
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Development of a low-power embedded
solution for the real-time detection of

structural cracks through acoustic
emission

Supervisors

Prof. Stefano DI CARLO

Eng. Alessio CARPEGNA

Eng. Jonathan MELCHIORRE

Prof. Amedeo MANUELLO BERTETTO

Prof. Giuseppe MARANO

Candidate

Bálint BUJTOR

Graduation session of April 2025

Abstract

This thesis discusses the development of a low-power embedded system capable
of performing real-time structural crack detection with acoustic emissions. Firstly,
a panoramic analysis of structural health monitoring and acoustic emissions is
given, highlighting the most important notions to understand the field. Alongside
this study, the crucial and necessary civil engineering, and electronic concepts and
components employed in this work are introduced. Building on this foundation
the thesis embellishes the most transformative and decisive proceedings in the
structural health monitoring field to understand the current state of the art, the
most interesting areas of research, and future directions. Thereafter, a detailed
description of the embedded solution’s evolution is given, showcasing the hardware
development’s caveats, and the solutions for sampling the acoustic emission signal.
During this phase, an analog amplifier circuit is designed to condition the raw
signal for easier processing by the selected embedded microcontroller. Afterward, it
details the firmware development that is capable of capturing the sensors’ acoustic
emissions and detecting the structural cracks. The constructed firmware transforms
the analog signal into the digital domain, detects structural cracks, and transmits
the obtained data through a serial connection to a Python client. Then, the Python
script for receiving the information from the embedded platform and visualizing
the data is introduced and examined. After the detailed presentation of the
methodology, the proof of concepts and the results obtained with the system are
presented. The developed embedded solution detects structural cracks generated
on a marble block with the industry-standard pencil lead break test. It successfully
amplifies, processes, transmits, and visualizes four concurrent acoustic emission
signals from 4 sensors in real-time. A performance analysis is given with overall
system accuracy and potential real-life applications. Finally, a conclusion is drawn
and future development ideas are debated.

i

Acknowledgements

Ezt a szakdolgozatot a családomnak és a barátnőmnek szeretném ajánlani, különösen
a nagyapáimnak, akik már nem lehetnek itt velem. Szeretném megköszönni a fárad-
hatatlan támogatásotokat, szereteteteket és útmutatásotokat. Köszönöm, hogy
mindig számíthatok rátok és hogy mindig fordulhatok hozzátok tanácsért, akármibe
is szeretnék kezdeni. Anya, szeretnék megköszönni mindent, amit értem tettél, és
az áldozatokat, amiket hoztál, hogy most itt lehessek.

Chciałbym szczególnie podziękować mojej dziewczynie, za to, że była przy mnie
przez te dwa lata, wspierała mnie, pomagała mi i znosiła moje niedogodności.
Dziękuję za cierpliwość i czekam na nasz kolejny rozdział. Kocham cię, nie dałbym
rady bez ciebie.

I sincerely appreciate the invaluable guidance and support of my supervisors and
professors throughout my thesis. Their expertise and encouragement have been
instrumental in shaping this work, and I am truly grateful for their contributions.

Infine, desidero esprimere la mia sincera gratitudine agli assistenti di laboratorio
e ai responsabili del dipartimento LED per il loro prezioso supporto, la disponibilità
e l’aiuto durante il mio lavoro.

"Talent is a divine blessing, but without incredible will and humility, it is worth
nothing."

Steven Gerrard

ii

Table of Contents

List of Tables vi

List of Figures vii

Acronyms x

1 Introduction 1

2 Background 3
2.1 Structural health monitoring . 3
2.2 Structural cracks . 5
2.3 Acoustic emission . 5
2.4 Methods for structural crack detection 6
2.5 Crack localization . 6
2.6 Piezoelectricity . 7
2.7 Signal amplifiers . 8

2.7.1 Inverting operational amplifier 10
2.7.2 Non-inverting operational amplifier 10
2.7.3 Summing amplifier . 11
2.7.4 Differential amplifier . 12
2.7.5 Instrumentation amplifier 12
2.7.6 Charge amplifier . 14
2.7.7 Low-pass filter . 14

2.8 Machine learning . 15
2.8.1 Principal Component Analysis 16
2.8.2 Support Vector Machines . 16
2.8.3 Random Forest . 16
2.8.4 Decision Tree . 16

2.9 Neural Networks . 17
2.9.1 U-Net . 17

iv

3 Related Works 18
3.1 Classical methods . 18
3.2 ML-based methods . 20

4 Methodology 23
4.1 Sensor characterization . 23
4.2 Hardware development . 26

4.2.1 Charge amplifier . 27
4.2.2 Dual-supply amplifier circuit 29
4.2.3 Single-supply amplifier circuit 33

4.3 Software development . 36
4.3.1 Single ADC channel with polling 37
4.3.2 Single ADC channel with interrupt 42
4.3.3 Multiple ADC channels with HW trigger, interrupt, and DMA 48

5 Results 57
5.1 PLB tests on marble . 59
5.2 PLB tests on concrete . 64
5.3 Analysis of the maximum performance 67

6 Conclusion 69

A Experimental signal amplifier circuits 71
A.1 Circuit 1 . 71
A.2 Circuit 2 . 72
A.3 Circuit 3 . 76

B Python scripts 80
B.1 Python script for single ADC channel and polling 80
B.2 Python script for single ADC channel with interrupts 81
B.3 Python script for multiple ADC channels 84

Bibliography 94

v

List of Tables

2.1 Crack classification based on the crack’s width, according to [13] . . 5
2.2 Amplifier circuit types . 9

vi

List of Figures

2.1 Material deformation due to the piezoelectric effect. Source: [24] . . 8
2.2 Inverting operational amplifier. Source: [26] 11
2.3 Non-inverting operational amplifier. Source: [27] 11
2.4 Summing operational amplifier. Source: [28] 12
2.5 Differential operational amplifier. Source: [29] 13
2.6 Instrumentation amplifier. Source: [30] 13
2.7 Charge amplifier architecture. Source [31] 14
2.8 Low-pass filter with unit-gain operational amplifier. Source [32] . . 15

4.1 Piezoelectric equivalent circuit model 24
4.2 The AE sensor’s frequency response 25
4.3 The AE sensor’s capacitance at 15 kHz 25
4.4 The AE sensor’s typical response to a PLB test 26
4.5 Charge amplifier circuit design . 30
4.6 Charge amplifier circuit with the sensor as input and a probe con-

nected to its output . 30
4.7 The charge amplifier circuit’s output 31
4.8 Dual supply sensor amplifier circuit 32
4.9 The assembled dual-supply circuit with protection diodes 32
4.10 The dual-supply circuit’s output to a typical PLB test as input . . . 33
4.11 The dual-supply circuit’s response to an overvoltage signal 33
4.12 Single supply amplifier circuit . 34
4.13 The assembled single-supply amplifier circuit 35
4.14 The single supply circuit’s response to a typical input signal 36
4.15 The single supply circuit’s response to a signal with overvoltage . . 36
4.16 Initial flowchart detailing the sampling algorithm 38
4.17 Transmitted data frame format . 47
4.18 PLB test result using one piezoelectric sensor 48
4.19 The final firmware’s flowchart . 49
4.20 Multi channel UART data frame 54
4.21 Onset time determination in Python 55

vii

4.22 Results of 4 different ADC channels using the same sensor 56

5.1 Test setup on marble block . 58
5.2 Test setup on concrete block . 59
5.3 Received data when the power supply’s noise affected the original

AE signal . 60
5.4 Crack on marble, close to sensor 1 60
5.5 Crack on marble, close to sensor 2 61
5.6 Crack on marble, close to sensor 3 62
5.7 Crack on marble, in the middle of the block 62
5.8 Channels shown separately for the PLB test in the middle - 1 . . . 63
5.9 Channels shown separately for the PLB test in the middle - 2 . . . 63
5.10 Crack on concrete, close to sensor 1 65
5.11 Crack on concrete, close to sensor 2 65
5.12 Crack on concrete, between sensor 3 and 4 66
5.13 Crack on concrete, in the middle of the concrete block 67

A.1 Experimental circuit design 1 . 72
A.2 Experimental circuit number 2 . 73
A.3 LPF behavior at 5 kHz . 74
A.4 LPF behavior at 50 kHz . 74
A.5 Assembled circuit with only the LPF 75
A.6 Circuit behavior at 3 kHz . 75
A.7 Circuit behavior at 33 kHz . 76
A.8 The circuit’s response to the sensor’s signal 76
A.9 Experimental circuit design 3 . 77
A.10 the INA’s output when connected the sensor is connected to its inputs 78
A.11 INA circuit response to 1 kHz sine wave 78
A.12 Assembled circuit with INA and probe connected to its output . . . 79
A.13 Experimental circuit 3’s (including INA) response to the signal as

input . 79

viii

Acronyms

AC
alternating current

ADC
analog-to-digital converter

AE
Acoustic Emission

AIC
Akaike Information Criterion

AI
artificial intelligence

CNN
convolutional neural network

CMRR
common-mode rejection ratio

CWT
Continuous Wavelet Transform

DC
direct current

DL
deep learning

x

DMA
Direct Memory Access

ESD
electrostatic discharge

FRA
Frequency Response Analyzer

FW
firmware

GND
ground (reference point in electronic circuits - usually 0)

HPF
high-pass filter

HW
hardware

I2C
Inter Integrated Circuit Protocol

IC
integrated circuit

IDE
Integrated Development Environment

INA
Instrumentation amplifier

LPF
low-pass filter

ML
machine learning

xi

MSPS
Mega Samples Per Second

NN
neural network

NDT
non-destructive testing

PLB
Pencil Lead Break

SAR
successive-approximation

SHM
structural health monitoring

SNR
Signal-Noise Ratio

SPI
Serial Peripheral Interface

SW
software

TOA
Time Of Arrival

UART
Universal Asynchronous Receiver-Transmitter

xii

Chapter 1

Introduction

Ensuring public safety, life, and well-being is a cornerstone for communities world-
wide. Hence, the requirement to spend more effort and money on preventing
accidents and decreasing risks has become ever so important. In civil engineering,
deteriorating structures pose a significant risk to human life, necessitating proactive
measures to avoid accidents. Structural Health Monitoring (SHM) is crucial in
safeguarding infrastructure such as buildings, bridges, pipelines, and aircraft to
protect human life by detecting potential failures, in advance. SHM also contributes
to preserving our cultural heritage by identifying fundamental flaws in historical
landmarks.

Traditionally, as electronic, machine learning, and embedded solutions were not
as advanced, engineers relied on techniques such as visual inspections or ultrasonic
testing to assess the integrity of civil installations. Even though these methods are
effective, they are time-consuming, expensive, and reactive—identifying damage
only after it has occurred. As safety regulations become increasingly stringent, the
need to detect microcracks, fatigue, corrosion, and other structural failures has
grown.

Non-destructive testing (NDT) methods have revolutionized the field of SHM
by enabling damage assessment without compromising structural integrity, thus
decreasing costs and inspection time. Among these, acoustic emission (AE) stands
out as an effective real-time monitoring technique. AE utilizes acoustic signals to
monitor and detect structural flaws generated by physical deformation. Unlike
traditional approaches, acoustic emission provides continuous, remote monitoring,
allowing engineers to inspect edifices and other systems without harming the
structure and respond immediately to emerging defects. This real-time capability
enhances safety while reducing inspection costs by minimizing the need for frequent
on-site evaluations.

This thesis develops an embedded solution for real-time structural crack detection
using acoustic emission signals. Using the provided acoustic emission sensors, a

1

Introduction

dedicated electronic circuit is designed to improve signal interpretability. An
embedded microcontroller then translates the analog data to the digital domain to
detect structural cracks in civil engineering structures. The proposed embedded
platform offers a cost-effective alternative to the existing commercial products
available on the market. The solution can also serve as a platform to generate
acoustic emission data for future research applications.

The thesis begins with an overview of the necessary background knowledge
in Chapter 2, covering fundamental concepts of SHM, acoustic emission, non-
destructive testing methods, and electronics. Chapter 3 provides a comprehensive
review of the state-of-the-art techniques in SHM, comparing different methodologies,
technologies, and recent advancements in the field. Chapter 4 elaborates on the
design and implementation of the embedded solution, detailing both hardware and
software components, including sensor integration, signal processing techniques, and
data analysis. Chapter 5 presents the experimental setup, data acquisition process,
and analysis of findings, demonstrating the system’s effectiveness in detecting
structural cracks. Finally, Chapter 6 summarizes the key outcomes, discusses
limitations, and suggests potential future improvements and research directions.

2

Chapter 2

Background

This chapter briefly introduces and describes the background information necessary
to understand the topics mentioned in this thesis. It covers structural health
monitoring, structural cracks, and acoustic emissions. From the electrical engi-
neering side, it includes an introduction to piezoelectricity and signal amplifying.
Finally, it gives an overview of the commonly used methods to detect and classify
structural cracks. It also provides a solid base for understanding machine learning
methods and the chosen models. The goal of this chapter, however, is not to discuss
state-of-the-art techniques and technologies as a collection of those methods is
given in 3.

2.1 Structural health monitoring
Structural health monitoring (SHM) is an approach for periodically monitoring
physical structures, such as bridges, buildings, or airplanes [1] and reporting changes
in critical parameters reliably to identify damages [2, 3, 4]. Damage can be defined
as changes to the material and/or the system’s geometry, negatively affecting the
system’s performance [5]. Doing so makes it possible to ensure that the structure
maintains its functionality and prevents fatal events. Long-term monitoring is
needed because systems degrade over time and use. Short-term monitoring is
employed for rapid status screening when catastrophic events such as earthquakes,
typhoons, or other damages happen [6]. SHM is an approach that does not aim to
replace traditional health monitoring methods like inspections but to complement
them [4].

To perform SHM, sensors are placed in the critical positions of the system
to be monitored to report the selected metrics and variables. The SHM process
consists of choosing the variables to be monitored and their locations, specifying
the types and number of sensors placed on the system and designing the data

3

Background

acquisition pipeline. This pipeline includes signal acquisition, signal conditioning,
and preprocessing on the edge device on the system (or close to it). After this,
the edge device transmits the data to the cloud or central device where the data
interpretation happens. The data can be interpreted with classical or statistical
models, machine learning, or deep learning methods.

One of the most common methods to extract information about the structure’s
health is based on correlating the monitored attributes’ vibration amplitude and
frequency [7]. Another popular methodology is to monitor waves propagated in
the structure [3], [8].

During the evolution of SHM, several key observations have been made. Worden
et al. [9] summarized these takeaways into axioms presented in 2007. Some of the
most interesting are:

• Axiom II: the assessment of damage requires a comparison between two system
states;

• Axiom III: Identifying the existence and location of damage can be done in an
unsupervised learning mode, but identifying the type of damage present and
the damage severity can generally only be done in a supervised learning mode;

• Axiom IVa: Sensors cannot measure damage. Feature extraction through
signal processing and statistical classification is necessary to convert sensor
data into damage information;

• Axiom IVb: Without intelligent feature extraction, the more sensitive a
measurement is to damage, the more sensitive it is to changing operational
and environmental conditions;

• Axiom VI: There is a trade-off between the sensitivity to damage of an
algorithm and its noise rejection capability.

These axioms outline the properties such a system needs to include and key
SHM design guidelines. Axiom II supports the notion that continuous monitoring
is necessary, while Axiom IV states the methods to identify and classify damages.

In the context of monitoring buildings, the goal of SHM can be:
1. to detect the damage

2. to locate the damage

3. to categorize the damage’s type

4. to evaluate the severity of the damage
These goals can provide vital information for engineers to decide the correct

course of action, maintain the structure’s health, prevent disastrous events, and
protect human life.

4

Background

2.2 Structural cracks
One of the common reasons for structural crack formation is fatigue. Fatigue in
material science is defined as the formation and propagation of progressive damage
in the material over time due to cyclical loading and use [10]. Fatiguing has different
stages: crack initiation, growth, and propagation, and once the material reaches its
fatigue limit, an irreversible crack forms [11, 12]. Other causes of crack formation
can be the application of loads whether they are applied cyclically or not.

Cracks in materials can be classified according to different criteria. Regarding
cracks in concrete, Chitte et al. [13] state that thin, medium, or wide cracks can
be distinguished according to their sizes.

Classification Crack width
Thin <1mm

Medium 1mm - 2mm
Wide >2mm

Table 2.1: Crack classification based on the crack’s width, according to [13]

Another option to categorize cracks in concrete is based on their effect on the
building [14]. Structural cracks stem from incorrect design, flawed construction,
or overloading. They may threaten the building’s safety. Non-structural cracks
mostly appear due to internally induced stresses in the materials, and even though
they might look unappealing, they do not endanger the safety of the construction.
Causes can be various, for instance, drying shrinkage or plastic shrinkage [15].
Structural cracks are more dangerous for the structure’s environment and the
people around and inside it, so this type of crack requires more care. For this
reason, the focus will be directed towards this type of failure during this work.

2.3 Acoustic emission
Acoustic emission (AE) is a phenomenon where energy gets released from a local
source inside a solid material, producing transient elastic waves [16]. The phe-
nomenon happens when an irreversible change occurs on the microscopic scale, for
instance, a crack formation or plastic deformation due to use, aging, or external
stress. Acoustic emission wavelengths are usually in the range of 1kHz to 1MHz
[17].

Acoustic emissions are carried through elastic waves or stress waves. Elastic
waves are mechanical waves carried in elastic or viscoelastic materials. Some
highly elastic or viscoelastic materials are tendons, wood, rubber, and polymers.
Ultimately, every material is somewhat elastic and, thus, can be a carrier of elastic

5

Background

waves. Seismic waves are a special type of elastic waves that occur in the Earth
due to an earthquake.

Acoustic emissions provide a non-destructive way to monitor the formation and
status of structural cracks from the earliest stages, which gives civil and mechanical
engineers a tool to monitor structures’ health (more details in section 2.1). Using
acoustic emissions, it is possible to determine the location of the source from one
receiver out of many or from triangulation and cross reference, characterize the
source mechanism [18], evaluate the carrying materials and structures, and monitor
the operation of the structure.

2.4 Methods for structural crack detection
There are several ways to detect and classify structural cracks, but we can point
out two main groups. Statistical methods or machine learning methods are based
on selected attributes of the data that are descriptive of a crack and can be used
to train a statistical model to detect when such a crack happens.

The other leading group does not use statistics but achieves the goal using
formulas and equations that the industry has developed over the years [19]. This
section aims to give a general overview of the possibilities one can choose from when
designing an inference algorithm, while Chapter 3 highlights the latest proceedings
and the state-of-the-art detection algorithms.

2.5 Crack localization
Structural crack localization using acoustic emission (AE) signals involves detecting
and pinpointing the origin of stress waves emitted by growing cracks within materials.
A prevalent algorithm employed for this purpose is the time difference (TD) method,
which calculates the differences in arrival times of AE signals at multiple sensors to
triangulate the crack’s location [20]. According to the algorithm presented in the
paper, the crack’s location can be determined using two acoustic emission sensors.
However, the paper only attempts to locate the crack along a straight line, with
the propagation speed of the elastic wave being known. If one wants to locate
the crack in three dimensions not knowing the speed, 4 sensors are needed. The
algorithm used to determine the crack’s location is as follows as per [21]. The time
for a stress wave to travel from the source located at x0, y0, z0 to the piezoelectric
(PE) sensor located at xA, yA, zA, with a given speed c can be calculated as 2.1.

TA =

ñ
(x0 − xA)2 + (y0 − yA)2 + (z0 − zA)2

c
(2.1)

6

Background

This equation however cannot be used to determine the crack’s location as the
absolute time TA is not known. For this reason, the time differences have to be
used at each sensor, denoted as ∆tA. Equation 2.1 can be rewritten by subtracting
∆tR - the arrival time of the crack to a reference sensor. Then the equation 2.2
gives the time difference between the arrival time to sensor A and sensor R.

∆tA = TA − TR =

ñ
(x0 − xA)2 + (y0 − yA)2 + (z0 − zA)2

c
− TR (2.2)

It can be seen that there are 4 unknowns in this equation, namely x0, y0, z0 and c,
confirming the need for 4 sensors.

Accurate determination of the onset time of these signals is crucial for precise
localization. However, challenges arise due to background noise and the need
for automated detection in continuous monitoring systems. Various techniques,
including dynamic thresholding and artificial intelligence-based approaches, have
been developed to enhance onset time detection and improve localization accuracy
[21].

Advancements in Bayesian methodologies also offer robust frameworks for lo-
calizing AE sources in complex structures, providing probabilistic mappings that
enhance the reliability of crack detection [22].

2.6 Piezoelectricity
The piezoelectric effect happens when a positive electric charge accumulates on one
side of a non-conducting crystal and negative on the other when the material is
subject to mechanical strain, such as compression or flexion. The phenomenon was
discovered by Pierre and Jacques-Jules Curie (husband of Marie Curie) in 1880
[23].

The piezoelectric effect stems from the rearrangement of charges within the
material. In a non-piezoelectric material, the overall charge within the material
cancels out even if the material is subject to mechanical strains. Meanwhile,
due to the unique crystal-like structure of piezoelectric materials, the overall
charge distribution becomes imbalanced, and the material will resemble a dipole.
Piezoelectric materials usually have a hexagonal or tetragonal crystal structure that
allows them to behave in the way mentioned above. When the material is deformed,
the relative position of the charges changes, tipping the balance of the net charge
distribution. Hence, the material will have a measurable charge. Similarly, when
the substance is subject to an electric charge, the conducting particles get pulled to
the opposite pole, deforming the material. The phenomenon can be seen in Figure
2.1.

7

Background

Figure 2.1: Material deformation due to the piezoelectric effect. Source: [24]

A unique property of piezoelectricity is that it is reversible, meaning that the
same material can generate charge when subjected to mechanical strain and charge
when electricity is channeled through it. Several materials, both natural and human-
made, possess piezoelectric effects, and they can be grouped into three categories:
naturally occurring crystal substrates (e.g., quartz, bones, topaz), ceramics with
perovskite structure (e.g., lead zirconate titanate, barium titanate) and polymers
[25].

This allows engineers to create a variety of devices based on the piezoelectric
effect. Piezoelectric sensors and actuators both utilize this phenomenon. The
most employed application in everyday life is the electric lighter, which employs
a quartz crystal as a spark source when a spring-loaded hammer hits it. Other
applications are piezoelectric sensors that measure acceleration, force, or vibration
in the material they are attached to. On the other hand, piezoelectric actuators
incorporate loudspeakers and piezoelectric motors.

2.7 Signal amplifiers
Signal amplifiers are analog electronic devices that multiply the input signal’s
magnitude by a configurable value called gain. They are one of the most commonly
used building blocks in analog circuits. Amplifiers most commonly have two inputs,
one output, and two additional inputs for the power supply.

Amplifiers can be controlled by different physical quantities, namely current
and voltage. The controlled output property can also be either current or voltage,
yielding four different types of amplification, detailed in Table 2.2. This table
contains the ideal values for the input and output impedances. In real life, achieving
them is impossible, however, one can construct equivalent or nearly equivalent
circuits to obtain a behavior close to the ideal one.

8

Background

Amplifier type Input Output Input
impedance

Output
impedance

Gain units

Current I I 0 0 Unitless
Transresistance I V 0 ∞ Ohm
Transconductance V I ∞ 0 Siemens
Voltage V V ∞ ∞ Unitless

Table 2.2: Amplifier circuit types

Amplifiers have several important properties to consider when designing such a
device. Some of the most important ones are listed below:

• Gain: the ratio between the magnitude of the output over the input signal

• Bandwidth: the usable frequency range

• Slew rate: the output’s maximum rate change

A negative feedback loop is one of the most common ways to configure a signal
amplifier. This technique increases the bandwidth, reduces the signal distortion,
and regulates the gain at the expense of slightly decreasing the maximum achievable
gain. Essentially, due to the negative feedback, any excess signal or unwanted noise
is fed back to the input with an opposite sign (unlike the input signal), eliminating
it from the outputted signal. The negative feedback also stabilizes the amplifier’s
operating point against minor disturbances in the power supply line.

Amplifiers must include an active device that performs the signal amplification.
Nowadays, this device is typically a transistor, a three-port electrical device, as
opposed to vacuum tubes used in the past. The transistor is either a bipolar
junction transistor (BJT) or a metal oxide semiconductor field-effect transistor
(MOSFET), depending on the design needs. Both options have their advantages
and downsides, but it is outside the scope of this thesis to discuss them.

Operational amplifiers typically have more than one transistor per circuit and
are widely used in analog electronics as gain blocks. These devices usually have a
very high loop gain and a differential output.

Differential amplifiers are usually constructed from several operational amplifiers,
providing a very high voltage gain on their output. As its name suggests, a
differential amplifier multiplies the voltage difference on its input ports by an
adjustable value. They are frequently used to drive an ADC’s input.

Amplifier circuits can be categorized based on their power supplies as well.
Single-supply and dual-supply amplifiers can be distinguished, both having pros

9

Background

and cons. A dual-supply amplifier requires two power supplies, +Vdd and −Vdd,
them being the positive and the negative supply voltage of the circuit.

