregated.

2.4 Gap Analysis
In the different studies on distributed learning schemes, there is a gap in the
comparison of FL and DL under different heterogeneous conditions. In [17], they
compared using a few different distributions and a fixed network graph. In [23],
they compared FL and DL with different network configurations, but not with
multiple data distributions. Our work not only compares different distributed
schemes with a variety of options for altering configurations and parameters, but
also provides a reliable baseline for future work to compare even the advanced or
upgraded versions of learning schemes.

As federated learning (with a central server) and fully decentralized learning
are two different paradigms, researchers have investigated their comparative perfor-
mance and limitations. A key question has been: Which approach performs better,
and under what conditions? Recent comparative studies provide valuable insights.
Hegedűs et al. conducted an empirical comparison of classic federated learning (FL)
and a gossip-based decentralized learning on various tasks [24]. Interestingly, they
found that a well-designed gossip protocol (fully decentralized, no server) can match
the accuracy of federated learning in many cases, despite being purely peer-to-peer.
This result suggests that decentralized schemes are a viable alternative, achieving
similar model quality without a central coordinator. However, the study also
noted efficiency trade-offs: gossip learning required more communication rounds to
converge (since information spreads gradually), and careful tuning (e.g. controlling
message traffic and handling client churn) was needed to prevent lags[24].

Another recent work by Sun et al. takes a theoretical perspective on centralized
FL (CFL) vs. decentralized FL (DFL) [25]. They proved that, under general
non-convex objectives, CFL tends to generalize better than DFL in terms of model
accuracy. In other words, having a central server aggregate updates yields a
model with lower generalization error compared to fully decentralized training,
especially as the network scales. Their analysis also highlights a crucial limitation
of decentralized learning: the network topology plays a significant role. They show
that DFL can suffer a performance collapse if the peer-to-peer network topology is
not well-connected as the number of clients grows. Simply put, if the decentralized
network is poorly structured (e.g. sparse or bottlenecked), the training may diverge
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as more nodes join. This points to an important gap – DFL requires careful topology
design (or additional mechanisms) to scale reliably, an area needing further research.
On the flip side, centralized FL has its own gaps: the central server can become a
bottleneck or single point of failure/trust, and partial participation (having only a
fraction of clients communicate each round) often yields better results than trying
to include everyone every round [25].

The comparisons above indicate that neither approach is strictly superior in all
aspects; each has limitations that open avenues for research. One gap is network
topology optimization for decentralized learning, e.g., how to form communication
graphs that ensure fast convergence and resilience to dropouts. Another open
issue is the trade-off between communication cost and accuracy: decentralized
methods can reduce server load but might incur more total communication among
peers; more studies are needed to quantify this in real-world network settings
(especially wireless or P2P networks). Hybrid architectures are also being explored:
for instance, multi-tier federated learning (with clusters of nodes gossiping locally
and a server syncing the clusters) or using blockchain-based consensus to add
trust in decentralized updates. Furthermore, theoretical bounds and convergence
guarantees for decentralized algorithms in realistic non-IID scenarios are still an
active research area. Overall, the gap analysis suggests that while federated and
decentralized learning each hold promise, practical deployments might end up
combining elements of both (to balance reliability and scalability). Continued
research is needed to address issues like client/network heterogeneity, fault tolerance,
and performance tuning in different topologies.
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Chapter 3

Methodology

3.1 Overall Experimental Pipeline

For this paper, we had to first choose a dataset. We opted to work with the
UCI-HAR dataset, since it is a small dataset that is suitable for proof-of-concept
applications, and also it has diverse data that can resemble the diversity in a
real-world 5G application dataset. Then we loaded the dataset and preprocess it
to make it ready for further steps.

In the next phase, non-IID distributions are generated, and the dataset is divided
into different sections. As we explained before, in a real-world scenario it is very
likely that the data is non-IID, due to the heterogeneity in circumstances, sensors,
and users’ behaviors. Then, we select a topology for our network to simulate the
real network graph between the nodes in a 5G scenario. For our paper, we used
a random graph and a mesh graph; however, it is possible to generate different
topologies such as full, lollipop, or star topologies. We chose the random topology,
since in real cases some nodes may join or leave the network, and the graph will
appear random. However, the results for the mesh topology are also presented in
Chapter 4.

Finally, a scheme was selected from the developed schemes, and the model is
trained on the provided dataset with the desired parameters. There are some
hyperparameters that the user can choose, and we can compare their effects by
executing different training runs. Lastly, using a variety of plots and metrics, the
performance of the model is evaluated.
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Figure 3.1: A conceptual figure of the experiments pipeline.

3.2 Data Distribution Mechanisms
Federated learning operates in decentralized environments where data and con-
ditions are highly variable. We define this variety as heterogeneity. In essence,
heterogeneity in FL captures the differences between clients in terms of data
distributions, computational capabilities, availability, and network constraints.
Understanding and addressing these heterogeneous conditions is crucial for de-
signing robust and fair federated learning systems. There are different types of
heterogeneity, such as data heterogeneity, network heterogeneity, and behavioral
heterogeneity. For our purposes, data heterogeneity is the most important. As
we said earlier, each client may observe data specific to its context or user base,
resulting in skewed or imbalanced local distributions, which leads to non-IID data.
Data heterogeneity highly affects the design and evaluation of federated learning
systems. By effectively addressing heterogeneity, the main challenge of balancing
collaboration and privacy can be achieved.

