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Chapter 1

Introduction

1.1 Background

The power grid, in short, is a network installed to distribute electrical energy from
production plants to consumers efficiently. From its inception, however, it has undergone
significant transformations to enhance how electricity is distributed among communities.
Initially, it was designed as a centralized system where electricity flowed in a unidirectional
manner, from large power plants to consumers. This led to a centralized structure that
clearly distinguished producers from consumers. Technological advancements in electrical
energy production led to a bidirectional flow of energy. Consumers in the modern era
can also act as producers, generating electricity, for example, through Solar Panels and
feeding it to the grid, leading to a more complex architecture.

With the rapid advancement in technology and increasing demand for more efficient
and sustainable energy systems, the grid transitioned towards a modernized system inte-
grating digital communication technologies, enabling a bidirectional flow of electricity.

Unlike the traditional grid, the Smart Grid allows consumers to act as ”Prosumers”,
producing and consuming electricity. An example is households or businesses with solar
panels that can generate electricity and feed surplus power into the grid. This bidi-
rectional energy transfer improves grid efficiency, supports the integration of renewable
energy sources, and provides more flexibility in balancing supply and demand.

While this evolution has brought about many benefits, including improved reliabil-
ity, energy savings, and enhanced sustainability, it also introduces new challenges. The
increased reliance on digital communication and interconnectedness has made the Smart
Grid more vulnerable to cyber threats. As information systems become deeply rooted
in the management and operation of the grid, the risk of cyber-attacks increases. These
cyber threats, which target the data and control systems, can severely undermine the op-
erational efficiency of the power grid, leading to substantial financial losses and degraded
service quality for consumers.

One of these forms of threats to power grid infrastructure is physical attacks target-
ing field equipment. Grid operators generally install devices across a wide geographical
area and manage them remotely from centralized control centers. While basic physical
security measures are often in place, many of these sites such as substations, are not
thoroughly secured, rendering them vulnerable to unauthorized physical access. Once
on-premises, adversaries may exploit these devices to launch cyberattacks against the
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broader grid infrastructure. In this context, there have been documented incidents of
physical intrusions into substations with some driven by motives to steal and resell valu-
able components. However, malicious actors could use this physical access as an entry
point to compromise system integrity, manipulate data, or disrupt operations. This con-
vergence of physical and cyber vulnerabilities highlights the need for integrated security
strategies that address both dimensions of threat exposure[20].

Another prevalent form of threat to power grid infrastructure is the Denial-of-Service
(DoS) attack, which specifically targets the availability of network services. The pri-
mary objective of such an attack is to disrupt or degrade system functionality, thereby
denying legitimate users access to critical services. DoS attacks are often employed as
cover, masking more sophisticated intrusions to amplify the overall impact of other forms
of attack. These attacks typically exploit vulnerabilities in the communication layer
by overwhelming essential devices with excessive traffic. Using various network tools,
attackers generate and transmit large volumes of forged or malicious data to targeted
components, exhausting computational or bandwidth resources thereby making a service
temporarily or permanently inaccessible. A more advanced variant of this threat is the
Distributed Denial-of-Service (DDoS) attack, where multiple compromised sources are
put together simultaneously to flood a single target, significantly increasing the attack’s
scale and effectiveness. Concerningly, several legacy communication protocols still in
use within power grid infrastructures have been identified as vulnerable to such exploits,
highlighting the urgent need for enhanced resilience and modernized infrastructure[24].

One of the most critical cyber threats to the Smart Grid is the False Data Injection
(FDI) Attack. An FDI attack is a type of data integrity attack that exploits vulnera-
bilities in the grid’s measurement and communication systems. During such an attack,
the attacker maliciously alters or injects false data into the measurement readings (such
as power injection data at nodes) sent to the grid’s control center, generally known as
Supervisory and Data Acquisition(SCADA). These compromised measurements lead to
incorrect state estimation, which refers to the process through which the control center
determines the current operating condition of the grid based on measured data received
from sensors. Since state estimation is crucial for grid stability, wrong estimates can have
dangerous consequences, such as improper decisions on power dispatch, load balancing,
or even triggering blackouts. As a result, FDI attacks can severely disrupt grid opera-
tions, degrade service quality, and cause significant financial and reputational damage to
utilities[7].

In summary, while the shift from a traditional centralized grid to a more dynamic and
intelligent Smart Grid has offered numerous advantages, it also comes with heightened
risks from cyber threats. Among these threats, False Data Injection Attacks are particu-
larly dangerous because they manipulate the grid’s data flow, leading to incorrect system
operations and decisions that threaten the grid’s stability and reliability.

1.2 History and Motivation

In recent years, notable attacks have been made on the electrical grid infrastructure.
A well-known one is the 2015 attack on the Ukraine power grid, which led to a blackout
lasting for several hours, with about 225,000 customers affected. The attack was im-
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plemented by hijacking the SCADA systems through phishing emails and subsequently
shutting down power stations across various regions. The timeline of the attack started
with spear phishing to harvest credentials through the Black Energy Malware. Remote
access through a Virtual Private Network(VPN) to the Industrial Control Systems(ICS)
followed, allowing the attackers to send commands to connected stations digitally. To de-
lay restoration efforts, the logs were consistently erased with KillDisk a malware crafted
to erase the master boot record and thus leading to a device being unable to reboot.
Finally, a denial of service on the call center followed, further delaying restoration. Sub-
sequently, upon analysis of the attack, the Electricity Information Sharing and Analysis
Center (E-ISAC) gave a couple of recommendations for future defence against possible
attacks. These included the segmentation of networks, ensuring consistent logging to all
connected devices, limiting remote connections and implementing an event monitoring
system over the SCADA systems[23].

A similar incident occurred in the United States in 2018, as hackers tampered with
the electrical grid network in California. It was not as severe as the Ukraine attack and
did not lead to a blackout. The Department of Energy(DOE) handled the situation and
avoided any severe impact on the services of the grid.

Another significant incident occurred in 2022 when approximately 30,000 satellite
communication (SATCOM) terminals were compromised in a coordinated cyberattack.
Among the affected devices were SATCOM modems deployed in wind turbines operated
by ENERCON, a prominent German wind energy company. The attack had wide impli-
cations, as the impacted turbines collectively accounted for an estimated 10 gigawatts of
electricity generation capacity. It was estimated that around 5,800 ENERCON turbines
relied on these modems for communication.

Although the turbines continued to operate, the cyberattack rendered it impossible to
remotely monitor and manage them using the Supervisory Control and Data Acquisition
(SCADA) system, which is vital for the efficient and secure operation of modern energy
infrastructure. The initial breach targeted a subsidiary of the U.S.-based SATCOM
provider Viasat. This attack indirectly had effects on ENERCON’s wind farms, which
depended on the KA-SAT satellite for connectivity, particularly in remote areas lacking
reliable mobile network coverage[13].

In 2021, a separate incident occured with Vestas Wind Systems A/S, an energy solu-
tions company when they experienced a significant cybersecurity breach. Vestas special-
izes in the development, manufacturing, installation, and maintenance of both onshore
and offshore wind turbines, with over 145 gigawatts of combined installed capacity world-
wide. The attack involved unauthorized access to the company’s core IT infrastructure,
through which the attackers were able to infiltrate internal systems and extract a con-
siderable amount of confidential and proprietary data. The attackers upon retrieval of
such sensitive information proceeded to issue a ransom threat, of publishing the stolen
data. This form of extortion poses huge financial and reputational risks to the company
along with raising broader concerns about the vulnerability of critical infrastructure in
the renewable energy sector. Vestas subsequently responded by shutting down affected
IT systems and initiating forensic investigations. The incident underscored the growing
cybersecurity challenges faced by energy companies operating in increasingly digitalized
and interconnected environments as well as highlighting the potential consequences of
cyber intrusions[27].
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In light of these frequent attacks, the motivation of the thesis is to assess the vulner-
abilities of the power grid system and find ways to enhance its reliability. In this work,
we specifically study the False Data Injection attack and its impact on the state estima-
tion, a method widely used in the control center to effectively monitor the state of the
grid and maintain reliable operating conditions. State estimation, in conjunction with
bad data detection algorithms, continues to be a widely employed method for ensuring
data integrity and facilitating the reliable operation of the power grid. Electricity is the
backbone of the technological infrastructure as every moment of an outage significantly
impacts all other sectors such as industries, transportation networks and the like. The
community reaches a standstill, leading to substantial financial loss, system failures and
public safety risks. Some of these impacts from a successful impact could take ample time
to recover, taking us a step back as a society and hindering technological advancements.
With the recent advancements in AI and modern tools, we assess the vulnerability by
leveraging classical attack models such as the stealthy attack. By coupling these with
Generative AI, we explore the effect of such modern crafted attack models against state
estimation.

1.3 Literature Review

Studies on FDI attacks are generally classified into two main groups. One faction
usually plays the role of an attacker in assessing the vulnerability of the current systems
in place to mitigate FDI attacks. The others are focused on the detection and mitigation
strategies, validating them with well-known attack models.

One of these analyzed the effect of FDI attacks on market operations, examining the
financial risks involved. First, a malicious attack against state estimation leading to mon-
etary irregularities was crafted, and strategies for profitable attacks were implemented.
By leveraging the day-ahead and ex-post real-time prices, an evaluation of the economic
impact of the attacks was carried out. The study leveraged the Ex-Ante Real-Time
Market by conducting security-constrained economic dispatch(SCED) at 10 to 15-minute
intervals. This allows the optimal amount of power needed to be generated for a given
load to be obtained. This process results in a dispatch order representing generators that
directly impact the pricing structure. In the attack model, the attacker compromises
sensors in such a way as to buy and sell virtual power at specific locations for a certain
price in the day-ahead market. After this, the attacker injects malicious data, modifying
the pricing structure in such a way as to sell power again at the compromised locations
and thereby obtain profits as a difference between the initial and later prices[30].

An alternative approach of modelling FDI attacks leverages Long Term Short Term
memory networks(LSTM). An LSTM is a type of recurrent neural network(RNN) in terms
of deep learning. The RNN was leveraged as it had the capability of handling dynamic
data. An RNN is different from other forms of neural networks in that the output is
not only dependent on the current input but that of the previous input as well. In the
context of FDI attack detection, this temporal dependency is especially beneficial, as mea-
surement data used to craft successful attacks often show strong correlations over time.
This inherent architecture allows the RNNs to thrive well with FDI attack detections,
given that the measurement data used in crafting successful attack vectors is commonly
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correlated. Among various RNN architectures, LSTM models indicate enhanced perfor-
mance, particularly in tasks related to data evolving dynamically, as demonstrated in the
research[32].