The dual-voltage setup is desirable because it can conserve and amplify both the
positive and the negative portion of a zero-centered AC signal. Such a configuration
helps the designer because it can directly amplify the signal without shifting it
to keep both parts of the input signal before feeding it to the amplifier stage. A
downside of this setup is that the designer needs to provide both +Vdd and −Vdd

to the circuit, which is not trivial in some use cases.
On the other hand, single-supply amplifiers only need the positive supply voltage

(+Vdd) to operate. The other supply terminal is usually connected to the ground
(GND), allowing the designer to place the amplifier in circuits that cannot deliver
negative supply voltage. On the flip side, to preserve the negative portion of a
zero-centered AC signal, it needs to be adequately shifted by a value not to cut off
signal parts.

Amplifiers can be built in various configurations. Some of the most common
architectures will be detailed in the following paragraphs. Furthermore, other
arrangements relevant to this thesis’s scope will also be introduced.

2.7.1 Inverting operational amplifier
One of the most often used amplifier arrangements is the inverting operational
amplifier. An inverting amplifier circuit has two additional resistances to set the
closed-loop gain: one between the input and the inverting terminal of the amplifier
and the other between this terminal and the output terminal 2.2. The amplifier is
called inverting because it always produces the inverse amplification of the input
signal. The two resistances usually referred to as feedback resistance Rf and input
resistance Rin determine the amplification according to Formula 2.3. As there
are two tunable parameters, one can be chosen freely, and it is the designer’s
responsibility to select them properly. This configuration is ideal when the phase
of the signal is less important. Another application of this configuration is the
voltage follower when the two resistances are removed. The circuit acts as a signal
stabilizer and noise remover in this case.

Gain(Av) = −Vout

Vin

= − Rf

Rin

(2.3)

2.7.2 Non-inverting operational amplifier
The other basic architecture of operational amplifiers is the non-inverting one.
Unlike the previous example, this amplifier does not change the signal’s phase. An
essential difference to the inverting amplifier is that this construction can only

10

Background

Figure 2.2: Inverting operational amplifier. Source: [26]

have a gain greater than 1. This architecture directly connects the input to the
non-inverting input terminal. Two resistors are connected to the inverting terminal,
the feedback resistance Rf connecting it with the amplifier’s output and another
resistance connecting it with the ground. An inverting amplifier design can be
seen in Figure 2.3. The gain of the amplifier can be calculated with Equation 2.4.
Non-inverting amplifiers are practical when it is vital to conserve the phase of the
signal.

Gain(Av) = Vout

Vin

= 1 + Rf

R2
(2.4)

Figure 2.3: Non-inverting operational amplifier. Source: [27]

2.7.3 Summing amplifier
A summing amplifier is another popular structure used when multiple signals must
be summed together. In its essence, it is most similar to an inverting amplifier,
except that more input signals are fed to its inverting terminal through identical

11

Background

(or, in exceptional cases, not identical) input resistances Rf . The architecture can
be seen in 2.4, and the circuit’s gain is specified in Equation 2.5. In this design,
the output signal is proportional to the sum of the input signals. This circuit adds
and amplifies more than one signal in one stage. In case every input signal is fed
through identical input resistances, every signal gets amplified by the same value.
However, changing these resistances to achieve different amplification for different
signals before adding them together is possible.

Vout = − Rf

Rin

(V1 + V2 + V3) (2.5)

Figure 2.4: Summing operational amplifier. Source: [28]

2.7.4 Differential amplifier
Another structure to consider is the differential amplifier that produces an output
proportional to the input difference. It is basically a subtractor-amplifier circuit,
having four different resistances, denoted from 1-4, visible in 2.5. The output can
be computed using Equation 2.6.

Vout = −V1
R3

R1
+ V2

3
R4

R2 + R4

43
R1 + R3

R1

4
(2.6)

If resistances R1 = R2 and R3 = R4 Equation 2.6 becomes 2.7, revealing more
clearly that the output is proportional to the difference of the inputs.

Vout = R3

R1
(V2 − V1) (2.7)

2.7.5 Instrumentation amplifier
Instrumentation amplifiers (INAs) are special differential amplifiers with high
differential amplification and an outstanding common-mode rejection ratio (CMRR).
These devices offer high input impedance and low output impedance and are

12

Background

Figure 2.5: Differential operational amplifier. Source: [29]

commonly used in applications where small error margins are required. These
devices can generally be constructed by three discrete operational amplifiers or
bundled into one IC. In the former case, two amplifiers act as input buffer amplifiers,
whilst the last is a generic differential amplifier discussed in the previous point.
Moreover, the architecture usually involves an adjustable (discrete) resistance to
set the circuit’s gain that should be connected between two dedicated terminals.
A typical architecture can be seen in 2.6. In case every resistance is equal (R1 =
R2 = R3) in the circuit except for the gain resistance (Rgain), the amplification of
the circuit can be given with Equation 2.8.

Gain(Av) = Vout

V2 − V1
=
A

1 + 2R

Rgain

B
(2.8)

Figure 2.6: Instrumentation amplifier. Source: [30]

13

Background

2.7.6 Charge amplifier
The charge amplifier is probably the most essential architecture for the scope of
this thesis, as this is the topology responsible for processing the PE sensor’s signal
in the final circuit. A charge amplifier has an integrator design, having a capacitor
Cf in the feedback loop that produces a voltage proportional to the current on
its inverting terminal. It also encloses a resistor Rf in the feedback loop, parallel
with the capacitor intended to prevent the amplifier from saturation by discharging
it over time. Without it, the DC gain of the circuit would also be very high, so
even a tiny DC offset would appear highly amplified on the output. Therefore, it is
important to accurately select the feedback resistor value as it sets the circuit’s
lower frequency limit and the feedback capacitor according to Equation 2.9. On
top of these blocks, an input resistance is also planned to protect the operational
amplifier from overcurrent in case of an ESD strike. The overall architecture can
be seen in Figure 2.7.

fl = 1
2πCfRf

(2.9)

Figure 2.7: Charge amplifier architecture. Source [31]

2.7.7 Low-pass filter
The last circuit mentioned in this section is the low-pass filter with an operational
amplifier. Compared to a simple RC low-pass filter it includes a unit-gain opera-
tional amplifier. This extra component results in better noise rejection and stability
compared to an RC circuit without such an op-amp. The two parametrizable values
of the circuit are the capacitor’s value (C) and the resistor’s value (R). The cutoff
frequency of the amplifier can be computed using the same equation as the charge
amplifier (Equation 2.9). The architecture can be seen in Figure 2.8.

14

Background

Figure 2.8: Low-pass filter with unit-gain operational amplifier. Source [32]

2.8 Machine learning
Machine learning (ML) has emerged as one of the most transformative fields in
computer science, revolutionizing diverse industries and research domains. The
origins of machine learning can be traced back to the mid-20th century when
researchers began exploring the potential of computational systems to simulate
human intelligence. Alan Turing’s seminal work on the concept of a "learning
machine" laid the foundation for this field [33]. Early advancements included the
development of perceptrons by Rosenblatt in 1958, marking one of the first attempts
at creating an artificial neural network [34]. During the following decades, the field
experienced a series of peaks and valleys, with significant breakthroughs occurring
in the 1980s and 1990s, such as the backpropagation algorithm for training neural
networks [35].

Recent decades have witnessed unprecedented growth in machine learning
capabilities, driven by advancements in computational power, data availability, and
algorithmic innovation. Deep learning, a subset of machine learning characterized
by multi-layered neural networks, emerged as a dominant paradigm, achieving
state-of-the-art performance in image recognition, natural language processing, and
other domains. Milestones such as AlexNet’s success in the ImageNet competition
in 2012 [36] and the development of transformer architectures [37] have further
firmed ML’s role in tackling complex problems. Moreover, reinforcement learning
techniques have demonstrated remarkable capabilities, exemplified by systems like
AlphaGo [38] and advancements in robotics.

Machine learning can be categorized into supervised, semi-supervised, unsuper-
vised, and reinforcement learning. Supervised learning involves training models
on labeled data, making it particularly effective for classification and regression
tasks. On the other hand, unsupervised learning aims to find patterns or structures
in unlabeled data, with clustering and dimensionality reduction being common
applications. Semi-supervised learning connects these approaches by leveraging
labeled and unlabeled data. Finally, reinforcement learning enables agents to

15

Background

make sequential decisions by interacting with an environment to maximize rewards.
These areas, supported by continuous research and innovation, form the backbone
of modern machine learning.

Some of the most prominent ML algorithms relevant to this thesis are presented
in the following subsections.

2.8.1 Principal Component Analysis
Principal Component Analysis (PCA) is a widely used unsupervised learning
technique for dimensionality reduction, transforming high-dimensional data into
a lower-dimensional representation while keeping as much variance as possible
[39]. By identifying orthogonal components that capture the maximum variance in
the data, PCA enables improved learning and computational efficiency, making it
essential for preprocessing in fields such as computer vision and bioinformatics.

2.8.2 Support Vector Machines
Support Vector Machines (SVMs) are powerful supervised learning algorithms
that are particularly effective for classification and regression tasks [40]. SVMs
operate by finding an optimal hyperplane that maximally separates classes in a
high-dimensional feature space, often using kernel functions to handle non-linear
separations. Their versatility and effectiveness have made them a standard choice
for text classification and image recognition applications.

2.8.3 Random Forest
The Random Forest classifier is an ensemble learning method that combines multiple
decision trees to achieve higher predictive accuracy and robustness [41]. Aggregating
the outputs of individual trees mitigates overfitting and enhances generalization.
Random Forests have been successfully applied in domains ranging from healthcare
to finance for disease prediction and fraud detection tasks.

2.8.4 Decision Tree
Decision Tree classifiers are intuitive and interpretable models that recursively
partition data based on feature values [42]. Constructing a hierarchical tree
structure, they predict by traversing paths defined by simple decision rules. While
prone to overfitting in their basic form, they remain popular for their ease of
implementation and transparency in decision-making processes.

16

Background

2.9 Neural Networks
Building upon the foundational concepts of machine learning, neural networks
represent a class of models inspired by the interconnected structure of biological
neurons. These models have driven remarkable progress in processing complex
data and solving challenging tasks across domains such as computer vision, speech
recognition, and natural language processing.

Following the success of AlexNet in 2012, [36], another significant advance-
ment came with the development of GoogleNet and its inception architecture [43].
GoogleNet’s inception modules allowed the model to process features simultane-
ously at multiple scales, achieving high accuracy with fewer parameters than earlier
architectures. This innovation set a new standard for efficiency in neural network
design.

ResNet (Residual Network) marked another milestone, addressing the degrada-
tion problem encountered in deep networks [44]. By introducing skip connections,
ResNet enabled extremely deep architectures, allowing superior performance in
tasks such as image recognition and object detection. Its residual learning frame-
work has become a cornerstone in modern neural network design.

More recently, the transformer architecture revolutionized natural language
processing by introducing an attention mechanism that enables models to focus
on relevant parts of input sequences [37]. Unlike recurrent models, transformers
process sequences simultaneously, offering remarkable scalability and performance.
This architecture serves as the basis of state-of-the-art systems like Chat-GPT and
Claude.

2.9.1 U-Net
U-Net is a convolutional neural network architecture initially designed for biomedical
image segmentation but has since been widely adopted in various fields, including
structural health monitoring (SHM). The network features a U-shaped structure
with an encoder-decoder design that captures local and global features. The
encoder compresses the input data to extract high-level representations. At the
same time, the decoder reconstructs spatially precise outputs by combining these
representations with features from earlier layers through skip connections [45]. This
architecture makes U-Net well-suited for tasks requiring pixel-wise predictions, such
as damage localization and crack detection in SHM.

17

Chapter 3

Related Works

Structural Health Monitoring with passive sensory devices has established itself as
one of the more popular choices in the industry. This technology gained momentum
as a non-destructive method capable of detecting and localizing defects. This
property is beneficial when SHM has to be performed on historical buildings and
architectural heritage whose structures are fragile.

The goal of crack detection with acoustic emission is twofold. The first, more
trivial task is to determine the onset time of the acoustic emission and localize the
crack in space, while the second aims to classify the crack’s type. To determine the
exact location of the crack, the onset time of the crack must first be specified in
the data recorder by the acoustic emission sensor.

The onset time of a crack can be determined as the first time the crack arrives at
the piezoelectric sensor [46]. The precision of the onset time is crucial in building
a high-quality acoustic emission pipeline. Over the years, many algorithms have
localized, distinguished, and categorized structural cracks. These algorithms may
rely on different triangulation techniques. The most straightforward algorithms
are based on numerical techniques using optimization methods such as the Least
Squares Method (LSM) [47]. Carpinteri et al. [48] and Ohtsu et al. [49] both
employ a moment tensor analysis to determine the crack’s orientation, direction, and
modality. For Carpinteri et al.’s algorithm, six sensors are needed. These techniques
relied on the manual detection of onset times, however, later on, automatic onset
detection algorithms have been developed such as [50, 51].

3.1 Classical methods
One of the more popular groups of methods to determine a crack’s onset time is the
group of threshold methods. These methods employ static or dynamic thresholding
to determine the onset crack’s onset time. The basic idea of static methods is to

18

Related Works

use a threshold to distinguish when the signal changes from noise to a crack. The
most evident solution monitors the crack’s amplitude to achieve this goal [52, 53].
The main obstacle to overcome in this method group is finding the proper trade-off
between too-low and too-high thresholds. In the prior case, one risks setting the
threshold to a moment when the signal is only noise. In the latter scenario, one is
at risk of losing helpful information about the signal by determining an onset time
that is later than the actual one.

To enhance the performance of static methods, dynamic threshold methods
utilize an algorithm capable of adjusting the threshold in runtime. This approach
allows us to adapt to the signal amplitude over time and employ the same algorithm
in different real-world scenarios without touching the algorithm or calibrating it
beforehand. Dynamic threshold methods include using Short Term Average and
Long Term Average (STA/LTA) to achieve optimal selection [54].

In 2016, Bai et al. [50] introduced three new methods for determining onset time
based on dynamic thresholds. They introduced a time-varying correlation method
based on cross-correlation and a surrogate significance test. The second introduced
method is a Continuous Wavelet Transform (CWT) [55] based correlation method.
The third method is a CWT-based binary map that encapsulates the AE signal’s
time-frequency response, which is filtered through a median filter. They concluded
that new methods outperformed the baseline AIC method.

The onset time can also be determined using markers different than the signal’s
amplitude. Hirotugu Akaike introduced a criterion named after him, the Akaike
Information Criterion (AIC) [56] that can be utilized to determine a signal’s onset
time. The AIC is essentially a statistical method capable of determining the
onset time. The AIC states that a complete solution of an autoregressive moving
average model can be obtained using the Markovian representation of the process,
commonly referred to as AIC picker in the literature [57, 21]. It is stated that a
signal can be adequately split into a set that contains the data points before the
onset time and another set that includes the data points after the onset time [51].
Later on, the AIC picker algorithm was enhanced by Carpinteri et al. [58]. Their
method is based on the accuracy level of the AE signals, which can be estimated
with the second derivative of the AIC function, and on another parameter based
on the AE signal’s propagation velocity.

Time-domain statistical methods such as the Hinkley criterion [59] can also
be employed in the SHM domain. This method computes the partial energy of a
time-series signal for all samples, with the global minimum of the partial energy
function indicating the onset time. Furthermore, time-frequency domain approaches
have also been developed. One such method involves cross-correlating the signal
with a short Gaussian pulse at a specific frequency [60]. The onset time at that
frequency corresponds to the peak of the correlation function. Another method of
Ciampa and Meo [61] uses the Continuous Wavelet Transform (CWT) [55]. This

19

Related Works

approach identifies the maximum squared modulus of the CWT coefficients. The
time corresponding to this maximum is then used as a reference for the Time
Difference of Arrival measurements, providing an alternative to traditional methods
for detecting the signal’s onset time.

In addition to AIC-based methods, other approaches exist to determine the
onset time of a signal. For signals with low signal-to-noise ratios (SNR), a fractal
dimension-based method has been introduced [62]. This algorithm analyzes varia-
tions in the fractal dimension along the signal trace, demonstrating high accuracy
even in the presence of significant noise. However, it is computationally intensive,
making it unsuitable for real-time applications such as the one presented in this
thesis.

3.2 ML-based methods
The methods introduced in the previous paragraphs have found a vast territory
of applications over the years, among which the SHM domain with AE was a
proponent participant. Even though their potential and concepts were tried and
proven, real-life applications of these algorithms have revealed several drawbacks
and weaknesses. Many thresholding methods have expressed inaccuracies and
failures when a significant amount of noise is present in the environment, especially
when the noise and the signal characteristics are relatively similar. Another
weakness of these algorithms is that they are often statically configured, i.e., the
threshold cannot be adapted to a particular real-life scenario. Moreover, some
algorithms require significant computational time, which makes them unfit for
real-time processing.

Enhancements and evolutions have been designed for these algorithms to remedy
the aforementioned points. With the breakthrough of machine learning algorithms,
however, researchers’ attention has shifted towards adapting and applying these
algorithms to the SHM field.

Perhaps one of the first published examples of using a machine-learning-based
method to solve an SHM task was written by Emanian et al. [63]. The technique
is a two-stage process. Firstly, it eliminates background noise in the AE signal
using covariance analysis, principal component analysis (PCA), and differential
time delay estimation [64]. Secondly, the remaining data is processed using a
self-organizing map (SOM) neural network in combination with short-time Fourier
Transformation (STFT) that separates the noise and the AE signal.

Another early example of using machine learning approaches to classify acoustic
emission signals was presented by Omkar et al. in 2002 [65]. They used fuzzy
c-means (FCM) clustering to classify AE signals to different sources of signals.
FCM can discover the clusters in the data even if the boundaries overlap because

20

Related Works

FCM is distribution-free.
Ince et al. [66] used pairwise correlation of AE waveforms and hierarchical

clustering to enhance the SNR by generating "super" AEs, which improve time-of-
arrival estimation. Key features such as wavelet packets, autoregressive parameters,
and Fourier coefficients are extracted to identify P-wave patterns in noisy conditions.
A support vector machine (SVM) classifier with probabilistic outputs is employed
to reliably detect P-wave arrivals, demonstrating the approach’s effectiveness in
noisy environments for AE localization.

Zhang et al. [67] compared three machine learning algorithms — extreme learning
machine (ELM), decision tree classifier (DTC), random forest classifier (RFC), and
deep belief network (DBN) — for classifying ambient and ultrasonic signals. They
also proposed continuous wavelet transform (CWT) as preprocessing to eliminate
waveform distortion, enhancing detection accuracy. Results showed that RFC
outperformed DBN and DTC, providing the highest classification accuracy. The
proposed method was compared with the traditional autocorrelation function and
demonstrated higher accuracy and lower errors across 300 waveforms.

In 2020, Chen et al. [68] introduced a method for onset time detection using
deep learning models, particularly Convolutional Neural Networks (CNN). The
approach utilizes the short-time Fourier transform for feature extraction, which
serves as the input for the CNN classifier.

In 2022, Zonzini et al. [69] demonstrated that deep learning models outperform
traditional methods for onset time detection in boisterous environments. They
compared the accuracy of a Convolutional Neural Network and a capsule neural
network [70] with the classical Akaike Information Criterion (AIC). The results
showed that deep learning models achieved a tenfold improvement in accuracy.

In 2023, Melchiorre et al. [21] highlighted the robustness of deep learning models
for onset time detection. A Convolutional Neural Network (CNN) designed for
Sound Event Detection (SED) [71] was trained on normalized seismic accelerograms
and later tested on Acoustic Emission (AE) signals. The models accurately identified
onset times.

In 2024, Melchiorre et al. [72] demonstrated the successful use of the U-net
neural network, specialized for segmentation tasks. In their study, they used
the network to determine the onset time of the AE signal as a one-dimensional
segmentation task. They demonstrated the network’s superior performance on
PLB tests compared to traditional methods.

Another research team that used the U-net network to solve crack detection
tasks was Yu et al. [73]. They improved the original U-net architecture to achieve
the performance of the task at hand. The network was named Residual Linear
Attention U-net (RLAU-net). They deduced that the network improves processing
time while maintaining the high detection accuracy of the original architecture.

Convolutional networks are not the only deep learning algorithms that can solve

21

Related Works

arrival time estimation tasks in the AE signal domain. In 2017, Zheng et al. [74]
presented a recurrent neural network architecture to tackle arrival time estimation.
They used a Long-Short-Term Memory architecture. Their experiments tested the
network’s performance on data under different SNR levels. They found that the
network detected the arrival time comfortably, even in noisy environments.

In 2021, Nguyen et al. [75] assembled a multi-step architecture to predict
the remaining useful lifetime (RUL) for concrete structures to prevent failures
and extend useful life. The deterioration process is modeled through a health
indicator (HI), automatically constructed using a stacked autoencoder deep neural
network (SAE-DNN). The authors built a novel hit removal process employing a
one-class support vector machine (OC-SVM), filtering relevant hits for training.
The constructed health indicators are then used to train a long short-term memory
recurrent neural network (LSTM-RNN), leveraging its ability to capture long-term
dependencies. The proposed method outperforms schemes without hit removal and
alternative models like GRU-RNN and standard RNNs.

The models demonstrated high accuracy in identifying onset times. Applying
machine learning and deep learning techniques has proven effective in advancing
the field of AE. These methods have shown remarkable robustness and the ability
to enhance accuracy in detecting onset times in acoustic emission signals. However,
research in this area is ongoing, as current methodologies face challenges such as
the computational and storage demands of the algorithms and the reliance on
data preprocessing to improve SNR. Additionally, these techniques require signal
segmentation, making preprocessing essential to define suitable signal windows for
classification by machine learning algorithms.

22

Chapter 4

Methodology

This chapter explains the details of the implementation followed during the plat-
form’s development phase. First, the acoustic emission sensor is introduced. Then,
the hardware development is detailed, followed by the firmware development and
the test setup.

4.1 Sensor characterization
The sensor used for this thesis is a piezoelectric sensor specifically developed to
measure acoustic emissions. A piezoelectric sensor is a passive device commonly
used in structural health monitoring applications [76] that produces an electric
charge proportional to its measured mechanical quantity. These instruments
are based on the piezoelectric effect, which generates charge in certain materials
under mechanical stress, such as acceleration, pressure, temperature, or force
2.6. The detector is produced by Lunitek Srl, an Italian company specializing in
manufacturing seismic sensors and structural health monitoring systems.

Several measurements were performed to determine the sensor’s behavior and
characteristics before designing a circuit capable of transforming the analog signal
to digital.

Firstly, the frequency response was controlled to verify that the device could be
modeled as a capacitive sensor, typical of most piezoelectric devices. The modeling
is based on the following notion. As it was introduced in the background section
2.6, piezoelectric sensors generate electric charge proportional to the mechanical
stress they experience. It is only sensible to model this phenomenon with a current
source. The current of this source shall be proportional to the charge generated
over a unit of time.

I = dQ

dt

23

Methodology

As the sensor’s piezoelectric layer is connected to the rest of the circuit through
two electrodes, it is reasonable to model this by employing a capacitance connected
in parallel to the current source. At this point, it is possible to compute the output
voltage generated by the charge in this intermediate equivalent circuit with the
following equation:

V = 1
C

Ú
Idt = 1

C

Ú dQ

dt
= Q

C
(4.1)

If a more realistic representation is desired, a final resistance can be added
parallel to the previous circuit to model the leakage of the current over time. Thus,
we arrive at the final equivalent circuit of a typical piezoelectric sensor 4.1.

Figure 4.1: Piezoelectric equivalent circuit model

It must be verified that the circuit possesses the aforementioned capacitive
characteristics. The verification was performed with a Frequency Response Analyzer
(FRA) between 10 Hz and 1 kHz. The instrument confirmed the device’s theoretical
behavior; the results can be seen in Figure 4.2. At lower frequencies, the device
behaves like an exceptionally high-impedance - an open circuit. It can be seen in the
figure that as the testing frequency increases, the circuit’s impedance continuously
diminishes, resembling more and more of a short circuit.

Afterward, to get the approximate value of the sensor’s capacitance, another
measurement was conducted with an automatic passive component analyzer at
15 kHz to validate the behavior at a frequency higher than checked with the
previous device. The measurement returned 1.773 nF, which was in line with the
expectations. Results can be seen in Figure 4.3.

Now that a preliminary idea of the sensor’s behavior was constructed, the sensor’s
response had to be verified against a typical PLB test. The sensor was tested by
directly connecting it to an oscilloscope via a BNC-BNC cable to understand the
voltage generated by the sensor in such a test. A typical response can be seen in
Figure 4.4. After several experiments, the maximum peak of the sensor’s response

24

Methodology

Figure 4.2: The AE sensor’s frequency response

Figure 4.3: The AE sensor’s capacitance at 15 kHz

to the PLB test was around 120-130 mV, meaning 240-260 mV rail-to-rail, while
the typical timespan is around 15 ms.

25

Methodology

Figure 4.4: The AE sensor’s typical response to a PLB test

Although this voltage range is usable, it lacks vital properties for constructing
a practical sampling circuit. Had it been directly used, many details would have
been lost during the digitalization process. Such a small amplitude would require
a more precise selection of the onset time’s threshold, and the signal’s resolution
would also be smaller.