3.2.1 Distribution Methods
In the script for generating the distributions, we generated different scenarios for
the dataset. The first scenario was a random distribution, where the dataset was
split into N classes of the same size. The next scenario that we implemented was a
class selective distribution, where we can assign certain classes to the nodes. In our
implementation, it is possible to assign a specific number of classes to each node
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(such as one class per node, two classes per node), or even to assign the data more
precisely by imposing conditions—for example, ensuring that a specific node does
not receive certain classes. This approach can resemble situations where nodes are
specialized in specific tasks.

Finally, we implemented a beta distribution to simulate skewed datasets and
create controlled imbalance situations. As discussed in Chapter 1, the beta distri-
bution provides a systematic way to simulate skewness and imbalance in the data.
The probability density function (PDF) for this distribution is given by

f(p; α, β) = 1
B(α, β) , pα−1(1 − p)β−1, 0 < p < 1, (3.1)

where B(α, β) is the beta function. If we set α = 0.5 and β = 0.5, the distribution
will be of exact “U” shape. However, if we change the values, the distribution still
has a U-shaped form but becomes skewed. For example, if α = 0.2 and β = 0.8,
the distribution is U-shaped but is skewed heavily towards 0 compared to 1.

Table 3.1: Summary of Different Distributions

Distribution Name Description
Random Representative of IID distribution in experiments. Each

node selects an almost equal number of samples from all
classes.

k-class One of the non-IID distributions deployed. In this distri-
bution, each node selects all its samples from exactly k
classes of the total classes. As k decreases, the distribu-
tion gets far from IID.

Varying-class Another non-IID distribution. In this distribution, there
is no constraint on the data for nodes. They may contain
data from all the classes, or some specific classes. There is
no obligation that the number of classes among different
nodes stays the same.

Beta This non-IID distribution represents the skewness in the
dataset. It has two parameters named alpha and beta.
If α = β = 0.5, the distribution is perfectly “U” shaped,
but in other cases, data is skewed towards one of the
ends of the range.

3.2.2 Heterogeneity Metrics
We also measured the distance between the distributions to quantify heterogeneity.
To do so, we considered the L2 (Euclidean), Wasserstein, and Frobenius distance
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metrics (their formulas are given below). Eventually, we decided to continue with
the L2 distance metric.

Frobenius Norm

The Frobenius norm is a matrix norm that calculates the root of the sum of the
squared differences between the corresponding matrix elements. In the context
of this study, it is applied to compare feature subspaces, such as Singular Value
Decomposition (SVD) components, across datasets. This metric helps identify
structural dissimilarities or similarities in datasets, particularly when feature
representations differ significantly among nodes. It is especially useful for examining
heterogeneity at the feature level.

Formula:

|A − B|F =
öõõôØ

i = 1m
nØ

j=1
(aij − bij)2 (3.2)

where A and B are matrices representing dataset features.

L2/Euclidean Distance

The L2 distance measures the straight-line distance between two points in a
multidimensional space. In this study, it quantifies the differences in normalized
feature distributions between datasets. Its simplicity and efficiency make it a
practical metric for large-scale evaluations of data heterogeneity. This metric is
particularly effective for detecting feature-level disparities in non-IID settings.

Formula:
|x − y|2 =

òØ
i = 1n (xi − yi)2 (3.3)

where x and y are feature vectors.

Wasserstein/Earth Mover’s Distance

The Wasserstein Distance evaluates the cost of transporting one probability dis-
tribution to another, making it ideal for assessing distributional alignment or
misalignment across datasets. Unlike the L2 distance, which focuses on feature
disparities, the Wasserstein distance captures the "shape" and "alignment" of distri-
butions. This metric is particularly valuable in cases of imbalanced or skewed data
distributions.
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Formula (1D case):

W (p, q) =
Ú ∞

−∞
|P (x) − Q(x)| , dx (3.4)

where P (x) and Q(x) are the cumulative distribution functions.
These metrics collectively provide a comprehensive understanding of dataset

heterogeneity. The Frobenius Norm measures structural alignment, the L2 Distance
quantifies feature disparities, and the Wasserstein Distance evaluates distribution
alignment. Together, they help analyze how heterogeneity affects model perfor-
mance, guiding the development of learning algorithms that are robust to non-IID
data.

3.3 Network Topology and Clustering
3.3.1 Graph Generation
Another script we developed was related to simulating different network topologies.
By deploying the NetworkX library in Python, we were able to generate different
topologies to mimic various requirements. In our tool, it is possible to generate a
variety of topologies, such as complete, mesh, star, unconnected, random, circle,
and path. Also, by modifying some of these pre-built graph types, we can create
customized graphs, which are useful for testing purposes. After a graph is selected,
random weights are given to the edges of the graph. This assignment of weights
is beneficial for simulating real-world scenarios where the connections between
different nodes are not the same, and it also helps to evaluate the performance of
the system under uneven conditions.

Here are some examples of the possible graphs generated by our script.

16



Methodology

• Path Graph

Figure 3.2: An example of a path graph with N = 12 nodes.

• Complete Graph

Figure 3.3: An example of a complete graph with N = 12 nodes.
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• Mesh Graph

Figure 3.4: An example of a mesh graph with N = 12 nodes.

• Random Graph

Figure 3.5: An example of a random graph with N = 12 nodes and e = 20 edges.
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3.3.2 Clustering Algorithms

As discussed earlier, one of the methods used in this paper is ETL. For the
implementation of ETL, we had to implement different clustering methods. The
first method is to divide nodes into N clusters of the same size. This is useful in
scenarios that require balance among the nodes.