Recurrent neural networks extend conventional feedforward architectures by incorpo-
rating feedback loops that allow internal state information to persist across time steps.
At time t, the network processes input xt through a hidden layer A, producing output ht.
The hidden state encapsulates context from previous time steps, enabling the model to
learn features dependent on the time varying nature of the data. However, this architec-
ture leads to huge overfitting, which negatively affects model performance. Overfitting
is the situation where the model performs extremely well with training data but has less
accuracy when exposed to novel data. Instead of learning patterns of characteristics of
the data, the model rather memorises the training data which is an undesired situation.
To overcome this limitation, the use of dropout has been proposed. However, as noted
in [26], applying dropout directly can lead to excessive propagation of input noise, which
can hinder convergence. Therefore, the study suggests restricting dropout to the neuron
outputs to maintain training stability and ensure convergence. The LSTM is structured
slightly differently from the normal RNNs. The RNNs with their basic structure are sub-
ject to the problem of vanishing gradient. This phenomenon arises because, during the
propagation of gradients across many time steps, repeated multiplication can cause the
gradients to progressively diminish. As a result, the influence of earlier inputs on later
outputs reduces, leading to a decaying effect through the network. Consequently, stan-
dard RNNs struggle to capture long-term dependencies in sequential data. To address this
limitation, the LSTM architecture was developed by slightly altering the internal design
of the hidden layer. These adjustments allow the network to retain important tempo-
ral information over extended sequences, mitigating the vanishing gradient problem that
afflicts traditional RNNs[15].

The LSTM architecture is set up differently by its inclusion of four interdependent
layers, compared to the single-layer design used in traditional RNNs, as shown in Fig-
ure X. These layers consist of three sigmoid (σ) gates—namely, the forget gate, input
gate, and output gate—along with one tanh layer. The σ gates regulate the modification
and retrieval of memory content. An essential feature of the LSTM is the presence of a
specialized pathway, which allows data to flow through the network without being pro-
cessed by the neurons, known as the ”cell state.” This bypassing mechanism mitigates the
vanishing gradient problem, facilitating the retention of long-term dependencies within
the network. In the context of a False Data Injection (FDI) attack, initial measurement
data is obtained using Matpower, to which random noise is added to simulate realistic
operating conditions. The attack vector a is generated according to the equation a = Hc,
where H is known as the Jacobian matrix and c is the modification on the actual state
vector. This attack vector is then incorporated into the measurement data, producing
the attacked measurement data za. Additional details on the construction of attack vec-
tors are provided in subsequent chapters. From here, both the original and the attacked
measurement data are labelled, thus forming the dataset for model training. The dataset
is split into training and testing subsets, with the training data used to fine-tune the
hyperparameters of the LSTM network, incorporating dropout regularization. Once the
training process is complete, the model’s performance is evaluated on the test set, using
the ground truth labels to assess accuracy and effectiveness.
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Figure 1.1: LSTM Model Architecture[32]

Another approach to FDI attacks is known as zero parameter information. A study
demonstrated the possibility of an attacker to craft stealthy FDI attacks with zero infor-
mation of line parameters, hence the name zero parameter information FDI attack[31].
An important concept in this model of FDI attacks is a ”cut line” defined as a trans-
mission line that can divide the power network into two disjoint islands. The adversary
exploits the vulnerability exposed by these cut lines to craft stealthy attacks against the
power system without actual knowledge of line parameters. In the study, the FDI attacks
were implemented considering three different scenarios. One of them was a case where
there was a one-degree bus, the second with a one-degree super-bus and finally a bus with
multiple cut lines. One-degree refers to when a bus is connected to the external by only a
single cut line. Also, a super-bus refers to a group of buses. The study claimed to prove
that an adversary can generate stealthy attacks with only limited information as in if the
bus or super bus is connected externally by virtue of cut lines. This attack model with
incomplete information was initially designed as a flexible load redistribution but still
requiring power network and line parameters info around the attack region. The zero-
parameter model instead demonstrates the possibility of successfully crafting a stealthy
attack with zero knowledge of line parameters. In terms of the details, we take a look
at the different attack scenarios with the zero parameter model with the first being the
attack on a one-degree bus. It builds on the analysis that the state variable of this type
of bus can be modified by leveraging the system topology. Given that in this scenario,
the bus is connected to the external by only a single branch, which here is the cut line,
an adversary constructs a successful attack vector as shown below[31].
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ai =


α, if i = id or d + n

−α, if i = jd or d + n + l

0, otherwise

(1.1)

Here α is a random value and the cut line is defined as td = {id, jd} representing a
link from bus i to bus j and d is the index of the transmission line. The attack is crafted
by the adversary injecting inverse errors in the measurements of the bus power injections
at nodes i and d. This results in compromised measurements.

In a second scenario involving an attack on a one-degree super bus, we have a group
of buses divided by a cut line from another part of the network. Here we define the buses
belonging to this group as a set Ng (1,2,....p). The super-bus is defined as G, and the
transmission lines in the cut are a set Lg.

With B defined as the symmetric admittance matrix and S the shift factor bus-branch
matrix obtained from the A the branch bus incidence matrix and D the diagonal suscep-
tance matrix susceptance matrix.

B = ATDA (1.2)

S = DA (1.3)

The columns in S corresponding to Ng, when summed up, are given as

sg = s1 + s2 + ...+ sp (1.4)

From the equation, it is derived that the vector sg only relates to Lg. Again, with the
same procedure in B, bg is obtained as

bg = b1 + b2 + ...+ bp (1.5)

From this, it is also derived that bg only has a link with the line parameters. The
study then extracts a theorem indicating that if an adversary has information about the
parameters on all transmission lines connected to this super-bus, it will be possible to
modify the state variables of the buses belonging to this super-bus. Building upon this
theorem, along with information that this super bus is connected externally to another
part of the network with only the cut line. The adversary constructs an attack vector
same as indicated in equation ??. The impact on the state variables is obtained as
ci =

α
bidjd

for all i, j in Ng. The compromised measurements are obtained by the injection

of the errors into the power injection of buses id and jd
The final scenario is one whereby the super bus has multiple cutlines. Again this

is constructed from the notion that the super bus is connected to the external part
of the network by virtue of the cut lines only. The attack vector a is constructed as
a =

∑lc
k=1 λkak where λk is always equal to 1 or 0 and lc is the size Lc. ak represents an

attack vector related to a single cut like tk in Lc. The formulation is then given as

ak,i =


αk, if i = id or k + n

−αk, if i = jck or k + n + l

0, otherwise

(1.6)
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k represents the index of the relevant cut line. α is a random value and hence ak,i is
the ith element of the vector ak. The modification on the state variable is then obtained
as x̂a

id
= x̂id + cid where cid is obtained from the injected errors α i.e cid =

∑lc
k=1 λk

αk

bidj
c
k

.

Leveraging the information that the super bus G is connected only by a group of cut
lines, an attack vector ak is successfully constructed corresponding to the cut line tk in
Lc as

ak,i =


αk, if i = ick or k + n

−αk, if i = jck or k + n + l

0, otherwise

(1.7)

Other studies focused on the defence mechanisms. In terms of these, a study [25]
mentioned two main methods to protect against FDI attacks. One is based on hard-
ware, which is to protect meters. It involves identifying vulnerable measurements and
safeguarding them. An example was provided in that for the case of an n bus system, a
minimum of 2n - 1 measurements will be necessary to perform state estimation. For this
reason, the measurements needed to allow the system to be observed should be secured.
The downside is, however, that if one of the meters undergoes a failure or is exploited, it
leads to an unreliable system as only the safeguarded meter measurements can be trusted
in the state estimation. A second method is software-based and uses robust algorithms.
An example mentioned was based on the Bayesian framework on the grounds that the
state of the system vector is random, having a Gaussian distribution. The algorithm uses
historical information to estimate the distribution, which it then uses to cross-check the
actual state. However, this method fails to detect replay attacks as the adversary can
alter measurements while keeping them within the historical distribution of the data. Re-
search by [7] has, however, been able to solve this problem by using the Kullback-Leibler
Distance method. It still had some downsides, though, as it cannot detect replay attacks
performed for brief time intervals.

Conversely, alternative strategies primarily relied on statistical methods, one of which
is Bad Data Detection (BDD) using the Chi-Square Test. This technique, employed
alongside state estimation, is used to identify anomalous data in smart grid systems and
is practically used in real-world applications.

The Chi-Square Test evaluates discrepancies between actual measurements and es-
timated values by calculating the residuals and the differences between observed and
predicted data. It sums the squared residuals and compares this statistic against a prede-
termined threshold. If the sum exceeds this threshold, it indicates a significant deviation
from expected values, suggesting the presence of anomalous data.

While the Chi-Square Test provides a rigorous statistical approach to anomaly detec-
tion, it has limitations. Its effectiveness can be compromised in noisy environments or
when the assumption of normally distributed residuals does not hold. Researchers are
increasingly exploring hybrid methods integrating statistical techniques with machine
learning algorithms to address these challenges. These advancements aim to enhance
detection accuracy and bolster the resilience of smart grid systems against the evolving
threat of FDI attacks.

In a study utilizing the IEEE 37-bus test feeder [4], the results demonstrated the
high filtering capabilities of residual-based methods for detecting malicious data within
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smart grid systems. These methods effectively identify discrepancies between actual and
estimated measurements, enabling operators to isolate and correct anomalous data. The
robust performance observed in this study underscores the potential of residual-based
approaches in maintaining the integrity of smart grid operations.

However, the Chi-Square Test, a widely used statistical technique for bad data de-
tection, has notable limitations. One significant concern is the occurrence of Type I and
Type II errors, commonly referred to as false positives and false negatives. Type I errors
can result in benign data being flagged as anomalous, while Type II errors may allow ac-
tual attacks to go undetected. Additionally, adversaries can intentionally inject false data
in a calculated manner to evade detection. By manipulating measurements so that the
resulting residuals fall within the predetermined valid thresholds, attackers can bypass
the Chi-Square Test, effectively compromising system integrity without raising alarms.

Moreover, another critical limitation arises from the reliance on the measurement error
covariance matrix, which may not accurately reflect the true errors in the data. If the
model used to represent measurement errors is flawed or does not account for all sources
of variability, it can significantly impair the performance of the Chi-Square Test. Such
inaccuracies can lead to an increased likelihood of undetected anomalies, undermining
the detection mechanism’s overall effectiveness.

In light of these challenges, it is essential to explore complementary techniques and
robust frameworks that enhance the reliability of bad data detection methods, ensuring
that smart grid systems remain resilient against sophisticated FDI attacks.
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Chapter 2

Theoretical Framework

2.1 Overview of Power Grid

The power grid in summary is a network system designed to effectively distribute
electric power. The grid consists of various electrical components each with a specific
function enabling the reliable transfer of energy from generation to consumers. The
structure of the grid can be categorized into four main components known as Generation,
Transmission, Distribution and finally Consumption.