During the thesis, an STM Nucleo-F446RE development board [77] was used,
featuring a high-performance ARM Cortex-M4 core running at up to 180 MHz.
It provides a range of peripherals, most importantly a 12-bit SAR (Successive
Approximation Register) ADC with up to 16 multiplexed channels, supporting single
and continuous conversion modes and features like oversampling and hardware-
triggered conversions for enhanced accuracy. The ADC operates with a sampling
rate of up to 2.4 MSPS (mega samples per second), making it suitable for high-speed
data acquisition. The ADC input voltage range is from 0V to Vref+, where Vref+
can be at most 3.3V, defining the measurable analog signal range. Connecting
the sensor directly to the ADC would produce inferior results because the total
voltage range is not utilized, and this would decrease resolution. For this reason, an
amplification circuit had to be designed, which will be detailed in the next section.

4.2 Hardware development
Given the small voltage range of the AE sensor, an appropriate amplifier circuit
had to be designed to transform the voltage to fill out the whole range of the
Nucleo board’s ADC. The ADC is a configurable successive approximation (SAR)
ADC between 6-12 bits, with an input voltage range of 0 and 3.3 Volts. Ideally,
this circuit needs to be powered by the board with a single supply voltage between

26

Methodology

0 and 5 Volts. Moreover, the circuit needs to have three vital attributes. Firstly, it
must shift the signal to the mid-level of the usable voltage range, which is 1.8 V.
Secondly, it must amplify the signal to span the ADC’s entire range. Finally, the
board must be protected from overvoltage, which can occur when a knock or crack
is too big.

Several different amplifier circuits were considered before choosing the appropri-
ate one [78]. Due to the sensor’s piezoelectric nature, different circuit designs did
not work; a detailed description can be found in Appendix A. Consequently, only
the final circuit design and its development will be discussed in this chapter.

4.2.1 Charge amplifier
A different approach was sought and considered after the unsuccessful implementa-
tion of various classical amplifier circuits. Sources [79, 80, 81] mention that a charge
amplifier circuit (introduced in 2.7.6) is capable of transforming a piezoelectric
circuit’s signal into a manageable, correctly behaving signal.

The problem with the voltage mode amplification of the previous circuits lies in
the fact that the interconnect capacitances can greatly modify the voltage output
of the system. To understand this, the output voltage of the piezo sensor over time
has to be understood:

Vout = 1
C

Ú dQ

dt
dt = Q

C

Any other capacitance parallel to the piezoelectric sensor, such as a cable
connecting the device to the amplifier, will contribute to this term. Since the
sensor’s capacitance is not large, these parasitic elements will significantly influence
the overall system’s behavior, especially if the cables are long. For this reason, it is
also better to use a charge amplifier rather than a voltage mode amplifier.

Following this notion, the charge amplifier’s components had to be selected to
transform and amplify the sensor’s signal correctly. A simple integrator circuit
that consists of a negative feedback op-amp with a capacitor in the feedback loop
would be adequate as an initial idea. As the information that we seek is the charge
of the piezoelectric sensor, an integrator fits the task perfectly, as it returns the
voltage, which is proportional to the sensor’s charge:

Vout = 1
CF

Ú
−Idt = − Q

CF

The output voltage will be proportional to the current multiplied by 1
CF

. Subse-
quently, the gain also depends on the capacitance’s value.

However, a simple integrator would only work in an ideal environment. Due
to the amplifier’s input bias current, the capacitor in the feedback loop would

27

Methodology

eventually charge up, causing the op-amp to saturate. To avoid this, a resistor
may be placed parallel to the capacitor. With this step, we arrive at the circuit
presented in chapter 2.7.6.

It is possible to create a non-zero-centered output signal by placing an offset
voltage to the positive input terminal of the op-amp. This way, the sensor’s
signal will be centered around the offset voltage. However, the effect of a possible
amplification (by a subsequent amplifier) has to be considered when selecting the
amplifier’s value.

Adding a resistor to the amplifier’s inverting terminal can be beneficial. This
resistor protects the op-amp by limiting the current generated by the piezoelectric
sensors. Although the current generated by the piezoelectric sensor is mostly
harmless, an unexpected fault, such as an ESD strike, can severely damage the
component. Therefore, it was decided to include this component in the design.

Another important aspect of this circuit to consider is its frequency response.
An idealized integrator that only includes a capacitor behaves similarly at every
frequency. Nonetheless, when resistors are added to the circuit, the behavior
changes both at high and low frequencies.

The feedback resistor Rf that is included in parallel with the feedback capacitor
Cf together create a high-pass filter that attenuates the low-frequency signals
according to equation 4.2. The value of the resistor placed in the parallel does
not affect the overall gain of the circuit. Hence, it was possible to choose this
considering other aspects of the circuit.

fHP = 1
2πRF CF

(4.2)

At this point, values for two components had to be selected. The value of the
feedback capacitor and the the feedback resistor’s value. Looking at Equation
4.2, it can be seen that a lower resistor value would increase the cutoff frequency,
while a higher value would decrease it. Recommendations suggest an initial value
of 1MΩ and adjust it based on the application needs. A relatively high 6.8MΩ
resistor was chosen to attenuate only the very low-frequency noises. The available
resistors partly influenced the choice in the laboratory.

The other component to select at this point was the capacitor’s value. At this
point, it was thought that the cutoff frequency of the low pass filter would not be
important to the overall system behavior as the typical frequency of an acoustic
emission signal is around 10-20 kHz. For this reason, a cutoff frequency of 10 Hz
was chosen. It will be seen during the test phase that a better decision could have
eliminated some noise from the environment. Regardless, the resistor’s value and
the imposed HPF frequency limit determine the capacitor’s value, according to
equation 4.3.

28

Methodology

CF = 1
2πRF fHP

= 1
2π · 6.8 · 106 · 10 = 2.34nF (4.3)

The closest capacitor value in the laboratory was 2.2 nF, which imposed a
slightly different cutoff frequency of 10.6 Hz.

The last component that hasn’t been considered yet is the input resistor Rin.
It has been mentioned before that the choice of charge amplification eliminates
the effect of parasitic capacitances. This statement changes somewhat with the
inclusion of the input resistor. This resistor, combined with the sensor’s internal
capacitance and other parasitic capacitances, creates a high-frequency attenuation
that must be considered. This cutoff frequency can be computed according to
equation 4.4, where Call denotes the sum of the sensor capacitance and every other
capacitance.

fLP = 1
2πRinCall

(4.4)

For simplicity and because the cable resistances were negligible due to the
short cable length (< 10 cm), Call := Csensor = 1.773nF was selected. Due to the
dependency of the sensor’s capacitance on the frequency and the uncertainty of the
actual cable capacitance, a much higher-than-needed cutoff frequency of 50 kHz
was chosen. This frequency is 2.5 times larger than the typical frequency of an
acoustic emission signal. Consequently, this choice determined the input resistor’s
value, according to Equation 4.5.

Rin = 1
2π · Csensor · fLP

= 1
2π · 1.73 · 10−9 · 50 · 103 = 1840Ω (4.5)

The circuit described above was built and tested using the sensor as input and
the oscilloscope as output to verify the circuit’s behavior. The circuit design can be
seen in Figure 4.5, while the constructed circuit can be seen in Figure 4.6. For the
op-amp, a TL082 dual-supply amplifier was chosen from Texas Instruments [82].

When the sensor was connected to the input of the circuit and a typical pencil
lead break test was performed, the circuit outputted an expected characteristic
acoustic emission signal (see Figure 4.7), verifying the circuit’s correct functioning.

4.2.2 Dual-supply amplifier circuit
As the charge amplifier was correctly functioning, the development of the hardware
continued. Now, we focus on building the whole circuit, which includes amplifying
the signal and shifting it to the mid-value of the ADC’s input range.

Two additional components had to be built and connected to the charge amplifier
to achieve this. Firstly, a circuit that can provide the offset to shift the piezoelectric

29

Methodology

Figure 4.5: Charge amplifier circuit design

Figure 4.6: Charge amplifier circuit with the sensor as input and a probe connected
to its output

sensor’s signal is required. The offset was achieved using a voltage divider of two
resistors combined with a unit-gain inverting op-amp. As the previously built

30

Methodology

Figure 4.7: The charge amplifier circuit’s output

charge amplifier used a dual-supply topology, the same TL082/TL081 op-amp was
chosen for this stage, too. Since the selected summing amplifier had an inverting
topology, the supply on the resistor ladder had to be negative to get a positive
voltage on the output. Since the negative supply voltage was -5 Volts, the selected
resistors had a value of R4 = 200kΩ and R5 = 100kΩ, thus creating a voltage offset
of -1.65 Volts.

Another stage is needed to add the two signals together and amplify them,
achieved with a classic inverting summing amplifier. As before, the TL081/TL082
dual-supply op-amp was chosen. Other than choosing the op-amp to include, the
correct resistor values had to be selected, too. No amplification was needed as the
offset voltage already had the proper magnitude. A R = 22kΩ resistor was chosen
for the feedback. Hence, the resistor connecting the offset with the inverting input
of the summing amplifier had to be the same. On the other hand, the sensor’s
signal was not yet amplified. To achieve the correct amplification, a resistor of
3.3kΩ was chosen, thus achieving around 6.67 fold amplification.

Finally, the circuit finished with two 1N5819 Schottky protection diodes before
the whole circuit’s output. The design can be seen in Figure 4.8.

After finishing the circuit design, the circuit was built and tested with classic
laboratory equipment. The constructed circuit can be seen in Figure 4.9.

The first test verified the correct signal output when the sensor was connected
to its output without the protection diodes. Upon examining the output on an
oscilloscope, it was deduced that the circuit amplified and shifted the signal correctly.
The circuit’s output can be inspected in Figure 4.10.

Afterward, the Schottky protection diodes were added to the circuit to verify
that they could limit the voltage spikes that an eventual too-strong input event

31

Methodology

Figure 4.8: Dual supply sensor amplifier circuit

Figure 4.9: The assembled dual-supply circuit with protection diodes

would trigger. To confirm this, a significantly stronger knock was used on the sensor
to simulate such an event. Capturing the output with the oscilloscope verified that
the protection diodes can limit the maximum voltage on the output. Results can
be witnessed in Figure 4.11.

As can be seen, the diodes correctly fulfill their purpose by limiting the maximum

32

Methodology

Figure 4.10: The dual-supply circuit’s output to a typical PLB test as input

Figure 4.11: The dual-supply circuit’s response to an overvoltage signal

voltage present on the circuit’s output. At this point, the circuit’s correct functioning
has been verified. Although the circuit is correct and functioning, certain aspects
can be improved. Most importantly, it currently relies on a dual-supply topology
that a simple microcontroller cannot provide. It would be beneficial to change
to a single-supply solution to solve this issue so that any simple commercial
microcontroller can power the circuit.

4.2.3 Single-supply amplifier circuit
In the previous section, the first functioning solution for a circuit that fulfills the
initial requirements of offset and amplification was presented. This section details

33

Methodology

the switch to a single supply topology.
Most importantly, to achieve a functioning single-supply circuit, every component

that needs dual-supply has to be exchanged for another that only requires single-
supply. Every op-amp had to be changed to ones requiring only single-supply for
the circuit. As a single-supply op-amp, the TLC271 model was selected from Texas
Instruments [83].

Another significant change was made to the circuit. Instead of using a summing
amplifier and adding the offset to the amplified signal, the input signal was offset
before the charge amplifier’s input. This change meant that the offset was also
amplified; hence, the offset’s value had to be changed. Instead of having a 1.65 Volts
offset, the value was set to be 0,215 V according to Equation 4.6. Consequently,
one less resistor was needed than in the previous circuit.

Voffset = R2

R1 + R2
Vin = 100kΩ

2.2MΩ + 100kΩ · 5V = 0.217V (4.6)

Finally, the inverting amplifier was swapped for a non-inverting amplifier with a
gain of 6.66, using a feedback resistor of 56kΩ and an input resistor of 10kΩ. Thus,
the circuit’s final offset was around 1.5V. The final circuit design can be seen in
Figure 4.12.

Figure 4.12: Single supply amplifier circuit

Upon finishing the circuit’s design, it had to be built and tested. The assembled
circuit can be seen in Figure 4.13. Similarly to the dual-supply circuit, the tests
were conducted using the PE sensor and an oscilloscope to display the circuit’s
output.

Two tests were performed similarly to the previous circuit. The first test was
intended to verify the correct output for a typical input. In contrast, the other

34

Methodology

Figure 4.13: The assembled single-supply amplifier circuit

tests were aimed to verify the proper functioning of the protection diodes in case
of an overvoltage on the amplifier’s output.

It can be seen in Figure 4.14 that the circuit correctly amplifies a typical input
signal, hence confirming the correct behavior. The offset is around 1.5 Volts in
a steady state, while the signal peaks are between 0 and 3.3 Volts. Upon closer
examination, it was also noticed that a small sinusoidal wave was creeping in from
the supply lines. This noise was deemed negligible at this stage of the development,
so it was not dealt with. Looking at Figure 4.15, a response to an overvoltage can
be inspected, and how the diodes limit the maximum voltage to 3.3 Volts.

At this point, the first phase of the work - the hardware development - was
finished. A correctly functioning circuit has been designed to amplify and offset a
typical acoustic emission signal. Moreover, the circuit has been designed so that
any commercial board with minimal power supply pins can power it. Additionally,
the circuit includes protection diodes that safeguard the internals of the embedded
device to which it is attached. The next step was to design and develop a firmware
that could sample, interpret, and transmit the acoustic emission signals. On top of
this, it should also be able to detect cracks in the signals and measure the onset
times of these signals and the differences between the onset times coming from the
various sensors.

35

Methodology

Figure 4.14: The single supply circuit’s response to a typical input signal

Figure 4.15: The single supply circuit’s response to a signal with overvoltage

4.3 Software development
The first step in firmware development was to design the algorithm and architecture,
considering the system’s imposed constraints. At this point, it was essential to
understand better the peculiarities of the microcontroller used and what was
possible.

The selected microcontroller is an STM Nucleo F446-RE microcontroller [77],
the most popular and widespread lineup in ST’s portfolio. It employs a 32-bit
ARM architecture. The most relevant features of this project are the following:

36

Methodology

it has three 12-bit, 2.4 MSPS (Mega Samples Per Second) with up to 24 total
channels. It includes a general purpose 16 stream DMA (Direct Memory Access)
controller with FIFOs and burst support. Moreover, the microcontroller has a vast
selection of independently programmable timers, including twelve 16-bit timers and
two 32-bit timers up to 180 MHz with separate IC/OC/PWM or pulse counters.
On the connectivity front, it has I2C, SPI, SAI, CAN, SDIO, and USART/UART
interfaces. The UART/USART interface will be the most important for the thesis’s
purposes. This communication protocol contains a transmission speed of up to
11.25 Mbit/s, with four USART interfaces and two UART interfaces.

Every ST microcontroller has a native IDE and debug environment developed
in-house. The F446-RE is no different; it is developed through the STM32CUBE
IDE [84], an eclipse-based environment with a plethora of additional features. For
the development of the firmware version, 1.16.1 was used, the most recent at the
time of the development. The IDE integrates STM32 configuration and project
creation functionalities from STM32CubeMX to support rapid development and
prototyping. Using the STM32CubeMX, it is possible to preconfigure the clocks,
ADCs, peripherals, DMAs, and communication protocols and generate an initializa-
tion code from the configuration. Returning and modifying the configuration during
the development phase and regenerating code without destroying the user-written
code is also feasible. On top of these features, the IDE also sports an advanced
debugger that can view CPU core registers, memories, peripheral registers, live
variable watch, and fault analyzer, to mention only a few.

After familiarizing with the architecture and environment, the first step was to
design the firmware architecture and an initial algorithm. To do this, a flowchart
was created to help us better understand and visualize what needs to be done.

The general sequence starts with setting up every necessary register, peripheral,
clock, and system component that will be used or required for the microcontroller’s
correct functioning. After finishing this, the ADC samples its input and saves the
data in a buffer. Then, the data is checked against a preset threshold to decide
if the signal is classified as the beginning of a crack. If it is not the start of a
crack, the sampling and the saving continue. Otherwise, the firmware saves the
next X samples into a designated buffer. Finally, after filling this buffer, the buffer
is transmitted to a client via a UART interface, and the process starts again. The
flowchart of the algorithm can be better inspected in figure 4.16.

4.3.1 Single ADC channel with polling
Firmware

The first firmware version validated the concept’s feasibility and functioned as a
springboard for subsequent versions. Because of this, it was not intended to be the
most efficient or to include more advanced features, such as a DMA.

37

Methodology

Figure 4.16: Initial flowchart detailing the sampling algorithm

This initial version used one ADC with one input channel. The ADC was
configured to include the maximal 12-bit resolution, with continuous mode disabled,
meaning the ADC only performed one conversion whenever it started and stopped.
The start was triggered by software. The ADC created an interrupt after finishing
each conversion. The only configured channel had a sampling time of three cycles.
The ADC configuration can be seen in Listing 4.1. The author finds it necessary to
mention that not all source codes are included, but only the most essential pieces
are needed to understand the behavior.

Listing 4.1: ADC initialization code
1 s t a t i c void MX_ADC1_Init(void)
2 {
3 ADC_ChannelConfTypeDef sConf ig = {0} ;
4

38

Methodology

5 /∗ Conf igure the g l o b a l f e a t u r e s o f the ADC (12b Resolut ion , S i n g l e
convers ion , Started by SW, In t e r rupt at the end o f every

conver s i on) ∗/
6 hadc1 . Ins tance = ADC1;
7 hadc1 . I n i t . C lockPre sca l e r = ADC_CLOCK_SYNC_PCLK_DIV4;
8 hadc1 . I n i t . Reso lut ion = ADC_RESOLUTION_12B;
9 hadc1 . I n i t . ScanConvMode = DISABLE;

10 hadc1 . I n i t . ContinuousConvMode = DISABLE;
11 hadc1 . I n i t . DiscontinuousConvMode = DISABLE;
12 hadc1 . I n i t . ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
13 hadc1 . I n i t . ExternalTrigConv = ADC_SOFTWARE_START;
14 hadc1 . I n i t . DataAlign = ADC_DATAALIGN_RIGHT;
15 hadc1 . I n i t . NbrOfConversion = 1 ;
16 hadc1 . I n i t . DMAContinuousRequests = DISABLE;
17 hadc1 . I n i t . EOCSelection = ADC_EOC_SINGLE_CONV;
18 i f (HAL_ADC_Init(&hadc1) != HAL_OK)
19 {
20 Error_Handler () ;
21 }
22

23 /∗ Conf igure the s e l e c t e d ADC r e g u l a r channel (Sample time) ∗/
24 sConf ig . Channel = ADC_CHANNEL_0;
25 sConf ig . Rank = 1 ;
26 sConf ig . SamplingTime = ADC_SAMPLETIME_3CYCLES;
27 i f (HAL_ADC_ConfigChannel(&hadc1 , &sConf ig) != HAL_OK)
28 {
29 Error_Handler () ;
30 }
31 }

The other peripheral that was used in the first version is the UART. The
peripheral was configured to use a slower baud rate of 57600, with parity None
and one stop bit. The UART’s init section can be seen in Listing 4.2.

Listing 4.2: UART initialization code
1 s t a t i c void MX_USART2_UART_Init(void)
2 {
3 huart2 . In s tance = USART2;
4 huart2 . I n i t . BaudRate = 57600 ;
5 huart2 . I n i t . WordLength = UART_WORDLENGTH_8B;
6 huart2 . I n i t . StopBits = UART_STOPBITS_1;
7 huart2 . I n i t . Par i ty = UART_PARITY_NONE;
8 huart2 . I n i t . Mode = UART_MODE_TX_RX;
9 huart2 . I n i t . HwFlowCtl = UART_HWCONTROL_NONE;

10 huart2 . I n i t . OverSampling = UART_OVERSAMPLING_16;
11 i f (HAL_UART_Init(&huart2) != HAL_OK)
12 {
13 Error_Handler () ;
14 }

39

Methodology

15 }

The main function starts the ADC, then polls for conversion, and once the
conversion finishes, it saves the data in a buffer. Then, as the flowchart described,
the algorithm checks if the data is outside a threshold and acts accordingly. A flag
is used to know if a crack is detected and where to save the data. An engaging
portion is the circular buffer where the regular (not crack) data is saved, enabling a
compact buffer size where only the most recent data is stored. However, this brings
some difficulties to the transmission and the visualization as extra information
must be transmitted to know how to reorder this buffer. Once the buffer is filled
up, the UART performs three total transmissions. First, it transmits the current
index so the client knows how many samples of standard data it can expect in the
subsequent transmission. Secondly, the standard buffer is transmitted, followed by
the crack buffer. Later, the indices and variables are reset to their initial value.

Listing 4.3: main function
1 i n t main (void)
2 {
3 // user v a r i a b l e s
4 uint16_t raw_adc_val ;
5 uint16_t normal_it = 0 ;
6 uint16_t crack_it = 0 ;
7 uint8_t is_crack_detected = 0 ;
8 const uint16_t th re sho ld = 1200 ;
9 uint16_t normal_sample_buffer [NORMAL_ARRAY_LEN] ;

10 uint16_t crack_buf fe r [CRACK_ARRAY_LEN] ;
11

12 // . . . component i n i t i a l i z a t i o n s omitted . . .
13 whi le (1)
14 {
15 // Star t ADC conver s i on
16 HAL_GPIO_WritePin(LD2_GPIO_Port , LD2_Pin , GPIO_PIN_RESET) ;
17

18 HAL_ADC_Start(&hadc1) ;
19 HAL_ADC_PollForConversion(&hadc1 , HAL_MAX_DELAY) ;
20 raw_adc_val = HAL_ADC_GetValue(&hadc1) ;
21

22 i f (raw_adc_val > thre sho ld) {
23 // detec ted a crack
24 i s_crack_detected = 1 ;
25 }
26

27 i f (i s_crack_detected) {
28 crack_buf fe r [c rack_it] = raw_adc_val ;
29 crack_it++;
30

31 // reached the array end , r e s e t , wait f o r new crack

40

Methodology

32 i f (c rack_it == (CRACK_ARRAY_LEN)) {
33 // f i r s t t ransmit the non−crack samples from the bu f f e r ,

i t has a vary ing l ength
34

35 // transmit the s i z e o f the array
36 HAL_UART_Transmit(&huart2 , (uint8_t ∗)&normal_it ,

s i z e o f (normal_it) , 100) ;
37 HAL_Delay(10) ;
38

39 // transmit the non−crack array
40 HAL_UART_Transmit(&huart2 , (uint8_t ∗)

normal_sample_buffer , normal_it ∗ s i z e o f (normal_sample_buffer [0]) ,
100) ;

41 HAL_Delay(10) ;
42

43 // t r a n s f e r the samples from the crack b u f f e r
44 HAL_UART_Transmit(&huart2 , (uint8_t ∗) crack_buf fer ,

CRACK_ARRAY_LEN ∗ s i z e o f (c rack_buf fe r [0]) , 100) ;
45

46 // r e s e t the i t e r a t o r s and f l a g s
47 crack_it = 0 ;
48 normal_it = 0 ;
49 i s_crack_detected = 0 ;
50 }
51 }
52 e l s e {
53 // save i t i n to the normal array
54 normal_sample_buffer [normal_it] = raw_adc_val ;
55 normal_it = (normal_it + 1) % NORMAL_ARRAY_LEN;
56 }
57 HAL_GPIO_WritePin(LD2_GPIO_Port , LD2_Pin , GPIO_PIN_SET) ;
58 }
59 }

This solution, albeit working, was far from ideal. Even though it can sample
the ADC, it does it in a blocking fashion due to the polling function call, meaning
the CPU cannot perform other tasks while waiting for the conversion to end. This
approach in a real-world, real-time environment is not ideal, as other interruptions
could happen. Moreover, the CPU’s constant use does not comply with the initial
request for a low-power solution. The other area to improve is data transmission,
which also happens in a blocking mode, preventing the CPU from performing
different tasks in the meantime. Furthermore, all information is transmitted in 3
separate function calls with delays between them, which further decreases efficiency
and performance. Despite these drawbacks, this firmware was able to validate the
initial algorithm. In the following sections, the more advanced firmware solutions
will be presented.

41

Methodology

Python client

In parallel with the firmware development in C, a Python client is also created.
This client is capable of receiving, saving, and visualizing the processed data. The
first version of the Python client uses only one function to receive the data from the
microcontroller. The read_from_UART has three parameters: the communication
port, the baud rate, and the data length. The function attempts to read the
specified data length, notifies the user if the received data’s length does not match,
and then transforms the data. The script can be seen in B.1. Even though the
function received the data, it was somewhat unstable, especially when receiving
the last data section. Moreover, this version was not yet capable of visualizing the
data.

To improve the communication and check data loss, the parity bit was set
to Even later on. This change didn’t solve the communication issues, but for
additional debug functionality, it was kept. Subsequently, it was evident that this
script needed rework and the addition of more functionalities.