The next clustering algorithm that was deployed was random clustering, which
randomly assigns nodes to clusters, whose centers are also picked randomly. This
method can act as a baseline for comparing other clustering techniques. A more
advanced technique that was used is K-means. The K-means algorithm starts by
receiving the number of clusters, then some random points are set as the initial
centers of the clusters. The rest of the nodes are assigned to the clusters based on
their distance; after assignment, new centers are calculated, and then nodes are
reassigned based on their proximity to the new centers. The algorithm continues
until there is no change in the clustering in consecutive iterations.

In an upgrade to the K-means algorithm, we introduced a second version with a
small change in the early stages. The difference is that it computes the distances
beforehand, so it is more efficient and less time-consuming. The last clustering
method used, named KMA, is again an upgrade to the second version of K-means.
In KMA, there is an extra constraint: a node is only added to a cluster if it does
not push the cluster’s average accuracy beyond δ from the global average accuracy.

3.4 Federated and Decentralized Schemes

In this paper, three main schemes were designed to be used in the experiments.

3.4.1 Federated Learning

The first one is federated learning (FL). In this scheme, one of the nodes is selected
as the central node, which plays a key role in FL. In FL, each node trains its model
independently using its data, and sends the model iteratively to the central node.

The central node aggregates all the local models to build a global model and
sends the global model back to the nodes. It also validates the global model
by tracking its validation loss. If the validation loss converges and stays almost
constant, which translates to an L shape, or diverges after convergence, which
translates to a U shape, the training loop for all the nodes is stopped. This scheme
relies heavily on a consistent connection between the nodes and the central node.
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3.4.2 E-Tree Learning

The second scheme that was deployed was E-Tree learning (ETL). This scheme is
close to FL, but this time nodes are divided into different clusters, and there is an
additional step of aggregating the local models in the clusters. The first part is
like FL, as each node trains its model locally. N nodes are picked as the initial
centers of the clusters, and then the closest points to these nodes are assigned to
that cluster.

After each node trains its own model, the models are aggregated locally in
each cluster by the central node of the cluster. Then, the global model is created
from the cluster centers. Again, this procedure is monitored by the behavior of
validation loss, as in FL. ETL is highly scalable due to its hierarchical structure
and cluster-based implementation. It can be seen as a more distributed version
of FL, because some local aggregation near the edges is done, and then the final
aggregation happens at the center.

3.4.3 Decentralized Learning

The third scheme that was implemented in this paper was decentralized learning
(DL). This scheme removes the need for a central node—whether a single central
node as in FL or local central nodes as in ETL—thereby making DL less prone to
single-point failures, which is especially important for 5G/6G applications. In DL,
there are peer-to-peer connections between the nodes, and they only communicate
with their neighbors in the graph. Aggregation still occurs, but it is done locally
among the neighbors. Also, validation is performed by each node in the same way
as in FL and ETL.

Figure 3.6: A summary of the steps for different schemes.
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3.5 Implementation Flow
In this paper, we organized the pipeline into a series of scripts, each dedicated to
a specific phase of implementation. In the following figure, an illustration of the
pipeline is shown.

Data Preparation

The preparation starts with the HARfunctions.py script, which, as the name
suggests, is designed to preprocess the HAR dataset; however, we generalized its
functions as much as possible to be compatible with future experiments. Using the
generatedistribution.py script, we split the dataset into different subsets using the
provided distributions that can mimic IID and non-IID scenarios.

Graph Generation

Another step before executing the training is to create and store the desired network
topology for the simulation by running generateGraph.py with specified settings.

Training Execution

In the main training step of the pipeline, trainModel.py is executed. While there
are some mutual parameters between different learning schemes, they also have
exclusive parameters. The procedure is to load the pickle files output by previous
steps, and call the functions from trainingSchemes.py to run local training, model
aggregation, and decentralized updates if needed. Final performance metrics are
then stored in a file to be later processed.

Result Visualization

After finishing the training, using plotRes.py, we can generate different accuracy or
loss curves, box plots, or correlation heatmaps. Also, for some metric comparisons,
we can run readCSVfiles.py to analyze CSV logs generated, if needed.

3.6 Reproducibility Notes
For implementing this paper, we opted to work with the Python programming
language as it is a pioneering language in the ML field, and it eases the imple-
mentation of the training schemes as well as network simulation. For the latter,
we used the NetworkX library, where we can generate different graphs based on
our requirements and test different network topologies. This library simulates
the communication networks required for distributed learning. For designing the
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models and the pipeline, the PyTorch library was selected, as it provides a variety
of options for proper implementation of the intended schemes. In the final phases,
we used pandas to handle and process the datasets. Also, for illustration purposes,
matplotlib and seaborn were used. The versions for each used library can be seen
in Table 1. The flow for training a scheme is to generate the proper graph, generate
the distribution, and feed them as inputs to trainmodel.py, and then with plotres.py
it is possible to draw a variety of plots comparing different parameters.
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Chapter 4

Implementation

4.1 Experimental Setup
To run the experiments and implement the described methods in this thesis, the
following environments were used:

Hardware Environment

• CPU: Intel Core i7-7500U, 2-core, 2.7 GHz, and Intel Core i5-10210U, 4-core,
2.11 GHz.

• GPU: NVIDIA GeForce 940MX, 4 GB GDDR5.

• RAM: 20 GB DDR4, 3200 MHz and 16 GB DDR4, 3200 MHz.

• Storage: 1 TB NVMe SSD and 256 GB NVMe SSD.

Software Environment

• Operating System: Windows 10 Pro and Windows 11 Pro.