The generation is where the actual production of electricity occurs by virtue of power
plants. This is obtained mainly through the conversion of mechanical energy to electrical
energy. The sources of mechanical energy varies from coal,thermal energy, natural gas,
and oil to wind,solar, geothermal and other forms of energy. These are mainly grouped
into two known as fossil fuels and non-fossil fuels respectively. With the application of
synchronous generators, the mechanical energy obtained from these sources is converted
to electrical energy and fed to the transmission system. The generated power is usually
at low voltage ranging from about 11 to 35kV. These are generally stepped up by virtue
of transformers as the power is transferred to the transmission system

The transmission system allows for the transfer of electricity to regions far away
from the generation site. Considering transportation costs of raw materials needed for
electricity, generation power plants are usually located close to theses sources. On the
other hand, with generation through non-fossil fuels such as solar,hydroelectric and wind
it is inevitable to have the generation plants where they are geographically obtained.
The transmission system allows enables the transport of the electricity generated at these
locations to regions further away in need of electrical power. In terms of the fundamental
structure of transmission systems, it is worth knowing that power loss in a transmission
line increases directly with an increase in the square of the line current (Ploss ∝ I2). For
this reason, the voltage is usually stepped up in the transmission system, which reduces
the current by virtue of ohm’s law subsequently minimizing loss on the transmission line.
These voltages could go up to about 275kV and higher. Also it is worth mentioning
that transmission systems are generally designed as a mesh structure to enhance fault
tolerance and allow for the transmission of energy through alternate paths if some are
affected. This further enhances the reliability of the transmission network.

The distribution system is the section that handles the transfer of electrical energy fi-
nally to the consumers. These operate at a lower voltage level, usually ranging from 120V,
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the lowest to about 69kV. As opposed to transmission systems, distribution systems are
mainly designed in a radial structure. Also the distribution system is further subdivided
into primary and secondary. Industrial customers who require a larger amount of power
are fed through the primary distribution whilst residential customers are provided for by
the secondary distribution[11].

Figure 2.1: Overview of the traditional Power Grid[29]

Figure 2.2: Overview of the Smart Grid[8]

2.1.1 Communication Infrastructure

A critical component of the modern power grid is its communication infrastructure,
which allows for the seamless exchange of data across the network. As smart grid ar-
chitectures continue to evolve—encompassing a wider range of stakeholders, devices, and
services—there is an increasing demand for communication systems that are both efficient
and highly reliable. The complexity and interconnectivity of these systems require robust
communication channels capable of supporting real-time monitoring and control over the
network at both transmission and distribution levels. Transmission networks generally
require high-bandwidth, low-latency communication to ensure system-wide coordination
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and reliability across vast distances. Meanwhile, distribution networks must accommo-
date a wider variety of devices and services at the local level which necessitates flexible
and scalable communication protocols to handle data from smart meters, distributed
generation units, and consumer-facing technologies.

In terms of the communication infrastructure of the power grid, it is typically seg-
mented into two primary domains: the office network and the process control network.
The office network corresponds to conventional enterprise IT infrastructure, supporting
general administrative functions requiring internet connectivity. In contrast, the process
control network is dedicated to the operations of the grid directly interfacing with the
physical field devices of the grid. This includes the interconnection across substations and
control points, enabling real-time data acquisition and control. Communication within
the process control network generally adheres to standardized protocols such as those de-
fined by the International Electrotechnical Commission (IEC), ensuring interoperability
and reliable data exchange. Devices such as Phasor Measurement Units (PMUs) con-
tinuously transmit measurement and status data most often via Programmable Logic
Controllers (PLCs), to centralized control centers[1]. From that point, supervisory con-
trol systems aggregate, process, and interpret the incoming data to monitor grid stability,
detect anomalies, and coordinate timely operational responses.

In the context of the Smart Grid, the overall architecture is typically segmented into
four distinct layers: the application layer, communication layer, power control layer, and
power system layer. On the customer side, the application layer provides a range of
services to improve user interaction and energy efficiency, including home automation,
demand response mechanisms, and dynamic market pricing. On the utility side, the fo-
cus shifts towards grid automation and efficient real-time power distribution across the
network. The primary distinguishing feature of the Smart Grid, when compared to tra-
ditional grid systems, lies in its communication layer. This layer facilitates bi-directional
information exchange and enables advanced functionalities such as remote monitoring,
control, and predictive maintenance. To implement this layer, a combination of wired and
wireless communication technologies is leveraged. The appropriate technology is selected
based on factors such as latency, bandwidth and reliability. Notably, three key network
types support this communication framework: the Premise Area Network (PAN), which
connects individual devices within a consumer’s premises; the Neighbourhood Area Net-
work (NAN), which aggregates data from multiple households or buildings; and the Wide
Area Network (WAN), which links distributed field devices and substations to central con-
trol systems across broader geographic areas. Together, these layers and networks enable
the Smart Grid to function as an intelligent, adaptive, and resilient energy infrastructure.

Wide Area Network

The wide Area Network (WAN), also referred to as the Metropolitan Area Network
(MAN), makes up the core of the communication infrastructure within smart grids. It
provides essential connectivity between the transmission and distribution layers, enabling
centralized monitoring and control across large geographic regions. Through the WAN,
critical components such as substations, control systems, and Remote Terminal Units
(RTUs) are interconnected with centralized control centers operated by utility providers.
Given the extensive coverage area, typically ranging from 10 to 100 kilometers and the
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need to transmit large volumes of real-time operational data, WAN implementations re-
quire high-bandwidth capabilities, generally between 10 Mbps and 1 Gbps. Measurement
data collected by field devices such as Phasor Measurement Units (PMUs) and Intelli-
gent Electronic Devices (IEDs) is transmitted via the WAN to control centers, where it is
analyzed to maintain real-time observability of the grid. This continuous stream of data
allows decision-making processes such as load balancing, fault detection, and dispatch of
corrective actions, all of which are critical for ensuring the reliability and stability of grid
operations[17]. Also, various communication technologies are utilized in WAN deploy-
ments, depending on geographic and infrastructural constraints. Fiber optic networks
are preferred for their high bandwidth and low latency, while cellular technologies (e.g.,
LTE, 5G) offer flexibility and wider coverage in urban and suburban areas. Power Line
Communication (PLC) is occasionally used for shorter WAN segments, especially where
existing power infrastructure can be leveraged. In remote areas, satellite communication
may be used as a fallback solution, ensuring connectivity where alternative options are
limited or unavailable.

Neighbourhood Area Network

The Neighbourhood Area Network (NAN) operates within the distribution layer of
the smart grid. It serves as an intermediary between the Wide Area Network (WAN) and
the Premise Area Network (PAN). This layer is typically established through the instal-
lation of smart meters at the consumer level, enabling bidirectional communication and
supporting advanced functionalities such as demand response, real-time energy monitor-
ing, and the provision of high-quality electric power. Furthermore, the NAN facilitates
inter-device communication between distributed Intelligent Electronic Devices (IEDs),
enhancing automation and operational visibility across the distribution network.

A key role of the NAN is the aggregation of data from a large number of geograph-
ically dispersed endpoints, transmitting this information to substations or centralized
data centers at a lower level. Consequently, the NAN must support moderate to high
bandwidth requirements to accommodate frequent and latency-sensitive data exchange
over relatively extended distances. However, modifying NAN infrastructure can pose
challenges, particularly in densely built or constrained environments where changes to
physical assets may be costly or impractical[19].

To address various scenarios, a range of wired and wireless communication technolo-
gies are leveraged which include fiber optics, cellular networks, Wi-Fi, and Power Line
Communication (PLC), often used complementarily to ensure reliable, secure, and effi-
cient data transmission.

Premise Area Network

The Premise Area Network (PAN) represents the communication layer closest to the
end-users within the smart grid infrastructure. It serves as the interface between con-
sumers and utility systems, allowing local data exchange. PANs can be implemented using
both wired and wireless technologies, with the choice often depending on infrastructure
availability, cost and user-specific needs.

The PAN is typically subdivided into three main categories: the Home Area Network
(HAN), Building Area Network (BAN), and Industrial Area Network (IAN). The HAN
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focuses on residential environments, facilitating communication among devices such as
smart meters, home automation systems, photovoltaic panels, and Home Energy Man-
agement Systems (HEMS). This allows for enhanced monitoring and control of household
energy consumption. The BAN and IAN instead are used in commercial and industrial
environments, respectively, and are commonly used to manage automation systems such
as Heating, Ventilation, and Air Conditioning (HVAC), lighting, and security systems at
the building level.

Due to the relatively short distances covered within PANs, the bandwidth require-
ments are modest, typically ranging from 10 to 100 kbps. As a result, low-cost com-
munication technologies such as Power Line Communication (PLC), Wi-Fi, and Zigbee
are widely adopted in PAN installations. These technologies provide sufficient perfor-
mance while maintaining affordability and flexibility, allowing for easy integration of new
devices[17].

A sample practical application of the PAN is the delivery of real-time pricing sig-
nals from utilities to consumers, enabling dynamic demand-side management. This gives
users the capability to adjust appliance usage based on price fluctuations which subse-
quently optimizes energy consumption, reduces electricity bills, and helps in handling
peak demand pressures on the grid[2].

2.1.2 Challenges

Given the increasing digitalization of the power grid, as described previously, several
critical challenges have emerged that must be addressed to ensure the continued reliable
and efficient operation of the grid. One of the most critical issues is the dynamic nature
of both power demand and generation, which fluctuates due to various factors such as
renewable energy integration, grid decentralization and changing consumer needs. These
challenges must be met with adaptive and resilient control strategies, leveraging relevant
technologies to ensure the grid remains responsive, efficient, and resilient under varying
operational scenarios.

One of the core concepts to take note of is the Confidentiality, Integrity, and Availabil-
ity (CIA) Triad, a fundamental in terms of general IT security. Confidentiality ensures
that information is only accessible to authorized personnel. The goal here is to prevent
unauthorized access to sensitive data. Integrity on the other hand ensures that informa-
tion always stays accurate and persistent. The objective is to prevent data from being
corrupted or tampered with. Finally, availability ensures that information must always
be accessible when needed. The main principle is that only two of the three above can
be guaranteed at the same time[3]. Most times in IT infrastructures some form of avail-
ability is sacrificed to ensure integrity and confidentiality. In power grids, however, there
is a huge consequence for unavailability of services as the consequences of downtime is
very critical. For example, in the case of a blackout, the affected areas increase for every
moment that power hasn’t been restored yet. Also, there is a huge cost in switching on /
off relevant electrical components such as huge plants. With such criticality of availabil-
ity in power grids, measures to ensure confidentiality and integrity are generally isolated
from those to guarantee the availability of power.

Another critical challenge in the power grid is to balance generation and consump-
tion. Modern grids need to operate at a designated frequency, generally 50Hz or 60 Hz
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depending on the standards used by the specific operator. The frequency, however is sub-
ject to fluctuations when there is a disparity between the power generated and the power
consumed. This imbalance of power generation and consumption causes a frequency de-
viation proportional to the imbalance. A mechanism known as operation reserve is set
up to ensure equilibrium between generation and consumption. We have the primary
operation reserve, secondary and minute reserve. The primary is a continuous frequency
load control and provides an instant response to frequency deviations. The concept of
inertia here is important, which is the tendency of the grid to resist frequency deviation
and is generally dependent on the types of plants associated with the grid. Fossil fuel-
based generators, for example, generally have much more inertia than renewable sources
such as solar panels. The second stage is the secondary frequency control, which operates
on a slightly lower time scale than the primary, usually in minutes. This is generally
achieved by dispatch systems from the control center to stabilize grid frequency[16]. Fi-
nally, the minute reserve takes over in situations where the deviation persists for a more
considerable amount of time, eg about 15mins[10].