4.3.2 Single ADC channel with interrupt
After verifying the algorithm’s correctness, the attention was turned towards
improving efficiency, speed, and power consumption.

Firmware

One can utilize an interrupt-based ADC conversion to save energy and free the
CPU from the workload. This allows the CPU to perform other tasks or go to a
low-power state while the ADC converts the data.

At the end of the conversion, a high-priority interrupt is raised. When this
happens, normal code execution stops, the interrupt is served, and then code
execution continues. Interrupts cannot be preempted, so keeping them as short as
possible is generally advisable.

As the project was not using other interrupt-based functionalities, keeping the
ADC conversion completed interrupt short was not a priority. Consequently, the
processing and saving functionality was moved inside the interrupt. The ADC
conversion completed callback can be seen in 4.4. Essentially, what was previously
performed in the main function was moved to the callback. An additional flag
notifies the firmware to transmit the data once the buffer gets full.

Listing 4.4: ADC conversion completed callback
1 void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef ∗hadc)
2 {
3 i f (hadc−>Instance == ADC1)
4 {

42

Methodology

5 raw_adc_value = HAL_ADC_GetValue(hadc) ;
6

7 i f (crack_captur ing_f lag == 1) {
8 // CAPTURING CRACK
9 // Store the cur rent ADC value in to crack b u f f e r

10 crack_buf fe r [c rack_it++] = raw_adc_value ;
11

12 // Once 512 samples are captured , s e t the tx f l a g
13 i f (c rack_it >= CRACK_ARRAY_LEN) {
14 crack_captur ing_f lag = 0 ; // Stop captur ing
15 // I n d i c a t e that UART transmi s s i on i s needed
16 t r ansmi s s i on_f l ag = 1 ;
17 }
18 }
19 e l s e
20 {
21 // Update c i r c u l a r b u f f e r with the most r e c ent sample
22 normal_sample_buffer [normal_it++] = raw_adc_value ;
23 i f (normal_it >= NORMAL_ARRAY_LEN) {
24 normal_it = 0 ; // Wrap around c i r c u l a r b u f f e r index
25 }
26 }
27 }
28 }

The other feature experimented with was the use of the Analog Watchdog. This
feature enables the user to set predefined upper and lower thresholds. If the
currently converted data is outside these thresholds, an interrupt is raised, and the
user can perform actions inside the callback routine. The analog watchdog can be
enabled inside the ADC configuration. The callback was utilized to set the flags,
signaling that a crack had been detected. The corresponding code snippets are in
4.5.

Listing 4.5: ADC AWD initialization and callback
1 s t a t i c void MX_ADC1_Init(void)
2 {
3 /∗ . . . r e g u l a r ADC i n i t code omitted . . . ∗/
4 ADC_AnalogWDGConfTypeDef AnalogWDGConfig = {0} ;
5 /∗ . . . r e g u l a r ADC i n i t code omitted . . . ∗/
6

7 /∗ Conf igure the analog watchdog ∗/
8 AnalogWDGConfig . WatchdogMode = ADC_ANALOGWATCHDOG_SINGLE_REG;
9 AnalogWDGConfig . HighThreshold = 2500 ;

10 AnalogWDGConfig . LowThreshold = 1000 ;
11 AnalogWDGConfig . Channel = ADC_CHANNEL_0;
12 AnalogWDGConfig . ITMode = ENABLE;
13 i f (HAL_ADC_AnalogWDGConfig(&hadc1 , &AnalogWDGConfig) != HAL_OK)
14 {

43

Methodology

15 Error_Handler () ;
16 }
17 /∗ . . . r e g u l a r ADC i n i t code omitted . . . ∗/
18 }
19

20 void HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef ∗hadc)
21 {
22 i f (hadc−>Instance == ADC1 && crack_tr igge red_f lag == 0) {
23 // Tr iggered when value i s ou t s id e the th r e sho ld
24 // Flag to i n d i c a t e watchdog t r i g g e r e d
25 c rack_tr igge red_f lag = 1 ;
26 // Star t captur ing the next 512 samples
27 crack_captur ing_f lag = 1 ;
28 // Reset index f o r the new capture
29 crack_it = 0 ;
30 }
31 }

At this point of development, the code had some issues. First, there was a
problem with the interrupt-based conversion. Initially, the idea was to use the
ADC in continuous mode, only starting the ADC once at the start. However, due
to an incorrect flag, it was not working. An intermediate solution was chosen: the
ADC was restarted for every conversion at the beginning of the while loop in the
main function.

The problem was solved by creating a blog post in ST’s forum [85]. The answer
pointed out that the flag hadc2.Init.EOCSelection was set to
ADC_EOC_SINGLE_CONV instead of DISABLE, which had to be changed.
The reason why this change achieves the desired outcome is relatively obscure (it
is not documented well in the official materials, either). However, it did solve the
problem.

More importantly, this conversation pointed out fundamental flaws in the
firmware, mainly how the ADC was used until this point. So far, the ADC has been
started by software, and it has had a continuous conversion and three cycles to
sample the signal. It is safe to say that it was going at full speed, putting the CPU
and the whole system on a huge load. The code often had a hard fault error due to
the speed being too high and getting stuck in the error handler. The contributors
suggested using DMA to save the ADC’s data, increasing the sampling time, and
implementing an external hardware trigger to start the conversion to decrease the
load.

The sampling time was temporarily increased to 56 cycles to solve the hard fault
error. According to the blog post, the ADC’s functioning will be changed in later
firmware versions.

Furthermore, the analog watchdog functionality was removed as it did not bring
any particular benefits. The conversion callback had to be performed regardless of

44

Methodology

whether the current sample was inside or outside the threshold. Hence, calling an
additional interrupt handler did not bring benefits. On the contrary, it takes extra
time to modify the stack, the pointers, and the other necessary parameters that
come with function calls.

The UART communication was changed to use a DMA instead of a blocking
transmission to improve efficiency and decrease power consumption and the CPU’s
load. Again, this allows the CPU to perform other tasks or go to a low-power state.
The data now was being transmitted in one function call to have an effective DMA
transmission.

The DMA only needed basic configuration, initialization, and modification of
the UART function. Other additions weren’t necessary to enable this feature. The
relevant code sections are in 4.6.

Listing 4.6: Relevant DMA code snippets
1 /∗ . . . code omitted . . . ∗/
2 i n t main (void)
3 {
4 /∗ . . . code omitted . . . ∗/
5 whi le (1)
6 {
7 /∗ . . . code omitted . . . ∗/
8 i f (t r an smi s s i on_f l ag == 1)
9 {

10 data_buf fer [0] = normal_it ;
11 // time o f crack
12 data_buf fer [DATA_BUFFER_LEN − 1] = time_at_crack ;
13 // t r a n s f e r the samples from the b u f f e r
14 HAL_UART_Transmit_DMA(&huart2 , (uint8_t ∗) data_buffer ,

DATA_BUFFER_LEN ∗ s i z e o f (uint16_t)) ;
15 t r ansmi s s i on_f l ag = 0 ;
16 }
17 }
18 }
19 /∗ . . . code omitted . . . ∗/
20 s t a t i c void MX_DMA_Init(void)
21 {
22 /∗ DMA c o n t r o l l e r c l o ck enable ∗/
23 __HAL_RCC_DMA1_CLK_ENABLE() ;
24 /∗ DMA i n t e r r u p t i n i t ∗/
25 HAL_NVIC_SetPriority (DMA1_Stream6_IRQn, 0 , 0) ;
26 HAL_NVIC_EnableIRQ(DMA1_Stream6_IRQn) ;
27 }
28 /∗ . . . code omitted . . . ∗/

Another goal of the embedded solution is to locate the detected crack eventually.
To do this, the time difference between the cracks’ arrival times must be measured
as precisely as possible. A high-frequency clock is used to do this. The clock is

45

Methodology

configured using the IDE’s code configuration tool. The clock’s value is saved in a
variable at the crack’s arrival time. The timer operates with an 84 MHz peripheral
clock. As the prescaler is set to 84 - 1, the final clock frequency is 1 MHz. The
1 MHz was only an initial setting; it is possible to decrease the prescaler to 0 to
achieve the maximum 84 MHz frequency and the highest measurement precision.
For now, this value is adequate to validate the concept.

Listing 4.7: Timer initialization code
1 s t a t i c void MX_TIM10_Init(void)
2 {
3 htim10 . Ins tance = TIM10 ;
4 htim10 . I n i t . P r e s c a l e r = 84 − 1 ;
5 htim10 . I n i t . CounterMode = TIM_COUNTERMODE_UP;
6 htim10 . I n i t . Per iod = 65535;
7 htim10 . I n i t . C lockDiv i s ion = TIM_CLOCKDIVISION_DIV1;
8 htim10 . I n i t . AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
9 i f (HAL_TIM_Base_Init(&htim10) != HAL_OK)

10 {
11 Error_Handler () ;
12 }
13 }

Python client

Several improvements were added to the client to make the data reception more
reliable on the Python side, as it exhibited errors and data loss.

To be able to find the start and the end of the data, start (0xC0, 0xD0) and
stop (0xD0, 0xC0) patterns were added to the transmitted information. Even
though it was an overhead, it was hoped to fix the issues with the transmission.
However, despite this effort, the transmission was still unstable when tested, so
ultimately, these patterns were removed.

After digging deeper into the documentation of the serial package, it was
discovered that the library handled the data lengths differently compared to ST’s
UART communication. The parity bit was active so far to better understand the
transmission correctness. While the ST IDE involves the parity bit in the data
bit size, the serial Python library does not count the parity bit as a data bit.
Ultimately, the parity was set to None to avoid these problems.

The data was joined into one frame to enable easier DMA transmission. The
first element of the frame was the index of the current last element in the standard
data buffer, allowing the Python client to reorder the standard data buffer into
time-series data. The following data section was the crack data. Finally, the last
transmitted portion was the timer’s value. A frame’s format can be seen in 4.17.

46

Methodology

Figure 4.17: Transmitted data frame format

Other than this, the Python script has undergone various changes. Threading has
been introduced to stop the script while the data processing happens dynamically.
As its name says, the read_fixed_length_data attempts to read a fixed data amount
from the serial connection and raises an error if the received data length does not
match the expected one.

The main work happens in the process_data function; the threads and the
serial connection are created inside this function. Thereafter, a loop starts reading
data from the serial. Once data arrives, the processing happens, which includes
reordering the standard data based on its index. Then, data is saved into a file,
and if visualization is turned on, it is also shown in a pyplot plot. If the received
data is incorrect, different errors are raised based on the cause. The processing
goes on until the stop event is received.

Finally, there is an option to visualize the data separately, implemented by the
visualize_data function. The whole Python code can be seen in B.2.

Results

This point is ideal for assessing the situation. The firmware can sample, process,
and store acoustic emission data from one piezoelectric sensor. It can transmit this
data through a UART connection to a Python client that permanently stores and
visualizes it. Moreover, a timer can measure the onset time of the signal with up
to 84 MHz frequency. In summary, the solution’s initial requirements are almost
fulfilled.

To verify the correct functioning, the whole pipeline was tested with the piezo-
electric sensor, which performed a PLB test on an arbitrary surface. Results can
be seen in Figure 4.18. It can be noticed, the results behave as expected from the
various tests performed with the oscilloscope and only the HW.

Nonetheless, there is further work to be completed. Currently, the embedded
solution can only host one piezoelectric sensor instead of the required four. The
solution still exhibits instabilities due to the software-based ADC triggering. The
next section of the software development addresses these points.

47

Methodology

(a) Result 1 (b) Result 2

Figure 4.18: PLB test result using one piezoelectric sensor

4.3.3 Multiple ADC channels with HW trigger, interrupt,
and DMA

Considering the general structure of the firmware, several modifications were made.
Looking at an updated flowchart (see 4.19) to understand the most critical updates
is helpful. After every peripheral is initialized, the operation starts by converting
the channels, and once every channel is converted, it checks each value to decide
what to do next. If every value is inside the threshold, it is saved inside a circular
buffer containing the standard data. If one of them is outside, a crack is detected,
and they will be saved in a different ’crack buffer’. Once the buffers are filled up,
the conversion stops, the data is transmitted through UART communication, and
the operation continues from the beginning. After a general overview is shared,
more detailed explanations will follow on each element.

Firmware

Since now multiple channels were used, the variables supporting this transition had
to be created. More importantly, a vital design decision also had to be made. As
the firmware now hosted four different signals, it was not evident anymore how to
handle when a crack was detected. Several options were available:

1. it was possible to start saving every signal as a crack once the threshold was
exceeded at least in one signal.

2. Another option was to start saving each signal their respective ’crack buffer’
only when each of them transcended the threshold

48

Methodology

Figure 4.19: The final firmware’s flowchart

49

Methodology

3. A third alternative was to start saving each signal into their ’crack buffer’
when each surpasses their threshold independently.

Option two was quickly discarded as this solution would risk losing the crack
completely or getting stuck if the threshold was not exceeded in one of the channels.
Ultimately, the first option was selected for multiple reasons. First and foremost,
it was the simplest to implement. Secondly, it was possible to see the arrival
time by looking at either the sample index when the threshold was exceeded or
the timer value saved for each channel when the particular channel exceeded the
threshold. This solution provides the easiest way to compare the different channels.
Option three would not offer good comparability and would have a more complex
implementation.

Consequently, once one of the channels surpassed the threshold, all channels had
to be saved into their respective crack buffers. As the channels’ values arrived at
the same time - once all four ADC channels finished converting and the interrupt
fired - it was possible to use the same code to check if the value was out of the
threshold. For this reason, a function was created that implemented this, visible in
4.8.

Listing 4.8: The check threshold function
1

2 s t a t i c i n l i n e void check_threshold (uint16_t val , v o l a t i l e uint8_t ∗
thr_exceeded , uint16_t ∗ time_at_crack , uint16_t ∗ onset_idx) {

3 /∗
4 ∗ checks i f the cur rent va lue s i s ou t s i d e o f the th r e sho ld g iven

i t has not been exceeded be f o r e
5 ∗ s e t s crack captur ing f l a g to s i g n a l that crack happened
6 ∗
7 ∗ args : va lue to check aga in s t
8 ∗ whether the th r e sho ld has been exceeded be f o r e
9 ∗ time at crack to update i f check succeeds

10 ∗ onset index i f check succeeds
11 ∗/
12 i f (∗ thr_exceeded == 0 && (va l > THR_HIGH | | va l < THR_LOW)) {
13 ∗ thr_exceeded = 1 ;
14 ∗ time_at_crack = __HAL_TIM_GET_COUNTER(&htim10) ;
15 crack_captur ing_f lag = 1 ;
16 ∗ onset_idx = crack_it − NORMAL_ARRAY_LEN − 2 ;
17 }
18 }

For each channel, the function checks if their respective value has exceeded the
upper or the lower threshold, given that it had not exceeded it previously. If this is
the case, it sets the given channel’s thr_exceeded flag to one, saves the current time,
and the current index which will be useful to visualize the onset time, and sets the

50

Methodology

global crack_capturing_flag to one, notifying that a crack was detected in one of
the channels. As explained before, it starts saving the converted data in different
buffers. It is vital to notice the inline decorator in the function definition. The inline
decorator notifies the compiler to replace the function with the actual code rather
than perform the standard function call mechanism, enhancing performance by
diminishing the function call overhead. Therefore, readability and maintainability
increase while maintaining performance.

Peripherals

Various changes had to be made to the components and how they were used to
enable multi-channel sampling. The most significant transformation was made to
how the ADC is operated. As the goal was to move to multiple channelss this
had to be enabled in the ADC. To do this, one has to set the ScanConvMode to
ENABLE, which directs the ADC to scan through the defined channels. To tell the
firmware how many channels are active, the NbrOfConversion variable was set to 4.
Generally, the Nucleo F446-RE microcontroller uses one physical pin for multiple
purposes, restricting the parallel use of specific components, including the ADC.
This property means that out of all the available ADC channels, not all could be
used contemporarily. For the ADC1 that was used for the thesis, channels 1, 2, 4,
8 were selected to ensure a conflict-free operation. Moreover, each channel had to
be configured identically to how it was done for the single channel configuration
(see 4.1).

An essential and obvious consequence of having four channels instead of one
is that not one but four values had to be read and handled circularly, meaning it
was not possible with the previous code structure. To facilitate this, a DMA had
to be used to copy the ADC values to an array upon conversion of each channel.
This feature made handling the value and performing the same actions as before
possible. Notably, the ADC’s EOCSelection was set to ADC_EOC_SEQ_CONV,
which means an interrupt is only raised once all four channels have been converted.
Other than this, the DMAContinuousRequests also had to be enabled, and now the
ADC had to be started with the DMA mode (HAL_ADC_Start_DMA()). The
relevant DMA initialization code can be seen in 4.9.

Listing 4.9: DMA initialization code for the ADC
1 s t a t i c void MX_DMA_Init(void)
2 {
3 __HAL_RCC_DMA2_CLK_ENABLE() ;
4 /∗ DMA i n t e r r u p t i n i t ∗/
5 /∗ DMA2_Stream0_IRQn i n t e r r u p t c o n f i g u r a t i o n ∗/
6 HAL_NVIC_SetPriority (DMA2_Stream0_IRQn, 0 , 0) ;
7 HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn) ;
8 }

51

Methodology

Crucially, the ADC had already struggled to keep up with the pace dictated
by the software trigger when only one channel was enabled. However, with only
one channel it was capable to process data without major crashes. Thus, it
was expected that it could not handle four channels commanded by a software
trigger. To avoid these problems, the ADC’s conversion start was changed from a
software trigger to a hardware trigger. Most often, this hardware trigger is a clock
source. For this project, Timer2 was selected to fulfill this task. Consequently, as
now a periodic hardware signal started the conversion, the ContinuousConvMode
was set to DISABLE. Moreover, as the ADC had to use Timer2 as a trigger,
ExternalTrigConv was set to ADC_EXTERNALTRIGCONV_T2_TRGO and
ExternalTrigConvEdge was set to ADC_EXTERNALTRIGCONVEDGE_RISING
to start the conversion at the clock’s rising edge. Using an external hardware
trigger permitted to decrease the SamplingTime to 3 cycles. The completed ADC
initialization code can be seen in 4.10.

Listing 4.10: ADC initialization for 4 channels, with DMA and HW trigger
1 s t a t i c void MX_ADC1_Init(void)
2 {
3 ADC_ChannelConfTypeDef sConf ig = {0} ;
4

5 /∗ Conf igure the g l o b a l f e a t u r e s o f the ADC (Clock , Reso lut ion ,
Data Alignment and number o f conve r s i on s)

6 ∗/
7 hadc1 . Ins tance = ADC1;
8 hadc1 . I n i t . C lockPre sca l e r = ADC_CLOCK_SYNC_PCLK_DIV4;
9 hadc1 . I n i t . Reso lut ion = ADC_RESOLUTION_12B;

10 hadc1 . I n i t . ScanConvMode = ENABLE;
11 hadc1 . I n i t . ContinuousConvMode = DISABLE;
12 hadc1 . I n i t . DiscontinuousConvMode = DISABLE;
13 hadc1 . I n i t . ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
14 hadc1 . I n i t . ExternalTrigConv = ADC_EXTERNALTRIGCONV_T2_TRGO;
15 hadc1 . I n i t . DataAlign = ADC_DATAALIGN_RIGHT;
16 hadc1 . I n i t . NbrOfConversion = 4 ;
17 hadc1 . I n i t . DMAContinuousRequests = ENABLE;
18 hadc1 . I n i t . EOCSelection = ADC_EOC_SEQ_CONV;
19 i f (HAL_ADC_Init(&hadc1) != HAL_OK)
20 {
21 Error_Handler () ;
22 }
23

24 sConf ig . Channel = ADC_CHANNEL_0;
25 sConf ig . Rank = 1 ;
26 sConf ig . SamplingTime = ADC_SAMPLETIME_3CYCLES;
27 i f (HAL_ADC_ConfigChannel(&hadc1 , &sConf ig) != HAL_OK)
28 {
29 Error_Handler () ;

52

Methodology

30 }
31

32 sConf ig . Channel = ADC_CHANNEL_1;
33 sConf ig . Rank = 2 ;
34 i f (HAL_ADC_ConfigChannel(&hadc1 , &sConf ig) != HAL_OK)
35 {
36 Error_Handler () ;
37 }
38

39 sConf ig . Channel = ADC_CHANNEL_4;
40 sConf ig . Rank = 3 ;
41 i f (HAL_ADC_ConfigChannel(&hadc1 , &sConf ig) != HAL_OK)
42 {
43 Error_Handler () ;
44 }
45

46 sConf ig . Channel = ADC_CHANNEL_8;
47 sConf ig . Rank = 4 ;
48 i f (HAL_ADC_ConfigChannel(&hadc1 , &sConf ig) != HAL_OK)
49 {
50 Error_Handler () ;
51 }
52 }

The timer followed a relatively standard initialization. The frequency was
chosen to be 1 MHz by setting the Prescaler to 1 - 1 and setting the Period
to 84 - 1 to achieve the 84 MHz peripheral clock that powers the general-use
timers. When the Period reaches the maximum value, an interrupt starts the ADC
conversion. The only irregularity was that the MasterOutputTrigger had to be set
to TIM_TRGO_UPDATE to serve as the ADC trigger. The timer initialization
code can be seen in 4.11.

Listing 4.11: Timer 2 initialization that triggers the ADC
1 s t a t i c void MX_TIM2_Init(void)
2 {
3 TIM_ClockConfigTypeDef sClockSourceConf ig = {0} ;
4 TIM_MasterConfigTypeDef sMasterConf ig = {0} ;
5

6 htim2 . Ins tance = TIM2 ;
7 htim2 . I n i t . P r e s c a l e r = 0 ;
8 htim2 . I n i t . CounterMode = TIM_COUNTERMODE_UP;
9 htim2 . I n i t . Per iod = 84 − 1 ;

10 htim2 . I n i t . C lockDiv i s ion = TIM_CLOCKDIVISION_DIV1;
11 htim2 . I n i t . AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
12 i f (HAL_TIM_Base_Init(&htim2) != HAL_OK)
13 {
14 Error_Handler () ;
15 }

53

Methodology

16 sClockSourceConf ig . ClockSource = TIM_CLOCKSOURCE_INTERNAL;
17 i f (HAL_TIM_ConfigClockSource(&htim2 , &sClockSourceConf ig) !=

HAL_OK)
18 {
19 Error_Handler () ;
20 }
21 sMasterConf ig . MasterOutputTrigger = TIM_TRGO_UPDATE;
22 sMasterConf ig . MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
23 i f (HAL_TIMEx_MasterConfigSynchronization(&htim2 , &sMasterConf ig)

!= HAL_OK)
24 {
25 Error_Handler () ;
26 }
27 }

The UART communication has also changed, now having a higher baud rate
of 115200. The data format was updated, the channel ID was also transmitted,
alongside the onset index showing at which sample the crack exceeded the threshold,
if it did at all. The updated data format can be seen in Figure 4.20. The
communication was changed back to blocking operation as two consecutive cracks
quickly happening after one another is believed to have a low probability. In any
case, the length of the crack buffer can be increased arbitrarily to make sure to
include any potential after effects. For the time of the transmission, the ADC
conversion stops, and once all data is transmitted, the conversion restarts.

Figure 4.20: Multi channel UART data frame

Python

The Python client did not undergo radical changes compared to the previous
version; instead, more quality-of-life improvements were performed in addition to
the necessary components to support multi-channel processing and visualization.

The most noteworthy feature was adding interactive, live data visualization
utilizing matplotlib’s plt.ion() function that displays the data in a new window as it
arrives from the board. The channels now had predefined colors for each channel to
evade confusion. Two horizontal lines are also added that represent the lower and
higher thresholds when the data is plotted. Using the onset index coming through
the UART two magenta colored dots are printed over the channels to show the
users where the channels surpassed the threshold. In case they did not, the dot is
not printed on the graph.

54

Methodology

Other than this, it was also enabled to save the raw data coming from the UART
sensor before it went through any preprocessing. This allows the script to use this
data to simulate the microcontroller’s behavior in case it is not present.

Furthermore, two new visualization functions were created that can plot the
saved and processed data, either per crack (i.e. four channels on one plot) or per
channel.

Finally, an additional function was created titled find_onset_time. This function
can determine the channels’ onset time more precisely than the microcontroller
does. To do this, the function computes the average of the first N samples and from
then on, computes the cumulative sum, adding one new sample to the previous sum
at a time to compute a new average. The onset time is found when the currently
analyzed sample is outside the previously defined average. This results in a more
optimal onset time definition. The function returns the index of the onset time as
well as the lower and higher thresholds that the user can define. The function’s use
can be seen in 4.21. In the plot, the magenta dot shows the onset time determined
by the microcontroller, while the red dot shows the onset time calculated by the
Python client. Although not perfect, the Python client notably improves the onset
time placement.

Figure 4.21: Onset time determination in Python

The updated Python client code can be seen in B.3.