• Programming Language: Python 3.10 (simulations) and Python 3.12 (data
analysis).

• Frameworks and Libraries:

– PyTorch: 2.2.1, for implementing and training machine learning models.
– NetworkX: 3.2.1, for generating and analyzing graph-based topologies.
– Matplotlib: 3.8.4 and Seaborn: 0.13.2, for data visualization.
– Pandas: 2.2.1, for data manipulation and processing.
– NumPy: 1.26.4, for numerical operations and computations.
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– Scipy: 1.13.0, for numerical operations and computations.
Development Tools

• IDE: Visual Studio Code, Jupyter Notebook, Spyder.

• Version Control: GitHub for managing the codebase.
The above-mentioned hardware and software setup provided a proper environ-

ment for running the experiments efficiently.

Table 4.1: Experimental Setup and Training Parameters

Category Component Specification

Hardware Environment

CPU Intel Core i7-7500U (2-core,
2.7 GHz) and Intel Core i5-
10210U (4-core, 2.11 GHz)

GPU NVIDIA GeForce 940MX,
4 GB GDDR5

RAM 20 GB DDR4, 3200 MHz
and 16 GB DDR4, 3200
MHz

Storage 1 TB NVMe SSD and 256
GB NVMe SSD

Software Environment

Operating System Windows 10 Pro and Win-
dows 11 Pro

Programming Language Python 3.10 (simulations)
and Python 3.12 (data anal-
ysis)

PyTorch 2.2.1
NetworkX 3.2.1
Matplotlib, Seaborn Matplotlib 3.8.4 and

Seaborn 0.13.2
Pandas 2.2.1
NumPy, Scipy NumPy 1.26.4 and Scipy

1.13.0

Development Tools IDE Visual Studio Code,
Jupyter Notebook, Spyder

Version Control GitHub

Training Parameters Learning Rate (0.001)
Number of Epochs (100)

In trainingSchemes.py, we introduced an update to the DL scheme, named rDL,
which removes the edges based on a logic (random, minimum V-distance, etc.).
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This proposed scheme tries to keep the performance as high as possible but reduces
latency, network load, and energy consumption.

In generateGraph.py, we generated different network graphs based on the Net-
workX library in Python, but adjusted to meet our requirements. We tried to set
up a baseline for the future, where more complex graphs can be tested for specific
simulation scenarios.

In the next chapter, the results are shown and discussed. For testing the
effect of different metrics and parameters, many experiments were conducted, and
parameters and metrics were evaluated. It is possible to generate scenarios with
different network graphs and data distributions for all of the deployed schemes.

4.2 Implementation Flow
In this paper, we tried to organize the pipeline into a series of scripts, where each
one is dedicated to a specific phase of implementation. In the following figure, an
illustration of the pipeline is shown.

Data Preparation

The preparation starts with the HARfunctions.py script, which, as the name
suggests, is designed to preprocess the HAR dataset, but we tried to generalize its
functions as much as possible to be compatible with future experiments. Using the
generatedistribution.py script, we split the dataset into different subsets using the
provided distributions that can mimic IID and non-IID scenarios.

Graph Generation

Another step before executing the training is to create and store the desired network
topology for the simulation by running generateGraph.py with specified settings.

Training Execution

In the main training step of the pipeline, trainModel.py is executed. While there
are some mutual parameters between different learning schemes, they have exclusive
parameters. The procedure is to load the pickle files output by previous steps and
call the functions from trainingSchemes.py to run local training, model aggregation,
and decentralized updates if needed. Final performance metrics are then stored in
a file for later processing.
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Result Visualization

After finishing the training, using plotRes.py, we can generate different accuracy or
loss curves, box plots, or correlation heatmaps. Also, for some metric comparisons,
we can run readCSVfiles.py to analyze CSV logs generated, if needed.

4.3 Reproducibility Notes
For implementing this paper, we opted to work with the Python programming
language as it is a pioneering language in the ML field, and it eases the implementa-
tion of the training schemes as well as network simulation. For the latter, we used
the NetworkX library, with which we can generate different graphs based on our
requirements and test different network topologies. For designing the models and
the pipeline, the PyTorch library was selected, as it provides a variety of options for
proper implementation of the intended schemes. In the final phases, we used pandas
to handle and process the datasets. Also, for illustration purposes, matplotlib and
seaborn were used. The versions for each used library can be seen in Table 1. The
flow for training a scheme is to generate the proper graph, generate the distribution,
and feed them as inputs to trainmodel.py, and then, with plotres.py, it is possible
to draw a variety of plots comparing different parameters.
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Chapter 5

Results

5.1 Results and Analysis

In this section, we present the results obtained from the experiments. Note that
the number of experiments run for this thesis was very high, and for simplicity and
convenience, only the most useful plots are shown.

Also, it should be noted that our pipeline is capable of generating all metric plots
(such as accuracy, precision, recall, and F1 score), but we decided to continue with
accuracy, since it is the most common metric in distributed learning performance
analysis.

5.1.1 Simulated Scenarios

As mentioned above, to investigate the effect of different parameters and metrics,
many experiments were carried out, and some metrics were favored over others.
For the experiments presented in this chapter, we used FL and DL as the two main
learning schemes. In addition, two different network graphs with 7 nodes were used
to show the effect of network graph and node connectivity on the performance of
the learning schemes.
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Figure 5.1: Random graph used in these experiments.

Figure 5.2: Mesh graph used in these experiments.