A significant challenge as well in ensuring the security of modern power systems lies
in safeguarding field devices, particularly those deployed in outdoor environments such as
substations. These devices are typically designed for long-term operation and hence with
lifespans extending over several decades. This subsequently leads to fewer replacements
or updates. As a consequence, many of the communication protocols used by these
devices were developed years ago and lack the security features necessary to defend against
modern cyber threats. The absence of built-in security mechanisms in some of these
legacy protocols makes them particularly vulnerable to exploitation. For instance, the
widely adopted IEC 60870-5-104 protocol, used by transmission and distribution system
operators across the globe, has been shown to be susceptible to various forms of cyber
attacks, including man-in-the-middle, replay, and spoofing attacks. Similarly, the DNP3
protocol, another commonly used standard, exhibits similar vulnerabilities, exacerbating
the risks to critical infrastructure[21].

2.2 Powerflow analysis

2.2.1 Overview

Powerflow analysis, also known as load flow analysis, is a fundamental concept of the
power grid systems. In a power grid, there is a continuous evolution of relevant variables,
and these changes have to be constantly monitored. Powerflow analysis is leveraged for
the continuous management of the grid. This is achieved by working out the steady-state
equations of the grid. The relevant variables include phase angles, voltage magnitude,
active, and reactive flows along the lines of the power grid. This is obtained under
dynamic grid conditions. The objective of the power flow analysis is to mathematically
determine relevant variables, as mentioned above, for each node, also known as a bus.
This analysis involves non-linear power flow equations and is computed generally with
iterative methods. Amongst the techniques used to perform power flow analysis are
Newton-Raphson, Gauss-Seidel and Fast Decoupled methods. In this thesis, we leveraged
the Newton-Raphson method which is faster and more reliable than the Gauss-Seidel
method given available resources. In this thesis, the IEEE standard test networks were
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used for experiments which didn’t require heavy computational resources. In terms of
history, power flow analysis was initially computed with analog boards, which were not
quite reliable. However, from the 1950s onwards, digital computers were leveraged to
perform the computations with better accuracy. Over the years, new methods were
derived enhancing the computational efficiency whilst achieving utmost accuracy in terms
of results.

Given that the power grid involves a huge interconnected network, we end up with
power flows across the different branches connected to various nodes. The amount of
power through each line is determined based on Kirchhoff’s principles. Table 2.1 gives a
description of the common variables in a power flow analysis.

Variable Description

Si Complex power at bus i, Si = Pi + jQi

Pi Active power injection at bus i (MW)

Qi Reactive power injection at bus i (MVAR)

Vi Complex voltage at bus i, Vi = |Vi|ejθi

|Vi| Voltage magnitude at bus i (pu)

θi Voltage phase angle at bus i (radians)

Ii Complex current injection at bus i

Yik Element of the bus admittance matrix (Y -bus) between buses i and k

Yii Self-admittance of bus i in the admittance matrix

Gik Conductance component of Yik (real part)

Bik Susceptance component of Yik (imaginary part)

θik Voltage angle difference θik = θi − θk

P calc
i Calculated active power at bus i

Qcalc
i Calculated reactive power at bus i

n Number of buses in the system

Table 2.1: Relevant Variables in Power Flow Analysis

Firstly, we define the complex power S given as

S = P + jQ = V I∗ (2.1)

From ohm’s law, the current is obtained as

Ii =
n∑

k=1

YikVk (2.2)

Substituting I to the power equation yields the equation

Si = Vi

n∑
k=1

Y ∗
ikV

∗
k (2.3)
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which if expanded into the imaginary and real components we have

Pi =
n∑

k=1

|Vi||Vk|(Gik cos θik +Bik sin θik) (2.4)

Qi =
n∑

k=1

|Vi||Vk|(Gik sin θik −Bik cos θik) (2.5)

where Pi is the active power component at bus i, whereas Qi represents the reactive
power component for the same bus.

It is important to note that the buses are classified into 3 main categories. Firstly,
we have the generator bus, which is controlled, and with this bus, we have two known
variables, namely the real Power P and the voltage magnitude |V |. The unknown variables
are Q representing reactive power and phase angle θ, which are to be determined in the
power flow analysis. The second type of bus is the slack bus, otherwise known as the
swing or reference bus. Here, the known variables are specified as the voltage magnitude
|V | and voltage angle θ whilst it is necessary to determine P and Q, which are unknown
variables. Finally, we have the load bus, which is a type of bus that does not have any
generator attached to it. They form the bulk number of buses in a power system, and
the known variables are P and Q. The voltage magnitude |V | and voltage angle θ are
unknowns and have to be computed at this bus. Table 2.2 summarizes the classification
of buses[14].

Type of Bus Known Variables Unknown Variables
Slack |V |,θ P, Q
Generator(PV) P, |V | Q, θ
Load(PQ) P, Q |V |, θ

Table 2.2: Classification of Buses

2.2.2 Security constrained Optimal Power flow

An important concept in power flow analysis is the security-constrained optimal power
flow. This is an advanced optimization technique leveraged to obtain economic efficiency
whilst ensuring the reliability and security of the grid. In this method, the capabilities of
the traditional optimal power flow analysis are enhanced, considering potential contin-
gencies such as generator failures or transmission line outages. In the real world, we have
unexpected events affecting the grid that must be taken into account, eg during heavy
rain with lightning, there could be equipment failures or in the case of accidents whereby a
transmission line is disrupted by a vehicle in the case of overhead transmissions. How does
the grid react to various kinds of failures? The objective of the security-constrained OPF
is to lower operational costs while guaranteeing system stability during normal and con-
tingency scenarios. By simulating and evaluating random failures, security-constrained
OPF ensures that the power flows, voltage levels, etc, are within prescribed operational
limits even during system failures.

In terms of architecture, the relationship between SCOPF and OPF is as follows.
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OPF SCOPF
min f(P ) min f(P )
subject to: subject to:
g(P ) = 0 g(P ) = 0

hmin ≤ h(P ) ≤ hmax hmin ≤ h(P ) ≤ hmax

h′
min ≤ h′(P ) ≤ h′

max

g(P ) represents the power flow equations, h(P ) the constraints under normal con-
ditions whilst h′(P ) represents the constraints under contingency scenarios. It should
be noted that the SCOPF differs from the OPF only when a contingency is enforced.
Generally, the security-constrained OPF problem is defined as follows:

min f(x0, u0)

s.t. gk(xk, u0) = 0, k = 0, 1, 2, . . . , c

hk(xk, u0) ≤ hmax
k , k = 0, 1, 2, . . . , c,

(2.6)

Here, gk is the power flow equation, and hk is the branch-flow constraint. x0 refers
to the state variables indicating voltage magnitudes and angles without any contingency.
k represents the k-th system configuration. The base case at k = 0 indicates the initial
pre-contingency state and goes up to c, representing the total set of contingencies[9].

In SCOPF, there are two main types of actions: a proactive ”preventive” and reactive
”corrective” action. The preventive action restores the normal state from an alert state.
It is implemented to avoid potential disruptions caused by a contingency. The corrective,
however, shifts the system from an emergency state back to a normal phase, and in this
context, the duration of the action is critical.

2.3 State Estimation

In a power grid, there is the need to have knowledge of the system state at the
control center level to ensure the reliability and efficiency of the grid. The system state is
constantly evolving in a power grid due to various factors. These include abnormalities
such as weather conditions leading to equipment failure in some parts of the grid, sudden
changes in user consumption of electricity or faults of any kind such as short circuits,
overvoltage, etc. These issues must be instantaneously handled to ensure a reliable power
supply.

The main source of knowledge of the system state is measurement devices installed
throughout the network. Measured values are sent to the control center through appro-
priate communication channels. Given that the power flow analysis is already described
in the previous section, one might wonder what the purpose of state estimation is. The
reality is that the measured values indicated above do not represent the true state of
the system for a couple of reasons. The main one is that the measurement devices are
imperfect; hence, small measurement errors are always expected. Also, measured values
could undergo modification via the communication channels, leading to incorrect values
being reported at the control center. The method of state estimation approximates un-
known state variables from selected measured values in a way that minimizes the overall
measurement error. Power flow analysis assumes perfect data and doesn’t perform any
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bad data correction; for this reason, state estimation is primarily used to obtain the sys-
tem state of the grid in real-time, allowing continuous monitoring. Powerflow analysis is
then run based on the output of the state estimation for the contingency analysis, which
determines the right action needed to be performed to maintain the reliability of the grid
at a specific moment, such as a generator dispatch to regulate the frequency.

In terms of the architecture, a mathematical model is leveraged to represent the whole
system in the state estimation process. The main variables are explained below.

Variable Description
z The raw noisy measured values from devices
z∗ Actual measurements that would have been obtained

from a perfect device
x̄ Estimated system state variables
h(x) The non-linear equation that relates state variables to

the measured variables
H The matrix of the partial derivatives of the measurement

function with respect to the state variables
R The noise covariance matrix, in which the diagonal ele-

ments Rii represent the mean noise power (or root mean
square (rms) error) of each component wi. This quan-
tifies the statistical relationship between the noise from
different components.

w The additive noise from sensors generating measure-
ments

Table 2.3: State Estimation Variables[18]

In a broader description, the state variables usually include Bus voltage magnitude
values V and Bus voltage angles θ. In the DC state estimation, voltage magnitudes are
assumed to be constant at 1 in contrast to the AC state estimation, which considers
both variables mentioned above as state variables and is a more accurate estimation
of the system state, albeit a bit more complex. Common algorithms used in the state
estimation process include the Weighted Least Squares(WLS), Kalman Filter, Extended
Kalman Filter and the Gauss-Newton Iterative Method. In our case, the WLS method
was leveraged, the most commonly used for the AC state estimation, due to its robustness,
effectiveness and computational efficiency.

Generally in the state estimation, the measured variables are typically modeled as
linear functions of the underlying state variables. This relationship is mathematically
expressed through the measurement equation:

z = Ax+ w (2.7)

Here A represents an m x n measurement matrix where m is the number of mea-
surements and n is the number of state variables. w represents the measurement noise
as described in table 2.3. To obtain the optimal state, J is defined as shown below to
quantify the measurement residual
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J = (z − Ax)′R−1(z − Ax) (2.8)

By minimizing the scalar from equation 2.8 above, the optimal state vector x̂ is
obtained.

This approach operates under the assumption of a linear relationship between the
measured and state variables and forms the basis of linear estimation theory. Linear
estimation is widely used due to computational efficiency, however, it may be limited in
accuracy when nonlinearities inherent in the power system model are significant.