Results

Before the final real-life tests, preliminary trials were performed to verify that the
solution worked as expected. The tests used the same acoustic emission sensor
connected to the four different ADC input pins. Despite generating the same data

55

Methodology

four times, this setup could verify if the whole processing chain worked as expected
and visualize if the captured data arrived correctly at the test PC. Moreover, this
also meant that it was not necessary to build four different instances of the same
amplification circuit; it was enough to use one.

After creating the data and performing PLB tests on a flat surface where the
PE sensor was lying, the returned results were reassuring. They showed that the
solution could process and visualize the data in real-time, detect cracks when they
occur, transmit them via the serial link, and display them on the Python client.

Figure 4.22 shows some of the obtained results. It is essential to say that it
is normal for the data to be identical for all four channels as they were fed with
the same data. On the contrary, the more similar the data, the better it is, which
means the system does not suffer from big noise. It can be seen that there are only
minor differences in the corresponding signals for the different channels. Another
important detail is that the signals’ arrival times are similar; they only differ usually
in 2 clock ticks. This observation will be further elaborated in the Results Chapter
5.

(a) Crack A (b) Crack B

Figure 4.22: Results of 4 different ADC channels using the same sensor

These results confirmed the correctness of the developed embedded solution.
This allowed the focus to shift to the final phase of the work, which involved
assembling three other circuits and performing real-life PLB tests on concrete and
marble blocks.

56

Chapter 5

Results

This chapter details the preparatory steps, test setup, and methodology leading up
to the final tests on the embedded solution. It then presents the conducted tests,
analyzes the obtained results, and interprets their significance. Additionally, the
chapter includes an evaluation of the solution’s maximum performance.

The simulated test with one PE sensor duplicated to the four ADC inputs gave
satisfactory results, so it was time to build three additional amplifier circuits to
utilize all four PE sensors. A significant difference exists between the three other
circuits constructed at this point and the original circuit. While the original circuit
employed a special BNC to wire/banana cable, only one such device was available.
For this reason, the new circuits operated with classical BNC-crocodile cables.
Although they fulfilled their role, their comparably longer length meant they had
more significant parasitic capacitances and were more noise-prone. Otherwise, the
three additional circuits and the sensors were identical. The circuits were built on
a standard breadboard on three separate lanes to make them more modular.

After building the three circuits and ensuring each was correctly assembled and
free of mechanical or component errors, it was time to perform PLB tests. Two
different test configurations were created: the first test sequence was performed
on a marble block, while the second test configuration was executed on concrete.
The test setups can be seen in 5.1 and 5.2. The author wishes to highlight the
numbering of the sensors, as it will serve as a source of important analysis. Sensor
1 corresponds to channel 0, sensor 2 equals channel 1, sensor 3 is transformed by
channel 4 and finally, sensor 4 is converted by channel 8. Another important point
is that sensor two and sensor three were not properly touching the surface of the
stones, which meant that the data received from this sensor was suboptimal. This
happened because the cable’s weight lifted one end of the sensor. Unfortunately, it
was impossible to attach the sensors properly to the surface without permanent
glue. The paper-based tape used to remedy the negative effect on sensor two was
also insufficient in both configurations. To show that the problem was only a matter

57

Results

of the improper contact specific tests were carried out to show that the sensors
were functional. Furthermore, older results also back up this fact. Originally, the
PLB tests were performed using a mechanical pencil with a lead of 0.5 mm, but
this has proven to produce too weak of a signal. Thus, the mechanical pencil was
substituted with a screwdriver with a cone head to generate a stronger signal.

Figure 5.1: Test setup on marble block

At first, the PC used to process the serial data was plugged into the power
supply. After the first tests were performed, data did not show the expected
behavior when the transmitted signals were plotted. Such a result can be seen
in Figure 5.3. After some investigation, it turned out that the AC voltage crept
into the circuit, causing a significant noise that destroyed the AE signal. Hence,
it is essential to note that the current setup only works with the PC operating
from the battery. This behavior can happen because the capacitors responsible for
eliminating the noise do not successfully eradicate the power supply’s AC voltage.
This error could be fixed by changing the decoupling diodes to ones with proper
capacitance values. Another point to consider is changing the charge amplifier so
that its HPF better attenuates the 50 Hz AC signal.

58

Results

Figure 5.2: Test setup on concrete block

However, when the power supply was unplugged from the PC, the received
signals followed the expected behavior. Four different tests were performed after
each other, in both the marble and the concrete configurations:

1. A PLB test was performed close to sensor 1,

2. The next test was performed close to sensor 2,

3. The third test was performed between sensor 3 and sensor 4,

4. The last test was performed in the middle of the block.

5.1 PLB tests on marble
The first PLB test’s result can be seen in Figure 5.4. This figure plots the results
against each other for better compatibility. It can be seen that sensor 1 detects
the impact the fastest. According to the threshold surpassing (magenta dots),

59

Results

Figure 5.3: Received data when the power supply’s noise affected the original
AE signal

the second sensor to detect the crack is sensor 3 and channel 8. Despite sensor
2 (channel 1) exceeding the threshold much later, it has a significantly larger
maximum peak, suggesting it was closer to the source of the impact. This notion
is supported by the fact that the onset time detecting algorithm in Python (black
dots) selects this signal as the second in the order. It can also be seen that channel 0
and channel 1 capture almost identical signals, barring some magnitude differences.
Finally, channel 4 did not detect a crack at all, which is due to improper contact
with the surface.

Figure 5.4: Crack on marble, close to sensor 1

60

Results

Looking at the timer values for each channel, the received numbers might seem
to be counterintuitive. However, it is important to highlight that the clock to
command Timer10 had a frequency ten times higher than the clock of the ADCs.
Hence, channel 8’s smaller timer value is because the timer has overflowed and
started counting again, from 0 in the meantime.

The second PLB test was conducted by making an impact near sensor 2, visible
in Figure 5.5. Despite the deliberate effort, neither sensor 2 nor sensor 3 — channels
1 and 4, respectively — detected the crack. A deeper analysis reveals that channel
4 captured a weaker signal, indicating it was somewhat in contact with the surface.
This is confirmed by the placement of the onset detection algorithm of the Python
script (black dot on the green graph). Channels 0 and 8, captured the signal
accurately, with post-determined onset times close to each other and to channel 4.

Figure 5.5: Crack on marble, close to sensor 2

The third test was performed in the vicinity of sensor 4 - see Figure 5.6. In this
case, the sensor easily captured the signal, having the highest amplitudes out of
the four channels. Even though according to the data channel 0 did not capture
the crack, the reader can notice it was only a matter of a few millivolts as the
sensor one’s peak was only a little below the 2500 mark. Channel 8 detected the
crack essentially at the same time as channel 4 but with an opposite phase, and
with smaller amplitude. Finally, the crack arrived at channel 1 at last having the
smallest voltage swings as well.

Finally, the last PLB test was executed by making a crack in the middle of the
marble block that can be seen in Figure 5.7. In this case, channels 0, 4, and 8
registered the cracks essentially at the same time, with channel 4 having a slightly
smaller peak than the other two channels. Channel 1 had a much weaker signal,

61

Results

Figure 5.6: Crack on marble, close to sensor 3

but ultimately the threshold was crossed for this channel. It can be seen that the
Python function also placed the onset times for the three normal channels at the
same time. Even though channel 1’s onset times (both the magenta and the black)
were placed much later than for the other channel, it can be discerned that this
signal also started fluctuating at the same time as the others; even if only a little.

Figure 5.7: Crack on marble, in the middle of the block

It is beneficial to inspect the channels separately for this test as the channels
show fairly similar properties. Looking at the separate plots 5.8, 5.9, it can be
stated that channels 4 and 8 exhibit a similar start of the crack, both of them

62

Results

starting with a voltage dip, crossing the lower threshold line, which is followed by
a massive voltage swing towards, the maximum voltage value. This signal portion
is followed by a fairly standard attenuation. The microcontroller’s onset index is
similar for both channels (magenta), and the calculated onset time by the Python
script (black). Overall, channel 0 also presents analogous properties; the most
important differences are that this channel lacks the initial dip in the voltage and
has much more frequent voltage swings than the other two channels. The latter
leads to a later threshold surpassing, but the Python script places the onset time
in the same area as for the other two signals. Finally, channel 1 did not behave as
the other three channels. However, the separate plot helps us confirm that indeed
there is a voltage dip at a comparable point in time, even though the high noise
of this channel conceals it. The large positive peak is also present in this channel
even though it is lesser than in the other channels.

(a) Channel 0 (b) Channel 1

Figure 5.8: Channels shown separately for the PLB test in the middle - 1

(a) Channel 4 (b) Channel 8

Figure 5.9: Channels shown separately for the PLB test in the middle - 2

Analyzing the arrival times, it can be seen that the time difference between
the signals is quite significant. To have a proof of concept about the distance

63

Results

measurement it is advantageous to compare the closest arrival times, that is channel
8’s and channel 4’s. Timer10 was set to have a clock frequency of 84 MHz, yielding
a 18.834µs time difference of onset times, that is derived in 5.1.

∆t = (41162 − 39579) · 1
84000000Hz

= 1583 · 1
84000000Hz

= 18.845µs (5.1)

Assuming that the acoustic emission signal has an estimated travel speed of
3500 m/s in marble and in concrete [86], Equation 5.2 yields a difference of around
6.5 cm-s between the two sensors, which is very precise when looking at the test
setup and the placement of sensor 3 and 4 (see 5.1). This result underlines the
correctness of the solution. However, it must be said that this computation did not
use the proper formulas, so it can only be used as an estimate.

∆s = 3500m/s · 18.845µs = 0.0659m = 6.59cm (5.2)

Although the obtained results are more than satisfactory, it might be considered
to slow down Timer10 ’s frequency. Even though the high 84 MHz clock gives the
highest precision for cracks that are close to each other, a higher frequency might
make the measurements more difficult for sensors that are further from each other,
because of the overflows. To handle this either a variable had to be introduced to
store the number of timer overflows or the timer’s frequency had to be slowed down.
As this decision is application-dependent, the thesis did not consider selecting a
proper frequency, it focused more on the maximum achievable performance which
is why the 84 MHz was selected.

5.2 PLB tests on concrete
Looking at the first result performed on a concrete block that had an impact close
to sensor 1 5.10, it can be seen that the crack first arrives at sensor 1, then shortly
after at sensor 4 - depicted by channels 0 and 8 on the plot, respectively. Both
channels have a peak of the ADC’s maximum, 4095 value, but the dip preceding
this peak is greater in absolute value for channel 0. It can be seen that although
the microcontroller detected the crack much later (magenta dot on the yellow
plot) than it did for the previous two channels, the Python code places the onset
time almost at the same time as for the previous two channels (black dots). This
confirms that in reality the the crack arrived at sensor 2 much earlier than what
is shown by the timers. Channel 4 however did not record a crack, due to the
unreliable contact with the concrete’s surface.

Even though the second PLB test created a crack close to sensor 2, it could
not record the crack 5.11, due to the wrong surface contact. Unlike channel 1,

64

Results

Figure 5.10: Crack on concrete, close to sensor 1

channel 0 and channel 8 recorded a crack with a big low dip, that already crossed
the threshold. This cannot be stated for channel 0, even though this channel also
had a voltage dip at the same time as channel 8, but it did not penetrate the
threshold. Channel 4 did not cross the threshold, but it came close to it at a similar
time as the other two channels that did detect a crack. The Python script’s onset
time detection places the onset time close to the other two channels (black dots).
Channel 1 remained so stagnant that even the Python code did not manage to
determine an onset time.

Figure 5.11: Crack on concrete, close to sensor 2

65

Results

The third PLB test impacted sensors 3 and 4 5.12. Channels 4 and 8 managed
to pick up these cracks almost at the same time but with opposite voltage swings.
Indeed, there is only a 1000-tick difference between the two onset times, which
translates to 12µs-s. Both channels register the maximum peak at 4095, with
similar characteristics over the whole signal span. Instead, channel 0 only detects
the crack at the time when the other two channels register the maximum peak.
Unlike these channels, channel 1 did not register the crack, but there is a minimal
dip in the middle. This is, however, so small that the Python code couldn’t detect
it either.

Figure 5.12: Crack on concrete, between sensor 3 and 4

Finally, the last PLB test hit the marble in the middle of the concrete block:
5.13. Again, channel 0 and channel 8 passed the threshold at the same time during
the negative voltage swing, while channel 1 recorded it only during the positive
voltage swing. However, the Python code’s onset detection algorithm places channel
1’s onset time at the same point as the other two channels. It can also be witnessed
that all three channels register a similar crack evolution over time. Channel 4 did
not record any cracks.

In conclusion, it can be stated that the PLB tests performed on the concrete
block exhibit similar properties as the PLB tests on the marble block. What cannot
be seen from these results, is that it took more runs to create appropriate results,
because the sensors often failed to record the signals. This is probably due to
the structural differences between the two materials. Despite this, the embedded
solution worked well on this material as well.

66

Results

Figure 5.13: Crack on concrete, in the middle of the concrete block

5.3 Analysis of the maximum performance
At this point, it is helpful to study the maximum achievable sampling time, code
execution, and precision with the current setup and determine the embedded
solution’s upper-performance limit.

Inspecting the maximum speed of the ADC, it can be seen from the board’s
datasheet [77] that every ADC is powered by the APB2 clock, whose maximum
clock frequency is 90 MHz. In our setting, APB2 is set to 84 MHz, with an ARR
register minimally being (2 - 1), resulting in a 42 MHz frequency. Hence, the
theoretical maximum frequency for the ADC’s clock is 42 MHz. However, after
further inspection of the datasheet, the ADC characteristics section states that the
maximum ADC clock frequency is 18 MHz, which is still not the final result, as
the solution uses an external trigger for the ADC. The related table states that
the maximum external ADC trigger that can be kept up with is 1.764 MHz. This
number is the maximum frequency that the embedded system can operate with.
This value aligns with the requirements as a minimum of 100 kHz sampling was
asked. In the final configuration, the ADC is triggered with a 1 MHz external
trigger. The current ADC setup uses a 12-bit resolution that requires 15 clock
cycles to convert and three clock cycles sampling time, totaling 18 clock cycles. For
the four channels, it is a total of 72 clock cycles. Using the maximum achievable
frequency of 1.764 MHz, it would be a total of 41 us, while using the selected 1
MHz it results in 72 us. Using two ADC-s instead of one could half the required
conversion time to 36 or 20 us, depending on the clock speed. Using three ADCs
instead of two wouldn’t bring further improvements as one ADC would need to
convert two channels, remaining at the same speed.

67

Results

Nonetheless, looking at other limiting components in the processing chain is
worthwhile. Another component whose execution time can influence the results
and the onset time measurement’s precision is the execution of the check_threshold
function. As Timer10 was already initialized and used for high-speed measurements
it was selected to measure and save the time before and after the function call to
measure its execution time. This was performed for all function calls, which can
be seen in 5.1. After making more than 50 measurements, the maximum execution
time was around 40 ticks, which using the 84 MHz clock translates to 0.5 us. This,
compared to the 72-microsecond ADC conversion is negligible (less than 1 percent).
This measurement also confirms the efficiency of inline functions.

Listing 5.1: The execution time measurements of the check_threshold function
1 v o l a t i l e i n t t1 = __HAL_TIM_GET_COUNTER(&htim10) ;
2 check_threshold (raw_adc_values [0] , &thr_exceeded_at0 , &

time_at_crack0 , &onset_index0) ;
3 v o l a t i l e i n t t2 = __HAL_TIM_GET_COUNTER(&htim10) ;
4 check_threshold (raw_adc_values [1] , &thr_exceeded_at1 , &

time_at_crack1 , &onset_index1) ;
5 v o l a t i l e i n t t3 = __HAL_TIM_GET_COUNTER(&htim10) ;
6 check_threshold (raw_adc_values [2] , &thr_exceeded_at4 , &

time_at_crack4 , &onset_index4) ;
7 v o l a t i l e i n t t4 = __HAL_TIM_GET_COUNTER(&htim10) ;
8 check_threshold (raw_adc_values [3] , &thr_exceeded_at8 , &

time_at_crack8 , &onset_index8) ;
9 v o l a t i l e i n t t5 = __HAL_TIM_GET_COUNTER(&htim10) ;

The final component that was analyzed in the firmware was the maximum
execution time of the ADC callback function. To measure its execution time,
Timer10 was used similarly; its value was saved at the beginning and the end of
the callback. On average, the maximum execution time was around 360 ticks,
which means 4.2 us in total. This value is still one magnitude less than the ADC’s
conversion time.

Overall, it can be declared that the solution’s performance satisfies the initial
requirements of the 100 kHz sampling time as it would translate to a conversion
every 10 us. Despite the final configuration being a little slower (around 75 us) it
has been demonstrated that the solution can reach a speed of up to 20 microseconds,
which is on the required level. The results obtained also support that the system
achieves satisfactory results.

68

Chapter 6

Conclusion

This thesis developed an embedded system capable of detecting acoustic emission
signals in real-time using piezoelectric sensors. It introduced the necessary back-
ground knowledge to understand the field. In the first phase, in-depth research was
performed on state-of-the-art technologies in structural health monitoring.

The second phase focused on developing an appropriate analog circuit to trans-
form the piezoelectric sensor’s signal to increase interpretability. A charge amplifier
was chosen to transform the current to a more usable voltage level using an op-amp.
The signal was shifted to the midway of the ADC’s input range by another op-amp
and amplified by a third op-amp stage. The developed circuit was employed with
Schottky protection diodes to shield the microcontroller from harmful ESD strikes
and overvoltages of different natures. Thereafter, the focus was switched to the
embedded firmware development, where a program was created that could sample
four ADC channels in parallel, detect acoustic emission signals, and transmit them
over a serial connection for later processing. An ADC was configured to convert
the four sensor values connected to its four channels, commanded by an external
timer trigger, and moved to memory by a DMA instance. The communication
was executed using a UART protocol, and a proprietary data frame was designed.
The transmitted data was then displayed and saved by a Python client. The client
could interactively process and display the received data on the fly.

The thesis concluded by building a total of four identical amplifier circuits to
enable the platform to localize the crack in 3D. It was followed by testing the
developed embedded solution on both a marble and a concrete block with PLB
tests, demonstrating that the system can process and detect the generated signals
in real-time. Results showed that the embedded solution can process the data with
the required speed and precision to determine the onset time and localize the crack
inside the stone block. The utilized timers provide a possibility to determine the
position of the crack, which can be implemented in the future. An analysis of the
performance and the maximum execution time was performed, yielding that the

69

Conclusion

solution complies with the initial requirements.
Even though the thesis provided a verified solution to a pressing problem in

the structural health monitoring domain, there is room for improvement in various
areas. Even though the developed analog circuit does not require a power supply
other than the microcontroller’s own, the system’s power consumption could be
further improved by utilizing the low-power modes provided by the ST ecosystem.
The system could be put into a low-power state between processing samples to
optimize energy consumption. As detailed in the thesis, the developed circuit often
suffered from noise from the PC’s power supply. Hence, another future improvement
is to make the circuit more noise-resistant.

A possible problem that did not manifest during the PLB tests is that the
sensors might not be sensitive enough to detect more distant cracks coming from
tens or hundreds of meters, so this could also be improved in the future. A good
advancement of the project is to implement a crack localization algorithm either
in the Python client or in the board itself. An AI agent could also be trained on
the data generated with the embedded solution, and this agent could be deployed
in the embedded system to evaluate the agent’s capability of detecting the onset
time. Finally, another consideration is to redesign the sensor and the amplification
circuit to have a wireless connection to the central node to lose the constraints
posed by limited cable lengths.

70

Appendix A

Experimental signal
amplifier circuits

A.1 Circuit 1
The first circuit that was designed included four stages. The first stage provided
the necessary offset of 1.65 V to the ADC’s input, and the sensor connected in
parallel with a 1MΩ resistance. The idea behind this resistor was to discharge
the accumulated charge between the sensor’s two terminals. The next stage of
the circuit served as an overvoltage protection. This stage included 2 1N5819 [87]
Schottky rectifier diodes. The diodes were connected in series between the 3.3
Volts supply and ground, while the output of the previous stage was connected
between the two diodes. The third stage was a simple RC LP filter intended as
an anti-aliasing filter. The resistance and the capacitance were chosen so that the
LPF had a cutoff frequency of 20 kHz.

fc = 20kHz = 1
2πRC

R=10kΩ= 1
2π104C

(A.1)

C = 1
2π · 2 · 108 = 0.79nF (A.2)

The closest available capacitance in the laboratory was 1 nF, resulting in a 16
kHz cutoff frequency.

Finally, the circuit concluded with a non-inverting amplifier that amplified the
input signal 11 times. As op amp, a TLC271 [83] was selected, as the board could
power it.

The whole circuit can be seen in Figure A.1. It can be easily seen that this
circuit could not perform its intended purpose for many reasons. Most trivially,
even though it amplified the sensor’s voltage to the correct range of +/- 1.5 V, it

71

Experimental signal amplifier circuits

also amplified the offset to a staggering 15V in theory, which would, in practice,
translate to the circuit’s supply voltage (5 V). For this reason, this design was
rapidly discarded.

Figure A.1: Experimental circuit design 1

A.2 Circuit 2
The second experimental circuit introduced a different approach to inserting the
sensor into the design. In this layout, the sensor was connected to the ground
and directly to the midpoint of the protection Schottky diodes detailed in the
previous design. The next stage of the circuit was the most complex part of the
design, which included a non-inverting op-amp with a positive reference voltage.
The design was based on a TI design tutorial [88].

The first step in the design was to choose the desired gain (G) for the circuit.
Based on the sensor’s voltage output and the ADC’s input range, the gain can be
computed by the following equation, where O denotes output, and I denotes input.

72

Experimental signal amplifier circuits

VOmax − VOmin

VImax − VImin

= 3.3V − 0V

0.15V − −0.15V
= 11 (A.3)

The second step was to select the values of the R1 and R4 resistors. These values
can be selected freely; however, the values within the feedback are recommended
to be less than 100kΩ. Following this, the value of R1 was chosen as 1kΩ and the
value of R4 was chosen as 1MΩ. The latter was purposefully selected to be so
large as to limit the current creeping in and out through this branch.

Subsequently, the values of R2 and R3 were calculated using a system of
equations. Skipping the detailed derivation of the solution, the exact values of the
resistors are: R2 = 91Ω and R3 = 90kΩ.

Nevertheless, these resistor values are very particular; they were unavailable in
the laboratory, so the closest resistors used were 100 Ohm and 100 kOhm, slightly
changing the offset and gain values obtained:

G = 106

106 + 105 · 103 + 100
100 = 10 (A.4)

Offset = Vref · R3

R3 + R4
· R1 + R2

R2
= 1.65V · 105

105 + 106 · 1000 + 100
100 = 1.65V (A.5)

These values are close to the desired theoretical numbers, so the resistors were
kept.

The final two stages of the circuit were taken from the previous design. The
third stage is a low-pass filter with a unit-gain op amplifier to stabilize the signal.
The final portion is the clamping circuitry of two 1N5819 Schottky diodes.

The complete circuit can be seen in Figure A.2.

Figure A.2: Experimental circuit number 2

73

Experimental signal amplifier circuits

Firstly, the behavior of the low-pass filter was verified. The filter was tested
at two different frequencies, at 3 kHz and 50 kHz. As expected, the LPF greatly
attenuated the signal at a larger frequency. The results can be seen in Figure A.3,
A.4, and A.5.

(a) 5 kHz input signal (b) 5 kHz LPF response

Figure A.3: LPF behavior at 5 kHz

(a) 5 kHz input signal (b) 5 kHz LPF response

Figure A.4: LPF behavior at 50 kHz

Afterward, the whole chain was tested with a signal generator and a standard
power supply. The circuit behaved according to the expectations when tested with
a signal generator similar to the sensor’s signal. The behavior at 3 kHz can be seen
in Figure A.6, while in Figure A.7, the characteristics at 33 kHz are presented.

There are, nonetheless, essential differences between the sensor’s behavior and
the signal generator’s. While the signal generator directly creates a voltage between
the two terminals it is connected, the sensor’s output is current, meaning it has
to pass through some resistance to create a perceivable voltage on the circuit’s
output. Moreover, due to the sensor’s capacitive nature, the sensor behaves as a
cut when the input is static, meaning it will act as if the sensor’s input was left
floating. In that case, the offset voltage will be sent to the output in an amplified
fashion. Since the offset is around 1.5V, the circuit’s output will be the supply

74

Experimental signal amplifier circuits

Figure A.5: Assembled circuit with only the LPF

(a) 3 kHz input signal (b) Circuit response at 3 kHz

Figure A.6: Circuit behavior at 3 kHz

voltage Vdd = 3.6V . This demeanor is captured in A.8. Channel 1 (yellow) shows
the sensor’s signal, while channel 2 (blue) captures the circuit’s output. Channel
1’s vertical resolution is 50mV per grid, while channel 2’s unit is 2 V per grid. It
can be seen that the output is constantly at the supply voltage except when the
sensor’s negative voltage swing counters the constant offset voltage to decrease the
overall voltage.

It is essential to mention that the fact that the sensor was outputting current,
not voltage, was not yet understood at this development stage. Subsequently, the
following design did not try to solve this issue but the problem of the amplified

75

Experimental signal amplifier circuits

(a) 33 kHz input signal (b) Circuit response at 33 kHz

Figure A.7: Circuit behavior at 33 kHz

Figure A.8: The circuit’s response to the sensor’s signal

offset voltage for constant inputs.