For the distribution of the data, four scenarios were chosen. The first distri-
bution is a random distribution, which, as mentioned in the previous chapters,
resembles the IID data distribution. This distribution is mostly used to highlight
the difference between IID and non-IID data and to show how heterogeneity affects
the performance of the models, as conventional ML solutions may not overcome
the challenge of non-IID data.
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Figure 5.3: Random distribution used in these experiments.

Another distribution that was deployed is one in which each node can have data
without any constraint. To explain better, in contrast to the previous scenario—in
which each node had data from all six classes in the dataset—in this distribution
each node may have all its data from one class or from specific classes, and may not
represent all classes. This distribution has the highest heterogeneity and resembles
real-world examples of 5G networks, in which data across the nodes may vary
significantly. We refer to this distribution as the "Varying Class" distribution in
this chapter.

Figure 5.4: Varying class distribution used in these experiments.
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The last two distributions that we tested are class-specific distributions, in which
each node selects exactly k classes out of 6 classes in the dataset. The portion of
the data is selected randomly, and it is possible that one of the k classes has the
majority of the data, or is a minor class, or that the data is split almost equally
among the k classes. In this set of experiments, we used three distributions with k
= 2 and k = 4.

Figure 5.5: Specific class distributions used in these experiments with k = 2.

Figure 5.6: Specific class distributions used in these experiments with k = 4.

The above review was necessary to understand the experimental environment,
and in the next section we present the results and discuss them.
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5.2 Experiments Results and Discussion
In this section, we present the results for different combinations of the hyperpa-
rameters, and we also show comparison plots between them.

5.2.1 Learning Schemes Performance
In this subsection, the results for comparing the performance of our two main
learning schemes are shown. Therefore, the rest of the parameters remain the same
to isolate the effect of the learning scheme.

• Random Graph, Two-Class Distribution

Figure 5.7: Comparison between DL and FL in a random network with Two-Class
distribution.
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• Random Graph, Four-Class Distribution

Figure 5.8: Comparison between DL and FL in a random network with Four-Class
distribution.

• Random Graph, Varying-Class Distribution

Figure 5.9: Comparison between DL and FL in a random network with Varying-
Class distribution.
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• Random Graph, Random Distribution

Figure 5.10: Comparison between DL and FL in a random network with random
distribution.

• Mesh Graph, Two-Class Distribution

Figure 5.11: Comparison between DL and FL in a mesh network with Two-Class
distribution.
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• Mesh Graph, Four-Class Distribution

Figure 5.12: Comparison between DL and FL in a mesh network with Four-Class
distribution.

• Mesh Graph, Varying-Class Distribution

Figure 5.13: Comparison between DL and FL in a mesh network with Varying-
Class distribution.
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• Mesh Graph, Random Distribution

Figure 5.14: Comparison between DL and FL in a mesh network with random
distribution.

• All DL Scenarios

Figure 5.15: Comparison between different DL scenarios.
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• All FL Scenarios

Figure 5.16: Comparison between different FL scenarios.

We can observe that as the data becomes non-IID, such as in a Two-Class
distribution, DL outperforms FL. This phenomenon happens because as k decreases
in the k-class distribution, the mismatch between each node’s distribution and the
global distribution increases. This difference causes problems in FL, because in FL
the nodes train their model locally, and then the central server node aggregates
all the local models and sends the global model back to the nodes. However, in a
k-class distribution scenario, this can be a drawback of FL.

Let’s consider a k = 2 distribution, in which node 1 has data only from class A
and class B, and node 2 has data only from class C and class D. In this case, the
global model returned to the nodes is suboptimal for them. This observation does
not occur in DL, because in DL the exchange of model information occurs locally
and is less disruptive than global averaging.

As k decreases, each node observes a smaller subset of the whole dataset, which
can lead to a greater difference between the local training data on which a specific
node trains its model and the entire dataset that forms the basis for the global
model returned by the central server node. Consequently, that model may perform
worse on the local data, either by exhibiting poorer performance metrics or slower
convergence. In contrast, DL benefits from the network structure, as local nodes
communicate only with their neighbors, who are more likely to have common
data; or at least, if their data is heterogeneous, the information exchanged is less
disruptive.

As mentioned earlier, this set of experiments was conducted on the HAR dataset,
which has 6 classes, with 7 nodes in the simulated network. In a real-world
scenario, the number of nodes is much higher, and the number of classes in the
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dataset will increase significantly, which will lead to a greater difference between
the performance metrics of DL and FL. Therefore, in real-world applications, DL
can be chosen as the optimal learning scheme for the network.

For both FL and DL scenarios, it can be seen that as the data loses its IID
property, such as in a Two-Class or Varying-Class distribution, the average accuracy
of the nodes decreases after a certain number of epochs. In other words, convergence
for non-IID scenarios is slower; therefore, training for non-IID cases should run for
a higher number of epochs to reach the same performance.

Also, it is worth noting that both DL and FL had nearly identical and perfect
performance under IID data, which confirms that under traditional ML assumptions
of IID data, learning schemes work perfectly. However, in real-world cases where
heterogeneity results in the loss of the IID property, traditional assumptions and
solutions are not applicable.

5.2.2 Network Graph Effect
In this section, the results for the alternating network graph are shown. As shown
in Chapter 4, for this set of experiments we used a random graph and a mesh
graph.

• Random Graph

Figure 5.17: Average accuracy of the nodes in different executions in a random
network graph with 7 nodes and 13 edges.
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• Mesh Graph

Figure 5.18: Average accuracy of the nodes in different executions in a mesh
network graph with 7 nodes.