On the other hand, when the measurements are non-linear functions of the state which
is the practical case in real-world scenarios, it is common to linearise the equations about
a nominal value and an iterative process of relinearising about newly found estimates.
Here the measurement vector is defined as

z = f(x) + w (2.9)

where f(x) is defined as the nonlinear function relating z to the state variables. J is
then defined as

J = (z − f(x))′R−1(z − f(x)) (2.10)

From here we take x0 as a nominal value of the state variables defined as

z0 = f(x0) (2.11)

and by expansion with the Taylor series, we have

z = z0 +∆z (2.12)

f(x) = f(x0) + F∆x (2.13)

F is defined the n x n Jacobian matrix given by:

Fij =
∂fi
∂xj

, i = 1, 2, . . . , n, j = 1, 2, . . . , n (2.14)

∆x and ∆z are minute changes in x and z, and inserting them into the previously
defined equation for J gives

J = (∆z − F∆x)′R−1(∆z − F∆x) (2.15)

which corresponds to the same quantity being minimized in the problem formulation
given as

∆z = F∆x+ w (2.16)

Linear estimation equations are then applied to estimate state deviations ∆x based on
the measurement deviation ∆z after which the newly obtained state deviation estimation
∆x̂ is summed to the nominal value x0 to obtain a new state estimate x̂. This iterative
process continues until a predefined convergence criterion is satisfied[18].

20



2.3.1 Weighted Least Squares Algorithm

For the WLS algorithm, as described in relevant research[28], we have two main parts,
namely the measurement function and the gain matrix G(x). Assuming a test system
with N buses, there are 2N - 1 state variables, which are the voltage magnitudes and
voltage angles at each bus, excluding the voltage angle at the slack bus, which has a
value of 0 as it is the reference bus. The vector representing the state variable is then:

xT =
[
V1, V2, . . . , VN , θ1, θ2, . . . , θN

]
(2.17)

The measurement variables considered are nominally the active and reactive power
injections at each bus along with the active and reactive power flows. These are given by
the equations below:

Pi = Vi

N∑
j=1

Vj [Gij cos(θi − θj) +Bij sin(θi − θj)] (2.18)

Qi = Vi

N∑
j=1

Vj [Gij sin(θi − θj)−Bij cos(θi − θj)] (2.19)

Pij = V 2
i [gsi +Gij]− ViVj [Gij cos(θi − θj) +Bij sin(θi − θj)] (2.20)

Qij = −V 2
i [bsi +Bij]− ViVj [Gij sin(θi − θj)−Bij cos(θi − θj)] (2.21)

Equations 2.18 and 2.19 represent the bus power injections, whilst 2.20 and 2.21
indicate the power flows across the lines.

The second part deals with the Gain matrix G(x) obtained by the Jacobian matrix
H, which represents the sensitivity of the measurement function with respect to the state
variables and the error covariance matrix, R. We obtain G(x) as:

G(x) = HTR−1H (2.22)

Going back to the WLS estimation, we then have an objective function, which is to
minimize the loss between initial measurements and estimated measurements from the
state variables.

J(x) =
m∑
i=1

[
(zi − hi(x))

2

Rii

]
= [z − h(x)]TR−1[z − h(x)]

(2.23)

From equation 2.23, zi refers to the measurement variables, which includes the power
injections and flows as previously described and hi(x) represents the measurement func-
tion. From these, we obtain the WLS equations for each time step k as follows:

G(x) = HT (xk)R−1H(xk) (2.24)

∆xk+1 = [G(xk)]−1HT (xk)R−1[z − h(xk)] (2.25)
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2.4 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a specific type of deep learning model
tailored for generative processes. These include synthesizing of images, generation of
human-like speech, enhancement of images and much more. The main objective of GANs
is to generate fake data that is indistinguishable from real-world data. Widely used in un-
supervised learning, applications for GANs include high-quality sample data generation,
which helps train models for domains where real data is limited. GANs are also leveraged
for data augmentation, allowing models to better generalize over training and avoid over-
fitting. In terms of architecture, GANs leverage two main models, one being a generative
model and the other being the discriminator model. The generative model produces fake
data and tries to fool the discriminator into accepting it as real data. On the other hand,
the discriminator learns to distinguish fake data by predicting if the data given to it is
from the generative model or a sample real data distribution. In this push and pull, both
models try to obtain their objectives, leading to an equilibrium scenario where the real
data is almost indistinguishable from the fake data by the generative model. In other
words, we have a probability distribution of sample real data and a second distribution
of fake data by a generative model. The goal of the GANs is to align the two probability
distributions so that it is equally likely to obtain a data sample from either.

The framework is generally built on models based on multilayer perceptrons. Initially,
we assume having sample data x, the distribution of the generated sample pg, and an
input noise variable pz(z). We then define a generator function G(z; θg) that maps to
input noise an output sample.

A second model with the same multilayer perception structure D(x; θd) is defined,
which acts as a binary classifier and is known as the Discriminator D, indicating the
likelihood that x originated from the data instead of pg. D is then trained to optimize
the likelihood of correctly classifying both real data and generated samples from G.
Concurrently, G is also trained to minimize log(1−D(G(z))). D(G(z)) is the probability
that the discriminator thinks the generated sample is real, whilst 1 − D(G(z)) is the
probability that the discriminator correctly recognizes the fake sample as fake. The value
log(1 − D(G(z)) penalizes the generator when the discriminator correctly classifies the
fake sample as fake. Hence, in this scenario, the discriminator D wants to maximize
log(1−D(G(z))), meaning it wants to confidently classify generated data as fake whilst
the generator G wants to minimize log(1 − D(G(z))), meaning it wants D(G(z)) to be
close to 1, so the discriminator gets fooled into thinking fake generated samples are
real[12]. This can be likened to a minimax game with an overall objective function given
as

min
G

max
D

V (D;G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.26)
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Chapter 3

Jacobian Matrix based FDI Attack

3.1 Introduction

In this chapter, we delve into the design of stealthy attacks which leverage the Ja-
cobian, otherwise known as the H Matrix, to craft stealthy attacks to bypass the state
estimation.

In terms of the general workflow, the first step required the obtaining of the standard
IEEE test networks. In our case, the pandapower library already consisted of most of
the test bus systems in-built and in a friendly manner as dataframes. For this reason
it was easy to manipulate directly without the need for complex data formatting so as
to be able to efficiently run the simulations. The whole procedure was broken down
into main smaller components, which were, namely, Power Network, State Estimation,
FDI Attack, Evaluator and Visualizer. The procedure starts with the Power Network
module, which loads the selected IEEE test case to be explored and runs an initial AC
power flow analysis. The initial power flow analysis allows obtaining accurate results
of the system state which are used as measurement data. Measurement data from the
power flow analysis is then fed to the State Estimation component, which runs where
the system state is obtained by virtue of the WLS algorithm. The bad data detection is
internally incorporated in the state estimation process and automatically handles what is
assumed to be erroneous measurements. Upon obtaining the initial results of the system
state, which is what would be observed in a control center, the next phase now involves
the actual attack, which leverages the measurement data and network parameters to
construct a valid attack vector added to the measurement data and re-fed to the state
estimation component. Due to the careful construction of the attack vector, the bad
data detection algorithm is by-passed, which yields a slightly different state estimate,
leading to an incorrect observation at the control center. The results of the attacked
state estimate are then passed to the Evaluator component for deeper analysis on the
effect of the attacked system state, which includes metrics such as frequency deviation
and voltage magnitude/angle deviation.

23



Figure 3.1: Stealthy Static Attack Flow Chart Design

3.2 Experimental Setup

In terms of tools, the main options available considering power systems analysis in-
cluded MATLAB and Python. MATLAB included libraries such as matpower and py-
power, whilst there are a host of python libraries in that aspect, which included PyPSA,
GridCal, Matpower, pandapower, etc. Given the nature of this research and considering
the main components such as the state estimation process, the Pandapower library with
Python was selected as a basis to simulate the power systems. Python, being a general
purpose language with a wide community support, allowed for a seamless implementa-
tion, leading to a smooth development process. The huge ecosystem of Python, which
includes well-known libraries such as Pandas, NumPy, etc, allowed for a greater control
of the simulation process in terms of the state estimation. Data manipulation, which is
a core of the experiments, was easily applicable given the large measurement data along
with output simulation data involved with the power networks needed for analysis. An-
other aspect is with regards to the availability of powerful visualization libraries such as
Matplotlib, which is extensively used to visualize simulation results. This allowed for
quick identification of key findings from the experiments which includes the FDI attacks
on the state estimation accuracy along with any recognizable patterns or anomalies.

The Pandapower library, in addition to being open source, was rich in features and
provided various sets of predefined functions to model the power system. On top of
providing benchmark IEEE standard network test cases, it included methods to easily
create or modify critical parameters such as lines, buses, transformers and generators,
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which makes it easy to apply mathematical models on the network in terms of simulating
the attacks on the state estimation process. Key features include the load flow analysis
for both AC(Alternating Current) and DC(Direct Current) which serves as the bench-
mark of measurement data for the state estimation process. There is also the in-built
state estimation feature, which allows for an accurate depiction of system state from
measurement data along with features for bad data detection from measurement data,
which have been verified, enabling rapid development and tests. These in-built features
enabled a direct focus on the actual implementation and study of the effects of the FDI
attack models.

3.2.1 Description of IEEE Test Cases

In power systems, IEEE test cases are generally used as a research benchmark and
provide a common framework for testing and validation of tools used for power analysis,
optimization, and further system analysis. These range from small networks such as the
9-bus system to huge networks with over 2000 buses and some representing portions of
a real grid generally from the US and EU. Smaller networks are often used for stability
studies, power flow and economic dispatch, whilst larger networks, such as with over 300
buses, are leveraged for huge-scale contingency analysis. For this reason, as with most
research on power flow analysis and state estimation, only smaller networks were leveraged
to better understand the effects of the proposed methodologies not going above the 300-
bus system. In terms of their fundamental structure, an IEEE test case is modelled with
Buses, Transmission lines, Generators, Loads and Transformers. Buses refer to nodes in
the network where the load and generation are defined. At the bus, voltage levels are
defined with nominal voltage. The transmission lines serve as links between buses. These
are characterized by impedance Z formed as a complex number R + jX. R represents
the resistance whilst X constitutes the reactance. The admittance Y is defined as the
inverse of the impedance, hence Y = 1/Z. Generators provide power to the system,
which includes active power P , typically in MW and reactive power Q in MVAR. The
load corresponds to the demand or consumption for active and reactive power. Finally,
there are transformers, which are used to step up or step down the voltage levels across
buses.

Test Case Buses Transmission Lines Generators Loads
IEEE 9-Bus 9 9 3 3
IEEE 14-Bus 14 15 4 11
IEEE 24-Bus 24 33 10 17
IEEE 30-Bus 30 34 5 21
IEEE 57-Bus 57 63 6 42
IEEE 118-Bus 118 173 53 99
IEEE 300-Bus 300 304 69 193

Table 3.1: Comparison of IEEE Test Cases

Table 3.1 summarizes the characteristics of the main smaller bus systems considered
in this thesis. In the smaller systems, very few generators are present, while larger
systems model more distributed generation. Also, the branch density kind of increases
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with respect to the system size. This usually indicates higher connectivity as transmission
networks are generally designed as mesh networks for improved reliability and high quality
of services.