A.3 Circuit 3
Another more precise design was created to solve the incorrect output signal
perceived in the previous design. This layout included a precision component, an
INA, discussed more in detail in 2. Particularly a TI INAx126 [89]. An important
characteristic of this circuit is the change to a dual-supply topology to power the
INA introduced. The sensor was connected to the INA’s input terminals. This
active component features a configurable amplification that can be set by placing
the appropriate resistor between the dedicated terminals. To achieve a 1̃0-fold
amplification a 15kΩ resistor was chosen. Decoupling diodes were placed on the
supply lines to eliminate every possible noise entering the component, powering

76

Experimental signal amplifier circuits

the INA.
The other input branch of the circuit included a voltage reference with a negative

feedback unit gain inverting amplifier. As for now, there was no need to place
single supply components, so a different, dual-supply op-amp was used, the TL082
from Texas Instruments [82]. The offset voltage was set to 1.65V and consisted of
2 resistors.

The final addition to the design was the introduction of the summing amplifier,
also discussed in 2. Further amplification was unnecessary as the sensor’s signal
was already amplified to the ADC’s correct range. Consequently, every resistor
inside the summing amplifier was set to be 22 kOhms to obtain a unit gain.

Finally, the same LPF and clamping diodes were added to the circuit as in the
previous design. However, this one was also changed to a TL082 like the other
op-amp. The complete circuit’s design can be seen in Figure A.9.

Figure A.9: Experimental circuit design 3

First, the INA was tested with the sensor only to determine if the amplification
worked correctly. Results showed that the INA amplified the sensor’s signal to the
correct range A.10.

Leveraging this positive outcome, the chain excluding the LPF and the protection
diodes was tested first against a signal generator-generated signal. When tested,
the circuitry showed promising results, correctly amplifying and shifting the input
signal to the desired range. Results can be seen in A.11, while the assembled circuit
can be seen in A.12.

77

Experimental signal amplifier circuits

Figure A.10: the INA’s output when connected the sensor is connected to its
inputs

(a) 1 kHz input signal (b) Circuit response at 1 kHz

Figure A.11: INA circuit response to 1 kHz sine wave

Consequently, the circuit was tried with the sensor as input, excluding the
LPF and the protection diodes. Unfortunately, in this case, the behavior of the
sensor torpedoed the circuit’s success in correctly amplifying and shifting the signal.
Results show a rectangular, almost peak-to-peak signal between the supply voltages
A.13.

These results indicated a fundamental problem in how these circuits were
designed and how the sensor’s behavior was interpreted. This latest letdown
demonstrated a need for further research and understanding of such sensors. Addi-
tional research was deemed fruitful, and the following design resulted in a working
solution presented in chapter 4.

78

Experimental signal amplifier circuits

Figure A.12: Assembled circuit with INA and probe connected to its output

Figure A.13: Experimental circuit 3’s (including INA) response to the signal as
input

79

Appendix B

Python scripts

B.1 Python script for single ADC channel and
polling

Listing B.1: First Python script to save data
1 import s e r i a l
2 import time
3 import matp lo t l i b . pyplot as p l t
4

5 CRACK_ARRAY_LEN = 1024
6 UART_PORT = ’COM3’
7 UART_BAUDRATE = 57600
8 TERMINATOR = b ’ \xFF\xFF ’
9

10

11 de f read_from_UART(port , baud_rate , length , de lay =0.01) :
12

13 with s e r i a l . S e r i a l (port , baud_rate) as s e r :
14

15 time . s l e e p (de lay)
16 data = s e r . read (l ength ∗2) # 2 bytes f o r uint16_t
17 i f l en (data) != length ∗2 :
18 pr in t (’ Error : Data l ength mismatch ’)
19

20 va lue s = []
21 f o r i in range (0 , l en (data) , 2) :
22 value = i n t . from_bytes (data [i : i +2] , byteorder=’ l i t t l e ’)
23 va lue s . append (value)
24

25 re turn va lues
26

27

80

Python scripts

28 i f __name__ == ’__main__ ’ :
29

30 normal_array_len = read_from_UART(UART_PORT, UART_BAUDRATE, 1) [0]
31 pr in t (’ Normal array l ength : ’ , normal_array_len)
32

33 crack_pr ior = read_from_UART(UART_PORT, UART_BAUDRATE,
normal_array_len)

34 crack = read_from_UART(UART_PORT, UART_BAUDRATE, CRACK_ARRAY_LEN)
35

36 whole_crack = crack_pr ior + crack
37 p l t . p l o t (whole_crack)
38 pr in t (’ Data l ength : ’ , l en (whole_crack))

B.2 Python script for single ADC channel with
interrupts

Listing B.2: Improved Python script with threading and data visualization
1 import s e r i a l
2 import time
3 import thread ing
4 import s t r u c t
5 import matp lo t l i b . pyplot as p l t
6

7 # i t e r a t o r + normal data + crack data + time at crack
8 NORMAL_LEN = 512
9 CRACK_LEN = 4096

10 ARRAY_LEN = 1 + NORMAL_LEN + CRACK_LEN + 1
11 UART_PORT = ’COM3’
12 UART_BAUDRATE = 57600
13

14

15 de f input_thread (stop_event) :
16 whi le not stop_event . i s_se t () :
17 i f input () . lower () == ’ q ’ :
18 stop_event . s e t ()
19 break
20

21

22 de f read_fixed_length_data (s e r) :
23 expected_bytes = ARRAY_LEN ∗ 2 # 2 bytes per uint16_t
24 data_bytes = s e r . read (expected_bytes)
25

26 i f l en (data_bytes) != expected_bytes :
27 r a i s e ValueError (f " Expected { expected_bytes } bytes , got { l en (

data_bytes) } ")

81

Python scripts

28

29 re turn s t r u c t . unpack (f ’<{ARRAY_LEN}H’ , data_bytes)
30

31

32 de f process_data (v i s u a l i z e=False) :
33 stop_event = thread ing . Event ()
34 input_thread_handle = thread ing . Thread (t a r g e t=input_thread ,
35 args=(stop_event ,))
36 input_thread_handle . s t a r t ()
37

38 with s e r i a l . S e r i a l (UART_PORT,
39 UART_BAUDRATE,
40 par i t y=s e r i a l .PARITY_NONE,
41 s t o p b i t s=s e r i a l .STOPBITS_ONE,
42 t imeout =10) as s e r :
43

44 pr in t (f " Connected to { s e r . name} ")
45 pr in t (" Press ’ q ’ to qu i t and Enter to qu i t the program ")
46

47 whi le not stop_event . i s_se t () :
48 t ry :
49 pr in t (" Waiting f o r data . . . ")
50 data = read_fixed_length_data (s e r)
51

52 # index o f the l a s t element in the normal data
53 l a s t_index = data [0]
54

55 normal_data = data [1 :1+NORMAL_LEN]
56 # r o t a t e the crack data to the beg inning
57 normal_data = normal_data [las t_index :] + normal_data

[: l a s t_index]
58 crack_data = data [1+NORMAL_LEN: −1]
59 time_at_crack = data [−1]
60

61 whole_data = (time_at_crack ,) + normal_data +
crack_data

62

63 date = time . s t r f t i m e ("%Y−%m−%d" , time . l o c a l t i m e ())
64 with open (f " r e s u l t s / crack_data { date } . txt " , " a ") as f :
65 f . wr i t e (" " . j o i n (map(s t r , whole_data)) + " \n ")
66

67 pr in t (f " Total data l ength : { l en (whole_data) } ")
68 i f v i s u a l i z e :
69 p l t . p l o t (normal_data + crack_data)
70 p l t . x l a b e l (" Index ")
71 p l t . y l a b e l (" Value ")
72 p l t . t i t l e (" Crack data at time : " + s t r (

time_at_crack))
73 p l t . show ()

82

Python scripts

74

75 except ValueError as e :
76 pr in t (f " Error read ing data : {e} ")
77 except s e r i a l . S e r i a lExcep t i on as e :
78 pr in t (f " S e r i a l port e r r o r : {e} ")
79 break
80 except s t r u c t . e r r o r as e :
81 pr in t (f " Data unpacking e r r o r : {e} ")
82 cont inue
83 except Exception as e :
84 pr in t (f " Unexpected e r r o r : {e} ")
85 cont inue
86

87 stop_event . s e t ()
88 input_thread_handle . j o i n ()
89 pr in t (" Program terminated . ")
90

91

92 de f v i sua l i z e_data (m f i l e) :
93 with open (mf i l e , " r ") as f :
94 data = f . r e a d l i n e s ()
95

96 s tart_t imes = []
97 c racks = []
98 f o r l i n e in data :
99 l i n e = l i n e . s t r i p ()

100 l i n e = l i n e . s p l i t (" ")
101 s tart_t imes . append (l i n e [0])
102 c racks . append (l i n e [1 :])
103

104 c racks = [[i n t (x) f o r x in crack] f o r crack in c racks]
105

106 p l t . f i g u r e (f i g s i z e =(10 , 6))
107 f o r crack in c racks :
108 p l t . p l o t (crack)
109 p l t . x l a b e l (" Index ")
110 p l t . y l a b e l (" Value ")
111 p l t . t i t l e (" Crack data ")
112

113

114 i f __name__ == ’__main__ ’ :
115 process_data (v i s u a l i z e=True)
116

117 today = time . s t r f t i m e ("%Y−%m−%d" , time . l o c a l t i m e ())
118 d a t a f i l e = f " r e s u l t s / crack_data { today } . txt "
119 v i sua l i z e_data (d a t a f i l e)

83

Python scripts

B.3 Python script for multiple ADC channels

Listing B.3: Final Python script with threading and interactive data visualization
1

2 import s e r i a l
3 import time
4 import thread ing
5 import s t r u c t
6 import matp lo t l i b . pyplot as p l t
7 from c o l l e c t i o n s import d e f a u l t d i c t
8

9 NORMAL_LEN = 512
10 CRACK_LEN = 4096
11 # channel + index + normal_data + crack data + time + onset_index
12 ARRAY_LEN = 1 + 1 + NORMAL_LEN + CRACK_LEN + 1 + 1
13 UART_PORT = ’COM3’
14 UART_BAUDRATE = 115200
15 PLOT_WINDOW_SIZE = 5000 # Number o f po in t s to d i sp l ay per channel
16 LOWER_THRESHOLD = 1200
17 UPPER_THRESHOLD = 2500
18

19 color_mapping = { ’ 0 ’ : ’#1f77b4 ’ , ’ 1 ’ : ’#f f 7 f 0 e ’ , ’ 4 ’ : ’#2ca02c ’ , ’ 8 ’ :
’#d62728 ’ }

20

21 # I n i t i a l i z e data s to rage
22 channel_data = d e f a u l t d i c t (lambda : {
23 ’ time_at_crack ’ : [] ,
24 ’ va lue s ’ : [] ,
25 ’ onset_index ’ : []
26 })
27

28 # Def ine the he i gh t s f o r h o r i z o n t a l l i n e s
29 h o r i z o n t a l _ l i n e s = [LOWER_THRESHOLD, UPPER_THRESHOLD]
30

31

32 de f input_thread (stop_event) :
33 whi le not stop_event . i s_se t () :
34 i f input () . lower () == ’ q ’ :
35 stop_event . s e t ()
36 break
37

38

39 de f read_fixed_length_data (s e r) :
40 " " " Reads a f i x e d l ength o f data from the s e r i a l port
41

42 Args :
43 s e r () : s e r i a l . S e r i a l ob j e c t
44

84

Python scripts

45 Raises :
46 ValueError : I f the number o f bytes read i s not equal to the

expected number o f bytes
47

48 Returns :
49 Tuple : Tuple o f uint16_t values , that are read from the

s e r i a l port
50 " " "
51 expected_bytes = ARRAY_LEN ∗ 2 # 2 bytes per uint16_t
52 data_bytes = s e r . read (expected_bytes)
53

54 i f l en (data_bytes) != expected_bytes :
55 r a i s e ValueError (f " Expected { expected_bytes } bytes , got { l en (

data_bytes) } ")
56

57 re turn s t r u c t . unpack (f ’<{ARRAY_LEN}H’ , data_bytes)
58

59

60 de f process_data (v i s u a l i z e : bool = True , use_exist ing_data : bool =
False , save_rx_data : bool = True) −> None :

61 " " "
62 dynamic data p ro c e s s i ng funct ion ,
63 f i s t opens the s e r i a l connect ion , then reads the data from the

s e r i a l port ,
64 o p t i o n a l l y saves the raw data to a f i l e f o r l a t e r s imu la t i on use ,
65 and f i n a l l y v i s u a l i z e s the data in r e a l time and saves the

proce s s ed data to a f i l e
66

67 Args :
68 v i s u a l i z e (bool , op t i ona l) : whether to v i s u a l i z e l i v e .

De fau l t s to True .
69 use_exist ing_data (bool , op t i ona l) : whether to use e x i s t i n g

data
70 WARNING: COM connect ion s t i l l needed . De fau l t s to Fa l se .
71 save_rx_data (bool , op t i ona l) : whether to save r e c e i v e d raw

data
72 (used f o r debug and communication s imu la t i on when board

i s not a v a i l a b l e) . De fau l t s to True .
73

74 Raises :
75 ValueError : I f the data l ength exceeds the p l o t window s i z e
76 Se r i a lExcep t i on : I f the re i s an e r r o r with the s e r i a l port
77 s t r u c t . e r r o r : I f the re i s an e r r o r unpacking the data
78 Exception : For any other unexpected e r r o r s
79 " " "
80 stop_event = thread ing . Event ()
81 input_thread_handle = thread ing . Thread (t a r g e t=input_thread , args

=(stop_event ,) , daemon=True)
82 input_thread_handle . s t a r t ()

85

Python scripts

83

84 with s e r i a l . S e r i a l (UART_PORT,
85 UART_BAUDRATE,
86 par i t y=s e r i a l .PARITY_NONE,
87 s t o p b i t s=s e r i a l .STOPBITS_ONE,
88 t imeout =10) as s e r :
89 pr in t (f " Connected to { s e r . name} ")
90 pr in t (" Press ’ q ’ and Enter to qu i t the program ")
91 i f v i s u a l i z e :
92 p l t . ion () # Turn on i n t e r a c t i v e mode
93 f i g , ax = p l t . subp lo t s (f i g s i z e =(12 , 8))
94 # d i c t s to prevent mu l t ip l e channe l s on the p l o t
95 l i n e s = {}
96 s c a t t e r _ p l o t s = {}
97 # c o l o r coding o f channe l s
98 c o l o r s = {0 : ’ red ’ , 1 : ’ b lue ’ , 4 : ’ orange ’ , 8 : ’ green ’ }
99 ax . s e t_x labe l (" Index ")

100 ax . s e t_y labe l (" Value ")
101 ax . s e t _ t i t l e (" Crack Data f o r Al l Channels ")
102

103 # Plot h o r i z o n t a l th r e sho ld l i n e s
104 f o r he ight in h o r i z o n t a l _ l i n e s :
105 ax . axh l ine (y=height , c o l o r=’ gray ’ , l i n e s t y l e=’−− ’ ,

l i n ew id th =0.7)
106

107 date = time . s t r f t i m e ("%Y−%m−%d_%H−%M" , time . l o c a l t i m e ())
108 whi le not stop_event . i s_se t () :
109 t ry :
110 i f use_exist ing_data :
111 with open (" raw_data/crack_data2025 −03−04_19−24.

txt " , " r ") as f :
112 data = f . r e a d l i n e s ()
113 data = data [1] . s t r i p () . s p l i t (" ")
114

115 # Convert data to i n t e g e r s
116 data = l i s t (map(int , data))
117 e l s e :
118 pr in t (" Waiting f o r data . . . ")
119 # attempt to read data
120 data = read_fixed_length_data (s e r)
121

122 # j o i n tup l e i n to a s t r i n g and wr i t e to f i l e
123 r e s = ’ ’ . j o i n (s t r (va l) f o r va l in data)
124 with open (f " raw_data/crack_data { date } . txt " , " a ")

as f :
125 f . wr i t e (r e s + ’ \n ’)
126

127 # the f i r s t element i s channel
128 channel = data [0]

86

Python scripts

129 # second element i s the l a t e s t va lue in the normal
array

130 l a s t_index = data [1] − 2
131

132 # r eo r de r i n g the data because c i r c u l a r b u f f e r
probably f i l l e d up

133 # i f not , then 0 s at the beg inning are b e t t e r than bw
normal and crack data

134 normal_data = data [2 :2+NORMAL_LEN]
135 # r o t a t e the crack data to the beg inning
136 normal_data = normal_data [las t_index :] + normal_data

[: l a s t_index]
137 # crack data i s from the l a s t index o f normal data to

the end − 2
138 crack_data = data [2+NORMAL_LEN: −2]
139 # time at crack i s the l a s t element
140 time_at_crack = data [−1]
141 # onset index i s the l a s t element , but we need to add

the l ength o f normal data
142 onset_index = data [−2] + len (normal_data)
143

144 # Combine normal and crack data
145 combined_data = normal_data + crack_data
146

147 # Store data
148 channel_data [channel] [’ time_at_crack ’] = [

time_at_crack]
149 channel_data [channel] [’ va lue s ’] = combined_data
150 channel_data [channel] [’ onset_index ’] = [onset_index]
151

152 # Limit data to PLOT_WINDOW_SIZE
153 i f l en (channel_data [channel] [’ va lue s ’]) >

PLOT_WINDOW_SIZE:
154 r a i s e ValueError (" Data l ength exceeds p l o t window

s i z e ")
155

156 # Save to f i l e
157 i f save_rx_data :
158 with open (f " r e s u l t s / crack_data { date } . txt " , " a ")

as f :
159 whole_data = (channel , time_at_crack ,

onset_index) + tup l e (combined_data)
160 f . wr i t e (" " . j o i n (map(s t r , whole_data)) + " \n "

)
161

162 pr in t (f " Channel { channel } : Total data l ength : { l en (
channel_data [channel] [’ va lue s ’]) } ")

163

164 i f v i s u a l i z e :

87

Python scripts

165 i f channel not in l i n e s :
166 # I n i t i a l i z e l i n e f o r new channel
167 l i n e s [channel] , = ax . p l o t (
168 channel_data [channel] [’ va lue s ’] ,
169 l a b e l=f " Channel { channel } at {

time_at_crack} " ,
170 c o l o r=c o l o r s . get (channel , ’ b lack ’)
171)
172 e l s e :
173 # Update e x i s t i n g l i n e
174 l i n e s [channel] . set_ydata (channel_data [channel

] [’ va lue s ’])
175 l i n e s [channel] . set_xdata (range (l en (

channel_data [channel] [’ va lue s ’])))
176 l i n e s [channel] . s e t_ labe l (f " Channel { channel }

at { time_at_crack} ")
177

178 # Remove prev ious s c a t t e r p l o t i f i t e x i s t s
179 i f channel in s c a t t e r _ p l o t s :
180 s c a t t e r _ p l o t s [channel] . remove ()
181

182 # Plot dot at onset_index , c a l c u l a t e d by the
board

183 s c a t t e r _ p l o t s [channel] = ax . s c a t t e r (onset_index ,
184 channel_data [

channel] [’ va lue s ’] [onset_index] ,
185 c o l o r=’#

FF00FF ’ ,
186 zorder =5)
187

188 ax . r e l im ()
189 ax . autoscale_view ()
190 ax . l egend (l o c=’ upper r i g h t ’)
191 p l t . draw ()
192 p l t . pause (0 . 0 1)
193

194 except ValueError as e :
195 pr in t (f " Error read ing data : {e} ")
196 except s e r i a l . S e r i a lExcep t i on as e :
197 pr in t (f " S e r i a l port e r r o r : {e} ")
198 break
199 except s t r u c t . e r r o r as e :
200 pr in t (f " Data unpacking e r r o r : {e} ")
201 cont inue
202 except Exception as e :
203 pr in t (f " Unexpected e r r o r : {e} ")
204 cont inue
205

206 stop_event . s e t ()

88

Python scripts

207 input_thread_handle . j o i n ()
208

209 i f v i s u a l i z e :
210 p l t . i o f f ()
211 p l t . show ()
212 pr in t (" Program terminated . ")
213

214

215 de f v i sua l i ze_per_channe l (m f i l e : s t r) −> None :
216 " " " v i s u a l i z a t i o n from proce s sed f i l e per channel (4 l i n e s)
217

218 a l s o adds b e t t e r c a l c u l a t e d onset index to the plot , with upper
and lower l i m i t s

219 Args :
220 m f i l e (s t r) : s t r i n g o f f i l e conta in ing the proce s s ed data
221 " " "
222 with open (mf i l e , " r ") as f :
223 data = f . r e a d l i n e s ()
224

225 samples = []
226 va l id_channe l s = { ’ 0 ’ , ’ 1 ’ , ’ 4 ’ , ’ 8 ’ }
227 f o r l i n e in data :
228 l i n e = l i n e . s t r i p ()
229 l i n e = l i n e . s p l i t (" ")
230 i f l i n e [0] not in va l id_channe l s :
231 cont inue
232 sample = {
233 ’ channel ’ : l i n e [0] ,
234 ’ s tart_time ’ : l i n e [1] ,
235 ’ onset_index ’ : i n t (l i n e [2]) ,
236 ’ c rack ’ : [i n t (x) f o r x in l i n e [3 :]] ,
237 }
238 samples . append (sample)
239

240 f o r i , sample in enumerate (samples) :
241 f i g , ax = p l t . subp lo t s (f i g s i z e =(10 , 6))
242 # Plot h o r i z o n t a l l i n e s
243 f o r he ight in h o r i z o n t a l _ l i n e s :
244 ax . axh l ine (y=height , c o l o r=’ gray ’ , l i n e s t y l e=’−− ’ ,

l i n ew id th =0.7)
245

246 ax . p l o t (sample [’ c rack ’] ,
247 l a b e l=f " Channel { sample [’ channel ’] } at { sample [’

s tart_time ’] } " ,
248 c o l o r=color_mapping [sample [’ channel ’]])
249

250 # c a l c u l a t e and p lo t upper and lower l i m i t s , onset time
251 _, upper , lower , out l i e r_ index = find_onset_time (samples [i] [’

c rack ’] , 50 , 10)

89

Python scripts

252 i f ou t l i e r_ index != −1:
253 ax . axh l ine (y=upper , c o l o r=’ black ’ , l i n e s t y l e=’−− ’ ,

l i n ew id th =0.7)
254 ax . axh l ine (y=lower , c o l o r=’ black ’ , l i n e s t y l e=’−− ’ ,

l i n ew id th =0.7)
255 ax . s c a t t e r (out l i e r_index , samples [i] [’ c rack ’] [

ou t l i e r_ index] , c o l o r=’ black ’ , zorder =5)
256

257 # add onset index o f the crack , c a l c u l a t e d by the board , i f
i t i s ou t s id e the th r e sho ld

258 # (p r e v i o u s l y the onset index r e s e t was not added to the c
code ,

259 # so i t i s not sure i f i t conta in s the l a t e s t onset index)
260 onset_value = sample [’ crack ’] [sample [’ onset_index ’]]
261 i f onset_value > UPPER_THRESHOLD or onset_value <

LOWER_THRESHOLD:
262 ax . s c a t t e r (sample [’ onset_index ’] , onset_value , c o l o r=’#

FF00FF ’ , zorder =5)
263

264 ax . s e t_x labe l (" Index ")
265 ax . s e t_y labe l (" Value ")
266 ax . s e t _ t i t l e (" Crack data grouped by channe l s ")
267 ax . legend ()
268 p l t . show ()
269 p l t . s a v e f i g (f " images /concrete_GOOD_run3/ crack {(i // 4) + 1}

_channel{ sample [’ channel ’] } . png ")
270 p l t . c l o s e (f i g)
271

272

273 de f v i sua l i z e_per_crack (m f i l e : s t r) −> None :
274 " " " v i s u a l i z e s data per crack (1 p l o t = 1 channel)
275

276 a l s o adds b e t t e r c a l c u l a t e d onset index to the p l o t
277 Args :
278 m f i l e (s t r) : f i l e conta in ing the data
279 " " "
280 with open (mf i l e , " r ") as f :
281 data = f . r e a d l i n e s ()
282

283 samples = []
284 va l id_channe l s = { ’ 0 ’ , ’ 1 ’ , ’ 4 ’ , ’ 8 ’ }
285 f o r l i n e in data :
286 l i n e = l i n e . s t r i p ()
287 l i n e = l i n e . s p l i t (" ")
288 i f l i n e [0] not in va l id_channe l s :
289 cont inue
290 sample = {
291 ’ channel ’ : l i n e [0] ,
292 ’ s tart_time ’ : l i n e [1] ,

90

Python scripts

293 ’ onset_index ’ : i n t (l i n e [2]) ,
294 ’ c rack ’ : [i n t (x) f o r x in l i n e [3 :]] ,
295 }
296 samples . append (sample)
297

298 grouped_samples = []
299 current_group = []
300 current_channels = s e t ()
301