We can see that while in a random graph DL and FL have performed similarly,
in a mesh graph DL has outperformed FL in all scenarios, which confirms the
superiority of DL over FL in real-world scenarios. Also, it is worth noting that
convergence in DL scenarios is faster, and accuracy fluctuations during training
are lower than in FL scenarios.

5.2.3 Data Distribution Effect
In this part, the plots for comparing the performance of the learning schemes under
different data distributions are shown.
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• Random Distribution

Figure 5.19: Average accuracy of the nodes in different executions in a random
distribution scenario.

• Four-Class Distribution

Figure 5.20: Average accuracy of the nodes in different executions in a Four-Class
distribution scenario.
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• Varying-Class Distribution

Figure 5.21: Average accuracy of the nodes in different executions in a Varying-
Class distribution scenario.

• Two-Class Distribution

Figure 5.22: Average accuracy of the nodes in different executions in a Two-Class
distribution scenario.

As we can see, as heterogeneity in the data increases, the difference between
DL and FL becomes more pronounced. In the heterogeneous environment, DL
accuracies are higher, and even in the Two-Class scenario, while FL performance
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does not improve over multiple epochs, DL performance continues to improve with
each epoch, showing an increasing trend.
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Chapter 6

Conclusions and Future
Works

6.1 Summary of Contributions

In this thesis, our goal was to study the effect of different key factors and parameters
on machine learning in 5G networks. We designed and developed various tools for
graph generation, distribution generation, learning schemes, and results analysis.
Different metrics for measuring heterogeneity, different methods to generate distri-
butions, and different graphs for 5G networks were deployed and tested, and an
overview of the most important achievements was shown in the previous chapter.

Based on our findings, DL has outperformed FL under different conditions.
This finding stems from the fact that in FL, all nodes train their models locally
with their own data and send their model to the central server node. The central
server node aggregates all the received models and sends back the global model
to the nodes. However, as data heterogeneity increases in real-world scenarios,
this structure becomes a drawback for FL because, as data may vary significantly
between nodes, a global model may not be optimal for all nodes, leading to a
decrease in the performance of the final model.

However, DL is more robust against heterogeneity because in DL, each node
only exchanges the weights of its local model with its neighbors. These neighbors
are either similar to the original node, which leads to low heterogeneity and low
disruption, or, in the worst case, if they are very diverse, the number of models
that negatively affect performance is much lower than the total number of nodes;
therefore, the disruption is not as severe as in FL.
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6.2 Limitations
In this study, we opted to work with the HAR dataset, which was good for
educational and basic purposes; however, this dataset is relatively small. To obtain
better and more general results, it is preferable to switch to larger datasets to
better reflect the diversity and heterogeneity of real-world scenarios. It is worth
noting that the HAR dataset was suitable for proof-of-concept studies.

Another challenge we faced during these experiments was simulation constraints,
such as the number of nodes or edges in the network graph. For more realistic
simulations, it is better to work with more populated graphs, as in real-world
applications the number of nodes in the network is higher than the number used in
our scenarios.

Another constraint we faced was hardware limitations. Due to the high number
of experiments we had to run because of the large number of parameters and metrics,
this hardware constraint was an obstacle. For example, for rDL, more experiments
need to be run to better understand the edge removal criteria. To obtain better
and more generalized results, it is crucial to upgrade to more powerful hardware so
that more scenarios can be tested to better mimic real-world applications.

6.3 Future Research Directions
A further step worth taking in the future is to extend and apply our tools to a
real-world 5G application. For example, it can be beneficial to collect a large dataset
from IoT devices and simulate real-world network conditions such as latencies,
failures, and network topology. By doing so, we can learn about the shortcomings in
our tools, which can lead to a better system in terms of scalability and applicability
to real-world ML use cases in 5G.

For a more advanced and comprehensive study of the effect of heterogeneity, it
is worth including other metrics, such as distribution skewness or kurtosis, or some
domain-specific metrics. Also, some metrics can be combined or analyzed together
to obtain a better understanding of performance.

Also, a possible enhancement is to add and consider some performance metrics
for the overall system. There are parameters such as communication overhead and
overall system latency that can be used to evaluate the performance of the overall
system under different hyperparameters, especially the hyperparameters that we
kept constant during our experiments, such as network topology.

Although we can see that DL outperforms FL in different scenarios, it is not a
flawless approach. In order to reduce latency, network flow, and energy consumption,
we propose a new method for future work, named reduced decentralized learning
(rDL), which aims to maintain high performance while removing some network
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edges based on different criteria.
Another step to further generalize the results and improve scalability is to

explore advanced learning schemes based on currently deployed methods. For
example, it would be beneficial to test current schemes with gradient compression
or meta-learning to evaluate their performance. Also, in the rDL scheme, it is
worth testing different edge-removal strategies, or even hybrid strategies, to evaluate
performance.
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Code Snippets

The core section of data distribution generation is brought below.