Figure 3.2: Diagram of the IEEE 14 bus system

3.2.2 Measurements

For the implementation of the state estimation, measurements are critical in obtaining
the operational state of the system, which enables the continued real-time observation
of the network’s operating condition. The key state variables as previously defined are
bus voltage angles and magnitudes, which are estimated leveraging the sensor data rep-
resenting the measurements. These measurements include mainly the power flows, bus
power injections and the voltage magnitude itself. The voltage magnitude measurements
Vi refer to the voltage levels at various buses across the network. In terms of power flows,
we have the active power flow Pij representing the measured active from a node busi to
busj whilst Qij is the reactive power flow along the same transmission line. In addition
to these, there are bus power injections Pi and Qi, active and reactive power injections,
respectively representing the total active and reactive power produced or consumed at
each bus in the network. In real-world SCADA systems, measurement values typically
include the voltage magnitude and power flows with a data update of 2 to 10 seconds per
update. In Wide Area Monitoring(WAM) monitoring systems, there is a faster update
of data with an interval of 20ms per update.

Sources of these measurements in real-world scenarios typically include devices such as
Phasor Measurement Units (PMUs), Remote Terminal Units(RTUs) and SCADA-based
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sensors distributed across the network. [6]

Measurement Type Units Accuracy (σ)
Voltage Magnitude pu 0.01 pu
Active Power Injection MW 1–2%
Reactive Power Injection Mvar 1–2%
Active Power Flow MW 1–2 MW
Reactive Power Flow Mvar 1–2 Mvar

Table 3.2: Measurements Used in State Estimation

An important concept to ensure a reliable and accurate state estimation process is the
requirement of system operators to have sufficient measurement redundancy and ensure
the observability of the network. Measurement redundancy refers to having multiple in-
dependent measurements of the same system parameters, which helps in error detection,
bad data filtering, and enhancing the robustness of state estimation algorithms. Redun-
dancy is achieved through the installation of multiple sensors across the network, enabling
state estimators to cross-verify data and reduce the impact of measurement errors.

Another important concept in terms of measurements is known as observability anal-
ysis, which is a critical aspect of the state estimation process. This determines whether
the available measurements provide enough information to estimate all system state vari-
ables. A power system is considered observable if the set of available measurements is
sufficient to solve for all bus voltages and phase angles. If a system is partially observ-
able, it means that some parts of the grid cannot be fully estimated, which can lead to
operational inefficiencies and inaccurate decision-making.

Measurement redundancy significantly improves bad data detection and correction.
It allows the Weighted Least Squares (WLS) estimation which is used in this thesis to
process redundant measurements and minimize the impact of noisy or erroneous data. If
an individual measurement deviates significantly from the expected value, the estimator
assigns a lower weight to that measurement reducing its influence on the final state
estimation results.

3.3 Baseline State Estimation

In this section, we perform a baseline state estimation without any attack to form
an initial base with which to compare with attacked measurements as will be described
ahead.

This baseline state estimation, performed under normal operating conditions (i.e.,
without cyber or physical attacks), serves as the benchmark to analyze the impact of
modified state variables under attack. The estimated values are compared with ground
truth data to evaluate the accuracy of the estimation process. Ground truth data is ob-
tained by running an initial power flow analysis on the network. The results of this power
flow analysis are summed up with a little random noise and leveraged as input to the
state estimation process with the WLS algorithm. To quantify estimation performance,
appropriate error metrics such as Root Mean Squared Error (RMSE) and Mean Absolute
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Error(MAE) were leveraged to gain insight into the overall deviation from the ground
truth.

Additionally, the formulation and derivation of the measurement matrix (H-matrix)
used in the Weighted Least Squares (WLS) estimation approach is clearly described.

In terms of the methodology, IEEE test cases 14, 30, 39, 57 and 118 were used
to analyze the baseline state estimations. For each of these test cases, the AC power
flow analysis was performed with Pandapower. From the results of these, the voltage
magnitude V , active power injection P , reactive power Q, and line power flows Pij and
Qij were extracted and applied as measurements to the state estimation with a little
Gaussian noise. Note that the voltage magnitude was used as a measurement variable
but also served as a state variable. The voltage angle state variable was not included
in the measurements simulating the SCADA setup, which does not include it[6]. Upon
convergence, the estimated voltage magnitudes Vest and phase angles θest were extracted
and compared against the ground truth from the power flow analysis results previously
obtained.

For the five IEEE test cases on which the baseline estimation, relevant error metrics
were used to analyze the performance of the state estimation. The two main metrics
used were the Mean Absolute Error(MAE) and the Root Mean Square Error(RMSE).
The Mean Absolute Error computes the absolute difference between the ground truth
and estimated values for both voltage magnitudes and voltage angles.

The MAE for voltage magnitudes, representing the average absolute error, is given
by:

MAEV =
1

N

N∑
i=1

|V̂i − Vtrue,i| (3.1)

MAE for voltage magnitudes in per-unit (pu), where N is the number of buses, V̂i is
the estimated voltage magnitude, and Vtrue,i is the true value.

For phase angles, excluding the slack bus (θ1 = 0◦):

MAEθ =
1

N − 1

N∑
i=2

|θ̂i − θtrue,i| (3.2)

MAE for phase angles in degrees, where N − 1 accounts for the slack bus exclusion,
θ̂i is the estimated angle, and θtrue,i is the true value.

The RMSE, which emphasizes larger errors, is defined for voltage magnitudes as:

RMSEV =

√√√√ 1

N

N∑
i=1

(V̂i − Vtrue,i)2 (3.3)

RMSE for voltage magnitudes in per-unit (pu), highlighting the root of the average
squared differences.
and for phase angles as:

RMSEθ =

√√√√ 1

N − 1

N∑
i=2

(θ̂i − θtrue,i)2 (3.4)
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RMSE for phase angles in degrees, reflecting the root of the average squared differences
excluding the slack bus.

3.3.1 Results

(a) IEEE 30-bus system

(b) IEEE 57-bus system

Figure 3.3: Comparison of Actual and Estimated Voltage Angles

The images shown in Figure 3.3 illustrate the different comparisons of voltage angles
across selected test bus systems. The first is the IEEE 30 bus system as in figure 5.1a.
The state estimation was quite close to the actual values of the first five buses and then
deviated slightly but was overall close to the actual values. From the values obtained
during the experiments, a percentage deviation of about 12% on average was obtained
based on the Mean Absolute Errors. In figure 3.3b for the IEEE 57 bus system, the
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estimated voltage angles were quite close to the actual values with a percentage deviation
of about 3.5% on average obtained. This significantly dropped to about 0.6% for the IEEE
118 bus system as indicated in Table 3.3. It is quite easy to observe that as the number
of buses increased, the estimated state variables got closer to the actual values.

IEEE Bus System Mean Abso-
lute Error

Root Mean
Square Er-
ror

Percentage
Deviation
by MAE

Percentage
Deviation
by RMSE

Case 14 2.3244 2.4705 19.27% 20.49%

Case 30 1.8041 1.8690 12.95% 13.42%

Case 39 0.0000 0.0000 0.00% 0.00%

Case 57 0.4330 0.4696 3.43% 3.72%

Case 118 0.1076 0.1234 0.53% 0.61%

Table 3.3: Voltage Angle Error Metrics for IEEE Bus Systems (Baseline)

IEEE Bus System Mean Abso-
lute Error

Root Mean
Square Er-
ror

Percentage
Deviation
by MAE

Percentage
Deviation
by RMSE

Case 14 0.0824 0.0827 7.86% 7.88%
Case 30 0.0572 0.0573 5.55% 5.57%
Case 39 0.0000 0.0000 0.00% 0.00%
Case 57 0.0151 0.0155 1.70% 1.74%
Case 118 0.0054 0.0057 0.55% 0.58%

Table 3.4: Voltage Magnitude Error Metrics for IEEE Bus Systems (Baseline)

Instead, for the voltage magnitudes as detailed in table 3.4, it is worth noting that the
variance of voltage magnitudes is smaller relative to the phase angles. Subsequently, the
percentage deviation was relatively smaller compared to the voltage angles, as previously
mentioned. For the IEEE 30 bus system, the estimated values closely follow the actual
values with a deviation of about 5.5% calculated from the mean absolute error. This
deviation drops to about 1.7% in the 57 bus system and about 0.6% in the 118 bus
system.

3.4 Attack Model

This section discusses the model used in designing an attack against state estimation.
Two main models are generally considered: attacks against DC(linear state estimation)
and AC(nonlinear state estimation). As discussed previously, the DC state estimation is
a simpler linear estimate that approximates the state of the system. The nonlinear AC
state estimation, though more complex, provides a more accurate estimation of the system
state. As much work has already been done regarding attacks on DC state estimation in
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academia, I focused instead more on the attack models aimed at nonlinear state estimation
in my experiments

Regarding the DC attack model, the base point assumes constant voltage magnitude.
This meant that V k is set to 1 for all k in the set S of buses. There is also an assumption
of negligible resistance on the branches, which results in having the reactive power on
each line being set to zero. Hence, only active power injection is considered for each bus.
Now, given that the power flow equations are linear, we derive the equation that relates
the measurements z to the state estimate x with the equation:

z = Hx (3.5)

An attacker tries to attack the system by substituting z with za. This vector is obtained
as za = z + a, where a is the attack vector added to real measurements z. For every
non-zero element in a, the corresponding sensor reading in z has been modified based on
the value in a. In some scenarios, it is assumed that some sensor readings are protected
and can’t be compromised; in that case, the indices corresponding to such measurements
are fixed at zero in the attack vector. This allows for a more practical implementation as
usually in the real world, the adversary only normally has access if at all to a subset of
measurement data as opposed to the whole data which is usually at the control center.
Given za, we end up with a state estimate x̂ a being the attacked system state. What is
to be noted here is the residue obtained when the measurements are re-estimated from
the attacked state. This is given as za −Hx̂a. The main bad data detection algorithms
work by ensuring the residue never passes a certain threshold; if it does, the measurement
data has been compromised. What is interesting to note is that if the attack vector a is
carefully selected as a linear combination of the H matrix rows, the bad data detection
algorithm fails to spot the attack as the residue is no longer affected. The equation below
holds:

ra = za −Hx̂a = z + a−H(x̂ + c) = z −Hx̂ = r (3.6)

ra represents the residue upon an FDI attack, while r indicates the base residue when
the real measurements are used.

For the attacks against AC state estimation, the non-linear relationship between the
state and the measurement values is given by z = h(x) instead, where h(x) is the non-
linear function that relates the state to the measurement data. Hence, the residue ra
from an attack is given by ra = za − h(xa). By substituting into the equations, as seen
below, we obtain the following.

ra = za − h(xa) + h(x)− h(x)

ra = z + a− h(xa) + h(x)− h(x)

ra = r + a− h(xa) + h(x)

(3.7)

For ra to be equal to r, it is clear that we would have to equate a − h(xa) + h(x) to
zero, which forms the basis of an attack against AC state estimation. Rewriting it means
always selecting an attack vector a that satisfies the equation a = h(xa)−h(x) and yields
an attack that would bypass the bad data detection algorithm as the residue from a true
state estimate wouldn’t be affected[22].
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3.4.1 Results

This section presents an analysis of the impact of falsified measurement data on the
state estimation process, as defined in the attack model that exploits the structure of the
network through its parameters. Building upon the methodology employed in the baseline
estimation, simulations were conducted for both voltage angles and voltage magnitudes
in order to assess and visualize the modifications on the state variables introduced by the
attack vector. This comparative analysis allows for a clearer understanding of how false
data injection (FDI) affects the accuracy and reliability of the state estimation process.