302 f o r sample in samples :
303 channel = sample [’ channel ’]
304 i f channel not in current_channels and l en (current_channels)

< 4 :
305 current_group . append (sample)
306 current_channels . add (channel)
307 e l s e :
308 grouped_samples . append (current_group)
309 current_group = [sample]
310 current_channels = { channel }
311

312 i f current_group :
313 grouped_samples . append (current_group)
314

315 f o r group in grouped_samples :
316 f i g , ax = p l t . subp lo t s (f i g s i z e =(10 , 6))
317 # Plot h o r i z o n t a l l i n e s
318 f o r he ight in h o r i z o n t a l _ l i n e s :
319 ax . axh l ine (y=height , c o l o r=’ gray ’ , l i n e s t y l e=’−− ’ ,

l i n ew id th =0.7)
320

321 f o r sample in group :
322 ax . p l o t (sample [’ c rack ’] ,
323 l a b e l=f " Channel { sample [’ channel ’] } at { sample [’

s tart_time ’] } " ,
324 c o l o r=color_mapping [sample [’ channel ’]])
325

326 # add onset index o f the crack , c a l c u l a t e d by the board ,
i f i t i s ou t s i d e the th r e sho ld

327 # (p r e v i o u s l y the onset index r e s e t was not added to the
c code ,

328 # so i t i s not sure i f i t conta in s the l a t e s t onset index
)

329 onset_value = sample [’ crack ’] [sample [’ onset_index ’]]
330 i f onset_value > UPPER_THRESHOLD or onset_value <

LOWER_THRESHOLD:
331 ax . s c a t t e r (sample [’ onset_index ’] , onset_value , c o l o r=

’#FF00FF ’ , zorder =5)
332

91

Python scripts

333 _, _, _, onset_idx = find_onset_time (sample [’ crack ’] , 50 ,
10)

334 i f onset_idx != −1:
335 ax . s c a t t e r (onset_idx , sample [’ crack ’] [onset_idx] ,

c o l o r=’ black ’ , zorder =5)
336

337 ax . s e t_x labe l (" Index ")
338 ax . s e t_y labe l (" Value ")
339 ax . s e t _ t i t l e (" Crack data grouped by channe l s ")
340 ax . legend ()
341 p l t . show ()
342 p l t . c l o s e (f i g)
343

344

345 de f f ind_onset_time (samples : l i s t [s t r] , i n i t i a l_N : int , th r e sho ld :
i n t) −> tup le :

346 " " " Finds the onset time o f the crack
347

348 Args :
349 samples (l i s t [s t r]) : data
350 i n i t i a l_N (i n t) : number o f i n i t i a l samples to average
351 th r e sho ld (i n t) : th r e sho ld f o r o u t l i e r d e t e c t i on in pct %
352

353 Raises :
354 ValueError : i f i n i t i a l_N i s l a r g e r than the number o f samples

a v a i l a b l e
355

356 Returns :
357 tup l e : average , upper l im i t , lower l im i t , index o f the

o u t l i e r
358 " " "
359 i f i n i t i a l_N > len (samples) :
360 r a i s e ValueError (" i n i t i a l_N i s l a r g e r than the number o f

samples a v a i l a b l e ")
361

362 cumulative_sum = sum(samples [: i n i t i a l_N])
363 f o r index in range (in i t ia l_N , l en (samples)) :
364 average = cumulative_sum / index
365 upper_l imit = average ∗ (1 + thre sho ld / 100)
366 l ower_l imit = average ∗ (1 − th r e sho ld / 100)
367

368 i f samples [index] > upper_limit or samples [index] <
lower_l imit :

369 re turn average , upper_limit , lower_l imit , index
370

371 cumulative_sum += samples [index]
372

373 re turn average , upper_limit , lower_l imit , −1 # Return −1 i f no
o u t l i e r i s found

92

Python scripts

374

375

376 i f __name__ == ’__main__ ’ :
377 process_data (v i s u a l i z e=True , use_exist ing_data=False ,

save_rx_data=True)
378

379 t e s t f i l e = " r e s u l t s / conc re t e / crack_data2025 −03−09_13−16_GOOD. txt "
380 v i sua l i z e_per_crack (t e s t f i l e)
381 v i sua l i ze_per_channe l (t e s t f i l e)

93

Bibliography

[1] Samira Gholizadeh, Z Leman, BTHT Baharudin, et al. «A review of the
application of acoustic emission technique in engineering». In: Struct. Eng.
Mech 54.6 (2015), pp. 1075–1095 (cit. on p. 3).

[2] Daniel Balageas, Claus-Peter Fritzen, and Alfredo Güemes. Structural Health
Monitoring. Google Books, 2006 (cit. on p. 3).

[3] Xiaoqing Huang, Pei Wang, Song Zhang, Xiongtao Zhao, and Yupeng Zhang.
«Structural health monitoring and material safety with multispectral tech-
nique: A review». In: Journal of Safety Science and Resilience 3.1 (2022),
pp. 48–60. issn: 2666-4496. doi: 10.1016/j.jnlssr.2021.09.004. url:
https://www.sciencedirect.com/science/article/pii/S266644962100
0499 (cit. on pp. 3, 4).

[4] D. Inaudi. «Structural health monitoring of bridges: General issues and
applications». In: Structural Health Monitoring of Civil Infrastructure Systems.
Ed. by Vistasp M. Karbhari and Farhad Ansari. Woodhead Publishing Series
in Civil and Structural Engineering. Woodhead Publishing, 2009, pp. 339–
370. isbn: 978-1-84569-392-3. doi: 10.1533/9781845696825.2.339. url:
https://www.sciencedirect.com/science/article/pii/B978184569392
3500116 (cit. on p. 3).

[5] Charles R. Farrar and Keith Worden. «An introduction to structural health
monitoring». In: Phil. Trans. R. Soc. A. (2007). issn: 1365-3032. doi: 10.
1098/rsta.2006.1928. url: https://royalsocietypublishing.org/doi/
full/10.1098/rsta.2006.1928 (cit. on p. 3).

[6] Yong Xia, Yozo Fujino, Masato Abe, and Jun Murakoshi. «Short-term and
long-term health monitoring experience of a short highway bridge: Case
study». In: Bridge Structures 1.1 (2005), pp. 43–53. doi: 10.1080/1573248
0412331294696. url: https://doi.org/10.1080/15732480412331294696
(cit. on p. 3).

94

https://doi.org/10.1016/j.jnlssr.2021.09.004
https://www.sciencedirect.com/science/article/pii/S2666449621000499
https://www.sciencedirect.com/science/article/pii/S2666449621000499
https://doi.org/10.1533/9781845696825.2.339
https://www.sciencedirect.com/science/article/pii/B9781845693923500116
https://www.sciencedirect.com/science/article/pii/B9781845693923500116
https://doi.org/10.1098/rsta.2006.1928
https://doi.org/10.1098/rsta.2006.1928
https://royalsocietypublishing.org/doi/full/10.1098/rsta.2006.1928
https://royalsocietypublishing.org/doi/full/10.1098/rsta.2006.1928
https://doi.org/10.1080/15732480412331294696
https://doi.org/10.1080/15732480412331294696
https://doi.org/10.1080/15732480412331294696

BIBLIOGRAPHY

[7] Diogo Montalvão, N. Maia, and A. Ribeiro. «A Review of Vibration-based
Structural Health Monitoring with Special Emphasis on Composite Materials».
In: The Shock and Vibration Digest 38 (July 2006), p. 295. doi: 10.1177/
0583102406065898 (cit. on p. 4).

[8] A.C. Raghavan and Carlos Cesnik. «Review of Guided-Wave Structural Health
Monitoring». In: The Shock and Vibration Digest 39 (Mar. 2007), pp. 91–114.
doi: 10.1177/0583102406075428 (cit. on p. 4).

[9] Keith Worden, Charles R. Farrar, Graeme Manson, and Gyuhae Park. «The
fundamental axioms of structural health monitoring». In: Proceedings of the
Royal Society (2007). issn: 1471-2946. doi: 10.1098/rspa.2007.1834. url:
https://royalsocietypublishing.org/doi/10.1098/rspa.2007.1834
(cit. on p. 4).

[10] Md. Sazedul Islam, Md. Shahruzzaman, M. Nuruzzaman Khan, Md. Minhajul
Islam, Sumaya Farhana Kabir, Abul K. Mallik, Mohammed Mizanur Rahman,
and Papia Haque. «Composite materials: Concept, recent advancements, and
applications». In: Renewable Polymers and Polymer-Metal Oxide Composites.
Ed. by Sajjad Haider and Adnan Haider. Metal Oxides. Elsevier, 2022, pp. 1–
43. isbn: 978-0-323-85155-8. doi: 10.1016/B978-0-323-85155-8.00011-X.
url: https://www.sciencedirect.com/science/article/pii/B9780323
85155800011X (cit. on p. 5).

[11] F.M. Shuaeib, K.Y. Benyounis, and M.S.J. Hashmi. «Material Behavior and
Performance in Environments of Extreme Pressure and Temperatures». In:
Reference Module in Materials Science and Materials Engineering. Elsevier,
2017. isbn: 978-0-12-803581-8. doi: 10.1016/B978-0-12-803581-8.04170-
9. url: https://www.sciencedirect.com/science/article/pii/B97801
28035818041709 (cit. on p. 5).

[12] J. Schijve. «Fatigue of Structures and Materials in the 20th Century and the
State of the Art». In: Materials Science 39.3 (May 2003), pp. 307–333. doi: 10.
1023/b:masc.0000010738.91907.a9. url: https://www.gruppofrattura.
it/ocs/index.php/esis/ECF14/paper/viewFile/7980/5243 (cit. on p. 5).

[13] Chetan J. Chitte. «Study on Causes and Prevention of Cracks in Building».
In: International Journal for Research in Applied Science and Engineering
Technology 6.3 (Mar. 2018), pp. 453–461. doi: 10.22214/ijraset.2018.
3073. url: https://www.researchgate.net/profile/Chetan-Chitte/
publication/325783838_Study_on_Causes_and_Prevention_of_Cracks_
in_Building/links/6006b70e92851c13fe1f76b9/Study-on-Causes-and-
Prevention-of-Cracks-in-Building.pdf (cit. on p. 5).

95

https://doi.org/10.1177/0583102406065898
https://doi.org/10.1177/0583102406065898
https://doi.org/10.1177/0583102406075428
https://doi.org/10.1098/rspa.2007.1834
https://royalsocietypublishing.org/doi/10.1098/rspa.2007.1834
https://doi.org/10.1016/B978-0-323-85155-8.00011-X
https://www.sciencedirect.com/science/article/pii/B978032385155800011X
https://www.sciencedirect.com/science/article/pii/B978032385155800011X
https://doi.org/10.1016/B978-0-12-803581-8.04170-9
https://doi.org/10.1016/B978-0-12-803581-8.04170-9
https://www.sciencedirect.com/science/article/pii/B9780128035818041709
https://www.sciencedirect.com/science/article/pii/B9780128035818041709
https://doi.org/10.1023/b:masc.0000010738.91907.a9
https://doi.org/10.1023/b:masc.0000010738.91907.a9
https://www.gruppofrattura.it/ocs/index.php/esis/ECF14/paper/viewFile/7980/5243
https://www.gruppofrattura.it/ocs/index.php/esis/ECF14/paper/viewFile/7980/5243
https://doi.org/10.22214/ijraset.2018.3073
https://doi.org/10.22214/ijraset.2018.3073
https://www.researchgate.net/profile/Chetan-Chitte/publication/325783838_Study_on_Causes_and_Prevention_of_Cracks_in_Building/links/6006b70e92851c13fe1f76b9/Study-on-Causes-and-Prevention-of-Cracks-in-Building.pdf
https://www.researchgate.net/profile/Chetan-Chitte/publication/325783838_Study_on_Causes_and_Prevention_of_Cracks_in_Building/links/6006b70e92851c13fe1f76b9/Study-on-Causes-and-Prevention-of-Cracks-in-Building.pdf
https://www.researchgate.net/profile/Chetan-Chitte/publication/325783838_Study_on_Causes_and_Prevention_of_Cracks_in_Building/links/6006b70e92851c13fe1f76b9/Study-on-Causes-and-Prevention-of-Cracks-in-Building.pdf
https://www.researchgate.net/profile/Chetan-Chitte/publication/325783838_Study_on_Causes_and_Prevention_of_Cracks_in_Building/links/6006b70e92851c13fe1f76b9/Study-on-Causes-and-Prevention-of-Cracks-in-Building.pdf

BIBLIOGRAPHY

[14] Grishma Thagunna. «Building cracks - Causes and remedies». In: Inter-
national Journal of Advanced Structures and Geotechnical Engineering 4.1
(2015), pp. 2319–5347 (cit. on p. 5).

[15] Hyo-Gyoung Kwak, Soo-Jun Ha, and Jin-Keun Kim. «Non-structural cracking
in RC walls: Part I. Finite element formulation». In: Cement and Concrete
Research 36.4 (2006), pp. 749–760. issn: 0008-8846. doi: 10.1016/j.cem
conres.2005.12.001. url: https://www.sciencedirect.com/science/
article/pii/S0008884605003091 (cit. on p. 5).

[16] TF Drouillard. «Acoustic Emission—A Bibliography for 1970–1972». In:
Monitoring Structural Integrity by Acoustic Emission 571 (1975), p. 241 (cit.
on p. 5).

[17] M.J.S. Lowe. «ULTRASONICS». In: Encyclopedia of Vibration. Ed. by S.
Braun. Oxford: Elsevier, 2001, pp. 1437–1441. isbn: 978-0-12-227085-7. doi:
10 . 1006 / rwvb . 2001 . 0143. url: https : / / www . sciencedirect . com /
science/article/pii/B0122270851001430 (cit. on p. 5).

[18] John P. McCrory, Safaa Kh. Al-Jumaili, Davide Crivelli, Matthew R. Pearson,
Mark J. Eaton, Carol A. Featherston, Mario Guagliano, Karen M. Holford,
and Rhys Pullin. «Damage classification in carbon fibre composites using
acoustic emission: A comparison of three techniques». In: Composites Part
B: Engineering 68 (2015), pp. 424–430. issn: 1359-8368. doi: 10.1016/
j.compositesb.2014.08.046. url: https://www.sciencedirect.com/
science/article/pii/S1359836814003849 (cit. on p. 6).

[19] Jonathan J Scholey, Paul D Wilcox, Michael R Wisnom, Mike I Friswell,
Martyn Pavier, and Mohammad R Aliha. «A GENERIC TECHNIQUE FOR
ACOUSTIC EMISSION SOURCE LOCATION.» In: Journal of Acoustic
Emission 27 (2009) (cit. on p. 6).

[20] Tawhidul Islam, Nagafuchi Sunichi, and Mehedi Hasan. «Structural Damage
Localization by Linear Technique of Acoustic Emission». In: Open Journal
of Fluid Dynamics (Jan. 2014), pp. 425–432. doi: https : / / doi . org /
10.4236/ojfd.2014.45032. url: https://www.scirp.org/journal/
paperinformation?paperid=52849&utm_source=chatgpt.com (cit. on
p. 6).

[21] Jonathan Melchiorre, Amedeo Manuello Bertetto, Marco Martino Rosso,
and Giuseppe Carlo Marano. «Acoustic Emission and Artificial Intelligence
Procedure for Crack Source Localization». In: Sensors 23.2 (Jan. 2023),
pp. 693–693. doi: https://doi.org/10.3390/s23020693. url: https:
//www.mdpi.com/1424-8220/23/2/693 (cit. on pp. 6, 7, 19, 21).

96

https://doi.org/10.1016/j.cemconres.2005.12.001
https://doi.org/10.1016/j.cemconres.2005.12.001
https://www.sciencedirect.com/science/article/pii/S0008884605003091
https://www.sciencedirect.com/science/article/pii/S0008884605003091
https://doi.org/10.1006/rwvb.2001.0143
https://www.sciencedirect.com/science/article/pii/B0122270851001430
https://www.sciencedirect.com/science/article/pii/B0122270851001430
https://doi.org/10.1016/j.compositesb.2014.08.046
https://doi.org/10.1016/j.compositesb.2014.08.046
https://www.sciencedirect.com/science/article/pii/S1359836814003849
https://www.sciencedirect.com/science/article/pii/S1359836814003849
https://doi.org/https://doi.org/10.4236/ojfd.2014.45032
https://doi.org/https://doi.org/10.4236/ojfd.2014.45032
https://www.scirp.org/journal/paperinformation?paperid=52849&utm_source=chatgpt.com
https://www.scirp.org/journal/paperinformation?paperid=52849&utm_source=chatgpt.com
https://doi.org/https://doi.org/10.3390/s23020693
https://www.mdpi.com/1424-8220/23/2/693
https://www.mdpi.com/1424-8220/23/2/693

BIBLIOGRAPHY

[22] Matthew R Jones, Tim J Rogers, Keith Worden, and Elizabeth J Cross.
A Bayesian methodology for localising acoustic emission sources in complex
structures. 2020. url: https://arxiv.org/abs/2012.11058?utm_source=
chatgpt.com (cit. on p. 7).

[23] The Britannica. Piezoelectricity | Piezoelectricity, Acoustic Wave, Ultrasound.
Oct. 2024. url: https://www.britannica.com/science/piezoelectrici
ty (cit. on p. 7).

[24] Malin Edvardsson. 2018. url: https://www.biolinscientific.com/blog/
what-is-piezoelectricity (cit. on p. 8).

[25] Jie Jiang, Saloni Pendse, Lifu Zhang, and Jian Shi. «Strain related new
sciences and devices in low-dimensional binary oxides». In: Nano Energy
104 (2022), p. 107917. issn: 2211-2855. doi: 10.1016/j.nanoen.2022.
107917. url: https://www.sciencedirect.com/science/article/pii/
S2211285522009958 (cit. on p. 8).

[26] Wayne Storr. Inverting Operational Amplifier - The Inverting Op-amp. Aug.
2013. url: https://www.electronics-tutorials.ws/opamp/opamp_2.
html (cit. on p. 11).

[27] Wayne Storr. Non-inverting Operational Amplifier - The Non-inverting Op-
amp. Aug. 2013. url: https://www.electronics-tutorials.ws/opamp/
opamp_3.html (cit. on p. 11).

[28] Wayne Storr. Summing Amplifier is an Op-amp Voltage Adder. Aug. 2013.
url: https://www.electronics-tutorials.ws/opamp/opamp_4.html
(cit. on p. 12).

[29] Wayne Storr. Differential Amplifier - The Voltage Subtractor. Aug. 2013. url:
https://www.electronics-tutorials.ws/opamp/opamp_5.html (cit. on
p. 13).

[30] Contributors. Instrumentation Amplifier - An Electronic Amplifier. Sept. 2003.
url: https://en.wikipedia.org/wiki/Instrumentation_amplifier (cit.
on p. 13).

[31] M. Hill, P.J. Mekdara, B.A. Trimmer, and R. D. White. «Structural Vibration
for Robotic Communication and Sensing on One-Dimensional Structures».
In: IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Sept. 2015, pp. 2160–2165. doi: 10.1109/IROS.2015.7353666 (cit.
on p. 14).

[32] Wayne Storr. Active Low Pass Filter - Op-amp Low Pass Filter. Aug. 2013.
url: https://www.electronics-tutorials.ws/filter/filter_5.html
(cit. on p. 15).

97

https://arxiv.org/abs/2012.11058?utm_source=chatgpt.com
https://arxiv.org/abs/2012.11058?utm_source=chatgpt.com
https://www.britannica.com/science/piezoelectricity
https://www.britannica.com/science/piezoelectricity
https://www.biolinscientific.com/blog/what-is-piezoelectricity
https://www.biolinscientific.com/blog/what-is-piezoelectricity
https://doi.org/10.1016/j.nanoen.2022.107917
https://doi.org/10.1016/j.nanoen.2022.107917
https://www.sciencedirect.com/science/article/pii/S2211285522009958
https://www.sciencedirect.com/science/article/pii/S2211285522009958
https://www.electronics-tutorials.ws/opamp/opamp_2.html
https://www.electronics-tutorials.ws/opamp/opamp_2.html
https://www.electronics-tutorials.ws/opamp/opamp_3.html
https://www.electronics-tutorials.ws/opamp/opamp_3.html
https://www.electronics-tutorials.ws/opamp/opamp_4.html
https://www.electronics-tutorials.ws/opamp/opamp_5.html
https://en.wikipedia.org/wiki/Instrumentation_amplifier
https://doi.org/10.1109/IROS.2015.7353666
https://www.electronics-tutorials.ws/filter/filter_5.html

BIBLIOGRAPHY

[33] Alan Turing. «Computing Machinery and Intelligence». In: Mind 59.236 (Oct.
1950), pp. 433–460. doi: https://doi.org/10.1093/mind/lix.236.433.
url: https://courses.cs.umbc.edu/471/papers/turing.pdf (cit. on
p. 15).

[34] Frank Rosenblatt. «The Perceptron: A Probabilistic Model for Information
Storage and Organization in the Brain». In: Psychological Review (1958). url:
https://www.ling.upenn.edu/courses/cogs501/Rosenblatt1958.pdf
(cit. on p. 15).

[35] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. «Learning
representations by back-propagating errors». In: Nature 323.6088 (Oct. 1986),
pp. 533–536. doi: https://doi.org/10.1038/323533a0. url: https:
//www.nature.com/articles/323533a0 (cit. on p. 15).

[36] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. «ImageNet Classifi-
cation with Deep Convolutional Neural Networks». In: Communications of
the ACM 60.6 (May 2012), pp. 84–90 (cit. on pp. 15, 17).

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You
Need. 2017. url: https://arxiv.org/abs/1706.03762 (cit. on pp. 15, 17).

[38] David Silver et al. «Mastering the game of Go with deep neural networks
and tree search». In: Nature 529.7587 (Jan. 2016), pp. 484–489. doi: https:
//doi.org/10.1038/nature16961. url: https://www.nature.com/
articles/nature16961 (cit. on p. 15).

[39] Karl Pearson. «On lines and planes of closest fit to systems of points in
space». In: University College London (1901). url: https://pca.narod.ru/
pearson1901.pdf (cit. on p. 16).

[40] Corinna Cortes and Vladimir Vapnik. «Support-vector networks». In: Machine
Learning 20.3 (Sept. 1995), pp. 273–297. doi: https://doi.org/10.1007/
BF00994018 (cit. on p. 16).

[41] Leo Breiman. «Random Forest». In: Machine Learning 45.1 (Jan. 2001),
pp. 5–32. doi: https://doi.org/10.1023/a:1010933404324. url: https:
//link.springer.com/article/10.1023/A:1010933404324 (cit. on p. 16).

[42] Detlof von Winterfeldt and Ward Edwards. Decision trees. Cambridge Uni-
versity Press, 1986, pp. 63–89. isbn: 0-521-27304-8 (cit. on p. 16).

[43] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. «Rethinking the Inception Architecture for Computer Vision». In: Cv-
foundation.org (2016), pp. 2818–2826. url: https://www.cv-foundation.
org/openaccess/content_cvpr_2016/html/Szegedy_Rethinking_the_
Inception_CVPR_2016_paper.html (cit. on p. 17).

98

https://doi.org/https://doi.org/10.1093/mind/lix.236.433
https://courses.cs.umbc.edu/471/papers/turing.pdf
https://www.ling.upenn.edu/courses/cogs501/Rosenblatt1958.pdf
https://doi.org/https://doi.org/10.1038/323533a0
https://www.nature.com/articles/323533a0
https://www.nature.com/articles/323533a0
https://arxiv.org/abs/1706.03762
https://doi.org/https://doi.org/10.1038/nature16961
https://doi.org/https://doi.org/10.1038/nature16961
https://www.nature.com/articles/nature16961
https://www.nature.com/articles/nature16961
https://pca.narod.ru/pearson1901.pdf
https://pca.narod.ru/pearson1901.pdf
https://doi.org/https://doi.org/10.1007/BF00994018
https://doi.org/https://doi.org/10.1007/BF00994018
https://doi.org/https://doi.org/10.1023/a:1010933404324
https://link.springer.com/article/10.1023/A:1010933404324
https://link.springer.com/article/10.1023/A:1010933404324
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Szegedy_Rethinking_the_Inception_CVPR_2016_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Szegedy_Rethinking_the_Inception_CVPR_2016_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Szegedy_Rethinking_the_Inception_CVPR_2016_paper.html

BIBLIOGRAPHY

[44] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. 2015. url: https://arxiv.org/abs/1512.
03385 (cit. on p. 17).

[45] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional
Networks for Biomedical Image Segmentation. 2015. url: https://arxiv.
org/abs/1505.04597 (cit. on p. 17).

[46] Alberto Carpinteri, Giuseppe Lacidogna, and Gianni Niccolini. «Critical
Behaviour in Concrete Structures and Damage Localization by Acoustic
Emission». In: Key Engineering Materials 312 (June 2006), pp. 305–310. doi:
10.4028/www.scientific.net/kem.312.305 (cit. on p. 18).