1 i f d i st_type == ’ random ’ :
2 rng = l i s t ( range ( l en ( y_train ) ) )
3 random . s h u f f l e ( rng )
4 rng = [ rng [ i : i+t a r g e t ] f o r i in range (0 , N∗ target , t a r g e t ) ]
5 e l i f i s i n s t a n c e ( dist_type , i n t ) :
6 c l a s s e s = ge t_c l a s s e s ( y_train )
7 rng = [ ]
8 f o r r in range (N) :
9 r = [ ]

10 f o r c in random . sample ( l i s t ( range ( n_c las se s ) ) , d ist_type ) :
11 r . extend ( c l a s s e s [ c ] )
12 rng . append ( random . sample ( r , t a r g e t ) )
13 d i s t = [ c a l c u l a t e _ d i s t r i b u t i o n ( y_train [ r ] , n_c las se s ) f o r r in rng

]
14 _, b ins=np . histogram ( range ( n_c las se s ) , b ins=n_clas se s )
15 p l t . f i g u r e ( )
16 p l t . h i s t ( [ b ins [ : −1 ] f o r _ in d i s t ] , we ights=d i s t , b ins=n_classes ,

h i s t t y pe=’ barstacked ’ )
17 p l t . l egend ( [ s t r ( r ) f o r r in range ( l en ( d i s t ) ) ] )
18 p l t . show ( )
19 e l i f d ist_type == ’ a l l C l a s s e s ’ :
20 c l a s s e s = ge t_c l a s s e s ( y_train )
21 c l a s s e s I n d e x = s e t ( range ( n_c las se s ) )
22 random . s h u f f l e ( c l a s s e s )
23 i f N > n_clas se s :
24 c = [ random . rand int (1 , n_c las se s ) f o r _ in range (N) ]
25 i f sum( c ) < n_c las se s : r a i s e SystemError ( ’Sum of c l a s s e s i s

not equal to n_c las se s ’ )
26 t a r g e t C l a s s e s = c l a s s e s I n d e x . copy ( )
27 whi le t a r g e t C l a s s e s :
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28 t a r g e t C l a s s e s = c l a s s e s I n d e x . copy ( )
29 prerng = [ ]
30 f o r i in range (N) :
31 prerng . append ( random . sample ( l i s t ( c l a s s e s I n d e x ) , c [ i ] ) )
32 t a r g e t C l a s s e s −= s e t ( prerng [ −1])
33 f o r i in range (N) :
34 prerng [ i ] = [ sample f o r k in prerng [ i ] f o r sample in

c l a s s e s [ k ] ]
35 e l s e :
36 c = [ random . rand int (1 , n_classes −(N−1) ) ]
37 f o r n in range (1 ,N−1) : c . append ( random . rand int (1 , n_classes−

sum( c )−(N−1−n) ) )
38 c . append ( n_classes−sum( c ) )
39 i f sum( c ) != n_clas se s : r a i s e SystemError ( ’Sum of c l a s s e s i s

not equal to n_c las se s ’ )
40 prerng = [ ]
41 f o r i in range (N) :
42 t a r g e t C l a s s e s = s e t ( c l a s s e s I n d e x )
43 f o r p in prerng : t a r g e t C l a s s e s −= p
44 i f i == N−1: prerng . append ( t a r g e t C l a s s e s )
45 e l s e : prerng . append ( s e t ( random . sample ( l i s t ( t a r g e t C l a s s e s )

, c [ i ] ) ) )
46 f o r i in range (N) :
47 prerng [ i ] = l i s t ( prerng [ i ] ) + random . sample ( l i s t (

c l a s s e s Index −prerng [ i ] ) , i n t ( random . rand int (0 ,6− c [ i ] ) ) )
48 prerng [ i ] = [ sample f o r k in prerng [ i ] f o r sample in

c l a s s e s [ k ] ]
49 rng = [ random . sample ( prerng [ i ] , t a r g e t ) f o r i in range (N) ]
50 e l i f d ist_type == ’ varClassSamples ’ :
51 c l a s s e s = ge t_c l a s s e s ( y_train )
52 c l a s s e s I n d e x = s e t ( range ( n_c las se s ) )
53 random . s h u f f l e ( c l a s s e s )
54 i f N > n_clas se s :
55 c = [ random . rand int (1 , n_c las se s ) f o r _ in range (N) ]
56 i f sum( c ) < n_c las se s : r a i s e SystemError ( ’Sum of c l a s s e s i s

not equal to n_c las se s ’ )
57 t a r g e t C l a s s e s = c l a s s e s I n d e x . copy ( )
58 whi le t a r g e t C l a s s e s :
59 t a r g e t C l a s s e s = c l a s s e s I n d e x . copy ( )
60 prerng = [ ]
61 f o r i in range (N) :
62 prerng . append ( random . sample ( l i s t ( c l a s s e s I n d e x ) , c [ i ] ) )
63 t a r g e t C l a s s e s −= s e t ( prerng [ −1])
64 f o r i in range (N) :
65 prerng [ i ] = [ sample f o r k in prerng [ i ] f o r sample in

c l a s s e s [ k ] ]
66 e l s e :
67 c = [ random . rand int (1 , n_classes −(N−1) ) ]
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68 f o r n in range (1 ,N−1) : c . append ( random . rand int (1 , n_classes−
sum( c )−(N−1−n) ) )

69 c . append ( n_classes−sum( c ) )
70 i f sum( c ) != n_clas se s : r a i s e SystemError ( ’Sum of c l a s s e s i s

not equal to n_c las se s ’ )
71 prerng = [ ]
72 f o r i in range (N) :
73 t a r g e t C l a s s e s = s e t ( c l a s s e s I n d e x )
74 f o r p in prerng : t a r g e t C l a s s e s −= p
75 i f i == N−1: prerng . append ( t a r g e t C l a s s e s )
76 e l s e : prerng . append ( s e t ( random . sample ( l i s t ( t a r g e t C l a s s e s )

, c [ i ] ) ) )
77 f o r i in range (N) :
78 prerng [ i ] = l i s t ( prerng [ i ] ) + random . sample ( l i s t (

c l a s s e s Index −prerng [ i ] ) , i n t ( random . rand int (0 ,6− c [ i ] ) ) )
79 prerng [ i ] = [ sample f o r k in prerng [ i ] f o r sample in

c l a s s e s [ k ] ]
80 rng = [ random . sample ( prerng [ i ] , random . rand int ( target −30, t a r g e t

+30) ) f o r i in range (N) ]
81 e l i f d ist_type == ’ beta ’ :
82 rng = l i s t ( range ( l en ( y_train ) ) )
83 rng = generate_beta_di s t r ibut ion ( n_classes , target , N)

Here is the graph generation section of the code.