Figure 3.4 illustrates the effect of the attack on the voltage angle estimates for the
30-bus system. Notably, significant deviations were observed for buses indexed between
10 and 25. This region also exhibited increased estimation errors during the baseline
analysis, suggesting a naturally higher level of uncertainty or reduced observability. The
observed increase in estimation errors highlights the potential for adversaries to target
structurally weak areas of the network to enhance the effectiveness of their attacks. The
percentage deviation in this case reached approximately 16%, signifying a considerable
divergence from the true system state.

In comparison, the 57-bus and 118-bus systems demonstrated relatively lower devia-
tions under the same attack conditions. The average percentage deviations were recorded
at around 4.1% and 0.65%, respectively. While these figures suggest improved robustness
in larger systems due to better redundancy and observability, the results also confirm that
targeted FDI attacks can still yield noticeable estimation errors, especially in strategically
vulnerable regions of the network. These outcomes underline the importance of identi-
fying sensitive areas within the network topology that could be exploited for stealthy
attack strategies.

Overall, the experimental results emphasize the significance of system size, measure-
ment placement, and network observability in determining the vulnerability of state es-
timation to FDI attacks. The insights gained from this analysis serve as a foundation for
developing more complex attack models and subsequently robust detection and mitigation
mechanisms in subsequent research.

3.5 Conclusion

In this chapter, we designed the model for the attacks based on the Jacobian matrix
which leverages full knowledge of a network. This was implemented as a starting block
for the more dynamic experiment in the next leveraging the methods clearly tested in
existing literature.

The experimental setup detailed the implementation of the model leveraging the
Panda Power library. The simulations were then run evaluating the selected attack model
and its effect on various selected networks. This gave us an insight into the effects of
stealthy attacks on state variables of the power system.

Firstly an analysis of baseline estimation was done to measure the deviation of esti-
mated state variables from a ground truth defined with some little added Gaussian noise.
The impact of False Data Injection attacks on the voltage angle estimates of power sys-
tems, specifically focusing on the 30-bus, 57-bus, and 118-bus systems was subsequently
analyzed. The results as described in the previous section revealed significant insights into
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(a) IEEE 30-bus system

(b) IEEE 57-bus system

Figure 3.4: Comparison of Estimated and Attacked Voltage Angles

33



how adversaries can manipulate voltage angle estimates and the vulnerabilities inherent
in different system configurations.

For the 30-bus system for example, the effect of the FDI attack was particularly
pronounced, with substantial deviations in voltage angle estimates observed for buses
indexed from 10 and 25 exhibiting estimation errors of up to a deviation 16%. These
findings suggest that certain regions within the system, likely due to lower observability
or higher inherent uncertainty, are more susceptible to attack. The relatively higher
baseline errors in this part of the network further indicate its structural vulnerability,
highlighting areas where attackers could strategically target for maximal impact.

In contrast, the 57-bus and 118-bus systems demonstrated better resilience to FDI
attacks, with average lower percentage deviations. The lower deviation in these larger
systems can be attributed to their higher levels of redundancy and observability, which
enhance the system’s robustness against such adversarial interventions. These results
indicate that while larger systems may show an overall stronger defence against attacks,
targeted FDI attacks can still lead to noticeable estimation errors, particularly in areas
of the network that remain vulnerable despite the additional system size.

These outcomes are critical in understanding the broader implications of FDI attacks
on power system security. The substantial impact of the 30-bus system illustrates how
even small and less complex networks can be highly susceptible to attack, especially if key
areas are left less observed or under-protected. On the other hand, the larger systems,
though more robust, still present attack surfaces that adversaries can exploit, especially
in strategically weak regions.

To conclude, we can observe that network vulnerability varies significantly across
different regions within the system, with specific buses or areas being more prone to an
FDI attack. Also, larger systems naturally offer better protection due to redundancy
and improved observability, but they are not impervious to targeted attacks, especially
in structurally weak regions.

The findings indicate the importance of not only enhancing overall system security
but also identifying and reinforcing vulnerable areas within a network. Future research
can be done to design advanced techniques to identify vulnerable regions of a network
which can be exploited by attackers. By having specialized detection strategies for critical
areas, more resilient and reliable power grid infrastructures could be implemented.
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Chapter 4

Attack based on Generative
Adversarial Network

4.1 Introduction

One important thing to note in stealthy attacks is the importance of the Jacobian
matrix in crafting an attack model. This means, however, an assumption of an adversary
having full knowledge of the network parameters, which is quite impractical in a real-
world scenario. In this chapter, we advance our previous investigation by proposing a
methodology to leverage GANs and the state estimation process to craft valid FDI attacks
without requiring knowledge of the Jacobian matrix. Also, one thing to note is that as the
static attack is for a single time step and given there is a threshold of maximum residual
that can be tolerated, the state variables can only be modified to a limited extent. This
makes it virtually impossible to force the control center into action, making it difficult for
an adversary to achieve a meaningful objective such as influencing electricity market prices
in terms of economic impacts or system disruption in the case of an attack on security.
The more practical form of attack is a continuous dynamic attack on the state estimation
process, which is built on top of static attacks. Since measurements are sent at very short
intervals, calculating the Jacobian matrix, even with full network knowledge, would also
be computationally expensive. In terms of the proposed GAN, the initial training phase
can be a bit resource-intensive, but that would no longer be required at the time of an
actual attack. The GAN was trained in a reinforcement learning architecture with the
main objective of maximizing frequency deviation whilst minimizing detection by the bad
data detection algorithm of the state estimation process. Frequency deviation is a critical
metric for power system stability, and a shift beyond the threshold indicates an action
on the control center, which includes generator dispatch, load shedding, etc, to restore
the system to a reliable frequency. This enhancement, built on the foundational findings
of the static attack, reflects a critical necessity to address advanced cyber threats that
could manipulate the real-time behaviour of the system.

The next sections describe the architectural setup of the GAN attack model and the
results obtained on selected IEEE test cases compared to those of the stealthy attacks in
the previous chapter. The test cases were selected considering their moderate size and
frequent use in stability studies. Consequently, they are a practical basis for assessing
the attack’s influence.
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4.2 Attack Model

The GAN architecture was designed with the generator and discriminator constructed
as deep neural networks. For the attack model with the GAN architecture, the IEEE 30,
14 and 57 bus systems were leveraged in the training phase. From the setup as described
in the previous section, the initial step included preprocessing of the measurement vec-
tor. This was obtained from simulations with Pandapower whilst leveraging the stealthy
attack model.

Exploring the preprocessing phase further, at each epoch, one of the networks is
randomly selected. This followed an augmentation data by randomly perturbing the
loads and generators. With this application, for every epoch, even with the same network
selected, we have a unique set of network data which better allows the generalization of
the model and avoids overfitting. The power flow analysis was run from this stage, and
the measurements were extracted, which included the voltage magnitudes and active and
reactive power injections. These were then fed to the state estimation process, and the
output was leveraged in the training process.

The training process involved leveraging the state estimation results to produce re-
alistic attack vectors. This was obtained by customizing the optimization function with
a specialized reward function that penalized bad measurements whilst maximizing the
frequency deviation. In order to feasibly train the models on a local PC with minimal
resources, the number of epochs was set at 500, along with a batch size of 5.

After the training process, the GAN is deployed as a model to inject continuous attack
vectors upon every steady-state time instant measurement. This is given as

z′t = zt +G(y, θ) (4.1)

z′t represents a fake measurement from the generator for a single time instant. G(y, θ)
is the generator function which outputs the attack vector, which, if added to real mea-
surements at a certain time instant, leads to obtaining the attacked measurements. y
represents network parameters embedded with measurement vector z. Note that θ rep-
resents the model parameters, i.e the weights and biases learned from the training phase.
The testing was done on the IEEE 24 and IEEE 39 cases.

In terms of applying it to our specific setup, we recall the power system state estima-
tion as described in chapter 2 and consider a power system with n state variables and m
measurements. The standard nonlinear measurement model is given by:

z = h(x) + w, (4.2)

where z ∈ Rm is the measurement vector, x ∈ Rn is the state vector, h(x) is a nonlinear
measurement function (e.g., power flow equations), and w is the measurement error,
w ∼ N (0, R).

An attacker introduces a perturbation vector a ∈ Rm to the original measurements:

za = z + a. (4.3)

If a is constructed as a = Hc for some c ∈ Rn, then the modified measurements satisfy:

za = H(x+ c) + w. (4.4)

36



Such an attack is termed stealthy because it aligns with the column space of H, making
it difficult to detect using residual-based bad data detection (BDD) schemes.

Delving deeper into the formulation to remove the dependency on the Jacobian matrix,
we reintroduce the GAN framework that learns to generate stealthy measurement vectors
directly from network features as follows.

It consists of two neural networks:

• Generator Gθ(y): Takes a feature vector y ∈ Rd representing the network con-
figuration which is the bus parameters embedded with a valid measurement z and
outputs an attack measurement vector a ∈ Rm.

• Discriminator Dϕ(z
′): Outputs a probability that a given attacked measurement

vector obtained as a summation of the original measurements and the attack vector
generated a is real (i.e., not generated) or from the GAN.

Delving into the specialized custom objective function for the GAN, recall that the
standard GAN objective as explained in chapter 2 is defined as:

min
G

max
D

Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log (1−D(G(z)))] (4.5)

From this, we define a new loss function for the Generator as

LG = Ez∼pz(z) [log (1−D(G(z)))] + Lcustom (4.6)

where Lcustom is defined as

Lcustom = Ez∼pz(z) [α (∆f(G(z)))] (4.7)

α here is leveraged as a control variable which allowed us to train separate models for
different objectives i.e. a model that seeks to increase frequency deviation with a latter
to decrease it. This is summarized as

α =

{
1, if maximizing ∆f

−1, if minimizing ∆f
(4.8)

The purpose was to provide a mechanism to train multiple different models with
varying objectives. These could be maximizing voltage deviation or targeting specific
vulnerable buses. With multiple models, a more adaptive attack mechanism could be
crafted further enhancing the capabilities of an adversary.

4.2.1 Transfer Learning and Input Design

To promote generalization across networks, the generator is trained on multiple IEEE
test cases with a unified input dimension, set at 57 in our case study. Therefore, for a
network with n < 57 buses, the input vector is zero-padded:

y = [y1, y2, . . . , yn, 0, . . . , 0] ∈ R57. (4.9)

The generator outputs a measurement vector for each bus, consisting of:
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• Voltage magnitude Vi

• Active power injection Pi

• Reactive power injection Qi

Thus, for a system with n buses, the output dimension is:

ẑa ∈ R3n. (4.10)

The discriminator is trained on these generated measurements to detect fakes and
thereby guide the generator to improve its stealthiness.