[47] «The equivalence of generalized least squares and maximum likelihood esti-
mates in the exponential family». In: Journal of the American Statistical Asso-
ciation (1974). doi: https://doi.org/10.1080//01621459.1976.10481508.
url: https://www.tandfonline.com/doi/abs/10.1080/01621459.1976.
10481508 (cit. on p. 18).

[48] Alberto Carpinteri, Giuseppe Lacidogna, and Amedeo Manuello. «Damage
Mechanisms Interpreted by Acoustic Emission Signal Analysis». In: Key
Engineering Materials 347 (Sept. 2007), pp. 577–582. doi: 10.4028/www.
scientific.net/kem.347.577 (cit. on p. 18).

[49] Masayasu Ohtsu. «Moment Tensor Analysis». In: Springer eBooks (July
2008), pp. 175–200. doi: 10.1007/978-3-540-69972-9_8. url: https:
//link.springer.com/chapter/10.1007/978-3-540-69972-9_8 (cit. on
p. 18).

[50] F. Bai, D. Gagar, P. Foote, and Y. Zhao. «Comparison of Alternatives to
Amplitude Thresholding for Onset Detection of Acoustic Emission Signals».
In: Mechanical Systems and Signal Processing 84 (Sept. 2016), pp. 717–730.
doi: 10.1016/j.ymssp.2016.09.004. url: https://www.sciencedirect.
com/science/article/pii/S0888327016303430 (cit. on pp. 18, 19).

[51] Jochen H. Kurz, Christian U. Grosse, and Hans-Wolf Reinhardt. «Strategies
for Reliable Automatic Onset Time Picking of Acoustic Emissions and Ul-
trasound Signals in Concrete». In: Ultrasonics 43 (Dec. 2004), pp. 538–546.
doi: 10.1016/j.ultras.2004.12.005. url: https://www.sciencedirect.
com/science/article/abs/pii/S0041624X04003166 (cit. on pp. 18, 19).

[52] M. Eaton, Rhys Pullin, and Karen Holford. «Towards Improved Damage
Location Using Acoustic Emission». In: Proceedings of the Institution of
Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
226 (Sept. 2012), pp. 2141–2153. doi: 10.1177/0954406212449582 (cit. on
p. 19).

99

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597
https://doi.org/10.4028/www.scientific.net/kem.312.305
https://doi.org/https://doi.org/10.1080//01621459.1976.10481508
https://www.tandfonline.com/doi/abs/10.1080/01621459.1976.10481508
https://www.tandfonline.com/doi/abs/10.1080/01621459.1976.10481508
https://doi.org/10.4028/www.scientific.net/kem.347.577
https://doi.org/10.4028/www.scientific.net/kem.347.577
https://doi.org/10.1007/978-3-540-69972-9_8
https://link.springer.com/chapter/10.1007/978-3-540-69972-9_8
https://link.springer.com/chapter/10.1007/978-3-540-69972-9_8
https://doi.org/10.1016/j.ymssp.2016.09.004
https://www.sciencedirect.com/science/article/pii/S0888327016303430
https://www.sciencedirect.com/science/article/pii/S0888327016303430
https://doi.org/10.1016/j.ultras.2004.12.005
https://www.sciencedirect.com/science/article/abs/pii/S0041624X04003166
https://www.sciencedirect.com/science/article/abs/pii/S0041624X04003166
https://doi.org/10.1177/0954406212449582

BIBLIOGRAPHY

[53] Andrea Rocchi, Eleonora Santecchia, Fabrizio Ciciulla, Paolo Mengucci, and
Gianni Barucca. «Characterization and Optimization of Level Measurement
by an Ultrasonic Sensor System». In: IEEE Sensors Journal 19.8 (2019),
pp. 3077–3084. doi: 10.1109/JSEN.2018.2890568 (cit. on p. 19).

[54] Manfred Baer and Urs Kradolfer. «An Automatic Phase Picker for Local and
Teleseismic Events». In: Bulletin of the Seismological Society of America 77
(1987), pp. 1437–1445. url: https://api.semanticscholar.org/CorpusID:
130279060 (cit. on p. 19).

[55] John Sadowsky. «Investigation of Signal Characteristics Using the Continuous
Wavelet Transform». In: JOHNS HOPKINS APL TECHNICAL DIGEST
258.3 (1996). url: https://secwww.jhuapl.edu/techdigest/Content/
techdigest/pdf/V17-N03/17-03-Sadowsky.pdf (cit. on p. 19).

[56] Hirotugu Akaike. «Markovian representation of stochastic processes and its
application to the analysis of autoregressive moving average processes». In:
Annals of the Institute of Statistical Mathematics 26.1 (Dec. 1974), pp. 363–
387. doi: https://doi.org/10.1007/bf02479833. url: https://www.ism.
ac.jp/editsec/aism/pdf/026_3_0363.pdf (cit. on p. 19).

[57] Zilong Zhou, Ruishan Cheng, Yichao Rui, Jing Zhou, and Haiquan Wang. «An
Improved Automatic Picking Method for Arrival Time of Acoustic Emission
Signals». In: IEEE Access 7 (2019), pp. 75568–75576. doi: 10.1109/ACCESS.
2019.2921650 (cit. on p. 19).

[58] A. Carpinteri, J Xu, G. Lacidogna, and A. Manuello. «Reliable onset time
determination and source location of acoustic emissions in concrete structures».
In: Cement and Concrete Composites 34.4 (Dec. 2011), pp. 529–537. doi:
https://doi.org/10.1016/j.cemconcomp.2011.11.013. url: https://
www.sciencedirect.com/science/article/abs/pii/S0958946511002149
(cit. on p. 19).

[59] D V Hinkley. «Inference about the Change-Point from Cumulative Sum
Tests». In: Biometrika 58.3 (Dec. 1971), pp. 509–509. doi: https://doi.
org/10.2307/2334386. url: https://www.jstor.org/stable/2334386
(cit. on p. 19).

[60] Steven M Ziola and Michael R Gorman. «Source location in thin plates
using cross-correlation». In: The Journal of the Acoustical Society of America
90.5 (Nov. 1991), pp. 2551–2556. doi: https://doi.org/10.1121/1.
402348. url: https://pubs.aip.org/asa/jasa/article- abstract/
90/5/2551/807982/Source-location-in-thin-plates-using-cross?
redirectedFrom=fulltext (cit. on p. 19).

100

https://doi.org/10.1109/JSEN.2018.2890568
https://api.semanticscholar.org/CorpusID:130279060
https://api.semanticscholar.org/CorpusID:130279060
https://secwww.jhuapl.edu/techdigest/Content/techdigest/pdf/V17-N03/17-03-Sadowsky.pdf
https://secwww.jhuapl.edu/techdigest/Content/techdigest/pdf/V17-N03/17-03-Sadowsky.pdf
https://doi.org/https://doi.org/10.1007/bf02479833
https://www.ism.ac.jp/editsec/aism/pdf/026_3_0363.pdf
https://www.ism.ac.jp/editsec/aism/pdf/026_3_0363.pdf
https://doi.org/10.1109/ACCESS.2019.2921650
https://doi.org/10.1109/ACCESS.2019.2921650
https://doi.org/https://doi.org/10.1016/j.cemconcomp.2011.11.013
https://www.sciencedirect.com/science/article/abs/pii/S0958946511002149
https://www.sciencedirect.com/science/article/abs/pii/S0958946511002149
https://doi.org/https://doi.org/10.2307/2334386
https://doi.org/https://doi.org/10.2307/2334386
https://www.jstor.org/stable/2334386
https://doi.org/https://doi.org/10.1121/1.402348
https://doi.org/https://doi.org/10.1121/1.402348
https://pubs.aip.org/asa/jasa/article-abstract/90/5/2551/807982/Source-location-in-thin-plates-using-cross?redirectedFrom=fulltext
https://pubs.aip.org/asa/jasa/article-abstract/90/5/2551/807982/Source-location-in-thin-plates-using-cross?redirectedFrom=fulltext
https://pubs.aip.org/asa/jasa/article-abstract/90/5/2551/807982/Source-location-in-thin-plates-using-cross?redirectedFrom=fulltext

BIBLIOGRAPHY

[61] F Ciampa and M Meo. «Acoustic emission source localization and velocity
determination of the fundamental mode A0 using wavelet analysis and a
Newton-based optimization technique». In: Smart Materials and Structures
19.4 (Mar. 2010), p. 045027. doi: https : / / doi . org / 10 . 1088 / 0964 -
1726/19/4/045027 (cit. on p. 19).

[62] «A fractal-based algorithm for detecting first arrivals». In: ResearchGate
(1996). doi: https://doi.org/10.1190//1.1444030. url: https://
www . researchgate . net / publication / 215754932 _ A _ fractal - based _
algorithm_for_detecting_first_arrivals (cit. on p. 20).

[63] Vahid Emamian, Mostafa Kaveh, Ahmed H Tewfik, Zhiqiang Shi, Laurence J
Jacobs, and Jacek Jarzynski. «Robust Clustering of Acoustic Emission Signals
Using Neural Networks and Signal Subspace Projections». In: EURASIP
Journal on Advances in Signal Processing 2003.3 (Mar. 2003). doi: https:
//doi.org/10.1155/s1110865703210027. url: https://asp-eurasipjo
urnals.springeropen.com/articles/10.1155/S1110865703210027 (cit.
on p. 20).

[64] H So and Hing Cheung. Time Delay Estimation: Applications and Algorithms.
url: https://sigport.org/sites/default/files/Time_Delay_Estimat
ion.pdf (cit. on p. 20).

[65] Omkar; Sundaram; Raghavendra; Mani. «Acoustic emission signal classi-
fication using fuzzy C-means clustering». In: ResearchGate (2025). doi:
https://doi.org/10.1109//ICONIP.2002.1198989. url: https://www.
researchgate.net/publication/4014441_Acoustic_emission_signal_
classification_using_fuzzy_C-means_clustering (cit. on p. 20).

[66] Mostafa Kaveh Nuri F Ince C.-S. Kao. «A machine learning approach for
locating acoustic emission». In: ResearchGate (2010). doi: https://doi.
org/10.1155//2010//895486. url: https://www.researchgate.net/
publication/50282709_A_Machine_Learning_Approach_for_Locating_
Acoustic_Emission (cit. on p. 21).

[67] Mengxi Zhang, Mingchao Li, Jinrui Zhang, Le Liu, and Heng Li. «Onset
detection of ultrasonic signals for the testing of concrete foundation piles
by coupled continuous wavelet transform and machine learning algorithms».
In: Advanced Engineering Informatics 43 (Jan. 2020), pp. 101034–101034.
doi: https://doi.org/10.1016/j.aei.2020.101034. url: https://
www.sciencedirect.com/science/article/abs/pii/S1474034620300033
(cit. on p. 21).

101

https://doi.org/https://doi.org/10.1088/0964-1726/19/4/045027
https://doi.org/https://doi.org/10.1088/0964-1726/19/4/045027
https://doi.org/https://doi.org/10.1190//1.1444030
https://www.researchgate.net/publication/215754932_A_fractal-based_algorithm_for_detecting_first_arrivals
https://www.researchgate.net/publication/215754932_A_fractal-based_algorithm_for_detecting_first_arrivals
https://www.researchgate.net/publication/215754932_A_fractal-based_algorithm_for_detecting_first_arrivals
https://doi.org/https://doi.org/10.1155/s1110865703210027
https://doi.org/https://doi.org/10.1155/s1110865703210027
https://asp-eurasipjournals.springeropen.com/articles/10.1155/S1110865703210027
https://asp-eurasipjournals.springeropen.com/articles/10.1155/S1110865703210027
https://sigport.org/sites/default/files/Time_Delay_Estimation.pdf
https://sigport.org/sites/default/files/Time_Delay_Estimation.pdf
https://doi.org/https://doi.org/10.1109//ICONIP.2002.1198989
https://www.researchgate.net/publication/4014441_Acoustic_emission_signal_classification_using_fuzzy_C-means_clustering
https://www.researchgate.net/publication/4014441_Acoustic_emission_signal_classification_using_fuzzy_C-means_clustering
https://www.researchgate.net/publication/4014441_Acoustic_emission_signal_classification_using_fuzzy_C-means_clustering
https://doi.org/https://doi.org/10.1155//2010//895486
https://doi.org/https://doi.org/10.1155//2010//895486
https://www.researchgate.net/publication/50282709_A_Machine_Learning_Approach_for_Locating_Acoustic_Emission
https://www.researchgate.net/publication/50282709_A_Machine_Learning_Approach_for_Locating_Acoustic_Emission
https://www.researchgate.net/publication/50282709_A_Machine_Learning_Approach_for_Locating_Acoustic_Emission
https://doi.org/https://doi.org/10.1016/j.aei.2020.101034
https://www.sciencedirect.com/science/article/abs/pii/S1474034620300033
https://www.sciencedirect.com/science/article/abs/pii/S1474034620300033

BIBLIOGRAPHY

[68] Ping-Hung Chen; Jian-Jiun Ding; Jin-Yu Huang; Tzu-Yun Tseng. «Accu-
rate onset detection algorithm using feature-layer-based deep learning ar-
chitecture». In: ResearchGate (2020). doi: https://doi.org/10.1109/
/ISCAS45731 . 2020 . 9181255. url: https : / / www . researchgate . net /
publication/349293261_Accurate_Onset_Detection_Algorithm_using_
Feature-Layer-Based_Deep_Learning_Architecture (cit. on p. 21).

[69] Federica Zonzini, Denis Bogomolov, Tanush Dhamija, Nicola Testoni, Luca
De Marchi, and Alessandro Marzani. «Deep Learning Approaches for Robust
Time of Arrival Estimation in Acoustic Emission Monitoring». In: Sensors
22.3 (Jan. 2022), p. 1091. doi: https://doi.org/10.3390/s22031091. url:
https://www.mdpi.com/1424-8220/22/3/1091 (cit. on p. 21).

[70] Omar M. Saad and Yangkang Chen. «CapsPhase: Capsule Neural Network
for Seismic Phase Classification and Picking». In: IEEE Transactions on
Geoscience and Remote Sensing 60 (2022), pp. 1–11. doi: https://doi.
org/10.1109/tgrs.2021.3089929. url: https://ieeexplore.ieee.org/
abstract/document/9467532 (cit. on p. 21).

[71] Annamaria Mesaros, Toni Heittola, Tuomas Virtanen, and Mark D. Plumbley.
«Sound Event Detection: A tutorial». In: IEEE Signal Processing Magazine
38.5 (Sept. 2021), pp. 67–83. doi: https://doi.org/10.1109/msp.2021.
3090678. url: https://arxiv.org/abs/2107.05463 (cit. on p. 21).

[72] Jonathan Melchiorre, Leo D’Amato, Federico Agostini, and Antonino Maria
Rizzo. «Acoustic emission onset time detection for structural monitoring
with U-Net neural network architecture». In: Developments in the Built
Environment 18 (Apr. 2024), pp. 100449–100449. doi: https://doi.org/
10.1016/j.dibe.2024.100449. url: https://www.sciencedirect.com/
science/article/pii/S2666165924001303 (cit. on p. 21).

[73] Chenglong Yu, Jianchao Du, Meng Li, Yunsong Li, and Weibin Li. «An
improved U-Net model for concrete crack detection». In: Machine Learning
with Applications 10 (Nov. 2022), pp. 100436–100436. doi: https://doi.
org/10.1016/j.mlwa.2022.100436. url: https://www.sciencedirect.
com/science/article/pii/S2666827022001116 (cit. on p. 21).

[74] Jing Zheng, Jiren Lu, Suping Peng, and Tianqi Jiang. «An automatic micro-
seismic or acoustic emission arrival identification scheme with deep recurrent
neural networks». In: Geophysical Journal International 212.2 (Nov. 2017),
pp. 1389–1397. doi: https://doi.org/10.1093/gji/ggx487. url: https:
//academic.oup.com/gji/article/212/2/1389/4604781 (cit. on p. 22).

102

https://doi.org/https://doi.org/10.1109//ISCAS45731.2020.9181255
https://doi.org/https://doi.org/10.1109//ISCAS45731.2020.9181255
https://www.researchgate.net/publication/349293261_Accurate_Onset_Detection_Algorithm_using_Feature-Layer-Based_Deep_Learning_Architecture
https://www.researchgate.net/publication/349293261_Accurate_Onset_Detection_Algorithm_using_Feature-Layer-Based_Deep_Learning_Architecture
https://www.researchgate.net/publication/349293261_Accurate_Onset_Detection_Algorithm_using_Feature-Layer-Based_Deep_Learning_Architecture
https://doi.org/https://doi.org/10.3390/s22031091
https://www.mdpi.com/1424-8220/22/3/1091
https://doi.org/https://doi.org/10.1109/tgrs.2021.3089929
https://doi.org/https://doi.org/10.1109/tgrs.2021.3089929
https://ieeexplore.ieee.org/abstract/document/9467532
https://ieeexplore.ieee.org/abstract/document/9467532
https://doi.org/https://doi.org/10.1109/msp.2021.3090678
https://doi.org/https://doi.org/10.1109/msp.2021.3090678
https://arxiv.org/abs/2107.05463
https://doi.org/https://doi.org/10.1016/j.dibe.2024.100449
https://doi.org/https://doi.org/10.1016/j.dibe.2024.100449
https://www.sciencedirect.com/science/article/pii/S2666165924001303
https://www.sciencedirect.com/science/article/pii/S2666165924001303
https://doi.org/https://doi.org/10.1016/j.mlwa.2022.100436
https://doi.org/https://doi.org/10.1016/j.mlwa.2022.100436
https://www.sciencedirect.com/science/article/pii/S2666827022001116
https://www.sciencedirect.com/science/article/pii/S2666827022001116
https://doi.org/https://doi.org/10.1093/gji/ggx487
https://academic.oup.com/gji/article/212/2/1389/4604781
https://academic.oup.com/gji/article/212/2/1389/4604781

BIBLIOGRAPHY

[75] Tuan-Khai Nguyen, Zahoor Ahmad, and Jong-Myon Kim. «A Scheme with
Acoustic Emission Hit Removal for the Remaining Useful Life Prediction of
Concrete Structures». In: Sensors 21.22 (Nov. 2021), pp. 7761–7761. doi:
https://doi.org/10.3390/s21227761. url: https://www.mdpi.com/
1424-8220/21/22/7761 (cit. on p. 22).

[76] Pengcheng Jiao, King-James I. Egbe, Yiwei Xie, Ali Matin Nazar, and Amir H.
Alavi. «Piezoelectric Sensing Techniques in Structural Health Monitoring: A
State-of-the-Art Review». In: Sensors 20.13 (2020). issn: 1424-8220. doi: 10.
3390/s20133730. url: https://www.mdpi.com/1424-8220/20/13/3730
(cit. on p. 23).

[77] STMicroelectronics. 2024. url: https://www.st.com/en/evaluation-
tools/nucleo-f446re.html (cit. on pp. 26, 36, 67).

[78] James Karki. Signal Conditioning Piezoelectric Sensors. Tech. rep. SLOA033A.
Texas Instruments, Sept. 2000 (cit. on p. 27).

[79] Texas Instruments. Analog Engineer’s Circuit: Charge Amplifier Circuit. url:
https://www.ti.com/lit/an/sboa287/sboa287.pdf?ts=1718012208393&
ref_url=https%253A%252F%252Fwww.google.com%252F (cit. on p. 27).

[80] Robert Keim. Understanding and Implementing Charge Amplifiers for Piezo-
electric Sensor Systems. url: https://www.allaboutcircuits.com/techn
ical-articles/understanding-and-implementing-charge-amplifiers-
for-piezoelectric-sensor-s/ (cit. on p. 27).

[81] Robert Keim. How to Design Charge Amplifiers for Piezoelectric Sensors.
url: https://www.allaboutcircuits.com/technical-articles/how-to-
design-charge-amplifiers-piezoelectric-sensors/ (cit. on p. 27).

[82] Texas Instruments. TL08xx FET-Input Operational Amplifiers. url: https:
//www.ti.com/lit/ds/symlink/tl082.pdf (cit. on pp. 29, 77).

[83] Texas Instruments. TLC271, TLC271A, TLC271B LinCMOS Programmable
Low-Power Operational Amplifiers. url: https://www.ti.com/lit/ds/
symlink/tlc271.pdf (cit. on pp. 34, 71).

[84] ST Microelectronics. STM32 CUBE IDE. url: https://www.st.com/en/
development-tools/stm32cubeide.html (cit. on p. 37).

[85] Balint Bujtor et al. STM32 Nucleo Continuous ADC mode only converts
once. url: https://community.st.com/t5/stm32-mcus-products/stm32-
nucleo-continuous-adc-mode-only-converts-once/td-p/721761l (cit.
on p. 44).

103

https://doi.org/https://doi.org/10.3390/s21227761
https://www.mdpi.com/1424-8220/21/22/7761
https://www.mdpi.com/1424-8220/21/22/7761
https://doi.org/10.3390/s20133730
https://doi.org/10.3390/s20133730
https://www.mdpi.com/1424-8220/20/13/3730
https://www.st.com/en/evaluation-tools/nucleo-f446re.html
https://www.st.com/en/evaluation-tools/nucleo-f446re.html
https://www.ti.com/lit/an/sboa287/sboa287.pdf?ts=1718012208393&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/sboa287/sboa287.pdf?ts=1718012208393&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.allaboutcircuits.com/technical-articles/understanding-and-implementing-charge-amplifiers-for-piezoelectric-sensor-s/
https://www.allaboutcircuits.com/technical-articles/understanding-and-implementing-charge-amplifiers-for-piezoelectric-sensor-s/
https://www.allaboutcircuits.com/technical-articles/understanding-and-implementing-charge-amplifiers-for-piezoelectric-sensor-s/
https://www.allaboutcircuits.com/technical-articles/how-to-design-charge-amplifiers-piezoelectric-sensors/
https://www.allaboutcircuits.com/technical-articles/how-to-design-charge-amplifiers-piezoelectric-sensors/
https://www.ti.com/lit/ds/symlink/tl082.pdf
https://www.ti.com/lit/ds/symlink/tl082.pdf
https://www.ti.com/lit/ds/symlink/tlc271.pdf
https://www.ti.com/lit/ds/symlink/tlc271.pdf
https://www.st.com/en/development-tools/stm32cubeide.html
https://www.st.com/en/development-tools/stm32cubeide.html
https://community.st.com/t5/stm32-mcus-products/stm32-nucleo-continuous-adc-mode-only-converts-once/td-p/721761l
https://community.st.com/t5/stm32-mcus-products/stm32-nucleo-continuous-adc-mode-only-converts-once/td-p/721761l

BIBLIOGRAPHY

[86] Dongxue Li et al. «Acoustic Emission Wave Velocity Attenuation of Concrete
and Its Application in Crack Localization». In: Traffic Infrastructure Sustain-
ability in Autonomous Driving and Smart Pavement Environments (2020).
url: %E2%80%8Chttps://www.mdpi.com/2071-1050/12/18/7405 (cit. on
p. 64).

[87] Mouser. STMicroelectronics 1N5819. 2025. url: https://eu.mouser.com/
datasheet/2/389/1n5817-1848842.pdf (cit. on p. 71).

[88] Texas Instruments. Non-Inverting Op Amp with Non-Inverting Positive Ref-
erence Voltage Circuit. 2024. url: https://www.ti.com/lit/an/sboa263a/
sboa263a.pdf (cit. on p. 72).

[89] Texas Instruments. INAx126 MicroPower Instrumentation Amplifiers. url:
https://www.ti.com/lit/ds/symlink/ina126.pdf (cit. on p. 76).

104

%E2%80%8Chttps://www.mdpi.com/2071-1050/12/18/7405
https://eu.mouser.com/datasheet/2/389/1n5817-1848842.pdf
https://eu.mouser.com/datasheet/2/389/1n5817-1848842.pdf
https://www.ti.com/lit/an/sboa263a/sboa263a.pdf
https://www.ti.com/lit/an/sboa263a/sboa263a.pdf
https://www.ti.com/lit/ds/symlink/ina126.pdf

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Background
	Structural health monitoring
	Structural cracks
	Acoustic emission
	Methods for structural crack detection
	Crack localization
	Piezoelectricity
	Signal amplifiers
	Inverting operational amplifier
	Non-inverting operational amplifier
	Summing amplifier
	Differential amplifier
	Instrumentation amplifier
	Charge amplifier
	Low-pass filter

	Machine learning
	Principal Component Analysis
	Support Vector Machines
	Random Forest
	Decision Tree

	Neural Networks
	U-Net

	Related Works
	Classical methods
	ML-based methods

	Methodology
	Sensor characterization
	Hardware development
	Charge amplifier
	Dual-supply amplifier circuit
	Single-supply amplifier circuit

	Software development
	Single ADC channel with polling
	Single ADC channel with interrupt
	Multiple ADC channels with HW trigger, interrupt, and DMA

	Results
	PLB tests on marble
	PLB tests on concrete
	Analysis of the maximum performance

	Conclusion
	Experimental signal amplifier circuits
	Circuit 1
	Circuit 2
	Circuit 3

	Python scripts
	Python script for single ADC channel and polling
	Python script for single ADC channel with interrupts
	Python script for multiple ADC channels

	Bibliography