1 i f nw_type == ’ random ’ :
2 G = nx . gnm_random_graph(N, edges )
3 e l i f nw_type == ’ path ’ :
4 G = nx . path_graph (N)
5 e l i f nw_type == ’ c i r c l e ’ :
6 G = nx . cycle_graph (N)
7 e l i f nw_type == ’ unconnected ’ :
8 G = nx . empty_graph (N)
9 e l i f nw_type == ’ complete ’ :

10 G = nx . complete_graph (N)
11 e l i f nw_type == ’ s t a r ’ :
12 G = nx . star_graph
13 e l i f nw_type == ’ mesh ’ :
14 m = i n t (math . s q r t (N) )
15 whi le N%m > 0 :
16 m −= 1
17 G = nx . grid_2d_graph (m,N//m)
18 e l i f nw_type == ’ 3 l o l l i p o p ’ :
19 G = nx . lo l l i pop_graph (3 , N−3)
20 e l i f nw_type == ’ 4 l o l l i p o p ’ :
21 G = nx . lo l l i pop_graph (4 , N−4)
22 e l i f nw_type == ’ 3 c l i q u e S t a r ’ :
23 G = nx . complete_graph (3 )
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24 f o r i in range (3 ,N) :
25 G. add_edge (0 , i )
26 e l i f nw_type == ’ 4 c l i q u e S t a r ’ :
27 G = nx . complete_graph (4 )
28 f o r i in range (4 ,N) :
29 G. add_edge (0 , i )
30 e l i f nw_type == ’ 3 c l i queLeave s ’ :
31 G = nx . complete_graph (3 )
32 j=0
33 f o r i in range (3 ,N) :
34 G. add_edge ( j %3, i )
35 j += 1
36 e l i f nw_type == ’ 4 c l i queLeave s ’ :
37 G = nx . complete_graph (4 )
38 j=0
39 f o r i in range (4 ,N) :
40 G. add_edge ( j %4, i )
41 j += 1

In the following snippet, the codes for visualization are written.

1 de f plot_AccLoss_loop_avgExecutions_by_node (
2 f i leNames ,
3 i sAcc=True ,
4 vsTime=True ,
5 x_label=None ,
6 y_label=None
7 ) :
8 g l o b a l ACC_INDEX, LOSS_INDEX, TIME_INDEX
9 metric_index = ACC_INDEX i f i sAcc e l s e LOSS_INDEX

10

11 i f x_label i s None :
12 x_label = "Time" i f vsTime e l s e " Epoch "
13 i f y_label i s None :
14 y_label = " Accuracy (%) " i f i sAcc e l s e " Loss "
15

16 f o r n in f i l eNames :
17 subStr ing = n . s p l i t ( ’__’ )
18 mode = subStr ing [ 1 ] i f l en ( subStr ing ) >= 2 e l s e "Unknown"
19

20 with open ( path + n , ’ rb ’ ) as f :
21 r e s = p i c k l e . load ( f )
22

23 i f ’DL ’ in mode or ’rDL ’ in mode :
24 num_executions = len ( r e s )
25 num_nodes = len ( r e s [ 0 ] )
26

27 p l t . f i g u r e ( )
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28 f o r j in range (num_nodes ) :
29 node_curves = [ ]
30 f o r i in range ( num_executions ) :
31 node_curve = r e s [ i ] [ j ] [ metric_index ]
32 node_curves . append ( node_curve )
33 node_curves = np . array ( node_curves )
34 avg_curve = node_curves . mean( ax i s =0)
35 t ime_axis = r e s [ 0 ] [ j ] [ TIME_INDEX]
36 i f vsTime :
37 p l t . p l o t ( time_axis , avg_curve , l a b e l=f ’Node { j } ’ )
38 e l s e :
39 p l t . p l o t ( avg_curve , l a b e l=f ’Node { j } ’ )
40 p l t . t i t l e (n)
41 p l t . x l a b e l ( x_label )
42 p l t . y l a b e l ( y_label )
43 p l t . g r i d ( )
44 p l t . l egend ( )
45 i f i sAcc :
46 p l t . yl im (0 , 100)
47 p l t . show ( )
48 p l t . c l o s e ( )
49 e l s e :
50 p l t . f i g u r e ( )
51 curves = [ ]
52 f o r exec_data in r e s :
53 curves . append ( exec_data [ metric_index ] )
54 curves = np . array ( curves )
55 avg_metric = curves . mean( ax i s =0)
56 t ime_axis = r e s [ 0 ] [ TIME_INDEX]
57 i f vsTime :
58 p l t . p l o t ( time_axis , avg_metric , l a b e l=n)
59 e l s e :
60 p l t . p l o t ( avg_metric , l a b e l=n)
61 p l t . t i t l e (n)
62 p l t . x l a b e l ( x_label )
63 p l t . y l a b e l ( y_label )
64 p l t . g r i d ( )
65 p l t . l egend ( )
66 i f i sAcc :
67 p l t . yl im (0 , 100)
68 p l t . show ( )
69 p l t . c l o s e ( )
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