The proposed GAN-based approach enables the construction of stealthy, transfer-
able FDI attacks without requiring access to the system Jacobian matrix. By learning
from data across multiple networks, the generator captures generalized attack strategies
applicable even to unseen systems.

4.3 Experimental Setup

In this section, we describe the experimental setup of the GAN-based FDI attacks.
Building upon the stealthy attack design, we leverage Pandapower with the standard
IEEE test cases. The state estimation and bad data detection blocks are the same and
were used exactly in this setup. The GAN implemented with the Pytorch library was
then introduced to the setup, extending the stealthy attack model design and leveraging
the measurements from the state estimation and power flow analysis. A unique approach
was intended with the GAN in that the training was done on three IEEE test cases with
data augmentation through modification of the network load and generation to produce
more datasets. The objective was to obtain some kind of transfer learning in which case
the GAN model learns a general attack strategy from known networks but is able to
apply it to unknown networks and hence not require the H matrix to successfully craft
an attack as in the stealthy attack model.

As for the GAN architecture, the Generator and Discriminator were designed as two
neural networks, each with five layers. The initial input layer of the generator with Di-
mension D was set at 57 as previously mentioned. This number represented the maximum
number of buses we would consider in this experiment. For each network, the number
of buses is fed to the input layer, and the remaining values are padded with zeros. So
in the case of training with the IEEE 30 bus system, the first 30 values are set whilst
the remaining are padded with zeros. The hidden layers refined learnt representations,
each with a non-linear activation function, and finally, the output layer was 3 times the
number of buses. The reason for this was that for each bus in a network, three mea-
surements were considered, which were voltage magnitudes, active power injections, and
reactive power injections. The discriminator, on the other hand, had an input layer with
the same dimension as the output of the generator, which generated fake measurements.
The hidden layers learned the representations, whilst the final output layer was a binary
0 or 1 indicating if the passed input was a valid measurement. In each of the layers,
Rectified Linear Unit (ReLU) activation was implemented, enhancing convergence.
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Figure 4.1: Flowchart of the GAN Attack Training Process
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Chapter 5

Discussion

5.1 Introduction

In this chapter, we delve deep into the two main approaches of the study and analyze
the findings. As discussed in the previous chapters, the first method involved the static
attack leveraging the Jacobian matrix obtained from the state estimation process. This
is then followed by the GAN-based dynamic attacks.

5.2 Static H matrix Attack

The static attack with the Jacobian matrix served as the baseline experiment. As
discussed in chapter 3, the simulations were run on selected five standard IEEE test cases
and the results of these attacks were analyzed. The ability to bypass the traditional
detection methods employed by the WLS state estimation process was examined and the
effects of the distortion of measurements on the state variables.

The effect on the attacks was observed with minor changes in the state variables.
The major limitation of the static attack is its impact on the overall power system.

Given the small residual modifications that could be allowed, a significant modification on
the output of the state variables whilst evading the bad data detection process was almost
impossible to achieve. Limitations were also due to the Pandapower library in terms of
determining which of the actual measurements were flagged as malicious data. The output
of the detection algorithm only mentioned if there were any malicious measurements and
the number of malicious measurements. Being able to have had access to the exact
measurement could have helped in better analyzing and understanding the properties of
the rejected which can be leveraged to optimize the attack strategy.

5.3 Dynamic Attack

Given the limitations of the static attack, the more extensive dynamic attack was
studied as discussed in chapter 4, where the attacks based on GANs were implemented.

Firstly we analyze the effect of an attack on the IEEE 24-bus system with a model that
had its objective function modified to raise the frequency of the system obtained from
the state variables. This 24 bus-system was not included in the training process and yet
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(a) IEEE 24-bus system

Figure 5.1: Analysis of Frequency Deviation with a GAN attack model trained to increase
Deviation on IEEE 24-bus system

still as shown in Figure 5.1, we could observe a steady increase in system frequency over
the course of the simulation. A shift of about 0.002Hz was obtained in about 50 steps
of continuous attack on the state variables. The margin albeit small but with a longer
duration of attack clearly indicates a potential to disrupt the grid network. By standards,
a shift of about only 0.02Hz in a power grid requires a dispatch action to maintain the
frequency and keep the power grid reliable which could be a generator dispatch or load
shedding. Given that measurements are sent from PMU devices at millisecond intervals
for WAMS or less than 10-second intervals in terms of SCADA systems, the system can
definitely be affected within a short period of time within minutes if no further security
constraints are embedded in the state estimation process at the control center. This is
because at each of the time steps, the GAN model only slightly tweaks the measurement
data and hence not exceeding the tolerated residuals of the state estimation. These
modifications though minute subtly succeeds over time in forcing the control center to
an action intended by the adversary due to the fact that the GAN was trained with an
objective.

As for figure 5.2, a second GAN model which was trained by customizing its objective
function to decrease the grid frequency was leveraged to perform the attacks on the
measurement variables on the IEEE 39 bus-system. Again, this was a test network not
included in the training phase and it could be observed that in about 250 timesteps, there
was an overall frequency deviation of about 0.005Hz following a nearly linearly declining
trend.

From the observed results it can be inferred that there is potential for GAN-based
FDI attacks to cause huge disruptions in the power system. It can be observed that
the trained GAN could mimic the statistical properties of valid measurement data and
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(a) IEEE 39-bus system

Figure 5.2: Analysis of Frequency Deviation with a GAN attack model trained to decrease
Deviation on IEEE 39-bus system

dynamically adapt them whilst achieving a predefined objective. One main aspect of the
effect as discussed in the literature review is the economic and operational consequences.
A successful frequency shift causing a generator dispatch could have a huge impact on
the market operation as demonstrated in relevant research[30]. This can affect the whole
pricing structure with heavy consequences for relevant stakeholders leading to huge losses.
In comparison to traditional FDI attacks, which leverage the Jacobian matrix [5], the
GAN model could prove to be a more feasible attack in a black-box scenario i.e little
knowledge of the underlying attacked system. This is as a result of the GAN learning
the distribution of relevant measurement data from historical real-time samples and can
formulate attacks that could dynamically adapt to varying conditions of the system state.
This makes it a more feasible form of approach. Also, attacks formulated with the
Jacobian matrix are static and can be detected when the system conditions change as they
are based on fixed parameters. The GAN-based approach produces attacks evolving over
time imitating the real measurement data distribution hence bypassing the typical bad
data detection algorithms and possibly slightly more sophisticated detection techniques.

The main challenge in the implementation of the GAN-based attack was in computa-
tional resources and the availability of high-quality data. Even with the data augmenta-
tion applied as described in the attack model of the GAN implementation, it wasn’t easy
to obtain enough data to be able to efficiently train the Generator and Discriminator.
This led to training on fewer epochs along with a small batch size that affected the overall
performance of the model. Another challenge was in the output of the state estimation
results. Given the nature of the dynamic attacks, output state variables from the state
estimation process were continuously leveraged as measurement data for the subsequent
timestep. In the experiments, only four state variables namely the voltage magnitudes,
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phase angles, active power injections and reactive power injections were available from
the state estimation output. This limited running experiments on slightly larger networks
such as the IEEE 300 bus system as it was difficult to have a more accurate output of
the state estimation process with more redundant measurements.

5.4 Future Work and Research

From the case studies demonstrated it could be observed that the GAN attack models
can prove to be a feasible model to craft successful attacks on the state estimation leading
to grid instability. Nonetheless, there are gaps still required to be examined to further
solidify the hypothesis. In the experimental setup, there are only a few standard IEEE
test networks available and the model would have to be tested across a wide variety of
different to be able to gauge the model’s overall performance. Hence more networks would
be required to further enhance the GAN generalizability in generating measurements for
networks with varying parameters and conditions. In short, there is a need to have a
larger dataset of real power grid networks for both training and testing to validate the
methodology. Another issue was with the computational resources. All experiments were
done on a local PC which had a limited capacity of Random Access Memory. For this
reason, it was not feasible to train the model with a larger batch size and a huge number
of epochs. Dedicated high computing resources can be leveraged to train a more powerful
and efficient model. Furthermore, in terms of the objectives, only frequency deviation
was considered. However, there are various other metrics to consider such as overall
voltage deviation, line overloading etc. With multiple models trained for each of these
objectives, an adaptive strategy could be implemented with a specified trained model
selected at each timestep for a larger objective such as cascading failures. This can be
research built on top of the experiments and methodology examined in this thesis.

With all these, however, is our goal to cause harm and create disruptions in the power
grid infrastructure? Certainly not. Our goal in this thesis was to assess the vulnerability
of the traditional defence mechanism of the power grid with respect to innovative mod-
ern tools currently available and fix the loopholes prior to being exploited by a malicious
adversary. The end goal is then to build modern adaptive defence mechanisms to detect
and mitigate such complexly crafted attacks. In building such modern defence mecha-
nisms, we anticipate guaranteeing the reliability and efficiency of the smart grid enabling
technological advancement with economic prosperity.
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Chapter 6

Conclusion

This study involved assessing the vulnerability of traditional state estimation in power
systems to False Data Injection Attacks. We explored attacks formed on the basis of
stealthy models along with a novel approach with deep learning methods. The assess-
ability is done to explore the vulnerabilities and find ways to mitigate them to avoid them
being exploited by adversaries with malicious intentions.

In the first part of the thesis, an attack model based on network topology was explored.
It was noticed that this is the most effective form of attack having a considerable effect on
the state estimation outcome. Due to the nature of the attack model, full knowledge of
network parameters is assumed, which makes it a less practical form of attack. The second
part involved an attack model built on top of deep learning frameworks. Compared to
the previous method, these had a less significant impact on a single static attack on the
state estimation process. However, for a continuous form of attack, these deep learning
models after training with defined objectives were able to achieve considerable impact
over a period of time on the outcome of the state estimation. Also, it is worth knowing
that during the attack phase, full knowledge of the system parameters is not required,
which makes a practical attack model in real-world scenarios.

However, it is important to note that this new method was tested on only a few selected
datasets available as standard networks. Initial results from the tested networks indicated
the ability of such novel methods to have an impact on the state estimation. However,
more experiments will be required to further validate the approach. There were also some
limitations regarding the library used for the state estimation process. Reimplementing
the experiments with more advanced libraries may provide a more comprehensive analysis
of the impact of deep learning methods on state estimation.

Furthermore, the goal of this research was directed towards subsequently improving
the operational reliability of modern power systems. The preliminary findings from the
experiments highlight critical vulnerabilities in the state estimation framework, under-
scoring the need for the development of advanced countermeasures. Consequently, the
next phase of this work should involve the formulation of advanced defensive strategies
or learning-based models that can proactively detect and mitigate such threats. Evalu-
ating these models against a variety of adversarial scenarios would further ensure their
robustness and contribute to building more secure and reliable power systems.
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